content
stringlengths
22
815k
id
int64
0
4.91M
def batch_process_image_to_spots(dax_filename, sel_channels, save_filename, data_type, region_ids, ref_filename, load_file_lock=None, warp_image=True, correction_args={}, save_image=True, empty_value=0, fov_savefile_lock=None, overwrite_image=False, drift_args={}, save_drift=True, drift_filename=None, drift_file_lock=None, overwrite_drift=False, fit_spots=True, fit_in_mask=False, fitting_args={}, save_spots=True, spot_file_lock=None, overwrite_spot=False, verbose=False): """run by multi-processing to batch process images to spots Inputs: Outputs: _spots: fitted spots for this image """ ## check inputs # dax_filename if not os.path.isfile(dax_filename): raise IOError(f"Dax file: {dax_filename} is not a file, exit!") if not isinstance(dax_filename, str) or dax_filename[-4:] != '.dax': raise IOError(f"Dax file: {dax_filename} has wrong data type, exit!") # selected channels sel_channels = [str(ch) for ch in sel_channels] if verbose: print(f"+ batch process image: {dax_filename} for channels:{sel_channels}") # save filename if not os.path.isfile(save_filename): raise IOError(f"HDF5 file: {save_filename} is not a file, exit!") if not isinstance(save_filename, str) or save_filename[-5:] != '.hdf5': raise IOError(f"HDF5 file: {save_filename} has wrong data type, exit!") # ref_Filename if isinstance(ref_filename, str): if not os.path.isfile(ref_filename): raise IOError(f"Dax file: {ref_filename} is not a file, exit!") elif ref_filename[-4:] != '.dax': raise IOError(f"Dax file: {ref_filename} has wrong data type, exit!") elif isinstance(ref_filename, np.ndarray): pass else: raise TypeError(f"ref_filename should be np.ndarray or string of path, but {type(ref_filename)} is given") # region ids if len(region_ids) != len(sel_channels): raise ValueError(f"Wrong input region_ids:{region_ids}, should of same length as sel_channels:{sel_channels}.") region_ids = [int(_id) for _id in region_ids] # convert to ints # judge if images exist # initiate lock if 'fov_savefile_lock' in locals() and fov_savefile_lock is not None: fov_savefile_lock.acquire() _ims, _warp_flags, _drifts = load_image_from_fov_file(save_filename, data_type, region_ids, load_drift=True, verbose=verbose) # release lock if 'fov_savefile_lock' in locals() and fov_savefile_lock is not None: fov_savefile_lock.release() # determine which image should be processed # initialize processing images and channels _process_flags = [] _process_sel_channels = [] # initialzie carried over images and channels _carryover_ims = [] _carryover_sel_channels = [] for _im, _flg, _drift, _rid, _ch in zip(_ims, _warp_flags, _drifts, region_ids, sel_channels): # if decided to overwrite image or overwrite drift, proceed if overwrite_image or overwrite_drift: _process_flags.append(True) _process_sel_channels.append(_ch) else: if (_im != empty_value).any() and _flg-1 == int(warp_image): # and (_drift!= empty_value).any() # remove this drift requirement, because it could be zero # image exist, no need to process from beginning _process_flags.append(False) _carryover_ims.append(_im.copy() ) _carryover_sel_channels.append(_ch) else: _process_flags.append(True) _process_sel_channels.append(_ch) # release RAM del(_ims) # convert this processed drifts _process_drift = list(set([tuple(_dft) for _dft in _drifts])) # one unique non-zero drift exist, directly use it if len(_process_drift) == 1 and np.array(_process_drift[0]).any() and not overwrite_drift: _process_drift = np.array(_process_drift[0]) _corr_drift = False # no drift else: _process_drift = np.zeros(len(_process_drift[0])) _corr_drift = True ## if any image to be processed: if np.sum(_process_flags) > 0: if verbose: print(f"-- {_process_sel_channels} images are required to process, {_carryover_sel_channels} images are loaded from save file: {save_filename}") ## correct images if warp_image: _processed_ims, _drift = correct_fov_image(dax_filename, _process_sel_channels, load_file_lock=load_file_lock, calculate_drift=_corr_drift, drift=_process_drift, ref_filename=ref_filename, warp_image=warp_image, return_drift=True, verbose=verbose, **correction_args, **drift_args) else: _processed_ims, _processed_warp_funcs, _drift = correct_fov_image( dax_filename, _process_sel_channels, load_file_lock=load_file_lock, calculate_drift=_corr_drift, drift=_process_drift, ref_filename=ref_filename, warp_image=warp_image, return_drift=True, verbose=verbose, **correction_args, **drift_args) # nothing processed, create empty list else: _processed_ims = [] if not warp_image: _processed_warp_funcs = [] _drift = np.array(_process_drift) # use old drift ## merge processed and carryover images _sel_ims = [] for _ch, _flg in zip(sel_channels, _process_flags): if not _flg: _sel_ims.append(_carryover_ims.pop(0)) else: _sel_ims.append(_processed_ims.pop(0)) if not warp_image: _warp_funcs = [] for _ch, _flg in zip(sel_channels, _process_flags): if not _flg: from ..correction_tools.chromatic import generate_chromatic_function _warp_funcs.append( generate_chromatic_function(correction_args['chromatic_profile'][str(_ch)], _drift) ) else: _warp_funcs.append( _processed_warp_funcs.pop(0) ) ## save image if specified if save_image: # initiate lock if 'fov_savefile_lock' in locals() and fov_savefile_lock is not None: fov_savefile_lock.acquire() # run saving _save_img_success = save_image_to_fov_file( save_filename, _sel_ims, data_type, region_ids, warp_image, _drift, overwrite_image, verbose) # release lock if 'fov_savefile_lock' in locals() and fov_savefile_lock is not None: fov_savefile_lock.release() ## save drift if specified if save_drift: # judge if drift correction is required if drift_filename is None: drift_folder = os.path.join(os.path.dirname(os.path.dirname(dax_filename)), 'Analysis', 'drift') if not os.path.exists(drift_folder): print(f'* Create drift folder: {drift_folder}') os.makedirs(drift_folder) drift_filename = os.path.join(drift_folder, os.path.basename(dax_filename).replace('.dax', '_current_cor.pkl')) _key = os.path.join(os.path.basename(os.path.dirname(dax_filename)), os.path.basename(dax_filename)) # initiate lock if 'drift_file_lock' in locals() and drift_file_lock is not None: drift_file_lock.acquire() # run saving _save_drift_success = save_drift_to_file(drift_filename, dax_filename, _drift, overwrite_drift, verbose) # release lock if 'drift_file_lock' in locals() and drift_file_lock is not None: drift_file_lock.release() ## multi-fitting if fit_spots: # check fit_in_mask if fit_in_mask: if 'seed_mask' not in fitting_args or fitting_args['seed_mask'] is None: raise KeyError(f"seed_mask should be given if fit_in_mask specified") # translate this mask according to drift if verbose: print(f"-- start traslating seed_mask by drift: {_drift}", end=' ') _translate_start = time.time() _shifted_mask = ndimage.shift(fitting_args['seed_mask'], -_drift, mode='constant', cval=0) fitting_args['seed_mask'] = _shifted_mask if verbose: print(f"-- in {time.time()-_translate_start:.2f}s.") _translate_start = time.time() _raw_spot_list = [] _spot_list = [] for _ich, (_im, _ch) in enumerate(zip(_sel_ims, sel_channels)): _raw_spots = fit_fov_image( _im, _ch, verbose=verbose, **fitting_args, ) if not warp_image: # update spot coordinates given warp functions, if image was not warpped. _func = _warp_funcs[_ich] _spots = _func(_raw_spots) #print(f"type: {type(_spots)} for {dax_filename}, region {region_ids[_ich]} channel {_ch}, {_func}") else: _spots = _raw_spots.copy() # append _spot_list.append(_spots) _raw_spot_list.append(_raw_spots) ## save fitted_spots if specified if save_spots: # initiate lock if spot_file_lock is not None: spot_file_lock.acquire() # run saving _save_spt_success = save_spots_to_fov_file( save_filename, _spot_list, data_type, region_ids, raw_spot_list=_raw_spot_list, overwrite=overwrite_spot, verbose=verbose) # release lock if spot_file_lock is not None: spot_file_lock.release() else: _spot_list = np.array([]) return
5,348,500
def upload(target='local'): """ Release to a given pypi server ('local' by default). """ sysmsg("Uploading to pypi server \033[33m{}".format(target)) local('python setup.py sdist register -r "{}"'.format(target)) local('python setup.py sdist upload -r "{}"'.format(target))
5,348,501
def timer(jarvis, s): """ Set a timer R Reset SPACE Pause Q Quit Usages: timer 10 timer 1h5m30s """ k = s.split(' ', 1) if k[0] == '': jarvis.say("Please specify duration") return timer_cmd = "python -m termdown " + k[0] system(timer_cmd)
5,348,502
def inner_xml(xml_text): """ Get the inner xml of an element. >>> inner_xml('<div>This is some <i><b>really</b> silly</i> text!</div>') u'This is some <i><b>really</b> silly</i> text!' """ return unicode(INNER_XML_RE.match(xml_text).groupdict()['body'])
5,348,503
def store_tags(): """Routing: Stores the (updated) tag data for the image.""" data = { "id": request.form.get("id"), "tag": request.form.get('tags'), "SHOWN": 0 } loader.store(data) next_image = loader.next_data() if next_image is None: return redirect("/finished") target = "/" if next_image: target = f"/?image_id={next_image['id']}" return redirect(location=target)
5,348,504
def getAssets(public_key: str) -> list: """ Get all the balances an account has. """ balances = server.accounts().account_id(public_key).call()['balances'] balances_to_return = [ {"asset_code": elem.get("asset_code"), "issuer": elem.get("asset_issuer"), "balance": elem.get("balance")} for elem in balances ] balances_to_return[-1]["asset_code"] = "XLM" return balances_to_return
5,348,505
def parse_pattern(format_string, env, wrapper=lambda x, y: y): """ Parse the format_string and return prepared data according to the env. Pick each field found in the format_string from the env(ironment), apply the wrapper on each data and return a mapping between field-to-replace and values for each. """ formatter = Formatter() fields = [x[1] for x in formatter.parse(format_string) if x[1] is not None] prepared_env = {} # Create a prepared environment with only used fields, all as list: for field in fields: # Search for a movie attribute for each alternative field separated # by a pipe sign: for field_alt in (x.strip() for x in field.split('|')): # Handle default values (enclosed by quotes): if field_alt[0] in '\'"' and field_alt[-1] in '\'"': field_values = field_alt[1:-1] else: field_values = env.get(field_alt) if field_values is not None: break else: field_values = [] if not isinstance(field_values, list): field_values = [field_values] prepared_env[field] = wrapper(field_alt, field_values) return prepared_env
