content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def convert_single_linear_to_srgb(color_value): """ Changes as single RGB color in linear to SRGB color space :param color_value:float, single color value in 0-1 range (for example red channel) :return:float, new color converted to SRGB """ a = 0.055 if color_value <= 0.0031308: return color_value * 12.92 return (1 + a) * pow(color_value, 1 / 2.4) - a
80c38f241a6f1bd6e89eecc07140ecb14d1e3b78
127,403
import six def to_bed12(f, db, child_type='exon', name_field='ID'): """ Given a top-level feature (e.g., transcript), construct a BED12 entry Parameters ---------- f : Feature object or string This is the top-level feature represented by one BED12 line. For a canonical GFF or GTF, this will generally be a transcript. db : a FeatureDB object This is need to get the children for the feature child_type : str Featuretypes that will be represented by the BED12 "blocks". Typically "exon". name_field : str Attribute to be used in the "name" field of the BED12 entry. Usually "ID" for GFF; "transcript_id" for GTF. """ if isinstance(f, six.string_types): f = db[f] children = list(db.children(f, featuretype=child_type, order_by='start')) sizes = [len(i) for i in children] starts = [i.start - f.start for i in children] fields = [ f.chrom, f.start - 1, # GTF -> BED coord system f.stop, f.attributes.get(name_field, ['.'])[0], f.score, f.strand, f.start, f.stop, '0,0,0', len(children), ','.join(map(str, sizes)), ','.join(map(str, starts)) ] return '\t'.join(map(str, fields)) + '\n'
d4042b979840b0eb41d23690182a030278473b1b
615,371
def gap(baseline, heuristic): """Computes the heuristic gap""" return 100 * (heuristic - baseline) / baseline
fca62ef1146c8ba87c8a9eaf53dcd5d017998f2c
488,570
import requests import time def _fetch_page(token: dict, endpoint: str, sleep: int, max_repeats: int) -> dict: """ Fetch a single page from the securefileshare site. Parameters ---------- token: dict Dictionary containing 'access_token' endpoint: str API endpoint sleep: int Delay in seconds between requests max_repeats: int Maximum attempts Returns ------- dict Dictionary of page content. If max_attempts exceeded, TimeoutError raised. """ header = {"Authorization": f"Bearer {token}"} for i in range(max_repeats): json = requests.get(endpoint, headers=header).json() if json.get("message") != "Authorization has been denied for this request.": if json.get("message") != "Internal Server Error": if json.get("items") is not None: return json time.sleep(sleep) raise TimeoutError("Failed to fetch page...timed out")
489172968a0290b39d080965d9120a341ea62f06
252,767
import importlib def import_thing(import_string: str): """Obtain an object from a valid qualname (or fully qualified name) Parameters ---------- import_string : str the qualname Returns ------- Any : the object from that namespace """ splitted = import_string.split('.') if len(splitted) > 1: # if the string has a dot, import the module and getattr the object obj = splitted[-1] mod = ".".join(splitted[:-1]) module = importlib.import_module(mod) result = getattr(module, obj) else: # if there is no dot, import and return the module mod = splitted[0] result = importlib.import_module(mod) return result
ea74544c1e1498ad01f2ff4e691c090911075aeb
398,965
def sort_based_values(sims_dict): """ :param sims_dict: dict { '1': 0.2, "2": 0.4, "3": 0.3, "4": 0.23 } :return: key 降序 ['2', '3', '4', '1'] """ sims_dict = sorted(sims_dict.items(), key=lambda item: item[1])[::-1] return [i[0] for i in sims_dict]
3118e5ea017527413b24a8085361e47c34b423ce
361,678
from typing import Dict from typing import Any from typing import Iterable def check_same_and_different(a: Dict[str, Any], b: Dict[str, Any], same: Iterable[str], different: Iterable[str]) -> bool: """Return true iff for all properties in same that are in a, they exist in b and have the same value, and for all properties in different that are in a, they exist in b and are different. """ same_ok = True for prop in same: if prop in a: if prop not in b or a[prop] != b[prop]: same_ok = False break if not same_ok: return False diff_ok = True for prop in different: if prop in a: if prop not in b or a[prop] == b[prop]: diff_ok = False break return diff_ok
0b4610784950ec1d75f0181e4d23e07adf6bc954
127,680
def raw_to_regular(exitcode): """ This function decodes the raw exitcode into a plain format: For a regular exitcode, it returns a value between 0 and 127; For signals, it returns the negative signal number (-1 through -127) For failures (when exitcode < 0), it returns the special value -128 """ if not isinstance(exitcode, int): return exitcode if exitcode < 0: return -128 if (exitcode & 127) > 0: # Signal return -(exitcode & 127) return exitcode >> 8
1146bc0303886489f10864c9511280dff8047710
36,727
def is_in(x, l): """Transforms into set and checks existence Given an element `x` and an array-like `l`, this function turns `l` into a set and checks the existence of `x` in `l`. Parameters -------- x : any l : array-like Returns -------- bool """ return x in set(l)
4e99e946177f85493f6404f170fadca4b5c1e8f2
630,354
def scale(kernel): """ Scales a 2D array to [0, 255] """ minimum = min(min(k) for k in kernel) maximum = max(max(k) for k in kernel) return [[int(255 * (k - minimum) / (maximum - minimum)) for k in row] for row in kernel]
bb9f6aa1603547fef1629724d3366c5b05487edf
595,826
def split_reaches(l, new_reach_pts): """splits l into sections where new_reach_pts contains the starting indices for each slice""" new_reach_pts = sorted(new_reach_pts) sl = [l[i1:i2] for i1, i2 in zip(new_reach_pts, new_reach_pts[1:])] last_index = new_reach_pts[-1] sl.append(l[last_index:]) return sl
54186c652d9131d119242a5a7cb3d37b9fe15e62
427,377
