content
stringlengths
22
815k
id
int64
0
4.91M
def request_user_input(prompt='> '): """Request input from the user and return what has been entered.""" return raw_input(prompt)
5,347,200
def get_clinic_qs(): """ Returns a list of clinic uuid values for clinics whose patients will receive follow up reminder messages """ q = Q() for clinic in MESSAGE_CLINICS: q = q | Q(name__iexact=clinic) return list(Clinic.objects.filter(q).values_list('uuid', flat=True))
5,347,201
def NPnm(n, m, x): """Eq:II.77 """ return sqrt( (2*n+1)/2 * abs(nmFactorial(n,m)) ) * lpmv(m, n, x)
5,347,202
def all_columns_empty(): """All columns are empty ... test will demoonstrate this edge case can be handled""" return [[] for i in range(0, 100)]
5,347,203
def ping(host, destination, repeat_count, vrf_name): """Execute Ping RPC over NETCONF.""" # create NETCONF provider provider = NetconfServiceProvider(address=host, port=830, username='admin', password='admin', protocol='ssh') executor = ExecutorService() # create executor service ping = xr_ping_act.Ping() # create ping RPC object ping.input.destination = ping.input.Destination() ping.input.destination.destination = destination ping.input.destination.repeat_count = repeat_count ping.input.destination.vrf_name = vrf_name ping.output = executor.execute_rpc(provider, ping, ping.output) return dict(success_rate=int(str(ping.output.ping_response.ipv4[0].success_rate)), rtt_min=int(str(ping.output.ping_response.ipv4[0].rtt_min)), rtt_avg=int(str(ping.output.ping_response.ipv4[0].rtt_avg)), rtt_max=int(str(ping.output.ping_response.ipv4[0].rtt_max)))
5,347,204
def compute_shape_index(mesh) -> np.ndarray: """ Computes shape index for the patches. Shape index characterizes the shape around a point on the surface, computed using the local curvature around each point. These values are derived using PyMesh's available geometric processing functionality. Parameters ---------- mesh: Mesh Instance of the pymesh Mesh type. The mesh is constructed by using information on vertices and faces. Returns ------- si: np.ndarray, Shape index for each vertex """ n1 = mesh.get_attribute("vertex_nx") n2 = mesh.get_attribute("vertex_ny") n3 = mesh.get_attribute("vertex_nz") normals = np.stack([n1, n2, n3], axis=1) mesh.add_attribute("vertex_mean_curvature") H = mesh.get_attribute("vertex_mean_curvature") mesh.add_attribute("vertex_gaussian_curvature") K = mesh.get_attribute("vertex_gaussian_curvature") elem = np.square(H) - K # In some cases this equation is less than zero, likely due to the method # that computes the mean and gaussian curvature. set to an epsilon. elem[elem < 0] = 1e-8 k1 = H + np.sqrt(elem) k2 = H - np.sqrt(elem) # Compute the shape index si = (k1 + k2) / (k1 - k2) si = np.arctan(si) * (2 / np.pi) return si
5,347,205
def edit_frame(frame: ndarray, y: int) -> Tuple[ndarray, ndarray]: """ Parameters ---------- frame : (is row-major) y Returns ------- (frame, cut) """ np.random.uniform(-1, 1, size=20000000) # 20000000@6cores cut = cv.cvtColor(frame[[y], :], cv.COLOR_BGR2GRAY)[0, :] # Convert OpenCV colors to PyQtGraph colors frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB) return frame, cut
5,347,206
def get_location(uniprot_id: str) -> Location: # pragma: no cover """Queries the UniProt database for a subcellular location with the id `uniprot_id` and returns a `Location` object""" g: LocationRDF = get_location_graph(uniprot_id) return Location.from_location_rdf(g)
5,347,207
def clean(params): """ Clean current folder remove saved model and training log """ if os.path.isfile(params.vocab_file): os.remove(params.vocab_file) if os.path.isfile(params.map_file): os.remove(params.map_file) if os.path.isdir(params.ckpt_path): shutil.rmtree(params.ckpt_path) if os.path.isdir(params.summary_path): shutil.rmtree(params.summary_path) if os.path.isdir(params.result_path): shutil.rmtree(params.result_path) if os.path.isdir("log"): shutil.rmtree("log") if os.path.isdir("__pycache__"): shutil.rmtree("__pycache__") if os.path.isfile(params.config_file): os.remove(params.config_file) if os.path.isfile(params.vocab_file): os.remove(params.vocab_file)
5,347,208
def analyzeSentiment(folderNum): """Get the review and perform sentiment analysis.""" while True: carMake, carModel, reviewPath = getReview() if type(carMake) != Exception and carMake is not None: if folderNum == 0: carModel = '-'.join(carModel) else: carModel = carModel[0] if folderNum == 2 and (reviewPath == '' or reviewPath[-1] == '0'): continue carMake, carModel = carMake.lower(), carMake.lower() with open(reviewPath) as fileHandle: reviewText = fileHandle.read() reviewText = reviewText.replace('\'', '') reviewBlob = TextBlob(reviewText) reviewPolarity = reviewBlob.sentiment.polarity reviewSubjectivity = reviewBlob.sentiment.subjectivity insertQry = """INSERT INTO reviews2 (car_make, car_model, review_polarity, review_subjectivity, review_text) VALUES ('{}', '{}', {}, {}, '{}')""".format( carMake, carModel, reviewPolarity, reviewSubjectivity, reviewText) cur.execute(insertQry) else: break
5,347,209
def test_paper_size(pdf, option_type, config): """ Проверка размера страницы. """ for pg in pdf: assert point_to_mm(pg.rect.width) == dict_get( config, [option_type, "paper_size", "width"] ) assert point_to_mm(pg.rect.height) == dict_get( config, [option_type, "paper_size", "height"] )
5,347,210
def _gaussian2d_rot_no_bg(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx,FWHMy,theta] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ theta=p[5] x0prime, y0prime, xprime, yprime=_2d_coord_transform(theta,p[1],p[2],x,y) newp=copy.copy(p)#this copy was needed so original parameters set isn't changed newp[1]=x0prime newp[2]=y0prime f=_gaussian2d_no_bg(newp[:5],xprime,yprime) return f
5,347,211
def queue_get_all(q): """ Used by report builder to extract all items from a :param q: queue to get all items from :return: hash of merged data from the queue by pid """ items = {} maxItemsToRetreive = 10000 for numOfItemsRetrieved in range(0, maxItemsToRetreive): try: if numOfItemsRetrieved == maxItemsToRetreive: break new = q.get_nowait() pid = new.pid ts = new.timestamp msg = new.msg if pid not in items: items[pid] = '' old = items[pid] new = '{0}\n[{1}]{2}'.format(old, ts, msg) items[pid] = new except Empty: break return items
5,347,212
def sample_account(self, profile, company, **params): """Create and return a sample customer""" defaults = { "balance": 0, "account_name": "string", "account_color": "string" } defaults.update(params) return Account.objects.create( profile=profile, company=company, **defaults )
5,347,213
def extract_acqtime_and_physio_by_slice(log_fname, nSlices, nAcqs, acqTime_firstImg, TR=1000): """ :param log_fname: :param nSlices: :param nAcqs: :return: repsAcqTime: ((SC+all slices) x Nacq x (PulseOx, Resp) timePhysio: N_pulseOx_points x ((PulseOx, Resp) valuesPhysio: N_pulseOx_points x ((PulseOx, Resp) """ # repsAcqTime: ((SC+all slices) x Nacq x (PulseOx, Resp) # timePhysio: N_pulseOx_points x ((PulseOx, Resp) # valuesPhysio: N_pulseOx_points x ((PulseOx, Resp) repsAcqTime = np.zeros((1+nSlices, nAcqs, 2)) # pulseOx ---------------------------- if os.path.exists(log_fname+'.puls'): print('Processing pulseOx log: '+log_fname+'.puls') if 'slr' in os.path.basename(log_fname): print('\t[\'slr\'-type physiolog]') time_puls, puls_values, epi_acqtime_puls, epi_event_puls, acq_window_puls = dsc_extract_physio.read_physiolog(log_fname+'.puls', sampling_period=20) # extract physio signal reps_table_puls, slices_table_puls = dsc_extract_physio.sort_event_times(epi_acqtime_puls, epi_event_puls) # sort event times nrep_pulseOxLog = np.sum(reps_table_puls[:, 1]) if nAcqs != nrep_pulseOxLog: os.error('Number of repetitions in image is different from the number of repetitions recorded in pulseOx physiolog.') # get acquisition time for each slice repsAcqTime[1:, :, 0] = np.squeeze(slices_table_puls[np.where(reps_table_puls[:, 1] == 1), :]).T else: print('\t[\'CMRR\'-type physiolog]') time_puls, trigger_start_times_puls, trigger_end_times_puls, puls_values, acq_window_puls, acqStartTime_puls = dsc_extract_physio.read_physiolog_cmrr(log_fname+'.puls') triggerStartTimes_imgOnly_puls = dsc_extract_physio.extract_acqTimes_cmrr(trigger_start_times_puls, acqTime_firstImg, acqStartTime_puls, trigger_end_times_puls) repsAcqTime[1:, :, 0] = np.tile(triggerStartTimes_imgOnly_puls, (nSlices, 1)) + np.tile(TR/nSlices * np.arange(0, nSlices), (nAcqs, 1)).T else: print('\nNo log found for pulseOx.') repsAcqTime[1:, :, 0] = TR*np.tile(np.arange(0, nAcqs), (nSlices, 1)) + np.tile(TR/nSlices*np.arange(0, nSlices), (nAcqs, 1)).T time_puls = np.arange(np.min(repsAcqTime), np.max(repsAcqTime), step=20) puls_values = None # take the mean acquisition time across slices for the whole rep (SC) repsAcqTime[0, :, 0] = np.mean(repsAcqTime[1:nSlices, :, 0], axis=0) # respiration ---------------------------- if os.path.exists(log_fname+'.resp'): print('Processing respiration log: '+log_fname+'.resp') if 'slr' in os.path.basename(log_fname): print('\t[\'slr\'-type physiolog]') time_resp, resp_values, epi_acqtime_resp, epi_event_resp, acq_window_resp = dsc_extract_physio.read_physiolog(log_fname+'.resp', sampling_period=20) # extract physio signal reps_table_resp, slices_table_resp = dsc_extract_physio.sort_event_times(epi_acqtime_resp, epi_event_resp) # sort event times nrep_respLog = np.sum(reps_table_resp[:, 1]) if nAcqs != nrep_respLog: os.error('Number of repetitions in image is different from the number of repetitions recorded in respiration physiolog.') # get acquisition time for each slice repsAcqTime[1:, :, 1] = np.squeeze(slices_table_resp[np.where(reps_table_resp[:, 1] == 1), :]).T else: print('\t[\'CMRR\'-type physiolog]') time_resp, trigger_start_times_resp, trigger_end_times_resp, resp_values, acq_window_resp, acqStartTime_resp = dsc_extract_physio.read_physiolog_cmrr(log_fname+'.resp') else: print('\nNo log found for respiration.\n') repsAcqTime[1:, :, 1] = TR*np.tile(np.arange(0, nAcqs), (nSlices, 1)) + np.tile(TR/nSlices*np.arange(0, nSlices), (nAcqs, 1)).T time_resp = np.arange(np.min(repsAcqTime), np.max(repsAcqTime), step=20) resp_values = None # take the mean acquisition time across slices for the whole rep (SC) repsAcqTime[0, :, 1] = np.mean(repsAcqTime[1:nSlices, :, 1], axis=0) # merge the two physiological signal into one array each (for time and physio values) if time_puls.size > time_resp.size: time_resp = np.hstack((time_resp, time_puls[time_resp.size:])) resp_values = np.pad(resp_values, (0, puls_values.size - resp_values.size), 'reflect') elif time_puls.size < time_resp.size: time_puls = np.hstack((time_puls, time_resp[time_puls.size:])) puls_values = np.pad(puls_values, (0, resp_values.size - puls_values.size), 'reflect') timePhysio = np.vstack((time_puls, time_resp)).T valuesPhysio = np.vstack((puls_values, resp_values)).T return repsAcqTime, timePhysio, valuesPhysio