5,348,506
def test_minimize_score_with_worsened_symptom(integration_db): """ Minimize ingredients contained in Recipe[0] are: saury fish: 10 (ref. 10) cabbage: 200 (ref. 30|200 ) fish: 30 (ref: 20 ) this time the formula would be: saury-fish (ignored) - (60 * 1.5) - (30 * 1.5) """ from datetime import datetime integration_db.patient_symptoms.insert_one({ 'symptom_id': TAGS[0]['tag_id'], 'patient_id': PATIENT['_id'], 'created_at': datetime(2019, 10, 15), 'updated_at': datetime(2019, 10, 15), 'symptoms_scale': 7 }) assert_equal_objects( MinimizedScore(RECIPES[0]['_id'], PATIENT['_id']).worsen_ingredients, ['saury fish', 'cabbage', 'fish', 'komatsuna', 'pak choi'] ) assert MinimizedScore(RECIPES[0]['_id'], PATIENT['_id']).value == -135
5,348,507
def u1_series_summation(xarg, a, kmax): """ 5.3.2 ROUTINE - U1 Series Summation PLATE 5-10 (p32) :param xarg: :param a: :param kmax: :return: u1 """ du1 = 0.25*xarg u1 = du1 f7 = -a*du1**2 k = 3 while k < kmax: du1 = f7*du1 / (k*(k-1)) u1old = u1 u1 = u1+du1 if u1 == u1old: break k = k+2 return u1
5,348,508
def mask_iou(masks_a, masks_b, iscrowd=False): """ Computes the pariwise mask IoU between two sets of masks of size [a, h, w] and [b, h, w]. The output is of size [a, b]. Wait I thought this was "box_utils", why am I putting this in here? """ masks_a = masks_a.view(masks_a.size(0), -1) masks_b = masks_b.view(masks_b.size(0), -1) matmul = nn.MatMul() intersection = matmul(masks_a, masks_b.T) mask_iou_sum = P.ReduceSum() expand_dims = P.ExpandDims() area_a = expand_dims(mask_iou_sum(masks_a, 1), 1) area_b = expand_dims(mask_iou_sum(masks_b, 1), 0) return intersection / (area_a + area_b - intersection) if not iscrowd else intersection / area_a
5,348,509
def async_worker_handler(event: Dict[str, Any], _: Any): """Process the tickets""" _logger.info(event) job_id = event.get('job_id') try: db_table.get(job_id) tickets = inventory_parser.from_tsv(storage.get(job_id)) total_value = sum([ticket.value for ticket in tickets]) db_table.put({ 'job_id': job_id, 'status': STATUSES.SUCCEEDED, 'total_value': total_value }) except (S3StorageError, DynamoDBError, InvalidInventoryDataFormatError) as e: _logger.error(e) db_table.put({ 'job_id': job_id, 'status': STATUSES.FAILED }) raise AsyncWorkerError(f'Unable to proceed job with "job_id":{job_id}')
5,348,510
def normalized_grid_coords(height, width, aspect=True, device="cuda"): """Return the normalized [-1, 1] grid coordinates given height and width. Args: height (int) : height of the grid. width (int) : width of the grid. aspect (bool) : if True, use the aspect ratio to scale the coordinates, in which case the coords will not be normalzied to [-1, 1]. (Default: True) device : the device the tensors will be created on. """ aspect_ratio = width/height if aspect else 1.0 window_x = torch.linspace(-1, 1, steps=width, device=device) * aspect_ratio window_y = torch.linspace(1, -1, steps=height, device=device) coord = torch.stack(torch.meshgrid(window_x, window_y, indexing='ij')).permute(2,1,0) return coord
5,348,511
def test_copy_object_modified_since(log_entry): """Test copy_object() with modified since condition.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = "{0}".format(uuid4()) object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) # Set up the 'modified_since' copy condition copy_conditions = CopyConditions() mod_since = datetime(2014, 4, 1, tzinfo=utc) copy_conditions.set_modified_since(mod_since) log_entry["args"]["conditions"] = { 'set_modified_since': mod_since.strftime('%c')} # Perform a server side copy of an object # and expect the copy to complete successfully _CLIENT.copy_object(bucket_name, object_copy, '/' + bucket_name + '/' + object_source, copy_conditions) finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name)
5,348,512
def _verify_env_variables(): """ Verifies that required env variable(s) exist and valid. :return: None """ if os.getenv('remote_repo_path') is None and os.getenv('local_repo_path') is None: complain('One of: remote_repo_path or local_repo_path is required. Aborting.') if os.getenv('action') not in actions: complain('\'action\' should be one of: \'build\', \'deploy\'') required_vars = ['action', 'branch', 'build_from', 's3_bucket', 's3_bucket_prefix', 'default_stack_name'] missing_vars = [] for var in required_vars: if os.getenv(var) is None: missing_vars.append(var) if len(missing_vars) > 0: complain('Required env variable(s): {} not found. Aborting.'.format(missing_vars))
5,348,513
def ray_map(task: Task, *item_lists: Iterable[List[Any]], log_dir: Optional[Path] = None) -> List[Any]: """ Initialize ray, align item lists and map each item of a list of arguments to a callable and executes in parallel. :param task: callable to be run :param item_lists: items to be parallelized :param log_dir: directory to store worker logs :return: list of outputs """ try: results = _ray_map_items(task, *item_lists, log_dir=log_dir) return results except (RayTaskError, Exception) as exc: ray.shutdown() traceback.print_exc() raise RuntimeError(exc)
5,348,514
def consensus_kmeans(data=None, k=0, linkage='average', nensemble=100, kmin=None, kmax=None): """Perform clustering based on an ensemble of k-means partitions. Parameters ---------- data : array An m by n array of m data samples in an n-dimensional space. k : int, optional Number of clusters to extract; if 0 uses the life-time criterion. linkage : str, optional Linkage criterion for final partition extraction; one of 'average', 'centroid', 'complete', 'median', 'single', 'ward', or 'weighted'. nensemble : int, optional Number of partitions in the ensemble. kmin : int, optional Minimum k for the k-means partitions; defaults to :math:`\\sqrt{m}/2`. kmax : int, optional Maximum k for the k-means partitions; defaults to :math:`\\sqrt{m}`. Returns ------- clusters : dict Dictionary with the sample indices (rows from 'data') for each found cluster; outliers have key -1; clusters are assigned integer keys starting at 0. """ # check inputs if data is None: raise TypeError("Please specify input data.") N = len(data) if kmin is None: kmin = int(round(np.sqrt(N) / 2.)) if kmax is None: kmax = int(round(np.sqrt(N))) # initialization grid grid = { 'k': np.random.random_integers(low=kmin, high=kmax, size=nensemble) } # run consensus clusters, = consensus(data=data, k=k, linkage=linkage, fcn=kmeans, grid=grid) return utils.ReturnTuple((clusters,), ('clusters',))
5,348,515
def save_api_dataset(process_df, raw_df, path, query_type, param_class, data_period): """Save processed datasets at regular monthly intervals. Args: process_df (pandas DataFrame): An SDFS formatted dataset for query data returned by the API service. raw_df (pandas DataFrame): A dataset containing unmodified data returned by the API service. path (str): The project path where the ``/data/reference_data`` subdirectory is housed. Data are saved at the refrence data subdirectory structure within this parent directory. query_type (str): The name of the API service used to retreieve query data. param_class (sstr): A term for sorting the parameter into one of three environmental parameter classifications, either ‘PM’ for particulate matter pollutants, ‘Gases’ for gaseous pollutants, or ‘Met’ for meteorological environmental parameters. data_period (list): A list of length 2, containing the start date for the monthly period (index position 0), and end date (index position 1). Each element is a string with date format 'YYYYMMDD'. Returns: None. """ # Use the site name and AQS ID to name subfolder containing # site data try: site_name = process_df['Site_Name'].mode()[0] site_list = site_name.title().split(None) site_name = '_'.join(site_list) except KeyError: site_name = 'Unspecified_Site_Name' try: site_aqs = process_df['Site_AQS'].mode()[0] site_aqs = site_aqs.replace('-', '').replace(' ', '') except KeyError: site_aqs = 'Unspecified_Site_ID' folder = '{0}_{1}'.format(site_name, site_aqs) data_path = os.path.join(path, 'data', 'reference_data', query_type.lower()) process_path = os.path.join(data_path, 'processed', folder) raw_path = os.path.join(data_path, 'raw', folder) if not os.path.exists(process_path): os.makedirs(process_path) if not os.path.exists(raw_path): os.makedirs(raw_path) year_month = pd.to_datetime(data_period[0]).strftime('%Y%m') filename = f'H_{year_month}_{param_class}.csv' process_df.to_csv(os.path.join(process_path, filename)) raw_df.to_csv(os.path.join(raw_path, filename))
5,348,516
def to_cftime(date, calendar="gregorian"): """Convert datetime object to cftime object. Parameters ---------- date : datetime object Datetime object. calendar : str Calendar of the cftime object. Returns ------- cftime : cftime object Cftime ojbect. """ if type(date) == dt.date: date = dt.datetime.combine(date, dt.time()) elif isinstance(date, cfdt.datetime): # do nothing return date return cfdt.datetime( date.year, date.month, date.day, date.hour, date.minute, date.second, date.microsecond, calendar=calendar, )
5,348,517
def _test_cross_zernikes(testj=4, nterms=10, npix=500): """Verify the functions are orthogonal, by taking the integrals of a given Zernike times N other ones. Parameters : -------------- testj : int Index of the Zernike polynomial to test against the others nterms : int Test that polynomial against those from 1 to this N npix : int Size of array to use for this test """ zj = zernike.zernike1(testj, npix=npix) assert np.sum(np.isfinite(zj)) > 0, "Zernike calculation failure; all NaNs." zbasis = zernike.zernike_basis(nterms=nterms, npix=npix) for idx, z in enumerate(zbasis): j = idx + 1 if j == testj or j == 1: continue # discard piston term and self prod = z * zj wg = np.where(np.isfinite(prod)) cross_sum = np.abs(prod[wg].sum()) assert cross_sum < 1e-9, ( "orthogonality failure, Sum[Zernike(j={}) * Zernike(j={})] = {} (> 1e-9)".format( j, testj, cross_sum) )
5,348,518
