content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def swig_py_object_2_list_int(object, size : int) -> List[int]:
"""
Converts SwigPyObject to List[float]
"""
y = (ctypes.c_float * size).from_address(int(object))
new_object = []
for i in range(size):
new_object += [int(y[i])]
return new_object
| 5,351,200 |
def ParseAttributesFromData(attributes_data, expected_param_names):
"""Parses a list of ResourceParameterAttributeConfig from yaml data.
Args:
attributes_data: dict, the attributes data defined in
command_lib/resources.yaml file.
expected_param_names: [str], the names of the API parameters that the API
method accepts. Example, ['projectsId', 'instancesId'].
Returns:
[ResourceParameterAttributeConfig].
Raises:
InvalidResourceArgumentLists: if the attributes defined in the yaml file
don't match the expected fields in the API method.
"""
raw_attributes = [
ResourceParameterAttributeConfig.FromData(a) for a in attributes_data
]
registered_param_names = [a.parameter_name for a in raw_attributes]
final_attributes = []
# TODO(b/78851830): improve the time complexity here.
for expected_name in expected_param_names:
if raw_attributes and expected_name == raw_attributes[0].parameter_name:
# Attribute matches expected, add it and continue checking.
final_attributes.append(raw_attributes.pop(0))
elif expected_name in IGNORED_FIELDS:
# Attribute doesn't match but is being ignored. Add an auto-generated
# attribute as a substitute.
# Currently, it would only be the project config.
attribute_name = IGNORED_FIELDS[expected_name]
ignored_attribute = DEFAULT_RESOURCE_ATTRIBUTE_CONFIGS.get(attribute_name)
# Manually add the parameter name, e.g. project, projectId or projectsId.
ignored_attribute.parameter_name = expected_name
final_attributes.append(ignored_attribute)
else:
# It doesn't match (or there are no more registered params) and the
# field is not being ignored, error.
raise InvalidResourceArgumentLists(expected_param_names,
registered_param_names)
if raw_attributes:
# All expected fields were processed but there are still registered
# attribute params remaining, they must be extra.
raise InvalidResourceArgumentLists(expected_param_names,
registered_param_names)
return final_attributes
| 5,351,201 |
async def reactionFromRaw(payload: RawReactionActionEvent) -> Tuple[Message, Union[User, Member], emojis.BasedEmoji]:
"""Retrieve complete Reaction and user info from a RawReactionActionEvent payload.
:param RawReactionActionEvent payload: Payload describing the reaction action
:return: The message whose reactions changed, the user who completed the action, and the emoji that changed.
:rtype: Tuple[Message, Union[User, Member], BasedEmoji]
"""
emoji = None
user = None
message = None
if payload.member is None:
# Get the channel containing the reacted message
if payload.guild_id is None:
channel = botState.client.get_channel(payload.channel_id)
else:
guild = botState.client.get_guild(payload.guild_id)
if guild is None:
return None, None, None
channel = guild.get_channel(payload.channel_id)
# Individual handling for each channel type for efficiency
if isinstance(channel, DMChannel):
if channel.recipient.id == payload.user_id:
user = channel.recipient
else:
user = channel.me
elif isinstance(channel, GroupChannel):
# Group channels should be small and far between, so iteration is fine here.
for currentUser in channel.recipients:
if currentUser.id == payload.user_id:
user = currentUser
if user is None:
user = channel.me
# Guild text channels
elif isinstance(channel, TextChannel):
user = channel.guild.get_member(payload.user_id)
else:
return None, None, None
# Fetch the reacted message (api call)
message = await channel.fetch_message(payload.message_id)
# If a reacting member was given, the guild can be inferred from the member.
else:
user = payload.member
message = await payload.member.guild.get_channel(payload.channel_id).fetch_message(payload.message_id)
if message is None:
return None, None, None
# Convert reacted emoji to BasedEmoji
try:
emoji = emojis.BasedEmoji.fromPartial(payload.emoji, rejectInvalid=True)
except exceptions.UnrecognisedCustomEmoji:
return None, None, None
return message, user, emoji
| 5,351,202 |
def cancelDelayedCalls(expected=2):
"""
:param expected:
The number of calls to cancel. If the number found does not match this,
none of them will be cancelled so that trial's cleanup can tell you
more about them.
Why the default of 2? Hopefully you're only testing one delayed calll
generator at a time, and there's one for trial's 2 minute timeout.
"""
calls = reactor.getDelayedCalls()
strings = []
for call in calls:
strings.append(str(call))
call.cancel()
if len(calls) != expected:
raise AssertionError(
'\n\nExpected {} delayed calls, found {}: {}'.format(
expected, len(calls), strings
))
| 5,351,203 |
def poisson2d(N,dtype='d',format=None):
"""
Return a sparse matrix for the 2d poisson problem
with standard 5-point finite difference stencil on a
square N-by-N grid.
"""
if N == 1:
diags = asarray( [[4]],dtype=dtype)
return dia_matrix((diags,[0]), shape=(1,1)).asformat(format)
offsets = array([0,-N,N,-1,1])
diags = empty((5,N**2),dtype=dtype)
diags[0] = 4 #main diagonal
diags[1:] = -1 #all offdiagonals
diags[3,N-1::N] = 0 #first lower diagonal
diags[4,N::N] = 0 #first upper diagonal
return dia_matrix((diags,offsets),shape=(N**2,N**2)).asformat(format)
| 5,351,204 |
def qa():
"""Works on qa environment"""
global c
c.env = 'qa'
| 5,351,205 |
def get_factory():
"""随机获取一个工厂类"""
return random.choice([BasicCourseFactory, ProjectCourseFactory])()
| 5,351,206 |
def delay_class_factory(motor_class):
"""
Create a subclass of DelayBase that controls a motor of class motor_class.
Used in delay_instace_factory (DelayMotor), may be useful for one-line
declarations inside ophyd Devices.
"""
try:
cls = delay_classes[motor_class]
except KeyError:
cls = type(
'Delay' + motor_class.__name__,
(DelayBase,),
{'motor': Cpt(motor_class, '')}
)
delay_classes[motor_class] = cls
return cls
| 5,351,207 |
def check_and_makedir(folder_name):
""" Does a directory exist? if not create it. """
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
return False
else:
return True
| 5,351,208 |
def _get_all_files_in_directory(dir_path, excluded_glob_patterns):
"""Recursively collects all files in directory and
subdirectories of specified path.
Args:
dir_path: str. Path to the folder to be linted.
excluded_glob_patterns: set(str). Set of all glob patterns
to be excluded.
Returns:
a list of files in directory and subdirectories without excluded files.
"""
files_in_directory = []
for _dir, _, files in os.walk(dir_path):
for file_name in files:
filepath = os.path.relpath(
os.path.join(_dir, file_name), os.getcwd())
if not any([fnmatch.fnmatch(filepath, gp) for gp in
excluded_glob_patterns]):
files_in_directory.append(filepath)
return files_in_directory
| 5,351,209 |
def lonlat2px_gt(img, lon, lat, lon_min, lat_min, lon_max, lat_max):
"""
Converts a pair of lon and lat to its corresponding pixel value in an
geotiff image file.
Parameters
----------
img : Image File, e.g. PNG, TIFF
Input image file
lon : float
Longitude
lat : float
Latitude
lon_min, lat_min : float
lower left coordinate of geotiff
lon_max, lat_max : float
upper right coordinate of geotiff
Returns
-------
Row : float
corresponding pixel value
Col : float
corresponding pixel value
"""
w, h = img.size
londiff = lon_max - lon_min
latdiff = lat_max - lat_min
mw = w / londiff
mh = h / latdiff
row = (-lat + lat_max) * mh
col = (lon - lon_min) * mw
return row, col
| 5,351,210 |
def patchwise_contrastive_metric(image_sequence: torch.Tensor,
kpt_sequence: torch.Tensor,
method: str = 'norm',
time_window: int = 3,
patch_size: tuple = (7, 7),
alpha: float = 0.1):
""" Contrasts pixel patches around key-points.
Positive examples are drawn from the same key-point at time-steps in the given time-window.
Negative examples are drawn from other key-points at any time-step
or the same key-point outside of the time-window.
:param image_sequence: Tensor of sequential images in (N, T, C, H, W)
:param kpt_sequence: Tensor of key-point coordinates in (N, T, K, D)
:param method: Method to use:
'mean': Compares the mean patch differences
'norm': Compares the image norm of the patch differences
'vssil': Uses the pixelwise-contrastive feature representations
'tfeat': Uses tfeat encodings to compare the image patches
:param time_window: Window size of positive examples around current the current time-step
E.g. time_window=3 uses t-1 and t+1 as positives for t
At t=0 and t=T, the window size is reduced.
:param patch_size: Size of the patch so extract from the input, around the key-point
If these would extend the image borders, they are moved to within the borders.
TODO: Fix with padding instead ?
:param alpha: Allowance for pos / neg similarity
"""
N, T, C, H, W = image_sequence.shape
assert kpt_sequence.shape[0] == N, "images and kpts dont share batch size dim"
assert kpt_sequence.shape[1] == T, "images and kpts dont share time dim"
_, _, K, D = kpt_sequence.shape
# To reduce the computational effort, the extracted patches are saved and re-used by demand
patch_sequence = torch.empty(size=(N, T, K, C, patch_size[0], patch_size[1]))
evaluated_kpts = []
L = torch.empty(size=(N, T, K)).to(kpt_sequence.device)
# Iterate over time-steps
for t in range(T):
# Iterate over key-points
for k in range(K):
#
# ANCHOR
#
if (t, k) in evaluated_kpts:
anchor_patch = patch_sequence[:, t, k, ...].float()
else:
x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W, t, k)
anchor_patch = image_sequence[:, t, :, x_min: x_max + 1, y_min: y_max + 1].float()
patch_sequence[:, t, k, ...] = anchor_patch
evaluated_kpts.append((t, k))
#
# POSITIVES
#
L_pos = torch.tensor([0]).to(kpt_sequence.device)
t_range = np.arange(max(0, t - int(time_window/2)), min(T - 1, t + int(time_window/2)) + 1)
# t_range = np.arange(0, T)
for t_p in t_range:
if t_p == t:
continue
if (t_p, k) in evaluated_kpts:
positive_patch = patch_sequence[:, t_p, k, ...].float()
else:
x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W, t_p, k)
positive_patch = image_sequence[:, t_p, :, x_min: x_max + 1, y_min: y_max + 1].float()
patch_sequence[:, t_p, k, ...] = positive_patch
evaluated_kpts.append((t_p, k))
L_pos = L_pos + torch.norm(positive_patch - anchor_patch, p=2)
L_pos = L_pos + torch.norm(kpt_sequence[:, t, k, :] - kpt_sequence[:, t_p, k, :], p=2)
L_pos = (L_pos / (len(t_range) - 1)) if len(t_range) > 2 else L_pos
#
# NEGATIVES
#
L_neg = torch.tensor([0]).to(kpt_sequence.device)
# for t_n in range(0, T):
for t_n in t_range:
for k_n in range(0, K):
if (t_n in t_range or t_n == t) and k_n == k:
continue
else:
if (t_n, k_n) in evaluated_kpts:
negative_patch = patch_sequence[:, t_n, k_n].float()
else:
x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W,
t_n, k_n)
negative_patch = image_sequence[:, t_n, :, x_min:x_max + 1, y_min:y_max + 1].float()
patch_sequence[:, t_n, k_n, ...] = negative_patch
evaluated_kpts.append((t_n, k_n))
L_neg = L_neg + torch.norm(negative_patch - anchor_patch, p=2)
L_neg = L_neg + torch.norm(kpt_sequence[:, t, k, :] - kpt_sequence[:, t_n, k_n, :], p=2)
L_neg = L_neg / (T*(K - 1) + T - len(t_range) + 1)
print(f't: {t} k: {k} = ', max(L_pos - L_neg + alpha, torch.tensor([0.0])).mean().item())
L[:, t, k] = max(L_pos - L_neg + alpha, torch.tensor([0.0]))
return torch.mean(L, dim=[0, 2])
| 5,351,211 |
def array_wishart_rvs(df, scale, **kwargs):
""" Wrapper around scipy.stats.wishart to always return a np.array """
if np.size(scale) == 1:
return np.array([[
scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs()
]])
else:
return scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs()
| 5,351,212 |
def get_mpl_colors():
"""
==================
Colormap reference
==================
Reference for colormaps included with Matplotlib.