5,347,214
def get_funghi_type_dict(funghi_dict): """ Parameters ---------- funghi_dict: dict {str: list of strs} is the name: html lines dict created by get_funghi_book_entry_dict_from_html() Return ------------ dict {str: FunghiType} each entry contains a mushroom name and the corresponding FunghiType created with generate_funghi() """ funghis = {} for funghi_name in funghi_dict: funghis[funghi_name] = generate_funghi(funghi_dict, funghi_name) return funghis
5,347,215
def init(item): """ Initializes any data on the parent item if necessary """ for component in item.components: if component.defines('init'): component.init(item)
5,347,216
def default_error_mesg_fmt(exc, no_color=False): """Generate a default error message for custom exceptions. Args: exc (Exception): the raised exception. no_color (bool): disable colors. Returns: str: colorized error message. """ return color_error_mesg('{err_name}: {err_mesg}', { 'err_name': Color(exc.__class__.__name__, '*red'), 'err_mesg': Color(str(exc), 'white') }, no_color)
5,347,217
def fit_model(model, generator, n_epochs, batches_per_epoch): """Fit model with data generator model : tf.keras.Model generator : yield (batch_x, batch_y) """ model.fit(generator, epochs=n_epochs, steps_per_epoch=batches_per_epoch)
5,347,218
def test_get_package_energy_with_only_pkg_rapl_api_return_correct_value(fs_pkg_one_socket): """ Create a RaplDevice instance on a machine with package rapl api with on one socket configure it to monitor package domain use the `get_energy` method and check if: - the returned list contains one element - this element is the power consumption of the package on socket 0 """ device = RaplDevice() device.configure([RaplPackageDomain(0)]) assert device.get_energy() == [fs_pkg_one_socket.domains_current_energy['package_0']]
5,347,219
def check_values_on_diagonal(matrix): """ Checks if a matrix made out of dictionary of dictionaries has values on diagonal :param matrix: dictionary of dictionaries :return: boolean """ for line in matrix.keys(): if line not in matrix[line].keys(): return False return True
5,347,220
def volat(path): """volat Data loads lazily. Type data(volat) into the console. A data.frame with 558 rows and 17 variables: - date. 1947.01 to 1993.06 - sp500. S&P 500 index - divyld. div. yield annualized rate - i3. 3 mo. T-bill annualized rate - ip. index of industrial production - pcsp. pct chg, sp500, ann rate - rsp500. return on sp500: pcsp + divyld - pcip. pct chg, IP, ann rate - ci3. i3 - i3[\_n-1] - ci3\_1. ci3[\_n-1] - ci3\_2. ci3[\_n-2] - pcip\_1. pcip[\_n-1] - pcip\_2. pcip[\_n-2] - pcip\_3. pcip[\_n-3] - pcsp\_1. pcip[\_n-1] - pcsp\_2. pcip[\_n-2] - pcsp\_3. pcip[\_n-3] https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_ isbn_issn=9781111531041 Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `volat.csv`. Returns: Tuple of np.ndarray `x_train` with 558 rows and 17 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'volat.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/wooldridge/volat.csv' maybe_download_and_extract(path, url, save_file_name='volat.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
5,347,221
def read_quantity(string): """ convert a string to a quantity or vectorquantity the string must be formatted as '[1, 2, 3] unit' for a vectorquantity, or '1 unit' for a quantity. """ if "]" in string: # It's a list, so convert it to a VectorQuantity. # The unit part comes after the list. # The list itself must consist of floats only! values = list( map( float, string[1:].split('] ')[0].split(',') ) ) unit = find_unit(string.split('] ')[1].split(' ')) quantity = new_quantity(values, unit) else: value = float(string.split(' ')[0]) unit = find_unit(string.split(' ')[1:]) quantity = new_quantity(value, unit) return quantity
5,347,222
def loop(): """ The main loop for monitoring and alerting on services """ # Setup major objects config = get_config('monitor') logger = get_logger(level=config.grab('level', section='logging'), location=config.grab('location', section='logging'), max_size=config.grab('max_size', section='logging'), rollover_count=config.grab('rollover_count', section='logging') ) dispatcher = Dispatcher() _monitor = config.grab_many(section='services') services = {} for member in _monitor: services[_member] = Service(name=_member, processes=monitor[_member]) # Setup looping & alerting parmaters events = {} SEC_TO_MIN = 60 loop_run_frequency = config.grab('frequency') alert_frequency = config.grab('rate') * SEC_TO_MIN event_reset_period = config.grab('reset_after') * SEC_TO_MIN # Start the dispatcher child_pipe, pipe = Pipe(duplex=False) dispatcher.run(config, logger, child_pipe) # Run monitoring loop start_alert_period = time.time() while True: start_run_time = time.time() for member in services: new_pids, dead_pids = member.status() if dead_pids: for name in dead_pids: for pid in dead_pids[name]: new_event = Event(member, name, pid) if new_event in events: # Event has overriden __hash__; that's why this works events[new_event].bump() # add occurance to event else: pipe.send(new_event) # push to dispatcher for alerting if new_pids: for name in dead_pids: for pid in dead_pids[name]: # It's spam to notify of a new pid ASAP new_event = Event(member, name, pid) events[new_event].bump() # remove events that have been 'green' for long enough for event in events: if time.time() - event.last_event >= event_reset_period: events.pop(event, None) # Send periodic alerts if time.time() - start_alert_period >= alert_frequency: for event in events: pipe.send(event) start_alert_period = time.time() # time to nap ran_for = time.time() - start_run_time delta = loop_run_frequency - ran_for time.sleep(max(0, delta))
5,347,223
async def stop_service(name: str) -> None: """ stop service """ task = TASKS.get(name) if task is None: raise Exception(f"No such task {name}") return task.cancel()
5,347,224
def rand_bbox(img_shape, lam, margin=0., count=None): """ Standard CutMix bounding-box Generates a random square bbox based on lambda value. This impl includes support for enforcing a border margin as percent of bbox dimensions. Args: img_shape (tuple): Image shape as tuple lam (float): Cutmix lambda value margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) count (int): Number of bbox to generate """ ratio = np.sqrt(1 - lam) img_h, img_w = img_shape[-2:] cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) yl = np.clip(cy - cut_h // 2, 0, img_h) yh = np.clip(cy + cut_h // 2, 0, img_h) xl = np.clip(cx - cut_w // 2, 0, img_w) xh = np.clip(cx + cut_w // 2, 0, img_w) bbox_area = (yh - yl) * (xh - xl) lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) return yl, yh, xl, xh, lam
5,347,225
def main(): """Main.""" parser = argparse.ArgumentParser(description='Get Redis master IP') parser.add_argument('--cluster', '-c', help='cluster name', required=True) parser.add_argument('--subcluster', '-s', help='subcluster name', default='redisdb') parser.add_argument('--db', '-d', help='redis db name', required=True) parser.add_argument('--debug', help='debug mode', action='store_true') args = parser.parse_args() global CONFIG_FILES, CONFIG, SECRETS, DEBUG DEBUG = args.debug CONFIG_FILES, CONFIG, SECRETS = common.read_redis_configs(DEBUG) get_current_master(args.cluster, args.subcluster, args.db)
5,347,226
def get_current_dir(): """ Get the directory of the executed Pyhton file (i.e. this file) """ # Resolve to get rid of any symlinks current_path = Path(__file__).resolve() current_dir = current_path.parent return current_dir
5,347,227
def concat_output_files( input_directory=None, output_directory=None, reference_sample=None, project_id=None, ): """This function will concatenate all chromosome output files into a single file for viewing on P-distance Graphing Tool. It will also remove the reference sample data as it is only 0's and uniformative.""" logging.debug(f"Starting concatenation process") DATE = str(datetime.date.today()).replace('-', '_') # set Paths() input_directory = Path(input_directory) if not output_directory: output_directory = Path(input_directory) / "p_distance_output" else: output_directory = Path(output_directory) # Collect output files output_files = [f for f in output_directory.iterdir() if f.is_file()] pprint_list = "\n".join([str(f) for f in output_files]) logging.debug(f"Files to concatenate:\n{pprint_list}\n") # Read files into dataframe dfs_to_concat = [pd.read_csv(f) for f in output_files] # Concatenate the files into a single directory concat_dfs = pd.concat(dfs_to_concat) # Drop reference column from final dataset concat_dfs.drop(columns=reference_sample, inplace=True) # Create output filename and output to file output_filename = output_directory / f"{reference_sample}_{project_id}_{DATE}.csv" concat_dfs.to_csv(output_filename, index=False) return
5,347,228
def build_gun_dictionary(filename): """Build a dictionary of gun parameters from an external CSV file: - Key: the gun designation (e.g. '13.5 in V' or '12 in XI') - Value: a list of parameters, in the order: * caliber (in inches) * maxrange (maximum range in yards) * longtohit (chance to hit per gun and minute at long range) * longmin (minimum range considered to be long) * effectivetohit (chance to hit per gun and minute at effective range) * effectivemin (minimum range considered to be effective) * shorttohit (chance to hit per gun and minute at short range) """ gundict = {} with open(filename) as sourcefile: reader = csv.reader(sourcefile, delimiter=",") next(reader) for row in reader: gundata = list(row) gundict[gundata[0]] = list(map(float, gundata[1:])) return gundict
5,347,229
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Test score") plt.legend(loc="best") return plt
5,347,230
def fetch_events_AHEAD(base_url='http://www.ahead-penn.org'): """ Penn Events for Penn AHEAD """ page_soup = BeautifulSoup(requests.get( urljoin(base_url, '/events')).content, 'html.parser') events = [] event_table = page_soup.find('div', attrs={'id': 'main-content'}) all_events = event_table.find_all('div', attrs={'class': 'views-row'}) for event in all_events: event_url = urljoin(base_url, event.find('a')['href']) event_soup = BeautifulSoup(requests.get( event_url).content, 'html.parser') title = event_soup.find('h1', attrs={'class': 'title'}) title = title.text.strip() if title is not None else '' date = event_soup.find('span', attrs={'class': 'date-display-single'}) date = date.text.strip() if date is not None else '' starttime, endtime = find_startend_time(date) location = event_soup.find('div', attrs={ 'class': 'field field-name-field-location field-type-text field-label-hidden'}) location = location.text.strip() if location is not None else '' details = event_soup.find('div', attrs={ 'class': 'field field-name-body field-type-text-with-summary field-label-hidden'}) details = details.text.strip() if details is not None else '' events.append({ 'title': title, 'speaker': '', 'date': date, 'location': location, 'description': details, 'starttime': starttime, 'endtime': endtime, 'url': event_url, 'owner': 'Penn AHEAD', }) return events
