content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_app_name(obj):
""" returns the app name of an object """
return type(obj)._meta.app_label | a6a32c5986bfc87bd2c892e8488210199c33c3b6 | 425,392 |
def get_pres_name(da):
"""
Returns name of pressure dimension in input array
Author: Dougie Squire
Date: 03/03/2018
Parameters
----------
da : xarray DataArray
Array with coordinate corresponding to pressure
Returns
-------
name : str
Name of dimension corresponding to pressure
Examples
--------
>>> A = xr.DataArray(np.random.normal(size=(2,2,2,2,2)),
... coords=[('lat', np.arange(2)), ('lon', np.arange(2)),
... ('depth', np.arange(2)), ('level', np.arange(2)),
... ('pfull', np.arange(2))])
>>> doppyo.utils.get_pres_name(A)
'pfull'
"""
if 'pfull' in da.dims:
return 'pfull'
elif 'phalf' in da.dims:
return 'phalf'
else:
raise KeyError('Unable to determine pressure dimension')
pass | 417a74d4becb03ac895a8beb542f35fe6a90a89f | 504,661 |
import difflib
def file_compare(fn1, fn2):
"""
Compare two cQASM files and raise an Assertion error if they are different,
but ignoring for the # comment block that the files start with.
The assertion error contains a diff of the files.
"""
with open(fn1) as f, open(fn2) as g:
flines = list(f.readlines())
while flines and flines[0].startswith('#'):
flines.pop(0)
glines = list(g.readlines())
while glines and glines[0].startswith('#'):
glines.pop(0)
d = difflib.Differ()
diffs = [x for x in d.compare(flines, glines) if x[0] in ('+', '-')]
if diffs:
# all rows with changes
raise AssertionError("Files not equal\n"+"".join(diffs))
return False
else:
return True | b8f62278d25ee38116bb061fdc0090efb8e63396 | 499,858 |
def Geq(a, b):
""" Create an SMT greater-than-or-equal-to.
See also the __ge__ overload (>= operator) for arithmetic SMT expressions.
>>> x, y = Ints('x y')
>>> Geq(x, y)
x >= y
"""
return a >= b | 28b69802fe88bd74b9e8e2cbb5868c05900876b6 | 192,178 |
def _get_reward(old_error, new_error):
"""Return RL agent reward.
Reward for RL agent is difference between new and previous error for output.
Plus small amount for error (prioritize higher error)
"""
return (old_error - new_error) + 0.2 * new_error | a6413cc700af343a11e62366395db9cc2bbda70b | 117,248 |
def finish_figure(fig, title=None, hspace=None, wspace=None):
"""Add finishing touches to a figure.
This function can be used to add a title or adjust the spacing between
subplot panels. The subplots will also be given a tight layout.
Parameters
----------
fig:
The figure object to update.
title: str
The title of the figure. Underscores are automatically modified so
LaTeX doesn't complain.
hspace: float
The amount of vertical space between subplots.
wspace: float
The amount of horizontal space between subplots.
"""
if title:
fig.suptitle(title.replace("_", r"\_"))
fig.tight_layout(rect=[0.015, 0.015, 0.985, 0.985])
if hspace is not None:
fig.subplots_adjust(hspace=hspace)
if wspace is not None:
fig.subplots_adjust(wspace=wspace)
return fig | a07d419bc3263c4de13c33c27ffbf4343f0aa53a | 546,635 |
import socket
def fqdn_to_ip(hostname):
"""Provides the IP address of a resolvable name on the machine it is running from.
There are many reasons that a valid FQDN may not be resolvable, such as a network error
from your machine to the DNS server, an upstream DNS issue, etc.
Args:
hostname (str): An FQDN that may or may not be resolvable.
Returns:
ip (str): The IP Address of a valid FQDN.
Example:
>>> from netutils.dns import fqdn_to_ip
>>> from netutils.ip import is_ip
>>> is_ip(fqdn_to_ip("google.com"))
True
>>>
Raises:
socket.gaierror: If FQDN is not resolvable, leverage is_fqdn_resolvable to check first.
"""
# The data structure is complex, only require the first item, and drill down from there.
return socket.getaddrinfo(hostname, 0)[0][4][0] | 1790b21ecb21ea7675789f89e9b1d2303ce76d33 | 487,569 |
def _normalize_validate(validate):
"""
Coerces the validate attribute on a Marshmallow field to a consistent type.
The validate attribute on a Marshmallow field can either be a single
Validator or a collection of Validators.
:param Validator|list[Validator] validate:
:rtype: list[Validator]
"""
if callable(validate):
return [validate]
else:
return validate | 85116c071c00914334279f25ed991d99549894ff | 277,136 |
import requests
import time
def request_json_with_backoff(ontology_url):
"""Retrieve an ontology listing from EBI OLS
returns JSON payload of ontology, or None if unsuccessful
"""
# add timeout to prevent request from hanging indefinitely
response = requests.get(ontology_url, timeout=60)
# inserting sleep to minimize 'Connection timed out' error with too many concurrent requests
time.sleep(0.25)
if response.status_code == 200:
return response.json()
else:
return None | 097c94b38428cf9647624c4e8f183baac542359b | 281,511 |
def FIND(find_text, within_text, start_num=1):
"""
Returns the position at which a string is first found within text.
Find is case-sensitive. The returned position is 1 if within_text starts with find_text.
Start_num specifies the character at which to start the search, defaulting to 1 (the first
character of within_text).
If find_text is not found, or start_num is invalid, raises ValueError.
>>> FIND("M", "Miriam McGovern")
1
>>> FIND("m", "Miriam McGovern")
6
>>> FIND("M", "Miriam McGovern", 3)
8
>>> FIND(" #", "Hello world # Test")
12
>>> FIND("gle", "Google", 1)
4
>>> FIND("GLE", "Google", 1)
Traceback (most recent call last):
...
ValueError: substring not found
>>> FIND("page", "homepage")
5
>>> FIND("page", "homepage", 6)
Traceback (most recent call last):
...
ValueError: substring not found
"""
return within_text.index(find_text, start_num - 1) + 1 | c93647bee7dfd75da8cfb28ef1cdd3d78361e47f | 432,338 |
def get_region_index(nodes):
"""Get region index"""
return nodes['NEM_REGION'].unique().tolist() | f4265c2803721eba6cd5b3b260684716b3e5cd4a | 574,451 |
import re
def postprocess_output(text, max_length, stop_string, output_regex):
"""
Modify model output to satisfy stop_string and output_regex keywords.
