content
stringlengths
22
815k
id
int64
0
4.91M
def test_analyze(request,hash,db_name): """ Get features of a sequence, using the sequence's sha-1 hash as the identifier. """ db = blat.models.Feature_Database.objects.get(name=db_name) sequence = blat.models.Sequence.objects.get(db=db,hash=hash) ts = int(time.mktime(sequence.modified.timetuple())) return render_to_response( 'test/analyze.html', { "hash" : hash, "mtime" : ts }, context_instance=RequestContext(request) )
5,350,100
def _collect_scaling_groups(owner: str) -> List: """Collect autoscaling groups that contain key `ES_role` and belong to the specified owner""" client = boto3.client("autoscaling") print("Collecting scaling groups") resp = client.describe_auto_scaling_groups() assert "NextToken" not in resp, "did not program to handle pagination" groups = resp['AutoScalingGroups'] result = [] for group in groups: if _get_tag_val(group['Tags'], 'Owner') == owner and \ any([tag['Key'] == ES_ROLE_KEY for tag in group['Tags']]): result.append(group) return result
5,350,101
def check_for_updates(): """ Check for the existence of newer versions of the client, reporting both current release version and development version. For help installing development versions of the client, see the docs for :py:mod:`synapseclient` or the `README.md <https://github.com/Sage-Bionetworks/synapsePythonClient>`_. """ sys.stderr.write('Python Synapse Client\n') sys.stderr.write('currently running version: %s\n' % synapseclient.__version__) release_version_info = _get_version_info(_VERSION_URL) sys.stderr.write('latest release version: %s\n' % release_version_info['latestVersion']) if _version_tuple(synapseclient.__version__, levels=3) < _version_tuple(release_version_info['latestVersion'], levels=3): print(("\nUPGRADE AVAILABLE\n\nA more recent version of the Synapse Client (%s) is available. " "Your version (%s) can be upgraded by typing:\n" " pip install --upgrade synapseclient\n\n") % (release_version_info['latestVersion'], synapseclient.__version__,)) else: sys.stderr.write('\nYour Synapse client is up to date!\n')
5,350,102
def generate(env): # NOTE: SCons requires the use of this name, which fails gpylint. """SCons entry point for this tool.""" env = env # Silence gpylint __builtin__.AddTargetGroup = AddTargetGroup __builtin__.AddTargetHelp = AddTargetHelp __builtin__.GetTargetGroups = GetTargetGroups __builtin__.GetTargetModes = GetTargetModes __builtin__.GetTargets = GetTargets env.AddMethod(SetTargetDescription) env.AddMethod(SetTargetProperty) # Defer per-mode setup env.Defer(AddTargetMode)
5,350,103
def cross_entropy_loss(logits, labels, label_smoothing=0., dtype=jnp.float32): """Compute cross entropy for logits and labels w/ label smoothing Args: logits: [batch, length, num_classes] float array. labels: categorical labels [batch, length] int array. label_smoothing: label smoothing constant, used to determine the on and off values. dtype: dtype to perform loss calcs in, including log_softmax """ num_classes = logits.shape[-1] labels = jax.nn.one_hot(labels, num_classes, dtype=dtype) if label_smoothing > 0: labels = labels * (1 - label_smoothing) + label_smoothing / num_classes logp = jax.nn.log_softmax(logits.astype(dtype)) return -jnp.mean(jnp.sum(logp * labels, axis=-1))
5,350,104
def set_optimizer(name, model, learning_rate): """ Specify which optimizer to use during training. Initialize a torch.optim optimizer for the given model based on the specified name and learning rate. Parameters ---------- name : string or None, default = 'adam' The name of the torch.optim optimizer to be used. The following strings are accepted as arguments: 'adagrad', 'adam', 'adamax', 'adamw', 'rmsprop', or 'sgd' model : utils.models.EncoderDecoder The model which is to be optimized learning_rate : float or None The learning rate to be used by the optimizer. If set to None, the default value as defined in torch.optim is used Returns ------- torch.optim optimizer class A torch.optim optimizer that implements one of the following algorithms: Adagrad, Adam, Adamax, AdamW, RMSprop, or SGD (stochastic gradient descent) SGD is set to use a momentum of 0.5. """ if name == "adam": optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if name == "sgd": optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5) if name == "adamw": optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) if name == "adagrad": optimizer = torch.optim.Adagrad(model.parameters(), lr=learning_rate) if name == "adamax": optimizer = torch.optim.Adamax(model.parameters(), lr=learning_rate) if name == "rmsprop": optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate) return optimizer
5,350,105
def get_http_url(server_path, get_path): """ Вариант с использованием httplib напрямую; ничем не лучше urllib2 server_path = "example.com" get_path = "/some_path" """ # urllib - более высокого уровня библиотека, которая в случае http использует # httplib; # используем httplib ради лучшего детектирования ошибок direct_http = 1 if direct_http: import httplib conn = httplib.HTTPConnection(server_path) try: conn.request("GET", get_path) except: raise RuntimeError("Cant connect to: " + server_path) response = conn.getresponse() if response.reason != 'OK': raise RuntimeError("Error getting data from: " + get_path) #print response.status, response.reason, response.msg return response else: import urllib f = urllib.urlopen("http://" + server_path + get_path) #print f.info() return f
5,350,106
def not_found_view(request): """Not Found view. """ model = request.context return render_main_template(model, request, contenttile='not_found')
5,350,107
def top_filtering( logits, top_k=0, top_p=0.0, threshold=-float("Inf"), filter_value=-float("Inf") ): """ Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering Args: logits: logits distribution shape (vocabulary size) top_k: <=0: no filtering, >0: keep only top k tokens with highest probability. top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset whose total probability mass is greater than or equal to the threshold top_p. In practice, we select the highest probability tokens whose cumulative probability mass exceeds the threshold top_p. threshold: a minimal threshold to keep logits Taken from `interact.py` """ assert ( logits.dim() == 1 ) # Only work for batch size 1 for now - could update but it would obfuscate a bit the code top_k = min(top_k, logits.size(-1)) if top_k > 0: # Remove all tokens with a probability less than the last token in the top-k tokens indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: # Compute cumulative probabilities of sorted tokens sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probabilities = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 ) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probabilities > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # Back to unsorted indices and set them to -infinity indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value indices_to_remove = logits < threshold logits[indices_to_remove] = filter_value return logits
5,350,108
def get_physical_type(obj): """ Return the physical type that corresponds to a unit (or another physical type representation). Parameters ---------- obj : quantity-like or `~astropy.units.PhysicalType`-like An object that (implicitly or explicitly) has a corresponding physical type. This object may be a unit, a `~astropy.units.Quantity`, an object that can be converted to a `~astropy.units.Quantity` (such as a number or array), a string that contains a name of a physical type, or a `~astropy.units.PhysicalType` instance. Returns ------- `~astropy.units.PhysicalType` A representation of the physical type(s) of the unit. Examples -------- The physical type may be retrieved from a unit or a `~astropy.units.Quantity`. >>> import astropy.units as u >>> u.get_physical_type(u.meter ** -2) PhysicalType('column density') >>> u.get_physical_type(0.62 * u.barn * u.Mpc) PhysicalType('volume') The physical type may also be retrieved by providing a `str` that contains the name of a physical type. >>> u.get_physical_type("energy") PhysicalType({'energy', 'torque', 'work'}) Numbers and arrays of numbers correspond to a dimensionless physical type. >>> u.get_physical_type(1) PhysicalType('dimensionless') """ if isinstance(obj, PhysicalType): return obj if isinstance(obj, str): return _physical_type_from_str(obj) try: unit = obj if isinstance(obj, core.UnitBase) else quantity.Quantity(obj, copy=False).unit except TypeError as exc: raise TypeError(f"{obj} does not correspond to a physical type.") from exc unit = _replace_temperatures_with_kelvin(unit) physical_type_id = unit._get_physical_type_id() unit_has_known_physical_type = physical_type_id in _physical_unit_mapping if unit_has_known_physical_type: return _physical_unit_mapping[physical_type_id] else: return PhysicalType(unit, "unknown")
5,350,109
def reverse(list): """Returns a new list or string with the elements or characters in reverse order""" if isinstance(list, str): return "".join(reversed(list)) return _list(reversed(list))
5,350,110
def PubMedDiabetes( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/linqs", version: str = "latest", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the PubMedDiabetes graph. The graph is automatically retrieved from the LINQS repository. The Pubmed Diabetes dataset consists of 19717 scientific publications from PubMed database pertaining to diabetes classified into one of three classes. The citation network consists of 44338 links. Each publication in the dataset is described by a TF/IDF weighted word vector from a dictionary which consists of 500 unique words. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "latest" The version of the graph to retrieve. additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of PubMedDiabetes graph. References --------------------- Please cite the following if you use the data: ```bib @inproceedings{namata2012query, title={Query-driven active surveying for collective classification}, author={Namata, Galileo and London, Ben and Getoor, Lise and Huang, Bert and EDU, UMD}, booktitle={10th International Workshop on Mining and Learning with Graphs}, volume={8}, year={2012} } ``` """ return AutomaticallyRetrievedGraph( graph_name="PubMedDiabetes", repository="linqs", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs, callbacks=[ parse_linqs_pubmed_incidence_matrix ], callbacks_arguments=[ { "cites_path": "Pubmed-Diabetes/Pubmed-Diabetes/data/Pubmed-Diabetes.DIRECTED.cites.tab", "content_path": "Pubmed-Diabetes/Pubmed-Diabetes/data/Pubmed-Diabetes.NODE.paper.tab", "node_path": "nodes.tsv", "edge_path": "edges.tsv" } ] )()
5,350,111
def run_dti_artifact_correction(subject_list, session_list): """ Attach the FSL-based diffusion MRI artifact detection and correction workflow to the `main_wf`. Parameters ---------- main_wf: nipype Workflow wf_name: str Name of the preprocessing workflow params: dict with parameter values atlas_file: str Path to the anatomical atlas to be transformed to diffusion MRI space. Nipype Inputs for `main_wf` --------------------------- Note: The `main_wf` workflow is expected to have an `input_files` and a `datasink` nodes. input_files.select.diff: input node datasink: nipype Node Returns ------- main_wf: nipype Workflow """ # name of output folder output_dir = opj(DATA, 'processed') working_dir = opj(DATA, 'interim') # Infosource - a function free node to iterate over the list of subject names infosource = pe.Node(IdentityInterface(fields=['subject_id', 'session_id']), name="infosource") infosource.iterables = [('subject_id', subject_list), ('session_id', session_list)] # SelectFiles templates = {'diff': 'raw/bids/{subject_id}/{session_id}/dwi/{subject_id}_{session_id}_dwi.nii.gz', 'bval': 'raw/bids/{subject_id}/{session_id}/dwi/{subject_id}_{session_id}_dwi.bval', 'bvec': 'raw/bids/{subject_id}/{session_id}/dwi/{subject_id}_{session_id}_dwi.bvec'} selectfiles = pe.Node(SelectFiles(templates, base_directory=DATA), name="selectfiles") # Datasink datasink = pe.Node(DataSink(base_directory=DATA, container=output_dir), name="datasink") # The workflow box art_dti_wf = dti_artifact_correction() # dataSink output substitutions ## The base name of the 'diff' file for the substitutions diff_fbasename = remove_ext(op.basename(get_input_file_name(selectfiles, 'diff'))) regexp_subst = [ (r"/brain_mask_{diff}_space\.nii$", "/brain_mask.nii"), (r"/eddy_corrected\.nii$", "/{diff}_eddycor.nii"), ] regexp_subst = format_pair_list(regexp_subst, diff=diff_fbasename) regexp_subst += extension_duplicates(regexp_subst) datasink.inputs.regexp_substitutions = extend_trait_list(datasink.inputs.regexp_substitutions, regexp_subst) wf = pe.Workflow(name='artifact') wf.base_dir = working_dir # input and output diffusion MRI workflow to main workflow connections wf.connect([(infosource, selectfiles, [('subject_id', 'subject_id'), ('session_id', 'session_id')]), (selectfiles, art_dti_wf, [("diff", "dti_art_input.diff"), ("bval", "dti_art_input.bval"), ("bvec", "dti_art_input.bvec"), ]), (art_dti_wf, datasink, [("dti_art_output.eddy_corr_file", "diff.@eddy_corr_file"), ("dti_art_output.bvec_rotated", "diff.@bvec_rotated"), ("dti_art_output.brain_mask_1", "diff.@brain_mask_1"), ("dti_art_output.brain_mask_2", "diff.@brain_mask_2"), ("dti_art_output.acqp", "diff.@acquisition_pars"), ("dti_art_output.index", "diff.@acquisition_idx"), ("dti_art_output.avg_b0", "diff.@avg_b0"), ("dti_art_output.hmc_corr_file", "diff.artifact_stats.@hmc_corr_file"), ("dti_art_output.hmc_corr_bvec", "diff.artifact_stats.@hmc_rot_bvec"), ("dti_art_output.hmc_corr_xfms", "diff.artifact_stats.@hmc_corr_xfms"), # ("dti_art_output.art_displacement_files", "diff.artifact_stats.@art_disp_files"), # ("dti_art_output.art_intensity_files", "diff.artifact_stats.@art_ints_files"), # ("dti_art_output.art_norm_files", "diff.artifact_stats.@art_norm_files"), # ("dti_art_output.art_outlier_files", "diff.artifact_stats.@art_outliers"), # ("dti_art_output.art_plot_files", "diff.artifact_stats.@art_plots"), # ("dti_art_output.art_statistic_files", "diff.artifact_stats.@art_stats"), ]), ]) wf.run() return