This reference example shows all colormaps included with Matplotlib. Note that
any colormap listed here can be reversed by appending "_r" (e.g., "pink_r").
These colormaps are divided into the following categories:
Sequential:
These colormaps are approximately monochromatic colormaps varying smoothly
between two color tones---usually from low saturation (e.g. white) to high
saturation (e.g. a bright blue). Sequential colormaps are ideal for
representing most scientific data since they show a clear progression from
low-to-high values.
Diverging:
These colormaps have a median value (usually light in color) and vary
smoothly to two different color tones at high and low values. Diverging
colormaps are ideal when your data has a median value that is significant
(e.g. 0, such that positive and negative values are represented by
different colors of the colormap).
Qualitative:
These colormaps vary rapidly in color. Qualitative colormaps are useful for
choosing a set of discrete colors. For example::
color_list = plt.cm.Set3(np.linspace(0, 1, 12))
gives a list of RGB colors that are good for plotting a series of lines on
a dark background.
Miscellaneous:
Colormaps that don't fit into the categories above.
"""
# Have colormaps separated into categories:
# http://matplotlib.org/examples/color/colormaps_reference.html
return [('Perceptually Uniform Sequential', [
'viridis', 'plasma', 'inferno', 'magma']),
('Sequential', [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']),
('Sequential (2)', [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']),
('Diverging', [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']),
('Qualitative', [
'Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']),
('Miscellaneous', [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv',
'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]
| 5,351,213 |
def list_sequences(bam):
"""
List the sequences involved and whether they are forward or reverse
:param bam: the bam object from pysam
:type bam: pysam.AlignmentFile
:return:
:rtype:
"""
for template in locations:
for primer in locations[template]:
start, end = locations[template][primer]
print("\nALIGNMENT: {} FROM {} TO {}\n".format(primer, start, end))
for read in bam.fetch(reference=template, start=start, end=end):
print("{}\t{}\t{}".format(primer, read.query_name, read.is_reverse))
| 5,351,214 |
async def async_setup_entry(hass, entry):
"""Set up Jenkins from a config entry."""
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(entry, "sensor")
)
return True
| 5,351,215 |
def signal_to_dataset(raw, fsamp, intvs, labels):
"""Segmentize raw data into list of epochs.
returns dataset and label_array : a list of data, each block is 1
second, with fixed size. width is number of channels in certain standard
order.
Args:
raw: EEG signals. Shape: (n_channel, n_sample).
fsamp(int): sampling rate, i.e., window size of resulting epoch. Unit: Hz
intvs: list of [start, end]. Unit: second
labels: list of labels. Must be same len as INTVS
Returns: tuple (dataset, labels):
- dataset: list of data; (n_epochs, n_channels, n_sample_per_epoch)
- labels: list of labels
"""
ds, lbl = [], []
for i, inv in enumerate(intvs):
tstart, tend = inv
chopped_sig = chop_signal(
[ch[math.ceil(tstart*fsamp):math.floor(tend*fsamp)] for ch in raw],
fsamp)
ds.extend(chopped_sig)
lbl.extend([labels[i]] * len(chopped_sig))
return ds, lbl
| 5,351,216 |
def project_dynamic_property_graph(graph, v_prop, e_prop, v_prop_type, e_prop_type):
"""Create project graph operation for nx graph.
Args:
graph (:class:`nx.Graph`): A nx graph.
v_prop (str): The node attribute key to project.
e_prop (str): The edge attribute key to project.
v_prop_type (str): Type of the node attribute.
e_prop_type (str): Type of the edge attribute.
Returns:
Operation to project a dynamic property graph. Results in a simple graph.
"""
check_argument(graph.graph_type == types_pb2.DYNAMIC_PROPERTY)
config = {
types_pb2.GRAPH_NAME: utils.s_to_attr(graph.key),
types_pb2.GRAPH_TYPE: utils.graph_type_to_attr(types_pb2.DYNAMIC_PROJECTED),
types_pb2.V_PROP_KEY: utils.s_to_attr(v_prop),
types_pb2.E_PROP_KEY: utils.s_to_attr(e_prop),
types_pb2.V_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(v_prop_type)),
types_pb2.E_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(e_prop_type)),
}
op = Operation(
graph._session_id,
types_pb2.PROJECT_GRAPH,
config=config,
output_types=types_pb2.GRAPH,
)
return op
| 5,351,217 |
def show__machines(args):
"""
Show the machines user is offering for rent.
:param argparse.Namespace args: should supply all the command-line options
:rtype:
"""
req_url = apiurl(args, "/machines", {"owner": "me"})
r = requests.get(req_url)
r.raise_for_status()
rows = r.json()["machines"]
if args.raw:
print(json.dumps(rows, indent=1, sort_keys=True))
else:
for machine in rows:
if args.quiet:
print("{id}".format(id=machine["id"]))
else:
print("{N} machines: ".format(N=len(rows)))
print(
"{id}: {json}".format(
id=machine["id"],
json=json.dumps(machine, indent=4, sort_keys=True),
)
)
| 5,351,218 |
def eqfm_(a, b):
"""Helper for comparing floats AND style names."""
n1, v1 = a
n2, v2 = b
if type(v1) is not float:
return eq_(a, b)
eqf_(v1, v2)
eq_(n1, n2)
| 5,351,219 |
def play_env_problem_randomly(env_problem, num_steps):
"""Plays the env problem by randomly sampling actions for `num_steps`."""
# Reset all environments.
env_problem.reset()
# Play all environments, sampling random actions each time.
for _ in range(num_steps):
# Sample batch_size actions from the action space and stack them.
actions = np.stack([
env_problem.action_space.sample() for _ in range(env_problem.batch_size)
])
# Execute actions, observations are stored in `env_problem`.
_, _, dones, _ = env_problem.step(actions)
# Get the indices where we are done and reset those.
env_problem.reset(indices=done_indices(dones))
| 5,351,220 |
def flatten_comment(seq):
"""Flatten a sequence of comment tokens to a human-readable string."""
# "[CommentToken(value='# Extra settings placed in ``[app:main]`` section in generated production.ini.\\n'), CommentToken(value='# Example:\\n'), CommentToken(value='#\\n'), CommentToken(value='# extra_ini_settings: |\\n'), CommentToken(value='# mail.host = mymailserver.internal\\n'), CommentToken(value='# websauna.superusers =\\n'), CommentToken(value='# [email protected]\\n'), CommentToken(value='#\\n')]
if not seq:
return ""
result = []
for item in seq:
if not item:
continue
if isinstance(item, CommentToken):
# Mangle away # comment start from the line
s = item.value
s = s.strip(" ")
s = s.lstrip("#")
s = s.rstrip("\n")
if s.startswith(" "):
s = s[1:]
result.append(s)
if result:
raw_comment = "\n".join(result)
else:
return ""
section_header = raw_comment.rfind("---")
if section_header >= 0:
raw_comment = raw_comment[section_header + 3:]
return raw_comment
| 5,351,221 |
def test_countstore_reset_dates():
"""Dates attrs are all set to None"""
c = CountStore()
c.start = 42
c.start_date = now()
c.end = 52
c.end_date = now()
c.reset()
assert c.start is None
c.start_date is None
c.end is None
c.end_date is None
| 5,351,222 |
def get_community(community_id):
"""
Verify that a community with a given id exists.
:param community_id: id of test community
:return: Community instance
:return: 404 error if doesn't exist
"""
try:
return Community.objects.get(pk=community_id)
except Community.DoesNotExist:
return
| 5,351,223 |
def load_labeled_info(csv4megan_excell, audio_dataset, ignore_files=None):
"""Read labeled info from spreat sheet
and remove samples with no audio file, also files given in ignore_files
"""
if ignore_files is None:
ignore_files = set()
with open(csv4megan_excell) as csvfile:
reader = csv.DictReader(csvfile)
reader = list(reader)
reader_strip = []
for row in reader:
row = {r: row[r].strip() for r in row}
reader_strip.append(row)
reader = reader_strip.copy()
missing_audio_files = []
for row in reader:
if audio_dataset.get(row['File Name'], None) is None:
missing_audio_files.append(row['File Name'])
missing_audio_files = set(missing_audio_files)
print((f'{len(missing_audio_files)} files are missing' +
' corresponding to excell entries'))
megan_data_sheet = []
for row in reader:
if row['File Name'] not in ignore_files:
if row['File Name'] not in missing_audio_files:
megan_data_sheet.append(row)
deleted_files = set()
deleted_files.update(ignore_files)
deleted_files.update(missing_audio_files)
pprint((f'-> {len(deleted_files)} number of samples are DELETED due to ' +
'ignore_files and missing_audio_files'))
return megan_data_sheet, list(deleted_files)
| 5,351,224 |
def de_dupe_list(input):
"""de-dupe a list, preserving order.