def poly_to_mask(mask_shape, vertices): """Converts a polygon to a boolean mask with `True` for points lying inside the shape. Uses the bounding box of the vertices to reduce computation time. Parameters ---------- mask_shape : np.ndarray | tuple 1x2 array of shape of mask to be generated. vertices : np.ndarray Nx2 array of the vertices of the polygon. Returns ------- mask : np.ndarray Boolean array with `True` for points inside the polygon """ return polygon2mask(mask_shape, vertices)
5,348,519
def get_nn_edges( basis_vectors, extent, site_offsets, pbc, distance_atol, order, ): """For :code:`order == k`, generates all edges between up to :math:`k`-nearest neighbor sites (measured by their Euclidean distance). Edges are colored by length with colors between 0 and `order - 1` in order of increasing length.""" positions, ids = create_padded_sites( basis_vectors, extent, site_offsets, pbc, order ) naive_edges_by_order = get_naive_edges( positions, order * np.linalg.norm(basis_vectors, axis=1).max() + distance_atol, order, ) colored_edges = [] for k, naive_edges in enumerate(naive_edges_by_order): true_edges = set() for node1, node2 in naive_edges: # switch to real node indices node1 = ids[node1] node2 = ids[node2] if node1 == node2: raise RuntimeError( f"Lattice contains self-referential edge {(node1, node2)} of order {k}" ) elif node1 > node2: node1, node2 = node2, node1 true_edges.add((node1, node2)) for edge in true_edges: colored_edges.append((*edge, k)) return colored_edges
5,348,520
def expand(vevent, default_tz, href=''): """ :param vevent: vevent to be expanded :type vevent: icalendar.cal.Event :param default_tz: the default timezone used when we (icalendar) don't understand the embedded timezone :type default_tz: pytz.timezone :param href: the href of the vevent, used for more informative logging :type href: str :returns: list of start and end (date)times of the expanded event :rtyped list(tuple(datetime, datetime)) """ # we do this now and than never care about the "real" end time again if 'DURATION' in vevent: duration = vevent['DURATION'].dt else: duration = vevent['DTEND'].dt - vevent['DTSTART'].dt # dateutil.rrule converts everything to datetime allday = not isinstance(vevent['DTSTART'].dt, datetime) # icalendar did not understand the defined timezone if (not allday and 'TZID' in vevent['DTSTART'].params and vevent['DTSTART'].dt.tzinfo is None): vevent['DTSTART'].dt = default_tz.localize(vevent['DTSTART'].dt) if 'RRULE' not in vevent.keys(): return [(vevent['DTSTART'].dt, vevent['DTSTART'].dt + duration)] events_tz = None if getattr(vevent['DTSTART'].dt, 'tzinfo', False): events_tz = vevent['DTSTART'].dt.tzinfo vevent['DTSTART'].dt = vevent['DTSTART'].dt.astimezone(pytz.UTC) rrulestr = vevent['RRULE'].to_ical() rrule = dateutil.rrule.rrulestr(rrulestr, dtstart=vevent['DTSTART'].dt) if not set(['UNTIL', 'COUNT']).intersection(vevent['RRULE'].keys()): # rrule really doesn't like to calculate all recurrences until # eternity, so we only do it 15years into the future dtstart = vevent['DTSTART'].dt if isinstance(dtstart, date): dtstart = datetime(*list(dtstart.timetuple())[:-3]) rrule._until = dtstart + timedelta(days=15 * 365) if ((not getattr(rrule._until, 'tzinfo', True)) and (getattr(vevent['DTSTART'].dt, 'tzinfo', False))): rrule._until = vevent['DTSTART'].dt.tzinfo \ .localize(rrule._until) logger.debug('calculating recurrence dates for {0}, ' 'this might take some time.'.format(href)) dtstartl = list(rrule) if len(dtstartl) == 0: raise UnsupportedRecursion if events_tz is not None: dtstartl = [start.astimezone(events_tz) for start in dtstartl] elif allday: dtstartl = [start.date() for start in dtstartl] dtstartend = [(start, start + duration) for start in dtstartl] return dtstartend
5,348,521
def fsapi(session, stream, env, args): """Handle FS API requests. Args: string of the form <imsi>|<True if for dest_imsi (default is False)> Subscriber State can be: active (unblocked), -active (blocked),first_expired (validity expired) """ args = args.split('|') imsi = args[0] dest_imsi = False if len(args) > 1: dest_imsi = True if len(imsi) < 4: # Toll Free Numbers don't have imsis subscriber_state = 'active' else: subscriber_state = str( subscriber.status().get_account_status(imsi)).lower() else: subscriber_state = str( subscriber.status().get_account_status(imsi)).lower() try: account_status = False if not dest_imsi: if 'active' == subscriber_state: account_status = True else: # incoming number status allowed_states = ['active', 'active*', 'first_expired', 'first_expired*'] if subscriber_state in allowed_states: account_status = True except SubscriberNotFound: account_status = False consoleLog('info', "Returned FSAPI: " + str(account_status) + "\n") stream.write(str(account_status))
5,348,522
def setup_transition_list(): """ Creates and returns a list of Transition() objects to represent state transitions for a biased random walk, in which the rate of downward motion is greater than the rate in the other three directions. Parameters ---------- (none) Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- State 0 represents fluid and state 1 represents a particle (such as a sediment grain or dissolved heavy particle). The states and transitions are as follows: Pair state Transition to Process Rate ========== ============= ======= ==== 0 (0-0) (none) - - 1 (0-1) 2 (1-0) left motion 1.0 2 (1-0) 1 (0-1) right motion 1.0 3 (1-1) (none) - - 4 (0/0) (none) - - 5 (0/1) 6 (1/0) down motion 1.1 6 (1/0) 5 (0/1) up motion 0.9 7 (1/1) (none) - - """ xn_list = [] xn_list.append( Transition((0,1,0), (1,0,0), 1., 'left motion') ) xn_list.append( Transition((1,0,0), (0,1,0), 1., 'right motion') ) xn_list.append( Transition((0,1,1), (1,0,1), 1.1, 'down motion') ) xn_list.append( Transition((1,0,1), (0,1,1), 0.9, 'up motion') ) if _DEBUG: print() print('setup_transition_list(): list has',len(xn_list),'transitions:') for t in xn_list: print(' From state',t.from_state,'to state',t.to_state,'at rate',t.rate,'called',t.name) return xn_list
5,348,523
def unit_vector(data, axis=None, out=None): """Return ndarray normalized by length, i.e. eucledian norm, along axis. >>> v0 = numpy.random.random(3) >>> v1 = unit_vector(v0) >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) True >>> v0 = numpy.random.rand(5, 4, 3) >>> v1 = unit_vector(v0, axis=-1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) >>> numpy.allclose(v1, v2) True >>> v1 = unit_vector(v0, axis=1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) >>> numpy.allclose(v1, v2) True >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64) >>> unit_vector(v0, axis=1, out=v1) >>> numpy.allclose(v1, v2) True >>> list(unit_vector([])) [] >>> list(unit_vector([1.0])) [1.0] see: https://github.com/ros/geometry/blob/hydro-devel/tf/src/tf/transformations.py """ if out is None: data = np.array(data, dtype=np.float64, copy=True) if data.ndim == 1: data /= math.sqrt(np.dot(data, data)) return data else: if out is not data: out[:] = np.array(data, copy=False) data = out length = np.atleast_1d(np.sum(data*data, axis)) np.sqrt(length, length) if axis is not None: length = np.expand_dims(length, axis) data /= length if out is None: return data
5,348,524
def negative_f1_score(probs, labels): """ Computes the f1 score between output and labels for k classes. args: probs (tensor) (size, k) labels (tensor) (size, 1) """ probs = torch.nn.functional.softmax(probs, dim=1) probs = probs.numpy() labels = labels.numpy() pred = np.argmax(probs, axis=1) return skl.f1_score(labels, pred, pos_label=0)
5,348,525
def validate_dataset_path(value): """Validates the path for input dataset""" try: storage_type = get_storage_type(value) if storage_type == 'local': dataset_path = Path(value) if not dataset_path.is_dir(): raise Exception("Directory doesn't exist") except: raise ValidationError( _('Enter a valid storage path!'), code='invalid' )
5,348,526
def search_usb_devices_facets(): """Facet USB Devices""" data = {"terms": {"fields": ["status"]}} usb_url = USB_DEVICES_FACETS.format(HOSTNAME, ORG_KEY) return requests.post(usb_url, json=data, headers=HEADERS)
5,348,527
def __casestudy_gen( ctx: click.Context, project: str, override: bool, version: int, ignore_blocked: bool, merge_stage: tp.Optional[str], new_stage: bool, update: bool ) -> None: """Generate or extend a CaseStudy Sub commands can be chained to for example sample revisions but also add the latest.""" ctx.ensure_object(dict) ctx.obj['project'] = project ctx.obj['ignore_blocked'] = ignore_blocked ctx.obj['version'] = version paper_config = vara_cfg()["paper_config"]["current_config"].value if not paper_config: click.echo( "You need to create a paper config first" " using vara-pc create" ) raise click.Abort() ctx.obj['path'] = Path( vara_cfg()["paper_config"]["folder"].value ) / (paper_config + f"/{project}_{version}.case_study") ctx.obj['git_path'] = get_local_project_git_path(project) if update: pull_current_branch(ctx.obj['git_path']) if override or not ctx.obj['path'].exists(): case_study = CaseStudy(ctx.obj['project'], version) if merge_stage: case_study.insert_empty_stage(0) case_study.name_stage(0, merge_stage) ctx.obj["merge_stage"] = 0 else: case_study = load_case_study_from_file(ctx.obj['path']) ctx.obj['custom_stage'] = bool(merge_stage) if merge_stage: if new_stage: stage_index = case_study.num_stages case_study.insert_empty_stage(stage_index) case_study.name_stage(stage_index, merge_stage) else: stage_index_opt = case_study \ .get_stage_index_by_name(merge_stage) if not stage_index_opt: selected_stage = CSStage(merge_stage) def set_merge_stage(stage: CSStage) -> None: nonlocal selected_stage selected_stage = stage stage_choices = [selected_stage] stage_choices.extend([ stage for stage in case_study.stages if stage.name ]) cli_list_choice( f"The given stage({merge_stage}) does not exist," f" do you want to create it or select an existing one", stage_choices, lambda x: x.name if x.name else "", set_merge_stage ) if selected_stage.name == merge_stage: stage_index = case_study.num_stages case_study.insert_empty_stage(stage_index) case_study.name_stage(stage_index, selected_stage.name) else: stage_index = case_study.stages.index(selected_stage) else: stage_index = stage_index_opt ctx.obj['merge_stage'] = stage_index else: if new_stage: ctx.obj['merge_stage'] = max(case_study.num_stages, 0) else: ctx.obj['merge_stage'] = max(case_study.num_stages - 1, 0) ctx.obj['case_study'] = case_study