5,347,231
def assert_records_equal_nonvolatile(first, second, volatile_fields, indent=0): """Compare two test_record tuples, ignoring any volatile fields. 'Volatile' fields include any fields that are expected to differ between successive runs of the same test, mainly timestamps. All other fields are recursively compared. """ if isinstance(first, dict) and isinstance(second, dict): if set(first) != set(second): logging.error('%sMismatching keys:', ' ' * indent) logging.error('%s %s', ' ' * indent, first.keys()) logging.error('%s %s', ' ' * indent, second.keys()) assert set(first) == set(second) for key in first: if key in volatile_fields: continue try: assert_records_equal_nonvolatile(first[key], second[key], volatile_fields, indent + 2) except AssertionError: logging.error('%sKey: %s ^', ' ' * indent, key) raise elif hasattr(first, '_asdict') and hasattr(second, '_asdict'): # Compare namedtuples as dicts so we get more useful output. assert_records_equal_nonvolatile(first._asdict(), second._asdict(), volatile_fields, indent) elif hasattr(first, '__iter__') and hasattr(second, '__iter__'): for idx, (fir, sec) in enumerate(itertools.izip(first, second)): try: assert_records_equal_nonvolatile(fir, sec, volatile_fields, indent + 2) except AssertionError: logging.error('%sIndex: %s ^', ' ' * indent, idx) raise elif (isinstance(first, records.RecordClass) and isinstance(second, records.RecordClass)): assert_records_equal_nonvolatile( {slot: getattr(first, slot) for slot in first.__slots__}, {slot: getattr(second, slot) for slot in second.__slots__}, volatile_fields, indent) elif first != second: logging.error('%sRaw: "%s" != "%s"', ' ' * indent, first, second) assert first == second
5,347,232
def forkpty(*args, **kwargs): # real signature unknown """ Fork a new process with a new pseudo-terminal as controlling tty. Returns a tuple of (pid, master_fd). Like fork(), return pid of 0 to the child process, and pid of child to the parent process. To both, return fd of newly opened pseudo-terminal. """ pass
5,347,233
def column_to_index(ref): """ カラムを示すアルファベットを0ベース序数に変換する。 Params: column(str): A, B, C, ... Z, AA, AB, ... Returns: int: 0ベース座標 """ column = 0 for i, ch in enumerate(reversed(ref)): d = string.ascii_uppercase.index(ch) + 1 column += d * pow(len(string.ascii_uppercase),i) return column-1
5,347,234
def cols_to_tanh(df, columns): """Transform column data with hyperbolic tangent and return new columns of prefixed data. Args: df: Pandas DataFrame. columns: List of columns to transform. Returns: Original DataFrame with additional prefixed columns. """ for col in columns: df['tanh_' + col] = np.tanh(df[col]) return df
5,347,235
def draw_png_heatmap_graph(obs, preds_dict, gt, mixes, network_padding_logits, trackwise_padding, plt_size, draw_prediction_track, plot_directory, log_file_name, multi_sample, global_step, graph_number, fig_dir, csv_name, rel_destination, parameters, padding_mask='None', distance=0): """ :param obs: :param preds_dict: :param gt: :param mixes: :param network_padding_logits: :param trackwise_padding: :param plt_size: :param draw_prediction_track: :param plot_directory: :param log_file_name: :param multi_sample: :param global_step: :param graph_number: :param fig_dir: :param csv_name: :param rel_destination: :param parameters: :param padding_mask: "None", "GT" or "Network" :return: """ ##FIXME gt_padding_bool = trackwise_padding # #padding_bool = np.argmax(padding_logits, axis=1) == 1 # 'results/20180412-104825/plots_img_final' legend_str = [] fig = plt.figure(figsize=plt_size) plt.plot(gt[:, 0], gt[:, 1], 'b-', zorder=3, label="Ground Truth") plt.plot(gt[:, 0], gt[:, 1], 'bo', zorder=3, ms=2) legend_str.append(['Ground Truth']) plt.plot(obs[:, 0], obs[:, 1], 'g-', zorder=4, label="Observations") plt.plot(obs[:, 0], obs[:, 1], 'go', zorder=4, ms=2) legend_str.append(['Observations']) plot_colors = ['r', 'c', 'm', 'y', 'k'] plot_colors_idx = 0 first_RNN = True for name, preds in preds_dict.iteritems(): # The input is designed for multiple future tracks. If only 1 is produced, the axis is missing. So reproduce it. # This is the most common case (one track) if len(preds.shape) < 3: preds = np.array([preds]) if name == 'RNN' and not draw_prediction_track: continue else: for j in range(preds.shape[0]): prediction = preds[j] # `Real data' if 'multipath' in name: plot_color = 'w' if first_RNN: first_RNN = False label_name = "RNN Proposed" else: label_name = None else: plot_color = plot_colors[plot_colors_idx] plot_colors_idx += 1 label_name = name if len(prediction) is not len(gt_padding_bool): padding_amount = len(gt_padding_bool) - len(prediction) if padding_amount < 0: prediction = prediction[:len(gt_padding_bool), :] else: prediction = np.pad(prediction, [[0, padding_amount], [0, 0]], 'edge') plt.plot(prediction[~gt_padding_bool, 0], prediction[~gt_padding_bool, 1], plot_color + 'o', ms=2, zorder=5) plt.plot(prediction[~gt_padding_bool, 0], prediction[~gt_padding_bool, 1], plot_color + '-', ms=1, zorder=5, label=label_name) # Padding `fake' data #plt.plot(prediction[gt_padding_bool, 0], prediction[gt_padding_bool, 1], # plot_color + 'x', ms=2, zorder=5) #legend_str.append([name + ' Pred']) plt.legend() if 'relative' in parameters['ibeo_data_columns'][0]: x_range = (-20, 20) y_range = (-10, 30) x_range = (-18, 18) y_range = (-8, 28) elif 'queen-hanks' in csv_name: x_range = (3, 47) y_range = (-17, 11) elif 'leith-croydon' in csv_name: x_range = (-35, 10) y_range = (-30, 15) elif 'roslyn-crieff' in csv_name: x_range = (-31, -10) y_range = (-15, 8) elif 'oliver-wyndora' in csv_name: x_range = (-28, -8) y_range = (-12, 6) elif 'orchard-mitchell' in csv_name: x_range = (-32, -5) y_range = (-23, 5) dx, dy = 0.5, 0.5 x = np.arange(min(x_range), max(x_range), dx) y = np.flip(np.arange(min(y_range), max(y_range), dy), axis=0) # Image Y axes are down positive, map axes are up positive. xx, yy = np.meshgrid(x, y) xxyy = np.c_[xx.ravel(), yy.ravel()] extent = np.min(x), np.max(x), np.min(y), np.max(y) # Return probability sum here. heatmaps = None plot_time = time.time() for sampled_mix, sampled_padding_logits in zip(mixes, network_padding_logits): # Sleep in process to improve niceness. time.sleep(0.05) #print "len sampled_mix: " + str(len(sampled_mix)) sample_time = time.time() network_padding_bools = np.argmax(sampled_padding_logits, axis=1) == 1 timeslot_num = 0 for timeslot, n_padded, gt_padded in zip(sampled_mix, network_padding_bools, gt_padding_bool): if 'Network' in padding_mask and n_padded: continue if 'GT' in padding_mask and gt_padded: continue #print "timeslot_num " + str(timeslot_num) gaussian_heatmaps = [] gaus_num = 0 for gaussian in timeslot: ##FIXME does not check padding_logit gaus_num += 1 #print gaus_num pi, mu1, mu2, s1, s2, rho = gaussian cov = np.array([[s1 * s1, rho * s1 * s2], [rho * s1 * s2, s2 * s2]]) norm = scipy.stats.multivariate_normal(mean=(mu1, mu2), cov=cov) zz = norm.pdf(xxyy) zz *= pi zz = zz.reshape((len(xx), len(yy[0]))) gaussian_heatmaps.append(zz) gaussian_heatmaps /= np.max(gaussian_heatmaps) # Normalize such that each timestep has equal weight #heatmaps.extend(gaussian_heatmaps) # This explodes #TODO Does not work! save_each_timestep = False if save_each_timestep: import copy timestep_plt = copy.deepcopy(plt) timestep_plt.imshow(gaussian_heatmaps, cmap=plt.cm.viridis, alpha=.7, interpolation='bilinear', extent=extent, zorder=1) timestep_plt.legend() distance_str = ('n' if distance < 0 else 'p') + "%02i" % abs(distance+50) fig_name = padding_mask + '-' + str(graph_number) + '-' + distance_str + '-' + ("no_pred_track-" if draw_prediction_track is False else "") + str( multi_sample) + "-" + log_file_name + '-' + str(global_step) + '-' + rel_destination + 't_' + str(timeslot_num) + '.png' fig_path = os.path.join(fig_dir, fig_name) timestep_plt.savefig(fig_path, bbox_inches='tight') if heatmaps is None: heatmaps = gaussian_heatmaps else: heatmaps += gaussian_heatmaps timeslot_num += 1 #print "Time for this sample: " + str(time.time() - sample_time) #print "Time for gaussian plot of one track: " + str(time.time() - plot_time) # Its about 7 seconds per plot final_heatmap = sum(heatmaps) if heatmaps is not None else None if 'relative' in parameters['ibeo_data_columns'][0]: _ = 0 # Blank line to preserve lower logic flow image_filename = 'intersection_diagram_background.png' background_img = plt.imread(os.path.join('images', image_filename)) plt.imshow(background_img, zorder=0, # x_range = (-20, 20) y_range = (-10, 30) extent=extent)#[-20, 20, -10, 30]) elif 'queen-hanks' in csv_name: x_range = (3, 47) y_range = (-17, 11) elif 'leith-croydon' in csv_name: x_range = (-35, 10) y_range = (-30, 15) elif 'leith-croydon' in csv_name: image_filename = 'leith-croydon.png' background_img = plt.imread(os.path.join('images', image_filename)) plt.imshow(background_img, zorder=0, extent=[-15.275 - (147.45 / 2), -15.275 + (147.45 / 2), -3.1 - (77 / 2), -3.1 + (77 / 2)]) if final_heatmap is not None: plt.imshow(final_heatmap, cmap=plt.cm.viridis, alpha=.7, interpolation='bilinear', extent=extent, zorder=1) plt.legend() plt.xlabel("x (metres)") plt.ylabel("y (metres)") distance_str = ('n' if distance < 0 else 'p') + "%02i" % abs(distance+50) fig_name = padding_mask + '-' + str(graph_number) + '-' + distance_str + '-' + ("no_pred_track-" if draw_prediction_track is False else "") + str( multi_sample) + "-" + log_file_name + '-' + str(global_step) + '-' + rel_destination + '.png' fig_path = os.path.join(fig_dir, fig_name) plt.savefig(fig_path, bbox_inches='tight') print "Finished plotting " + fig_name # Now inject into tensorboard fig.canvas.draw() fig_s = fig.canvas.tostring_rgb() fig_data = np.fromstring(fig_s, np.uint8) fig_data = fig_data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) # This last string return allows images to be saved in tensorboard. I don't use it anymore, and I want the threads # to run in the background, so I dropped the return value. s = StringIO.StringIO() plt.imsave(s, fig_data, format='png') fig_data = s.getvalue() plt.close() return None
5,347,236