"""
sam_fh = []
for x in input:
if x not in sam_fh:
sam_fh.append(x)
return sam_fh
| 5,351,225 |
def donwload_l10ns():
"""Download all l10ns in zip archive."""
url = API_PREFIX + 'download/' + FILENAME + KEY_SUFFIX
l10ns_file = urllib2.urlopen(url)
with open('all.zip','wb') as f:
f.write(l10ns_file.read())
return True
| 5,351,226 |
def test_space_translation():
"""Compare code-transformed waveform to analytically transformed waveform"""
print("")
ell_max = 8
for s in range(-2, 2 + 1):
for ell in range(abs(s), ell_max + 1):
print("\tWorking on spin s =", s, ", ell =", ell)
for m in range(-ell, ell + 1):
for space_translation in [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]:
auxiliary_waveforms = {}
for i in range(s + 2):
auxiliary_waveforms[f"psi{4-i}_modes"] = samples.single_mode_proportional_to_time(s=i - 2)
auxiliary_waveforms[f"psi{4-i}_modes"].data *= 0
w_m1 = samples.single_mode_proportional_to_time(s=s, ell=ell, m=m).transform(
space_translation=space_translation,
**auxiliary_waveforms,
)
w_m2 = samples.single_mode_proportional_to_time_supertranslated(
s=s, ell=ell, m=m, space_translation=np.array(space_translation)
)
i1A = np.argmin(abs(w_m1.t - (w_m1.t[0] + 2 * np.linalg.norm(space_translation))))
i1B = np.argmin(abs(w_m1.t - (w_m1.t[-1] - 2 * np.linalg.norm(space_translation))))
i2A = np.argmin(abs(w_m2.t - w_m1.t[i1A]))
i2B = np.argmin(abs(w_m2.t - w_m1.t[i1B]))
assert np.allclose(w_m1.t[i1A : i1B + 1], w_m2.t[i2A : i2B + 1], rtol=0.0, atol=1e-16), (
w_m1.t[i1A],
w_m2.t[i2A],
w_m1.t[i1B],
w_m2.t[i2B],
w_m1.t[i1A : i1B + 1].shape,
w_m2.t[i2A : i2B + 1].shape,
)
data1 = w_m1.data[i1A : i1B + 1]
data2 = w_m2.data[i2A : i2B + 1]
assert np.allclose(data1, data2, rtol=0.0, atol=5e-14), (
[s, ell, m],
space_translation,
[
abs(data1 - data2).max(),
data1.ravel()[np.argmax(abs(data1 - data2))],
data2.ravel()[np.argmax(abs(data1 - data2))],
],
[
np.unravel_index(np.argmax(abs(data1 - data2)), data1.shape)[0],
list(
sf.LM_range(abs(s), ell_max)[
np.unravel_index(np.argmax(abs(data1 - data2)), data1.shape)[1]
]
),
],
)
| 5,351,227 |
def _constant_velocity_heading_from_kinematics(kinematics_data: KinematicsData,
sec_from_now: float,
sampled_at: int) -> np.ndarray:
"""
Computes a constant velocity baseline for given kinematics data, time window
and frequency.
:param kinematics_data: KinematicsData for agent.
:param sec_from_now: How many future seconds to use.
:param sampled_at: Number of predictions to make per second.
"""
x, y, vx, vy, _, _, _, _, _, _ = kinematics_data
preds = []
time_step = 1.0 / sampled_at
for time in np.arange(time_step, sec_from_now + time_step, time_step):
preds.append((x + time * vx, y + time * vy))
return np.array(preds)
| 5,351,228 |
def arg_int(name, default=None):
""" Fetch a query argument, as an integer. """
try:
v = request.args.get(name)
return int(v)
except (ValueError, TypeError):
return default
| 5,351,229 |
def db(app, request):
"""Session-wide test database."""
if os.path.exists(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite')):
os.unlink(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite'))
def teardown():
_db.drop_all()
os.unlink(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite'))
_db.app = app
apply_migrations(app)
request.addfinalizer(teardown)
return _db
| 5,351,230 |
def adapter_rest(request, api_module_rest, api_client_rest):
"""Pass."""
return {
"adapter": request.param,
"api_module": api_module_rest,
"api_client": api_client_rest,
}
| 5,351,231 |
def extract(lon, lat, dep, prop=['rho', 'vp', 'vs'], **kwargs):
"""
Simple CVM-S extraction
lon, lat, dep: Coordinate arrays
prop: 'rho', 'vp', or 'vs'
nproc: Optional, number of processes
Returns: (rho, vp, vs) material arrays
"""
lon = numpy.asarray(lon, 'f')
lat = numpy.asarray(lat, 'f')
dep = numpy.asarray(dep, 'f')
shape = dep.shape
nsample = dep.size
cwd = os.getcwd()
if os.path.exists('cvms-tmp'):
shutil.rmtree('cvms-tmp')
os.mkdir('cvms-tmp')
os.chdir('cvms-tmp')
cfg = configure(**kwargs)
lon.tofile(cfg['file_lon'])
lat.tofile(cfg['file_lat'])
dep.tofile(cfg['file_dep'])
del(lon, lat, dep)
run(nsample=nsample, **kwargs)
out = []
if type(prop) not in [list, tuple]:
prop = [prop]
for v in prop:
f = cfg['file_' + v.lower()]
out += [numpy.fromfile(f, 'f').reshape(shape)]
os.chdir(cwd)
shutil.rmtree('cvms-tmp')
return out
| 5,351,232 |
def test_meridian_arc(lat1, lat2, arclen):
"""
meridianarc(deg2rad(40), deg2rad(80), wgs84Ellipsoid)
"""
assert lox.meridian_arc(lat1, lat2) == approx(arclen)
| 5,351,233 |
def remove_quotes(string):
"""Function to remove quotation marks surrounding a string"""
string = string.strip()
while len(string) >= 3 and string.startswith('\'') and string.endswith('\''):
string = string[1:-1]
string = quick_clean(string)
string = quick_clean(string)
return string
| 5,351,234 |
def create_chain_widget(rig, bone_name, radius=0.5, invert=False, bone_transform_name=None):
"""Creates a basic chain widget
"""
obj = create_widget(rig, bone_name, bone_transform_name)
if obj != None:
r = radius
rh = radius/2
if invert:
verts = [(rh, rh, rh), (r, -r, r), (-r, -r, r), (-rh, rh, rh), (rh, rh, -rh), (r, -r, -r), (-r, -r, -r), (-rh, rh, -rh)]
else:
verts = [(r, r, r), (rh, -rh, rh), (-rh, -rh, rh), (-r, r, r), (r, r, -r), (rh, -rh, -rh), (-rh, -rh, -rh), (-r, r, -r)]
edges = [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7)]
mesh = obj.data
mesh.from_pydata(verts, edges, [])
mesh.update()
| 5,351,235 |
def compute_list_featuretypes(
data,
list_featuretypes,
fourier_n_largest_frequencies,
wavelet_depth,
mother_wavelet,
):
"""
This function lets the user choose which combination of features they
want to have computed.
list_featuretypes:
"Basic" - min, max, mean, kurt ,skew, std, sum.
"FourierComplete" - all frequencies amplitudes and phases.
"FourierNLargest" - n largest frequencies and their values.
"WaveletComplete" - all approximation and details coefficients at each depth.
"WaveletBasic" - takes "Basic" (min, max, etc) at each depth.
Args:
data (pd.DataFrame()) : one column from which to make features.
list_featuretypes (list) : list of feature types to be computed.
fourier_n_largest_frequencies (int) : amount of fourier features.
wavelet_depth (int) : level of depth up to which the wavelet is computed.
mother_wavelet (str) : type of wavelet used for the analysis.
Returns:
features (pd.DataFrame()) : row of features.
"""
if type(list_featuretypes) != list:
raise AttributeError("'list_featuretypes' must be a list.")
allowed_components = ["Basic", "FourierNLargest", "WaveletComplete", "WaveletBasic", "FourierComplete"]
for argument in list_featuretypes:
if argument not in allowed_components:
raise ValueError(f"argument must be one of {allowed_components}")
features_basic = pd.DataFrame()
features_fourier = pd.DataFrame()
features_wavelet = pd.DataFrame()
features_wavelet_basic = pd.DataFrame()
features_fft2 = pd.DataFrame()
if "Basic" in list_featuretypes:
features_basic = compute_basic(data)
if "FourierNLargest" in list_featuretypes:
features_fourier = compute_fourier_n_largest(data, fourier_n_largest_frequencies)
if "FourierComplete" in list_featuretypes:
features_fft2 = compute_fourier_complete(data)
if "WaveletComplete" in list_featuretypes:
features_wavelet = compute_wavelet_complete(data, wavelet_depth, mother_wavelet)
if "WaveletBasic" in list_featuretypes:
features_wavelet_basic = compute_wavelet_basic(
data, wavelet_depth, mother_wavelet
)
features = pd.concat(
[features_basic, features_fourier, features_fft2, features_wavelet, features_wavelet_basic],
axis=1,
)
return features
| 5,351,236 |
def select(locator):
"""
Returns an :class:`Expression` for finding selects matching the given locator.
The query will match selects that meet at least one of the following criteria:
* the element ``id`` exactly matches the locator
* the element ``name`` exactly matches the locator
* the element ``id`` exactly matches the ``for`` attribute of a corresponding ``label`` element
whose text matches the locator
* the element is nested within a ``label`` element whose text matches the locator
Args:
locator (str): A string that identifies the desired selects.
Returns:
Expression: An :class:`Expression` object matching the desired selects.
"""
field_expr = x.descendant("select")
return _locate_field(field_expr, locator)
| 5,351,237 |
def send_image(filename):
"""Route to uploaded-by-client images
Returns
-------
file
Image file on the server (see Flask documentation)
"""
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
| 5,351,238 |
def update(key, view, errors):
"""
Update updates the set of shown errors.
The method shos a given list of errors on the given
view, keyed by `key`, each tool uses a different key.
"""
set = PhantomSet(view, key)
all = []
for err in errors:
if buffer.filename(view) == err.file:
all.append(err.to_phantom(view))
set.update(all)
state[id(key, view.id())] = set
| 5,351,239 |
def swissPairings():
"""Returns a list of pairs of players for the next round of a match.
Assuming that there are an even number of players registered, each player
appears exactly once in the pairings. Each player is paired with another
player with an equal or nearly-equal win record, that is, a player adjacent
to him or her in the standings.
Returns:
A list of tuples, each of which contains (id1, name1, id2, name2)
id1: the first player's unique id
name1: the first player's name
id2: the second player's unique id
name2: the second player's name
"""
with get_cursor() as cursor:
cursor.execute("SELECT * FROM pairings")
pairings = cursor.fetchall()
return pairings
| 5,351,240 |
def split(data, batch):
"""
PyG util code to create graph batches
"""
node_slice = torch.cumsum(torch.from_numpy(np.bincount(batch)), 0)
node_slice = torch.cat([torch.tensor([0]), node_slice])
row, _ = data.edge_index
edge_slice = torch.cumsum(torch.from_numpy(np.bincount(batch[row])), 0)
edge_slice = torch.cat([torch.tensor([0]), edge_slice])
# Edge indices should start at zero for every graph.
data.edge_index -= node_slice[batch[row]].unsqueeze(0)
data.__num_nodes__ = torch.bincount(batch).tolist()
slices = {'edge_index': edge_slice}
if data.x is not None:
slices['x'] = node_slice
if data.edge_attr is not None:
slices['edge_attr'] = edge_slice
if data.y is not None:
if data.y.size(0) == batch.size(0):
slices['y'] = node_slice
else:
slices['y'] = torch.arange(0, batch[-1] + 2, dtype=torch.long)
return data, slices
| 5,351,241 |
def test_add_asset_conflict_error(cli, init_assets):
"""Tests the method ``add_asset`` of the class ``InventoryClient`` with an
already existing asset."""
asset_id = init_assets[2].asset_id
asset = Asset(asset_id)
timestamp = datetime.fromisoformat('2022-01-01T01:00:00+00:00')
expiration = datetime.fromisoformat('2022-01-07T01:00:00+00:00')
with pytest.raises(ConflictError, match=f'.*{asset_id}.*') as exc_info:
cli.add_asset(asset, expiration, timestamp)
assert exc_info.value.name == asset_id
assert compare_unsorted_list(cli.assets(), init_assets, lambda x: x.vid)
| 5,351,242 |
def add_drop_subcommand(subparser_factory):
"""Add a subparser for the drop subcommand."""