5,348,528
def test_coord_init_representation(): """ Spherical or Cartesian represenation input coordinates. """ coord = SphericalRepresentation(lon=8 * u.deg, lat=5 * u.deg, distance=1 * u.kpc) sc = SkyCoord(coord, frame='icrs') assert allclose(sc.ra, coord.lon) assert allclose(sc.dec, coord.lat) assert allclose(sc.distance, coord.distance) with pytest.raises(ValueError) as err: SkyCoord(coord, frame='icrs', ra='1d') assert "conflicts with keyword argument 'ra'" in str(err) coord = CartesianRepresentation(1 * u.one, 2 * u.one, 3 * u.one) sc = SkyCoord(coord, frame='icrs') sc_cart = sc.represent_as(CartesianRepresentation) assert allclose(sc_cart.x, 1.0) assert allclose(sc_cart.y, 2.0) assert allclose(sc_cart.z, 3.0)
5,348,529
def chunked(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i+n]
5,348,530
def debug(*args): """ Handy for figuring out what's going on in a template. Usage: {% debug "print" some_var "stuff" %}. """ print(*args)
5,348,531
def pack4(v): """ Takes a 32 bit integer and returns a 4 byte string representing the number in little endian. """ assert 0 <= v <= 0xffffffff # The < is for little endian, the I is for a 4 byte unsigned int. # See https://docs.python.org/2/library/struct.html for more info. return struct.pack('<I', v)
5,348,532
def index(): """ """ category = Category.get_categories() pitch = Pitch.get_all_pitches() title = "Welcome to Pitch Hub" return render_template('index.html', title = title, category = category, pitch =pitch)
5,348,533
def maximum_sum_increasing_subsequence(numbers, size): """ Given an array of n positive integers. Write a program to find the sum of maximum sum subsequence of the given array such that the integers in the subsequence are sorted in increasing order. """ results = [numbers[i] for i in range(size)] for i in range(1, size): for j in range(i): if numbers[i] > numbers[j] and results[i] < results[j] + numbers[i]: results[i] = results[j] + numbers[i] return max(results)
5,348,534
def lstsqb(a, b): """ Return least-squares solution to a = bx. Similar to MATLAB / operator for rectangular matrices. If b is invertible then the solution is la.solve(a, b).T """ return la.lstsq(b.T, a.T, rcond=None)[0].T
5,348,535
def test_subset_4D_data_all_argument_permutations(load_esgf_test_data, tmpdir): """Tests clisops subset function with: - no args (collection only) - time only - level only - bbox only - time + level - time + bbox - level + bbox - time + level + bbox On completion: - Check the shape of the response """ # Found in file: # times = ("2015-01-16 12", "MANY MORE", "2024-12-16 12") [120] # plevs = (100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, # 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000, 500, 100) [19] # lats = (-88.9277353522959, -25.9141861518467, 37.1202943109788) [3] # lons = (0, 63.28125, 126.5625, 189.84375, 253.125, 316.40625) [6] # Requested subset time_input = time_interval("2022-01-01", "2022-06-01") level_input = level_interval(1000, 1000) bbox_input = (0.0, -80, 170.0, 65.0) # Define a set of inputs and the resulting shape expected test_inputs = [ ["coll only", (None, None, None)], ["time only", (time_input, None, None)], ["level only", (None, level_input, None)], ["bbox only", (None, None, bbox_input)], ["time & level", (time_input, level_input, None)], ["time & bbox", (time_input, None, bbox_input)], ["level & bbox", (None, level_input, bbox_input)], ["time, level & bbox", (time_input, level_input, bbox_input)], ] # Full data shape initial_shape = [120, 19, 3, 6] # Test each set of inputs, check the output shape (slice) is correct for _, inputs in test_inputs: expected_shape = initial_shape[:] tm, level, bbox = inputs if tm: expected_shape[0] = 5 if level: expected_shape[1] = 1 if bbox: expected_shape[2:4] = 2, 3 outputs = subset( ds=CMIP6_TA, time=tm, area=bbox, level=level, output_dir=tmpdir, output_type="xarray", ) ds = outputs[0] assert ds.ta.shape == tuple(expected_shape)
5,348,536
def multivariateGaussian(X, mu, sigma2): """ 多元高斯分布 :param X: :param mu: :param sigma2: :return: """ k = len(mu) if sigma2.shape[0] > 1: sigma2 = np.diag(sigma2) X = X - mu argu = (2 * np.pi) ** (-k / 2) * np.linalg.det(sigma2) ** (-0.5) p = argu * np.exp(-0.5 * np.sum(np.dot(X, np.linalg.inv(sigma2)) * X, axis=1)) return p
5,348,537
def test_open_notebook_in_non_ascii_dir(notebook, qtbot, tmpdir): """Test that a notebook can be opened from a non-ascii directory.""" # Move the test file to non-ascii directory test_notebook = osp.join(LOCATION, 'test.ipynb') test_notebook_non_ascii = osp.join(str(tmpdir), u'äöüß', 'test.ipynb') os.mkdir(os.path.join(str(tmpdir), u'äöüß')) shutil.copyfile(test_notebook, test_notebook_non_ascii) # Wait for prompt notebook.open_notebook(filenames=[test_notebook_non_ascii]) nbwidget = notebook.tabwidget.currentWidget().notebookwidget qtbot.waitUntil(lambda: prompt_present(nbwidget, qtbot), timeout=NOTEBOOK_UP) # Assert that the In prompt has "Test" in it # and the client has the correct name qtbot.waitUntil(lambda: text_present(nbwidget, qtbot), timeout=NOTEBOOK_UP) assert text_present(nbwidget, qtbot) assert notebook.tabwidget.currentWidget().get_short_name() == "test"
5,348,538
def get_day(input): """ Convert input to a datetime object and extract the Day part """ if isinstance(input, str): input = parse_iso(input) if isinstance(input, (datetime.date, datetime.datetime)): return input.day return None
5,348,539
def run(): """Create Conan promote instance and run Collect user arguments as """ promote = ConanPromote() promote.run(sys.argv[1:])
5,348,540
def update_organization(instance, language): """ Update Elasticsearch indices when an organization was modified and published: - update the organization document in the Elasticsearch organizations index for the organization and its direct parent (because the parent ID may change from Parent to Leaf), - update the course documents in the Elasticsearch courses index for all courses linked to this organization. Returns None if the page was related to an organization and the Elasticsearch update is done. Raises ObjectDoesNotExist if the page instance is not related to an organization. """ organization = Organization.objects.get(draft_extension__extended_object=instance) actions = [ ES_INDICES.courses.get_es_document_for_course(course) for course in organization.get_courses(language) if not course.is_snapshot ] actions.append( ES_INDICES.organizations.get_es_document_for_organization(organization) ) # Update the organization's parent only if it exists try: parent = organization.extended_object.get_parent_page().organization except AttributeError: pass else: actions.append( ES_INDICES.organizations.get_es_document_for_organization(parent) ) richie_bulk(actions)
5,348,541
def read_ds(tier, pos_source=None): """ Like read_pt above, given a DS tier, return the DepTree object :param tier: :type tier: RGTier """ # First, assert that the type we're looking at is correct. assert tier.type == DS_TIER_TYPE # --1) Root the tree. root = DepTree.root() # --2) We will build up a list of edges, then attach the edges to the tree. edges = [] # --2b) Retrieve the POS tier, if it exists, in advance. pos_tier = tier.igt.get_pos_tags(tier.attributes.get(DS_DEP_ATTRIBUTE), tag_method=pos_source) for item in tier: dep = item.attributes.get(DS_DEP_ATTRIBUTE) head = item.attributes.get(DS_HEAD_ATTRIBUTE) # Get the POS tag if it exists pos = None if pos_tier: pos_item = pos_tier.find(alignment=dep) if pos_item: pos = pos_item.value() # Get the word value... dep_w = tier.igt.find(id=dep) dep_t = Terminal(dep_w.value(), dep_w.index) if head is not None: head_w = tier.igt.find(id=head) head_t = Terminal(head_w.value(), head_w.index) else: head_t = Terminal('ROOT', 0) e = DepEdge(head=head_t, dep=dep_t, type=item.value(), pos=pos) edges.append(e) dt = build_dep_edges(edges) return dt
5,348,542
def get_local_ontology_from_file(ontology_file): """ return ontology class from a local OWL file """ return ow.get_ontology("file://" + ontology_file).load()
5,348,543
def get_wolframalpha_imagetag(searchterm): """ Used to get the first image tag from the Wolfram Alpha API. The return value is a dictionary with keys that can go directly into html. Takes in: searchterm: the term to search with in the Wolfram Alpha API """ base_url = 'http://api.wolframalpha.com/v2/query?' app_id = credentials['wolframkey'] # api key url_params = {'input': searchterm, 'appid': app_id} headers = {'User-Agent': None} data = urllib.urlencode(url_params) req = urllib2.Request(base_url, data, headers) xml = urllib2.urlopen(req).read() tree = ET.fromstring(xml) for e in tree.findall('pod'): for item in [ef for ef in list(e) if ef.tag == 'subpod']: for it in [i for i in list(item) if i.tag == 'img']: if it.tag == 'img': if float(it.attrib['width']) > 50 and float(it.attrib['height']) > 50: return it.attrib['src']
5,348,544
def get_synset_definitions(word): """Return all possible definitions for synsets in a word synset ring. :param word (str): The word to lookup. :rtype definitions (list): The synset definitions list. """ definitions = [] synsets = get_word_synsets(word) for _synset in synsets: definitions.append(_synset.definition().split()) return definitions
5,348,545
def test_edit_write_with_modifications_two_colision(): """ two modifications with same position """ reader = StringIO("{}") writer = StringIO() mods = Modifications() mods.add(0,2, "XX") mods.add(0,2, "YY") write_with_modifications(reader, mods, writer) writer.seek(0) ret = writer.read() assert ret == "XX"
5,348,546
def getResourceDefUsingSession(url, session, resourceName, sensitiveOptions=False): """ get the resource definition - given a resource name (and catalog url) catalog url should stop at port (e.g. not have ldmadmin, ldmcatalog etc... or have v2 anywhere since we are using v1 api's returns rc=200 (valid) & other rc's from the get resourceDef (json) """ print( "getting resource for catalog:-" + url + " resource=" + resourceName ) apiURL = url + "/access/1/catalog/resources/" + resourceName if sensitiveOptions: apiURL += "?sensitiveOptions=true" # print("\turl=" + apiURL) header = {"Accept": "application/json"} tResp = session.get(apiURL, params={}, headers=header, ) print("\tresponse=" + str(tResp.status_code)) if tResp.status_code == 200: # valid - return the jsom return tResp.status_code, json.loads(tResp.text) else: # not valid return tResp.status_code, None
