content
stringlengths
22
815k
id
int64
0
4.91M
def get_high(pair, path="https://api.kraken.com/0/public"): """ Get the last 24h high price of `pair`. Parameters ---------- pair : str Code of the requested pair(s). Comma delimited if several pair. path : str Path of the exchange to request. Returns ------- float or dict Last 24h higher price(s). """ return _get_ticker(pair, 'h', path)
5,354,000
def SIx(): """ Reads in future LENS SI-x data Returns ---------- leafmean : array leaf indices (ens x year x lat x lon) latmean : array last freeze indices (ens x year x lat x lon) lat : array of latitudes lon : array of longitudes lstfrz : list last freeze indices """ directory = '/volumes/eas-shared/ault/ecrl/spring-indices/data/' versions=['002','003','004','005','006','007','008','009','010','011','012','013','014','015','016','017','018','019','020','021','022','023','024','025','026','027','028','029','030'] leaf=[] lstfrz = [] for version in versions: years = 'b.e11.BRCP85C5CNBDRD.f09_g16.%s.cam.h.SI-x.2006-2080.nc' % version filename = directory + years values = Dataset(filename) lon = values.variables['lon'][189:240] lat = values.variables['lat'][:32] lstfrz_index = values.variables['lstfrz_index'][:,:32,189:240] leaf_index = values.variables['leaf_index'][:,:32,189:240] values.close() leaf.append(leaf_index) lstfrz.append(lstfrz_index) latmean = np.asarray(lstfrz) leafmean = np.asarray(leaf) print 'Done! 1' return leafmean, latmean, lstfrz, lat, lon
5,354,001
def test_destroy_invalid_proxy(): """ Test if we can destroy an invalid proxy """ result = toxiproxy.destroy("invalid_proxy") assert result is False
5,354,002
def test_pinned_task_recovers_on_host(): """Tests that when a pinned task gets killed, it recovers on the node it was pinned to.""" app_def = apps.sleep_app() app_id = app_def["id"] host = common.ip_other_than_mom() common.pin_to_host(app_def, host) client = marathon.create_client() client.add_app(app_def) common.deployment_wait(service_id=app_id) tasks = client.get_tasks(app_id) common.kill_process_on_host(host, '[s]leep') common.deployment_wait(service_id=app_id) @retrying.retry(wait_fixed=1000, stop_max_attempt_number=30, retry_on_exception=common.ignore_exception) def check_for_new_task(): new_tasks = client.get_tasks(app_id) assert tasks[0]['id'] != new_tasks[0]['id'], "The task did not get killed: {}".format(tasks[0]['id']) assert new_tasks[0]['host'] == host, \ "The task got restarted on {}, but it was supposed to stay on {}".format(new_tasks[0]['host'], host) check_for_new_task()
5,354,003
def insert_nhl_ids(tds, players): """ Insert nhl ids for each player into the according team's html roster representation. """ # modifying each of the specified table cells for td in tds: # retrieving player's jersey number from current table cell no = int(td.text_content()) # trying to retrieve player id from player dictionary try: nhl_id = players[no] # otherwise retrieving player id from database except KeyError: # retrieving player position and full name from current table cell position, name = td.xpath("following-sibling::*//text()")[:2] # splitting up full name into first and last name last_name, first_name = [x.strip() for x in name.split(",")] # finding player by first and last name as well as position in db nhl_id = retrieve_player_id(last_name, first_name, position) # TODO: find player on website and create it if not found in database # creating a span element using the attribute 'nhl_id' with the # current player's id as value span = etree.Element("span", nhl_id=str(nhl_id)) # inserting newly created span element into the document tree td.insert(0, span)
5,354,004
def make_truncnorm_gen_with_bounds(mean, std, low_bound, hi_bound): """ low_bound and hi_bound are in the same units as mean and std """ assert hi_bound > low_bound clipped_mean = min(max(mean, low_bound), hi_bound) if clipped_mean == low_bound: low_sigma = -0.01 * std hi_sigma = (hi_bound - clipped_mean) / std elif clipped_mean == hi_bound: low_sigma = (low_bound - clipped_mean) / std hi_sigma = 0.01 * std else: low_sigma = (low_bound - clipped_mean) / std hi_sigma = (hi_bound - clipped_mean) / std return scipy.stats.truncnorm(low_sigma, hi_sigma, loc=clipped_mean, scale=std)
5,354,005
def resolve_item_from_loan(item_pid): """Resolve the item referenced in loan based on its PID type.""" from invenio_app_ils.ill.api import BORROWING_REQUEST_PID_TYPE from invenio_app_ils.ill.proxies import current_ils_ill from invenio_app_ils.items.api import ITEM_PID_TYPE from invenio_app_ils.proxies import current_app_ils if item_pid["type"] == ITEM_PID_TYPE: rec_cls = current_app_ils.item_record_cls elif item_pid["type"] == BORROWING_REQUEST_PID_TYPE: rec_cls = current_ils_ill.borrowing_request_record_cls else: from invenio_app_ils.errors import UnknownItemPidTypeError raise UnknownItemPidTypeError(pid_type=item_pid["type"]) return rec_cls.get_record_by_pid(item_pid["value"])
5,354,006
def mkdir(d): """make a directory if it doesn't already exist""" if not os.path.exists(d): try: os.makedirs(d) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise
5,354,007
def lascolor(strPathInLAS, strPathOutLAS, strPathTif, strAdlSwitches = None): """ Function lascolor args: strPathInLAS = input LAS file strPathOutLAS = output LAS file strPathTif = Tif source of RGB values strAdlSwitches = optional additional switches Command Syntax: """ strSwitches = '' if strAdlSwitches: strSwitches = strSwitches + ' ' + strAdlSwitches lstCMD = [strPathLtInstall + os.sep + 'lascolor', '-i ' + strPathInLAS.strip(), '-o ' + strPathOutLAS, '-image ' + strPathTif, strSwitches] strCMD = ' '.join(lstCMD) return strCMD
5,354,008
def delta(s1, s2): """ Find the difference in characters between s1 and s2. Complexity: O(n), n - length of s1 or s2 (they have the same length). Returns: dict, format {extra:[], missing:[]} extra: list, letters in s2 but not in s1 missing: list, letters in s1 but not in s2 """ letters = {} for c in s1: if c not in letters: letters[c] = 1 else: letters[c] += 1 extra = [] # letters which are in s2 but not in s1 for c in s2: if c not in letters: extra.append(c) else: letters[c] -=1 missing = [] # letters which are in s1 but not in s2 for (letter, count) in letters.iteritems(): if count > 0: missing.append(letter) return {'extra': extra, 'missing': missing}
5,354,009
def test_get_involved_cs_handles_error(github, test_client): """ If error happens when generating the 'get_involved_cs' page, the view should handle it and still display most of the content. The issues section should contain an error message with some useful links """ def get_issues(self, *args, **kwargs): raise RuntimeError('Ouch!') github.get_issues = get_issues response = test_client.get('/zapojse/') html = extract_issues_html(response.get_data(as_text=True)) assert response.status_code == 500 message = "DIV with the 'issues-error' class isn't present in the HTML" assert 'issues-error' in html, message message = "Link to alternative issues listing isn't present in the HTML" assert 'https://github.com/pyvec/zapojse/issues' in html, message url = '{base_url}?title={title}&body={body}'.format( base_url='https://github.com/pyvec/python.cz/issues/new', title=url_quote_plus('Nefunguje Zapoj se'), body=url_quote_plus('RuntimeError: Ouch!'), ) assert url in html, "URL for filing a bug report isn't present in the HTML"
5,354,010
def mean_predictive_value(targets, preds, cm=None, w=None, adjusted=False): """ :purpose: Calculates the mean predictive value between a discrete target and pred array :params: targets, preds : discrete input arrays, both of shape (n,) cm : if you have previously calculated a confusion matrix, pass it here to save the computation. set as None, which makes the function calculate the confusion matrix w : weights at each index of true and pred. array of shape (n,) if no w is set, it is initialized as an array of ones such that it will have no impact on the output adjusted : bool. if true, adjust the output for chance (making 0 the worst and 1 the best score). defaults to false :returns: mean_predictive_value : float, the mean predictive value of the targets and preds array :example: >>> from fastdist import fastdist >>> import numpy as np >>> true = np.random.RandomState(seed=0).randint(2, size=10000) >>> pred = np.random.RandomState(seed=1).randint(2, size=10000) >>> fastdist.mean_predictive_value(true, pred) 0.49030739883826424 by saskra """ w = init_w(w, len(targets)) if cm is None: cm = confusion_matrix(targets, preds, w=w) n = cm.shape[0] diag, columns_sums = np.zeros(n), np.zeros(n) for i in range(n): diag[i] = cm[i][i] # sum of the diagonal = true results for j in range(n): columns_sums[j] += cm[i][j] # sums of the columns = predictions per class class_div = diag / columns_sums # fraction of true results among the predicted ones per class div_mean = 0 for i in range(n): div_mean += class_div[i] div_mean /= n # mean fraction of true results among the predicted ones if adjusted: div_mean -= 1 / n div_mean /= 1 - 1 / n return div_mean