def label_mapper(raw_labels, new_labels): """Map some raw labels into new labels. When dealing with GEO DataSets it is very common that each GSM sample has a different phenotye (e.g. 'Brain - 001', 'Brain - 002', ...). This function maps these raw labels into new homogeneous labels. Parameters ----------- raw_labels : list of strings list of unpreprocessed labels new_labels : list of strings list of labels to map Returns ----------- y : array of float, shape : n_samples the modified label vector Examples ----------- >>> raw_labels = ['Brain - 001', 'Brain - 002', 'Muscle - 001', 'Muscle - 002'] >>> label_mapper(raw_labels, ['Brain', 'Muscle']) ['Brain', 'Brain', 'Muscle', 'Muscle'] """ y = [] for rl in raw_labels: for nl in new_labels: if nl in rl: y.append(nl) break else: y.append(rl) # print('No mapping rule for %s', rl) return y
67aaa329374169f61414032b0949344437d16022
11,663
def find_nearest_index(vertices, x_from, y_from, vertice_count): """ Find the index of the vertex that is the closest to specified coordinate (x_from, y_from). """ min_distance_squared = 1000000 nearest_index = 0 x_from *= 1000 y_from *= 1000 for index, vertice in enumerate(vertices): dx = (vertice[0] * 1000) - x_from dy = (vertice[1] * 1000) - y_from square_dist = dx*dx + dy*dy if square_dist < min_distance_squared and index < vertice_count: nearest_index = index min_distance_squared = square_dist return nearest_index
65867ab47c9632dae4b90c7402799846faf2937f
600,584
def get_images_to_prelabel_query( label: str, version: int, predict_annotated: bool = False, limit: int = 100000, exclude_origins = ["archive_stuttgart, archive_würzburg", "gi_genius_retrospective", "2nd_round", "3rd_round", "4th_round", "5th_round", "6th_round"] ): """Function expects a label (str) and returns a query to find images which have no prediction or an outdated prediction for this label. Args: label (str): label to query for version (float): float value representing the current prelabel AI version limit (int, optional): Maximum value of images to return. Defaults to 100000. Returns: List: List of dictionaries containing the elements for a pymongo query aggregation """ return [ { "$match": { "$and": [ { "$or": [ {f"predictions.{label}": {"$exists": False}}, {f"predictions.{label}.version": {"$lt": version}}, ] }, {f"labels.annotation.{label}": {"$exists": predict_annotated}}, {"origin": {"$nin": exclude_origins}} ] } }, {"$sample": {"size": limit}}, ]
81ec66483a045acd6752e3d4c1c03f39843ca825
463,748
from typing import List def parse_board(data: str) -> List[List[bool]]: """Parse the board from data.""" def on_or_off(token: str) -> bool: """Parse a token from data as a light turned on/off.""" if token == '#': return True if token == '.': return False raise ValueError('Invalid token: {}'.format(token)) def parse_line(line: str) -> List[bool]: """Parse a line from data as a row of the board.""" return list(map(on_or_off, line)) return list(map(parse_line, data.splitlines()))
1f9c6144852d53e04b3b1e01cfd08069adafec70
481,637
def solution(n: int = 1000) -> int: """ returns number of fractions containing a numerator with more digits than the denominator in the first n expansions. >>> solution(14) 2 >>> solution(100) 15 >>> solution(10000) 1508 """ prev_numerator, prev_denominator = 1, 1 result = [] for i in range(1, n + 1): numerator = prev_numerator + 2 * prev_denominator denominator = prev_numerator + prev_denominator if len(str(numerator)) > len(str(denominator)): result.append(i) prev_numerator = numerator prev_denominator = denominator return len(result)
07f07e82642e42232fd8c02b1d607eeaa589a11a
669,217
import itertools def sum_matching(puzzle_input, step=1): """For a string of numbers, sum digits if they match the digit `step` away. NOTE: The calculation is circular, so the digit after the last digit is the first digit in the list. Usage: >>>captcha("1122") 3 >>>captcha("1212", step=2) 6 """ #Make the string circular puzzle_input += puzzle_input[0:step] #Create two iterables from the input first, second = itertools.tee(puzzle_input) #Advance one iterable forward the number of steps for _ in range(step): next(second) #Sum numbers if the number matches return sum(int(x) for x, y in zip(first, second) if x == y)
c355025b9894829574af68079c39cd39a4c2cecc
277,165
def _ptid_to_rid(ptid, roster, ptid_label='PTID'): """Returns roster id for a given patient id ptid_label values : 'PTID', 'SCRNO' """ rid = roster[roster[ptid_label] == ptid]['RID'].values if len(rid) > 0: return rid[0] else: return ''
48fbc63b2719b5bbd3ec56d23e804f6a863b82be
555,153
def urn_exists_in_rapidpro(client, uuid, urn): """ Return True if a remote contact with this urn exists in RapidPro and has a different uuid than uuid. """ contacts = client.get_contacts(urn=urn) return contacts and contacts[0].uuid != uuid
5eb5e426ac549074836596c8b74970902cd19dc8
155,859
def to_upper_underscore(name: str) -> str: """Transform package name into uppercase with underscores. Example: >>> pkg_2_uu('a-pkg') 'A_PKG' """ return name.replace("-", "_").upper() + "_"
9d703b535c3724b0ae68913ed6d0c7b46b6c5b95
123,227
from io import StringIO import csv def encode_csv(dataset): """Takes a list of rows and returns it as a CSV string. Parameters: dataset (list[row]): A list of rows. Each row is a list of primitive values. Returns: str: A CSV representation of the dataset. >>> encode_csv([[1, 2, 3], [4, 5, 6]]) '1,2,3\\r\\n4,5,6\\r\\n' >>> encode_csv([['a, b, c', 'xyz', None, 1.0]]) '"a, b, c",xyz,,1.0\\r\\n' >>> encode_csv([['he said, "well, ok" and then left', 'foo', 'bar']]) '"he said, ""well, ok"" and then left",foo,bar\\r\\n' """ result = StringIO() writer = csv.writer(result, quoting=csv.QUOTE_MINIMAL) for row in dataset: writer.writerow(row) return result.getvalue()
284c3316c6987f5cc315e3b5b4806d5f274898ba
591,900