Args:
text: A string or list of strings containing model outputs.
max_length: Model output will be truncated to be at most this length.
stop_string: Model output will be truncated to the shortest string
which includes stop_string. If None, no truncation will be performed.
e.g. if stop_string='.', the model output "The apple is on the
ground. What is" will be truncated to "The apple is on the ground."
before being returned.
output_regex: Rather than returning the full output, return the first
match to the python regular expression output_regex in the output
string. If there is no match, an empty string will be returned. If
output_regex=None, no regular expression matching will be performed.
e.g. if output_regex=r"\\d+", and the model output is "= 42. 7*7 =
49. 7*8 =", then "42" will be returned.
Returns: A string or list of strings, all processed as described for each
argument.
"""
if isinstance(text, list):
return [
postprocess_output(mo, max_length, stop_string, output_regex) for mo in text
]
# Ensure it is a string (will convert from bytes, ... as needed)
if not isinstance(text, str):
text = str(text, "utf-8")
# truncate at max_length
if max_length:
text = text[:max_length]
# Remove all text after any stop_string
if stop_string:
index = text.find(stop_string)
if index > 0:
text = text[: index + len(stop_string)]
# extract substring matching regex (empty string for no match)
if output_regex:
_text = text
text = next(iter(re.findall(output_regex, text)), "")
assert (
not type(text) is tuple
), f'Regex {output_regex} returned multiple matching groups when applied to string {_text}. Try using non-capturing groups, by starting regex groups with ?: (e.g. "(stuff)" -> "(?:stuff)").'
return text | 6f95fd488ad2924024acfe2bd45ffdc869d3a252 | 492,395 |
import uuid
def random_filename(instance, filename):
"""
Generates random filename and return it
"""
extension = filename.split(".")[-1]
return "{}.{}".format(uuid.uuid4(), extension) | 95d384d4c3a51374949d24578dece28d22b091ce | 219,116 |
def jarManifest(target, source, env, for_signature):
"""Look in sources for a manifest file, if any."""
for src in source:
contents = src.get_text_contents()
if contents[:16] == "Manifest-Version":
return src
return '' | 83bdb3cd01e83f3ba949e2a9faa11f8c98d1589a | 627,015 |
import torch
def ground_caption(captions, n_ground=1, prefix="describe visual inputs:", sort=True):
"""
For VG
Args:
captions
n_ground
Returns:
source_text
target_text
Ex) (in vocab ids)
captions
['Yellow banana', 'red crayon', 'black cow', 'blue sky']
n_ground > 1
ground_indices
[1, 0, 2]
source_text
describe visual inputs: <vis_extra_id_1> <vis_extra_id_0> <vis_extra_id_2>
target_text
<extra_id_0> red crayon <extra_id_1> Yellow banana <extra_id_2> black cow
n_ground == 1
source_text
describe visual inputs: <vis_extra_id_1>
target_text
red crayon
"""
n_boxes = len(captions)
if sort:
ground_indices = torch.randperm(n_boxes)[:n_ground].sort().values
else:
ground_indices = torch.randperm(n_boxes)[:n_ground]
ground_indices = ground_indices.tolist()
source_text = [prefix]
target_text = []
if n_ground == 1:
idx = ground_indices[0]
source_text.append(f'<vis_extra_id_{idx}>')
target_text.append(f'{captions[idx]}')
else:
for j, idx in enumerate(ground_indices):
source_text.append(f'<vis_extra_id_{idx}>')
target_text.append(f'<extra_id_{j}>')
target_text.append(f'{captions[idx]}')
# target_text.append('</s>')
source_text = " ".join(source_text)
target_text = " ".join(target_text)
# return ground_indices, source_text, target_text
return source_text, target_text | df340b82e51bd1ea18a70e9d11c41910b21cf919 | 512,362 |
def findInEdges(nodeNum, edges, att=None):
"""
Find the specified node index in either node_i or node_j columns of input edges df.
Parameters
----------
nodeNum : int
This is the node index not protein index.
edges : pandas dataframe
Dataframe in which to search for node.
Returns
-------
pandas dataframe
"""
edges = edges.copy()
if att is not None:
return edges[(edges.attribute == att) & ((edges.node_i == nodeNum) | (edges.node_j == nodeNum))]
else:
return edges[(edges.node_i == nodeNum) | (edges.node_j == nodeNum)] | 83ffce762bf660c33787f58c0d132f8a38cf8db9 | 676,148 |
def hasTemplate (s):
""" Return True if string s has string templates """
return '{' in s and '}' in s | ab2f68c0e5b77ab4336a8814eb686b2743c2f6e1 | 69,276 |
import pprint
import hashlib
def generate_hash(data_in):
"""
Generate a hash from the data_in that can be used to uniquely identify
equivalent data_in.
Args:
data_in (any):
The data from which a hash is to be generated. This can be of any
type that can be pretty printed.
Returns:
str:
A hexadecimal string which is a hash hexdigest of the data as a
string.
"""
bytestring = pprint.pformat(data_in).encode("utf-8")
return hashlib.sha256(bytestring).hexdigest() | 7d6b6bba59c8ae77ca7bb60bb0e8a9116c7e3ebf | 459,511 |
def join_ipv4_segments(segments):
"""
Helper method to join ip numeric segment pieces back into a full
ip address.
:param segments: IPv4 segments to join.
:type segments: ``list`` or ``tuple``
:return: IPv4 address.
:rtype: ``str``
"""
return ".".join([str(s) for s in segments]) | 9b5196d6f7dc10a6f627c078eb90d7107daeb949 | 313,545 |
def WaitForOpMaybe(operations_client, op, asyncronous=False, message=None):
"""Waits for an operation if asyncronous flag is on.
Args:
operations_client: api_lib.ml_engine.operations.OperationsClient, the client
via which to poll
op: Cloud ML Engine operation, the operation to poll
asyncronous: bool, whether to wait for the operation or return immediately
message: str, the message to display while waiting for the operation
Returns:
The result of the operation if asyncronous is true, or the Operation message
otherwise
"""
if asyncronous:
return op
return operations_client.WaitForOperation(op, message=message).response | 98221aaa1115c49c256824df072ef6f11b40e183 | 643,764 |
from typing import Union
import math
def truncate_to_block(length: Union[int, float], block_size: int) -> int:
"""
Rounds the given length to the nearest (smaller) multiple of
the block size.
"""
return int(math.floor(length / block_size)) * block_size | cbcd3cfcb2bf32c0cc7d4f00a1b3d5d741113d7d | 665,197 |
def argmax(d):
"""
Return key corresponding to maximum value in dictionary `d`.
If several keys have the same maxum value, one of them will be returned.