5,348,547
def _merge_sse(sum1, sum2): """Merge the partial SSE.""" sum_count = sum1 + sum2 return sum_count
5,348,548
def earliest_deadline_first(evs, iface): """ Sort EVs by departure time in increasing order. Args: evs (List[EV]): List of EVs to be sorted. iface (Interface): Interface object. (not used in this case) Returns: List[EV]: List of EVs sorted by departure time in increasing order. """ return sorted(evs, key=lambda x: x.departure)
5,348,549
def auto_load(filename): """Load any supported raw battery cycler file to the correct Datapath automatically. Matches raw file patterns to the correct datapath and returns the datapath object. Example: auto_load("2017-05-09_test-TC-contact_CH33.csv") >>> <ArbinDatapath object> auto_load("PreDiag_000287_000128short.092") >>> <MaccorDatapath object> Args: filename (str, Pathlike): string corresponding to battery cycler file filename. Returns: (beep.structure.base.BEEPDatapath): The datapath child class corresponding to this file. """ if re.match(ARBIN_CONFIG["file_pattern"], filename) or re.match(FastCharge_CONFIG["file_pattern"], filename): return ArbinDatapath.from_file(filename) elif re.match(MACCOR_CONFIG["file_pattern"], filename) or re.match(xTesladiag_CONFIG["file_pattern"], filename): return MaccorDatapath.from_file(filename) elif re.match(INDIGO_CONFIG["file_pattern"], filename): return IndigoDatapath.from_file(filename) elif re.match(BIOLOGIC_CONFIG["file_pattern"], filename): return BiologicDatapath.from_file(filename) elif re.match(NEWARE_CONFIG["file_pattern"], filename): return NewareDatapath.from_file(filename) else: raise ValueError("{} does not match any known file pattern".format(filename))
5,348,550
def set_stream_color(stream, disabled): """ Remember what our original streams were so that we can colorize them separately, which colorama doesn't seem to natively support. """ original_stdout = sys.stdout original_stderr = sys.stderr init(strip=disabled) if stream != original_stdout: sys.stdout = original_stdout sys.stderr = BinaryStreamWrapper(stream, sys.stderr) if stream != original_stderr: sys.stderr = original_stderr sys.stdout = BinaryStreamWrapper(stream, sys.stdout)
5,348,551
def show_scatter_plot(selected_species_df: pd.DataFrame): """ 根据选择的某个类别的两个特征画出散点图 """ st.subheader("Scatter plot") feature_x = st.selectbox("Which feature on x?", selected_species_df.columns[0:4]) feature_y = st.selectbox("Which feature on y?", selected_species_df.columns[0:4]) fig = px.scatter(selected_species_df, x=feature_x, y=feature_y, color="variety") st.plotly_chart(fig)
5,348,552
def print_param_list(param_list, result, decimal_place=2, unit=''): """ Return a result string with parameter data appended. The input `param_list` is a list of a tuple (param_value, param_name), where `param_value` is a float and `param_name` is a string. If `param_value` is None, it writes 'N/A'. """ for param_value, param_name in param_list: result += '<tr>' result += r' <td class = "key"><span>{0}</span></td>'.format(param_name) result += r' <td class="equals">=</td>' if param_value is None: result += r' <td class="value">N/A</td>' else: param_value = '%.*f' % (decimal_place, param_value) result += r' <td class="value"><script type="math/tex">{0} \ \mathrm{{ {1!s} }}</script></td>'.format( param_value, unit) result += '</tr>\n' return result
5,348,553
def test_comments_should_never_be_moved_between_imports_issue_1427(): """isort should never move comments to different import statement. See: https://github.com/PyCQA/isort/issues/1427 """ assert isort.check_code( """from package import CONSTANT from package import * # noqa """, force_single_line=True, show_diff=True, )
5,348,554
def get_veh_id(gb_data): """ Mapping function for vehicle id """ veh_ref = gb_data['Vehicle_Reference'] acc_id = get_acc_id_from_data(gb_data) veh_id = common.get_gb_veh_id(acc_id, int(veh_ref)) return veh_id
5,348,555
def linreg_qr_gramschmidt_unencrypted(clientMap, coordinator, encryLv=3, colTrunc=False): """ Compute vertical federated linear regression using QR. QR decomposition is computed by means of Numpy/Scipy builtin algorithm and Gram-Schmidt method. Parameters ---------- clientMap : List The list of qrClient objects. clientInfos : List The list of machine information of the corresponding qrClient objects. encryLv : int The least number of columns the feature matrix of a single client should have to protect its privacy. colTrunc : bool Do the column pivoting and truncation or not. Returns ------- numpy.array The computed weights of all the clients. The weights corresponding to the constant term is at the last position. """ preprocessing_wo_constaint(clientMap, coordinator.machine_info_client, encryLv, colTrunc) compute_qr_gramschmidt_unencrypted(clientMap, coordinator.machine_info_client) apply_q_unencrypted(clientMap, coordinator.machine_info_client) weights = apply_back_solve_wo_constraint(clientMap, coordinator.machine_info_client) return weights
5,348,556
def register_classes(): """Register these classes with the `LinkFactory` """ AnalyzeExtension.register_class() AnalyzeExtension_SG.register_class()
5,348,557
def has_soa_perm(user_level, obj, ctnr, action): """ Permissions for SOAs SOAs are global, related to domains and reverse domains """ return { 'cyder_admin': True, #? 'ctnr_admin': action == 'view', 'user': action == 'view', 'guest': action == 'view', }.get(user_level, False)
5,348,558
def _move(file, folder, new_name, rel, renamer): """Simply rename a file (full path) in a directory (folder).""" os.rename(file, os.path.join(folder, new_name)) renamer.names[new_name] = rel
5,348,559
def Count_Tiles(colour_pattern,palette): """Count the number of tiles used in each shape and colour. A report is printed to the console. """ mask = np.isnan(colour_pattern[8][0]) shapes_used = np.floor(colour_pattern[8][0][~mask]) colours_used = colour_pattern[8][2][~mask] for i in range (0,len(palette[:,0])): colour = palette[i,0] shape = palette[i,1] amount = palette[i,2] count = np.where(colours_used==colour) if len(count[0]) > amount: print("The number of tiles of colour {}, shape {} required is {}. Only {} available.".format(colour,shape,len(count[0]),amount)) else: print("The number of tiles of colour {}, shape {} required is {}/{}.".format(colour,shape,len(count[0]),amount))
5,348,560
def GetMaxImageMemory(): """ """ pass
5,348,561
def parse_test(project, path): """Compares the dynamic graph to the parsed one.""" inputs, outputs, built_by, graph = parse_graph(project.graph) fuzzed = sorted([f for f in inputs - outputs if project.filter_in(f)]) count = len(fuzzed) root = project.buildPath G = defaultdict(list) with open(path, 'r') as f: for line in f.readlines(): src, deps = line.strip().split(':') src = os.path.normpath(os.path.join(root, src)) for dep in (w.strip() for w in deps.split(', ')): G[os.path.normpath(os.path.join(root, dep))].append(src) def traverse_graph(node, viz): if node in viz: return viz for next in G[node]: viz.add(node) traverse_graph(next, viz) return viz for idx, input in zip(range(count), fuzzed): print('[{0}/{1}] {2}:'.format(idx + 1, count, input)) expected = graph.find_deps(input) & outputs actual = traverse_graph(input, set()) if actual != expected: for f in sorted(actual): if f not in expected: print(' +', f) for f in sorted(expected): if f not in actual: print(' -', f)
5,348,562
def upload_artifact(args: Any, file_path: str, org_id: Any = None) -> Dict[str, Any]: """ Upload artifact using Pyxis API Args: args (Any): CLI arguments file_path (str): Path to a artifact file org_id (Any): organization ID - optional Returns: Dict[str, Any]: Pyxis response """ upload_url = urljoin( args.pyxis_url, f"v1/projects/certification/id/{args.cert_project_id}/artifacts" ) file_name = os.path.basename(file_path) file_size = os.path.getsize(file_path) with open(file_path, "rb") as artifact: content = artifact.read() base64_content = base64.b64encode(content).decode("utf8") mime = magic.from_file(file_path, mime=True) artifact_payload = { "content": base64_content, "certification_hash": args.certification_hash, "content_type": mime, "filename": file_name, "file_size": file_size, "operator_package_name": args.operator_package_name, "version": args.operator_version, } if org_id: artifact_payload["org_id"] = org_id return pyxis.post(upload_url, artifact_payload)
5,348,563
def balance_command(chat, message, args): """Show your token balance""" try: # push txn asyncio.get_event_loop().run_until_complete(balance(chat.id, chat)) except EosRpcException as e: e = str(e).replace("\'", "\"") code_idx = e.find('code') code_val = int(e[code_idx+7:(code_idx+14)]) # print(code_idx) # print(code_val) # print(type(code_val)) if code_idx != -1: # found "code" key if code_val == 3010001: # Case-1: invalid name chat.send("Sorry! Your EOSIO account name doesn\'t exist on this chain.") elif code_val == 3050003: # Case-1: incorrect quantity or symbol chat.send("Sorry! Your EOSIO account doesn\'t have any balances corresponding to parsed quantity or symbol on this chain.") elif code_val == 3080004: chat.send("Sorry! The contract account \'tippertipper\' doesn\'t have enough CPU to handle this activity on this chain. Please contact the Bot owner {bot.owner}.") else: chat.send("Sorry! Some other Exception occured. Please contact the Bot owner {bot.owner}.") else: # NOT found "code" key chat.send("Sorry! No code no. is present in the error. Please contact the Bot owner {bot.owner}.") except EosAccountDoesntExistException: chat.send(f'Your EOSIO account name doesn\'t exist on this chain.') except EosAssertMessageException as e: e = str(e).replace("\'", "\"") # replace single quotes (') with double quotes (") to make it as valid JSON & then extract the 'message' value. # chat.send(f"{str(e)}", syntax="plain") # print full error dict chat.send(f"Assertion Error msg --> {json.loads(e)['details'][0]['message']}") # print the message except EosDeadlineException: chat.send(f'Transaction timed out. Please try again.')