drop_help = "Drop a database from the test server."
subparser = subparser_factory.add_parser('drop', help=drop_help,
description=drop_help)
dbname_help = "The name of the database to drop."
subparser.add_argument('dbname', help=dbname_help)
subparser.set_defaults(subcommand=run_drop_subcommand)
| 5,351,243 |
def test_value_repr():
"""Test string representations for archive values."""
value = SingleVersionValue(
value=1,
timestamp=Timestamp(intervals=[TimeInterval(start=1, end=3)])
)
assert str(value) == '(1 [[1, 3]])'
value = MultiVersionValue([
SingleVersionValue(
value=1,
timestamp=Timestamp(intervals=[TimeInterval(start=2, end=3)])
),
SingleVersionValue(
value=2,
timestamp=Timestamp(intervals=[TimeInterval(start=4, end=5)])
)
])
assert str(value) == '((1 [[2, 3]]), (2 [[4, 5]]))'
| 5,351,244 |
def test_withdrawal_request_status(mocker, response, uclient) -> None:
"""Test the test_withdrawal_request_status method of the sync client"""
url = f'{LunoSyncClient.BASE_URI}withdrawals/1234'
data = {}
mocker.patch('requests.Session.request', return_value=response)
response = uclient.withdrawal_request_status(withdrawal_id='1234')
message = (f"expected response {data}, received {response}")
assert data == response, message
| 5,351,245 |
def _get_shadowprice_data(scenario_id):
"""Gets data necessary for plotting shadow price
:param str/int scenario_id: scenario id
:return: (*tuple*) -- interconnect as a str, bus data as a data frame, lmp data
as a data frame, branch data as a data frame and congestion data as a data
frame
"""
s = Scenario(scenario_id)
interconnect = s.info["interconnect"]
interconnect = " ".join(interconnect.split("_"))
s_grid = s.state.get_grid()
# Get bus and add location data
bus_map = project_bus(s_grid.bus)
# get branch and add location data
branch_map = project_branch(s_grid.branch)
# get congestion
congu = s.state.get_congu()
congl = s.state.get_congl()
cong_abs = pd.DataFrame(
np.maximum(congu.to_numpy(), congl.to_numpy()),
columns=congu.columns,
index=congu.index,
)
return interconnect, bus_map, s.state.get_lmp(), branch_map, cong_abs
| 5,351,246 |
def get_city_reviews(city):
"""
Given a city name, return the data for all reviews.
Returns a pandas DataFrame.
"""
with open(f"{DATA_DIR}/{city}/review.json", "r") as f:
review_list = []
for line in f:
review = json.loads(line)
review_list.append(review)
# convert to pandas DataFrame
reviews = to_pandas([city], {city: review_list})
# optimize memory usage
reviews = optimize(reviews, {'city': 'category'})
return reviews
| 5,351,247 |
def extract_rows_from_table(dataset, col_names, fill_null=False):
""" Extract rows from DB table.
:param dataset:
:param col_names:
:return:
"""
trans_dataset = transpose_list(dataset)
rows = []
if type(col_names).__name__ == 'str':
col_names = [col_names]
for col_name in col_names:
if col_name in dataset[0]:
idx = dataset[0].index(col_name)
rows.append(trans_dataset[idx])
else:
if fill_null:
null_list = [''] * (len(trans_dataset[0])-1)
null_list = [col_name] + null_list
rows.append(null_list)
else:
pass
if len(col_names) == 1:
return rows[0]
else:
return transpose_list(rows)
| 5,351,248 |
def CalculateHydrogenNumber(mol):
"""
#################################################################
Calculation of Number of Hydrogen in a molecule
---->nhyd
Usage:
result=CalculateHydrogenNumber(mol)
Input: mol is a molecule object.
Output: result is a numeric value.
#################################################################
"""
i = 0
Hmol = Chem.AddHs(mol)
for atom in Hmol.GetAtoms():
if atom.GetAtomicNum() == 1:
i = i + 1
return i
| 5,351,249 |
def check_update ():
"""Return the following values:
(False, errmsg) - online version could not be determined
(True, None) - user has newest version
(True, (version, url string)) - update available
(True, (version, None)) - current version is newer than online version
"""
version, value = get_online_version()
if version is None:
# value is an error message
return False, value
if version == CurrentVersion:
# user has newest version
return True, None
if is_newer_version(version):
# value is an URL linking to the update package
return True, (version, value)
# user is running a local or development version
return True, (version, None)
| 5,351,250 |
def draw_and_save(data_img_dir, img_fname, output, output_type, results_path, tfr_func=None):
"""Draws on the images for the detected object and saves them on the given location.
Parameters:
-----------
data_img_dir (str): directory path where images are saved
img_fname (str): name of an image stored in the <data_img_dir>
output (tuple): (out_scores, out_boxes, out_classes) to draw those boxes of detected objets
output_type (str): in ['true', 'pred']
results_path (str): directory path where images are saved after drawing
Returns:
--------
None
"""
# Preprocess your image
img_path = os.path.join(data_img_dir, img_fname)
image = Image.open(img_path)
image = np.array(image) # dtype=np.float32
# pdb.set_trace()
if tfr_func is not None:
image = tfr_func(image)
image = Image.fromarray(image)
out_scores, out_boxes, out_classes = output
# Print predictions info
class_names = yutil.get_class_names()
colors = yutil.get_class_colors() # generate_colors(class_names)
# Draw bounding boxes on the image file
yutil.draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
# Save the predicted bounding box on the image
save_path = os.path.join(results_path, output_type + '_' + img_fname)
image.save(save_path, quality=90)
return
| 5,351,251 |
def count_regularization_baos_for_both(z, count_tokens, count_pieces, mask=None):
"""
Compute regularization loss, based on a given rationale sequence
Use Yujia's formulation
Inputs:
z -- torch variable, "binary" rationale, (batch_size, sequence_length)
percentage -- the percentage of words to keep
Outputs:
a loss value that contains two parts:
continuity_loss -- \sum_{i} | z_{i-1} - z_{i} |
sparsity_loss -- |mean(z_{i}) - percent|
"""
# (batch_size,)
if mask is not None:
mask_z = z * mask
seq_lengths = torch.sum(mask, dim=1)
else:
mask_z = z
seq_lengths = torch.sum(z - z + 1.0, dim=1)
mask_z_ = torch.cat([mask_z[:, 1:], mask_z[:, -1:]], dim=-1)
continuity_ratio = torch.sum(torch.abs(mask_z - mask_z_), dim=-1) / seq_lengths #(batch_size,)
percentage = count_pieces * 2 / seq_lengths
# continuity_loss = F.threshold(continuity_ratio - percentage, 0, 0, False)
continuity_loss = torch.abs(continuity_ratio - percentage)
sparsity_ratio = torch.sum(mask_z, dim=-1) / seq_lengths #(batch_size,)
percentage = count_tokens / seq_lengths #(batch_size,)
# sparsity_loss = F.threshold(sparsity_ratio - percentage, 0, 0, False)
sparsity_loss = torch.abs(sparsity_ratio - percentage)
return continuity_loss, sparsity_loss
| 5,351,252 |
def main():
"""
Example for solving CC-Lagrangian and then computing 1-RDM and 2-RDM
"""
import pyscf
import openfermion as of
from openfermion.chem.molecular_data import spinorb_from_spatial
from openfermionpyscf import run_pyscf
from pyscf.cc.addons import spatial2spin
from pyscf import cc
import numpy as np
np.set_printoptions(linewidth=500)
basis = 'cc-pvdz'
mol = pyscf.M(
atom='H 0 0 0; F 0 0 {}'.format(1.6),
basis=basis)
mf = mol.RHF()
mf.verbose = 3
mf.run()
mycc = mf.CCSD()
mycc.conv_tol = 1.0E-12
ecc, pyscf_t1, pyscf_t2 = mycc.kernel()
print('CCSD correlation energy', mycc.e_corr)
from functools import reduce
from pyscf import ao2mo
eris = mycc.ao2mo()
conv, pyscf_l1, pyscf_l2 = cc.ccsd_lambda.kernel(mycc, eris, pyscf_t1, pyscf_t2, tol=mycc.conv_tol)
pyscf_sopdm = cc.ccsd_rdm.make_rdm1(mycc, pyscf_t1, pyscf_t2, pyscf_l1, pyscf_l2)
pyscf_stpdm = cc.ccsd_rdm.make_rdm2(mycc, pyscf_t1, pyscf_t2, pyscf_l1, pyscf_l2)
pyscf_t1s = spatial2spin(mycc.t1)
pyscf_t2s = spatial2spin(mycc.t2)
t1 = pyscf_t1s.transpose(1, 0)
t2 = pyscf_t2s.transpose(2, 3, 0, 1)
l1 = spatial2spin(pyscf_l1)
l2 = spatial2spin(pyscf_l2)
h1 = reduce(np.dot, (mf.mo_coeff.T, mf.get_hcore(), mf.mo_coeff))
eri = ao2mo.full(mf._eri, mf.mo_coeff)
eri = ao2mo.restore(1, eri, h1.shape[0]).reshape((h1.shape[0],) * 4)
e1 = np.einsum('pq,pq', h1, pyscf_sopdm)
e2 = np.einsum('pqrs,pqrs', eri, pyscf_stpdm) * .5
print(e1 + e2 + mol.energy_nuc() - mf.e_tot - ecc)
print(e1 + e2 - mf.e_tot + mol.energy_nuc())
molecule = of.MolecularData(geometry=[['H', (0, 0, 0)], ['F', (0, 0, 1.6)]],
basis=basis, charge=0, multiplicity=1)
molecule = run_pyscf(molecule, run_ccsd=True)
# oei, tei = molecule.get_integrals()
oei, tei = h1, eri.transpose(0, 2, 3, 1)
occ = mf.mo_occ
nele = int(sum(occ))
nocc = nele // 2
norbs = oei.shape[0]
nsvirt = 2 * (norbs - nocc)
nsocc = 2 * nocc
assert np.allclose(np.transpose(mycc.t2, [1, 0, 3, 2]), mycc.t2)
soei, stei = spinorb_from_spatial(oei, tei)
astei = np.einsum('ijkl', stei) - np.einsum('ijlk', stei)
gtei = astei.transpose(0, 1, 3, 2)
d1hf = np.diag([1.] * nsocc + [0.] * nsvirt)
opdm = d1hf
tpdm_wedge = 2 * of.wedge(opdm, opdm, (1, 1), (1, 1))
rdm_energy = np.einsum('ij,ij', soei, opdm.real) + 0.25 * np.einsum('ijkl,ijkl', tpdm_wedge.real, astei)
print(rdm_energy + mol.energy_nuc(), mf.e_tot)
assert np.allclose(rdm_energy + mol.energy_nuc(), mf.e_tot)
eps = np.kron(molecule.orbital_energies, np.ones(2))
n = np.newaxis
o = slice(None, nsocc)
v = slice(nsocc, None)
e_abij = 1 / (-eps[v, n, n, n] - eps[n, v, n, n] + eps[n, n, o, n] + eps[
n, n, n, o])
e_ai = 1 / (-eps[v, n] + eps[n, o])
fock = soei + np.einsum('piiq->pq', astei[:, o, o, :])
hf_energy = 0.5 * np.einsum('ii', (fock + soei)[o, o])
hf_energy_test = 1.0 * einsum('ii', fock[o, o]) -0.5 * einsum('ijij', gtei[o, o, o, o])
print("HF energies")
print(hf_energy, rdm_energy)