Parameters
----------
d : dict
values must be numeric
Returns
-------
key in `d`
"""
return max(d, key = lambda k : d[k]) | 57f09b6b9470560aa49e67509575c496cbf25c02 | 516,113 |
def timedelta2duration(delta):
"""
Convert a datetime.timedelta to ISO 8601 duration format
Parameters
----------
delta : datetime.timedelta
Returns
-------
str
"""
s = "P"
if delta.days:
s += f"{delta.days}D"
if delta.seconds or delta.microseconds:
sec = delta.seconds
if delta.microseconds:
# Don't add when microseconds is 0, so that sec will be an int then
sec += delta.microseconds / 1e6
s += f"T{sec}S"
if s == "P":
s += "0D"
return s | ffd550ce8852046d08c39388362e677741ad117c | 642,721 |
def terminate_vy_less_zero(x, y, vx, vy, ax, ay, t):
"""Returns True if the y velocity is less than zero, otherwise returns False"""
return vy[-1] < 0 | ec0864962437e2906859f1bbe6eab04be0eeaf6c | 447,749 |
import random
def random_choice(choices):
"""returns a random choice
from a list of (choice, probability)"""
# sort by probability
choices = sorted(choices, key=lambda x:x[1])
roll = random.random()
acc_prob = 0
for choice, prob in choices:
acc_prob += prob
if roll <= acc_prob:
return choice | f477abe220fa9d87ee3692bed8c41973af4c637c | 705,303 |
def get_records(line1):
"""Collects record reported from the line.
Args:
line1 (str): 1.st line of data block
Returns:
str: record reported
"""
record = line1.split(' ')[-1]
return record if record != '' else '-' | ccb8707d7583982a73d9a94ad4db3e2d3f90c871 | 440,315 |
def descendants_count(tree):
"""For every node, count its number of descendant leaves, and the number of leaves before it."""
n = len(list(tree.nodes()))
root = n - 1
left = [0] * n
desc = [0] * n
leaf_idx = 0
children = [list(tree.neighbors(node))[::-1] for node in range(n)] # children remaining to process
stack = [root]
while len(stack) > 0:
node = stack[-1]
if len(children[node]) > 0:
stack.append(children[node].pop())
else:
children_ = list(tree.neighbors(node))
if len(children_) == 0:
desc[node] = 1
left[node] = leaf_idx
leaf_idx += 1
else:
desc[node] = sum([desc[c] for c in children_])
left[node] = left[children_[0]]
assert node == stack.pop()
return desc, left | 3fdea98bf542df9700da08dcbb297f0e9eaca4ee | 77,941 |
def _parameters_link(args, parameters):
"""Build arguments based on the arguments and parameters provided."""
args_ = {}
for index, arg in enumerate(args):
args_.setdefault(arg, []).append(index)
args_ = {key: iter(value) for key, value in args_.items()}
return [next(args_.get(p, iter([p]))) for p in parameters] | 36080d299b08d700e4b74e3b1db2903feaf0313c | 140,288 |
def convert_bytes_to_GB(bytes_number):
""" Convert a number in bytes to a number in GB, then round to 4 digits """
GB_number = bytes_number / (1024 ** 3)
GB_number = round(GB_number, 4)
return GB_number | d5c0c048060485966fccc11f6ea166535997ad45 | 243,174 |
def get_value(table, row, col) :
"""Get value in given row and column"""
return table.find_all('tr')[row].find_all('td')[col].string | 4d1c96dc239654fb3df57b4f12618b00bfe869d3 | 81,442 |
import pkg_resources
def version() -> str:
"""
Return the current version of Shillelagh.
As an example::
sql> SELECT VERSION();
VERSION()
-----------
0.7.4
"""
return pkg_resources.get_distribution("shillelagh").version | 874aeaceb2ada0a166184109da3f4202ace36e33 | 433,411 |
def soma(parcela, parcela_2):
"""Essa função calcula a soma de duas parcelas
:param parcela: number
:param parcela_2: number
:return: number
"""
return parcela + parcela_2 | 79a2a081daa64a8bc865355d8054e26d858f914a | 365,376 |
import logging
from typing import Union
from pathlib import Path
import warnings
def add_logging_handler(
logger: logging.Logger, logging_file_path: Union[str, Path]
) -> logging.FileHandler:
"""Add a logging file-handler to the logger.
Parameters
----------
logger : logging.Logger
The logger.
logging_file_path : Union[str, Path]
The file path for the file handler.
Returns
-------
logging.FileHandler
The file-handler that is added to the given logger.
"""
if not isinstance(logging_file_path, Path):
logging_file_path = Path(logging_file_path)
if logging_file_path.exists():
warnings.warn(
f"Logging file ({logging_file_path}) already exists. "
f"This file will be overwritten!",
RuntimeWarning,
)
# Clear the file
# -> because same FileHandler is used when calling this method twice
open(logging_file_path, "w").close()
f_handler = logging.FileHandler(logging_file_path, mode="w")
f_handler.setFormatter(
logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
f_handler.setLevel(logging.INFO)
logger.addHandler(f_handler)
return f_handler | 128954e07ba1435a5b65c550bbdbd54c09496b0f | 411,012 |
def no_change(msg: str) -> str:
"""Add no change tag to string"""
return f"[no_change]{msg}[/no_change]" | 4b268d65f9b8478e72e7d91ad3c05dafeb35d288 | 277,100 |
import json
def _read_as_json(msg):
"""Decode message (UTF-8) and read into dictionary.
:param msg: str to decode and deserialize
:return: Dictionary from message
"""
msg_body = msg.get_body().decode("utf-8")
return json.loads(msg_body) | f1fb041508f2840ee966516f08b1471d928427bd | 467,075 |
import collections
def most_common(row, *, default=0):
""" Return the most-common element in the array; break ties arbitrarily. """
C = collections.Counter(row)
return C.most_common(1)[0][0] if C else default | 0d263b740c43d88509aec40cb6a9a6408d402acd | 435,906 |
from typing import Union
from typing import List
def list_of_ints(string: str, delimiter: Union[str, None] = None) -> List[int]:
"""Cast a string to a list of integers.
Args:
string: String to be converted to a list of int's.
delimiter: Delimiter between integers in the string.
Default is to split with any whitespace string (see str.split() method).
"""
return [int(sp) for sp in string.split(sep=delimiter)] | 53a1ad5ace4cc9b1e6687910b34d9bbb12f595c9 | 620,980 |
def generate_kmers(kmerlen):
"""make a full list of k-mers
Arguments:
kmerlen -- integer, length of k-mer
Return:
a list of the full set of k-mers
"""
nts = ['A', 'C', 'G', 'T']
kmers = []
kmers.append('')
l = 0
while l < kmerlen:
imers = []
for imer in kmers:
for nt in nts:
imers.append(imer+nt)
kmers = imers
l += 1
return kmers | 755752a2ade73a6066a5ba07027fb20b80f86880 | 440,651 |
def num_channels(I):
"""number of channels in the image"""
return I.shape[2] | 12f485391dff5386225ad13905e6292fc9f0bda1 | 610,039 |
def ship_name(fleet, designated_no):
"""Return ship's name for specified designated number
from the fleet."""