5,354,011
def delta(phase,inc, ecc = 0, omega=0): """ Compute the distance center-to-center between planet and host star. ___ INPUT: phase: orbital phase in radian inc: inclination of the system in radian OPTIONAL INPUT: ecc: omega: // OUTPUT: distance center-to-center, double-float number. ___ """ phase = 2*np.pi*phase if ecc == 0 and omega == 0: delta = np.sqrt(1-(np.cos(phase)**2)*(np.sin(inc)**2)) else: delta = (1.-ecc**2.)/(1.-ecc*np.sin(phase-omega))* np.sqrt((1.-(np.cos(phase))**2.*(np.sin(inc))**2)) return delta
5,354,012
def preconfigureExternalDeps(cfgCtx): """ Configure external dependencies. Returns dict with configuration of dependency producers ready to use in ZenMake command 'configure' but not in others. """ resultRules = [] bconfManager = cfgCtx.bconfManager allTasks = cfgCtx.allTasks rootdir = bconfManager.root.rootdir buildtype = bconfManager.root.selectedBuildType for bconf in bconfManager.configs: deps = _handleTasksWithDeps(bconf, allTasks) if not deps: continue depConfs = bconf.edeps for depName in deps: depConf = depConfs[depName] depConf['name'] = depName depRootDir = depConf.get('rootdir') if depRootDir is None: msg = "Dependency %r has no 'rootdir'." % depName raise error.ZenMakeConfError(msg, confpath = bconf.path) _detectZenMakeProjectRules(depConf, buildtype) rules = depConf.get('rules', {}) for ruleName, ruleParams in rules.items(): ruleParams = _initRule(ruleName, ruleParams, rootdir, depRootDir) if not ruleParams.get('cmd'): msg = "Dependency %r: parameter 'cmd' is empty" % depName msg += " for rule %r." % ruleName log.warn(msg) continue ruleParams['$from-deps'] = [depConf] resultRules.append(ruleParams) cfgCtx.zmdepconfs = _dispatchRules(resultRules)
5,354,013
def count_mementos(): """ Helper function to count mementos from timemap in 11/2016 """ directory = "data/timemaps/" print("For the month of November 2016") for filename in os.listdir(directory): with open(directory + filename) as f: resp = json.load(f) counter = 0 for i, uri_m in enumerate(resp): datetime_val = uri_m[1] if datetime_val.startswith("201611"): counter += 1 print("URI {} has {} mementos".format( resp[1][0], counter))
5,354,014
def theoritical_spectrum(peptide_sequence): """Returns the theoritical spectrum of a given amino acid sequence. INPUT : peptide_sequence: string. The peptide sequence to get its theoritical spectrum OUTPUT: .: List. The theoritical spectrum of the given peptide sequence. """ linear_kmers = [] cyclic_kmers = [] for i in range(len(peptide_sequence)): for j in range(i,len(peptide_sequence)): linear_kmers.append(peptide_sequence[i:j+1]) for i in range(2,len(peptide_sequence)): for j in range(i-1): cyclic_kmers.append(peptide_sequence[i:len(peptide_sequence)]+peptide_sequence[0:j+1]) kmers = linear_kmers+cyclic_kmers return sorted(list(map(get_molecular_weight,kmers)))
5,354,015
def is_amazon(source_code): """ Method checks whether a given book is a physical book or a ebook giveaway for a linked Amazon account. :param source_code: :return: """ for line in source_code: if "Your Amazon Account" in line: return True return False
5,354,016
def transdecodeToPeptide(sample_name, output_dir, rerun_rules, sample_dir, mets_or_mags = "mets", transdecoder_orf_size = 100, nt_ext = ".fasta", pep_ext = ".faa", run_transdecoder = False): """ Use TransDecoder to convert input nucleotide metatranscriptomic sequences to peptide sequences. """ if (not run_transdecoder): return 0 print("Running TransDecoder for sample " + str(sample_name) + "...", flush = True) os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags, "transdecoder")) if (os.path.isfile(os.path.join(output_dir, mets_or_mags, sample_name + pep_ext))) & (not rerun_rules): print("TransDecoder file already detected for sample " + str(sample_name) + "; will not re-run step.", flush = True) return 0 elif (os.path.isfile(os.path.join(sample_dir, sample_name + pep_ext))) & (not rerun_rules): print("Protein files detected for sample in sample directory; " + "will not TransDecode.", flush = True) os.system("cp " + os.path.join(sample_dir, sample_name + pep_ext) + " " + os.path.join(output_dir, mets_or_mags, sample_name + pep_ext)) return 0 TD_log = open(os.path.join(output_dir,"log","transdecoder_longorfs_" + sample_name + ".log"), "w+") TD_err = open(os.path.join(output_dir,"log","transdecoder_longorfs_" + sample_name + ".err"), "w+") if (not os.path.isfile(os.path.join(sample_dir, sample_name + nt_ext))): print("File: " + os.path.join(sample_dir, sample_name + nt_ext) + " was called by TransDecoder and " "does not exist. Check for typos.") sys.exit(1) rc1 = subprocess.Popen(["TransDecoder.LongOrfs", "-t", os.path.join(sample_dir, sample_name + nt_ext), "-m", str(transdecoder_orf_size)], stdout = TD_log, stderr = TD_err).wait() TD_log.close() TD_err.close() TD_log = open(os.path.join(output_dir,"log","transdecoder_predict_" + sample_name + ".log"), "w+") TD_err = open(os.path.join(output_dir,"log","transdecoder_predict_" + sample_name + ".err"), "w+") rc2 = subprocess.Popen(["TransDecoder.Predict", "-t", os.path.join(sample_dir, sample_name + nt_ext), "--no_refine_starts"], stdout = TD_log, stderr = TD_err).wait() #rc2 = p2.returncode TD_log.close() TD_err.close() if (rc1 + rc2) != 0: print("TransDecoder did not complete successfully for sample " + str(sample_name) + ". Check <output_dir>/log/ folder for details.") sys.exit(1) merged_name = sample_name + nt_ext os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags)) os.system("mkdir -p " + os.path.join(output_dir, mets_or_mags, "transdecoder")) os.replace(merged_name + ".transdecoder.pep", os.path.join(output_dir, mets_or_mags, sample_name + pep_ext)) os.replace(merged_name + ".transdecoder.cds", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.cds")) os.replace(merged_name + ".transdecoder.gff3", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.gff3")) os.replace(merged_name + ".transdecoder.bed", os.path.join(output_dir, mets_or_mags, "transdecoder", sample_name + ".fasta.transdecoder.bed")) #shutil.rmtree os.system("rm -rf " + merged_name + "*.transdecoder_dir*") return rc1 + rc2
5,354,017
def fechaTurmaSeNaoTemAlunoForm(modelo, y, p, turmasPermitidas): """Fecha as turmas que nao possuem alunos de formulario.""" for t in turmasPermitidas: alunosForm = [y[k][t] for k in y] modelo.solver.Add(p[t] <= sum(alunosForm))
5,354,018
def test_convert_invalid(schema, value, exception): """ GIVEN invalid schema and expected exception WHEN convert is called with the schema THEN the expected exception is raised. """ with pytest.raises(exception): utility_base.to_dict.simple.convert(schema=schema, value=value)
5,354,019
def data_dim(p): """ Return the dimensionality of the dataset """ dataset_class = DATASETS[p.dataset] return dataset_class(p).get_in_dim()
5,354,020
def create_supervised_evaluator(model, metrics=None, device=None, non_blocking=False, prepare_batch=_prepare_batch, output_transform= lambda x, y, y_pred: (y_pred, y,)): """ Factory function for creating an evaluator for supervised models. Args: model (`torch.nn.Module`): the model to train. metrics (dict of str - :class:`~ignite.metrics.Metric`): a map of metric names to Metrics. device (str, optional): device type specification (default: None). Applies to both model and batches. non_blocking (bool, optional): if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch (callable, optional): function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. output_transform (callable, optional): function that receives 'x', 'y', 'y_pred' and returns value to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits output expected by metrics. If you change it you should use `output_transform` in metrics. Note: `engine.state.output` for this engine is defind by `output_transform` parameter and is a tuple of `(batch_pred, batch_y)` by default. Returns: Engine: an evaluator engine with supervised inference function. """ metrics = metrics or {} if device: model.to(device) def _inference(engine, batch): model.eval() with torch.no_grad(): # z is optional (e.g. task ids) x, y, *z = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(*(x, *z)) # if hasattr(model, 'arch_sampler'): # ent = model.arch_sampler.entropy().mean() return output_transform(x, y, y_pred) engine = Engine(_inference) for name, metric in metrics.items(): metric.attach(engine, name) return engine