5,348,564
def show_absolute(signal, kind, unshuffled=False, unshuffle=False, map_backward=None, vmin=-4, vmax=4): """ Plot the absolute values of the given signal matrix. Parameters ---------- signal : numpy.ndarray, shape=(n_samples, n_features) True signal matrix. kind : str, values=('Bias', 'Signal') Type of absolute value matrix to be shown (used as annotation on plot). unshuffled : bool If the input data is unshuffled. unshuffle : bool If to unshuffle the input data. map_backward : dict, value=('feature', 'sample'), values=dict Map from new annotation to old annotion. vmin : int Minimum absolute value on color scale. vmax : int Maximum absolute value on color scale. """ cmap = sb.diverging_palette( 250, 15, s=75, l=40, as_cmap=True, center="dark") indices_x = np.arange(signal.shape[0], dtype=int) indices_y = np.arange(signal.shape[1], dtype=int) fig = pl.figure(figsize=(7 * (signal.shape[1] / signal.shape[0]), 7)) ax = fig.add_subplot(111) if unshuffle: ax.set_title('{} (unshuffled)'.format(kind)) indices_x = np.asarray([map_backward['sample'][i] for i in indices_x]) indices_y = np.asarray([map_backward['feature'][i] for i in indices_y]) signal = signal[indices_x] signal = signal[:, indices_y] if unshuffled: ax.set_title('{} (unshuffled)'.format(kind)) indices_x = np.asarray([map_backward['sample'][i] for i in indices_x]) indices_y = np.asarray([map_backward['feature'][i] for i in indices_y]) else: ax.set_title('{}'.format(kind)) ax_seaborn = sb.heatmap(signal, vmin=vmin, vmax=vmax, cmap=cmap, ax=ax, cbar_kws={ 'shrink': 0.5}, xticklabels=indices_y, yticklabels=indices_x) ax.tick_params(axis='both', which='both', length=0) ax.set_xlabel('Features') ax.set_ylabel('Samples')
5,348,565
def main(base_dir, out_dir, use_interpenetration=True, n_betas=10, flength=5000., pix_thsh=25., use_neutral=False, viz=True): """Set up paths to image and joint data, saves results. :param base_dir: folder containing LSP images and data :param out_dir: output folder :param use_interpenetration: boolean, if True enables the interpenetration term :param n_betas: number of shape coefficients considered during optimization :param flength: camera focal length (an estimate) :param pix_thsh: threshold (in pixel), if the distance between shoulder joints in 2D is lower than pix_thsh, the body orientation as ambiguous (so a fit is run on both the estimated one and its flip) :param use_neutral: boolean, if True enables uses the neutral gender SMPL model :param viz: boolean, if True enables visualization during optimization """ img_dir = join(abspath(base_dir), 'images/lsp') data_dir = join(abspath(base_dir), 'results/lsp') if not exists(out_dir): makedirs(out_dir) # Render degrees: List of degrees in azimuth to render the final fit. # Note that rendering many views can take a while. do_degrees = [0.] sph_regs = None if not use_neutral: _LOGGER.info("Reading genders...") # File storing information about gender in LSP with open(join(data_dir, 'lsp_gender.csv')) as f: genders = f.readlines() model_female = load_model(MODEL_FEMALE_PATH) model_male = load_model(MODEL_MALE_PATH) if use_interpenetration: sph_regs_male = np.load(SPH_REGS_MALE_PATH) sph_regs_female = np.load(SPH_REGS_FEMALE_PATH) else: gender = 'neutral' model = load_model(MODEL_NEUTRAL_PATH) if use_interpenetration: sph_regs = np.load(SPH_REGS_NEUTRAL_PATH) # Load joints est = np.load(join(data_dir, 'est_joints.npz'))['est_joints'] # Load images img_paths = sorted(glob(join(img_dir, '*[0-9].jpg'))) for ind, img_path in enumerate(img_paths): out_path = '%s/%04d.pkl' % (out_dir, ind) if not exists(out_path): _LOGGER.info('Fitting 3D body on `%s` (saving to `%s`).', img_path, out_path) img = cv2.imread(img_path) if img.ndim == 2: _LOGGER.warn("The image is grayscale!") img = np.dstack((img, img, img)) joints = est[:2, :, ind].T conf = est[2, :, ind] if not use_neutral: gender = 'male' if int(genders[ind]) == 0 else 'female' if gender == 'female': model = model_female if use_interpenetration: sph_regs = sph_regs_female elif gender == 'male': model = model_male if use_interpenetration: sph_regs = sph_regs_male params, vis = run_single_fit( img, joints, conf, model, regs=sph_regs, n_betas=n_betas, flength=flength, pix_thsh=pix_thsh, scale_factor=2, viz=viz, do_degrees=do_degrees) if viz: import matplotlib.pyplot as plt plt.ion() plt.show() plt.subplot(121) plt.imshow(img[:, :, ::-1]) if do_degrees is not None: for di, deg in enumerate(do_degrees): plt.subplot(122) plt.cla() plt.imshow(vis[di]) plt.draw() plt.title('%d deg' % deg) plt.pause(1) raw_input('Press any key to continue...') with open(out_path, 'w') as outf: pickle.dump(params, outf) # This only saves the first rendering. if do_degrees is not None: cv2.imwrite(out_path.replace('.pkl', '.png'), vis[0])
5,348,566
def check_skyscrapers(input_path: str) -> bool: """ Main function to check the status of skyscraper game board. Return True if the board status is compliant with the rules, False otherwise. """ board = read_input(input_path) return check_not_finished_board(board) and check_uniqueness_in_rows(board) and \ check_horizontal_visibility(board) and check_columns(board)
5,348,567
def test_invalid_tri(): """Invalid triangle yields false""" check50.run("./is_valid_tri").stdin("4").stdin("2").stdin("7").stdout("false\n", "false\n").exit(0)
5,348,568
def test_pidfile_is_absolute_path(): """Test that the pidfile is converted to an absolute path.""" pidfile = "~/test.pid" user = getpass.getuser() m = simple.SimplePidManager(pidfile=pidfile) assert "~" not in m.pidfile assert m.pidfile == "{0}/test.pid".format(os.path.expanduser("~")) assert user in m.pidfile
5,348,569
async def get_station(station: avwx.Station, token: Optional[Token]) -> dict: """Log and returns station data as dict""" await app.station.add(station.lookup_code, "station") return await station_data_for(station, token=token) or {}
5,348,570
def add_check_numerics_ops(): """Connect a `check_numerics` to every floating point tensor. `check_numerics` operations themselves are added for each `half`, `float`, or `double` tensor in the graph. For all ops in the graph, the `check_numerics` op for all of its (`half`, `float`, or `double`) inputs is guaranteed to run before the `check_numerics` op on any of its outputs. Note: This API is not compatible with the use of `tf.cond` or `tf.while_loop`, and will raise a `ValueError` if you attempt to call it in such a graph. Returns: A `group` op depending on all `check_numerics` ops added. Raises: ValueError: If the graph contains any numeric operations in a control flow structure. RuntimeError: If called with eager execution enabled. @compatibility(eager) Not compatible with eager execution. To check for `Inf`s and `NaN`s under eager execution, call tfe.seterr(inf_or_nan='raise') once before executing the checked operations. @enc_compatibility """ if context.executing_eagerly(): raise RuntimeError( "add_check_numerics_ops() is not compatible with eager execution. " "To check for Inf's and NaN's under eager execution, call " "tfe.seterr(inf_or_nan='raise') once before executing the " "checked operations.") check_op = [] # This code relies on the ordering of ops in get_operations(). # The producer of a tensor always comes before that tensor's consumer in # this list. This is true because get_operations() returns ops in the order # added, and an op can only be added after its inputs are added. for op in ops.get_default_graph().get_operations(): for output in op.outputs: if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: if op._get_control_flow_context() is not None: # pylint: disable=protected-access raise ValueError("`tf.add_check_numerics_ops() is not compatible " "with TensorFlow control flow operations such as " "`tf.cond()` or `tf.while_loop()`.") message = op.name + ":" + str(output.value_index) with ops.control_dependencies(check_op): check_op = [array_ops.check_numerics(output, message=message)] return control_flow_ops.group(*check_op)
5,348,571
def get_text(part): """Gmailの本文をdecode""" if not part['filename'] and \ part['body']['size'] > 0 and \ 'data' in part['body'].keys(): content_type = header(part['headers'], 'Content-Type') encode_type = header(part['headers'], 'Content-Transfer-Encoding') data = decode_data(content_type, encode_type, part['filename'], part['body']['data']) if data["data_type"]=="text": return data['data'] return ''
5,348,572
def clear(): """ Clear PlaceOrder screen variables and assign new values. """ global price_thread1, price_thread2, price_thread3, price_thread4,\ lsize_thread1, lsize_thread2, lsize_thread3, lsize_thread4 ls.set(-1) cp.set(-1) st1.set(0) st2.set(0) st3.set(0) st4.set(0) # instrument.set("") instu.set("") lots.set(1) expiry.set("") Bid_label['text'] = "None" Ask_label['text'] = "None" inable_all() price_thread1 = 0 price_thread2 = 0 price_thread3 = 0 price_thread4 = 0 lsize_thread1 = 0 lsize_thread2 = 0 lsize_thread3 = 0 lsize_thread4 = 0
5,348,573
def serve_forever(host, port): """ Start mail services. :param host: Host :param port: Port """ print("Starting mail-in/out on {}:{}".format(host, port)) inbox.serve(address=host, port=port)
5,348,574
def test_create_run_action_with_missing_id( decoy: Decoy, run_store: RunStore, unique_id: str, current_time: datetime, client: TestClient, ) -> None: """It should 404 if the run ID does not exist.""" not_found_error = RunNotFoundError(run_id="run-id") decoy.when(run_store.get(run_id="run-id")).then_raise(not_found_error) response = client.post( "/runs/run-id/actions", json={"data": {"actionType": "play"}}, ) verify_response( response, expected_status=404, expected_errors=RunNotFound(detail=str(not_found_error)), )
5,348,575
def run(ex: "interactivity.Execution"): """Specify the target function(s) and/or layer(s) to target.""" selection: "definitions.Selection" = ex.shell.selection is_exact = ex.args.get("exact", False) functions = ex.args.get("functions", False) layers = ex.args.get("layers", False) both = not functions and not layers names = _get_names(ex) if both and names == ["*"]: status = "ALL" message = "Selection has been cleared. All items are now selected." ex.shell.selection = dataclasses.replace( selection, function_needles=["*"], layer_needles=["*"], bundle_all=True, ) elif is_exact: status = "EXACT" message = "Exact selection has been applied." ex.shell.selection = _update_exact_selection( names=names, functions=functions, layers=layers, selection=selection, ) else: status = "MATCH" message = "Matching items have been selected." ex.shell.selection = _update_fuzzy_selection( names=names, functions=functions, layers=layers, selection=selection, ) targets = ex.shell.context.get_selected_targets(ex.shell.selection) return ex.finalize( status=status, message=message, echo=True, info={ "functions": _to_names(targets.function_targets), "layers": _to_names(targets.layer_targets), }, )
5,348,576