# has dictionary a key? Use syntax: key in dictionary
if designated_no in fleet:
return fleet[designated_no] | 530e00e2613c2c5424eb4abdfb19658e6ee5413f | 620,459 |
def has_view_restrictions(page):
"""Returns True if the page has view restrictions set up, False
otherwise."""
return page.view_restrictions.count() > 0 | 97780a4091c1461bdbeabb04f2fd8cd5a28b18ae | 626,932 |
def csr_data_indices(arr):
"""extract data and indices arrays from a dense vector
(this may seem like it may be done faster with np.array.nonzero
and similar tools, but this implementation is faster)
:param arr: dense array
:return: arrays with nonzero data elements, and corresponding indices
"""
data, indices = [], []
for i in range(len(arr)):
if arr[i] != 0.0:
data.append(arr[i])
indices.append(i)
return data, indices | 7a25c7991f1ae8ae5ee747319b4add24f9fe1926 | 259,856 |
def pass_bailout(output, step_number):
"""Print info and return if in timeout or crash pass states."""
if output.HasTimedOut():
# Dashed output, so that no other clusterfuzz tools can match the
# words timeout or crash.
print('# V8 correctness - T-I-M-E-O-U-T %d' % step_number)
return True
if output.HasCrashed():
print('# V8 correctness - C-R-A-S-H %d' % step_number)
return True
return False | 5e7be9fddc06c7b6d0cb5c392a21ee2d4d7fcebd | 255,186 |
def _clamp_transpose(transpose_amount, ns_min_pitch, ns_max_pitch,
min_allowed_pitch, max_allowed_pitch):
"""Clamps the specified transpose amount to keep a ns in the desired bounds.
Args:
transpose_amount: Number of steps to transpose up or down.
ns_min_pitch: The lowest pitch in the target note sequence.
ns_max_pitch: The highest pitch in the target note sequence.
min_allowed_pitch: The lowest pitch that should be allowed in the transposed
note sequence.
max_allowed_pitch: The highest pitch that should be allowed in the
transposed note sequence.
Returns:
A new transpose amount that, if applied to the target note sequence, will
keep all notes within the range [MIN_PITCH, MAX_PITCH]
"""
if transpose_amount < 0:
transpose_amount = -min(ns_min_pitch - min_allowed_pitch,
abs(transpose_amount))
else:
transpose_amount = min(max_allowed_pitch - ns_max_pitch, transpose_amount)
return transpose_amount | 008389fd9c9baedb74dfac9feb4e8080968b505a | 239,283 |
import re
def camel_case_to_underscore(name=''):
"""
Change string from camel case to using underscores.
According to PEP8, class names should follow camel case convention,
whereas methods, functions, and variables should use underscores.
Parameters
----------
name : :class:`str`
Name to be changed from camel case to using underscores.
Returns
-------
name : :class:`str`
Name changed from camel case to using underscores.
"""
name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower() | bc9a1d28b6d63d2e3d8ad94dd093246cabf2d28a | 341,695 |
def A002275(n: int) -> int:
"""Repunits: (10^n - 1)/9. Often denoted by R_n."""
if n == 0:
return 0
return int("1" * n) | 2fb82627f80991a954937837754011671829e48f | 260,209 |
def get_user_response(prompt): # pragma: no cover
"""Display prompt and return user response lowercased."""
response = input(prompt)
return response.lower() | bb07e4057be8ebaa96d6a645a9c794386b321a16 | 242,078 |
def append_collection_links(request, response, link_dict):
"""
Convenience method to append to a response object document-level links.
"""
data = response.data
if not 'collection_links' in data:
data['collection_links'] = {}
for (link_relation_name, url) in link_dict.items():
data['collection_links'][link_relation_name] = url
return response | 8f25910c182f68c46172354f1a3bf9b336154126 | 636,594 |
def sanitize_filename(f):
"""Removes invalid characters from file name.
Args:
f (:obj:`str`): file name to sanitize.
Returns:
:obj:`str`: sanitized file name including only alphanumeric
characters, spaces, dots or underlines.
"""
keepchars = (" ", ".", "_")
return "".join(c for c in f if c.isalnum() or c in keepchars).rstrip() | d1f71503c6e85886ffdcbcbbde1ff5c22c363fc8 | 371,096 |
def to_sorted_subfloats(float_string):
"""Convert string of floats into sorted list of floats.
This function will first remove the "TSH" and turn the string of
floats into the list of floats and sort them from smaller to larger.
Args:
float_string (str): A string begin with "TSH" and followed by
a sequence of floats.
Returns:
list: a list of pure sorted floats.
"""
float_list = float_string.split(",")
float_list.remove("TSH")
float_list = [float(i) for i in float_list]
float_list.sort()
return float_list | 7764b648449c4ca79a8fe9aecd8a1b3b73acee1c | 660,587 |
def header(token):
"""
returns a generic header used for insert and update Deployment manader API calls.
:param token: bearer token
:return: header dict as expected by requests
"""
return {
'Metadata-Flavor': 'Google',
'Authorization': f'Bearer {token}',
'Accept': 'application/json',
'Content-Type': 'application/json'
} | 0b36f056feaaf2c94c50d3a282e79af61ae6f4b5 | 190,848 |
def compute_usage_metrics(session, args, fqdn, user,
collection, experiment, channel):
"""Add metrics to cloudwatch
Args:
session (boto3.session):
args (dict): contains [x|y|z]_[start|stop] for computing extents
fqdn (str): fully qualified domain name of the endpoint
user (str): name of user invoking downsample
collection (str): name of collection
experiment (str): name of experiment
channel (str): name of channel
"""
def get_cubes(axis, dim):
extent = args['{}_stop'.format(axis)] - args['{}_start'.format(axis)]
return -(-extent // dim) ## ceil div
cost = ( get_cubes('x', 512)
* get_cubes('y', 512)
* get_cubes('z', 16)
/ 4 # number of cubes for a downsampled volume
* 0.75 # assume the frame is only 75% filled
* 2 # 1 for invoking a lambda
# 1 for time it takes lambda to run
* 1.33 # add 33% overhead for all other non-base resolution downsamples
)
dimensions = [
{'Name': 'user', 'Value': user},
{'Name': 'resource', 'Value': '{}/{}/{}'.format(collection, experiment, channel)},
{'Name': 'stack', 'Value': fqdn},
]
client = session.client('cloudwatch')
client.put_metric_data(
Namespace = "BOSS/Downsample",
MetricData = [{
'MetricName': 'InvokeCount',
'Dimensions': dimensions,
'Value': 1.0,
'Unit': 'Count'
}, {
'MetricName': 'ComputeCost',
'Dimensions': dimensions,
'Value': cost,
'Unit': 'Count'
}]
) | 23d88341296c1568db41956c87ef16fef11e4bed | 250,862 |
import uuid
import random
def make_ds_id() -> str:
"""Generate a dataset ID like DataLad would.