import random def uniform_positive_integers_with_sum(count, sum_): """Returns list of size `count` of integers >= 1, summing to `sum_`.""" assert sum_ >= 0 if count > sum_: raise ValueError('Cannot find {} numbers >= 1 with sum {}' .format(count, sum_)) if count == 0: return [] # Select `count - 1` numbers from {1, ..., sum_ - 1} separators = random.sample(list(range(1, sum_)), count - 1) separators = sorted(separators) return [right - left for left, right in zip([0] + separators, separators + [sum_])]
27f61638e87b8c2a4025f4d43c993a6320615f9d
202,765
def afl(x): """ If no 'l' key is included, add a list of None's the same length as key 'a'. """ if 'l' in x: return x else: x.update({'l': ['']*len(x['a'])}) return x
bc36298773a1d49b43d2996d3fe6097190442488
236,338
def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(listofpoly[0].diff()) for i, j in enumerate(listofpoly[1:]): sol.append(j.diff() + listofpoly[i]) sol.append(listofpoly[a]) return sol
a30026fdc25438f5f94bcbd61902af919341d92b
522,063
def personal_best (scores): """ :param scores - list of high scores :return: int - the highest score from the list """ return max (scores)
1abdc775ad8cb152e5affa48a0ee51c51099776f
467,730
def get_node(element): """ Convert an OSM node element into the format for a networkx node. Parameters ---------- element : dict an OSM node element Returns ------- dict """ useful_tags_node = ['ref', 'highway', 'route_ref'] node = {} node['y'] = element['lat'] node['x'] = element['lon'] node['osmid'] = element['id'] if 'tags' in element: for useful_tag in useful_tags_node: if useful_tag in element['tags']: node[useful_tag] = element['tags'][useful_tag] return node
97164f0330b1d54cddeab65184e18b5a4c3e5a92
155,528
import requests def http_get(url): """ Sends and caches an HTTP GET request. :param str url: the URL to request """ response = requests.get(url) response.raise_for_status() return response
581fae19107343d24c202fa23d0f82e4230c4d12
578,946
def create_zero_matrix(rows: int, columns: int) -> list: """ Creates a matrix rows * columns where each element is zero :param rows: a number of rows :param columns: a number of columns :return: a matrix with 0s e.g. rows = 2, columns = 2 --> [[0, 0], [0, 0]] """ if not isinstance(rows, int) or not isinstance(columns, int) or \ isinstance(rows, bool) or isinstance(columns, bool): return [] zero_matrix = [] n_columns = [0] * columns if n_columns: zero_matrix = [[0] * columns for _ in range(rows)] return zero_matrix
4e4a759d318f33f962a1d924c4893d5af7043b94
682,281
def _check_params(params, field_list): """ Helper to validate params. Use this in function definitions if they require specific fields to be present. :param params: structure that contains the fields :type params: ``dict`` :param field_list: list of dict representing the fields [{'name': str, 'required': True/False', 'type': cls}] :type field_list: ``list`` of ``dict`` :return True, exits otherwise :rtype: ``bool`` """ for d in field_list: if not d['name'] in params: if d['required'] is True: return (False, "%s is required and must be of type: %s" % (d['name'], str(d['type']))) else: if not isinstance(params[d['name']], d['type']): return (False, "%s must be of type: %s" % (d['name'], str(d['type']))) return (True, '')
cafbea41b4b2ec4c627968f9111cbea4046d1706
355,409
import math def utilityY(c1,c2,rho): """Compute the utility of the young agents Args: c1 (float): consumption of the young generation c2 (float): consumption of the old generation rho (float): discount parameter Returns: (float): utility of the old agents """ if rho<-1: return "rho is too low" else: return math.log(c1)+ (1/(1+rho))*math.log(c2)
6efd01d4a8f85a61f05eb12efca31b63f9f8aeaf
639,790
def format_txt(signature): """ Remove excess spaces and newline characters. """ return ' '.join(' '.join(signature.split('\n')).split())
c0a8251219f4c9454666e159f695ffe92ff9e476
105,990
def build_command(cmd, arg_list = []): """ Builds the command string to send to the Mecademic Robot from the function name and arguments the command needs :param cmd: command name to send to the Mecademic Robot :param arg_list: list of arguments the command requires :return command: final command for the Mecademic Robot """ command = cmd if(len(arg_list)!=0): command = command + '(' for index in range(0, (len(arg_list)-1)): command = command+str(arg_list[index])+',' command = command+str(arg_list[-1])+')' return command
2d6f2b6328a44606be20d3b62d151f134e7234b8
304,148
def built_known_values(missing_values,simplices): """ The functions return the not missing simplices and cochains in each dimension Parameters ---------- missing_values: list of dictionaries List of dictionaries, one per dimension d. The dictionary's keys are the missing d-simplices. The dictionary's values are the indexes of the simplices in the boundary and Laplacian matrices. simplices: list of dictionaries List of dictionaries, one per dimension d. The size of the dictionary is the number of d-simplices. The dictionary's keys are sets (of size d + 1) of the 0-simplices that constitute the d-simplices. The dictionary's values are the indexes of the simplices in the boundary and Laplacian matrices. Returns ---------- known_values: list of dictionaries List of dictionaries, one per dimension d. The dictionary's keys are not missing d-simplices. The dictionary's values are their cochains. """ max_dim=len(simplices) known_values = [dict() for _ in range(max_dim+1)] for i in range(max_dim): real_simp=list(set(simplices[i].keys())-set(missing_values[i].keys())) for index,simplex in enumerate(real_simp): dim=len(simplex) known_values[i][simplex]=simplices[dim-1][simplex] return(known_values)
dbe7ab99917b82e072fdeb326b2ab42424458479
215,487