5,350,112
def find_neighbor_indices(atoms, probe, k): """ Returns list of indices of atoms within probe distance to atom k. """ neighbor_indices = [] atom_k = atoms[k] radius = atom_k.radius + probe + probe indices = list(range(k)) indices = indices + list(range(k+1, len(atoms))) for i in indices: atom_i = atoms[i] dist = pos_distance(atom_k.pos, atom_i.pos) if dist < radius + atom_i.radius: neighbor_indices.append(i) return neighbor_indices
5,350,113
def genDir(EAs): """ Generate the projection direction given the euler angles. Since the image is in the x-y plane, the projection direction is given by R(EA)*z where z = (0,0,1) """ dir_vec = np.array([rotmat3D_EA(*EA)[:, 2] for EA in EAs]) return dir_vec
5,350,114
def plainica(x, reducedim=0.99, backend=None, random_state=None): """ Source decomposition with ICA. Apply ICA to the data x, with optional PCA dimensionality reduction. Parameters ---------- x : array, shape (n_trials, n_channels, n_samples) or (n_channels, n_samples) data set reducedim : {int, float, 'no_pca'}, optional A number of less than 1 in interpreted as the fraction of variance that should remain in the data. All components that describe in total less than `1-reducedim` of the variance are removed by the PCA step. An integer numer of 1 or greater is interpreted as the number of components to keep after applying the PCA. If set to 'no_pca' the PCA step is skipped. backend : dict-like, optional Specify backend to use. When set to None the backend configured in config.backend is used. Returns ------- result : ResultICA Source decomposition """ x = atleast_3d(x) t, m, l = np.shape(x) if backend is None: backend = scotbackend # pre-transform the data with PCA if reducedim == 'no pca': c = np.eye(m) d = np.eye(m) xpca = x else: c, d, xpca = backend['pca'](x, reducedim) # run on residuals ICA to estimate volume conduction mx, ux = backend['ica'](cat_trials(xpca), random_state=random_state) # correct (un)mixing matrix estimatees mx = mx.dot(d) ux = c.dot(ux) class Result: unmixing = ux mixing = mx return Result
5,350,115
def make_spectrum_layout(obj, spectra, user, device, width, smoothing, smooth_number): """ Helper function that takes the object, spectra and user info, as well as the total width of the figure, and produces one layout for a spectrum plot. This can be used once for each tab on the spectrum plot, if using different spectrum types. Parameters ---------- obj : dict The underlying object that is associated with all these spectra. spectra : dict The different spectra to be plotted. This can be a subset of e.g., all the spectra of one type. user : dict info about the user, used to get the individual user plot preferences. device: string name of the device used ("browser", "mobile", "mobile_portrait", "tablet", etc). width: int width of the external frame of the plot, including the buttons/sliders. smoothing: bool choose if to start the display with the smoothed plot or the full resolution spectrum. smooth_number: int number of data points to use in the moving average when displaying the smoothed spectrum. Returns ------- dict Bokeh JSON embedding of one layout that can be tabbed or used as the plot specifications on its own. """ rainbow = cm.get_cmap('rainbow', len(spectra)) palette = list(map(rgb2hex, rainbow(range(len(spectra))))) color_map = dict(zip([s.id for s in spectra], palette)) data = [] for i, s in enumerate(spectra): # normalize spectra to a median flux of 1 for easy comparison normfac = np.nanmedian(np.abs(s.fluxes)) normfac = normfac if normfac != 0.0 else 1e-20 altdata = json.dumps(s.altdata) if s.altdata is not None else "" annotations = ( AnnotationOnSpectrum.query_records_accessible_by(user) .filter(AnnotationOnSpectrum.spectrum_id == s.id) .all() ) annotations = ( json.dumps([{a.origin: a.data} for a in annotations]) if len(annotations) else "" ) df = pd.DataFrame( { 'wavelength': s.wavelengths, 'flux': s.fluxes / normfac, 'flux_original': s.fluxes / normfac, 'id': s.id, 'telescope': s.instrument.telescope.name, 'instrument': s.instrument.name, 'date_observed': s.observed_at.isoformat(sep=' ', timespec='seconds'), 'pi': ( s.assignment.run.pi if s.assignment is not None else ( s.followup_request.allocation.pi if s.followup_request is not None else "" ) ), 'origin': s.origin, 'altdata': altdata[:20] + "..." if len(altdata) > 20 else altdata, 'annotations': annotations, } ) data.append(df) data = pd.concat(data) data.sort_values(by=['date_observed', 'wavelength'], inplace=True) split = data.groupby('id', sort=False) ( frame_width, aspect_ratio, legend_row_height, legend_items_per_row, ) = get_dimensions_by_device(device, width) plot_height = ( math.floor(width / aspect_ratio) if device == "browser" else math.floor(width / aspect_ratio) + legend_row_height * int(len(split) / legend_items_per_row) + 30 # 30 is the height of the toolbar ) # Add some height for the checkboxes and sliders if device == "mobile_portrait": height = plot_height + 440 elif device == "mobile_landscape": height = plot_height + 370 else: height = plot_height + 220 # check browser plot_height for legend overflow if device == "browser": plot_height_of_legend = ( legend_row_height * int(len(split) / legend_items_per_row) + 90 # 90 is height of toolbar plus legend offset ) if plot_height_of_legend > plot_height: plot_height = plot_height_of_legend hover = HoverTool( tooltips=[ ('wavelength', '@wavelength{0,0.000}'), ('flux', '@flux'), ('telesecope', '@telescope'), ('instrument', '@instrument'), ('UTC date observed', '@date_observed'), ('PI', '@pi'), ('origin', '@origin'), ('altdata', '@altdata{safe}'), ('annotations', '@annotations{safe}'), ], ) flux_max = np.max(data['flux']) flux_min = np.min(data['flux']) ymax = flux_max * 1.05 ymin = flux_min - 0.05 * (flux_max - flux_min) xmin = np.min(data['wavelength']) - 100 xmax = np.max(data['wavelength']) + 100 if obj.redshift is not None and obj.redshift > 0: xmin_rest = xmin / (1.0 + obj.redshift) xmax_rest = xmax / (1.0 + obj.redshift) active_drag = None if "mobile" in device or "tablet" in device else "box_zoom" tools = ( "box_zoom, pan, reset" if "mobile" in device or "tablet" in device else "box_zoom,wheel_zoom,pan,reset" ) plot = figure( frame_width=frame_width, height=plot_height, y_range=(ymin, ymax), x_range=(xmin, xmax), tools=tools, toolbar_location="above", active_drag=active_drag, ) model_dict = {} legend_items = [] for i, (key, df) in enumerate(split): renderers = [] s = next(spec for spec in spectra if spec.id == key) if s.label is not None and len(s.label) > 0: label = s.label else: label = f'{s.instrument.name} ({s.observed_at.date().strftime("%m/%d/%y")})' model_dict['s' + str(i)] = plot.step( x='wavelength', y='flux', color=color_map[key], source=ColumnDataSource(df), ) renderers.append(model_dict[f's{i}']) # this starts out the same as the previous plot, but can be binned/smoothed later in JS dfs = copy.deepcopy(df) if smoothing: dfs['flux'] = smoothing_function(dfs['flux_original'], smooth_number) model_dict[f'bin{i}'] = plot.step( x='wavelength', y='flux', color=color_map[key], source=ColumnDataSource(dfs) ) renderers.append(model_dict[f'bin{i}']) # add this line plot to be able to show tooltip at hover model_dict['l' + str(i)] = plot.line( x='wavelength', y='flux', color=color_map[key], source=ColumnDataSource(df), line_alpha=0.0, ) renderers.append(model_dict[f'l{i}']) legend_items.append(LegendItem(label=label, renderers=renderers)) plot.xaxis.axis_label = 'Wavelength (Å)' plot.yaxis.axis_label = 'Flux' plot.toolbar.logo = None if obj.redshift is not None and obj.redshift > 0: plot.extra_x_ranges = {"rest_wave": Range1d(start=xmin_rest, end=xmax_rest)} plot.add_layout( LinearAxis(x_range_name="rest_wave", axis_label="Rest Wavelength (Å)"), 'above', ) # TODO how to choose a good default? plot.y_range = Range1d(0, 1.03 * data.flux.max()) legend_loc = "below" if "mobile" in device or "tablet" in device else "right" legend_orientation = ( "vertical" if device in ["browser", "mobile_portrait"] else "horizontal" ) add_plot_legend(plot, legend_items, width, legend_orientation, legend_loc) # only show this tooltip for spectra, not elemental lines hover.renderers = list(model_dict.values()) plot.add_tools(hover) smooth_checkbox = CheckboxGroup( labels=["smoothing"], active=[0] if smoothing else [], ) smooth_slider = Slider( start=0.0, end=100.0, value=0.0, step=1.0, show_value=False, max_width=350, # margin=(4, 10, 0, 10), ) smooth_input = NumericInput(value=smooth_number) smooth_callback = CustomJS( args=dict( model_dict=model_dict, n_labels=len(split), checkbox=smooth_checkbox, input=smooth_input, slider=smooth_slider, ), code=open( os.path.join( os.path.dirname(__file__), '../static/js/plotjs', 'smooth_spectra.js' ) ).read(), ) smooth_checkbox.js_on_click(smooth_callback) smooth_input.js_on_change('value', smooth_callback) smooth_slider.js_on_change( 'value', CustomJS( args={'slider': smooth_slider, 'input': smooth_input}, code=""" input.value = slider.value; input.change.emit(); """, ), ) smooth_column = column( smooth_checkbox, smooth_slider, smooth_input, width=width if "mobile" in device else int(width * 1 / 5) - 20, margin=(4, 10, 0, 10), ) # 20 is for padding slider_width = width if "mobile" in device else int(width * 2 / 5) - 20 z_title = Div(text="Redshift (<i>z</i>): ") z_slider = Slider( value=obj.redshift if obj.redshift is not None else 0.0, start=0.0, end=3.0, step=0.00001, show_value=False, format="0[.]0000", ) z_input = NumericInput( value=obj.redshift if obj.redshift is not None else 0.0, mode='float', ) z_slider.js_on_change( 'value', CustomJS( args={'slider': z_slider, 'input': z_input}, code=""" input.value = slider.value; input.change.emit(); """, ), ) z = column( z_title, z_slider, z_input, width=slider_width, margin=(4, 10, 0, 10), ) v_title = Div(text="<i>V</i><sub>expansion</sub> (km/s): ") v_exp_slider = Slider( value=0.0, start=0.0, end=3e4, step=10.0, show_value=False, ) v_exp_input = NumericInput(value=0, mode='int') v_exp_slider.js_on_change( 'value', CustomJS( args={'slider': v_exp_slider, 'input': v_exp_input}, code=""" input.value = slider.value; input.change.emit(); """, ), ) v_exp = column( v_title, v_exp_slider, v_exp_input, width=slider_width, margin=(0, 10, 0, 10), ) # Track elements that need to be shifted with change in z / v shifting_elements = [] renderers = [] obj_redshift = 0 if obj.redshift is None else obj.redshift for i, (name, (wavelengths, color)) in enumerate(SPEC_LINES.items()): if name in ('Tellurics-1', 'Tellurics-2'): el_data = pd.DataFrame( { 'name': name, 'wavelength': [(wavelengths[0] + wavelengths[1]) / 2], 'bandwidth': [wavelengths[1] - wavelengths[0]], } ) new_line = plot.vbar( x='wavelength', width='bandwidth', top=ymax, color=color, source=ColumnDataSource(el_data), alpha=0.3, ) else: flux_values = list(np.linspace(ymin, ymax, 100)) flux_values[-1] = np.nan wavelength_values = [ w for w in wavelengths for _ in flux_values ] # repeat each wavelength 100 times el_data = pd.DataFrame( { 'name': name, 'x': wavelength_values, 'wavelength': wavelength_values, 'flux': [f for _ in wavelengths for f in flux_values], } ) if name != 'Sky Lines': el_data['x'] = el_data['wavelength'] * (1.0 + obj_redshift) new_line = plot.line( x='x', y='flux', color=color, line_alpha=0.3, source=ColumnDataSource(el_data), ) new_line.visible = False model_dict[f'element_{i}'] = new_line renderers.append(new_line) if name not in ('Sky Lines', 'Tellurics-1', 'Tellurics-2'): shifting_elements.append(new_line) new_line.glyph.line_alpha = 1.0 # add the elemental lines to hover tool hover_lines = HoverTool( tooltips=[ ('name', '@name'), ('wavelength', '@wavelength{0,0}'), ], renderers=renderers, ) plot.add_tools(hover_lines) # Split spectral line legend into columns if device == "mobile_portrait": columns = 3 elif device == "mobile_landscape": columns = 5 else: columns = 7 # Create columns from a list. # # `list(zip_longest(a, b, c, ...))