5,354,021
def historical_earning_calendar( apikey: str, symbol: str, limit: int = DEFAULT_LIMIT ) -> typing.Optional[typing.List[typing.Dict]]: """ Query FMP /historical/earning_calendar/ API. Note: Between the "from" and "to" parameters the maximum time interval can be 3 months. :param apikey: Your API key. :param symbol: Company ticker. :param limit: Number of rows to return. :return: A list of dictionaries. """ path = f"historical/earning_calendar/{symbol}" query_vars = { "apikey": apikey, "symbol": symbol, "limit": limit, } return __return_json_v3(path=path, query_vars=query_vars)
5,354,022
def muteblockdelmenu(): """ Submenu to hide away all the unpalatable things. Arguments: none User input: The command to execute. """ choice = input(""" | mute/block/delete | delp = delete a post muteu = mute a user unmuteu = unmute a user mutec = mute a channel unmutec = unmute a channel [return] = back """) if choice == "delp": deletepost() elif choice == "mutec": mutechannel() elif choice == "muteu": muteuser() elif choice == "unmutec": unmutechannel() elif choice == "unmuteu": unmuteuser()
5,354,023
def config_section_data(): """Produce the default configuration section for app.config, when called by `resilient-circuits config [-c|-u]` """ config_data = u"""[fn_query_tor_network] base_url = https://onionoo.torproject.org/details #The Flag can be 'Running','Exit' for more information on flag settings - https://metrics.torproject.org/onionoo.html flag = Exit # The data fields should be comma separated and no space should be given in between each fields data_fields = exit_addresses,or_addresses,host_name""" return config_data
5,354,024
def test_PearsonCorrlation_MIP_AlgoTesting_3p1(): """ Results from 2019_MIP_Algo_Testing/PearsonCorrelation var1 vs var2 Pearson's r -0.006 p-value 0.867 95% CI Upper 0.067 95% CI Lower -0.079 """ logging.info("---------- TEST : Pearson Correlation MIP_Algo_Testing_3p1") data = [ { "name" : "x", "value": "var1" }, { "name" : "y", "value": "var2" }, { "name": "pathology", "value":"dementia" }, { "name" : "dataset", "value": "data_pr1" }, { "name" : "filter", "value": "" }, ] headers = {'Content-type': 'application/json', "Accept": "text/plain"} r = requests.post(endpointUrl, data=json.dumps(data), headers=headers) result = json.loads(r.text) check_result( result['result'][0]['data'][0], 'var1 ~ var2', -0.006, 0.867, -0.079, 0.067 )
5,354,025
def show_object_id_by_date( move_data, create_features=True, kind=None, figsize=(21, 9), return_fig=True, save_fig=True, name='shot_points_by_date.png', ): """ Generates four visualizations based on datetime feature: - Bar chart trajectories by day periods - Bar chart trajectories day of the week - Line chart trajectory by date - Line chart of trajectory byhours of the day. Parameters ---------- move_data : pymove.core.MoveDataFrameAbstract subclass. Input trajectory data. create_features : bool, optional, default True. Represents whether or not to delete features created for viewing. kind: list or None Determines the kinds of each plot figsize : tuple, optional, default (21,9). Represents dimensions of figure. return_fig : bool, optional, default True. Represents whether or not to save the generated picture. save_fig : bool, optional, default True. Represents whether or not to save the generated picture. name : String, optional, default 'shot_points_by_date.png'. Represents name of a file. Returns ------- matplotlib.pyplot.figure or None The generated picture. References ---------- https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html """ if kind is None: kind = ['bar', 'bar', 'line', 'line'] fig, ax = plt.subplots(2, 2, figsize=figsize) move_data.generate_date_features() move_data.generate_hour_features() move_data.generate_time_of_day_features() move_data.generate_day_of_the_week_features() move_data.groupby([PERIOD])[TRAJ_ID].nunique().plot( subplots=True, kind=kind[0], rot=0, ax=ax[0][0], fontsize=12 ) move_data.groupby([DAY])[TRAJ_ID].nunique().plot( subplots=True, kind=kind[1], ax=ax[0][1], rot=0, fontsize=12 ) move_data.groupby([DATE])[TRAJ_ID].nunique().plot( subplots=True, kind=kind[2], grid=True, ax=ax[1][0], rot=90, fontsize=12, ) move_data.groupby([HOUR])[TRAJ_ID].nunique().plot( subplots=True, kind=kind[3], grid=True, ax=ax[1][1], fontsize=12 ) if not create_features: move_data.drop(columns=[DATE, HOUR, PERIOD, DAY], inplace=True) if save_fig: plt.savefig(fname=name, fig=fig) if return_fig: return fig
5,354,026
def raw_escape(pattern, unix=None, raw_chars=True): """Apply raw character transform before applying escape.""" return _wcparse.escape(util.norm_pattern(pattern, False, raw_chars, True), unix=unix, pathname=True, raw=True)
5,354,027
def interpolate_effective_area_per_energy_and_fov( effective_area, grid_points, target_point, min_effective_area=1. * u.Unit('m2'), method='linear', ): """ Takes a grid of effective areas for a bunch of different parameters and interpolates (log) effective areas to given value of those parameters Parameters ---------- effective_area: np.array of astropy.units.Quantity[area] grid of effective area, of shape (n_grid_points, n_fov_offset_bins, n_energy_bins) grid_points: np.array list of parameters corresponding to effective_area, of shape (n_grid_points, n_interp_dim) target_point: np.array values of parameters for which the interpolation is performed, of shape (n_interp_dim) min_effective_area: astropy.units.Quantity[area] Minimum value of effective area to be considered for interpolation method: 'linear’, ‘nearest’, ‘cubic’ Interpolation method Returns ------- aeff_interp: astropy.units.Quantity[area] Interpolated Effective area array with shape (n_energy_bins, n_fov_offset_bins) """ # get rid of units effective_area = effective_area.to_value(u.m**2) min_effective_area = min_effective_area.to_value(u.m**2) # remove zeros and log it effective_area[effective_area < min_effective_area] = min_effective_area effective_area = np.log(effective_area) # interpolation aeff_interp = griddata(grid_points, effective_area, target_point, method=method).T # exp it and set to zero too low values aeff_interp = np.exp(aeff_interp) aeff_interp[aeff_interp < min_effective_area * 1.1] = 0 # 1.1 to correct for numerical uncertainty and interpolation return u.Quantity(aeff_interp, u.m**2, copy=False)
5,354,028
def extract_edge(stats:np.ndarray, idxs_upper:np.ndarray, runner:int, max_index:int, maximum_offset:float, iso_charge_min:int = 1, iso_charge_max:int = 6, iso_mass_range:int=5)->list: """Extract edges. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. idxs_upper (np.ndarray): Upper index for comparing. runner (int): Index. max_index (int): Unused. maximum_offset (float): Maximum offset when comparing edges. iso_charge_min (int, optional): Minimum isotope charge. Defaults to 1. iso_charge_max (int, optional): Maximum isotope charge. Defaults to 6. iso_mass_range (float, optional): Mass search range. Defaults to 5. Returns: list: List of edges. """ edges = [] mass1 = stats[runner, 0] delta_mass1 = stats[runner, 1] for j in range(runner+1, idxs_upper[runner]): mass2 = stats[j, 0] if np.abs(mass2 - mass1) <= maximum_offset: delta_mass2 = stats[j, 1] for charge in range(iso_charge_min, iso_charge_max + 1): if check_isotope_pattern(mass1, mass2, delta_mass1, delta_mass2, charge, iso_mass_range): edges.append((runner, j)) break return edges
5,354,029
def _neq_attr(node, attr, gens, container): """ Calcs fitness based on the fact that node's target shall not have an attr with a certain value. """ trg_nd = container.nodes[gens[node]] if attr[0] in trg_nd and attr[1] == trg_nd[attr[0]]: return 10.1 return 0.0
5,354,030
def test_query_works_with_string(fredo): """Str is allowed in query""" _, query = fredo.parse_query('test') assert 'test' == query
5,354,031
def init_call_probabilities(size, calls_per_hrs): """Precomputes table of boolean call probabilities shared for all users.""" global _rand_bool, _rand_bool_init, _rand_bool_num, _rand_bool_prob _rand_bool_prob = float(calls_per_hrs) / 3600.0 _rand_bool = np.random.rand(size) < _rand_bool_prob _rand_bool_init = True _rand_bool_num = size