def main(mainscreen): """Sets up application settings and initializes windows objects""" if (len(sys.argv) < 2): exit("No input folder specified") logger = utils.setup_logger('simple', 'simple.log', extra={'filename': __file__}) # check yaml files checker = YamlChecker(utils.format_directory_path(sys.argv[1])) commits, deletes = checker.files_safe() initialize_curses_settings() # variables pos = newpos = 0 hkeys = dict([ (49, 0), (50, 1), (51, 2) ]) vkeys = [ curses.KEY_UP, curses.KEY_DOWN ] # tabs and child windows # tm = TabsManager(mainscreen) # user input ''' char = mainscreen.getch() while char != ord('q'): if char in keys.keys() or char in hkeys.keys(): if char in keys.keys(): newpos = pos + keys[char] if newpos < 0: newpos = tm.count - 1 if newpos > tm.count - 1: newpos = 0 elif char in hkeys.keys(): newpos = hkeys[char] tm.update(pos, newpos) pos = newpos elif char in vkeys: if char == vkeys[0]: tm.active.child.datahead.scroll_dn() #tm.active.child.refresh(tm.active.child.datapos, -1) tm.active.child.toggle_on() if char == vkeys[1]: tm.active.child.datahead.scroll_up() #tm.active.child.refresh(tm.active.child.datapos, 1) tm.active.child.toggle_on() char = mainscreen.getch() ''' char = mainscreen.getch() # print(chr(27) + "[2J") # sys.stderr.write("\x1b2J\x1b[H")
5,347,237
def stdev_time(arr1d, stdev): """ detects breakpoints through multiple standard deviations and divides breakpoints into timely separated sections (wanted_parts) - if sigma = 1 -> 68.3% - if sigma = 2 -> 95.5% - if sigma = 2.5 -> 99.0% - if sigma = 3 -> 99.7% - if sigma = 4 -> 99.9% ---------- arr1d: numpy.array 1D array representing the time series for one pixel stdev: float number multiplied with standard deviation to define the probability space for a breakpoint Returns ---------- numpy.int32 0 = no breakpoint over time 15 = breakpoint in the 1st section 16 = breakpoint in the 2nd section 17 = breakpoint in the 3rd section 18 = breakpoint in the 4th section 19 = breakpoint in the 5th section 31 = breakpoint in the 1st AND 2nd section 32 = breakpoint in the 1st AND 3rd section 33 = breakpoint in the 1st AND 4th section OR breakpoint in the 2nd AND 3rd section 34 = breakpoint in the 1st AND 5th section OR 2nd AND 4th section 35 = breakpoint in the 2nd section AND 5th section OR 3rd AND 4th section 36 = breakpoint in the 3rd AND 5th section 37 = breakpoint in the 4th AND 5th section 48 = breakpoint in the 1st, 2nd AND 3rd section 49 = breakpoint in the 1st, 2nd AND 4th section 50 = breakpoint in the 1st, 2nd AND 5th section OR 1st, 3rd AND 4th section 51 = breakpoint in the 1st, 3rd AND 5th section OR 2nd, 3rd AND 4th section 52 = breakpoint in the 1st, 3rd AND 5th section OR 2nd, 3rd AND 5th section 53 = breakpoint in the 2nd, 4th AND 5th section 54 = breakpoint in the 3rd, 4th AND 5th section 66 = breakpoint in the 1st, 2nd, 3rd AND 4th section 67 = breakpoint in the 1st, 2nd, 3rd AND 5th section 68 = breakpoint in the 1st, 2nd, 4th AND 5th section 69 = breakpoint in the 1st, 3rd, 4th AND 5th section 70 = breakpoint in the 2nd, 3rd , 4th AND 5th section 85 = breakpoints in all section """ import numpy as np time_series = arr1d arr_shape = arr1d.shape[0] time_series_index = np.indices((arr_shape,))[0] # internal function to split time series in n sub time series def split_list(alist, wanted_parts=1): # based on: https://stackoverflow.com/a/752562 length = len(alist) return [alist[i * length // wanted_parts: (i + 1) * length // wanted_parts] for i in range(wanted_parts)] # split time series and list of time series indices in 4 subarrays time_series_split = split_list(time_series, wanted_parts=5) time_series_index_split = split_list(time_series_index, wanted_parts=5) # calculate linear regression for each time series subarray mini_list = [] sigma_list = [] for i in range(0, len(time_series_index_split)): mea = np.mean(time_series_split[i]) std_mea = stdev * np.std(time_series_split[i]) mini = min(time_series_split[i]) sigma = mea - std_mea i += 1 mini_list = [mini_list, mini] sigma_list = [sigma_list, sigma] # weird list append, cause .append doesnt work with multiprocessing # check for dropping slope values from one fifth of time series to next temp = 0 if mini_list[0][0][0][0][1] < sigma_list[0][0][0][0][1]: temp = temp + 15 if mini_list[0][0][0][1] < sigma_list[0][0][0][1]: temp = temp + 16 if mini_list[0][0][1] < sigma_list[0][0][1]: temp = temp + 17 if mini_list[0][1] < sigma_list[0][1]: temp = temp + 18 if mini_list[1] < sigma_list[1]: temp = temp + 19 if temp == 0: return 0 return temp
5,347,238
def test_create_build(mocker, expected_class, build_object_type): """ Given: - server_type of the server we run the build on: XSIAM or XSOAR. When: - Running 'configure_an_test_integration_instances' script and creating Build object Then: - Assert there the rigth Build object created: XSIAMBuild or XSOARBuild. """ build = create_build_object_with_mock(mocker, build_object_type) assert isinstance(build, expected_class)
5,347,239
def main(_, **settings): """ This function returns a Pyramid WSGI application. """ config = Configurator(settings=settings, route_prefix="/api") # Initialise the broadcast view before c2cwsgiutils is initialised. This allows to test the # reconfiguration on the fly of the broadcast framework config.add_route("broadcast", r"/broadcast", request_method="GET") config.add_view( lambda request: broadcast_view(), route_name="broadcast", renderer="fast_json", http_cache=0 ) config.include(c2cwsgiutils.pyramid.includeme) models.init(config) config.scan("c2cwsgiutils_app.services") health_check = HealthCheck(config) health_check.add_db_session_check(models.DBSession, at_least_one_model=models.Hello) health_check.add_url_check("http://localhost:8080/api/hello") health_check.add_url_check(name="fun_url", url=lambda _request: "http://localhost:8080/api/hello") health_check.add_custom_check("fail", _failure, 2) health_check.add_custom_check("fail_json", _failure_json, 2) health_check.add_alembic_check(models.DBSession, "/app/alembic.ini", 1) return config.make_wsgi_app()
5,347,240
def get_available_modules(): """Return list of modules shipped with OnRamp. Returns: List of module shipped with OnRamp """ def verify_module_path(x): return os.path.isdir(os.path.join(_shipped_mod_dir, x)) return [{ 'mod_id': None, 'mod_name': name, 'installed_path': None, 'state': 'Available', 'error': None, 'source_location': { 'type': 'local', 'path': os.path.normpath(os.path.join(_shipped_mod_dir, name)) } } for name in filter(verify_module_path, os.listdir(_shipped_mod_dir))]
5,347,241
def GetVarLogMessages(max_length=256 * 1024, path='/var/log/messages', dut=None): """Returns the last n bytes of /var/log/messages. Args: max_length: Maximum characters of messages. path: path to /var/log/messages. dut: a cros.factory.device.device_types.DeviceInterface instance, None for local. """ return file_utils.TailFile(path, max_length, dut)
5,347,242
def _write_file(response, writer, size_limit=None): """Write download results to disk. """ size = 0 with writer.open_file('wb') as fp: for chunk in response.iter_content(chunk_size=4096): if chunk: # filter out keep-alive chunks fp.write(chunk) size += len(chunk) if size_limit is not None and size > size_limit: raise DatasetTooBig(limit=size_limit)
5,347,243
def find_index(predicate, List): """ (a → Boolean) → [a] → [Number] Return the index of first element that satisfy the predicate """ for i, x in enumerate(List): if predicate(x): return i
5,347,244
def base_user(): """Base user""" User.query.delete() user = User( username="testuser", name="testname", email="[email protected]", password="1234", birth_date="2000-01-01", ) user.save() yield user
5,347,245
def logger( wrapped: Callable[..., str], instance: Any, args: Any, kwargs: Dict[str, Any] ) -> str: """Handle logging for :class:`anndata.AnnData` writing functions of :class:`cellrank.estimators.BaseEstimator`.""" log, time = kwargs.pop("log", True), kwargs.pop("time", None) msg = wrapped(*args, **kwargs) if log: logg.info(msg, time=time) return msg
5,347,246
def search_front(): """ Search engine v0.1 - arguments: - q: query to search (required) """ q = request.args.get('q', None) if not q: return flask.jsonify({'status': 'error', 'message': 'Missing query'}), 400 res = dict() cursor = db.run(r.table(PRODUCTS_TABLE).pluck('shop').distinct()) shops = [c for c in cursor] reg = build_regex(q) cursor = db.run(r.table(PRODUCTS_TABLE).filter(lambda doc: doc['name'].match(reg.decode('utf-8')) ).order_by('price')) data = [c for c in cursor] d = {'shops': shops,'data': data} return flask.jsonify({'status': 'ok', 'data': d}), 200
5,347,247
def assert_dir_structure(data_dir, out_dir): """ Asserts that the data_dir exists and the out_dir does not """ if not os.path.exists(data_dir): raise OSError("Invalid data directory '%s'. Does not exist." % data_dir) if os.path.exists(out_dir): raise OSError("Output directory at '%s' already exists." % out_dir)
5,347,248
def insert_rare_words(sentence: str) -> str: """ attack sentence by inserting a trigger token in the source sentence. """ words = sentence.split() insert_pos = randint(0, len(words)) insert_token_idx = randint(0, len(WORDS)-1) words.insert(insert_pos, WORDS[insert_token_idx]) return " ".join(words)
5,347,249
def _can_be_quoted(loan_amount, lent_amounts): """ Checks if the borrower can obtain a quote. To this aim, the loan amount should be less than or equal to the total amounts given by lenders. :param loan_amount: the requested loan amount :param lent_amounts: the sum of the amounts given by lenders :return: True if the borrower can get a quote, False otherwise """ return sum(lent_amounts) - loan_amount >= 0;
5,347,250
def load_specs_from_docstring(docstring): """Get dict APISpec from any given docstring.""" # character sequence used by APISpec to separate # yaml specs from the rest of the method docstring yaml_sep = "---" if not docstring: return {} specs = yaml_utils.load_yaml_from_docstring(docstring) # extract summary out of docstring and make it part of specs summary = docstring.split(yaml_sep)[0] if yaml_sep in docstring else docstring if ( summary and not any(key in yaml_utils.PATH_KEYS for key in specs.keys()) and "summary" not in specs ): specs["summary"] = summary.strip() # sanitize return specs
5,347,251
def get_bt_mac_lsb_offset(any_path,config_file): """ Obains the offset of the BT_MAC LSB from the BASE_MAC LSB by sdkconfig inspection. """ mac_sdkconfig_string='CONFIG_NUMBER_OF_UNIVERSAL_MAC_ADDRESS' sdkconfig=os.path.join(any_path,config_file) config_lines=open(sdkconfig).readlines() for line in config_lines: if mac_sdkconfig_string in line: split_line=line.split('=') if '4' in split_line[1]: return 2 elif '2' in split_line[1]: return 1 else: print("Unable to find valid value of sdkconfig variable {mac_var}" .format(mac_var=mac_sdkconfig_string)) sys.exit(1)
5,347,252