` returns a tuple where the i-th # element comes from the i-th iterable argument. # # The trick here is to pass in the same iterable `column` times. # This gives us rows. rows = itertools.zip_longest(*[iter(SPEC_LINES.items())] * columns) # To form columns from the rows, zip the rows together. element_dicts = zip(*rows) all_column_checkboxes = [] for column_idx, element_dict in enumerate(element_dicts): element_dict = [e for e in element_dict if e is not None] labels = [name for name, _ in element_dict] colors = [color for name, (wavelengths, color) in element_dict] column_checkboxes = CheckboxWithLegendGroup( labels=labels, active=[], colors=colors, width=width // (columns + 1) ) all_column_checkboxes.append(column_checkboxes) callback_toggle_lines = CustomJS( args={'column_checkboxes': column_checkboxes, **model_dict}, code=f""" for (let i = 0; i < {len(labels)}; i = i + 1) {{ let el_idx = i * {columns} + {column_idx}; let el = eval("element_" + el_idx); el.visible = (column_checkboxes.active.includes(i)) }} """, ) column_checkboxes.js_on_click(callback_toggle_lines) # Move spectral lines when redshift or velocity changes speclines = {f'specline_{i}': line for i, line in enumerate(shifting_elements)} callback_zvs = CustomJS( args={'z': z_input, 'v_exp': v_exp_input, **speclines}, code=f""" const c = 299792.458; // speed of light in km / s for (let i = 0; i < {len(speclines)}; i = i + 1) {{ let el = eval("specline_" + i); el.data_source.data.x = el.data_source.data.wavelength.map( x_i => ( x_i * (1 + z.value) / (1 + v_exp.value / c) ) ); el.data_source.change.emit(); }} """, ) # Hook up callback that shifts spectral lines when z or v changes z_input.js_on_change('value', callback_zvs) v_exp_input.js_on_change('value', callback_zvs) z_input.js_on_change( 'value', CustomJS( args={'z': z_input, 'slider': z_slider}, code=""" // Update slider value to match text input slider.value = z.value; """, ), ) v_exp_input.js_on_change( 'value', CustomJS( args={'slider': v_exp_slider, 'v_exp': v_exp_input}, code=""" // Update slider value to match text input slider.value = v_exp.value; """, ), ) row2 = row(all_column_checkboxes) row3 = ( column(z, v_exp, smooth_column) if "mobile" in device else row(z, v_exp, smooth_column) ) return column( plot, row2, row3, sizing_mode='stretch_width', width=width, height=height, )
5,350,116
def all_equal(values: list): """Check that all values in given list are equal""" return all(values[0] == v for v in values)
5,350,117
def _tester(func, *args): """ Tests function ``func`` on arguments and returns first positive. >>> _tester(lambda x: x%3 == 0, 1, 2, 3, 4, 5, 6) 3 >>> _tester(lambda x: x%3 == 0, 1, 2) None :param func: function(arg)->boolean :param args: other arguments :return: something or none """ for arg in args: if arg is not None and func(arg): return arg return None
5,350,118
def test_deadlock(config): """test when two backends try to extract state of each other""" acon1, acon2 = n_async_connect(config, 2) acurs1 = acon1.cursor() acurs2 = acon2.cursor() while True: acurs1.callproc('pg_query_state', (acon2.get_backend_pid(),)) acurs2.callproc('pg_query_state', (acon1.get_backend_pid(),)) # listen acon1, acon2 with timeout = 10 sec to determine deadlock r, w, x = select.select([acon1.fileno(), acon2.fileno()], [], [], 10) assert (r or w or x), "Deadlock is happened under cross reading of query states" wait(acon1) wait(acon2) # exit from loop if one backend could read state of execution 'pg_query_state' # from other backend if acurs1.fetchone() or acurs2.fetchone(): break n_close((acon1, acon2))
5,350,119
def new_revision(partno): """ Presents the form to add a new revision, and creates it upon POST submit """ _load_if_released(partno) # ensures the component exists and is released form = RevisionForm(request.form) if request.method == 'POST' and form.validate_on_submit(): now = datetime.now() result = current_app.mongo.db.components.update_one( filter={'_id': partno}, update={ '$set': { 'released': False # a new revision is not already released }, '$push': { 'revisions': { 'date': now, 'comment': form.comment.data }, 'history': { 'date': now, 'user': current_user.id, 'message': 'new revision created' } } } ) if result.modified_count == 1: flash('new revision created', 'success') else: # should not happen. flash('no data modified, please contact the administrator', 'error') return redirect(url_for('components.details', partno=partno)) extract_errors(form) return render_template('components/revision_form.html', form=form, partno=partno)
5,350,120
def fresnel_parameter(rays, diffraction_points): """ returns the fresnel diffraction parameter (always as a positive) Parameters ---------- rays : [n] list of shapely LineString (3d) diffraction_points: [n] list of Points (3d) diffraction point which the ray is rounding Returns ------- fresnel diffraction parameters: [n,] float array """ wavelength = 0.1903 # GPS L1 signal frequency of 1575.42 MHz distances = np.array([r.project(d) for r, d in zip(rays, diffraction_points)]) nearest_points = (r.interpolate(d) for r, d in zip(rays, distances)) diffraction_distances = np.array( [d.z-p.z for p, d in zip(nearest_points, diffraction_points)]) v = np.where(distances == 0, -np.inf, diffraction_distances * (2 / (wavelength * distances))**0.5) return v
5,350,121
def update_compilers_object( new_compiler: Dict[str, Any], contract_type: str, previous_compilers: List[Dict[str, Any]] ) -> Iterable[Dict[str, Any]]: """ Updates a manifest's top-level `compilers` with a new compiler information object. - If compiler version already exists, we just update the compiler's `contractTypes` """ recorded_new_contract_type = False for compiler in previous_compilers: contract_types = compiler.pop("contractTypes") if contract_type in contract_types: raise ManifestBuildingError( f"Contract type: {contract_type} already referenced in `compilers`." ) if compiler == new_compiler: contract_types.append(contract_type) recorded_new_contract_type = True compiler["contractTypes"] = contract_types yield compiler if not recorded_new_contract_type: new_compiler["contractTypes"] = [contract_type] yield new_compiler
5,350,122
def test_webapp_no_locales(): """Test that locales are not required.""" err = ErrorBundle(listed=False) data = _get_json() del data["default_locale"] del data["locales"] _detect(err, data) assert not err.failed()
5,350,123
def validate(net, val_data, ctx, eval_metric): """Test on validation dataset.""" eval_metric.reset() # set nms threshold and topk constraint net.set_nms(nms_thresh=0.45, nms_topk=400) net.hybridize() for batch in val_data: data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False) det_bboxes = [] det_ids = [] det_scores = [] gt_bboxes = [] gt_ids = [] gt_difficults = [] for x, y in zip(data, label): # get prediction results ids, scores, bboxes = net(x) det_ids.append(ids) det_scores.append(scores) # clip to image size det_bboxes.append(bboxes.clip(0, batch[0].shape[2])) # split ground truths gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5)) gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4)) gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric eval_metric.update(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults) return eval_metric.get()
5,350,124
def add_unique_geom_id(point_gdf: gpd.GeoDataFrame, log: Logger=None) -> gpd.GeoDataFrame: """Adds an unique identifier (string) to GeoDataFrame of points based on point locations (x/y). """ point_gdf[S.xy_id] = [f'{str(round(geom.x, 1))}_{str(round(geom.y, 1))}' for geom in point_gdf[S.geometry]] unique_count = point_gdf[S.xy_id].nunique() unique_share = round(100 * unique_count/len(point_gdf.index), 2) log.info(f'found {unique_count} unique sampling points ({unique_share} %)') return point_gdf
5,350,125
def get_data_parallel_rank(): """Return my rank for the data parallel group.""" return _TOPOLOGY.get_data_parallel_rank()
5,350,126
def entropy(data): """ Compute the Shannon entropy, a measure of uncertainty. """ if len(data) == 0: return None n = sum(data) _op = lambda f: f * math.log(f) return - sum(_op(float(i) / n) for i in data)
5,350,127
def transform_mtl_to_stac(metadata: dict) -> Item: """ Handle USGS MTL as a dict and return a STAC item. NOT IMPLEMENTED Issues include: - There's no reference to UTM Zone or any other CRS info in the MTL - There's no absolute file path or reference to a URI to find data. """ LANDSAT_METADATA = metadata["LANDSAT_METADATA_FILE"] product = LANDSAT_METADATA["PRODUCT_CONTENTS"] projection = LANDSAT_METADATA["PROJECTION_ATTRIBUTES"] image = LANDSAT_METADATA["IMAGE_ATTRIBUTES"] proessing_record = LANDSAT_METADATA["LEVEL2_PROCESSING_RECORD"] scene_id = product["LANDSAT_PRODUCT_ID"] xmin, xmax = float(projection["CORNER_LL_LON_PRODUCT"]), float( projection["CORNER_UR_LON_PRODUCT"]) ymin, ymax = float(projection["CORNER_LL_LAT_PRODUCT"]), float( projection["CORNER_UR_LAT_PRODUCT"]) geom = mapping(box(xmin, ymin, xmax, ymax)) bounds = shape(geom).bounds # Like: "2020-01-01" for date and "23:08:52.6773140Z" for time acquired_date = _parse_date( f"{image['DATE_ACQUIRED']}T{image['SCENE_CENTER_TIME']}") created = _parse_date(proessing_record["DATE_PRODUCT_GENERATED"]) item = Item(id=scene_id, geometry=geom, bbox=bounds, datetime=acquired_date, properties={}) # Common metadata item.common_metadata.created = created item.common_metadata.platform = image["SPACECRAFT_ID"] item.common_metadata.instruments = [ i.lower() for i in image["SENSOR_ID"].split("_") ] # TODO: implement these three extensions EOExtension.add_to(item) ViewExtension.add_to(item) ProjectionExtension.add_to(item) return item
5,350,128
def alexnet(pretrained=False): """AlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = AlexNet() if pretrained: model_path = './model/alexnet.pth.tar' pretrained_model = torch.load(model_path) model.load_state_dict(pretrained_model['state_dict']) return model
5,350,129
def main() : """ main(): parameters: ----------- None description: ------------ Creates a connection to the GPU underneath and holds it in "bc". Next, we access the "colab" environment S3 bucket (which holds a parquet file) and creates a table named "taxi" with it. Finally, this example ends off by saying that we wish to understand how BSQL is planning to extract the data rather than actually extracting it. result: ------- 'LogicalSort(fetch=[2]) BindableTableScan(table=[[main, taxi]], projects=[[3, 4]], aliases=[[passenger_count, trip_distance]]) ' """ global bc bc.s3('blazingsql-colab', bucket_name='blazingsql-colab') bc.create_table('taxi', 's3://blazingsql-colab/yellow_taxi/taxi_data.parquet') query = 'SELECT passenger_count, trip_distance FROM taxi LIMIT 2' print('#> We are going to run {} against the loaded data on the GPU'.format(query)) print(bc.explain(query))
5,350,130
def generate_random_targets(labels: Tensor, num_classes: int) -> Tensor: """ Generates one random target in (num_classes - 1) possibilities for each label that is different from the original label. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random target for each label. Has the same shape as labels. """ random = torch.rand(len(labels), num_classes, device=labels.device, dtype=torch.float) random.scatter_(1, labels.unsqueeze(-1), 0) return random.argmax(1)
5,350,131
def gpsdio_bigquery_schema(ctx, schemafile, cols): """ Produce a BigQuery schema for gpsdio data. Produces a BigQuery schema for use together with gpsdio data in a CSV container format (as supported by gpsdio-csv). You must supply the same column list as used in the CSV! """ cols = cols.split(",") schema = [{"type": type_for_col(col), "name": col} for col in cols] with open(schemafile, "w") as f: json.dump(schema, f)
5,350,132