def append_write(filename="", text=""): """ Function that appends a string at the end of a text file (UTF8) and returns the number of characters added. Args: filename (str): The file name text (str): String to write Returns: The number of characters written """ with open(filename, 'a', encoding='utf8') as f: return f.write(text)
bf5f02b6dff6e2afa989276d0dfd5a59b553cf43
250,354
def is_mention_subset(small_mention_text, large_mention_text): """ Check if the smaller mention is a "subset" of the larger mention. We define "subset" in a very specific way: 1. Subsequence: Example: Barack is a subset of Barack Obama, John Kelly is a subset of John Kelly Smith, Kelly Smith is a subset of John Kelly Smith, etc. And, Barack is a subset of Barack. 2. The smaller string is equal to the larger string minus the words in the middle. Example: John Smith is a subset of John Jackson Smith. """ small_mention_tokens = small_mention_text.split() large_mention_tokens = large_mention_text.split() if small_mention_text in large_mention_text: return True elif len(large_mention_tokens) > 2: if small_mention_tokens == \ [large_mention_tokens[0], large_mention_tokens[-1]]: return True return False
553e55308523e1634da940c9c2504d82282caefc
562,189
import re def split_kwargs(kwargs_dict, prefix='shadow_'): """ Splits dictionary into two new dicts by checking the keys for a given prefix. Those key-value pairs with the prefix will be added to a new dictionary with prefix removed from the keys. :param kwargs_dict: original dict to be checked and split. As dict :param prefix: prefix to search keys for. As string :return: copy of original dict with preficed keys removed, new dict based on prefixed keys """ input_dict = kwargs_dict.copy() output_dict = {} shadow_dict = {} for k, v in input_dict.items(): if bool(re.match(prefix + '.*', k)): # find keys with prefix shadow_k = re.sub(prefix, '', k) # remove prefix shadow_dict[shadow_k] = v else: output_dict[k] = v return output_dict, shadow_dict
e5f07d03e5ffa44e69ed05e11e97bb58549d3246
107,809
def _filter(objects, **kwargs): """ Filters a list of DICOM classes by DICOM tags and values. Example ------- instances = _filter(instances, PatientName="Harry") """ filtered = [] for obj in objects: select = True for tag, value in kwargs.items(): if getattr(obj, tag) != value: select = False break if select: filtered.append(obj) return filtered
eeee8c8844dafa46c64b830aac75f85ab9075b6c
253,063
def convert(angle): """ Convert a `skyfield` Angle to an EXIF-appropriate representation (rationals) e.g. 98° 34' 58.7 to "98/1,34/1,587/10" Return a tuple containing a boolean and the converted angle, with the boolean indicating if the angle is negative. """ sign, degrees, minutes, seconds = angle.signed_dms() exif_angle = f'{degrees:.0f}/1,{minutes:.0f}/1,{seconds*10:.0f}/10' return sign < 0, exif_angle
8b80fe529d07fc7e4534282f0311cea7983efe88
166,759
def fmeasure(R,P): """Harmonic mean of recall and precision.""" value = 0 if R > 0 or P > 0: value = (2 * R * P)/(R+P) return value
70c4a324655f6a5c3df2de6064618803ec3b55c8
472,184
def _get_config_parameter(config, section, parameter_name, default_value): """ Get the parameter if present in the configuration otherwise returns default value. :param config the configuration parser :param section the name of the section :param parameter_name: the name of the parameter :param default_value: the default to propose the user :return: """ return config.get(section, parameter_name) if config.has_option(section, parameter_name) else default_value
2431c37eab3396b79f4f9e649a7cc25fc27208dc
12,065
import stringprep def c12_mapping(char): """Do mapping of RFC 3454 C.1.2 space characters to ' '. :Parameters: - `char`: Unicode character to map. :returns: u" " if there is `char` code in the table, `None` otherwise. """ if stringprep.in_table_c12(char): return u" " else: return None
d8cf80a7061168855d437bd8f42a234e47ef7036
227,030
def is_sequence(x): """Is x a sequence? We say it is if it has a __getitem__ method.""" return hasattr(x, '__getitem__')
f55a8ab63e4018eda2fac7de15fc8684245c1126
114,515
def _reconstruct_input_from_dict(x): """Reconstruct input from dict back to a list or single object. Parameters ---------- x : dict Returns ------- out : pandas.DataFrame or pandas.Series or callable or list """ out = list(x.values()) if len(out) == 1: out = out[0] return out
e83fbe2a4b50a8a9edfaf3073015e0c47f7d9d3c
150,977
def update_target_graph(actor_tvars, target_tvars, tau): """ Updates the variables of the target graph using the variable values from the actor, following the DDQN update equation. """ op_holder = list() # .assign() is performed on target graph variables with discounted actor graph variable values for idx, variable in enumerate(target_tvars): op_holder.append( target_tvars[idx].assign( (variable.value() * tau) + ((1 - tau) * actor_tvars[idx].value()) ) ) return op_holder
15f0d192ff150c0a39495b0dec53f18a8ae01664
4,072
import time def to_timestamp(datetime): """ Convert xmlrpclib.DateTime string representation to UNIX timestamp. """ return time.mktime(time.strptime('%s UTC' % datetime.value, '%Y%m%dT%H:%M:%S %Z')) - time.timezone
396059463fd77007af661b601474f7fcda1ce512
167,295
def _is_str(s): """ True iff s is a string (checks via duck typing). """ return hasattr(s, 'capitalize')
206530dd9eedef9e37db9266d6226f1007d50875
607,198
def mfile_to_lines(mfile): """ Read the lines from an mfile Parameters ---------- mfile : string Full path to an m file """ # We should only be able to read this file: with open(mfile) as fid: return fid.readlines()
843188720fe1c55eb34b62a6ddfa349f600f496e
602,219