def get_transform(V1, V2, pair_ix, transform=None, use_ransac=True): """ Estimate parameters of an `~skimage.transform` tranformation given a list of coordinate matches. Parameters ---------- V1, V2 : [N,2] arrays Coordinate lists. The transform is applied to V1 to match V2. pair_ix : [M,2] array Indices of matched pairs. transform : `~skimage.transform` transformation. Transformation to fit to the matched pairs. If `None`, defaults to `~skimage.transform.SimilarityTransform`. Returns ------- tf : `transform` Fitted transformation. dx : [M,2] array X & Y differences between the transformed V1 list and V2. rms : (float, float) Standard deviation of the residuals in X & Y. """ import skimage.transform from skimage.measure import ransac if transform is None: transform = skimage.transform.SimilarityTransform if use_ransac: tf, inliers = ransac((V1[pair_ix[:,0],:], V2[pair_ix[:,1],:]), transform, min_samples=3, residual_threshold=3, max_trials=100) dx = tf(V1[pair_ix[:,0],:]) - V2[pair_ix[:,1],:] rms = np.std(dx[inliers,:], axis=0) else: tf = transform() tf.estimate(V1[pair_ix[:,0],:], V2[pair_ix[:,1],:]) dx = tf(V1[pair_ix[:,0],:]) - V2[pair_ix[:,1],:] rms = np.std(dx, axis=0) return tf, dx, rms
5,347,253
def no_trajectory_dct(): """ Dictionary expected answer """ return ()
5,347,254
def transform_fn(net, data, input_content_type, output_content_type): """ Transform a request using the Gluon model. Called once per request. :param net: The Gluon model. :param data: The request payload. :param input_content_type: The request content type. :param output_content_type: The (desired) response content type. :return: response payload and content type. """ ctx = mx.cpu() parsed = json.loads(data) trained_net, customer_index, product_index = net users = pd.DataFrame({'customer_id': parsed['customer_id']}).merge(customer_index, how='left')['user'].values items = pd.DataFrame({'product_id': parsed['product_id']}).merge(product_index, how='left')['item'].values predictions = trained_net(nd.array(users).as_in_context(ctx), nd.array(items).as_in_context(ctx)) response_body = json.dumps(predictions.asnumpy().tolist()) return response_body, output_content_type
5,347,255
def catergorizeItems( actions: list[argparse.Action], ) -> Generator[c2gtypes.Item, None, None]: """Catergorise each action and generate json.""" for action in actions: if isinstance(action, _MutuallyExclusiveGroup): yield buildRadioGroup(action) elif isinstance(action, (_StoreTrueAction, _StoreFalseAction)): yield actionToJson(action, "Bool") elif isinstance(action, _CountAction): yield actionToJson(action, "Counter") elif action.choices: yield actionToJson(action, "Dropdown") elif isinstance(action.type, argparse.FileType): yield actionToJson(action, "File") else: yield actionToJson(action, "TextBox")
5,347,256
def print_pandas_dataset(d): """ Given a Pandas dataFrame show the dimensions sizes :param d: Pandas dataFrame :return: None """ print("rows = %d; columns=%d" % (d.shape[0], d.shape[1])) print(d.head())
5,347,257
def superuser_required(method): """ Decorator to check whether user is super user or not If user is not a super-user, it will raise PermissionDenied or 403 Forbidden. """ @wraps(method) def _wrapped_view(request, *args, **kwargs): if request.user.is_superuser is False: raise PermissionDenied return method(request, *args, **kwargs) return _wrapped_view
5,347,258
def _section_data_download(course, access): """ Provide data for the corresponding dashboard section """ course_key = course.id show_proctored_report_button = ( settings.FEATURES.get('ENABLE_SPECIAL_EXAMS', False) and course.enable_proctored_exams ) section_key = 'data_download_2' if data_download_v2_is_enabled() else 'data_download' section_data = { 'section_key': section_key, 'section_display_name': _('Data Download'), 'access': access, 'show_generate_proctored_exam_report_button': show_proctored_report_button, 'get_problem_responses_url': reverse('get_problem_responses', kwargs={'course_id': str(course_key)}), 'get_grading_config_url': reverse('get_grading_config', kwargs={'course_id': str(course_key)}), 'get_students_features_url': reverse('get_students_features', kwargs={'course_id': str(course_key)}), 'get_issued_certificates_url': reverse( 'get_issued_certificates', kwargs={'course_id': str(course_key)} ), 'get_students_who_may_enroll_url': reverse( 'get_students_who_may_enroll', kwargs={'course_id': str(course_key)} ), 'get_anon_ids_url': reverse('get_anon_ids', kwargs={'course_id': str(course_key)}), 'list_proctored_results_url': reverse( 'get_proctored_exam_results', kwargs={'course_id': str(course_key)} ), 'list_instructor_tasks_url': reverse('list_instructor_tasks', kwargs={'course_id': str(course_key)}), 'list_report_downloads_url': reverse('list_report_downloads', kwargs={'course_id': str(course_key)}), 'calculate_grades_csv_url': reverse('calculate_grades_csv', kwargs={'course_id': str(course_key)}), 'problem_grade_report_url': reverse('problem_grade_report', kwargs={'course_id': str(course_key)}), 'course_has_survey': True if course.course_survey_name else False, # lint-amnesty, pylint: disable=simplifiable-if-expression 'course_survey_results_url': reverse( 'get_course_survey_results', kwargs={'course_id': str(course_key)} ), 'export_ora2_data_url': reverse('export_ora2_data', kwargs={'course_id': str(course_key)}), 'export_ora2_submission_files_url': reverse( 'export_ora2_submission_files', kwargs={'course_id': str(course_key)} ), 'export_ora2_summary_url': reverse('export_ora2_summary', kwargs={'course_id': str(course_key)}), } if not access.get('data_researcher'): section_data['is_hidden'] = True return section_data
5,347,259
def reshape_kb_mask_to_keys_size(kb_mask, kb_keys, kb_total): """ TODO document TODO move to helpers """ if not isinstance(kb_keys, tuple): kb_keys = (kb_keys,) keys_dim = product([keys.shape[1] for keys in kb_keys]) kb_pad_len = kb_total - keys_dim assert kb_pad_len >= 0, f"kb dim of mask {kb_mask.shape}, with product of keys ={keys_dim} appears to be larger than self.kb_total={kb_total} => increase self.kb_total[-1] = {self.kb_total}" # FIXME why is this sometimes a tuple of filled pad tensors instead of one? TODO kb_mask_padding = torch.full((kb_mask.shape[0], kb_pad_len), fill_value=False) if type(kb_mask_padding) == tuple: assert False, kb_mask_padding if len(kb_mask_padding.shape) < 2: assert False, ((kb_mask.shape[0], kb_pad_len), kb_mask_padding.shape) assert len(kb_mask.shape) == 2, kb_mask.shape kb_mask_padded = torch.cat([ kb_mask, kb_mask_padding.to( dtype = kb_mask.dtype, device = kb_mask.device )], dim=1) kb_mask = kb_mask_padded.unsqueeze(1) ### end setup proj keys and mask dimensions return kb_mask
5,347,260
def tcache(parser, token): """ This will cache the contents of a template fragment for a given amount of time with support tags. Usage:: {% tcache [expire_time] [fragment_name] [tags='tag1,tag2'] %} .. some expensive processing .. {% endtcache %} This tag also supports varying by a list of arguments: {% tcache [expire_time] [fragment_name] [var1] [var2] .. [tags=tags] %} .. some expensive processing .. {% endtcache %} Each unique set of arguments will result in a unique cache entry. """ nodelist = parser.parse(('endtcache',)) parser.delete_first_token() tokens = token.split_contents() if len(tokens) < 3: raise template.TemplateSyntaxError("'%r' tag requires at least 2 arguments." % tokens[0]) tags = None if len(tokens) > 3 and 'tags=' in tokens[-1]: tags = parser.compile_filter(tokens[-1][5:]) del tokens[-1] return CacheNode(nodelist, parser.compile_filter(tokens[1]), tokens[2], # fragment_name can't be a variable. [parser.compile_filter(token) for token in tokens[3:]], tags )
5,347,261
def bpg_compress(input_image_p, q, tmp_dir=None, chroma_fmt='444'): """ Int -> image_out_path :: str """ assert 'png' in input_image_p if tmp_dir: input_image_name = os.path.basename(input_image_p) output_image_bpg_p = os.path.join(tmp_dir, input_image_name).replace('.png', '_tmp_bpg.bpg') else: output_image_bpg_p = input_image_p.replace('.png', '_tmp_bpg.bpg') subprocess.call([BPGENC, '-q', str(q), input_image_p, '-o', output_image_bpg_p, '-f', chroma_fmt]) return output_image_bpg_p
5,347,262
def location_edit(type_, id_, location_name, location_type, date, user, description=None, latitude=None, longitude=None): """ Update a location. :param type_: Type of TLO. :type type_: str :param id_: The ObjectId of the TLO. :type id_: str :param location_name: The name of the location to change. :type location_name: str :param location_type: The type of the location to change. :type location_type: str :param date: The location date to edit. :type date: str :param user: The user setting the new description. :type user: str :param description: The new description. :type description: str :param latitude: The new latitude. :type latitude: str :param longitude: The new longitude. :type longitude: str :returns: dict with key 'success' (boolean) and 'message' (str) if failed. """ crits_object = class_from_id(type_, id_) if not crits_object: return {'success': False, 'message': 'Cannot find %s.' % type_} crits_object.edit_location(location_name, location_type, date, description=description, latitude=latitude, longitude=longitude) try: crits_object.save(username=user) return {'success': True} except ValidationError, e: return {'success': False, 'message': "Invalid value: %s" % e}
5,347,263
def G2(species_index, eta, Rs): """G2 function generator. This is a radial function between an atom and atoms with some chemical symbol. It is defined in cite:khorshidi-2016-amp, eq. 6. This version is scaled a little differently than the one Behler uses. Parameters ---------- species_index : integer species index for this function. Elements that do not have this index will be masked out eta : float The gaussian width Rs : float The gaussian center or shift Returns ------- The g2 function with the cosine_cutoff function integrated into it. """ def g2(config, distances, atom_mask, species_masks): distances = np.array(distances) atom_mask = np.array(atom_mask) species_masks = np.array(species_masks) # Mask out non-species contributions smask = species_masks[:, species_index][:, None] distances *= smask distances *= atom_mask distances *= atom_mask[:, None] Rc = config.get('cutoff_radius', 6.5) result = np.where(distances > 0, np.exp(-eta * ((distances - Rs)**2 / Rc**2)), 0.0) result *= cosine_cutoff(config, distances, atom_mask) gsum = np.sum(result, (1, 2)) return gsum[:, None] g2.__desc__ = 'g2({species_index}, eta={eta}, Rs={Rs})'.format(**locals()) return g2
5,347,264
def get_portfolio_output(id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPortfolioResult]: """ Resource Type definition for AWS::ServiceCatalog::Portfolio """ ...