def recall_k(sent_im_dist, im_labels, ks=(1, 5, 10)): """ Compute recall at given ks. """ im_labels = tf.cast(im_labels, tf.bool) def retrieval_recall(dist, labels, k): # Use negative distance to find the index of # the smallest k elements in each row. pred = tf.nn.top_k(-dist, k=k)[1] # Create a boolean mask for each column (k value) in pred, # s.t. mask[i][j] is 1 iff pred[i][k] = j. pred_k_mask = lambda topk_idx: tf.one_hot(topk_idx, tf.shape(labels)[1], on_value=True, off_value=False, dtype=tf.bool) # Create a boolean mask for the predicted indices # by taking logical or of boolean masks for each column, # s.t. mask[i][j] is 1 iff j is in pred[i]. pred_mask = tf.reduce_any(tf.map_fn( pred_k_mask, tf.transpose(pred), dtype=tf.bool), axis=0) # pred_mask = tf.map_fn(create_pred_mask, pred) # Entry (i, j) is matched iff pred_mask[i][j] and labels[i][j] are 1. matched = tf.cast(tf.logical_and(pred_mask, labels), dtype=tf.float32) return tf.reduce_mean(tf.reduce_max(matched, axis=1)) img_sent_recall = [retrieval_recall(tf.transpose(sent_im_dist), tf.transpose(im_labels), k) for k in ks] sent_img_recall = [retrieval_recall(sent_im_dist, im_labels, k) for k in ks] return img_sent_recall + sent_img_recall
5,350,133
def get_suggestion(project_slug, lang_slug, version_slug, pagename, user): """ | # | project | version | language | What to show | | 1 | 0 | 0 | 0 | Error message | | 2 | 0 | 0 | 1 | Error message (Can't happen) | | 3 | 0 | 1 | 0 | Error message (Can't happen) | | 4 | 0 | 1 | 1 | Error message (Can't happen) | | 5 | 1 | 0 | 0 | A link to top-level page of default version | | 6 | 1 | 0 | 1 | Available versions on the translation project | | 7 | 1 | 1 | 0 | Available translations of requested version | | 8 | 1 | 1 | 1 | A link to top-level page of requested version | """ suggestion = {} if project_slug: try: proj = Project.objects.get(slug=project_slug) if not lang_slug: lang_slug = proj.language try: ver = Version.objects.get( project__slug=project_slug, slug=version_slug) except Version.DoesNotExist: ver = None if ver: # if requested version is available on main project if lang_slug != proj.language: try: translations = proj.translations.filter( language=lang_slug) if translations: ver = Version.objects.get( project__slug=translations[0].slug, slug=version_slug) else: ver = None except Version.DoesNotExist: ver = None # if requested version is available on translation project too if ver: # Case #8: Show a link to top-level page of the version suggestion['type'] = 'top' suggestion['message'] = "What are you looking for?" suggestion['href'] = proj.get_docs_url(ver.slug, lang_slug) # requested version is available but not in requested language else: # Case #7: Show available translations of the version suggestion['type'] = 'list' suggestion['message'] = ( "Requested page seems not to be translated in " "requested language. But it's available in these " "languages.") suggestion['list'] = [] suggestion['list'].append({ 'label': proj.language, 'project': proj, 'version_slug': version_slug, 'pagename': pagename }) for t in proj.translations.all(): try: Version.objects.get( project__slug=t.slug, slug=version_slug) suggestion['list'].append({ 'label': t.language, 'project': t, 'version_slug': version_slug, 'pagename': pagename }) except Version.DoesNotExist: pass else: # requested version does not exist on main project if lang_slug == proj.language: trans = proj else: translations = proj.translations.filter(language=lang_slug) trans = translations[0] if translations else None if trans: # requested language is available # Case #6: Show available versions of the translation suggestion['type'] = 'list' suggestion['message'] = ( "Requested version seems not to have been built yet. " "But these versions are available.") suggestion['list'] = [] for v in Version.objects.public(user, trans, True): suggestion['list'].append({ 'label': v.slug, 'project': trans, 'version_slug': v.slug, 'pagename': pagename }) # requested project exists but requested version and language # are not available. else: # Case #5: Show a link to top-level page of default version # of main project suggestion['type'] = 'top' suggestion['message'] = 'What are you looking for??' suggestion['href'] = proj.get_docs_url() except Project.DoesNotExist: # Case #1-4: Show error mssage suggestion['type'] = 'none' suggestion[ 'message'] = "We're sorry, we don't know what you're looking for" else: suggestion['type'] = 'none' suggestion[ 'message'] = "We're sorry, we don't know what you're looking for" return suggestion
5,350,134
def a_test_predict_is_length(): """ Tests that the prediction IS dataframe length is equal to the number of steps h """ model = ARIMA(data=data, ar=2, ma=2, family=Exponential()) x = model.fit() assert(model.predict_is(h=5).shape[0] == 5)
5,350,135
def resample_data_or_seg(data, new_shape, is_seg, axis=None, order=3, do_separate_z=False, cval=0, order_z=0): """ separate_z=True will resample with order 0 along z :param data: :param new_shape: :param is_seg: :param axis: :param order: :param do_separate_z: :param cval: :param order_z: only applies if do_separate_z is True :return: """ assert len(data.shape) == 4, "data must be (c, x, y, z)" assert not is_seg, "do not use this patch for resampling segmentations" print("running patched resample_data_or_seg function") dtype_data = data.dtype shape = np.array(data[0].shape) new_shape = np.array(new_shape) if np.all(shape == new_shape): print("no resampling necessary") return data data = data.astype(float) resize_fn = resize kwargs = {'mode': 'edge', 'anti_aliasing': False} if do_separate_z: print("separate z, order in z is", order_z, "order inplane is", order) assert len(axis) == 1, "only one anisotropic axis supported" axis = axis[0] if axis == 0: new_shape_2d = new_shape[1:] elif axis == 1: new_shape_2d = new_shape[[0, 2]] else: new_shape_2d = new_shape[:-1] reshaped_final_data = np.empty(shape=(data.shape[0], new_shape[0], new_shape[1], new_shape[2]), dtype=dtype_data) do_z = shape[axis] != new_shape[axis] if do_z: if axis == 0: buffer = np.empty(shape=(shape[axis], new_shape_2d[0], new_shape_2d[1]), dtype=float) elif axis == 1: buffer = np.empty(shape=(new_shape_2d[0], shape[axis], new_shape_2d[1]), dtype=float) else: buffer = np.empty(shape=(new_shape_2d[0], new_shape_2d[1], shape[axis]), dtype=float) else: buffer = None for c in range(data.shape[0]): if do_z: reshaped_data = buffer else: reshaped_data = reshaped_final_data[c] for slice_id in range(shape[axis]): if axis == 0: reshaped_data[slice_id, :, :] = resize_fn(data[c, slice_id], new_shape_2d, order, cval=cval, **kwargs) elif axis == 1: reshaped_data[:, slice_id, :] = resize_fn(data[c, :, slice_id], new_shape_2d, order, cval=cval, **kwargs) else: reshaped_data[:, :, slice_id] = resize_fn(data[c, :, :, slice_id], new_shape_2d, order, cval=cval, **kwargs) if do_z: # The following few lines are blatantly copied and modified from sklearn's resize() rows, cols, dim = new_shape[0], new_shape[1], new_shape[2] orig_rows, orig_cols, orig_dim = reshaped_data.shape row_scale = float(orig_rows) / rows col_scale = float(orig_cols) / cols dim_scale = float(orig_dim) / dim reshaped_final_data[c] = zoom(reshaped_data, (1 / row_scale, 1 / col_scale, 1 / dim_scale), order=order_z, cval=cval, mode='nearest') else: print("no separate z, order", order) reshaped_final_data = np.empty(shape=(data.shape[0], new_shape[0], new_shape[1], new_shape[2]), dtype=dtype_data) for c in range(data.shape[0]): reshaped_final_data[c] = resize_fn(data[c], new_shape, order, cval=cval, **kwargs) return reshaped_final_data
5,350,136
def get_eval(appdir, config): """Get an Evaluation object given the configured `GlobalConfig`. """ return core.Evaluation(appdir, config.client, config.reps, config.test_reps, config.simulate)
5,350,137
def load_queue_from_disk(filename): """ Load the old queue from disk when started. Old messages that weren't posted yet are read from the queue and processed. """ if os.path.exists(filename): log.msg("Loading queue from %s" % filename) try: with closing(open(filename, 'r')) as fp: data = pickle.load(fp) return data except IOError, e: log.err() backup_filename = "%s.%s" % ( filename, datetime.utcnow().strftime("%Y%m%d_%H%M%S") ) shutil.copyfile(filename, backup_filename) log.err("Couldn't load queue from %s, backed it up to %s" % ( filename, backup_filename )) # return an empty queue, start from scratch. return []
5,350,138
def write_user_edges_to_file(edges): """ Given a list of edges `edges` (each edge of the form (f,g), where `f,g` are homogeneous in 4 variables), save this list to the `user_edges` file to be read by the main programs. The names of the variables are changed to `x,y,z,w`. """ R = PolynomialRing(QQ, 4, "xyzw") (x,y,z,w) = R.gens() with open(SRC_ABS_PATH + "user_input/" + "user_edges", 'w+') as F: for e in edges: F.write("[{},{}]\n".format(R(e[0]), R(e[1]))) return
5,350,139
def ask_ok(title="Confirm", message=""): """Ask the user to confirm something via an ok-cancel question. Parameters: title (str): the text to show as the window title. message (str): the message to show in the body of the dialog. Returns: bool: Whether the user selected "OK". """ if not isinstance(title, string_types): raise TypeError("ask_ok() title must be a string.") if not isinstance(message, string_types): raise TypeError("ask_ok() message must be a string.") return _get_app().ask_ok(title, message)
5,350,140
def indexate(points): """ Create an array of unique points and indexes into this array. Arguments: points: A sequence of 3-tuples Returns: An array of indices and a sequence of unique 3-tuples. """ pd = {} indices = tuple(pd.setdefault(tuple(p), len(pd)) for p in points) pt = sorted([(v, k) for k, v in pd.items()], key=lambda x: x[0]) unique = tuple(i[1] for i in pt) return indices, unique
5,350,141
def get_handle(endpoint_name, relative_slo_ms=None, absolute_slo_ms=None, missing_ok=False): """Retrieve RayServeHandle for service endpoint to invoke it from Python. Args: endpoint_name (str): A registered service endpoint. relative_slo_ms(float): Specify relative deadline in milliseconds for queries fired using this handle. (Default: None) absolute_slo_ms(float): Specify absolute deadline in milliseconds for queries fired using this handle. (Default: None) missing_ok (bool): If true, skip the check for the endpoint existence. It can be useful when the endpoint has not been registered. Returns: RayServeHandle """ if not missing_ok: assert endpoint_name in ray.get( master_actor.get_all_endpoints.remote()) return RayServeHandle( ray.get(master_actor.get_router.remote())[0], endpoint_name, relative_slo_ms, absolute_slo_ms, )
5,350,142
def help_command(update: Update, context: CallbackContext) -> None: """Send a message when the command /help is issued.""" message = r"К вашим услугам\! Вот что я умею:" + "\n\n" message += r"/fact \- расскажу интересный факт" + "\n" message += r"/cat \- отправлю картинку котика" + "\n" message += r"/cute \- отправлю милого котика^^" + "\n" message += r"/story \- расскажу историю" + "\n" message += r"/funny \- попробую рассмешить" + "\n" message += r"/top\_cat \- покажу топового кота" + "\n" message += r"/http \<status\_code\> \- HTTP\-кот" + "\n" message += "\n" message += r"/gallery \- покажу кота из коллекции" + "\n" message += r"/upload \- добавляю вашего котика" + "\n" message += "\n" message += r"/about \- расскажу немного о себе" + "\n" update.message.reply_markdown_v2(message)
5,350,143
def test_get_parser(ap): """Test getting argument parser.""" import sattools.processing.showsat sattools.processing.showsat.parse_cmdline() assert ap.return_value.add_argument.call_count == 9
5,350,144
def senderPlusReceiver(dataBitArray): """[senderPlusReceiver function] This function is used to send the data Bits Sender -> sends the bits in the array Receiver(in this case the user) -> ack the bit received using "ack" or "Ack" or "ACK" as the use input This function is built in such a way that it combines both programs into one program for better use of resources. Therefore this is capable enough to solve both the sender as well as the receiver logic. """ element = 0 while element <= len(dataBitArray)-1: # Sending all data bits one after the other using while loop send(dataBitArray[element]) i, o, e = select.select( [sys.stdin], [], [], Timeout ) # This would wait for the previously defined timeout seconds for an input from the user if (i): # if input is received.... if sys.stdin.readline().strip() == "ack" or sys.stdin.readline().strip() == "Ack" or sys.stdin.readline().strip() == "ACK": # it checks with ACK, Ack, ack. If matches, then it goes on to the next bit print(" + Ack received! Sending next Data Bit...") element = element + 1 else: # else, in the case of the input not matching to the previously mentioned 3 accepted ack messages # it would count it as corrupted ack, and it would resend the bit, again. print(" > Ack Corrupted! Sending again...") else: # this is the case where there is no ack from the receiver (AKA user in this case) # then it waits till the time out is over and then resend the data bit. print(" > Ack Lost! Sending again...")