assert np.isclose(hf_energy, mf.e_tot - molecule.nuclear_repulsion)
assert np.isclose(hf_energy_test, hf_energy)
g = gtei
print("T1/2 from pyscf")
print(np.linalg.norm(singles_residual(t1, t2, fock, g, o, v)))
print(np.linalg.norm(doubles_residual(t1, t2, fock, g, o, v)))
print("l1/2 from pyscf")
print(np.linalg.norm(lambda_singles(t1, t2, l1, l2, fock, g, o, v)))
print(np.linalg.norm(lambda_doubles(t1, t2, l1, l2, fock, g, o, v)))
ncr_opdm = ccsd_d1(t1, t2, l1, l2, np.eye(2 * h1.shape[0]), o, v)
opdm_a = ncr_opdm[::2, ::2]
opdm_b = ncr_opdm[1::2, 1::2]
opdm_s = (opdm_a + opdm_b + opdm_a.T + opdm_b.T) / 2
print(opdm_s)
print()
print(pyscf_sopdm)
print("1-RDM symm norm diff ", np.linalg.norm(opdm_s - pyscf_sopdm))
t1z, t2z = np.zeros((nsvirt, nsocc)), np.zeros((nsvirt, nsvirt, nsocc, nsocc))
t1f, t2f, l1f, l2f = kernel(t1z, t2z, fock, g, o, v, e_ai, e_abij,
stopping_eps=mycc.conv_tol,
diis_size=8)
print("Final Correlation Energy")
print(ccsd_energy(t1f, t2f, fock, g, o, v) - hf_energy)
print("Lagrangian Energy - HF")
print(lagrangian_energy(t1f, t2f, l1f, l2f, fock, g, o, v) - hf_energy)
print("diff from pyscf t1/t2", np.linalg.norm(t1f - t1), np.linalg.norm(t2f - t2))
print("diff from pyscf l1/l2", np.linalg.norm(l1f - l1), np.linalg.norm(l2f - l2))
d1hf = np.eye(2 * norbs)
opdm = ccsd_d1(t1, t2, l1, l2, d1hf, o, v)
tpdm = ccsd_d2(t1, t2, l1, l2, d1hf, o, v)
tpdm = tpdm.transpose(0, 1, 3, 2) # openfermion ordering
opdm_a = opdm[::2, ::2]
opdm_b = opdm[1::2, 1::2]
opdm_s = (opdm_a + opdm_b + opdm_a.T + opdm_b.T) / 2
print(opdm_s)
print()
print(pyscf_sopdm)
print("1-RDM symm norm diff ", np.linalg.norm(opdm_s - pyscf_sopdm))
rdm_energy = np.einsum('ij,ij', soei, opdm) + 0.25 * np.einsum('ijkl,ijkl', tpdm, astei)
print("Correlation Energy from RDMs")
print(rdm_energy - hf_energy)
| 5,351,253 |
def unsqueeze_samples(x, n):
"""
"""
bn, d = x.shape
x = x.reshape(bn//n, n, d)
return x
| 5,351,254 |
def f_snr(seq):
"""compute signal to noise rate of a seq
Args:
seq: input array_like sequence
paras: paras array, in this case should be "axis"
"""
seq = np.array(seq, dtype=np.float64)
result = np.mean(seq)/float(np.std(seq))
if np.isinf(result):
print "marker"
result = 0
return result
| 5,351,255 |
def prepare_dataset_with_flair(args, data_path, tokenizer, pos_tokenizer):
"""使用flair标注的dirty,和由词表构建的tokenizer,来把token和pos转换成token_id和pos_id,并构建pos2word
Args:
write_path ([string]): [写vocab的路径]
"""
pos2word = [set() for i in range(len(pos_tokenizer.tag_vocab))]
# tokenizer.vocab_size+2 包括了 unk 和 pad
token_in_pos_id = np.zeros((len(pos_tokenizer.tag_vocab), tokenizer.vocab_size+2), dtype=np.int32)
# token_counter 用于计算词频,在F2-softmax当中有用
token_counter = collections.Counter()
for split, fname in flair_dirty_files.items():
logging.info("Prepare {} file.".format(split))
dirty_file = open(fname, 'r')
all_token_list = []
all_pos_list = []
for idx, line in enumerate(dirty_file):
token_pos_list = line.strip().split(" ")
if len(token_pos_list) != 1 and not tagging_list_is_caption(token_pos_list):
for token_idx in range(0, len(token_pos_list), 2):
token = token_pos_list[token_idx]
pos = token_pos_list[token_idx + 1].split(">")[0].split("<")[-1]
token_id = tokenizer.convert_word_to_id(token)
token_counter[token_id] += 1
pos_id = pos_tokenizer.convert_tag_to_id(pos)
all_token_list.append(token_id)
all_pos_list.append(pos_id)
# 不能把unk排除在pos2word之外,因为y当中必然也存在unk
# if token_id != tokenizer.unk_id:
pos2word[pos_id].add(token_id)
if idx % 1000 == 0:
logging.info("Finish preparing {} lines.".format(idx))
pickle.dump(all_token_list, open(os.path.join(data_path,'flair_{split}_{size}.token'.format(split=split, size=args.vocab_size)), 'wb'))
pickle.dump(all_pos_list, open(os.path.join(data_path,'flair_{split}_{size}.pos'.format(split=split, size=args.vocab_size)), 'wb'))
# 对于从表中存在,但是文件中却没有出现的token_id置为1
# for id in range(tokenizer.vocab_size):
# if id not in token_counter:
# token_counter[id] = 1
tot = 0
cum_prob = [0]
for i in token_counter.most_common():
tot += i[1]
# cum_prob中是累计的词频
for i in token_counter.most_common():
cum_prob.append(cum_prob[-1] + i[1] / tot)
cum_prob.pop(0) # 移除第一个元素
# new_dict 得到{token_id: 该token的词频从高到低的排名(从0开始)}
token2order_dict = dict([(int(token_count[0]), int(idx)) for (idx, token_count) in enumerate(token_counter.most_common())])
pickle.dump(cum_prob, open(os.path.join(data_path, 'flair_{size}_probs.pkl'.format(size=args.vocab_size)), 'wb'))
pickle.dump(token2order_dict, open(os.path.join(data_path, 'flair_{size}_token2order.pkl'.format(size=args.vocab_size)), 'wb'))
pos2word = np.array([np.array(list(i)) for i in pos2word])
for pos_id, pos_i_vocab in enumerate(pos2word):
for token_in_pos_i_id, token_id in enumerate(pos_i_vocab):
token_in_pos_id[pos_id][token_id] = token_in_pos_i_id
with open(os.path.join(data_path,'flair_{size}_pos2word.pkl'.format(size=args.vocab_size)), "wb") as writer:
pickle.dump(pos2word, writer)
with open(os.path.join(data_path,'flair_{size}_token_in_pos_id.pkl'.format(size=args.vocab_size)), "wb") as writer:
pickle.dump(token_in_pos_id, writer)
| 5,351,256 |
def main():
"""Runs label studio server using given config."""
global input_args
input_args = parse_input_args()
server.input_args = input_args
# setup logging level
if input_args.log_level:
print(f"log level is {input_args.log_level}")
logging.root.setLevel(input_args.log_level)
label_studio.utils.functions.HOSTNAME = 'http://localhost:' + str(input_args.port)
if input_args.command != 'start-multi-session':
exit("Only multi user session is supported!")
# Lets start the server
app.run(host='0.0.0.0', port=input_args.port, debug=input_args.debug)
| 5,351,257 |
def _lorentzian_pink_beam(p, x):
"""
@author Saransh Singh, Lawrence Livermore National Lab
@date 03/22/2021 SS 1.0 original
@details the lorentzian component of the pink beam peak profile
obtained by convolution of gaussian with normalized back to back
exponentials. more details can be found in
Von Dreele et. al., J. Appl. Cryst. (2021). 54, 3–6
p has the following parameters
p = [A,x0,alpha0,alpha1,beta0,beta1,fwhm_l]
"""
A,x0,alpha,beta,fwhm_l = p
del_tth = x - x0
p = -alpha*del_tth + 1j*0.5*alpha*fwhm_l
q = -beta*del_tth + 1j*0.5*beta*fwhm_l
y = np.zeros(x.shape)
f1 = exp1exp(p)
f2 = exp1exp(q)
y = -(alpha*beta)/(np.pi*(alpha+beta))*(f1+f2).imag
mask = np.isnan(y)
y[mask] = 0.
y *= A
return y
| 5,351,258 |
def get_q_HPU_ave(Q_HPU):
"""1時間平均のヒートポンプユニットの平均暖房出力 (7)
Args:
Q_HPU(ndarray): 1時間当たりのヒートポンプユニットの暖房出力 (MJ/h)
Returns:
ndarray: 1時間平均のヒートポンプユニットの平均暖房出力 (7)
"""
return Q_HPU * 10 ** 6 / 3600
| 5,351,259 |
def run(self):
"""Run the Electrical module"""
if self.parent is None:
raise InputError("The Electrical object must be in a Simulation object to run")
if self.parent.parent is None:
raise InputError("The Simulation object must be in an Output object to run")
self.get_logger().info("Starting Electric module")
output = self.parent.parent
machine = output.simu.machine
if self.eec is None:
# Init EEC depending on machine type
if isinstance(machine, MachineSCIM):
self.eec = EEC_SCIM()
elif isinstance(machine, (MachineSIPMSM, MachineIPMSM)):
self.eec = EEC_PMSM()
else:
# Check that EEC is consistent with machine type
if isinstance(machine, MachineSCIM) and (
not isinstance(self.eec, EEC_SCIM) and not isinstance(self.eec, EEC_ANL)
):
raise Exception(
"Cannot run Electrical model if machine is SCIM and eec is not EEC_SCIM or EEC_ANL"
)
elif isinstance(machine, (MachineSIPMSM, MachineIPMSM)) and (
not isinstance(self.eec, EEC_PMSM) and not isinstance(self.eec, EEC_ANL)
):
raise Exception(
"Cannot run Electrical model if machine is PMSM and eec is not EEC_PMSM or EEC_ANL"
)
if self.ELUT_enforced is not None:
# enforce parameters of EEC coming from enforced ELUT at right temperatures
if self.eec.parameters is None:
self.eec.parameters = dict()
self.eec.parameters.update(self.ELUT_enforced.get_param_dict(OP=output.elec.OP))
# Generate drive
# self.eec.gen_drive(output)
# self.eec.parameters["U0_ref"] = output.elec.U0_ref
# self.eec.parameters["Ud_ref"] = output.elec.OP.get_Ud_Uq()["Ud"]
# self.eec.parameters["Uq_ref"] = output.elec.OP.get_Ud_Uq()["Uq"]
# Compute parameters of the electrical equivalent circuit if some parameters are missing in ELUT
self.eec.comp_parameters(
machine,
OP=output.elec.OP,
Tsta=self.Tsta,
Trot=self.Trot,
)
# Solve the electrical equivalent circuit
out_dict = self.eec.solve_EEC()
# Solve for each harmonic in case of Us_PWM
out_dict_harm = dict()
if output.elec.Us_PWM is not None:
Us_harm = output.elec.get_Us_harm()
result = Us_harm.get_along("freqs", "phase")
Udqh = result[Us_harm.symbol]
freqs = result["freqs"].tolist()
Is_harm = zeros((len(freqs), machine.stator.winding.qs), dtype=complex)
# Remove Id/Iq from eec parameters
del self.eec.parameters["Id"]
del self.eec.parameters["Iq"]
for i, f in enumerate(freqs):
# Update eec paremeters
self.eec.freq0 = f
self.eec.parameters["Ud"] = Udqh[i, 0]
self.eec.parameters["Uq"] = Udqh[i, 1]
# Solve eec
out_dict_i = self.eec.solve_EEC()
Is_harm[i, :] = array([out_dict_i["Id"], out_dict_i["Iq"], 0])
out_dict_harm["Is_harm"] = Is_harm
out_dict_harm["axes_list"] = Us_harm.get_axes()
# Compute losses due to Joule effects
out_dict = self.eec.comp_joule_losses(out_dict, machine)
# Compute electromagnetic power
out_dict = self.comp_power(out_dict, machine)
# Compute torque
self.comp_torque(out_dict, output.elec.OP.get_N0())
# Store electrical quantities contained in out_dict in OutElec, as Data object if necessary
output.elec.store(out_dict, out_dict_harm)
| 5,351,260 |
def android_example():
"""A basic example of how to use the android agent."""