This is intended for lightweight tests that don't create
full-fledged datasets.
"""
return str(uuid.UUID(int=random.getrandbits(128))) | c85f4662f93df6dd7c3035170f806d50e3480c30 | 649,968 |
import random
def uniformly_sample_list(vals):
"""
Returns a single value uniformly sampled from the list `vals`.
"""
return random.choice(vals) | f23a980fd00bf82696ace66348d5338f25acd91a | 174,533 |
def correction_byte_table_q() -> dict[int, int]:
"""Table of the number of correction bytes per block for the correction
level Q.
Returns:
dict[int, int]: Dictionary of the form {version: number of correction
bytes}
"""
table = {
1: 13, 2: 22, 3: 18, 4: 26, 5: 18, 6: 24, 7: 18, 8: 22, 9: 20, 10: 24,
11: 28, 12: 26, 13: 24, 14: 20, 15: 30, 16: 24, 17: 28, 18: 28, 19: 26,
20: 30, 21: 28, 22: 30, 23: 30, 24: 30, 25: 30, 26: 28, 27: 30, 28: 30,
29: 30, 30: 30, 31: 30, 32: 30, 33: 30, 34: 30, 35: 30, 36: 30, 37: 30,
38: 30, 39: 30, 40: 30
}
return table | 240303c1812429f75731d80f4a51f3aa0a066e6e | 598,070 |
def get_normal_form(obj_name, title=True):
"""Replaces underscores with spaces.
Transforms to title form if title is True.
(product_groups -> Product Groups).
"""
obj_name_wo_spaces = obj_name.replace("_", " ")
return obj_name_wo_spaces.title() if title else obj_name_wo_spaces | 276d1beab4e21f1a89e235c3f8afdabd08230679 | 262,735 |
import typing
def has_duplicates(data: typing.Sequence) -> bool:
"""
Returns ``True`` if ``data`` has duplicate elements.
It works both with hashable and not-hashable elements.
"""
try:
return len(set(data)) != len(data)
except TypeError:
n = len(data)
for i in range(n):
for j in range(i + 1, n):
if data[i] == data[j]:
return True
return False | 8a49e4495ca581887fb39a0adf96c9c9f6016c62 | 137,014 |
def fibonacci(n):
"""Returns n fibonacci numbers
Args:
n: number of fibonacci numbers to return
Returns:
List that contains n fibonacci numbers
Raises:
ValueError when n is not a positive integer
"""
if n < 1:
raise ValueError("n must be a positive integer")
output = []
f1 = 0
f2 = 1
fn = 1
count = 0
for i in range(n):
output.append(fn)
fn = f1 + f2
f1 = f2
f2 = fn
return output | ef8e26e63327a3fce20bd36f3d14bc9902cb44b8 | 665,449 |
def doolittle(matrix_a):
""" Doolittle's Method for LU-factorization.
:param matrix_a: Input matrix (must be a square matrix)
:type matrix_a: list, tuple
:return: a tuple containing matrices (L,U)
:rtype: tuple
"""
# Initialize L and U matrices
matrix_u = [[0.0 for _ in range(len(matrix_a))] for _ in range(len(matrix_a))]
matrix_l = [[0.0 for _ in range(len(matrix_a))] for _ in range(len(matrix_a))]
# Doolittle Method
for i in range(0, len(matrix_a)):
for k in range(i, len(matrix_a)):
# Upper triangular (U) matrix
matrix_u[i][k] = float(matrix_a[i][k] - sum([matrix_l[i][j] * matrix_u[j][k] for j in range(0, i)]))
# Lower triangular (L) matrix
if i == k:
matrix_l[i][i] = 1.0
else:
matrix_l[k][i] = float(matrix_a[k][i] - sum([matrix_l[k][j] * matrix_u[j][i] for j in range(0, i)]))
# Handle zero division error
try:
matrix_l[k][i] /= float(matrix_u[i][i])
except ZeroDivisionError:
matrix_l[k][i] = 0.0
return matrix_l, matrix_u | 03ba90c29dfb67ffe1edf939b49f3ab537931831 | 12,715 |
import re
def email_parse(email: str) -> dict:
"""
Парсит переданную email-строку на атрибуты и возвращает словарь
:param email: строковое входное значение обрабатываемого email
:return: {'username': <значение до символа @>, 'domain': <значение за символом @>} | ValueError
"""
# для упрощения примем, что адрес не содержит нац. символов и длина домена верхн. уровня - не более 4 симв.
re_mail = re.compile(r'^[0-9a-z_.-]+@[0-9a-z-]+\.[a-z]{2,4}$')
if len(re_mail.findall(email)) == 1:
parce_list = email.split('@')
else:
raise ValueError(f'wrong email: {email}')
return dict(username=parce_list[0], domain=parce_list[1]) | bfa3b9c2c0e829dd3b133a3aad8718f9a77b06a6 | 233,522 |
def replace_last(full, sub, rep=''):
"""
replaces the last instance of a substring in the full string with rep
:param full: the base string in which the replacement should happen
:param sub: to be replaced
:param rep: replacement substring default empty
:return:
"""
end = ''
count = 0
for c in reversed(full):
count = count + 1
end = c + end
if sub in end:
return full[:-count] + end.replace(sub, rep)
return full | 9bbb8ff3f26972740e400041357c517f8c3db042 | 327,105 |
import random
def next_unused_name_in_group(grp, length):
""" Gives a name that isn't used in a Group.
Generates a name of the desired length that is not a Dataset or
Group in the given group. Note, if length is not large enough and
`grp` is full enough, there may be no available names meaning that
this function will hang.
Parameters
----------
grp : h5py.Group or h5py.File
The HDF5 Group (or File if at '/') to generate an unused name
in.
length : int
Number of characters the name should be.
Returns
-------
name : str
A name that isn't already an existing Dataset or Group in
`grp`.