5,354,032
def getItem( user, list, itempk ): """ Get a single item from a list. :param user: user who owns list :param list: list containing item :param itempk: private key of item :return: item or None """ itemType = list.itemType item = None if itemType == 'Item': item = Item.objects.get( pk=itempk, list=list, user=user ) elif itemType == 'Link': item = Link.objects.get( pk=itempk, list=list, user=user ) elif itemType == 'Book': item = Book.objects.get( pk=itempk, list=list, user=user ) elif itemType == 'Show' or itemType == 'Movie': item = Video.objects.get( pk=itempk, list=list, user=user ) return item
5,354,033
def set_user_to_vendor(sender, instance, **kwargs): """Set the user is_vendor attribut to True when VendorProfile is saved.""" instance.user.is_vendor = True instance.user.save()
5,354,034
def metric_divergence(neighborhood_vectors: np.ndarray, dL: float, polarity: int) -> float: """ Calculates the divergence of a sampling volume neighborhood. Note: For JIT to work, this must be declared at the top level. @param neighborhood_vectors: Sampling volume neighborhood vectors (six 3D vectors) @param dL: Length element @param polarity: Polarity filter (-1: Keep values <= 0; 0: Keep all values; +1: Keep values >= 0) """ dxp = neighborhood_vectors[0][0] dxn = neighborhood_vectors[3][0] dyp = neighborhood_vectors[1][1] dyn = neighborhood_vectors[4][1] dzp = neighborhood_vectors[2][2] dzn = neighborhood_vectors[5][2] value = (dxp - dxn + dyp - dyn + dzp - dzn) / 2 / dL if polarity == -1: if value > 0: return np.NaN else: return -value # Keep divergence positive, especially for use as alpha metric elif polarity == +1: if value < 0: return np.NaN else: return value else: return value
5,354,035
def parse_args(): """ Parse command line arguments. Parameters: None Returns: parser arguments """ parser = argparse.ArgumentParser(description='LeNet model') optional = parser._action_groups.pop() required = parser.add_argument_group('required arguments') required.add_argument('--dataset', dest='dataset', help='Choice of dataset to train model', choices=['mnist', 'cifar10'], default=None) optional.add_argument('--print_model', dest='print_model', help='Print LeNet model', action='store_true') optional.add_argument('--train_model', dest='train_model', help='Train LeNet on MNIST', action='store_true') optional.add_argument('-s', '--save_weights', dest='save_weights', help='Save the trained weights', default=None) optional.add_argument('-w', '--weights', dest='weights', help='Path to weights (hdf5) file', default=None) optional.add_argument('-e', '--epochs', dest='epochs', help='Number of epochs for training', type=int, default=20) optional.add_argument('--data_augmentation', dest='data_augmentation', help='Use data augmentations for input', action='store_true') optional.add_argument('--viz_training', dest='viz_training', help='Visualize the training curve', action='store_true') parser._action_groups.append(optional) return parser.parse_args()
5,354,036
def tag(request): """ Add/Remove tag to email """ if request.is_ajax(): mail = request.POST.get("mail") tag = request.POST.get("tag") op = request.POST.get("op") mail = get_object_or_404(Mail, pk=mail) if op == "ADD": mail.tags.add(tag) elif op == "REMOVE": mail.tags.remove(tag) else: raise Http404("404") return JsonResponse({"ok": True}) raise Http404("404")
5,354,037
def sid_to_smiles(sid): """Takes an SID and prints the associated SMILES string.""" substance = pc.Substance.from_sid(sid) cid = substance.standardized_cid compound = pc.get_compounds(cid)[0] return compound.isomeric_smiles
5,354,038
def view_static(request, **kwargs): """Outputs static page.""" template = kwargs.get('template', None) if not template: raise Http404 template = '.'.join([template, 'html']) title = kwargs.get('title', 'static page') img = kwargs.get('img', 'bgag.jpg') return render_to_response(template, { 'is_mobile': request.user_agent.is_mobile, 'page_title': title, 'menu': MenuItem.active().order_by('order_id'), 'page_img': img, })
5,354,039
def start_call(called_ident, skicall): """When a call is initially received this function is called. Unless you want to divert to another page, this function should return called_ident which would typically be the ident of a Responder or Template page dealing with the call. If a ServeFile exception is raised, which contains a pathlib.Path object of a local server file then that server file will be sent to the client. In this case, the end_call function will not be called.""" # To serve a directory of static files, you can map a url to a server directory with the # skicall.map_url_to_server method, which returns pathlib.Path objects, and then # raise a ServeFile exception, which causes the file to be served. For example: # servedfile = skicall.map_url_to_server("images", "/home/user/thisproject/imagefiles") # if servedfile: # raise ServeFile(servedfile) # Of particular interest at this point are the attributes: # skicall.received_cookies is a dictionary of cookie name:values received from the client # skicall.call_data is a dictionary which you can set with your own data and, as skicall is # passed on to the submit_data and end_call functions defined below, can be used to pass # data to these functions. # Normally you would return called_ident, which is the page being called, or None to cause a # page not found error, or another ident (project, pagenumber) to divert the call to another page. return called_ident
5,354,040
def getmemory(): """ Returns the memory limit for data arrays (in MB). """ return NX_MEMORY
5,354,041
def get_object_syncing_state(): """ Get a dictionary mapping which object trackers are active. The dictionary contains name:bool pairs that can be fed back into the func:`set_object_syncing_state()` function. """ states = { "selection": bool(this._on_selection_changed_cb_id), "duplicate": bool(this._on_before_duplicate_cb_id), "name": bool(this._on_name_changed_cb_id), "existence": bool(this._on_object_deleted_cb_id), "relationship": bool(this._on_parent_changed_cb_id), } return states
5,354,042
def determine_nohit_score(cons, invert): """ Determine the value in the matrix assigned to nohit given SeqFindr options :param cons: whether the Seqfindr run is using mapping consensus data or not :param invert: whether the Seqfindr run is inverting (missing hits to be shown as black bars. :type cons: None of boolean :type cons: boolean :returns: the value defined as no hit in the results matrix """ if cons is None: nohit = 0.5 else: nohit = 1.0 if invert: nohit = nohit*-1.0 return nohit
5,354,043
def handle_requests(): """ This function handle requests. """ while True: requests_batch = [] while not ( len(requests_batch) > BATCH_SIZE or (len(requests_batch) > 0 and time.time() - requests_batch[0]['time'] > BATCH_TIMEOUT) ): try: requests_batch.append(requests_queue.get(timeout=CHECK_INTERVAL)) except Empty: continue texts = [request['input']['text'] for request in requests_batch] accents = [request['input']['accent'] for request in requests_batch] speeds = [request['input']['speed'] for request in requests_batch] sampling_rates = [request['input']['sr'] for request in requests_batch] try: sentence = texts[0] accent = accents[0] speed = speeds[0] sampling_rate = sampling_rates[0] request = requests_batch[0] data = inference(model_text2mel, model_mel2audio, denoiser, sentence, accent, speed, sampling_rate) request['output'] = data except: request['output'] = "Fail" continue
5,354,044
def changesettings(): """ Changes global settings. Arguments: none User input: The setting to change: retrievecount and channelcount = the number of posts fetched from the server. No input validation. """ global retrievecount, channelcount choice = input((""" | settings | gc = change general count? ({0}) cc = change channel count? ({1}) [return] = back """).format(str(retrievecount), str(channelcount))) # Set global retrieve count rcount = retrievecount if choice == "gc": print("-general count is currently", retrievecount) rcount = input("*Please change, to (>0)? ") if int(rcount) > 0: retrievecount = int(rcount) print("-general count is now", retrievecount, "posts") # Set channels retrieve count ccount = channelcount if choice == "cc": print("-channel count is currently", channelcount) ccount = input("*Please change, to (>0)? ") if int(ccount) > 0: channelcount = int(ccount) print("-channel count is now", channelcount, "posts") # Every time settings menu is used, save to "ppconfig.ini" file: config["USER"]["retrievecount"] = str(retrievecount) config["USER"]["channelcount"] = str(channelcount) with open("ppconfig.ini", "w") as configfile: config.write(configfile) print("-settings saved\n")