5,347,265
async def async_setup_platform(hass, config, async_add_entities, _discovery_info=None): """Set up an Unifi Protect Switch.""" data = hass.data[UPV_DATA] if not data: return ir_on = config.get(CONF_IR_ON) if ir_on == "always_on": ir_on = "on" ir_off = config.get(CONF_IR_OFF) if ir_off == "led_off": ir_off = "autoFilterOnly" elif ir_off == "always_off": ir_off = "off" switches = [] for switch_type in config.get(CONF_MONITORED_CONDITIONS): for camera in data.devices: switches.append(UnifiProtectSwitch(data, camera, switch_type, ir_on, ir_off)) async_add_entities(switches, True)
5,347,266
def convert_leg_pose_to_motor_angles(robot_class, leg_poses): """Convert swing-extend coordinate space to motor angles for a robot type. Args: robot_class: This returns the class (not the instance) for the robot. Currently it supports minitaur, laikago and mini-cheetah. leg_poses: A list of leg poses in [swing,extend] or [abduction, swing, extend] space for all 4 legs. The order is [abd_0, swing_0, extend_0, abd_1, swing_1, extend_1, ...] or [swing_0, extend_0, swing_1, extend_1, ...]. Zero swing and zero extend gives a neutral standing pose for all the robots. For minitaur, the conversion is fully accurate, for laikago and mini-cheetah the conversion is approximate where swing is reflected to hip and extend is reflected to both knee and the hip. Returns: List of motor positions for the selected robot. The list include 8 or 12 motor angles depending on the given robot type as an argument. Currently laikago and mini-cheetah has motors for abduction which does not exist for minitaur robot. Raises: ValueError: Conversion fails due to wrong inputs. """ if len(leg_poses) not in [8, 12]: raise ValueError("Dimension of the leg pose provided is not 8 or 12.") neutral_motor_angles = get_neutral_motor_angles(robot_class) motor_angles = leg_poses # If it is a robot with 12 motors but the provided leg pose does not contain # abduction, extend the pose to include abduction. if len(neutral_motor_angles) == 12 and len(leg_poses) == 8: for i in _ABDUCTION_ACTION_INDEXES: motor_angles.insert(i, 0) # If the robot does not have abduction (minitaur) but the input contains them, # ignore the abduction angles for the conversion. elif len(neutral_motor_angles) == 8 and len(leg_poses) == 12: del leg_poses[::3] # Minitaur specific conversion calculations using minitaur-specific safety # limits. if str(robot_class) == str(laikago.Laikago): swing_scale = 1.0 extension_scale = 1.0 # Laikago specific conversion multipliers. swing_scale = _LAIKAGO_SWING_CONVERSION_MULTIPLIER extension_scale = _LAIKAGO_EXTENSION_CONVERSION_MULTIPLIER else: motor_angles = robot_class.convert_leg_pose_to_motor_angles(leg_poses) return motor_angles
5,347,267
def download_from_s3(s3_url: str, cache_dir: str = None, access_key: str = None, secret_access_key: str = None, region_name: str = None): """ Download a "folder" from s3 to local. Skip already existing files. Useful for downloading all files of one model The default and recommended authentication follows boto3's trajectory of checking for ENV variables, .aws/credentials etc. (see https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html). However, there's also the option to pass `access_key`, `secret_access_key` and `region_name` directly as this is needed in some enterprise enviroments with local s3 deployments. :param s3_url: Url of the "folder" in s3 (e.g. s3://mybucket/my_modelname) :param cache_dir: Optional local directory where the files shall be stored. If not supplied, we'll use a subfolder in torch's cache dir (~/.cache/torch/farm) :param access_key: Optional S3 Access Key :param secret_access_key: Optional S3 Secret Access Key :param region_name: Optional Region Name :return: local path of the folder """ if cache_dir is None: cache_dir = FARM_CACHE logger.info(f"Downloading from {s3_url} to {cache_dir}") if access_key or secret_access_key: assert secret_access_key and access_key, "You only supplied one of secret_access_key and access_key. We need both." session = boto3.Session( aws_access_key_id=access_key, aws_secret_access_key=secret_access_key, region_name=region_name ) s3_resource = session.resource('s3') else: s3_resource = boto3.resource('s3') bucket_name, s3_path = split_s3_path(s3_url) bucket = s3_resource.Bucket(bucket_name) objects = bucket.objects.filter(Prefix=s3_path) if not objects: raise ValueError("Could not find s3_url: {s3_url}") for obj in objects: path, filename = os.path.split(obj.key) path = os.path.join(cache_dir, path) # Create local folder if not os.path.exists(path): os.makedirs(path) # Download file if not present locally if filename: filepath = os.path.join(path, filename) if os.path.exists(filepath): logger.info(f"Skipping {obj.key} (exists locally)") else: logger.info(f"Downloading {obj.key} to {filepath} (size: {obj.size/1000000} MB)") bucket.download_file(obj.key, filepath) return path
5,347,268
def get_all_records(session): """ return all records """ result = session.query(Skeleton).all() skeletons = convert_results(result) return skeletons
5,347,269
def pwm_to_boltzmann_weights(prob_weight_matrix, temp): """Convert pwm to boltzmann weights for categorical distribution sampling.""" weights = np.array(prob_weight_matrix) cols_logsumexp = [] for i in range(weights.shape[1]): cols_logsumexp.append(scipy.special.logsumexp(weights.T[i] / temp)) for i in range(weights.shape[0]): for j in range(weights.shape[1]): weights[i, j] = np.exp(weights[i, j] / temp - cols_logsumexp[j]) return weights
5,347,270
def mutation_delete_music_composition(identifier: str): """Returns a mutation for deleting a MusicComposition. Args: identifier: The identifier of the MusicComposition. Returns: The string for the mutation for deleting the music composition object based on the identifier. """ return format_mutation("DeleteMusicComposition", {"identifier": identifier})
5,347,271
def coords_from_gaia(gaia_id): """Returns table of Gaia DR2 data given a source_id.""" from astroquery.gaia import Gaia import warnings warnings.filterwarnings('ignore', module='astropy.io.votable.tree') adql = 'SELECT gaia.source_id, ra, dec FROM gaiadr2.gaia_source AS gaia WHERE gaia.source_id={0}'.format(gaia_id) job = Gaia.launch_job(adql) table = job.get_results() coords = (table['ra'].data[0], table['dec'].data[0]) return coords
5,347,272
def edgeplot(P,T,E,sz = 1): """ Plots mesh with edges outlined. Parameters ---------- P : (n,3) float array A point cloud. T : (m,3) int array List of vertex indices for each triangle in the mesh. E : (k,1) int array List of edge point indices. sz : float, default is 1.0 Scaling factor for final plot. Returns ------- None """ #seeking alternative to points3d. mlab.triangular_mesh(P[:,0],P[:,1],P[:,2],T,color =(1,0,0)) mlab.points3d(P[E,0],P[E,1],P[E,2],color = (0,0,1), scale_mode = 'none',scale_factor = sz) return
5,347,273
def partition(smilist,ratio=0.7): """ A function to create test/ train split list :param smilist: smiles (list) :param ratio: test set split fraction (float) Return type: traininglist, testlist (list) """ from random import shuffle, random import numpy as np shuffle(smilist, random) trainlen = int(np.floor( len(smilist)*ratio ) ) return smilist[0:trainlen],smilist[trainlen:]
5,347,274
def align(reference, query): """ do a pairwise alignment of the query to the reference, outputting up to 10000 of the highest-scoring alignments. :param reference: a STRING of the reference sequence :param query: a STRING of the query sequence :return: a list of up to 10000 Alignment objects """ alns = pairwise2.align.localms(reference, query, 1, -1, -2, -1) # match, mismatch, gap-open, gap-extension alignments = [] for aln in alns: al1, al2, score, begin, end = aln alignments.append(Alignment(gappy_r=al1, gappy_q=al2)) return alignments
5,347,275
def cleanup_drained_instance(key): """Deletes the given drained Instance. Args: key: ndb.Key for a models.Instance entity. """ instance = key.get() if not instance: return if instance.deleted: return if not instance.url: logging.warning('Instance URL unspecified: %s', key) return instance_group_manager = instance.instance_group_manager.get() if not instance_group_manager: logging.warning( 'InstanceGroupManager does not exist: %s', instance.instance_group_manager, ) return instance_template_revision = instance_group_manager.key.parent().get() if not instance_template_revision: logging.warning( 'InstanceTemplateRevision does not exist: %s', instance_group_manager.key.parent(), ) return instance_template = instance_template_revision.key.parent().get() if not instance_template: logging.warning( 'InstanceTemplate does not exist: %s', instance_template_revision.key.parent(), ) return if instance_group_manager.key not in instance_template_revision.drained: if instance_template_revision.key not in instance_template.drained: logging.warning('Instance is not drained: %s', key) return now = utils.utcnow() if not exists(instance.url): # When the instance isn't found, assume it's deleted. if instance.deletion_ts: metrics.instance_deletion_time.add( (now - instance.deletion_ts).total_seconds(), fields={ 'zone': instance.instance_group_manager.id(), }, ) set_instance_deleted(key, True) metrics.send_machine_event('DELETION_SUCCEEDED', instance.hostname)
5,347,276
def output_name(ncfile): """output_name. Args: ncfile: """ ncfile_has_datetime = re.search('[0-9]{4}-[0-9]{2}-[0-9]{2}_[0-9]{2}', ncfile) if ncfile_has_datetime: forecast_time = ncfile_has_datetime.group() else: raise Exception("ncfile doesn't have datetime data.") outname = (forecast_time + "apcp") return outname
5,347,277
def _replacement_func_decorator( fn=None, name=None, help="", args=None): """ Replaces xlo.func in jupyter but removes arguments which do not make sense when called from jupyter """ def decorate(fn): spec = _FuncDescription(fn, name or fn.__name__, help, args) publish_display_data( { "xloil/data": _serialise(spec) }, { 'type': "FuncRegister" } ) return fn return decorate if fn is None else decorate(fn)
5,347,278
def stress_x_component(coordinates, prisms, pressure, poisson, young): """ x-component of the stress field. Parameters ---------- coordinates : 2d-array 2d numpy array containing ``y``, ``x`` and ``z`` Cartesian cordinates of the computation points. All coordinates should be in meters. prisms : 2d-array 2d array containing the Cartesian coordinates of the prism(s). Each line contains the coordinates of a prism in following order: y1, y2, x1, x2, z2 and z1. All coordinates should be in meters. pressure : 1d array 1d array containing the pressure of each prism in MPa. poisson : float Poisson’s ratio. young : float Young’s modulus in MPa. Returns ------- result : array x-component of the stress field generated by the prisms at the computation points. """ s_xz1 = field_component( coordinates, prisms, pressure, poisson, young, kernel='s_xz1' ) s_xz2 = field_component( coordinates, prisms, pressure, poisson, young, kernel='s_xz2' ) s_xzz2 = field_component( coordinates, prisms, pressure, poisson, young, kernel='s_xzz2' ) result = s_xz1 + s_xzz2 + s_xz2 result *= young/(1 + poisson) return result
5,347,279
def process_time_data(flag, last_time, model_params_dict_raw, time_data_raw): """ This is a helper function that takes the raw time data from the model file and replaces it with the correct value in the params file. :param flag: :param last_time: :param model_params_dict_raw: :param time_data_raw: :return: """ low_time_used = False if "_" in flag and int(flag.split("_")[1]) == 1: # There is no time constraint low_time_used = True if "inst" in time_data_raw: temp_time = str(float(last_time) + 1) while temp_time in times: temp_time += 10 time_data = temp_time else: if low_time_used: time_data = get_param_value_bounded(time_data_raw, last_time) else: if time_data_raw in model_params_dict_raw.keys(): time_data = get_param_value_un_bounded(model_params_dict_raw, time_data_raw) else: time_data = time_data_raw return time_data
5,347,280
def i_obtain_a_group1_http_error(step, error_code): """ Assertions to check if HTTP response status has got the expected error code """ assert_equals(str(world.response.status_code), error_code, 'RESPONSE BODY: {}'.format(world.response.content))