5,350,145
def create_symbolic_controller(states, inputs): """"Returns a dictionary with keys that are the joint torque inputs and the values are the controller expressions. This can be used to convert the symbolic equations of motion from 0 = f(x', x, u, t) to a closed loop form 0 = f(x', x, t). Parameters ---------- states : sequence of len 2 * (n + 1) The SymPy time dependent functions for the system states where n are the number of links. inputs : sequence of len n The SymPy time depednent functions for the system joint torque inputs (should not include the lateral force). Returns ------- controller_dict : dictionary Maps joint torques to control expressions. gain_symbols : list of SymPy Symbols The symbols used in the gain matrix. xeq : list of SymPy Symbols The symbols for the equilibrium point. """ num_states = len(states) num_inputs = len(inputs) xeq = sym.Matrix([x.__class__.__name__ + '_eq' for x in states]) K = sym.Matrix(num_inputs, num_states, lambda i, j: sym.Symbol('k_{}{}'.format(i, j))) x = sym.Matrix(states) T = sym.Matrix(inputs) gain_symbols = [k for k in K] # T = K * (xeq - x) -> 0 = T - K * (xeq - x) controller_dict = sym.solve(T - K * (xeq - x), inputs) return controller_dict, gain_symbols, xeq
5,350,146
def subprocess_main(framework=None): """ Please keep this file compatible with python2 in order to check user python version. This function checks that Inference Engine Python API available and working as expected and then in sub-process it executes main_<fw>.py files. Due to some OSs specifics we can't just add paths to Python modules and libraries into current env. So to make Inference Engine Python API to be available inside MO we need to use subprocess with new env. """ setup_env() path_to_main = os.path.join(os.path.realpath(os.path.dirname(__file__)), 'main_{}.py'.format(framework) if framework else 'main.py') # python2 compatible code. Do not remove. args = [sys.executable, path_to_main] for arg in sys.argv[1:]: args.append(arg) status = subprocess.run(args, env=os.environ) sys.exit(status.returncode)
5,350,147
def is_gene_name(instance): """This SHOULD check a webservice at HGNC/MGI for validation, but for now this just returns True always..""" ignored(instance) return True
5,350,148
def install_package_family(pkg): """ :param: pkg ie asr900rsp2-universal.03.13.03.S.154-3.S3-ext.bin :return: device_type of the installed image ie asr900 """ img_dev = None m = re.search(r'(asr\d+)\w*', pkg) if m: img_dev = m.group(1) return img_dev
5,350,149
def generate_visible(tower_height, heightmap): """Trace a ray and determine if a region is viewable. Args: tower_height: the elevation in meters above sea level of your antenna heightmap: an enumerable of heights in a given direction Returns: an enumerable of True/False for visibility """ min_angle = -10000 for i, height in enumerate(heightmap): if tower_height - height == 0: angle_to_point = 0 elif tower_height > height: angle_to_point = math.atan(i / (tower_height - height)) else: angle_to_point = math.atan((height - tower_height) / i) + math.pi / 2 if angle_to_point >= min_angle: min_angle = angle_to_point yield True else: yield False
5,350,150
def get_dendritic_mask_path_from_sessid(maindir, sessid, runtype="prod", check=True): """ get_dendritic_mask_path_from_sessid(maindir, sessid) Returns path to dendritic mask file for the specified session. Required args: - maindir (str): main directory - sessid (int) : session ID Optional args: - runtype (str) : "prod" (production) or "pilot" data default: "prod" - check (bool) : if True, checks whether the files in the output dictionary exist default: True Returns: - maskfile (str): full path name of the extract masks hdf5 file """ sessdir, mouse_dir = get_sess_dir_path(maindir, sessid, runtype) mouseid = get_mouseid(sessdir, mouse_dir) expid = get_expid(sessdir) maskfile = get_dendritic_mask_path( maindir, sessid, expid, mouseid, runtype, mouse_dir, check) return maskfile
5,350,151
def test_attachment_blank(tmpdir): """Attachment header without a filename is an error.""" template_path = Path(tmpdir/"template.txt") template_path.write_text(textwrap.dedent(u"""\ TO: [email protected] FROM: [email protected] ATTACHMENT: Hello world """)) template_message = TemplateMessage(template_path) with pytest.raises(MailmergeError) as err: with tmpdir.as_cwd(): template_message.render({}) assert "Empty attachment header" in str(err)
5,350,152
def shift(arr): """ Shifts all rows of boxs back one row :param arr: 2D Array of VPython Box elements :return: No return, this will adjust the input arr to allow for a new row to be added """ for i in range(99, 0, -1): for j in range(99, -1, -1): arr[i][j].height = arr[i-1][j].height arr[i][j].color = arr[i - 1][j].color arr[i][j].pos.y = arr[i][j].height / 2
5,350,153
def sam_to_bam(samfile, bamfile, samtools_bin="samtools"): """ Convert SAM to sorted and indexed BAM. Args: samfile: Input Sam bamfile: Output Bam (without .bam extension) samtools_bin: path to samtools binary """ with tempfile.NamedTemporaryFile() as tmp_bam: # samtools takes only basename in 'sort' but full filename in 'index' call(["{2} view -S -b {0} > {1}".format(samfile, tmp_bam.name, samtools_bin)], shell=True) call([samtools_bin, "sort", tmp_bam.name, bamfile]) call([samtools_bin, "index", bamfile + ".bam"])
5,350,154
def abbn_min_vol(): """ Real Name: b'"Ab-bn min vol"' Original Eqn: b'25.6' Units: b'' Limits: (None, None) Type: constant b'' """ return 25.6
5,350,155
def clear(self: Client, player: str = None, item_name: str = None, data: int = None, max_count: int = None) -> str: """Clears items from player inventory, including items being dragged by the player. Bedrock Edition implementation. """ return self.run('clear', player, item_name, data, max_count)
5,350,156
def load_glove_embeddings(dim, vocab): """ Load GloVe embedding vectors for all words in our vocabulary. https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/ Parameters ---------- dim : int Dimension of GloVe embeddings. Can be 50, 100, 200 and 300. vocab : dict Dictionary mapping words to index. Returns ------- embeddings_index : dict A dictionary that maps word to embedding vector. """ embeddings_index = dict() lower_dict = [word.lower() for word in vocab.keys()] with open('glove.6B/glove.6B.'+str(dim)+'d.txt', 'r', encoding="utf-8") as f: for line in f: values = line.split() word = values[0] coefs = asarray(values[1:], dtype='float32') # use only low case? GloVe seems to use only low case, but what about NER? if word in vocab: embeddings_index[vocab[word]] = coefs # maybe Word get same embedding as word? elif word in lower_dict: try: embeddings_index[vocab[word.title()]] = coefs except KeyError: continue return embeddings_index
5,350,157
def check_vat_number(vat_number, country_code=None): """Check if a VAT number is valid. If possible, the VAT number will be checked against available registries. :param vat_number: VAT number to validate. :param country_code: Optional country code. Should be supplied if known, as there is no guarantee that naively entered VAT numbers contain the correct alpha-2 country code prefix for EU countries just as not all non-EU countries have a reliable country code prefix. Default ``None`` prompting detection. :returns: a :class:`VatNumberCheckResult` instance containing the result for the full VAT number check. """ # Decompose the VAT number. vat_number, country_code = decompose_vat_number(vat_number, country_code) if not vat_number or not country_code: return VatNumberCheckResult(False, [ '> Unable to decompose VAT number, resulted in %r and %r' % (vat_number, country_code) ]) # Test the VAT number format. format_result = is_vat_number_format_valid(vat_number, country_code) if format_result is not True: return VatNumberCheckResult(format_result, [ '> VAT number validation failed: %r' % (format_result) ]) # Attempt to check the VAT number against a registry. if country_code not in VAT_REGISTRIES: return VatNumberCheckResult() return VAT_REGISTRIES[country_code].check_vat_number(vat_number, country_code)
5,350,158
def argextrema(y, separate=True): """ Deprecated in favor of argrel{min|max} in scypy.signal to get separate extrema in about the same CPU time. If you need a list of all relative extrema in order, using this with separate=False takes about half the time as by combining the scipy functions with searchsorted. Returns the indices of the local extrema of a series. When consecutive points at an extreme have the same value, the index of the first is returned. """ delta = y[1:] - y[:-1] pos_neg = np.zeros(len(delta), np.int8) pos_neg[delta > 0] = 1 pos_neg[delta < 0] = -1 curve_sign = pos_neg[1:] - pos_neg[:-1] if separate: argmax = np.nonzero(curve_sign < 0)[0] + 1 argmin = np.nonzero(curve_sign > 0)[0] + 1 return argmin,argmax else: argext = np.nonzero(curve_sign != 0)[0] + 1 return argext
5,350,159
def examine_normal_mode(r_mol: RDKitMol, p_mol: RDKitMol, ts_xyz: np.array, disp: np.array, amplitude: Union[float, list] = 0.25, weights: Union[bool, np.array] = True, verbose: bool = True, as_factors: bool = True): """ Examine a TS's imaginary frequency given a known reactant complex and a product complex. The function checks if the bond changes are corresponding to the most significant change in the normal mode. The reactant and product complex need to be atom mapped. Args: r_mol ('RDKitMol'): the reactant complex. p_mol ('RDKitMol'): the product complex. ts_xyz (np.array): The xyz coordinates of the transition state. It should have a size of N x 3. disp (np.array): The displacement of the normal mode. It should have a size of N x 3. amplitude (float): The amplitude of the motion. Defaults to 0.25. weights (bool or np.array): If ``True``, use the sqrt(atom mass) as a scaling factor to the displacement. If ``False``, use the identity weights. If a N x 1 ``np.array` is provided, then The concern is that light atoms (e.g., H) tend to have larger motions than heavier atoms. verbose (bool): If print detailed information. Defaults to ``True``. as_factors (bool): If return the value of factors instead of a judgment. Defaults to ``False`` Returns: - bool: ``True`` for pass the examination, ``False`` otherwise. - list: If `as_factors == True`, two factors will be returned. """ # Analyze connectivity broken, formed, changed = get_all_changing_bonds(r_mol, p_mol) reacting_bonds = broken + formed + changed # Generate weights if isinstance(weights, bool) and weights: atom_masses = np.array(r_mol.GetAtomMasses()).reshape(-1, 1) weights = np.sqrt(atom_masses) elif isinstance(weights, bool) and not weights: weights = np.ones((ts_xyz.shape[0], 1)) # Generate conformer instance according to the displacement xyzs = ts_xyz - amplitude * disp * weights, ts_xyz + amplitude * disp * weights r_copy = r_mol.Copy(); r_copy.SetPositions(xyzs[0]) p_copy = p_mol.Copy(); p_copy.SetPositions(xyzs[1]) r_conf, p_conf = r_copy.GetConformer(), p_copy.GetConformer() # Calculate bond distance change formed_and_broken_diff = [abs(r_conf.GetBondLength(bond) - p_conf.GetBondLength(bond)) for bond in broken + formed] changed_diff = [abs(r_conf.GetBondLength(bond) - p_conf.GetBondLength(bond)) for bond in changed] other_bonds_diff = [abs(r_conf.GetBondLength(bond) - p_conf.GetBondLength(bond)) for bond in r_copy.GetBondsAsTuples() if bond not in reacting_bonds] # We expect bonds that are formed or broken in the reaction # have relatively large changes; For bonds that change their bond order # in the reaction may have a smaller factor. # In this function, we only use the larger factor as a check. # The smaller factor is less deterministic, considering the change in # other bonds due to the change of atom hybridization or bond conjugation. baseline = np.max(other_bonds_diff) std = np.std(other_bonds_diff) larger_factor = (np.min(formed_and_broken_diff) - baseline) / std if changed_diff: # There might be no bond that only changes its order smaller_factor = (np.min(changed_diff) - baseline) / std else: smaller_factor = 0 if verbose: print(f'The min. bond distance change for bonds that are broken or formed' f' is {np.min(formed_and_broken_diff)} A and is {larger_factor:.1f} STD off the baseline.') if changed_diff: print(f'The min. bond distance change for bonds that are changed' f' is {np.min(changed_diff)} A and is {smaller_factor:.1f} STD off the baseline.') if as_factors: return larger_factor, smaller_factor if larger_factor > 3: return True return False