env = holodeck.make("AndroidPlayground")
# The Android's command is a 94 length vector representing torques to be applied at each of his joints
command = np.ones(94) * 10
for i in range(10):
env.reset()
for j in range(1000):
if j % 50 == 0:
command *= -1
state, reward, terminal, _ = env.step(command)
# To access specific sensor data:
pixels = state[Sensors.PIXEL_CAMERA]
orientation = state[Sensors.ORIENTATION_SENSOR]
# For a full list of sensors the android has, view the README
| 5,351,261 |
def create_table_ISI():
""" create ISI (inter spike interval) table """
commands = [
"""
CREATE TABLE ISI_tb (
cluster_no SMALLINT NOT NULL,
analysis_ts TIMESTAMP NOT NULL,
tetrode_no SMALLINT NOT NULL,
session_name VARCHAR NOT NULL,
filename VARCHAR NOT NULL,
n_drive_user VARCHAR NOT NULL,
animal_id VARCHAR NOT NULL,
session_ts TIMESTAMP NOT NULL,
PRIMARY KEY (cluster_no, tetrode_no, session_name, n_drive_user, animal_id, session_ts),
FOREIGN KEY (cluster_no, tetrode_no, n_drive_user, animal_id, session_ts) REFERENCES clusters_tb (cluster_no, tetrode_no, n_drive_user, animal_id, session_ts) ON DELETE CASCADE ON UPDATE CASCADE,
hist_ISI BYTEA NOT NULL,
bin_edges_ISI BYTEA NOT NULL,
ISI_stats_contam DOUBLE PRECISION NOT NULL,
ISI_stats_contam_perc DOUBLE PRECISION NOT NULL,
ISI_stats_percent_bursts DOUBLE PRECISION NOT NULL
)
"""]
conn = None
try:
params = config()
conn = psycopg2.connect(**params)
cur = conn.cursor()
for command in commands:
print(command)
cur.execute(command)
cur.close()
conn.commit()
except (Exception, psycopg2.DatabaseError) as error:
print(error)
finally:
if conn is not None:
conn.close()
| 5,351,262 |
def particles(t1cat):
"""Return a list of the particles in a T1 catalog DataFrame.
Use it to find the individual particles involved in a group of events."""
return particles_fromlist(t1cat.particles.tolist())
| 5,351,263 |
def interp_coeff_lambda3(i2,dx2,nx):
"""
NOTE:
input and output index from 0 to nx-1 !!!
"""
i2=i2+1 # TODO, waiting for script to be updated
# Find index of other cells
i1 = i2 - 1
i3 = i2 + 1
i4 = i2 + 2
# Find normalised distance to other cells
dx1 = dx2 + 1.0
dx3 = 1.0 - dx2
dx4 = 2.0 - dx2
# lambda 3 kernel
ax1 = 1.0 / 6.0 * (1.0 - dx1) * (2.0 - dx1) * (3.0 - dx1)
ax2 = 1.0 / 2.0 * (1 - dx2 ** 2) * (2 - dx2)
ax3 = 1.0 / 2.0 * (1 - dx3 ** 2) * (2 - dx3)
ax4 = 1.0 / 6.0 * (1.0 - dx4) * (2.0 - dx4) * (3.0 - dx4)
if i2==nx-1:
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
elif i2 == 1:
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
elif i2 < 1:
# Should not happen
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
elif (i2 > nx - 1):
# Should not happen
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
elif i1 <= 0 or i2 <= 0:
# Might happen if on grid
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
elif i4 > nx or i3 > nx:
# Might happen if on grid
i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1
ax1,ax2,ax3,ax4 = 0.,0.,0.,0.
return ax1,ax2,ax3,ax4,i1-1,i2-1,i3-1,i4-1
| 5,351,264 |
def prime_list(num):
"""
This function returns a list of prime numbers less than natural number entered.
:param num: natural number
:return result: List of primes less than natural number entered
"""
prime_table = [True for _ in range(num+1)]
i = 2
while i ** 2 <= num:
if prime_table[i]:
j = i + i
while j <= num:
prime_table[j] = False
j += i
i += 1
result = [i for i in range(num) if prime_table[i] and i >= 2]
return result
| 5,351,265 |
def check_deadline_exceeded_and_store_partial_minimized_testcase(
deadline, testcase_id, job_type, input_directory, file_list,
file_to_run_data, main_file_path):
"""Store the partially minimized test and check the deadline."""
testcase = data_handler.get_testcase_by_id(testcase_id)
store_minimized_testcase(testcase, input_directory, file_list,
file_to_run_data, main_file_path)
deadline_exceeded = time.time() > deadline
if deadline_exceeded:
attempts = testcase.get_metadata(
'minimization_deadline_exceeded_attempts', default=0)
if attempts >= MAX_DEADLINE_EXCEEDED_ATTEMPTS:
_skip_minimization(testcase,
'Exceeded minimization deadline too many times.')
else:
testcase.set_metadata('minimization_deadline_exceeded_attempts',
attempts + 1)
tasks.add_task('minimize', testcase_id, job_type)
return deadline_exceeded
| 5,351,266 |
def _item_to_python_repr(item, definitions):
"""Converts the given Capirca item into a typed Python object."""
# Capirca comments are just appended to item strings
s = item.split("#")[0].strip()
# A reference to another network
if s in definitions.networks:
return s
# IPv4 address / network
try:
return ipaddress.IPv4Address(s)
except ValueError:
pass
try:
return ipaddress.IPv4Network(s, strict=False)
except ValueError:
pass
# IPv6 address / network
try:
return ipaddress.IPv6Address(s)
except ValueError:
pass
try:
return ipaddress.IPv6Network(s, strict=False)
except ValueError:
pass
raise ValueError("Unknown how to convert {s}".format(s=s))
| 5,351,267 |
def test_resolve_interpreter_with_nonexistent_interpreter(mock_exists):
"""Should SystemExit with an nonexistent python interpreter path"""
mock_exists.return_value = False
with pytest.raises(SystemExit):
virtualenv.resolve_interpreter("/usr/bin/python53")
mock_exists.assert_called_with("/usr/bin/python53")
| 5,351,268 |
def floor_divide(x1, x2, out=None, where=True, **kwargs):
"""
Return the largest integer smaller or equal to the division of the inputs.
It is equivalent to the Python ``//`` operator and pairs with the
Python ``%`` (`remainder`), function so that ``a = a % b + b * (a // b)``
up to roundoff.
Args:
x1 (numpoly.ndpoly):
Numerator.
x2 (numpoly.ndpoly):
Denominator. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which becomes the shape of the
output).
out (Optional[numpy.ndarray]):
A location into which the result is stored. If provided, it must
have a shape that the inputs broadcast to. If not provided or
`None`, a freshly-allocated array is returned. A tuple (possible
only as a keyword argument) must have length equal to the number of
outputs.
where (Optional[numpy.ndarray]):
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
kwargs:
Keyword args passed to numpy.ufunc.
Returns:
(numpoly.ndpoly):
This is a scalar if both `x1` and `x2` are scalars.
Examples:
>>> xyz = [1, 2, 4]*numpoly.symbols("x y z")
>>> numpoly.floor_divide(xyz, 2.)
polynomial([0.0, y, 2.0*z])
>>> numpoly.floor_divide(xyz, [1, 2, 4])
polynomial([x, y, z])
>>> numpoly.floor_divide([1, 2, 4], xyz)
Traceback (most recent call last):
...
ValueError: only constant polynomials can be converted to array.
"""
x1, x2 = numpoly.align_polynomials(x1, x2)
x2 = x2.tonumpy()
no_output = out is None
if no_output:
out = numpoly.ndpoly(
exponents=x1.exponents,
shape=x1.shape,
names=x1.indeterminants,
dtype=numpy.common_type(x1, numpy.array(1.)),
)
for key in x1.keys:
numpy.floor_divide(x1[key], x2, out=out[key], where=where, **kwargs)
if no_output:
out = numpoly.clean_attributes(out)
return out
| 5,351,269 |
def node_args_argument(command: Callable[..., None]) -> Callable[..., None]:
"""
Decorate a function to allow choosing arguments to run on a node.
"""
function = click.argument(
'node_args',
type=str,
nargs=-1,
required=True,
)(command) # type: Callable[..., None]
return function
| 5,351,270 |
def _tag_error(func):
"""Decorates a unittest test function to add failure information to the TestCase."""
@functools.wraps(func)
def decorator(self, *args, **kwargs):
"""Add failure information to `self` when `func` raises an exception."""
self.test_failed = False
try:
func(self, *args, **kwargs)
except unittest.SkipTest:
raise
except Exception: # pylint: disable=broad-except
self.test_failed = True
raise # re-raise the error with the original traceback.
return decorator
| 5,351,271 |
def create_drizzle_products(total_obj_list, custom_limits=None):
"""
Run astrodrizzle to produce products specified in the total_obj_list.