def get_charge_style( charge_styles, cutoffs, ewald_accuracy=None, dsf_damping=None ): """Get the Charge_Style section of the input file Parameters ---------- charge_styles : list list of charge styles, one for each box cutoffs : list of coulombic cutoffs, one for each box. For a box with charge style 'none', the cutoff should be None ewald_accuracy : float, optional accuracy of ewald sum. Required if charge_style == ewald dsf_damping : float, optional value for dsf damping. """ assert len(charge_styles) == len(cutoffs) valid_charge_styles = ["none", "cut", "ewald", "dsf"] for charge_style in charge_styles: if charge_style not in valid_charge_styles: raise ValueError( "Unsupported charge_style: {}. Supported options " "include {}".format(charge_style, charge_styles) ) if charge_style == "ewald": if ewald_accuracy is None: raise ValueError( "Ewald selected as the charge style but " "no ewald accuracy provided" ) inp_data = """ # Charge_Style""" for charge_style, cutoff in zip(charge_styles, cutoffs): if charge_style == "none": inp_data += """ {charge_style}""".format( charge_style=charge_style ) elif charge_style == "cut": inp_data += """ coul {charge_style} {cutoff}""".format( charge_style=charge_style, cutoff=cutoff ) elif charge_style == "ewald": inp_data += """ coul {charge_style} {cutoff} {accuracy}""".format( charge_style=charge_style, cutoff=cutoff, accuracy=ewald_accuracy, ) elif charge_style == "dsf": if dsf_damping is not None: inp_data += """ coul {charge_style} {cutoff} {damping}""".format( charge_style=charge_style, cutoff=cutoff, damping=dsf_damping, ) else: inp_data += """ coul {charge_style} {cutoff}""".format( charge_style=charge_style, cutoff=cutoff ) inp_data += """ !------------------------------------------------------------------------------ """ return inp_data
15be9d93701fdf1e3ec755e05eb757e040735aac
390,938
def getFeatureName(feature, default): """extract the name of the feature from the definition""" if 'name' in feature: return feature['name'] else: return default
8c22388033ff4af21b1428dbc79c9e4ad5715175
232,781
from pathlib import Path import json def remove(guild, key: str): """ Removes a guild from a given key Parameters: guild (str/int): ID of the guild key (str): The key to modify Returns: Success (bool): Did it succeed """ data = {} guild = str(guild) if not Path(f'./data/guild_{key}.json').is_file(): return False with open(f'./data/guild_{key}.json', 'r') as filein: data = json.load(filein) data.pop(guild) with open(f'./data/guild_{key}.json', 'w') as fileout: json.dump(data, fileout, indent=4) return True
00153f1433a0c80f8af7acf8aba0a1f4b426d80c
440,747
from typing import Iterable from typing import List def _unique(seq: Iterable) -> List: """order-preserving unique elements in `seq`.""" out = [] seen = set() for x in seq: if x in seen: continue out.append(x) seen.add(x) return out
e633b1e6b56872d61a64ffe2b0dbf46d49f01906
140,891
def version2string(tversion): """ Converts version tuple to string """ s = "" if tversion[3] != 0: s = "{}.{}.{}.{}".format(tversion[0], tversion[1], tversion[2], tversion[3]) elif tversion[2] != 0: s = "{}.{}.{}".format(tversion[0], tversion[1], tversion[2]) else: s = "{}.{}".format(tversion[0], tversion[1]) if tversion[4] != "": s = s + "-" + tversion[4] return s
707d36722f4e32ad2d7fb85826ff98f6cb3efc8f
287,074
def squared_dist(x1, x2): """Computes squared Euclidean distance between coordinate x1 and coordinate x2""" return sum([(i1 - i2)**2 for i1, i2 in zip(x1, x2)])
c4ae86e54eb1630c20546a5f0563d9db24eebd3a
20,838
def fetch_following(api,name): """ Given a tweepy API object and the screen name of the Twitter user, return a a list of dictionaries containing the followed user info with keys-value pairs: name: real name screen_name: Twitter screen name followers: number of followers created: created date (no time info) image: the URL of the profile's image To collect data: get a list of "friends IDs" then get the list of users for each of those. """ id_list = api.friends_ids(name) following_list = [] for ID in id_list: person_dict = {} acc_info = api.get_user(ID) person_dict['name'] = acc_info.name person_dict['screen_name'] = acc_info.screen_name person_dict['followers'] = acc_info.followers_count person_dict['created'] = acc_info.created_at.date() person_dict['image'] = acc_info.profile_image_url_https following_list.append(person_dict) return following_list
d55c5bc976a1076e28bc6e64dbd5eebcc8f42a1d
391,568
def first_location_preposition(location_string): """ In some cases google can't extract a response from the original sentence but will be able to do so from a sub-sentence starting at the first location indicator e.g. "גבר נהרג בתאונת דרכים בגליל התחתון" ->no results "בתאונת דרכים בגליל התחתון" ->results """ # iterate over sentences, find first location preposition (very crudely) and trim the prefix of that sentence for sentence in location_string.split("."): trimmed_location_tokens = [] found = False for token in sentence.split(): if token.startswith("ב"): found = True if found: trimmed_location_tokens.append(token) if found: return " ".join(trimmed_location_tokens) return ""
df9abd1823f43a2056e308d8e1a22d3d97f8a561
253,614
def getFilename(f): """Get the filename from an open file handle or filename string.""" if isinstance(f, str): return f return f.name
62a0e4301ee5284bac569134f3cf89edec7762a4
662,874
def three_pad(s): """Pads a string, s, to length 3 with trailing X's""" if len(s) < 3: return three_pad(s + "X") return s
f15c2bb8fdc13d0237e3c3460716bd1208638567
508,871
import io import base64 def get_image_html_tag(fig, format="svg"): """ Returns an HTML tag with embedded image data in the given format. :param fig: a matplotlib figure instance :param format: output image format (passed to fig.savefig) """ stream = io.BytesIO() # bbox_inches: expand the canvas to include the legend that was put outside the plot # see https://stackoverflow.com/a/43439132 fig.savefig(stream, format=format, bbox_inches="tight") data = stream.getvalue() if format == "svg": return data.decode("utf-8") data = base64.b64encode(data).decode("utf-8") return f"<img src=\"data:image/{format};base64,{data}\">"