5,350,160
def generate_sprites(factor_dist, num_sprites=1): """Create callable that samples sprites from a factor distribution. Args: factor_dist: The factor distribution from which to sample. Should be an instance of factor_distributions.AbstractDistribution. num_sprites: Int or callable returning int. Number of sprites to generate per call. Returns: _generate: Callable that returns a list of Sprites. """ def _generate(): n = num_sprites() if callable(num_sprites) else num_sprites sprites = [sprite.Sprite(**factor_dist.sample()) for _ in range(n)] return sprites return _generate
5,350,161
def recode_from_index_mapper(meta, series, index_mapper, append): """ Convert a {value: logic} map to a {value: index} map. This function takes a mapper of {key: logic} entries and resolves the logic statements using the given meta/data to return a mapper of {key: index}. The indexes returned can be used on data to isolate the cases described by arbitrarily complex logical statements. Parameters ---------- meta : dict Quantipy meta document. series : pandas.Series The series in which the recoded data will be stored and returned. index_mapper : dict A mapper of {key: index} append : bool Should the new recodd data be appended to items already found in series? If False, data from series (where found) will overwrite whatever was found for that item in ds1 instead. Returns ------- series : pandas.Series The series in which the recoded data will be stored and returned. """ qtype = meta['columns'][series.name]['type'] if qtype in ['delimited set']: if series.dtype in ['int64', 'float64']: not_null = series.notnull() if len(not_null) > 0: series.loc[not_null] = series.loc[not_null].map(str) + ';' if index_mapper: cols = [str(c) for c in sorted(index_mapper.keys())] else: vals = meta['columns'][series.name]['values'] codes = [c['value'] for c in vals] cols = [str(c) for c in codes] ds = pd.DataFrame(0, index=series.index, columns=cols) for key, idx in index_mapper.iteritems(): ds[str(key)].loc[idx] = 1 ds2 = condense_dichotomous_set(ds) org_name = series.name series = join_delimited_set_series(series, ds2, append) ## Remove potential duplicate values if series.dropna().empty: warn_msg = 'Could not recode {}, found empty data column dependency!'.format(org_name) warnings.warn(warn_msg) return series ds = series.str.get_dummies(';') # Make sure columns are in numeric order ds.columns = [int(float(c)) for c in ds.columns] cols = sorted(ds.columns.tolist()) ds = ds[cols] ds.columns = [str(i) for i in ds.columns] # Reconstruct the dichotomous set series = condense_dichotomous_set(ds) elif qtype in ['single', 'int', 'float']: for key, idx in index_mapper.iteritems(): series.loc[idx] = key else: raise TypeError( "Can't recode '{col}'. Recoding for '{typ}' columns is not" " yet supported.".format(col=series.name, typ=qtype) ) return series
5,350,162
def update_dynamoDB(global_table_name, query_id, slack_data, current_date): """ update jarvis data to dynamoDB, seperate by queryId, :param query_id: query attached together by + sign :param slack_data: a list :return: """ # convert list to string for dynamodb storage slack_data = json.dumps(slack_data) session = boto3.session.Session(region_name='us-east-1') iam_client = session.client('dynamodb') list_group_detail = iam_client.update_item(TableName=global_table_name, Key={'queryId': {'S': query_id}}, ExpressionAttributeNames={'#S': 'slackData','#D': 'dateTimeData'}, ExpressionAttributeValues={':s': {'S': slack_data},':d': {'S': current_date}}, ReturnValues='ALL_NEW', UpdateExpression='SET #S = :s, #D = :d') # print(list_group_detail['ResponseMetadata']) if list_group_detail['ResponseMetadata']['HTTPStatusCode'] == 200: print("update slackData to Database {0} successfully".format(global_table_name))
5,350,163
def get_variables(): """Loads ODAHU config as Robot variable """ return {'CONFIG': {var: getattr(config, var) for var in config.ALL_VARIABLES}}
5,350,164
def is_number(char: Text) -> bool: """Checks if char is number. Returns Boolean.""" return char in string.digits
5,350,165
def sliceData(data, slicebox=[None,None,None,None]): """ Sum 2d data along both axes and return 1d datasets **Inputs** data (sans2d) : data in slicebox (range?:xy): region over which to integrate (in data coordinates) **Returns** xout (sans1d) : xslice yout (sans1d) : yslice 2018-04-20 Brian Maranville """ if slicebox is None: slicebox = [None, None, None, None] xmin, xmax, ymin, ymax = slicebox res = data.copy() if data.qx is None or data.qy is None: # then use pixels xslice = slice(int(np.ceil(xmin)) if xmin is not None else None, int(np.floor(xmax)) if xmax is not None else None) yslice = slice(int(np.ceil(ymin)) if ymin is not None else None, int(np.floor(ymax)) if ymax is not None else None) x_in = np.arange(data.data.x.shape[0]) y_in = np.arange(data.data.x.shape[1]) x_out = x_in[xslice] y_out = y_in[yslice] dx = np.zeros_like(x_out) dy = np.zeros_like(y_out) else: # then use q-values qxmin = data.qx_min if data.qx_min is not None else data.qx.min() qxmax = data.qx_max if data.qx_max is not None else data.qx.max() qx_in = np.linspace(qxmin, qxmax, data.data.x.shape[0]) qymin = data.qy_min if data.qy_min is not None else data.qy.min() qymax = data.qy_max if data.qy_max is not None else data.qy.max() qy_in = np.linspace(qymin, qymax, data.data.x.shape[1]) xslice = slice(get_index(qx_in, xmin), get_index(qx_in, xmax)) yslice = slice(get_index(qy_in, ymin), get_index(qy_in, ymax)) x_out = qx_in[xslice] y_out = qy_in[yslice] dx = np.zeros_like(x_out) dy = np.zeros_like(y_out) dataslice = (xslice, yslice) x_sum = uncertainty.sum(data.data[dataslice], axis=1) y_sum = uncertainty.sum(data.data[dataslice], axis=0) x_output = Sans1dData(x_out, x_sum.x, dx=dx, dv=x_sum.variance, xlabel=data.xlabel, vlabel="I", xunits="", vunits="neutrons", metadata=data.metadata) y_output = Sans1dData(y_out, y_sum.x, dx=dy, dv=y_sum.variance, xlabel=data.ylabel, vlabel="I", xunits="", vunits="neutrons", metadata=data.metadata) return x_output, y_output
5,350,166
def set_plugin_temporarily_enabled(folder=None): """ Disables the plugin globally or for folder. Folder can be a view """ if folder is None: if is_plugin_globally_disabled(): plugin_disabled_for_folders.remove("*global") else: if isinstance(folder, sublime.View): folder = os.path.dirname(folder.file_name()) folder = os.path.normcase(folder) Debug('project', 'Enable ArcticTypescript for %s' % folder) if folder in plugin_disabled_for_folders: plugin_disabled_for_folders.remove(folder)
5,350,167
def GetChangeUrl(host, change): """Given a Gerrit host name and change ID, returns a URL for the change.""" return '%s://%s/a/changes/%s' % (GERRIT_PROTOCOL, host, change)
5,350,168
def _ignored_jenkins_node_names() -> List[str]: """ Ignore nodes with these names :return: Config list """ return json.loads(os.environ['IGNORED_JENKINS_NODE_NAMES'])
5,350,169
def recipe_clone_message(recipe): """ Renders the recipe clone message. """ return dict(recipe=recipe)
5,350,170
def read_expression_file(file): """Reads a file with the expression profiles.""" D = [] genes = [] with open(file) as fp: firstline = fp.readline() classes = [c.strip() for c in firstline.split("\t")[1:]] for line in fp.readlines(): items = [w.strip() for w in line.split("\t")] genes.append(items[0]) D.append([int(x) for x in items[1:]]) class_a = classes[0] C = [int(c == class_a) for c in classes] D = np.array(D) return genes, D, C
5,350,171
def test_svd_soln(): """ test SVD decomposition of solution by generating SVD, saving to file and reloading """ from proteus.deim_utils import read_snapshots,generate_svd_decomposition ns = get_burgers_ns("test_svd_soln",T=0.1,nDTout=10,archive_pod_res=True) failed = ns.calculateSolution("run_svd_soln") assert not failed from proteus import Archiver archive = Archiver.XdmfArchive(".","test_svd_soln",readOnly=True) U,s,V=generate_svd_decomposition(archive,len(ns.tnList),'u','soln') S_svd = np.dot(U,np.dot(np.diag(s),V)) #now load back in and test S = read_snapshots(archive,len(ns.tnList),'u') npt.assert_almost_equal(S,S_svd)
5,350,172
def train(X, Y, n_h, num_iterations=10000, print_cost=False): """ 定义神经网络模型,把之前的操作合并到一起 Args: X: 输入值 Y: 真实值 n_h: 隐藏层大小/节点数 num_iterations: 训练次数 print_cost: 设置为True,则每1000次训练打印一次成本函数值 Return: parameters: 模型训练所得参数,用于预测 """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # 根据n_x, n_h, n_y初始化参数,并取出W1,b1,W2,b2 parameters = initialize_parameters(n_x, n_h, n_y) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] for i in range(0, num_iterations): # 前向传播, 输入: "X, parameters". 输出: "A2, cache". A2, cache = forward_propagation(X, parameters) # 成本计算. 输入: "A2, Y, parameters". 输出: "cost". cost = calculate_cost(A2, Y, parameters) # 后向传播, 输入: "parameters, cache, X, Y". 输出: "grads". grads = backward_propagation(parameters, cache, X, Y) # 参数更新. 输入: "parameters, grads". 输出: "parameters". parameters = update_parameters(parameters, grads) # 每1000次训练打印一次成本函数值 if print_cost and i % 1000 == 0: print "Cost after iteration %i: %f" % (i, cost) return parameters
5,350,173
def get_drawdowns(cum_returns): """ Computes the drawdowns of the cumulative returns. Parameters ---------- cum_returns : Series or DataFrame, required a Series or DataFrame of cumulative returns Returns ------- Series or DataFrame """ cum_returns = cum_returns[cum_returns.notnull()] highwater_marks = cum_returns.expanding().max() drawdowns = cum_returns/highwater_marks - 1 return drawdowns
5,350,174
def cmd_instance_create(context, classname, options): """ Create an instance and submit to wbemserver. If successful, this operation returns the new instance name. Otherwise it raises an exception """ ns = options['namespace'] or context.conn.default_namespace try: class_ = context.conn.GetClass( classname, namespace=ns, LocalOnly=False) except CIMError as ce: if ce.status_code == CIM_ERR_NOT_FOUND: raise click.ClickException('CIMClass: "{}" does not exist in ' 'namespace "{}" in WEB ' 'server: {}.'.format(classname, ns, context.conn)) raise_pywbem_error_exception(ce) except Error as er: raise_pywbem_error_exception(er) properties = options['property'] # properties is a tuple of name,value pairs new_inst = create_ciminstance(class_, properties) if options['verify']: context.spinner_stop() click.echo(new_inst.tomof()) if not verify_operation("Execute CreateInstance", msg=True): return try: name = context.conn.CreateInstance(new_inst, namespace=ns) context.spinner_stop() click.echo('{}'.format(name)) except Error as er: raise click.ClickException('Server Error creating instance in ' 'namespace {}. Exception: ' '{}: {}'.format(ns, er.__class__.__name__, er))
5,350,175
def test_flow_udp(serializer, options, tx_port, rx_port, api): """UDP Flow test traffic configuration """ udp_endpoint = PortTxRx(tx_port_name=tx_port.name, rx_port_name=rx_port.name) test_dscp = Priority( Dscp(phb=Pattern(Dscp.PHB_CS7, ingress_result_name='phb'))) udp_header = Udp(src_port=Pattern(Counter(start="12001", step="2", count=100), ingress_result_name='UDP SRC PORT'), dst_port=Pattern("20")) udp_flow = Flow(name='UDP Flow', tx_rx=TxRx(udp_endpoint), packet=[ Header(Ethernet()), Header(Vlan()), Header(Ipv4(priority=test_dscp)), Header(udp_header) ], size=Size(128), rate=Rate('line', 50), duration=Duration(FixedPackets(packets=100000))) config = Config(ports=[tx_port, rx_port], flows=[udp_flow], options=options) state = State(ConfigState(config=config, state='set')) print(serializer.json(state)) api.set_state(state)