"""
# While
#
# ltrs = string.ascii_letters + string.digits
# name = ''.join([random.choice(ltrs) for i in range(length)])
#
# seems intuitive, its performance is abysmal compared to
#
# '%0{0}x'.format(length) % random.getrandbits(length * 4)
#
# The difference is a factor of 20. Idea from
#
# https://stackoverflow.com/questions/2782229/most-lightweight-way-
# to-create-a-random-string-and-a-random-hexadecimal-number/
# 35161595#35161595
fmt = '%0{0}x'.format(length)
name = fmt % random.getrandbits(length * 4)
while name in grp:
name = fmt % random.getrandbits(length * 4)
return name | 302c55264655ef5d5c011462527ea88565dedebe | 669,180 |
def stripLabels(testFeatures):
"""
Strips label from a test sentence feature vector
"""
return [testFeatures[i][0] for i in range(len(testFeatures))] | 24308c4e3fb0d56256b77fe0310381d8017f41ee | 643,023 |
import re
def sanitize_artist_name(name):
"""
Remove parenthentical number disambiguation bullshit from artist names,
as well as the asterisk stuff.
"""
name = re.sub(r" \(\d+\)$", "", name)
return re.sub(r"\*+$", "", name) | ba2e1122730957d1226c5392e4362e2bac3b1b4f | 115,008 |
def bearer_auth(request, authn):
"""
Pick out the access token, either in HTTP_Authorization header or
in request body.
:param request: The request
:param authn: The value of the Authorization header
:return: An access token
"""
try:
return request["access_token"]
except KeyError:
if not authn.startswith("Bearer "):
raise ValueError('Not a bearer token')
return authn[7:] | badcd4d6bba5f8868894f5981353283dc62946eb | 503,970 |
def find_closest_frame(utc, timestamp):
"""
Takes timestamp as datetime object, returns the frame number corresponding to the cloest frame to that time
Briefly sets the index to datetime column, then sets it back
"""
index_holder = utc.index
utc.index = utc.datetime
closest_loc = utc.index.get_loc(timestamp, method = "nearest")
utc.index = index_holder
return closest_loc | 19b588176203777e04a596ac36fff7d0b96ad7f8 | 567,222 |
import math
def H2N(H, e):
"""
Function: H2N
Purpose: Maps the hyperbolic anomaly angle H into the corresponding
mean hyperbolic anomaly angle N.
Inputs:
H = hyperbolic anomaly (rad)
e = eccentricity (e > 1)
Outputs:
N = mean hyperbolic anomaly (rad)
"""
if e > 1.0:
N = e * math.sinh(H) - H
return N
raise ValueError('Error: H2N() received e = {}, the value of e should be 0 <= e < 1'.format(str(e))) | beb663a71f91700340591a051cdf784bcab27e6d | 571,193 |
from pathlib import Path
def get_number_of_files_in_dir(directory):
"""
Sums the number of files in a directory
:param directory: Any directory with files
:return: Number of files in directory
"""
directory = Path(directory)
files = directory.iterdir()
total_files = sum(1 for x in files)
return total_files | 2cf080d5f839bd155faa75e6db0d3e3a5cf49127 | 100,851 |
def normalize(image, low=0.0, high=1.0):
"""
Normalized the image to a range.
:param image:
:param low: lowest value after normalization.
:param high: highest value after normalization.
:return:
"""
image_01 = (image - image.min()) / (image.max() - image.min())
return image_01 * (high - low) + low | 411cbe6226603e5004e5d208c72c2b6f17f16cb5 | 495,729 |
def sigma_eaton(es_norm, v_ratio, n):
"""
calculate effective pressure with the ratio of velocity and normal velocity
Notes
-----
.. math:: {\\sigma}={\\sigma}_{n}\\left(\\frac{V}{V_{n}}\\right)^{n}
"""
return es_norm * (v_ratio)**n | 708b59edebd6ea14dffbdb59d91d05ebfae0d8b2 | 101,420 |
def drop_column(df, columns_to_drop):
""" Removes columns from a DataFrame
del df[name]
Args:
df (`pandas.DataFrame`): The dataframe to drop columns on
columns_to_drop (:type:`list` of :type:`str`): A list of the columns
to remove
Returns:
`pandas.DataFrame`: `df` with the provided columns removed
"""
for ctd in columns_to_drop:
del df[ctd]
return df | 1eadbf301aff80752c93ca4393910dfa19a76b3a | 38,203 |
def list_to_string(list_, **kwargs):
"""Convert list_ into string. Accepts keyword 'join', default linebreak."""
## http://www.decalage.info/en/python/print_list_
## http://stackoverflow.com/questions/1769403/understanding-kwargs-in-python
## str.strip -- http://stackoverflow.com/questions/7984169/using-strip-on-lists
results = ''
jointoken = '\n'
if ('join' in kwargs): # http://stackoverflow.com/questions/14017996/python-optional-parameter
jointoken = kwargs['join']
list_ = map(str, list_) ## convert any ints into strings
list_ = map(str.strip, list_) ## strip whitespace
list_ = jointoken.join(list_) ## join list items into multi-line string
results = list_
return results | ec50f6a2ff231930056fa7c8a47a3b7b20d6d116 | 285,922 |
import re
def guess_type_from_decl(typename, varname):
"""Guess the name of the type from the inputs.
typename and varname are match 1 and 3 from regex:
/^\s*(\w[^=]+)(\*?) (\S+) = new/
guess_type_from_decl(str, str) -> str
>>> guess_type_from_decl('List<Moveable>', 'occupants')
('List<Moveable>', True)
>>> guess_type_from_decl('Moveable', 'm')
('Moveable', True)
>>> guess_type_from_decl('List<Coroutine>', '_Anims')
('List<Coroutine>', True)
>>> guess_type_from_decl('Dictionary<int, Coroutine>', 'm_Things')
('Dictionary<int, Coroutine>', True)
>>> guess_type_from_decl('var', 'list')
('List<>', True)
>>> guess_type_from_decl('var', 'dict')
('Dictionary<>', True)
>>> guess_type_from_decl('List<const int>* const', '_Anims')
('List<const int>', True)
>>> guess_type_from_decl('byte[]', 'data')
('byte', False)
>>> guess_type_from_decl('byte[,]', 'data')
('byte', False)
"""
if typename == 'var':
t = varname
# m_blah/_blah -> blah
t = re.sub(r"^[mk]?_", '', t)
if len(t) > 1:
t = t[0].upper() + t[1:]
# Guess the variable name is close to the typename.
# i.e, var list = new List<>
list_names = [ 'List', 'Items', 'Elements', ]
dict_names = [ 'Dict', 'Map', ]
if t in list_names:
t = "List<>"
elif t in dict_names:
t = "Dictionary<>"
return t, True
else:
# Limited C++ support.
t = typename
t = re.sub(r"[*].*$", '', t)
t = re.sub(r"^(public|internal|protected|private) ", '', t)
t = re.sub(r"^(static |readonly |const )*", '', t)
use_square = t.endswith(']')
if use_square:
first_square = t.find('[')
t = t[:first_square]
return t, not use_square | ad071ac50c7faaad497ab3a29379577d096402bb | 353,231 |
def get_yearweek(yearweekstr: str) -> tuple:
"""Transform string of form '2020-W10' into tuple (2020, 10)
"""
return tuple(map(int, yearweekstr.split('-W'))) | d8a4753d126e12709f41e1058753fd06762c765f | 589,116 |
def _get_bit(x: int, i: int) -> bool:
"""Returns true iff the i'th bit of x is set to 1."""