Parameters
----------
total_obj_list: list
List of TotalProduct objects, one object per instrument/detector combination is
a visit. The TotalProduct objects are comprised of FilterProduct and ExposureProduct
objects.
custom_limits : list, optional
4-element list containing the mosaic bounding rectangle X min and max and Y min and max values for
custom mosaics
RETURNS
-------
product_list: list
A list of output products
"""
# Get rules files
rules_files = {}
log.info("Processing with astrodrizzle version {}".format(drizzlepac.astrodrizzle.__version__))
# Generate list of all input exposure filenames that are to be processed
edp_names = []
for t in total_obj_list:
edp_names += [e.full_filename for e in t.edp_list]
# Define dataset-specific rules filenames for each input exposure
for imgname in edp_names:
rules_files[imgname] = proc_utils.get_rules_file(imgname)
print('Generated RULES_FILE names of: \n{}\n'.format(rules_files))
# Keep track of all the products created for the output manifest
product_list = []
# For each detector (as the total detection product are instrument- and detector-specific),
# create the drizzle-combined filtered image, the drizzled exposure (aka single) images,
# and finally the drizzle-combined total detection image.
for filt_obj in total_obj_list:
filt_obj.rules_file = rules_files[filt_obj.edp_list[0].full_filename]
log.info("~" * 118)
# Get the common WCS for all images which are part of a total detection product,
# where the total detection product is detector-dependent.
meta_wcs = filt_obj.generate_metawcs(custom_limits=custom_limits)
log.info("CREATE DRIZZLE-COMBINED FILTER IMAGE: {}\n".format(filt_obj.drizzle_filename))
filt_obj.wcs_drizzle_product(meta_wcs)
product_list.append(filt_obj.drizzle_filename)
product_list.append(filt_obj.trl_filename)
# Add individual single input images with updated WCS headers to manifest
for exposure_obj in filt_obj.edp_list:
product_list.append(exposure_obj.full_filename)
# Create Drizzled images for each input on SkyCell pixels
exposure_obj.wcs_drizzle_product(meta_wcs)
# Add drizzled FLC images to manifest
product_list.append(exposure_obj.drizzle_filename)
product_list.append(exposure_obj.trl_filename)
# Ensure that all drizzled products have headers that are to specification
try:
log.info("Updating these drizzle products for CAOM compatibility:")
fits_files = fnmatch.filter(product_list, "*dr?.fits")
for filename in fits_files:
log.info(" {}".format(filename))
proc_utils.refine_product_headers(filename, total_obj_list)
except Exception:
log.critical("Trouble updating drizzle products for CAOM.")
exc_type, exc_value, exc_tb = sys.exc_info()
traceback.print_exception(exc_type, exc_value, exc_tb, file=sys.stdout)
logging.exception("message")
# Remove rules files copied to the current working directory
for rules_filename in list(rules_files.values()):
log.info("Removed rules file {}".format(rules_filename))
os.remove(rules_filename)
# Add primary header information to all objects
for filt_obj in total_obj_list:
filt_obj = poller_utils.add_primary_fits_header_as_attr(filt_obj)
# Return product list for creation of pipeline manifest file
return product_list
| 5,351,272 |
def get_submission_praw(n, sub, n_num):
"""
Returns a list of results for submission in past:
1st list: current result from n hours ago until now
2nd list: prev result from 2n hours ago until n hours ago
"""
mid_interval = datetime.today() - timedelta(hours=n)
timestamp_mid = int(mid_interval.timestamp())
timestamp_start = int((mid_interval - timedelta(hours=n)).timestamp())
timestamp_end = int(datetime.today().timestamp())
recent = {}
prev = {}
subreddit = reddit.subreddit(sub)
all_results = []
for post in subreddit.new(limit=n_num):
all_results.append([post.title, post.link_flair_text, post.selftext, post.score, post.num_comments,
post.created_utc])
# start --> mid --> end
recent[sub] = [posts for posts in all_results if timestamp_mid <= posts[5] <= timestamp_end]
prev[sub] = [posts for posts in all_results if timestamp_start <= posts[5] < timestamp_mid]
return recent, prev
| 5,351,273 |
def preprocess(dframe, log_dir, log_name):
""" Convert date type and save to disk"""
dframe['date'] = lookup_date(dframe['date'])
dframe.to_csv(os.path.join(log_dir, log_name + ".csv_preprocessed"))
| 5,351,274 |
def memory_kernel_logspace(dt, coeffs, dim_x, noDirac=False):
"""
Return the value of the estimated memory kernel
Parameters
----------
dt: Timestep
coeffs : Coefficients for diffusion and friction
dim_x: Dimension of visible variables
noDirac: Remove the dirac at time zero
Returns
-------
timespan : array-like, shape (n_samples, )
Array of time to evaluate memory kernel
kernel_evaluated : array-like, shape (n_samples, dim_x,dim_x)
Array of values of the kernel at time provided
"""
Avv = coeffs["A"][:dim_x, :dim_x]
Ahv = coeffs["A"][dim_x:, :dim_x]
Avh = coeffs["A"][:dim_x, dim_x:]
Ahh = coeffs["A"][dim_x:, dim_x:]
eigs = np.linalg.eigvals(Ahh)
Kernel = np.zeros((150, dim_x, dim_x))
final_time = 25 / np.min(np.abs(np.real(eigs)))
times = np.logspace(np.log10(dt), np.log10(final_time), num=150)
for n, t in enumerate(times):
Kernel[n, :, :] = -np.matmul(Avh, np.matmul(scipy.linalg.expm(-1 * t * Ahh), Ahv))
if not noDirac:
Kernel[0, :, :] = Kernel[0, :, :] + Avv
return times, Kernel
| 5,351,275 |
def create_tables(cur, conn):
"""
Creates each table using the queries in `create_table_queries` list.
Returns: None
"""
for query in create_table_queries:
cur.execute(query)
conn.commit()
| 5,351,276 |
async def aclose_forcefully(resource: AsyncResource) -> None:
"""
Close an asynchronous resource in a cancelled scope.
Doing this closes the resource without waiting on anything.
:param resource: the resource to close
"""
async with open_cancel_scope() as scope:
await scope.cancel()
await resource.aclose()
| 5,351,277 |
def _is_constant(x, atol=1e-7, positive=None):
"""
True if x is a constant array, within atol
"""
x = np.asarray(x)
return (np.max(np.abs(x - x[0])) < atol and
(np.all((x > 0) == positive) if positive is not None else True))
| 5,351,278 |
def load_db_data_from_json(initial_database_data: pathlib.Path) -> None:
"""Load database data from a JSON file.
Args:
initial_database_data (Path): JSON file.
"""
with open(initial_database_data, "r", encoding=cfg.glob.FILE_ENCODING_DEFAULT) as json_file:
json_data = json.load(json_file)
api_version = json_data[cfg.glob.JSON_NAME_API_VERSION]
if api_version != cfg.glob.setup.dcr_version:
utils.terminate_fatal(f"Expected api version is' {cfg.glob.setup.dcr_version}' " f"- got '{api_version}'")
data = json_data[cfg.glob.JSON_NAME_DATA]
for json_table in data[cfg.glob.JSON_NAME_TABLES]:
table_name = json_table[cfg.glob.JSON_NAME_TABLE_NAME].lower()
if table_name not in ["language"]:
if table_name in [
"content_tetml_line",
"content_tetml_page",
"content_tetml_word",
"content_token",
"document",
"run",
"version",
]:
utils.terminate_fatal(f"The database table '{table_name}' must not be changed via the JSON file.")
else:
utils.terminate_fatal(f"The database table '{table_name}' does not exist in the database.")
for json_row in json_table[cfg.glob.JSON_NAME_ROWS]:
db_columns = {}
for json_column in json_row[cfg.glob.JSON_NAME_ROW]:
db_columns[json_column[cfg.glob.JSON_NAME_COLUMN_NAME]] = json_column[
cfg.glob.JSON_NAME_COLUMN_VALUE
]
db.dml.insert_dbt_row(
table_name,
db_columns,
)
| 5,351,279 |
def test_is_valid_password_v2_false2():
"""
Test of is_valid_password_v2() with a false example, take 2
"""
result = is_valid_password_v2(
{"low": 1, "high": 2, "letter": "w", "password": "aa"}
)
assert not result
| 5,351,280 |
def estimate_M(X, estimator, B, ratio):
"""Estimating M with Block or incomplete U-statistics estimator
:param B: Block size
:param ratio: size of incomplete U-statistics estimator
"""
p = X.shape[1]
x_bw = util.meddistance(X, subsample = 1000)**2
kx = kernel.KGauss(x_bw)
if estimator == 'inc':
hsic_M = hsic.HSIC_Inc(kx, kx, ratio = ratio)
else: # 'block'
hsic_M = hsic.HSIC_Block(kx, kx, bsize = B)
M_true = np.zeros((p, p))
for i in range(p):
for j in range(i+1):
M_true[i, j] = np.mean(hsic_M.estimates(X[:, i, np.newaxis], X[:, j, np.newaxis]))
M_true[j, i] = M_true[i, j]
M = nearestPD(M_true) # positive definite approximation
return M_true, M
| 5,351,281 |
def load_nf_conntrack():
"""
Try to force the nf_conntrack_netlink kernel module to be loaded.
"""
_log.info("Running conntrack command to force load of "
"nf_conntrack_netlink module.")
try:
# Run a conntrack command to trigger it to load the kernel module if
# it's not already compiled in. We list rules with a randomly-chosen
# link local address. That makes it very unlikely that we generate
# any wasteful output. We used to use "-S" (show stats) here but it
# seems to be bugged on some platforms, generating an error.
futils.check_call(["conntrack", "-L", "-s", "169.254.45.169"])
except FailedSystemCall:
_log.exception("Failed to execute conntrack command to force load of "
"nf_conntrack_netlink module. conntrack commands may "
"fail later.")
| 5,351,282 |
def query_yes_no(question, default="yes"):
"""Queries user for confimration"""
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
console.print(question + escape(prompt))
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
console.print("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
| 5,351,283 |
def decode(password, encoded, notice):
"""
:type password: str
:type encoded: str
"""
dec = []
try:
encoded_bytes = base64.urlsafe_b64decode(encoded.encode()).decode()
except binascii.Error:
notice("Invalid input '{}'".format(encoded))
return
for i in range(len(encoded_bytes)):
key_c = password[i % len(password)]
dec_c = chr((256 + ord(encoded_bytes[i]) - ord(key_c)) % 256)
dec.append(dec_c)
return "".join(dec)
| 5,351,284 |
def read_file_unlabelled_data(file_name):
"""
read_file_unlabelled_data reades from file_name
These files are to be in csv-format with one token per line (see the example project).
returns text_vector:
Ex:
[['7_7', 'perhaps', 'there', 'is', 'a_a', 'better', 'way', '._.'], ['2_2', 'Why', 'are', 'you, 'doing','doing', 'it', '._.']]
"""
# Read file, to get text, grouped into sentences
text_vector = []
current_text = []
f = open(file_name)
for line in f:
word = line.strip()
if word != "":
if len(word) == 1:
word = word + "_" + word # to cover for a bug in scikit learn's tokenization
current_text.append(word)
else:
if len(current_text) != 0: # end of sentence
text_vector.append(current_text)
current_text = []
if len(current_text) != 0: # the last sentence
text_vector.append(current_text)
f.close()
return text_vector
| 5,351,285 |
def replace(data, replacements):
""" Allows to performs several string substitutions.
This function performs several string substitutions on the initial ``data`` string using a list
of 2-tuples (old, new) defining substitutions and returns the resulting string.
"""
return reduce(lambda a, kv: a.replace(*kv), replacements, data)
| 5,351,286 |
def fake_kafka() -> FakeKafka:
"""Fixture for fake kafka."""
return FakeKafka()
| 5,351,287 |
def rr20(prec: pd.Series) -> Union[float, int]:
"""Function for count of heavy precipitation (days where rr greater equal 20mm)
Args:
prec (list): value array of precipitation
Returns:
np.nan or number: the count of icing days
"""
assert isinstance(prec, pd.Series)
op = operator.ge
num = 20.0
return number_of(prec, num, op)
| 5,351,288 |
def get_neg_label(cls_label: np.ndarray, num_neg: int) -> np.ndarray:
"""Generate random negative samples.