f5c59a6f4f70fb6616cec4619d8cbf9ca2e28529
1,308
def divisors(num): """ Takes a number and returns all divisors of the number, ordered least to greatest :param num: int :return: list (int) """ # Fill in the function and change the return statment. numlist = [] check = 1 while check <=num: divisor = num%check if divisor == 0: numlist.append(check) check = check + 1 else: check = check + 1 return numlist
6c6d5e2cfac4e4139ec60dba42a895d72f99215e
549,913
def get_time_group_max(time_group): """Return dictionary with max values for each time group.""" dict_time_max = {'year': 5000, # dummy large value for year since unbounded ... 'season': 4, 'quarter': 4, 'month': 12, 'weekofyear': 53, 'dayofweek': 7, # init 0, end 6 'dayofyear': 366, 'day': 31, 'hour': 24, # init 0, end 23 'minute': 60, # init 0, end 59 'second': 60, # init 0, end 59 } return dict_time_max[time_group]
23413dca869c4a70d145c89e74985f38b72d0fa8
572,412
def _get_member_types(tag): """Return the types of the members, handle wildcards.""" at1 = tag.attrib.get("type1") at2 = tag.attrib.get("type2") at3 = tag.attrib.get("type3") at4 = tag.attrib.get("type4") member_types = filter(lambda x: x is not None, [at1, at2, at3, at4]) member_types = [ "*" if mem_type == "" else mem_type for mem_type in member_types ] return member_types or None
11a32a067f3675289eaf470dac09f46b3ca6d308
513,492
def url_join(*parts: str) -> str: """ Join the different url parts with forward slashes. """ return "/".join([part.strip("/") for part in parts]) + ("/" if parts and parts[-1].endswith("/") else "")
f99c73559dc94614c67cd36aab519d98c80c6d19
297,652
def snake_to_camel(s: str) -> str: """Convert string from snake case to camel case.""" fragments = s.split('_') return fragments[0] + ''.join(x.title() for x in fragments[1:])
5593e29ed345861dd0bada4a163c5006042a9fdb
673,162
from typing import Union def bars_to_atmospheres(bar: float, unit: str) -> Union[float, str]: """ This function converts bar to atm Wikipedia reference: https://en.wikipedia.org/wiki/Standard_atmosphere_(unit) Wikipedia reference: https://en.wikipedia.org/wiki/Bar_(unit) >>> bars_to_atmospheres(36, "bar") 35.529237601776465 >>> bars_to_atmospheres("57.6", "bar") 56.84678016284234 >>> bars_to_atmospheres(0, "bar") 0.0 >>> bars_to_atmospheres(35, "Pa") 'Invalid unit' >>> bars_to_atmospheres("barrs", "bar") Traceback (most recent call last): ... ValueError: could not convert string to float: 'barrs' """ if unit == "bar": atm = float(bar) / 1.01325 return atm else: return "Invalid unit"
d460021395af77acda01296710f145e9b52d8594
13,937
def format_time( seconds ): """ Formats the time, in seconds, to a nice format. Unfortunately, the :py:class:`datetime <datetime.datetime>` class is too unwieldy for this type of formatting. This code is copied from :py:meth:`deluge's format_time <deluge.ui.console.utils.format_utils.format_time>`. :param int seconds: number of seconds. :returns: formatted string in the form of ``1 days 03:05:04``. :rtype: str **Usage** >>> format_time( 97262 ) '1 days 03:01:02' """ minutes = seconds // 60 seconds = seconds - minutes * 60 hours = minutes // 60 minutes = minutes - hours * 60 days = hours // 24 hours = hours - days * 24 return "%d days %02d:%02d:%02d" % (days, hours, minutes, seconds)
dba02e146b363b5a468a2a5939d9ab96dafaf838
647,506
def _pack_into_dict(value_or_dict, expected_keys, allow_subset = False): """ Used for when you want to either a) Distribute some value to all predictors b) Distribute different values to different predictors and check that the names match up. :param value_or_dict: Either a) A value b) A dict<predictor_name: value_for_predictor> :param expected_keys: Names of predictors :return: A dict<predictor_name: value_for_predictor> """ if not isinstance(value_or_dict, dict): output_dict = {predictor_name: value_or_dict for predictor_name in expected_keys} else: output_dict = value_or_dict if allow_subset: assert set(value_or_dict.keys()).issubset(expected_keys), 'Expected a subset of: %s. Got %s' % (expected_keys, value_or_dict.keys()) else: assert set(expected_keys) == set(value_or_dict.keys()), 'Expected keys: %s. Got %s' % (expected_keys, value_or_dict.keys()) return output_dict
858d0c3cd67835e7b33037bbd67b71adbe7e1f99
496,025
def centre(images): """Mapping from {0, 1, ..., 255} to {-1, -1 + 1/127.5, ..., 1}.""" return images / 127.5 - 1
73ea422309ffc4c3b90d2f1798ce45e34cc035d1
626,971
def model_norm(model, pow=(2, 1), vidx=-1): """norm of a model (l2 squared by default) Args: model (float tensor): scoring model pow (float, float): (internal power, external power) vidx (int): video index if only one is computed (-1 for all) Returns: (float scalar tensor): norm of the model """ q, p = pow if vidx != -1: # if we use only one video return abs(model[vidx]) ** (q * p) return (model ** q).abs().sum() ** p
dbdb01b3e2fc6ee8aa6e1725a6544a733173b986
68,121
def prepare_query(query): """ Prepare query to always AND all search terms Spaces will be replaced with AND. Existing ANDs and ORs will be preserved. """ def intersperse_and(phrase): # For a given phrase, intersperse AND between all words, # except "and" which is removed return ' AND '.join([word for word in phrase.split() if word != 'and']) # If the query has any ORs, split it into phrases to be ANDed phrases = query.split(' or ') # AND words in each phrase, and OR all phrases together return ' OR '.join(map(intersperse_and, phrases))
f84d0277d8d6ba971a1839862dccb88932a4b87b
253,888