return (x >> i) & 1 != 0 | 567ee4edb81ffd648f89dd1b0ed41b11efd21536 | 598,105 |
def get_whereclause(params):
"""Given a dictionary of params {key1: val1, key2: val2 }
return a partial query like:
WHERE key1 = val1
AND key2 = val2
...
"""
query_parts = []
first = False
for key, val in params.items():
if not first:
first = True
query_parts.append("WHERE %s = '%s'" % (key, val))
else:
query_parts.append("AND %s = '%s'" % (key, val))
return " ".join(query_parts) | a9d2198ae3308be862eecdb148c484e0d63ccfac | 63,417 |
def bottom_up(num_steps: int) -> int:
"""Compute number of steps using a bottom up approach
This iterative appraoch is the best approach. Since it avoids the max
recursion depth and uses O(1) space. Actually, the space complexity is more
complicated. We only use 3 ints but the space needed by those 3 ints grows
as n grows. I guess it actually uses O(log(n)) space?
Args:
num_steps: number of total steps
Returns:
The number of possible ways to climb the stairs
"""
if num_steps <= 2:
return num_steps
if num_steps == 3:
return 4
a = 1
b = 2
c = 4
for _ in range(4, num_steps):
a, b, c = b, c, a + b + c
return a + b + c | 8645158380859b5fe8a84ee8b5ac5059437ecdb5 | 51,171 |
from pathlib import Path
def is_folder_included(folder):
"""
Checks if a folder should be included in the submission.
"""
return (Path(folder) / '.include_in_submission').exists() | 0489e74530f1881ff8916bba712f7555b28e25b1 | 257,983 |
def get_e_rtd_default(hw_type):
"""当該給湯機の効率
Args:
hw_type(str): 給湯機/給湯温水暖房機の種類
Returns:
float: 当該給湯機の効率
"""
if hw_type in ['ガス潜熱回収型給湯機', 'ガス潜熱回収型給湯温水暖房機']:
return 0.836
elif hw_type in ['ガス従来型給湯機', 'ガス従来型給湯温水暖房機']:
return 0.704
else:
raise ValueError(hw_type) | efc90c2a19d894093e790518e4d67f9fa4d3d700 | 693,491 |
import string
def remove_partsymbol(atom):
"""
strips the part symbol like C1_4b from an atom name
:param atom: 'C1_4b'
:type atom: string
>>> remove_partsymbol('C2_4b')
'C2_4'
>>> remove_partsymbol('C22_b')
'C22'
>>> remove_partsymbol('C_5')
'C_5'
>>> remove_partsymbol('SAME/SADI')
'SAME/SADI'
>>> remove_partsymbol('C22_4^b')
'C22_4'
>>> remove_partsymbol('C23^b')
'C23'
>>> remove_partsymbol('C24_0^b')
'C24'
>>> remove_partsymbol('C25_0b')
'C25'
"""
if '_' in atom or '^' in atom:
if '^' in atom:
# since SHELXL 2016/5, residue and part are devided by "^"
name = atom.split('^')[0]
if name.split('_')[-1] == '0':
return name.split('_')[0]
else:
return name
else:
presuff = atom.split('_')
prefix, suffix = presuff[0], presuff[-1].strip(string.ascii_letters)
if not suffix:
return prefix
else:
if suffix == '0':
atom = prefix
else:
atom = prefix + '_' + suffix
return atom | f877efebce884a16f6dada10d8af5c34f50aaa30 | 388,929 |
from typing import List
import random
def gen_sha(charset: List[str], length: int):
"""Partial function for generating a long string of random characters."""
def inner() -> str:
return ''.join(random.choice(charset) for _ in range(length))
return inner | 00ade63b5144be3828036636fa509f2dd162bf19 | 387,709 |
def charset_to_encoding(name):
"""Convert MySQL's charset name to Python's codec name"""
if name == 'utf8mb4':
return 'utf8'
return name | b97c9e2d8e91cec0be4d49d78154f3dddb77fde4 | 569,605 |
def itofm(i):
"""Converts midi interval to frequency multiplier."""
return 2 ** (i / 12.0) | eea7e26e63b5b8e56af41b34444440ebe5b2b4bb | 614,015 |
def splitIntoGroupsOf(groupSize, theList):
""" splits a list into list of lists,
where the inner lists have at most
groupSize number of items.
"""
result = []
for i in range(0, len(theList), groupSize):
result.append(theList[i:i + groupSize])
return result | 13ed5d13a0438f77b6d4f2d5463baf03bc6df0fc | 324,339 |
def _specific_humidity(ea, pair):
""""Specific humidity from actual vapor pressure
Parameters
----------
ea : ee.Image or ee.Number
Specific humidity [kPa].
pair : ee.Image or ee.Number
Air pressure [kPa].
Returns
-------
q : ee.Image or ee.Number
Specific humidity [kg/kg].
Notes
-----
q = 0.622 * ea / (pair - 0.378 * ea)
"""
return ea.multiply(-0.378).add(pair).pow(-1).multiply(ea).multiply(0.622)
# return ea.multiply(0.622).divide(ea.multiply(-0.378).add(pair)) | fa400b784a8b8e117ed9370a334163f9be529822 | 198,165 |
from typing import Callable
from typing import Optional
from typing import Tuple
def then_parser(
first_parser: Callable[[str], Optional[Tuple[str, str]]],
second_parser: Callable[[str], Optional[Tuple[str, str]]],
text: str,
) -> Optional[Tuple[str, str]]:
"""
Uses one parser on the text,
then uses the next parser on the remaining
text from the first parse.
"""
first_result = first_parser(text)
if first_result is None:
return None
else:
parsed, rest = first_result
second_result = second_parser(rest)
if second_result is None:
return None
else:
parsed_2, rest_2 = second_result
return parsed + parsed_2, rest_2 | 7604deaed51af9177661defe5e62a13766a77065 | 44,139 |
def copy_with_meta(class_to_copy, meta_src):
"""
Return a copy of "class_to_copy" but with metadata
(n_actions and n_obs) copied from meta_src. Usually
class_to_copy is an agent-class and meta_src is an
environment-class in whose instances instances of
class_to_copy are to be run.