:param cls_label: Class labels including only positive samples.
:param num_neg: Number of negative samples.
:return: Label with original positive samples (marked by 1), negative
samples (marked by -1), and ignored samples (marked by 0)
"""
seq_len, num_scales = cls_label.shape
cls_label = cls_label.copy().reshape(-1)
cls_label[cls_label < 0] = 0 # reset negative samples
neg_idx, = np.where(cls_label == 0)
np.random.shuffle(neg_idx)
neg_idx = neg_idx[:num_neg]
cls_label[neg_idx] = -1
cls_label = np.reshape(cls_label, (seq_len, num_scales))
return cls_label
| 5,351,289 |
def G12(x, a):
"""
Eqs 20, 24, 25 of Khangulyan et al (2014)
"""
alpha, a, beta, b = a
pi26 = np.pi ** 2 / 6.0
G = (pi26 + x) * np.exp(-x)
tmp = 1 + b * x ** beta
g = 1.0 / (a * x ** alpha / tmp + 1.0)
return G * g
| 5,351,290 |
def custom_uwg(directory):
"""Generate UWG json with custom reference BEMDef and SchDef objects."""
# override at 5,2 and add at 18,2
# SchDef
default_week = [[0.15] * 24] * 3
schdef1 = SchDef(elec=default_week, gas=default_week, light=default_week,
occ=default_week, cool=default_week, heat=default_week,
swh=default_week, q_elec=18.9, q_gas=3.2, q_light=18.9,
n_occ=0.12, vent=0.0013, v_swh=0.2846, bldtype='largeoffice',
builtera='new')
default_week = [[0.35] * 24] * 3
schdef2 = SchDef(elec=default_week, gas=default_week, light=default_week,
occ=default_week, cool=default_week, heat=default_week,
swh=default_week, q_elec=18.9, q_gas=3.2, q_light=18.9,
n_occ=0.12, vent=0.0013, v_swh=0.2846,
bldtype='customhospital', builtera='new')
# BEMDedf
# materials
insulation = Material(0.049, 836.8 * 265.0, 'insulation')
gypsum = Material(0.16, 830.0 * 784.9, 'gypsum')
wood = Material(0.11, 1210.0 * 544.62, 'wood')
# elements
wall = Element(0.22, 0.92, [0.01, 0.01, 0.0127], [wood, insulation, gypsum], 0, 293,
False, 'wood_frame_wall')
roof = Element(0.22, 0.92, [0.01, 0.01, 0.0127], [wood, insulation, gypsum], 0, 293,
True, 'wood_frame_roof')
mass = Element(0.2, 0.9, [0.05, 0.05], [
wood, wood], 0, 293, True, 'wood_floor')
# building
bldg = Building(
floor_height=3.0, int_heat_night=1, int_heat_day=1, int_heat_frad=0.1,
int_heat_flat=0.1, infil=0.171, vent=0.00045, glazing_ratio=0.4, u_value=3.0,
shgc=0.3, condtype='AIR', cop=3, coolcap=41, heateff=0.8, initial_temp=293)
bemdef1 = BEMDef(building=bldg, mass=mass, wall=wall, roof=roof,
bldtype='largeoffice', builtera='new')
bemdef2 = BEMDef(building=bldg, mass=mass, wall=wall, roof=roof,
bldtype='customhospital', builtera='new')
# vectors
ref_sch_vector = [schdef1, schdef2]
ref_bem_vector = [bemdef1, bemdef2]
bld = [('largeoffice', 'new', 0.4), # overwrite
('hospital', 'new', 0.5),
('customhospital', 'new', 0.1)] # extend
model = UWG.from_param_args(
epw_path=None, bldheight=10.0, blddensity=0.5, vertohor=0.5, zone='1A',
treecover=0.1, grasscover=0.1, bld=bld, ref_bem_vector=ref_bem_vector,
ref_sch_vector=ref_sch_vector)
dest_file = os.path.join(directory, 'custom_uwg.json')
with open(dest_file, 'w') as fp:
json.dump(model.to_dict(include_refDOE=True), fp, indent=4)
| 5,351,291 |
def update_table_params(switch_inst, table_name, params, find_params=None, row_id=None, validate_updates=True):
"""Configure port parameters in table.
Args:
switch_inst(object): Switch instance to work with
table_name(str): The name of table to work with
params(dict): Parameters and values that should be configured for port
find_params(list): List of parameters to find a row in table
row_id(int): Row ID in table
validate_updates(bool): Verify if updates were set
Returns:
None
Examples::
helpers.update_table_params(env.switch[1], "DcbxPfcPortsAdmin", {"willing": "Enabled", "enabled": "0,0,0,1,0,0,0,0"}, [port_id, ])
helpers.update_table_params(env.switch[1], "DcbxPorts", {"adminStatus": 'Disabled'}, row_id=24)
"""
if row_id is None and find_params is not None:
row_id = switch_inst.findprop(table_name, find_params)
elif row_id is None and find_params is None:
raise ValueError("Find_params or row_id should be specified to update parameter value in table")
assert row_id != -1, "Can't find row in table '%s' with find params %s" % (table_name, find_params)
for field, value in params.items():
assert switch_inst.setprop(table_name, field, [row_id, value]) == 0, "%s values is not set for field %s" % (field, value)
if validate_updates:
verify_port_params_in_table(switch_inst, table_name, params, row_id=row_id)
| 5,351,292 |
def binomial(n, k):
""" binomial coefficient """
if k < 0 or k > n:
return 0
if k == 0 or k == n:
return 1
num = 1
den = 1
for i in range(1, min(k, n - k) + 1): # take advantage of symmetry
num *= (n + 1 - i)
den *= i
c = num // den
return c
| 5,351,293 |
def pagination(page):
"""
Generates the series of links to the pages in a paginated list.
"""
paginator = page.paginator
page_num = page.number
#pagination_required = (not cl.show_all or not cl.can_show_all) and cl.multi_page
if False: #not pagination_required:
page_range = []
else:
ON_EACH_SIDE = 3
ON_ENDS = 2
# If there are 10 or fewer pages, display links to every page.
# Otherwise, do some fancy
if paginator.num_pages <= 10:
page_range = range(1, paginator.num_pages + 1)
else:
# Insert "smart" pagination links, so that there are always ON_ENDS
# links at either end of the list of pages, and there are always
# ON_EACH_SIDE links at either end of the "current page" link.
page_range = []
if page_num > (ON_EACH_SIDE + ON_ENDS):
page_range.extend(range(1, ON_ENDS))
page_range.append(DOT)
page_range.extend(range(page_num - ON_EACH_SIDE, page_num + 1))
else:
page_range.extend(range(1, page_num + 1))
if page_num < (paginator.num_pages - ON_EACH_SIDE - ON_ENDS):
page_range.extend(range(page_num + 1, page_num + ON_EACH_SIDE + 1))
page_range.append(DOT)
page_range.extend(range(paginator.num_pages - ON_ENDS, paginator.num_pages + 1))
else:
page_range.extend(range(page_num + 1, paginator.num_pages + 1))
#need_show_all_link = cl.can_show_all and not cl.show_all and cl.multi_page
return {
'paginator': paginator,
'page_obj': page,
'page': page.number,
#'pagination_required': pagination_required,
#'show_all_url': need_show_all_link and cl.get_query_string({ALL_VAR: ''}),
'page_range': page_range,
#'ALL_VAR': ALL_VAR,
'1': 1,
'is_paginated': True,
}
| 5,351,294 |
def send_apns_push_message():
"""
a sample to show hwo to send web push message
:return:
"""
message = messaging.Message(
apns=apns_push_config,
# TODO:
token=['your token']
)
try:
# Case 1: Local CA sample code
# response = messaging.send_message(message, verify_peer="../Push-CA-Root.pem")
# Case 2: No verification of HTTPS's certificate
response = messaging.send_message(message)
# Case 3: use certifi Library
# import certifi
# response = messaging.send_message(message, verify_peer=certifi.where())
print("response is ", json.dumps(vars(response)))
assert (response.code == '80000000')
except Exception as e:
print(repr(e))
| 5,351,295 |
def bubbleSort(arr):
"""
>>> bubbleSort(arr)
[11, 12, 23, 25, 34, 54, 90]
"""
n = len(arr)
for i in range(n-1):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
| 5,351,296 |
def generate_kronik_feats(fn):
"""Generates features from a Kronik output file"""
header = get_tsv_header(fn)
return generate_split_tsv_lines(fn, header)
| 5,351,297 |
def regressor_contrast(model1:RegressorMixin,
model2:RegressorMixin,
test_data:pd.DataFrame,
label_data:pd.Series,
threshold:int=10)->pd.DataFrame:
"""Compute 11 metrics to compare a Sckit-learn regression models
and make statistical test for residual normality"""
np.random.seed(33)
models_time = []
models_memory = []
models_predictions = []
models_acc = []
models_dagostino = []
models_dagostino_p = []
models_explained_variance = []
models_r2 = []
models_rmse = []
models_mae = []
models_shapiro = []
models_shapiro_p = []
for m in [model1, model2]:
t1 = time()
predictions = m.predict(test_data)
t2 = time()
models_time.append(t2 -t1)
models_predictions.append(predictions)
models_explained_variance.append(round(explained_variance_score(label_data,predictions),5))
models_r2.append(round(r2_score(label_data,predictions),5))
models_rmse.append(round(mean_squared_error(label_data,predictions, squared = False ),5))
models_mae.append(round(mean_absolute_error(label_data,predictions),5))
models_acc.append(round(percentaje_acc(label_data,predictions, threshold=threshold),5))
models_memory.append(sys.getsizeof(m)/1024)
shap_sta, shap_p, dagostino_sta, dagostino_p = _multiples_normality_test(predictions, label_data)
models_shapiro.append(round(shap_sta,5))
models_dagostino.append(round(dagostino_sta,5))
models_shapiro_p.append(shap_p)
models_dagostino_p.append(dagostino_p)
table = pd.DataFrame({
"Model": ["Model1", "Model2"],
"Exec time(seg)": models_time,
"Memory (Kb)": models_memory,
"R2":models_r2,
"MAE": models_mae,
"RMSE": models_rmse,
"Explained Variance": models_explained_variance,
"Residual Shapiro Test Stat": models_shapiro ,
"Residual Shapiro Test p-value": models_shapiro_p,
"Residual D’Agostino’s Statical": models_dagostino ,
"Residual D’Agostino’s p-value": models_dagostino_p,
"Ratio errors in Threshold": models_acc
})
return table
| 5,351,298 |
def delete_product(uuid: str, db: Session = Depends(auth)):
"""Delete a registered product."""
if product := repo.get_product_by_uuid(db=db, uuid=uuid):
if product.taken:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Cannot delete products already taken.",
)
repo.delete_product(db=db, product=product)
return {
"deleted": True,
"product": product,
}
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="No product found for the code specified.",
)
| 5,351,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.