def minidataframe_has_data(minidataframe): """ Determines whether MiniDataframe (from observation download) has data in it or not. :param minidataframe: minidataframe to test [MiniDataframe object]. :return: True iff minidataframe has data [boolean]. """ if minidataframe.dict is None: return False if minidataframe.len() == 0: return False return True
3f35bee7ceca98b8c54af88177e9a613717f44a3
455,669
import socket def get_node_ip_address(address="8.8.8.8:53"): """Determine the IP address of the local node. Args: address (str): The IP address and port of any known live service on the network you care about. Returns: The IP address of the current node. """ ip_address, port = address.split(":") s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect((ip_address, int(port))) return s.getsockname()[0]
039fdb773f1b392669d45bd98a87005e4a463f39
655,505
def self_neighbors(matches): """ Returns a pandas data series intended to be used as a mask. Each row is True if it is not matched to a point in the same image (good) and False if it is (bad.) Parameters ---------- matches : dataframe the matches dataframe stored along the edge of the graph containing matched points with columns containing: matched image name, query index, train index, and descriptor distance Returns ------- : dataseries Intended to mask the matches dataframe. True means the row is not matched to a point in the same image and false the row is. """ return matches.source_image != matches.destination_image
21988f1ff0c2ff855b83427f33f0d01dde07b2fc
150,589
import json def _read_json(path): # type: (str) -> dict """Read a JSON file. Args: path (str): Path to the file. Returns: (dict[object, object]): A dictionary representation of the JSON file. """ with open(path, "r") as f: return json.load(f)
b7519b9209a2ed9607d4dc91e5fd68b94be36c42
187,462
def to_string(quantity_or_item: str) -> str: """ Returns the same string. """ return quantity_or_item
e1828ed0ddd6ea3f2db1140a2da2a94965df84b7
695,058
def convert_token_number(token_number: str) -> int: """Helper function to convert the token index from 1 and string based to 0 and int based index. Parameters ---------- token_number : str The token number as it appears in the tsv. Returns ------- int The word index as it's needed for the competency triple. """ return int(token_number) - 1
a6bc7f95c9590e7b594e16dcbc17c46c801ee0a3
379,876
def findUniqueContours(inlist): """ Find list of unique contours""" uniqueContourList = [] for item in inlist: if item not in uniqueContourList: uniqueContourList.append(item) return uniqueContourList
72c0957d88658e42ccf07338e6608d28de536cea
282,176
def split_line(line): """ Given a line like | ''[[813 (film)|813]]'' || [[Charles Christie]], [[Scott Sidney]] || [[Wedgwood Nowell]], [[Ralph Lewis (actor)|Ralph Lewis]], [[Wallace Beery]], [[Laura La Plante]] || Mystery || [[Film Booking Offices of America|FBO]] Retrun a list of the strings between '||' """ return [cell.strip() for cell in line.split("||")]
8a8cc4123c6517b8559ddcac250d5d3fa15053f4
450,374
import re def remove_specials(str): """ Removes everything but letters from a string. This is used to create "search names" for games in the datastore. This makes it easier to compare the names on HLTB with Steam, and reduces the number of games incorrectly reported as not existing on HTLB. e.g. - Chivalry: Medieval Warfare -> chivalrymedievalwarfare """ special = r'[^0-9A-Za-z]' str = str.lower() return re.sub(special, '', str)
aed596f89742a4e2b9cff8acc01ac3f3bb6c3e67
407,565
def find_nearest(array, value): """Find closet value in array to 'value' param""" idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value)) return val
99c027ebd96d28b4b731d1f6d5e3a0be918c051b
563,205
def shift_TTD_dailyconservation_idx_rule(M): """ Index is (window, day, week, tour type). The index set gets used in the TTD_TTDS_con and TTD_TT_UB constraints. :param M: :return: Constraint index rule """ return [(i, j, w, t) for i in M.WINDOWS for j in M.DAYS for w in M.WEEKS for t in M.activeTT if (i, t, j) in M.okTourTypeDay]
07a65fe45bab32eaf53bd8f1182df32fb2930038
659,777
from typing import Tuple import re def read_data_from(file_: str) -> Tuple[dict, list, list]: """Read rules for, numbers on your, and numbers on nearby tickets.""" file_str = open(file_, "r").read().splitlines() rules = {} for rule in file_str[:20]: key, b0, e0, b1, e1 = re.split(": |-| or ", rule) rules[key] = [int(b0), int(e0), int(b1), int(e1)] yours = list(map(int, file_str[22].split(","))) nearby = [] for ticket in file_str[25:]: nearby.append(list(map(int, ticket.split(",")))) return rules, yours, nearby
c1132d48e401fa28ca4e49eb985971361291596f
326,439
def get_html_table_headers(**content): """ Return the keys of the first element in the user_list dict. We don't care if the dict is unordered b/c the expectation is that each element of the dict will be structured the same """ user_list = content["users"] days_since_pwdlastset = content["days_since_pwdlastset"] try: return user_list[days_since_pwdlastset][0].keys() except IndexError: # return the empty list of there are no accounts to be disabled return []
d7c97e4e81a3d93a6c0634b321ba1d8a22bbc31e
369,139
def DetectEncoding(data, default_encoding='UTF-8'): """Detects the encoding used by |data| from the Byte-Order-Mark if present. Args: data: string whose encoding needs to be detected default_encoding: encoding returned if no BOM is found. Returns: The encoding determined from the BOM if present or |default_encoding| if no BOM was found. """ if data.startswith('\xFE\xFF'): return 'UTF-16BE' if data.startswith('\xFF\xFE'): return 'UTF-16LE' if data.startswith('\xEF\xBB\xBF'): return 'UTF-8' return default_encoding
43670fd234453a703dd18521b6dc655507448664
625,570