5,350,176
def calc_recipe_quantity_ratio( first_month: str, first_recipe: str, second_recipe: str, file_name: str, second_month: str = None) -> float: """ A function which calculates the ratio of quantity between two months. :param first_month: str :param first_recipe: str :param second_recipe: str :param file_name: str :param second_month: str :return: ratio: float """ if first_month not in VALID_MONTH: raise ValueError("Date must be one of %s." % VALID_MONTH) elif first_recipe not in VALID_RECIPE or second_recipe not in VALID_RECIPE: raise ValueError("Recipe must be on of %s." % VALID_RECIPE) else: if second_month is None: second_month: str = first_month first_quantity: int = calc_month_quantity_by_recipe(first_month, first_recipe, file_name) second_quantity: int = calc_month_quantity_by_recipe(second_month, second_recipe, file_name) ratio = round(first_quantity / second_quantity, 2) return ratio
5,350,177
def teacher_add_to_db(): """Adds a teacher to database Returns: Redirect: Redirects to teachers list route """ if request.method == "POST": fet_name = request.form["fet_name"] fullname = request.form["fullname"] teacher_email = request.form["t_email"] try: teacher_obj = Teacher(teacher_email=teacher_email, fet_name=fet_name, fullname=fullname) db.session.add(teacher_obj) db.session.commit() flash(("Teacher {} added successfully.".format(fet_name)), category="success") return redirect(url_for('teacher_list')), 302 except Exception as e: flash("Exception: {}".format(str(e)), category="danger") return redirect(url_for("teacher_list")), 302
5,350,178
def authorize(app_id, channel_id, team_id): """Just double check if this app is invoked from the expected app/channel/team""" if app_id != SLACK_APP_ID: return f"app ID {app_id}" if team_id not in SLACK_TEAM_IDS: return f"team ID {team_id}" if channel_id not in SLACK_CHANNEL_IDS: return f"channel ID {channel_id}"
5,350,179
def deal_one_card(): """ returns a random card from the deck """ cards = [11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10] return random.choice(cards)
5,350,180
def _run(bot, inputs, logger, server_override=None, botengine_override=None): """ Run the given bot with the given parameters :param bot: bot to run :param inputs: the input JSON from the bot server :param logger: logger object :param server_override: Override the server URL with the known server when executing on someone's computer :param botengine_override: For playback simulators, override the botengine object """ global _bot_logger _bot_logger = logger next_timer_at_server = None if botengine_override is None: services = None if 'services' in inputs: services = inputs['services'] count = None if 'count' in inputs: count = int(inputs['count']) if 'timer' in inputs: next_timer_at_server = int(inputs['timer']) lang = None if 'lang' in inputs: lang = inputs['lang'] cloud = None if 'cloud' in inputs: cloud = inputs['cloud'] botengine = BotEngine(inputs, server_override=server_override, services=services, lang=lang, count=count, cloud=cloud) else: botengine = botengine_override botengine.start_time_sec = time.time() botengine._download_core_variables() botengine.load_variables_time_sec = time.time() for server in botengine._servers: if 'sbox' in server: botengine._validate_count() break all_triggers = [] for i in inputs['inputs']: all_triggers.append(i['trigger']) botengine.all_trigger_types = all_triggers timers_existed = False botengine.triggers_total = len(all_triggers) for execution_json in inputs['inputs']: botengine.triggers_index += 1 trigger = execution_json['trigger'] if trigger > 0: botengine._set_inputs(execution_json) if trigger != 2048: saved_timers = botengine.load_variable(TIMERS_VARIABLE_NAME) if saved_timers is not None: timers_existed |= len(saved_timers) > 1 for t in [ x[0] for x in saved_timers ]: if t != MAXINT and t <= execution_json['time']: focused_timer = saved_timers.pop(0) botengine.all_trigger_types.append(64) if callable(focused_timer[1]): focused_timer[1](botengine, focused_timer[2]) else: botengine.get_logger().error('BotEngine: Timer fired and popped, but cannot call the focused timer: ' + str(focused_timer)) else: break botengine.save_variable(TIMERS_VARIABLE_NAME, botengine.load_variable(TIMERS_VARIABLE_NAME)) if trigger != 64: bot.run(botengine) elif saved_timers is not None and not timers_existed: botengine.get_logger().error('BotEngine: Timer fired but no recollection as to why.') botengine.get_logger().error('Current timer variable is: ' + str(saved_timers)) botengine.flush_commands() botengine.flush_questions() botengine.flush_analytics() botengine.flush_binary_variables() if trigger != 2048: saved_timers = botengine.load_variable(TIMERS_VARIABLE_NAME) if saved_timers is not None and len(saved_timers) > 0: while True: try: if saved_timers[0][0] != MAXINT: if saved_timers[0][0] != next_timer_at_server: botengine._execute_again_at_timestamp(saved_timers[0][0]) botengine.get_logger().info(('< Set alarm: {}').format(saved_timers[0])) else: botengine.get_logger().info(('| Alarm already set: {}').format(saved_timers[0])) break except Exception as e: botengine.get_logger().error(('Could not _execute_again_at_timestamp to set timer: {}').format(str(e))) continue botengine.flush_rules() botengine.flush_tags() botengine.flush_asynchronous_requests() return
5,350,181
def grey_pal(start=0.2, end=0.8): """ Utility for creating continuous grey scale palette Parameters ---------- start : float grey value at low end of palette end : float grey value at high end of palette Returns ------- out : function Continuous color palette that takes a single :class:`int` parameter ``n`` and returns ``n`` equally spaced colors. Examples -------- >>> palette = grey_pal() >>> palette(5) ['#333333', '#737373', '#989898', '#b5b5b5', '#cccccc'] """ gamma = 2.2 ends = ((0.0, start, start), (1.0, end, end)) cdict = {'red': ends, 'green': ends, 'blue': ends} grey_cmap = mcolors.LinearSegmentedColormap('grey', cdict) def continuous_grey_palette(n): # The grey scale points are linearly separated in # gamma encoded space x = np.linspace(start**gamma, end**gamma, n) # Map points onto the [0, 1] palette domain vals = (x ** (1./gamma) - start) / (end - start) return ratios_to_colors(vals, grey_cmap) return continuous_grey_palette
5,350,182
def prepare(path, data_id): """Process each dataset based on individual characteristics Args: path to pull data from """ # assert type(train) == bool, 'Wrong train/test selection input' if train: suffix = "_train" else: suffix = "_test" if dataset == "synapse": feature_id = re.findall(r"[\w']+", feature_dir)[-3][-4:] label_id = re.findall(r"[\w']+", label_dir)[-3][-4:] assert feature_id == label_id, "Feature and label mis-match: {0}".format( feature_id ) feature_array = load_nifty_data(feature_dir) feature_array = rotate_image(feature_array, 1) feature_final = np.moveaxis(feature_array, -1, 0) label_array = load_nifty_data(label_dir) label_array = rotate_image(label_array, 1) label_final = np.moveaxis(label_array, -1, 0) else: feature_id = re.findall(r"[\w']+", feature_dir)[-1][-4:] label_id = re.findall(r"[\w']+", label_dir)[-3][-4:] assert feature_id == label_id, "Feature and label mis-match: {0}".format( feature_id ) feature_array = load_dicom_data(feature_dir) feature_array = rotate_image(feature_array, 2, (1, 2)) feature_final = rotate_image(feature_array, 2, (0, 2)) # feature_final = np.flip(feature_array, axis=0) # feature_final = feature_array label_array = load_nifty_data(label_dir) label_array = np.transpose(label_array, (2, 0, 1)) # label_array = rotate_image(label_array, 2) # label_final = np.moveaxis(label_array, -1, 0) label_tcia = rotate_image(label_array, 1, (1, 2)) label_final = np.flip(label_tcia, axis=0) # label_final = rotate_image(label_array, 2, (0, 2)) # save_dir = os.path.join(parent_save_folder, dataset + suffix, feature_id) print("parent save folder:", parent_save_folder) save_dir = os.path.join(parent_save_folder, feature_id) # print('saving dir: {0}'.format(save_dir)) return save_dir, feature_final, label_final
5,350,183
def process_watchdog(function_process, process_info_path, process_time, action): """ Monitoring function for the file transfer processes spawned off using Multiprocessing. It will monitor if the process has either finished or has gone over it's processing time. Parameters ---------- function_process : multiprocessing.Process Multiprocessing class that we are monitoring process_info_path : str Path to the process_info.json file for the process running process_time : int Amount of seconds we want the watchdog to the let the monitored process run """ slept_time = 0 while slept_time <= process_time: sleep(1) # Get the contents of process_info.json. # While loop is required in case the json file is being written to while being read. process_info_data = None while process_info_data is None: try: process_info_data = read_file(process_info_path, True) except json.decoder.JSONDecodeError: # Pass while the process_info file is being written to pass # Exception is mostly in place for testing except FileNotFoundError: return # If the monitored process has finished if process_info_data[action]['status'] != 'in_progress': return slept_time += 1 # If we've reached here then the process reached our time limit and we need to terminate # the monitored process and update the process_info.json file. function_process.terminate() process_info_data[action]['status'] = 'failed' process_info_data[action]['message'] = 'The process took too long on the server.' process_info_data[action]['status_code'] = 504 write_file(process_info_path, process_info_data, True)
5,350,184
def tags_to_matrix(events_df, tags_df, top_tags): """Converts tags to feature matrix Args: events_df: Events dataset tags_df: Tags dataset top_tags: Tags to include Returns: Feature matrix for tags """ # Combine tags into lists tags = tags_df.groupby('id')['tag'].agg(lambda x: list(x)).reset_index() # Handle events with no top tags # TODO: Kludge, write nicer missing_tags = pd.DataFrame({ 'id': events_df[~events_df['id'].isin(tags['id'])]['id'].unique() }) missing_tags['tag'] = [[] for _ in range(len(missing_tags))] tags = pd.concat([tags, missing_tags]) # Align tags with events aligned_tags = events_df.merge(tags, on='id') # Convert aligned tags to matrix mlb = MultiLabelBinarizer(classes=top_tags) return mlb.fit_transform(aligned_tags['tag'])
5,350,185
def get_parameter_value_and_validate_return_type( domain: Optional[Domain] = None, parameter_reference: Optional[Union[Any, str]] = None, expected_return_type: Optional[Union[type, tuple]] = None, variables: Optional[ParameterContainer] = None, parameters: Optional[Dict[str, ParameterContainer]] = None, ) -> Optional[Any]: """ This method allows for the parameter_reference to be specified as an object (literal, dict, any typed object, etc.) or as a fully-qualified parameter name. In either case, it can optionally validate the type of the return value. """ if isinstance(parameter_reference, dict): parameter_reference = safe_deep_copy(data=parameter_reference) parameter_reference = get_parameter_value( domain=domain, parameter_reference=parameter_reference, variables=variables, parameters=parameters, ) if expected_return_type is not None: if not isinstance(parameter_reference, expected_return_type): raise ge_exceptions.ProfilerExecutionError( message=f"""Argument "{parameter_reference}" must be of type "{str(expected_return_type)}" \ (value of type "{str(type(parameter_reference))}" was encountered). """ ) return parameter_reference