5,354,045
def estimate_csd(lfp, coord_electrode, sigma, method='standard', diam=None, h=None, sigma_top=None, tol=1E-6, num_steps=200, f_type='identity', f_order=None): """ Estimates current source density (CSD) from local field potential (LFP) recordings from multiple depths of the cortex. Parameters ---------- lfp : neo.AnalogSignalArray LFP signals from which CSD is estimated. coord_electrode : Quantity array Depth of evenly spaced electrode contact points. sigma : Quantity float Conductivity of tissue. method : string CSD estimation method, either of 'standard': the standard double-derivative method, 'delta': delta-iCSD method, 'step': step-iCSD method, 'spline': spline-iCSD method. Default is 'standard' diam : Quantity float Diamater of the assumed circular planar current sources centered at each contact, required by iCSD methods (= 'delta', 'step', 'spline'). Default is `None`. h : float or np.ndarray * quantity.Quantity assumed thickness of the source cylinders at all or each contact sigma_top : Quantity float Conductivity on top of tissue. When set to `None`, the same value as sigma: is used. Default is `None`. tol : float Tolerance of numerical integration, required by step- and spline-iCSD methods. Default is 1E-6. num_steps : int Number of data points for the spatially upsampled LFP/CSD data, required by spline-iCSD method. Default is 200. f_type : string Type of spatial filter used for smoothing of the result, either of 'boxcar' (uses `scipy.signal.baxcar()`), 'hamming' ( `scipy.signal.hamming()`), 'triangular' (`scipy.signal.tri()`), 'gaussian' (`scipy.signal.gaussian`), 'identity' (no smoothing is applied). Default is 'identity'. f_order : float tuple Parameters to be passed to the scipy.signal function associated with the specified filter type. Returns ------- tuple : (csd, csd_filtered) csd : neo.AnalogSignalArray Estimated CSD csd_filtered : neo.AnalogSignalArray Estimated CSD, spatially filtered Example ------- import numpy as np import matplotlib.pyplot as plt from scipy import io import quantities as pq import neo import icsd #loading test data test_data = io.loadmat('test_data.mat') #prepare lfp data for use, by changing the units to SI and append #quantities, along with electrode geometry and conductivities lfp_data = test_data['pot1'] * 1E-3 * pq.V # [mV] -> [V] z_data = np.linspace(100E-6, 2300E-6, 23) * pq.m # [m] diam = 500E-6 * pq.m # [m] sigma = 0.3 * pq.S / pq.m # [S/m] or [1/(ohm*m)] sigma_top = 0. * pq.S / pq.m # [S/m] or [1/(ohm*m)] lfp = neo.AnalogSignalArray(lfp_data.T, sampling_rate=2.0*pq.kHz) # Input dictionaries for each method params = {} params['delta'] = { 'method': 'delta', 'lfp' : lfp, 'coord_electrode' : z_data, 'diam' : diam, # source diameter 'sigma' : sigma, # extracellular conductivity 'sigma_top' : sigma, # conductivity on top of cortex } params['step'] = { 'method': 'step', 'lfp' : lfp, 'coord_electrode' : z_data, 'diam' : diam, 'sigma' : sigma, 'sigma_top' : sigma, 'tol' : 1E-12, # Tolerance in numerical integration } params['spline'] = { 'method': 'spline', 'lfp' : lfp, 'coord_electrode' : z_data, 'diam' : diam, 'sigma' : sigma, 'sigma_top' : sigma, 'num_steps' : 201, # Spatial CSD upsampling to N steps 'tol' : 1E-12, } params['standard'] = { 'method': 'standard', 'lfp' : lfp, 'coord_electrode' : z_data, 'sigma' : sigma, } #plot LFP signal fig, axes = plt.subplots(len(params)+1, 1, figsize=(6, 8)) ax = axes[0] im = ax.imshow(lfp.magnitude.T, origin='upper', vmin=-abs(lfp).max(), vmax=abs(lfp).max(), cmap='jet_r', interpolation='nearest') ax.axis(ax.axis('tight')) cb = plt.colorbar(im, ax=ax) cb.set_label('LFP (%s)' % lfp_data.dimensionality.string) ax.set_xticklabels([]) ax.set_title('LFP') ax.set_ylabel('ch #') i_ax = 1 for method, param in params.items(): ax = axes[i_ax] i_ax += 1 csd = icsd.estimate_csd(**param) im = ax.imshow(csd.magnitude.T, origin='upper', vmin=-abs(csd).max(), vmax=abs(csd).max(), cmap='jet_r', interpolation='nearest') ax.axis(ax.axis('tight')) ax.set_title(method) cb = plt.colorbar(im, ax=ax) cb.set_label('CSD (%s)' % csd.dimensionality.string) ax.set_xticklabels([]) ax.set_ylabel('ch #') plt.show() """ supported_methods = ('standard', 'delta', 'step', 'spline') icsd_methods = ('delta', 'step', 'spline') if method not in supported_methods: print("Pamareter `method` must be either of {}".format( ", ".join(supported_methods))) raise ValueError elif method in icsd_methods and diam is None: print("Parameter `diam` must be specified for iCSD methods: {}".format( ", ".join(icsd_methods))) raise ValueError if not isinstance(lfp, neo.AnalogSignalArray): print('Parameter `lfp` must be neo.AnalogSignalArray') raise TypeError if f_type is not 'identity' and f_order is None: print("The order of {} filter must be specified".format(f_type)) raise ValueError lfp_pqarr = lfp.magnitude.T * lfp.units if sigma_top is None: sigma_top = sigma arg_dict = {'lfp': lfp_pqarr, 'coord_electrode': coord_electrode, 'sigma': sigma, 'f_type': f_type, 'f_order': f_order, } if method == 'standard': csd_estimator = StandardCSD(**arg_dict) else: arg_dict['diam'] = diam arg_dict['sigma_top'] = sigma_top if method == 'delta': csd_estimator = DeltaiCSD(**arg_dict) else: arg_dict['tol'] = tol if method == 'step': arg_dict['h'] = h csd_estimator = StepiCSD(**arg_dict) else: arg_dict['num_steps'] = num_steps csd_estimator = SplineiCSD(**arg_dict) csd_pqarr = csd_estimator.get_csd() csd_pqarr_filtered = csd_estimator.filter_csd(csd_pqarr) csd = neo.AnalogSignalArray(csd_pqarr.T, t_start=lfp.t_start, sampling_rate=lfp.sampling_rate) csd_filtered = neo.AnalogSignalArray(csd_pqarr_filtered.T, t_start=lfp.t_start, sampling_rate=lfp.sampling_rate) return csd, csd_filtered
5,354,046
def library_get_monomer_desc(res_name): """Loads/caches/returns the monomer description objec MonomerDesc for the given monomer residue name. """ assert isinstance(res_name, str) try: return MONOMER_RES_NAME_CACHE[res_name] except KeyError: pass mon_desc = library_construct_monomer_desc(res_name) if mon_desc is None: return None MONOMER_RES_NAME_CACHE[res_name] = mon_desc return mon_desc
5,354,047
def parse_single_sequence_example( serialized, context_features=None, sequence_features=None, example_name=None, name=None): # pylint: disable=line-too-long """Parses a single `SequenceExample` proto. Parses a single serialized [`SequenceExample`](https://www.tensorflow.org/code/tensorflow/core/example/example.proto) proto given in `serialized`. This op parses a serialize sequence example into a tuple of dictionaries mapping keys to `Tensor` and `SparseTensor` objects respectively. The first dictionary contains mappings for keys appearing in `context_features`, and the second dictionary contains mappings for keys appearing in `sequence_features`. At least one of `context_features` and `sequence_features` must be provided and non-empty. The `context_features` keys are associated with a `SequenceExample` as a whole, independent of time / frame. In contrast, the `sequence_features` keys provide a way to access variable-length data within the `FeatureList` section of the `SequenceExample` proto. While the shapes of `context_features` values are fixed with respect to frame, the frame dimension (the first dimension) of `sequence_features` values may vary between `SequenceExample` protos, and even between `feature_list` keys within the same `SequenceExample`. `context_features` contains `VarLenFeature` and `FixedLenFeature` objects. Each `VarLenFeature` is mapped to a `SparseTensor`, and each `FixedLenFeature` is mapped to a `Tensor`, of the specified type, shape, and default value. `sequence_features` contains `VarLenFeature` and `FixedLenSequenceFeature` objects. Each `VarLenFeature` is mapped to a `SparseTensor`, and each `FixedLenSequenceFeature` is mapped to a `Tensor`, each of the specified type. The shape will be `(T,) + df.dense_shape` for `FixedLenSequenceFeature` `df`, where `T` is the length of the associated `FeatureList` in the `SequenceExample`. For instance, `FixedLenSequenceFeature([])` yields a scalar 1-D `Tensor` of static shape `[None]` and dynamic shape `[T]`, while `FixedLenSequenceFeature([k])` (for `int k >= 1`) yields a 2-D matrix `Tensor` of static shape `[None, k]` and dynamic shape `[T, k]`. Each `SparseTensor` corresponding