def TimelineName(name, source_type, value_type): """Constructs the standard name given in the timeline. Args: name: The name of the timeline, for example "total", or "render_compositor". source_type: One of "cpu", "gpu" or None. None is only used for total times. value_type: the type of value. For example "mean", "stddev"...etc. """ if source_type: return '%s_%s_%s_time' % (name, value_type, source_type) else: return '%s_%s_time' % (name, value_type)
9a9d5c1e516f8a5271b760656c91e6bb0a8a2d25
560,704
def filter_mismatched_alignments(df): """ Removes any alignment that contains more than the smallest number of mismatches. If there are two miRs that map to a single read, this function compares both miRs and returns only the one(s) that have the least amount of mismatches. """ print("Now filtering miRs with mismatches.") return df[df.groupby('ref_name')['mutation_num'].transform('min') == df['mutation_num']]
ec608c8ae8ead81da4ee6acf60653e6ed23ce3d8
562,341
def R11_2_d11(R11, SRM_ratio=4.04367): """ Convert Ratio to Delta notation. Default SRM_ratio is NIST951 11B/10B """ return (R11 / SRM_ratio - 1) * 1000
0e18a90e3a82279895b7472c9edf9646d95748a7
88,748
import hashlib def md5sum(file): """Compute the MD5 sum of a file. Args: file (str): file to be checksummed Returns: MD5 sum of the file's content """ md5 = hashlib.md5() with open(file, "rb") as f: md5.update(f.read()) return md5.digest()
ea809aa13b0a1dac833aef69cc4c0e2596fadb8a
388,105
def filter_dates(df, start_date, end_date): """Filters the DataFrame so that all ticks are between start_date and end_date""" return df[(df['date'] >= start_date) & (df['date'] <= end_date)]
3b5a1303e6789bff23f7b89a7e75f01340331fe3
458,547
def get_json(response): """ Retrieves the 'JSON' body of a response using the property/callable according to the response's implementation. """ if isinstance(response.json, dict): return response.json return response.json()
fda80c7100cb442f177ba18bfedbe0111161d846
51,903
def _banner() -> str: """Return the banner as a string""" return "\n".join( [ r" ____ __________ ____ __ __ ", r" / __ \/ ____/ __ \ / __ \____ _ ______ / /___ ____ ____/ /__ _____", r" / / / / / / /_/ / / / / / __ \ | /| / / __ \/ / __ \/ __ \/ __ / _ \/ ___/", r"/ /_/ / /___/ _, _/ / /_/ / /_/ / |/ |/ / / / / / /_/ / /_/ / /_/ / __/ / ", r"\____/\____/_/ |_| /_____/\____/|__/|__/_/ /_/_/\____/\__,_/\__,_/\___/_/ 2.0", ] )
e7b101394e8b8f876fdbf5ee92360fc13f81bee1
432,295
def rotations(t): """ Return list of rotations of input string t """ tt = t * 2 return [tt[i:i + len(t)] for i in range(0, len(t))]
6240e3fb1e06057958eff7cf529115e28afc08ce
72,233
import re def normalize_value(text): """ This removes newlines and multiple spaces from a string. """ result = text.replace('\n', ' ') result = re.subn('[ ]{2,}', ' ', result)[0] return result
51ee1e8d8879fb60a338245850ac8999c4318bfd
180,298
import torch def clone_hidden(h): """Clone hidden states in new Tensors.""" if isinstance(h, torch.Tensor): return h.clone() else: return tuple(clone_hidden(v) for v in h)
5e54b45a427f883daf3ebea2dfb13390f8adb14f
463,156
def read_file(filename): """ Return the content of a file Parameters ---------- filename : str file name Returns ------- str content of the file """ with open(filename, "r", encoding="utf-8") as f: return f.read()
d06ea635d7405c0191ca99caea6be33b5b888550
290,554
def count_occurances(comment, word): """ A helper function to get the number of words in a comment. """ comment = comment.replace('?', ' ') comment = comment.replace('.', ' ') comment = comment.replace('-', ' ') comment = comment.replace('/', ' ') a = comment.split(" ") count = 0 for i in range(len(a)): if (word == a[i]): count = count + 1 return count
b4c5c5e0a7792e29811937a1e77161196bd9856c
631,990
def precision(cm): """The ratio of correct positive predictions to the total predicted positives.""" return cm[1][1]/(cm[1][1] + cm[0][1])
c777c03cb31766b0d15faabd67c80b2fa0fcc4dd
392,124
from pathlib import Path def open_if_filename(infile, mode='rb'): """If ``infile`` is a string, it opens and returns it. If it's already a file object, it simply returns it. This function returns ``(file, should_close_flag)``. The should_close_flag is True is a file has effectively been opened (if we already pass a file object, we assume that the responsibility for closing the file has already been taken). Example usage:: fp, shouldclose = open_if_filename(infile) dostuff() if shouldclose: fp.close() """ if isinstance(infile, Path): return (infile.open(mode), True) if isinstance(infile, str): return (open(infile, mode), True) else: return (infile, False)
0096b184336ebdc32527da106418d4f5ee85b153
519,486
import re def StripHTML(input: str) -> str: """ Strip the HTML formatting from a string. Parameters ---------- input : str HTML formatted string. Returns ------- str Input string without the HTML formatting. """ # Regex is hideous, but this gets the job done faster than an external # library. This is also future-proof against any sort of HTML characters, # such as &nbsp and &amp. expression: re.Pattern[str] = re.compile( "<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});" ) return re.sub(expression, "", input)
a54ea28351fa862360728780d7f19fb674f546da
92,754
from pathlib import Path def load_query(file_path: str | Path) -> str: """ Loads a query from a file Args: file_path (str): The path to the file Returns: str: The query """ if not str(file_path).endswith(".sql"): raise ResourceWarning("Given file path does not end with .sql") with open(file_path, "r", encoding="UTF-8") as sql_query_file: return sql_query_file.read()
fbc9de140c98237146c0a23efe6a191ed7a95e67
234,244
def get_request_method(environ: dict) -> str: """ Returns a method name of HTTP request. :param environ: WSGI environment :return: HTTP method name """ method = environ["REQUEST_METHOD"] return method
b37bbbdb5f306e9941423a1e000e15f3eef47839
146,563