5,347,281
def test_profile_mixed_error(recwarn): """Warn if both affine and transform are passed""" warnings.simplefilter('always') profile = Profile(affine='foo', transform='bar') assert len(recwarn) == 1 assert recwarn.pop(DeprecationWarning) assert 'affine' not in profile assert profile['transform'] == 'bar'
5,347,282
def create_pos_data(data, parser): """ creating the positive fh numeric dataset. performing another cleaning. :param data: suspected fh examples :param parser: parser used for the word tokenization :return: all positive examples (after the cleaning), will be used for creating the negative dataset """ pos_data = [] pos_examples = [] for entry in tqdm(data): try: a = map(unicode, parser.word_tokenize(entry[4].encode('utf-8'))) s, e = num_clean(a, entry[-1][1]) if s is not None and (s != entry[-1][1][0] or e != entry[-1][1][1]): s, e = num_clean(a, [s, e]) if s is not None: s_nlp = nlp_split(unicode(SEP.join(a))) s, e = find_boundaries(s_nlp, s_nlp[s]) if s >= e: continue if s > 0 and (e - s) == 1 and s_nlp[s - 1].pos_ in ['NOUN', 'PROPN'] and s_nlp[s].head == s_nlp[s - 1]: continue # time like examples - removing if ':' in s_nlp[s:e].text: continue # the one token in uppercase is often classified as NOUN if s_nlp[s].text.lower() != 'one' and s_nlp[s].pos_ != 'NUM': continue pos_data.append((a, (s, e))) new_entry = entry[:-1] target = (' '.join(a[s:e]), (s, e)) new_entry = new_entry + (target,) pos_examples.append(new_entry) except: print entry[4] pos_data, pos_examples = remove_dups(pos_data, pos_examples) return pos_examples, pos_data
5,347,283
def call(subcommand, args): # pylint: disable=unused-argument """Call a subcommand passing the args.""" KytosConfig.check_versions() func = getattr(WebAPI, subcommand) func(args)
5,347,284
async def absent(hub, ctx, name, resource_uri, connection_auth=None, **kwargs): """ .. versionadded:: 2.0.0 Ensure a diagnostic setting does not exist for the specified resource uri. :param name: The name of the diagnostic setting. :param resource_uri: The identifier of the resource. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure diagnostic setting is absent: azurerm.monitor.diagnostic_setting.absent: - name: my_setting - resource_uri: my_resource """ ret = {"name": name, "result": False, "comment": "", "changes": {}} if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret setting = await hub.exec.azurerm.monitor.diagnostic_setting.get( ctx, name, resource_uri, azurerm_log_level="info", **connection_auth ) if "error" in setting: ret["result"] = True ret["comment"] = "Diagnostic setting {0} was not found.".format(name) return ret if ctx["test"]: ret["comment"] = "Diagnostic setting {0} would be deleted.".format(name) ret["result"] = None ret["changes"] = { "old": setting, "new": {}, } return ret deleted = await hub.exec.azurerm.monitor.diagnostic_setting.delete( ctx, name, resource_uri, **connection_auth ) if deleted: ret["result"] = True ret["comment"] = "Diagnostic setting {0} has been deleted.".format(name) ret["changes"] = {"old": setting, "new": {}} return ret ret["comment"] = "Failed to delete diagnostic setting {0}!".format(name) return ret
5,347,285
def test_synonym_mapping(model, threshold): """Test that synonym mapping is working. Could use some more tests for this function.""" set1 = set(['A', 'B', 'C']) set2 = set(['A', 'D', 'E']) mapping = ehnfer.commands.synonym_mapping(set1, set2, model, threshold) # See function doc for why this is suboptimal # Same behavior as before assert frozenset(['A', 'B']) in mapping assert frozenset(['A', 'D']) in mapping assert frozenset(['A', 'C']) in mapping assert frozenset(['A', 'B']) in mapping
5,347,286
def print_mission_breakdown(results,filename='mission_breakdown.dat', units="imperial"): """This creates a file showing mission information. Assumptions: None Source: N/A Inputs: results.segments.*.conditions. frames. inertial.position_vector [m] inertial.time [s] aerodynamics.lift_coefficient [-] weights.total [kg] freestream. mach_number [-] pressure [Pa] filename (optional) <string> Determines the name of the saved file units (option) <string> Determines the type of units used in the output, options are imperial and si Outputs: filename Saved file with name as above Properties Used: N/A """ imperial = False SI = False if units.lower()=="imperial": imperial = True elif units.lower()=="si": SI = True else: print("Incorrect system of units selected - choose 'imperial' or 'SI'") return fid = open(filename,'w') # Open output file fid.write('Output file with mission profile breakdown\n\n') #Start output printing k1 = 1.727133242E-06 # constant to airspeed conversion k2 = 0.2857142857 # constant to airspeed conversion TotalRange = 0 i = 0 for key in results.segments.keys(): #loop for all segments segment = results.segments[key] if imperial: HPf = -segment.conditions.frames.inertial.position_vector[-1,2] / Units.ft #Final segment Altitude [ft] HPi = -segment.conditions.frames.inertial.position_vector[0,2] / Units.ft #Initial segment Altitude [ft] elif SI: HPf = -segment.conditions.frames.inertial.position_vector[-1, 2] / Units.m # Final segment Altitude [m] HPi = -segment.conditions.frames.inertial.position_vector[0, 2] / Units.m # Initial segment Altitude [m] CLf = segment.conditions.aerodynamics.lift_coefficient[-1] #Final Segment CL [-] CLi = segment.conditions.aerodynamics.lift_coefficient[0] #Initial Segment CL [-] Tf = segment.conditions.frames.inertial.time[-1]/ Units.min #Final Segment Time [min] Ti = segment.conditions.frames.inertial.time[0] / Units.min #Initial Segment Time [min] Wf = segment.conditions.weights.total_mass[-1] #Final Segment weight [kg] Wi = segment.conditions.weights.total_mass[0] #Initial Segment weight [kg] if imperial: Dist = (segment.conditions.frames.inertial.position_vector[-1,0] - segment.conditions.frames.inertial.position_vector[0,0] ) / Units.nautical_miles #Distance [nm] elif SI: Dist = (segment.conditions.frames.inertial.position_vector[-1, 0] - segment.conditions.frames.inertial.position_vector[0, 0]) / Units.km # Distance [km] TotalRange = TotalRange + Dist Mf = segment.conditions.freestream.mach_number[-1] # Final segment mach number Mi = segment.conditions.freestream.mach_number[0] # Initial segment mach number # Aispeed conversion: KTAS to KCAS atmosphere = SUAVE.Analyses.Atmospheric.US_Standard_1976() atmo_data = atmosphere.compute_values(0) p0 = atmo_data.pressure deltai = segment.conditions.freestream.pressure[0] / p0 deltaf = segment.conditions.freestream.pressure[-1]/ p0 VEi = Mi*(340.294*np.sqrt(deltai)) #Equivalent airspeed [m/s] QCPOi = deltai*((1.+ k1*VEi**2/deltai)**3.5-1.) # VCi = np.sqrt(((QCPOi+1.)**k2-1.)/k1) #Calibrated airspeed [m/s] if imperial: KCASi = VCi / Units.knots #Calibrated airspeed [knots] elif SI: KCASi = VCi #Calibrated airspeed [m/s] VEf = Mf*(340.294*np.sqrt(deltaf)) #Equivalent airspeed [m/s] QCPOf = deltaf*((1.+ k1*VEf**2/deltaf)**3.5-1.) VCf = np.sqrt(((QCPOf+1.)**k2-1.)/k1) #m/s #Calibrated airspeed [m/s] if imperial: KCASf = VCf / Units.knots #Calibrated airspeed [knots] elif SI: KCASf = VCf # String formatting CLf_str = str('%15.3f' % CLf) + '|' CLi_str = str('%15.3f' % CLi) + '|' HPf_str = str('%7.0f' % HPf) + '|' HPi_str = str('%7.0f' % HPi) + '|' Dist_str = str('%9.0f' % Dist) + '|' Wf_str = str('%8.0f' % Wf) + '|' Wi_str = str('%8.0f' % Wi) + '|' T_str = str('%7.1f' % (Tf-Ti)) + '|' Fuel_str= str('%8.0f' % (Wi-Wf)) + '|' Mi_str = str('%7.3f' % Mi) + '|' Mf_str = str('%7.3f' % Mf) + '|' KCASi_str = str('%7.1f' % KCASi) + '|' KCASf_str = str('%7.1f' % KCASf) + '|' Segment_str = '%- 31s |' % key if i == 0: #Write header if imperial: fid.write( ' FLIGHT PHASE | ALTITUDE | WEIGHT | DIST. | TIME | FUEL | SPEED |\n') fid.write( ' | From | To |Initial | Final | | | |Inicial| Final |Inicial| Final |\n') fid.write( ' | ft | ft | kg | kg | nm | min | kg | KCAS | KCAS | Mach | Mach |\n') fid.write( ' | | | | | | | | | | | |\n') elif SI: fid.write(' FLIGHT PHASE | ALTITUDE | WEIGHT | DIST. | TIME | FUEL | SPEED |\n') fid.write(' | From | To |Initial | Final | | | |Initial| Final |Initial| Final |\n') fid.write(' | m | m | kg | kg | km | min | kg | m/s | m/s | Mach | Mach |\n') fid.write(' | | | | | | | | | | | |\n') # Print segment data fid.write( Segment_str+HPi_str+HPf_str+Wi_str+Wf_str+Dist_str+T_str+Fuel_str+KCASi_str+KCASf_str+Mi_str+Mf_str+'\n') i = i+1 #Summary of results [nm] TotalFuel = results.segments[0].conditions.weights.total_mass[0] - results.segments[-1].conditions.weights.total_mass[-1] #[kg] TotalTime = (results.segments[-1].conditions.frames.inertial.time[-1][0] - results.segments[0].conditions.frames.inertial.time[0][0]) #[min] fid.write(2*'\n') if imperial: fid.write(' Total Range (nm) ........... '+ str('%9.0f' % TotalRange)+'\n') elif SI: fid.write(' Total Range (km) ........... ' + str('%9.0f' % TotalRange) + '\n') fid.write(' Total Fuel (kg) ........... '+ str('%9.0f' % TotalFuel)+'\n') fid.write(' Total Time (hh:mm) ........ '+ time.strftime(' %H:%M', time.gmtime(TotalTime))+'\n') # Print timestamp fid.write(2*'\n'+ 43*'-'+ '\n' + datetime.datetime.now().strftime(" %A, %d. %B %Y %I:%M:%S %p")) fid.close #done! return
5,347,287
def save_sentence_json(framenet_path, save_root, num_samples=100_000): """Save sentence data as individual files as json Every sample has two documents, a sentence from Framenet as well as the frame definition. This can be used for text summarization Seq2Seq models. Note: As a proof of concept, this only saves the first `num_samples`. Args: framenet_path: path to the `fndata-1.7` dataset save_root: root path to save individual sentence csvs num_samples: number of samples to save """ sentences = load_sentences(framenet_path) root = Path(save_root) root.mkdir(parents=True, exist_ok=True) for idx in tqdm(range(num_samples)): sent = sentences[idx] # Name the file based on frame type path = root.joinpath(f"{sent.frame.name}_{idx}.json") save_json(sent, path)
5,347,288
def create_account(input_params:dict): """ Creates account in ldap db. """ ldap_connection = None try: ldap_connection = connect_to_ldap_server(input_params['--ldapuser'], input_params['--ldappasswd']) add_keys_to_dictionary(input_params) if not is_account_present(input_params['--account_name'], ldap_connection): for item in g_create_func_table: dn, attrs = item['func'](item['key'],input_params) ldif = modlist.addModlist(attrs) ldap_connection.add_s(dn,ldif) disconnect_from_ldap(ldap_connection) except Exception as e: if ldap_connection: disconnect_from_ldap(ldap_connection) raise e
5,347,289
def get_ngrok() -> str or None: """Sends a `GET` request to api/tunnels to get the `ngrok` public url. See Also: Checks for output from get_port function. If nothing, then `ngrok` isn't running. However as a sanity check, the script uses port number stored in env var to make a `GET` request. Returns: str or None: - On success, returns the `ngrok` public URL. - On failure, returns None to exit function. """ if validate := get_port(): port = validate.split('.')[-1] else: if not (port := environ.get('PORT')): return try: response = get(f'http://{ip}:{port}/api/tunnels') except InvalidURL: return except ConnectionError: return tunnel = load(response.content.decode(), Loader=FullLoader)['tunnels'] return tunnel[0].get('public_url')
5,347,290
def contacts_per_person_symptomatic_60x80(): """ Real Name: b'contacts per person symptomatic 60x80' Original Eqn: b'contacts per person normal 60x80*(symptomatic contact fraction 80+symptomatic contact fraction 60\\\\ )/2' Units: b'contact/Day' Limits: (None, None) Type: component b'' """ return contacts_per_person_normal_60x80() * (symptomatic_contact_fraction_80() + symptomatic_contact_fraction_60()) / 2
5,347,291
def get_pull_through_cache_rule_output(ecr_repository_prefix: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPullThroughCacheRuleResult]: """ The AWS::ECR::PullThroughCacheRule resource configures the upstream registry configuration details for an Amazon Elastic Container Registry (Amazon Private ECR) pull-through cache. :param str ecr_repository_prefix: The ECRRepositoryPrefix is a custom alias for upstream registry url. """ ...