to `sequence_features` represents a ragged vector. Its indices are `[time, index]`, where `time` is the `FeatureList` entry and `index` is the value's index in the list of values associated with that time. `FixedLenFeature` entries with a `default_value` and `FixedLenSequenceFeature` entries with `allow_missing=True` are optional; otherwise, we will fail if that `Feature` or `FeatureList` is missing from any example in `serialized`. `example_name` may contain a descriptive name for the corresponding serialized proto. This may be useful for debugging purposes, but it has no effect on the output. If not `None`, `example_name` must be a scalar. Args: serialized: A scalar (0-D Tensor) of type string, a single binary serialized `SequenceExample` proto. context_features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. These features are associated with a `SequenceExample` as a whole. sequence_features: A `dict` mapping feature keys to `FixedLenSequenceFeature` or `VarLenFeature` values. These features are associated with data within the `FeatureList` section of the `SequenceExample` proto. example_name: A scalar (0-D Tensor) of strings (optional), the name of the serialized proto. name: A name for this operation (optional). Returns: A tuple of two `dict`s, each mapping keys to `Tensor`s and `SparseTensor`s. The first dict contains the context key/values. The second dict contains the feature_list key/values. Raises: ValueError: if any feature is invalid. """ # pylint: enable=line-too-long if not (context_features or sequence_features): raise ValueError("Missing features.") (context_sparse_keys, context_sparse_types, context_dense_keys, context_dense_types, context_dense_defaults, context_dense_shapes) = _features_to_raw_params( context_features, [VarLenFeature, FixedLenFeature]) (feature_list_sparse_keys, feature_list_sparse_types, feature_list_dense_keys, feature_list_dense_types, feature_list_dense_defaults, feature_list_dense_shapes) = _features_to_raw_params( sequence_features, [VarLenFeature, FixedLenSequenceFeature]) return _parse_single_sequence_example_raw( serialized, context_sparse_keys, context_sparse_types, context_dense_keys, context_dense_types, context_dense_defaults, context_dense_shapes, feature_list_sparse_keys, feature_list_sparse_types, feature_list_dense_keys, feature_list_dense_types, feature_list_dense_shapes, feature_list_dense_defaults, example_name, name)
5,354,048
def getBase64PNGImage(pD, cmapstr, logfloor_quantile=0): """ Get an image as a base64 string """ D = np.array(pD) if logfloor_quantile > 0: floor = np.quantile(pD.flatten(), logfloor_quantile) D = np.log(D + floor) c = plt.get_cmap(cmapstr) D = D-np.min(D) D = np.round(255.0*D/np.max(D)) C = c(np.array(D, dtype=np.int32)) scipy.misc.imsave("temp.png", C) b = getBase64File("temp.png") os.remove("temp.png") return "data:image/png;base64, " + b
5,354,049
def iter_objects(inst, exp_type): """Iterate over all descriptor objects accessible from inst. Yields (name, obj) tuples.""" seen = set() # Note: The visibility rules here aren't exactly right, but I # think it's fine for our purposes. The difference only comes up # if the user is dynamically adding things to instances. yield from iter_objects_from_type(inst.__class__, exp_type, seen) yield from iter_objects_from_instance(inst, exp_type, seen)
5,354,050
def method_dispatcher(*args, **kwargs): """Try to dispatch to the right HTTP method handler. If an HTTP method isn't on the approved list, defer to the error handler. Otherwise, the HTTP Method is processed by the appropriate handler. :param args: Expect arguments in format (http_method, url). :param kwargs: Optional arguments like HTTP headers, cookies and etc. :returns: Result from the handler. :rtype: func """ http_method, url = args if http_method not in constants.HTTP_METHOD_NAMES: raise HTTPMethodNotSupportedError(http_method) handler = getattr(sys.modules[__name__], http_method) return handler(*args, **kwargs)
5,354,051
def filter_pathways( pathways, source=None, target=None, compounds=[], enzymes=[], context={}, ): """ Yield pathways that meet filtering conditions. The effect of filterig parameters is explained below. Filters automatically pathways, that repeatedly consumes and produces a compound, that is not ignored (see chebi.IGNORED_COMPOUNDS). Parameters ---------- pathways : iterable Lists of Rhea ID strings. source : string ChEBI ID of pathway's source compound. Filters pathways that have reactions producing source. target : string ChEBI ID of pathway's target compound. Filters pathways that have reactions consuming target. compounds : iterable CheBI ID strings. Filters pathways that don't have all compounds. enzymes : iterable EC number strings. Filters pathways that don't have all enzymes. context : dict Key reaction_ecs maps to a dict of Rhea ID string keys to EC number string list values. Key stoichiometrics maps to a dict of Rhea ID string keys to a list of dicts of substrates and products. Yields ------ tuple Pathway reaction tuples that meet the filtering conditions of given arguments. """ reaction_ecs = context['reaction_ecs'] stoichiometrics = context['stoichiometrics'] ignored = context.get('ignored', set()) for pathway in pathways: compounds_pw = set(['any']) enzymes_pw = set() for i, reaction in enumerate(pathway): substrates = set(stoichiometrics[reaction][0]) products = set(stoichiometrics[reaction][1]) if target in substrates: break elif source in products: break elif i >= 2: prepre_s = set(stoichiometrics[pathway[i - 2]][0]) pre_p = set(stoichiometrics[pathway[i - 1]][1]) discard_substrates_1 = substrates & (prepre_s - ignored) discard_substrates_2 = substrates & (pre_p - ignored) if discard_substrates_1 and discard_substrates_2: break prepre_p = set(stoichiometrics[pathway[i - 2]][1]) pre_s = set(stoichiometrics[pathway[i - 1]][0]) discard_products_1 = products & (prepre_p - ignored) discard_products_2 = products & (pre_s - ignored) if discard_products_1 and discard_products_2: break compounds_pw.update(substrates) compounds_pw.update(products) try: enzymes_pw.update(reaction_ecs[reaction]) except KeyError: pass else: if not set(enzymes) <= enzymes_pw: continue elif not set(compounds) <= compounds_pw: continue yield tuple(pathway)
5,354,052
def add_song_to_playlist(result): """ Add a song from the search results to the playlist. If the playlist already contains the song it will not be added again :param result: """ result_track = result["track"] result_score = result["score"] result_string = result_track["artist"] + " - " + result_track["title"] + " with score " + ( "%.2f" % result_score) logging.info(result_string) song_id = result_track["nid"] if song_id not in playlist_song_ids: api.add_songs_to_playlist(playlist_id, song_id) playlist_song_ids.append(song_id) logging.debug("Successfully added song") stats['songs_added'] += 1 else: logging.debug("Playlist already contains song, skipping") stats['songs_skipped'] += 1
5,354,053
def _seqfix(ref_seq, seq, comp_len, rev): """ Fill or trim a portion of the beginning of a sequence relative to a reference sequence Args: ref_seq (str): reference sequence e.g. germline gene seq (str): sequence to compare to reference comp_len (int): length of subsequence to compare e.g. necessary to exclude the CDR3 rev (bool): whether to reverse the sequences for J gene filling / trimming Returns: seq_fixed (str): sequence filled / trimmed as necessary """ if rev: ref_comp = ref_seq[::-1][:comp_len] seq_comp = seq[::-1][:comp_len] else: ref_comp = ref_seq[:comp_len] seq_comp = seq[:comp_len] ref_aligned, seq_aligned = global_pw_align(ref_comp, seq_comp) # replace N's in seq if present seq_aligned = _replace_Ns_with_ref(ref_aligned, seq_aligned) if ref_aligned.startswith('-'): # need to trim sequence fixed = _trim_extra_nt(ref_aligned, seq_aligned) elif seq_aligned.startswith('-'): # need to fill sequence fixed = _fill_missing_nt(ref_aligned, seq_aligned) else: fixed = seq_aligned if rev: seq_fixed = seq[:-comp_len] + fixed[::-1] else: seq_fixed = fixed + seq[comp_len:] return seq_fixed.replace('-', '')
5,354,054