def main(): """Shows basic usage of the Apps Script API. Creates a Apps Script API service object and uses it to call an Apps Script function to print out a list of folders in the user's root directory. """ SCRIPT_ID = 'ENTER_YOUR_SCRIPT_ID_HERE' # Authorize and create a service object. credentials = get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build('script', 'v1', http=http) # Create an execution request object. request = {"function": "getFoldersUnderRoot"} try: # Make the API request. response = service.scripts().run(body=request, scriptId=SCRIPT_ID).execute() if 'error' in response: # The API executed, but the script returned an error. # Extract the first (and only) set of error details. The values of # this object are the script's 'errorMessage' and 'errorType', and # an list of stack trace elements. error = response['error']['details'][0] print("Script error message: {0}".format(error['errorMessage'])) if 'scriptStackTraceElements' in error: # There may not be a stacktrace if the script didn't start # executing. print("Script error stacktrace:") for trace in error['scriptStackTraceElements']: print("\t{0}: {1}".format(trace['function'], trace['lineNumber'])) else: # The structure of the result depends upon what the Apps Script # function returns. Here, the function returns an Apps Script Object # with String keys and values, and so the result is treated as a # Python dictionary (folderSet). folderSet = response['response'].get('result', {}) if not folderSet: print('No folders returned!') else: print('Folders under your root folder:') for (folderId, folder) in folderSet.iteritems(): print("\t{0} ({1})".format(folder, folderId)) except errors.HttpError as e: # The API encountered a problem before the script started executing. print(e.content)
5,348,577
def get_mixture_mse_accuracy(output_dim, num_mixes): """Construct an MSE accuracy function for the MDN layer that takes one sample and compares to the true value.""" # Construct a loss function with the right number of mixtures and outputs def mse_func(y_true, y_pred): # Reshape inputs in case this is used in a TimeDistribued layer y_pred = tf.reshape(y_pred, [-1, (2 * num_mixes * output_dim) + num_mixes], name='reshape_ypreds') y_true = tf.reshape(y_true, [-1, output_dim], name='reshape_ytrue') out_mu, out_sigma, out_pi = tf.split(y_pred, num_or_size_splits=[num_mixes * output_dim, num_mixes * output_dim, num_mixes], axis=1, name='mdn_coef_split') cat = tfd.Categorical(logits=out_pi) component_splits = [output_dim] * num_mixes mus = tf.split(out_mu, num_or_size_splits=component_splits, axis=1) sigs = tf.split(out_sigma, num_or_size_splits=component_splits, axis=1) coll = [tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale) for loc, scale in zip(mus, sigs)] mixture = tfd.Mixture(cat=cat, components=coll) samp = mixture.sample() mse = tf.reduce_mean(tf.square(samp - y_true), axis=-1) # Todo: temperature adjustment for sampling functon. return mse # Actually return the loss_func with tf.name_scope('MDNLayer'): return mse_func
5,348,578
def ByName(breakdown_metric_name): """Return a BreakdownMetric class by name.""" breakdown_mapping = { 'distance': ByDistance, 'num_points': ByNumPoints, 'rotation': ByRotation, 'difficulty': ByDifficulty } if breakdown_metric_name not in breakdown_mapping: raise ValueError('Invalid breakdown name: %s, valid names are %s' % (breakdown_metric_name, list(breakdown_mapping.keys()))) return breakdown_mapping[breakdown_metric_name]
5,348,579
def test_ap_wpa_psk_ext_eapol(dev, apdev): """WPA2-PSK AP using external EAPOL supplicant""" (bssid,ssid,hapd,snonce,pmk,addr,wpae) = eapol_test(apdev[0], dev[0], wpa2=False) msg = recv_eapol(hapd) anonce = msg['rsn_key_nonce'] logger.info("Replay same data back") send_eapol(hapd, addr, build_eapol(msg)) logger.info("Too short data") send_eapol(hapd, addr, build_eapol(msg)[0:98]) (ptk, kck, kek) = pmk_to_ptk(pmk, addr, bssid, snonce, anonce) msg['descr_type'] = 2 reply_eapol("2/4(invalid type)", hapd, addr, msg, 0x010a, snonce, wpae, kck) msg['descr_type'] = 254 reply_eapol("2/4", hapd, addr, msg, 0x010a, snonce, wpae, kck) msg = recv_eapol(hapd) if anonce != msg['rsn_key_nonce']: raise Exception("ANonce changed") logger.info("Replay same data back") send_eapol(hapd, addr, build_eapol(msg)) reply_eapol("4/4", hapd, addr, msg, 0x030a, None, None, kck) hapd_connected(hapd)
5,348,580
def deserialize_structure(serialized_structure, dtype=np.int32): """Converts a string to a structure. Args: serialized_structure: A structure produced by `serialize_structure`. dtype: The data type of the output numpy array. Returns: A numpy array with `dtype`. """ return np.asarray( [token for token in serialized_structure.split(domains.SEP_TOKEN)], dtype=dtype)
5,348,581
def get_all_text_elements(dataset_name: str) -> List[TextElement]: """ get all the text elements of the given dataset :param dataset_name: """ return data_access.get_all_text_elements(dataset_name=dataset_name)
5,348,582
def form_x(form_file,*args): """ same as above, except assumes all tags in the form are number, and uses the additional arguments in *args to fill out those tag values. :param form_file: file which we use for replacements :param *args: optional arguments which contain the form entries for the file in question, by number. """ form_dict = {} count = 0 for arg in args: count += 1 form_dict[str(count)] = str(arg) return form(form_file,form_dict)
5,348,583
def init(): """Manage IAM users.""" formatter = cli.make_formatter('aws_user') @click.group() def user(): """Manage IAM users.""" pass @user.command() @click.option('--create', is_flag=True, default=False, help='Create if it does not exist') @click.option('--path', default='/', help='Path for user name.') @click.option('--inline-policy', type=cli.LIST, required=False, help='Inline user policy name:file') @click.option('--attached-policy', type=cli.LIST, required=False, help='global:PolicyName or local:PolicyName') @click.option('--attached-policy', type=cli.LIST, required=False, help='global:PolicyName or local:PolicyName') @click.argument('user-name', required=True, callback=aws_cli.sanitize_user_name) @cli.admin.ON_EXCEPTIONS def configure(create, path, inline_policy, attached_policy, user_name): """Create/configure/get IAM user.""" iam_conn = awscontext.GLOBAL.iam try: user = iamclient.get_user(iam_conn, user_name) except exc.NotFoundError: if not create: raise user = None if not user: user = iamclient.create_user(iam_conn, user_name, path) if inline_policy: _set_user_policy(iam_conn, user_name, inline_policy) if attached_policy: _set_attached_policy(iam_conn, user_name, attached_policy) user['UserPolicies'] = iamclient.list_user_policies(iam_conn, user_name) user['AttachedPolicies'] = iamclient.list_attached_user_policies( iam_conn, user_name) cli.out(formatter(user)) @user.command(name='list') @cli.admin.ON_EXCEPTIONS @click.option('--path', default='/', help='Path for user name.') def list_users(path): """List IAM users. """ iam_conn = awscontext.GLOBAL.iam users = iamclient.list_users(iam_conn, path) cli.out(formatter(users)) @user.command() @click.option('--force', is_flag=True, default=False, help='Delete user, even is user has policies attached.') @click.argument('user-name') @cli.admin.ON_EXCEPTIONS def delete(force, user_name): """Delete IAM user.""" iam_conn = awscontext.GLOBAL.iam if force: user_policies = iamclient.list_user_policies(iam_conn, user_name) for policy in user_policies: _LOGGER.info('deleting inline policy: %s', policy) iamclient.delete_user_policy(iam_conn, user_name, policy) attached_pols = iamclient.list_attached_user_policies(iam_conn, user_name) for policy in attached_pols: _LOGGER.info('detaching policy: %s', policy['PolicyArn']) iamclient.detach_user_policy(iam_conn, user_name, policy['PolicyArn']) groups = iamclient.list_groups_for_user(iam_conn, user_name) for group in groups: _LOGGER.info('removing user from group: %s', group) iamclient.remove_user_from_group(iam_conn, user_name, group) try: iamclient.delete_user(iam_conn=iam_conn, user_name=user_name) except iam_conn.exceptions.DeleteConflictException: raise click.UsageError('User [%s] has inline or attached ' 'policies, or is a member of one or ' 'more group, use --force to force ' 'delete.' % user_name) del configure del list_users del delete return user
5,348,584
def fix_units(dims): """Fill in missing units.""" default = [d.get("units") for d in dims][-1] for dim in dims: dim["units"] = dim.get("units", default) return dims
5,348,585
def annotate_movement(raw, pos, rotation_velocity_limit=None, translation_velocity_limit=None, mean_distance_limit=None, use_dev_head_trans='average'): """Detect segments with movement. Detects segments periods further from rotation_velocity_limit, translation_velocity_limit and mean_distance_limit. It returns an annotation with the bad segments. Parameters ---------- raw : instance of Raw Data to compute head position. pos : array, shape (N, 10) The position and quaternion parameters from cHPI fitting. Obtained with `mne.chpi` functions. rotation_velocity_limit : float Head rotation velocity limit in radians per second. translation_velocity_limit : float Head translation velocity limit in radians per second. mean_distance_limit : float Head position limit from mean recording in meters. use_dev_head_trans : 'average' (default) | 'info' Identify the device to head transform used to define the fixed HPI locations for computing moving distances. If ``average`` the average device to head transform is computed using ``compute_average_dev_head_t``. If ``info``, ``raw.info['dev_head_t']`` is used. Returns ------- annot : mne.Annotations Periods with head motion. hpi_disp : array Head position over time with respect to the mean head pos. See Also -------- compute_average_dev_head_t """ sfreq = raw.info['sfreq'] hp_ts = pos[:, 0].copy() - raw.first_time dt = np.diff(hp_ts) hp_ts = np.concatenate([hp_ts, [hp_ts[-1] + 1. / sfreq]]) orig_time = raw.info['meas_date'] annot = Annotations([], [], [], orig_time=orig_time) # Annotate based on rotational velocity t_tot = raw.times[-1] if rotation_velocity_limit is not None: assert rotation_velocity_limit > 0 # Rotational velocity (radians / sec) r = _angle_between_quats(pos[:-1, 1:4], pos[1:, 1:4]) r /= dt bad_mask = (r >= np.deg2rad(rotation_velocity_limit)) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'ω >= %5.1f°/s (max: %0.1f°/s)' % (bad_pct, len(onsets), rotation_velocity_limit, np.rad2deg(r.max()))) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_rotat_vel', orig_time=orig_time) # Annotate based on translational velocity limit if translation_velocity_limit is not None: assert translation_velocity_limit > 0 v = np.linalg.norm(np.diff(pos[:, 4:7], axis=0), axis=-1) v /= dt bad_mask = (v >= translation_velocity_limit) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'v >= %5.4fm/s (max: %5.4fm/s)' % (bad_pct, len(onsets), translation_velocity_limit, v.max())) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_trans_vel', orig_time=orig_time) # Annotate based on displacement from mean head position disp = [] if mean_distance_limit is not None: assert mean_distance_limit > 0 # compute dev to head transform for fixed points use_dev_head_trans = use_dev_head_trans.lower() if use_dev_head_trans not in ['average', 'info']: raise ValueError('use_dev_head_trans must be either' + ' \'average\' or \'info\': got \'%s\'' % (use_dev_head_trans,)) if use_dev_head_trans == 'average': fixed_dev_head_t = compute_average_dev_head_t(raw, pos) elif use_dev_head_trans == 'info': fixed_dev_head_t = raw.info['dev_head_t'] # Get static head pos from file, used to convert quat to cartesian chpi_pos = sorted([d for d in raw.info['hpi_results'][-1] ['dig_points']], key=lambda x: x['ident']) chpi_pos = np.array([d['r'] for d in chpi_pos]) # Get head pos changes during recording chpi_pos_mov = np.array([apply_trans(_quat_to_affine(quat), chpi_pos) for quat in pos[:, 1:7]]) # get fixed position chpi_pos_fix = apply_trans(fixed_dev_head_t, chpi_pos) # get movement displacement from mean pos hpi_disp = chpi_pos_mov - np.tile(chpi_pos_fix, (pos.shape[0], 1, 1)) # get positions above threshold distance disp = np.sqrt((hpi_disp ** 2).sum(axis=2)) bad_mask = np.any(disp > mean_distance_limit, axis=1) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'disp >= %5.4fm (max: %5.4fm)' % (bad_pct, len(onsets), mean_distance_limit, disp.max())) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_dist', orig_time=orig_time) _adjust_onset_meas_date(annot, raw) return annot, disp