5,347,292
def get_input_fn_common(pattern, batch_size, mode, hparams: SmartComposeArg): """ Returns the common input function used in Smart Compose training and evaluation""" return _get_input_fn_common(pattern, batch_size, mode, **_get_func_param_from_hparams(_get_input_fn_common, hparams, ('pattern', 'batch_size', 'mode')))
5,347,293
def text_to_int(sentence, map_dict, max_length=20, is_target=False): """ 对文本句子进行数字编码 @param sentence: 一个完整的句子,str类型 @param map_dict: 单词到数字的映射,dict @param max_length: 句子的最大长度 @param is_target: 是否为目标语句。在这里要区分目标句子与源句子,因为对于目标句子(即翻译后的句子)我们需要在句子最后增加<EOS> """ # 用<PAD>填充整个序列 text_to_idx = [] # unk index unk_idx = map_dict.get("<UNK>") pad_idx = map_dict.get("<PAD>") eos_idx = map_dict.get("<EOS>") # 如果是输入源文本 if not is_target: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) # 否则,对于输出目标文本需要做<EOS>的填充最后 else: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) text_to_idx.append(eos_idx) # 如果超长需要截断 if len(text_to_idx) > max_length: return text_to_idx[:max_length] # 如果不够则增加<PAD> else: text_to_idx = text_to_idx + [pad_idx] * (max_length - len(text_to_idx)) return text_to_idx
5,347,294
def load_model_data(m, d, data_portal, scenario_directory, subproblem, stage): """ :param m: :param d: :param data_portal: :param scenario_directory: :param subproblem: :param stage: :return: """ generic_load_model_data( m=m, d=d, data_portal=data_portal, scenario_directory=scenario_directory, subproblem=subproblem, stage=stage, ramp_rate_limit_column_name=RESERVE_PROVISION_RAMP_RATE_LIMIT_COLUMN_NAME_IN_INPUT_FILE, reserve_provision_ramp_rate_limit_param=RESERVE_PROVISION_RAMP_RATE_LIMIT_PARAM_NAME, )
5,347,295
def map_to_udm_users(users_df: DataFrame) -> DataFrame: """ Maps a DataFrame containing Canvas users into the Ed-Fi LMS Unified Data Model (UDM) format. Parameters ---------- users_df: DataFrame Pandas DataFrame containing all Canvas users Returns ------- DataFrame A LMSUsers-formatted DataFrame DataFrame columns are: EmailAddress: The primary e-mail address for the user LocalUserIdentifier: The user identifier assigned by a school or district Name: The full name of the user SISUserIdentifier: The user identifier defined in the Student Information System (SIS) SourceSystem: The system code or name providing the user data SourceSystemIdentifier: A unique number or alphanumeric code assigned to a user by the source system CreateDate: datetime at which the record was first retrieved LastModifiedDate: datetime when the record was modified, or when first retrieved SourceCreateDate: Date this record was created in the LMS SourceLastModifiedDate: Date this record was last updated in the LMS """ if users_df.empty: return users_df df: DataFrame = users_df[ [ "id", "sis_user_id", "created_at", "name", "email", "login_id", "CreateDate", "LastModifiedDate", ] ].copy() df["SourceSystem"] = constants.SOURCE_SYSTEM df.rename( columns={ "id": "SourceSystemIdentifier", "sis_user_id": "SISUserIdentifier", "login_id": "LocalUserIdentifier", "email": "EmailAddress", "name": "Name", "created_at": "SourceCreateDate", }, inplace=True, ) df["SourceCreateDate"] = df["SourceCreateDate"].apply( lambda x: datetime.strftime( datetime.strptime(x, "%Y-%m-%dT%H:%M:%S%z"), "%Y/%m/%d %H:%M:%S" ) ) df["UserRole"] = constants.ROLES.STUDENT df["SourceLastModifiedDate"] = "" return df
5,347,296
def custom_shibboleth_institution_login( selenium, config, user_handle, user_pwd, user_name ): """Custom Login on Shibboleth institution page.""" wait = WebDriverWait(selenium, config.MAX_WAIT_TIME) input_user_id = wait.until( EC.element_to_be_clickable((By.XPATH, "//input[@id='userid']")) ) input_user_id.send_keys(user_handle) input_user_pwd = wait.until( EC.element_to_be_clickable((By.XPATH, "//input[@id='password']")) ) input_user_pwd.send_keys(user_pwd) btn_login = wait.until( EC.element_to_be_clickable((By.XPATH, "//button[@name='_eventId_proceed']")) ) btn_login.click() sleep(3) if selenium.title == config.SHIBBOLETH_LOGIN_PAGE_TITLE: btn_tou = wait.until( EC.element_to_be_clickable( (By.XPATH, "//button[@id='_shib_idp_accept_TOU']") ) ) btn_tou.click() btn_next = wait.until( EC.element_to_be_clickable((By.XPATH, "//button[@id='_eventId_proceed']")) ) btn_next.click() navbar_user = wait.until( EC.element_to_be_clickable((By.XPATH, "//span[@id='userDisplayInfoTitle']")) ) assert navbar_user.text == user_name return selenium
5,347,297
def beamcenter_mask(): """Returns beamcenter mask as an array. Given the PSF and the dimensions of the beamstop, the minimum intensity around beamcenter occurs at a radius of 3 pixels, hence a 7x7 mask.""" from numpy import array return array([[0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,1,1,1,0,0], [0,0,1,1,1,0,0], [0,0,1,1,1,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0]])
5,347,298
def physical_conversion_actionAngle(quantity,pop=False): """Decorator to convert to physical coordinates for the actionAngle methods: quantity= call, actionsFreqs, or actionsFreqsAngles (or EccZmaxRperiRap for actionAngleStaeckel)""" def wrapper(method): @wraps(method) def wrapped(*args,**kwargs): use_physical= kwargs.get('use_physical',True) ro= kwargs.get('ro',None) if ro is None and hasattr(args[0],'_roSet') and args[0]._roSet: ro= args[0]._ro if _APY_LOADED and isinstance(ro,units.Quantity): ro= ro.to(units.kpc).value vo= kwargs.get('vo',None) if vo is None and hasattr(args[0],'_voSet') and args[0]._voSet: vo= args[0]._vo if _APY_LOADED and isinstance(vo,units.Quantity): vo= vo.to(units.km/units.s).value #Remove ro and vo kwargs if necessary if pop and 'use_physical' in kwargs: kwargs.pop('use_physical') if pop and 'ro' in kwargs: kwargs.pop('ro') if pop and 'vo' in kwargs: kwargs.pop('vo') if use_physical and not vo is None and not ro is None: out= method(*args,**kwargs) if 'call' in quantity or 'actions' in quantity: if 'actions' in quantity and len(out) < 4: # 1D system fac= [ro*vo] if _APY_UNITS: u= [units.kpc*units.km/units.s] else: fac= [ro*vo,ro*vo,ro*vo] if _APY_UNITS: u= [units.kpc*units.km/units.s, units.kpc*units.km/units.s, units.kpc*units.km/units.s] if 'Freqs' in quantity: FreqsFac= freq_in_Gyr(vo,ro) if len(out) < 4: # 1D system fac.append(FreqsFac) if _APY_UNITS: Freqsu= units.Gyr**-1. u.append(Freqsu) else: fac.extend([FreqsFac,FreqsFac,FreqsFac]) if _APY_UNITS: Freqsu= units.Gyr**-1. u.extend([Freqsu,Freqsu,Freqsu]) if 'Angles' in quantity: if len(out) < 4: # 1D system fac.append(1.) if _APY_UNITS: Freqsu= units.Gyr**-1. u.append(units.rad) else: fac.extend([1.,1.,1.]) if _APY_UNITS: Freqsu= units.Gyr**-1. u.extend([units.rad,units.rad,units.rad]) if 'EccZmaxRperiRap' in quantity: fac= [1.,ro,ro,ro] if _APY_UNITS: u= [1., units.kpc, units.kpc, units.kpc] if _APY_UNITS: newOut= () try: for ii in range(len(out)): newOut= newOut+(units.Quantity(out[ii]*fac[ii], unit=u[ii]),) except TypeError: # happens if out = scalar newOut= units.Quantity(out*fac[0],unit=u[0]) else: newOut= () try: for ii in range(len(out)): newOut= newOut+(out[ii]*fac[ii],) except TypeError: # happens if out = scalar newOut= out*fac[0] return newOut else: return method(*args,**kwargs) return wrapped return wrapper
5,347,299