def burn_volume_func(func_below, func_above, volume, surface_raster, height_to_z, below=False, ignore_nan=False, inclusive=False): """ Reusable function, not for end user. Process parts of a xyz volume given a surface, below or above the intersection of the volume with the surface """ dim_x,dim_y,dim_z=volume.shape z_index_max = dim_z-1 # TODO if surface_raster.shape[0] != dim_x or surface_raster.shape[1] != dim_y for x in np.arange(0,dim_x,1): for y in np.arange(0,dim_y,1): # From the original code I had retrieved something I cannot understand (why 30??) # erode_until=-(surface_raster.astype(int)-30)[x,y] dem_height = surface_raster[x,y] if np.isnan(dem_height): if not ignore_nan: volume[x,y,:]=np.nan else: z_height = height_to_z(dem_height) z_height = min(z_index_max, max(0.0, z_height)) z_height = int(round(z_height)) zh_nan = z_height if below: if inclusive: zh_nan = zh_nan + 1 zh_nan = min(z_index_max, max(0.0, zh_nan)) func_below(volume, x, y, zh_nan) else: if not inclusive: zh_nan = zh_nan + 1 zh_nan = min(z_index_max, max(0.0, zh_nan)) func_above(volume, x, y, zh_nan)
5,354,055
def get_dedup_tokens(logits_batch: torch.Tensor) \ -> Tuple[torch.Tensor, torch.Tensor]: """Converts a batch of logits into the batch most probable tokens and their probabilities. Args: logits_batch (Tensor): Batch of logits (N x T x V). Returns: Tuple: Deduplicated tokens. The first element is a tensor (token indices) and the second element is a tensor (token probabilities) """ logits_batch = logits_batch.softmax(-1) out_tokens, out_probs = [], [] for i in range(logits_batch.size(0)): logits = logits_batch[i] max_logits, max_indices = torch.max(logits, dim=-1) max_logits = max_logits[max_indices!=0] max_indices = max_indices[max_indices!=0] cons_tokens, counts = torch.unique_consecutive( max_indices, return_counts=True) out_probs_i = torch.zeros(len(counts), device=logits.device) ind = 0 for i, c in enumerate(counts): max_logit = max_logits[ind:ind + c].max() out_probs_i[i] = max_logit ind = ind + c out_tokens.append(cons_tokens) out_probs.append(out_probs_i) out_tokens = pad_sequence(out_tokens, batch_first=True, padding_value=0.).long() out_probs = pad_sequence(out_probs, batch_first=True, padding_value=0.) return out_tokens, out_probs
5,354,056
def install( name=None, testnr=None, identity=None, delete=False, mount=True, email=None, words=None, server=False, zerotier=False, pull=True, secret=None, explorer=None, code_update_force=False, ): """ create the 3bot container and install jumpscale inside identity is the name of your threebot arguments left empty will be asked interactively testnr: if not Null the identity will become: $your3botname$testnr.test, secret for that container will be test email will be also predefined, and you will become admin automatically in the 3bot words should be retrieved from 3bot connect app to be used for encryption """ delete = core.IT.Tools.bool(delete) mount = core.IT.Tools.bool(mount) if code_update_force: pull = True if identity: if identity != args.identity and args.identity: args.reset() args.identity = identity if email: args.email = email if words: args.words = words if secret: args.secret = secret if testnr: testnr = int(testnr) identity_you = _containers._identity_ask(identity) email = f"test{testnr}@{identity_you}" identity_you = identity_you.split(".", 1)[0] identity = f"{identity_you}{testnr}.test" name = f"test{testnr}" c = _containers.get( identity=identity, name=name, delete=delete, mount=mount, email=email, pull=pull, code_update_force=code_update_force, words=words, secret=secret, explorer=explorer, ) if zerotier: addr = c.zerotier_connect() print(f" - CONNECT TO YOUR 3BOT ON: https://{addr}:4000/") if server: _server(c)
5,354,057
def com(im): """ Compute the center of mass of im. Expects that im is leveled (ie zero-centered). Ie, a pure noise image should have zero mean. Sometimes this is improved if you square the im first com(im**2) Returns: y, x in array form. """ im = np.nan_to_num(im) mass = np.sum(im) ry = ( np.arange(im.shape[0]) + 0.5 ) # 0.5 because we want the mass of a pixel at the center of the pixel rx = np.arange(im.shape[1]) + 0.5 y = np.sum(ry * np.sum(im, axis=1)) x = np.sum(rx * np.sum(im, axis=0)) return utils.np_safe_divide(np.array([y, x]), mass)
5,354,058
def merge_tiffs(root): """ merge folds """ mergefolder = os.path.join(root, 'merged') if not os.path.exists(mergefolder): os.makedirs(mergefolder) prob_files = {f for f in os.listdir(root) if os.path.splitext(f)[ 1] in ['.tif', '.tiff']} unfolded = {f[6:] for f in prob_files if f.startswith('fold')} if not unfolded: unfolded = prob_files for prob_file in tqdm.tqdm(unfolded): probs = [] for fold in range(5): prob = gdal.Open(os.path.join(root, 'fold{}_'.format( fold) + prob_file), gdal.GA_ReadOnly) geotrans = prob.GetGeoTransform() prob_arr = prob.ReadAsArray() probs.append(prob_arr) prob_arr = np.mean(probs, axis=0) res_path_geo = os.path.join(root, 'merged', prob_file) driver = gdal.GetDriverByName('GTiff') outRaster = driver.Create( res_path_geo, prob_arr.shape[1], prob_arr.shape[0], 1, gdal.GDT_Float32) outRaster.SetGeoTransform(geotrans) CopyDatasetInfo(prob, outRaster) outband = outRaster.GetRasterBand(1) outband.WriteArray(prob_arr) outRaster.FlushCache()
5,354,059
def get_fitting_custom_pipeline(): """ Pipeline looking like this lagged -> custom -> ridge """ lagged_node = PrimaryNode('lagged') lagged_node.custom_params = {'window_size': 50} # For custom model params as initial approximation and model as function is necessary custom_node = SecondaryNode('custom', nodes_from=[lagged_node]) custom_node.custom_params = {'alpha': 5, 'model_predict': custom_ml_model_imitation_predict, 'model_fit': custom_ml_model_imitation_fit} node_final = SecondaryNode('lasso', nodes_from=[custom_node]) pipeline = Pipeline(node_final) return pipeline
5,354,060
def get_regularizable_variables(scope): """ Get *all* regularizable variables in the scope. :param scope: scope to filter variables by :return: """ return tf.get_collection(REGULARIZABLE_VARS, scope)
5,354,061
def TestRapiInstanceReplaceDisks(instance): """Test replacing instance disks via RAPI""" if not IsDiskReplacingSupported(instance): print qa_logging.FormatInfo("Instance doesn't support disk replacing," " skipping test") return fn = _rapi_client.ReplaceInstanceDisks _WaitForRapiJob(fn(instance.name, mode=constants.REPLACE_DISK_AUTO, disks=[])) _WaitForRapiJob(fn(instance.name, mode=constants.REPLACE_DISK_SEC, disks="0"))
5,354,062
def check_state(seat): """Check whether the rules may be applied on given seat. If no occupied seat around - add to list of seats to occupy. If more than or exactly 4 seats are occupied, add to the list to release.""" occupied = 0 neighbours = find_neighbours(seat) for neighbour in neighbours: if not is_empty(neighbour): occupied += 1 if occupied >= 4: to_release.append(seat) elif occupied == 0: to_occupy.append(seat)
5,354,063
def load(midi_path: str, config: dict): """ returns a 3-tuple of `tf.Dataset` each returning `(input_seq, target_seq)`, representing train, validation, and test portions of the overall dataset. `input_seq` represents the `inp_split` portion of each midi sequence in `midi_path`. """ batch_size = config.get('batch_size', None) # get midi files filenames = tf.random.shuffle(glob.glob(f'{midi_path}/**/*.midi', recursive=True)) # get train, validation, and test sizes train_split, test_split = config.get('train_size', None), config.get('test_size', None) train_split = int(train_split * len(filenames)) test_split = int(test_split * len(filenames)) val_split = len(filenames) - train_split + test_split # split filenames to train, test, split midi_ds, midi_tokenizer = _create_dataset( filenames=filenames, inp_len=config.get('inp_len', None), tar_len=config.get('tar_len', None), velocity_bins=config.get('velocity_bins', None), rest_resolution=config.get('rest_resolution', None)) train_ds = midi_ds.take(train_split) val_ds = train_ds.skip(train_split) test_ds = val_ds.skip(val_split) val_ds = val_ds.take(val_split) return (_optimize_dataset(train_ds.padded_batch(batch_size)), _optimize_dataset(val_ds.padded_batch(batch_size)), _optimize_dataset(test_ds.padded_batch(batch_size)), midi_tokenizer)
5,354,064
def update_config(from_cli, from_file): """Merge the two given dictionaries Updates the first dict with items from second if they're not already defined""" from_cli.update( { key: val for key, val in from_file.items() # Keep item if it is not already defined if key not in from_cli or from_cli[key] is None } )
5,354,065
def test_page_title_specified_two_pages(tmp_path, param): """For parameters that require that only one page is in config - make sure exception is raised if there are more pages in the config""" config_file = mk_tmp_file( tmp_path, key_to_update="pages.page2", value_to_update={"page_title": "Page2", "page_file": "page2.txt"}, ) _ = runner.invoke( app, [ "--config", str(config_file), f"--{param.replace('_', '-')}", "Default name", "validate", ], ) assert _.exit_code == 1 assert "Please specify them in the config." in _.stdout