5,350,186
async def test_oppio_discovery_webhook(opp, aioclient_mock, oppio_client): """Test discovery webhook.""" aioclient_mock.get( "http://127.0.0.1/discovery/testuuid", json={ "result": "ok", "data": { "service": "mqtt", "uuid": "test", "addon": "mosquitto", "config": { "broker": "mock-broker", "port": 1883, "username": "mock-user", "password": "mock-pass", "protocol": "3.1.1", }, }, }, ) aioclient_mock.get( "http://127.0.0.1/addons/mosquitto/info", json={"result": "ok", "data": {"name": "Mosquitto Test"}}, ) with patch( "openpeerpower.components.mqtt.config_flow.FlowHandler.async_step_oppio", return_value={"type": "abort"}, ) as mock_mqtt: resp = await oppio_client.post( "/api/oppio_push/discovery/testuuid", json={"addon": "mosquitto", "service": "mqtt", "uuid": "testuuid"}, ) await opp.async_block_till_done() assert resp.status == 200 assert aioclient_mock.call_count == 2 assert mock_mqtt.called mock_mqtt.assert_called_with( { "broker": "mock-broker", "port": 1883, "username": "mock-user", "password": "mock-pass", "protocol": "3.1.1", "addon": "Mosquitto Test", } )
5,350,187
def add_leaf_to_edge(t): """ Returns a `Shape` instance with a new root; both a new leaf and the input `Shape` pend from it. :param t: `Shape` instance. :return: `Shape` instance. """ return Shape([Shape.LEAF, t])
5,350,188
def setup_cwl_logger(ti, level=None): """ Sets logging level of cwltool logger to correspond LOGGING_LEVEL from airflow.cfg. Configures handler based on the task instance to redirect output to the proper file. Suppresses those loggers from cwltool or related packages that spam. Note: maybe we will need to remove StreamHandler <stderr> handler from cwltool logger in case we see undesired outputs in the airflow logs but not in the separate files. """ level = ( conf_get("logging", "LOGGING_LEVEL", "INFO").upper() if level is None else level ) cwl_logger = logging.getLogger("cwltool") for handler in cwl_logger.handlers: try: handler.set_context(ti) except AttributeError: pass cwl_logger.setLevel(level) loggers_to_suppress = ["rdflib.term", "salad", "requests", "urllib3"] for logger_name in loggers_to_suppress: logger = logging.getLogger(logger_name) logger.setLevel("ERROR")
5,350,189
def create_simulation(parameter_values=None, experiment=None, make_inputs=False): """ Create a PyBaMM simulation set up for interation with liionpack Parameters ---------- parameter_values : :class:`pybamm.ParameterValues` The default is None. experiment : :class:`pybamm.Experiment` The default is None. make_inputs : bool, optional Changes "Current function [A]" and "Total heat transfer coefficient [W.m-2.K-1]" to be inputs that are controlled by liionpack. The default is False. Returns ------- sim : :class:`pybamm.Simulation` A simulation that can be solved individually or passed into the liionpack solve method """ # Create the pybamm model model = pybamm.lithium_ion.SPMe( options={ "thermal": "lumped", } ) # Set up parameter values if parameter_values is None: chemistry = pybamm.parameter_sets.Chen2020 parameter_values = pybamm.ParameterValues(chemistry=chemistry) # Change the current function and heat transfer coefficient to be # inputs controlled by the external circuit if make_inputs: parameter_values.update( { "Current function [A]": "[input]", "Total heat transfer coefficient [W.m-2.K-1]": "[input]", }, ) # Set up solver and simulation solver = pybamm.CasadiSolver(mode="safe") sim = pybamm.Simulation( model=model, experiment=experiment, parameter_values=parameter_values, solver=solver, ) return sim
5,350,190
def tarball(options=""): """Build the article tarball. Args: options (str, optional): Additional options to pass to Snakemake. """ snakefile = snakefile = Path("${SYW_PATH}") / "workflow" / "build.smk" snakemake = f"SNAKEMAKE_OUTPUT_CACHE={paths.user().cache} SNAKEMAKE_RUN_TYPE='tarball' snakemake -c1 --use-conda --reason --cache" command = f"{snakemake} {options} -s {snakefile} syw__arxiv_entrypoint" result = run_in_env(command, check=False) if result.returncode > 0: os._exit(1)
5,350,191
def test_parses_valid_outofrange_dates() -> None: """It parses valid dates outside the range supported by pandas.Timestamp.""" df = pd.DataFrame( [ ("1676-01-01", datetime.date(1676, 1, 1)), ("2263-12-31", datetime.date(2263, 12, 31)), ] ) parsed = parse_date(df[0]) assert (parsed == df[1]).all()
5,350,192
def add(lexer: str) -> None: """Add a paste to pinnwand's database from stdin.""" if lexer not in utility.list_languages(): log.error("add: unknown lexer") return paste = database.Paste( sys.stdin.read(), lexer=lexer, expiry=timedelta(days=1) ) with database.session() as session: session.add(paste) session.commit() log.info("add: paste created: %s", paste.paste_id)
5,350,193
def _logistic_loss_and_grad(w, X, y, alpha, mask, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. mask : array-like, shape (n_features), (n_classes, n_features) optional Masking array for coef. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ n_samples, n_features = X.shape if mask is not None: w[:n_features] *= mask grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(n_samples) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) / n_samples out += .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = (safe_sparse_dot(X.T, z0) / n_samples) + alpha * w if mask is not None: grad[:n_features] *= mask # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() / n_samples return out, grad
5,350,194
def verify_status_code(request_response: requests.Response) -> tuple: """Verify the status code of the post request to the search url and raise exceptions if the code is unexpected :type request_response: requests.Response :return: """ if request_response.status_code == 200: return STATUS_CODE_OK, '' elif request_response.status_code == 429: if 'user\'s rate limit' in request_response.text: msg = "Search rate limit reached" return STATUS_CODE_REPEAT, msg if 'limit of 150 searches' in request_response.text: raise DailyLimitReachedException('Daily search limit for unregistered users reached') elif 'limit of 300 searches' in request_response.text: raise DailyLimitReachedException('Daily search limit for basic users reached') else: raise DailyLimitReachedException('Daily search limit reached') elif request_response.status_code == 403: raise InvalidOrWrongApiKeyException("Invalid or wrong API key") elif request_response.status_code == 413: msg = "Payload too large, skipping file" return STATUS_CODE_SKIP, msg else: msg = "Unknown status code: {0:d}".format(request_response.status_code) return STATUS_CODE_REPEAT, msg
5,350,195
def copynew(strpath, destdir):#need an arge for the base destindation directory """replicate the fs tree of strpath in destdir' if srcpath file is newer or doesn't exist then copy it - bug where mutliple runs are required to get everything synced - picks up a new file with each run """ d_src = glob(strpath+"\\*") depth=1#not sure how to track recursion depth for curpth in d_src: if os.path.basename(curpth)[0] == '_': continue #skip files/dirs that start with underscore e.g. __pycache__ #if the name is a directory then recurse dstpth = destdir+"\\"+os.path.split(curpth)[1] #print("{} vs {}".format(curpth, dstpth)) if not(os.path.isfile(dstpth) or os.path.isdir(dstpth)): if(os.path.isdir(curpth) ): print("creating directory {}".format(dstpth)) os.mkdir(dstpth)#cant copy2 a directory copynew(curpth, dstpth) else: print("{} does not exist...copying".format(dstpth))#check dst pth for the file #if the file doesn't exist in the dest then copy it shutil.copy2(curpth,dstpth) #if the file doesn't exist then copy it return#is this needed? elif os.path.isdir(curpth):#recursive call to look at subpaths - need to update destdir as well #print("{} is a directory".format(curpth)) #print("*"*20+ "subdir {}".format(curpth)+"*"*20) copynew(curpth,dstpth) else:#file is a file that needs to be checked #if the file is newer or the file is a different size - copy it to the dest path #print("{} is a file: mtime={} size={}bytes".format(curpth,os.stat(curpth).st_mtime,os.stat(curpth).st_size)) #if the file is newer than the one in dest then copy it if(os.path.getmtime(curpth) > os.path.getmtime(dstpth)):#if file is newer - may need to check size as well print("*** {} is newer than {}... syncing".format(curpth,dstpth)) shutil.copy2(curpth,dstpth) #else do nothing print("done with {} syncing new files to {} ".format(strpath, destdir)) print("*"*25) return
5,350,196
def instability_product_graphs(gra): """ Determine if the species has look for functional group attachments that could cause molecule instabilities """ # Build graphs for the detection scheme rad_grp_dct = radical_group_dct(gra) # Check for instability causing functional groups prd_gras = () for atm, grps in rad_grp_dct.items(): if atm in instab_fgrps.DCT: fgrps, prds = instab_fgrps.DCT[atm] for grp in grps: grp_ich = automol.graph.inchi(grp) if grp_ich in fgrps: # If instability found, determine prod of the instability prd_ich = prds[fgrps.index(grp_ich)] prd_geo = automol.inchi.geometry(prd_ich) prd_gra = automol.geom.graph(prd_geo) prd_gras = radical_dissociation_prods( gra, prd_gra) break return prd_gras
5,350,197
def build_pdb_rmsd_matrix(pdb_paths, pdb_diff_path=None): """ Returns rmsd difference matrix for multiple pdb files. Returns rmsd_list (3-item list), pdb_comp_amount (int). Optional with pdb_diff_path return pdb_diff_comp(int). """ # make 3 column list or ndarray for x, y = (pdb1-n * pdb1-n) and z = rmsd diff rmsd_list = [[], [], []] # get rmsd difference between each pdb file in nested loop and append for pdb0 in pdb_paths: # compare 2 different sets of pdb files if pdb_diff_path != None: for pdb1 in pdb_diff_path: # append to x (col 0) pdb in outer loop rmsd_list[0].append(pdb_paths.index(pdb0) + 1) # append to y (col 1) pdb in inner loop rmsd_list[1].append(pdb_diff_path.index(pdb1) + 1) # find and append to z (col 2) rmsd value between pdb0 and pdb1 rmsd = rmsd_diff_calc(pdb0, pdb1) #print(f"\n For PDB-A = {pdb0} and PDB-B = {pdb1} : RMSD = {rmsd}") rmsd_list[2].append(rmsd) elif pdb_diff_path == None: for pdb1 in pdb_paths: # append to x (col 0) pdb in outer loop rmsd_list[0].append(pdb_paths.index(pdb0) + 1) # append to y (col 1) pdb in inner loop rmsd_list[1].append(pdb_paths.index(pdb1) + 1) # find and append to z (col 2) rmsd value between pdb0 and pdb1 rmsd = rmsd_diff_calc(pdb0, pdb1) rmsd_list[2].append(rmsd) # amount of pdb files to compare to each other pdb_comp_amount = len(pdb_paths) if pdb_diff_path == None: return rmsd_list, pdb_comp_amount elif pdb_diff_path !=None: pdb_diff_comp = len(pdb_diff_path) return rmsd_list, pdb_comp_amount, pdb_diff_comp
5,350,198
def handle_options(): """ Define default options for a complete and automatic process then check the command line arguments for parts of the process to skip Returns: auto: whether or not we accept user inputs on job and location scrap: whether or not we do the scraping working_data: whether or not we get working data from csv and mongoDB cleaner: whether or not we do the cleaning of data model: whether or not we do the model part update: whether or not we update the DB with our findings report: whether or not we do the reporting to the CEO """ auto = False scrap = True working_data = True cleaner = True pre_process = True model = True update = True report = True log = logging.getLogger('main') log.debug(sys.argv) if sys.argv: # there are command line arguments, we must handle them for arg in sys.argv: if arg == '-auto': auto = True elif arg == '-noScrap': scrap = False elif arg == '-noReport': report = False return auto, scrap, working_data, cleaner, pre_process, model, update, report
5,350,199