"""
class result(class_to_copy):
n_actions, n_obs = meta_src.n_actions, meta_src.n_obs
result.__name__ = class_to_copy.__name__
result.__qualname__ = class_to_copy.__qualname__
return result | 1d2eb8fe03a5452407e39a40140e161b497a0524 | 574,964 |
def determine_var(w, q2):
"""
:param w: omega as estimated
:param q2: allele freq of SNP in p2
:return: sigma2, estimate of variation
"""
return w * (q2 * (1 - q2)) | 68f4c6dce3327b263000bd812a8d253102347643 | 435,515 |
import re
def format_id(s):
"""Formats the given string so it can be used as an ID.
Example:
>>> format_id('name.surname')
name-surname
"""
if not s:
return '_'
return re.sub(r'[^-a-zA-Z0-9_]', '-', s) | 22e2a3353453b9e1c38402fec850fdc666ac7815 | 125,384 |
def create_identifiers_lists(identifiers):
"""Splits identifiers in two lists."""
issn_list = []
isbn_list = []
for ident in identifiers:
if ident["scheme"] == "ISSN":
issn_list.append(ident["value"])
if ident["scheme"] == "ISBN":
isbn_list.append(ident["value"])
return issn_list, isbn_list | 28ba76f72b29eb5625a13363fcd7eb84b29b9025 | 137,261 |
def invert_permutation_indices(indices):
"""Invert the permutation giver by indices.
"""
inverted = [0] * len(indices)
for i, index in enumerate(indices):
inverted[index] = i
return inverted | 4d48c544c1d9684ba1f618c34293d4512d164180 | 491,375 |
def last(y):
""" Returns the last column from 2d matrix """
return y[:, (y.shape[1] - 1)] | 981429949c74846bc079fb47f49c67e05884452a | 244,215 |
def provider_names(providers):
"""
Returns the names of the :providers:, separated by commas.
"""
return ", ".join([p.provider_name for p in providers]) | c89f7dc5c6d976753f4f44398d4fd906c32ec56a | 588,862 |
def output_handler(data, context):
"""
Post-process TensorFlow Serving output before it is returned to the client
"""
if data.status_code != 200:
raise ValueError(data.content.decode("utf-8"))
return data.content, context.accept_header | cb7fedf142cd19ebfcc756295a087a603a789b43 | 468,604 |
def check_order(df, topcol, basecol, raise_error=True):
"""
Check that all rows are either depth ordered or elevation_ordered.
Returns 'elevation' or 'depth'.
"""
assert basecol in df.columns, f'`basecol` {basecol} not present in {df.columns}'
if (df[topcol] > df[basecol]).all():
return 'elevation'
elif (df[topcol] < df[basecol]).all():
return 'depth'
elif raise_error:
raise ValueError('Dataframe has inconsistent top/base conventions')
else:
return None | 9b4e7b9938bb2fe14ab99d5c111883a0f6d73337 | 9,005 |
def _split_sparse_columns(arff_data, include_columns):
"""
obtains several columns from sparse arff representation. Additionally, the
column indices are re-labelled, given the columns that are not included.
(e.g., when including [1, 2, 3], the columns will be relabelled to
[0, 1, 2])
Parameters
----------
arff_data : tuple
A tuple of three lists of equal size; first list indicating the value,
second the x coordinate and the third the y coordinate.
include_columns : list
A list of columns to include.
Returns
-------
arff_data_new : tuple
Subset of arff data with only the include columns indicated by the
include_columns argument.
"""
arff_data_new = (list(), list(), list())
reindexed_columns = {column_idx: array_idx for array_idx, column_idx
in enumerate(include_columns)}
for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]):
if col_idx in include_columns:
arff_data_new[0].append(val)
arff_data_new[1].append(row_idx)
arff_data_new[2].append(reindexed_columns[col_idx])
return arff_data_new | 5fd93b569222a50cae815731b7f0b40c8bc138bf | 226,162 |
def name_of(obj):
"""Returns the name of function or class."""
class_name = type(obj).__name__
if class_name in ['function', 'type']:
return obj.__name__
else:
return class_name | fad30e12c9ef9a52700a8044094bab5b1ea5487e | 540,053 |
def calc_upsampling_size(input_size: int,
dilation: int = 1,
tconv_kernel_size: int = 3,
tconv_stride: int = 2,
tconv_padding: int = 1,
output_padding: int = 1) -> int:
"""
Helper function to calculate the upsampling size desired from the convolution parameters.
This is the same formula as used by the transposed 3D convolution of PyTorch
Args:
- input_size (int): size of the input tensor
- dilation (int): dilation of the convolution
- tconv_kernel_size (int): kernel of the convolution
- tconv_stride (int): stride of the convolution
- tconv_padding (int): padding of the convolution
- output_padding (int): Output padding to add
"""
return (input_size - 1) * tconv_stride - 2 * tconv_padding + dilation * (
tconv_kernel_size - 1) + output_padding + 1 | 138261e65211c2fa193c40f6c2882c18214f8a10 | 152,258 |
def check_the_guess(guessed_number, number_to_guess, attempts_left):
""" compare the player's guess with the random number to be guessed, provide a feedback """
if guessed_number == number_to_guess:
return True
else:
if guessed_number > number_to_guess:
print("Your number is too high!", end="")
elif guessed_number < number_to_guess:
print("Your number is too low!", end="")
if attempts_left > 0:
print(" Try it again!")
print(f"\tAttempts left: {attempts_left} ...")
return False
else:
print(f"\n\tAttempts left: {attempts_left} ...")
return True | b412275c4a33faf4a86e4dbca7e01bb286067f07 | 394,152 |
def decrypt_single_char(char, key):
"""Decrypt a single char with a given key."""
assert isinstance(char, str)
assert isinstance(key, int)
upper_a_integer = ord('A')
upper_z_integer = ord('Z')
lower_a_integer = ord('a')
lower_z_integer = ord('z')
char_integer = ord(char)
result = char_integer
difference = (upper_z_integer - upper_a_integer) + 1
if upper_a_integer <= char_integer <= upper_z_integer:
result -= key
if not upper_a_integer <= result <= upper_z_integer:
result += difference
elif lower_a_integer <= char_integer <= lower_z_integer:
result -= key
if not lower_a_integer <= result <= lower_z_integer:
result += difference
return chr(result) | e96ced88c9b43cee45a17e417ce4f35a9136c8b8 | 373,506 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.