5,348,586
def set_weight_send_next(request, responder): """ When the user provides their weight, save the answer and move to the next question. """ process_answer_with_entity(request, responder, pd.Q_WEIGHT)
5,348,587
def run_in_executor( func: F, executor: ThreadPoolExecutor = None, args: Any = (), kwargs: Any = MappingProxyType({}), ) -> Future: """将耗时函数加入到线程池 .""" loop = get_event_loop() # noinspection PyTypeChecker return loop.run_in_executor( # type: ignore executor, context_partial(func, *args, **kwargs), )
5,348,588
def validate_params(canvas_size, border_width): """validate_params(canvas_size, border_width) -> None Assert that canvas and border size are both non-negative ints, canvas size is not zero, and canvas size is larger than border""" assert_is_int('size', canvas_size) assert_is_int('border', border_width) if canvas_size == 0: raise InterpreterFailureException('Invalid size: cannot be 0\n') if border_width > canvas_size: raise InterpreterFailureException( 'Invalid border %dpx: cannot be bigger than size (%dpx)\n' % (border_width, canvas_size) )
5,348,589
def reset_slave(server): """Function: reset_slave Description: Clear replication configuration in a slave. Arguments: (input) server -> Server instance. """ # Semantic change in MySQL 8.0.22 slave = "replica" if server.version >= (8, 0, 22) else "slave" server.cmd_sql("reset " + slave + " all")
5,348,590
def find_entry_with_minimal_scale_at_prime(self, p): """ Finds the entry of the quadratic form with minimal scale at the prime p, preferring diagonal entries in case of a tie. (I.e. If we write the quadratic form as a symmetric matrix M, then this entry M[i,j] has the minimal valuation at the prime p.) Note: This answer is independent of the kind of matrix (Gram or Hessian) associated to the form. INPUT: `p` -- a prime number > 0 OUTPUT: a pair of integers >= 0 EXAMPLES:: sage: Q = QuadraticForm(ZZ, 2, [6, 2, 20]); Q Quadratic form in 2 variables over Integer Ring with coefficients: [ 6 2 ] [ * 20 ] sage: Q.find_entry_with_minimal_scale_at_prime(2) (0, 1) sage: Q.find_entry_with_minimal_scale_at_prime(3) (1, 1) sage: Q.find_entry_with_minimal_scale_at_prime(5) (0, 0) """ n = self.dim() min_val = Infinity ij_index = None val_2 = valuation(2, p) for d in range(n): ## d = difference j-i for e in range(n - d): ## e is the length of the diagonal with value d. ## Compute the valuation of the entry if d == 0: tmp_val = valuation(self[e, e+d], p) else: tmp_val = valuation(self[e, e+d], p) - val_2 ## Check if it's any smaller than what we have if tmp_val < min_val: ij_index = (e,e+d) min_val = tmp_val ## Return the result return ij_index
5,348,591
def _gcs_get(url: str, temp_filename: str) -> None: """Pull a file directly from GCS.""" blob = _get_gcs_blob(url) blob.download_to_filename(temp_filename)
5,348,592
def from_arrow(array, highlevel=True, behavior=None): """ Args: array (`pyarrow.Array`, `pyarrow.ChunkedArray`, `pyarrow.RecordBatch`, or `pyarrow.Table`): Apache Arrow array to convert into an Awkward Array. highlevel (bool): If True, return an #ak.Array; otherwise, return a low-level #ak.layout.Content subclass. behavior (None or dict): Custom #ak.behavior for the output array, if high-level. """ import awkward._v2._connect.pyarrow out = awkward._v2._connect.pyarrow.handle_arrow(array, pass_empty_field=True) return ak._v2._util.wrap(out, behavior, highlevel)
5,348,593
def _basis_search(equiv_lib, source_basis, target_basis, heuristic): """Search for a set of transformations from source_basis to target_basis. Args: equiv_lib (EquivalenceLibrary): Source of valid translations source_basis (Set[Tuple[gate_name: str, gate_num_qubits: int]]): Starting basis. target_basis (Set[gate_name: str]): Target basis. heuristic (Callable[[source_basis, target_basis], int]): distance heuristic. Returns: Optional[List[Tuple[gate, equiv_params, equiv_circuit]]]: List of (gate, equiv_params, equiv_circuit) tuples tuples which, if applied in order will map from source_basis to target_basis. Returns None if no path was found. """ source_basis = frozenset(source_basis) target_basis = frozenset(target_basis) open_set = set() # Bases found but not yet inspected. closed_set = set() # Bases found and inspected. # Priority queue for inspection order of open_set. Contains Tuple[priority, count, basis] open_heap = [] # Map from bases in closed_set to predecessor with lowest cost_from_source. # Values are Tuple[prev_basis, gate_name, params, circuit]. came_from = {} basis_count = iter_count() # Used to break ties in priority. open_set.add(source_basis) heappush(open_heap, (0, next(basis_count), source_basis)) # Map from basis to lowest found cost from source. cost_from_source = defaultdict(lambda: np.inf) cost_from_source[source_basis] = 0 # Map from basis to cost_from_source + heuristic. est_total_cost = defaultdict(lambda: np.inf) est_total_cost[source_basis] = heuristic(source_basis, target_basis) logger.debug('Begining basis search from %s to %s.', source_basis, target_basis) while open_set: _, _, current_basis = heappop(open_heap) if current_basis in closed_set: # When we close a node, we don't remove it from the heap, # so skip here. continue if {gate_name for gate_name, gate_num_qubits in current_basis}.issubset(target_basis): # Found target basis. Construct transform path. rtn = [] last_basis = current_basis while last_basis != source_basis: prev_basis, gate_name, gate_num_qubits, params, equiv = came_from[last_basis] rtn.append((gate_name, gate_num_qubits, params, equiv)) last_basis = prev_basis rtn.reverse() logger.debug('Transformation path:') for gate_name, gate_num_qubits, params, equiv in rtn: logger.debug('%s/%s => %s\n%s', gate_name, gate_num_qubits, params, equiv) return rtn logger.debug('Inspecting basis %s.', current_basis) open_set.remove(current_basis) closed_set.add(current_basis) for gate_name, gate_num_qubits in current_basis: equivs = equiv_lib._get_equivalences((gate_name, gate_num_qubits)) basis_remain = current_basis - {(gate_name, gate_num_qubits)} neighbors = [ (frozenset(basis_remain | {(inst.name, inst.num_qubits) for inst, qargs, cargs in equiv.data}), params, equiv) for params, equiv in equivs] # Weight total path length of transformation weakly. tentative_cost_from_source = cost_from_source[current_basis] + 1e-3 for neighbor, params, equiv in neighbors: if neighbor in closed_set: continue if tentative_cost_from_source >= cost_from_source[neighbor]: continue open_set.add(neighbor) came_from[neighbor] = (current_basis, gate_name, gate_num_qubits, params, equiv) cost_from_source[neighbor] = tentative_cost_from_source est_total_cost[neighbor] = tentative_cost_from_source \ + heuristic(neighbor, target_basis) heappush(open_heap, (est_total_cost[neighbor], next(basis_count), neighbor)) return None
5,348,594
def Get_EstimatedRedshifts( scenario={} ): """ obtain estimated source redshifts written to npy file """ return np.genfromtxt( FilenameEstimatedRedshift( scenario ), dtype=None, delimiter=',', names=True, encoding='UTF-8')
5,348,595
def request_init(c, options, server, request, task): """`RequestManager` callback to initialise URL of the connection.""" print server + urllib.quote(request) c.setopt(pycurl.URL, server + urllib.quote(request))
5,348,596
def get_national_museums(db_connection, export_to_csv, export_path): """ Get national museum data from DB """ df = pd.read_sql('select * from optourism.state_national_museum_visits', con=db_connection) if export_to_csv: df.to_csv(f"{export_path}_nationalmuseums_raw.csv", index=False) return df
5,348,597
def new_database(uri): """Drop the database at ``uri`` and create a brand new one.""" destroy_database(uri) create_database(uri)
5,348,598
def hrm_configure_pr_group_membership(): """ Configures the labels and CRUD Strings of pr_group_membership """ T = current.T s3db = current.s3db settings = current.deployment_settings request = current.request function = request.function table = s3db.pr_group_membership if settings.get_hrm_teams() == "Team": table.group_id.label = T("Team Name") table.group_head.label = T("Team Leader") if function == "group": current.response.s3.crud_strings["pr_group_membership"] = Storage( title_create = T("Add Member"), title_display = T("Membership Details"), title_list = T("Team Members"), title_update = T("Edit Membership"), title_search = T("Search Members"), subtitle_create = T("Add New Team Member"), label_list_button = T("List Members"), label_create_button = T("Add Team Member"), label_delete_button = T("Delete Membership"), msg_record_created = T("Team Member added"), msg_record_modified = T("Membership updated"), msg_record_deleted = T("Membership deleted"), msg_list_empty = T("No Members currently registered")) else: table.group_head.label = T("Group Leader") phone_label = settings.get_ui_label_mobile_phone() site_label = settings.get_org_site_label() if function == "group": db = current.db ptable = db.pr_person controller = request.controller def hrm_person_represent(id, row=None): if row: id = row.id elif id: row = db(ptable.id == id).select(ptable.first_name, limitby=(0, 1) ).first() else: return current.messages["NONE"] return A(row.first_name, _href=URL(c=controller, f="person", args=id)) table.person_id.represent = hrm_person_represent list_fields = ["id", (T("First Name"), "person_id"), "person_id$middle_name", "person_id$last_name", "group_head", (T("Email"), "person_id$email.value"), (phone_label, "person_id$phone.value"), (current.messages.ORGANISATION, "person_id$human_resource.organisation_id"), (site_label, "person_id$human_resource.site_id"), ] orderby = "pr_person.first_name" else: list_fields = ["id", "group_id", "group_head", "group_id$description", ] orderby = table.group_id s3db.configure("pr_group_membership", list_fields=list_fields, orderby=orderby)
5,348,599