5,354,066
def git(command): """ Run the given git command. Args: command (str): Complete git command with or without the binary name. """ command = command.split() command = ["git"] + command if command[0] != "git" else command run(command, stdout=PIPE, stderr=PIPE, check=True)
5,354,067
async def test_form_create_entry_without_auth(hass): """Test that the user step without auth works.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == SOURCE_USER assert result["errors"] == {} with patch( "homeassistant.components.nam.NettigoAirMonitor.async_check_credentials", return_value=DEVICE_CONFIG, ), patch( "homeassistant.components.nam.NettigoAirMonitor.async_get_mac_address", return_value="aa:bb:cc:dd:ee:ff", ), patch( "homeassistant.components.nam.async_setup_entry", return_value=True ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure( result["flow_id"], VALID_CONFIG, ) await hass.async_block_till_done() assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "10.10.2.3" assert result["data"]["host"] == "10.10.2.3" assert len(mock_setup_entry.mock_calls) == 1
5,354,068
def _parse_docstring(doc): """Extract documentation from a function's docstring.""" if doc is None: return _Doc('', '', {}, []) # Convert Google- or Numpy-style docstrings to RST. # (Should do nothing if not in either style.) # use_ivar avoids generating an unhandled .. attribute:: directive for # Attribute blocks, preferring a benign :ivar: field. cfg = Config(napoleon_use_ivar=True) doc = str(GoogleDocstring(doc, cfg)) doc = str(NumpyDocstring(doc, cfg)) with _sphinx_common_roles(): tree = docutils.core.publish_doctree( # Disable syntax highlighting, as 1) pygments is not a dependency # 2) we don't render with colors and 3) SH breaks the assumption # that literal blocks contain a single text element. doc, settings_overrides={'syntax_highlight': 'none'}) class Visitor(NodeVisitor): optional = [ 'document', 'docinfo', 'field_list', 'field_body', 'literal', 'problematic', # Introduced by our custom passthrough handlers, but the Visitor # will recurse into the inner text node by itself. 'TextElement', ] def __init__(self, document): super().__init__(document) self.paragraphs = [] self.start_lines = [] self.params = defaultdict(dict) self.raises = [] self._current_paragraph = None self._indent_iterator_stack = [] self._indent_stack = [] def _do_nothing(self, node): pass def visit_paragraph(self, node): self.start_lines.append(node.line) self._current_paragraph = [] def depart_paragraph(self, node): text = ''.join(self._current_paragraph) text = ''.join(self._indent_stack) + text self._indent_stack = [ ' ' * len(item) for item in self._indent_stack] text = text.replace('\n', '\n' + ''.join(self._indent_stack)) self.paragraphs.append(text) self._current_paragraph = None visit_block_quote = visit_doctest_block = visit_paragraph depart_block_quote = depart_doctest_block = depart_paragraph def visit_Text(self, node): self._current_paragraph.append(node) depart_Text = _do_nothing def visit_emphasis(self, node): self._current_paragraph.append('\033[3m') # *foo*: italic def visit_strong(self, node): self._current_paragraph.append('\033[1m') # **foo**: bold def visit_title_reference(self, node): self._current_paragraph.append('\033[4m') # `foo`: underlined def _depart_markup(self, node): self._current_paragraph.append('\033[0m') depart_emphasis = depart_strong = depart_title_reference = \ _depart_markup def visit_rubric(self, node): self.visit_paragraph(node) def depart_rubric(self, node): # Style consistent with "usage:", "positional arguments:", etc. self._current_paragraph[:] = [ (t.lower() if t == t.title() else t) + ':' for t in self._current_paragraph] self.depart_paragraph(node) def visit_literal_block(self, node): text, = node self.start_lines.append(node.line) self.paragraphs.append( re.sub('^|\n', r'\g<0> ', text)) # indent raise SkipNode def visit_bullet_list(self, node): self._indent_iterator_stack.append( (node['bullet'] + ' ' for _ in range(len(node)))) def depart_bullet_list(self, node): self._indent_iterator_stack.pop() def visit_enumerated_list(self, node): enumtype = node['enumtype'] fmt = {('(', ')'): 'parens', ('', ')'): 'rparen', ('', '.'): 'period'}[node['prefix'], node['suffix']] start = node.get('start', 1) enumerators = [Body(None).make_enumerator(i, enumtype, fmt)[0] for i in range(start, start + len(node))] width = max(map(len, enumerators)) enumerators = [enum.ljust(width) for enum in enumerators] self._indent_iterator_stack.append(iter(enumerators)) def depart_enumerated_list(self, node): self._indent_iterator_stack.pop() def visit_list_item(self, node): self._indent_stack.append(next(self._indent_iterator_stack[-1])) def depart_list_item(self, node): self._indent_stack.pop() def visit_field(self, node): field_name_node, field_body_node = node field_name, = field_name_node parts = field_name.split() if len(parts) == 2: doctype, name = parts # docutils>=0.16 represents \* as \0* in the doctree. name = name.lstrip('*\0') elif len(parts) == 3: doctype, type_, name = parts name = name.lstrip('*\0') if doctype not in _PARAM_TYPES: raise SkipNode if 'type' in self.params[name]: raise ValueError('type defined twice for {}'.format(name)) self.params[name]['type'] = type_ else: raise SkipNode if doctype in _PARAM_TYPES: doctype = 'param' if doctype in _TYPE_NAMES: doctype = 'type' if doctype in ['param', 'type'] and doctype in self.params[name]: raise ValueError( '{} defined twice for {}'.format(doctype, name)) visitor = Visitor(self.document) field_body_node.walkabout(visitor) if doctype in ['param', 'type']: self.params[name][doctype] = ''.join(visitor.paragraphs) elif doctype in ['raises']: self.raises.append(name) raise SkipNode def visit_comment(self, node): self.paragraphs.append(comment_token) # Comments report their line as the *end* line of the comment. self.start_lines.append( node.line - node.children[0].count('\n') - 1) raise SkipNode def visit_system_message(self, node): raise SkipNode comment_token = object() visitor = Visitor(tree) tree.walkabout(visitor) tuples = {name: _Param(values.get('param'), values.get('type')) for name, values in visitor.params.items()} if visitor.paragraphs: text = [] for start, paragraph, next_start in zip( visitor.start_lines, visitor.paragraphs, visitor.start_lines[1:] + [0]): if paragraph is comment_token: continue text.append(paragraph) # Insert two newlines to separate paragraphs by a blank line. # Actually, paragraphs may or may not already have a trailing # newline (e.g. text paragraphs do but literal blocks don't) but # argparse will strip extra newlines anyways. This means that # extra blank lines in the original docstring will be stripped, but # this is less ugly than having a large number of extra blank lines # arising e.g. from skipped info fields (which are not rendered). # This means that list items are always separated by blank lines, # which is an acceptable tradeoff for now. text.append('\n\n') parsed = _Doc(text[0], ''.join(text), tuples, visitor.raises) else: parsed = _Doc('', '', tuples, visitor.raises) return parsed
5,354,069
def extract_remove_outward_edges_filter(exceptions_from_removal): """ This creates a closure that goes through the list of tuples to explicitly state which edges are leaving from the first argument of each tuple. Each tuple that is passed in has two members. The first member is a string representing a single node from which the children will be explicitly stated. The second member is the list of nodes that are in its child set. If the This covers both barren_nodes and explicit_parent_offspring. """ def remove_outward_edges_filter(G): graph = G.copy() list_of_parents = [x[0] for x in exceptions_from_removal if len(x[1]) > 0] list_of_barrens = [x[0] for x in exceptions_from_removal if len(x[1]) == 0] for barren in list_of_barrens: graph.remove_edges_from([edge for edge in graph.edges() if edge[0] == barren]) for parent in list_of_parents: current_edges = graph.out_edges(parent) valid_edges = [(x[0],y) for x in exceptions_from_removal if x[0] == parent for y in x[1]] graph.remove_edges_from([edge for edge in current_edges if edge not in valid_edges]) return graph return remove_outward_edges_filter
5,354,070
def test_query_request_validator_username_present_but_empty(): """Tests the QueryRequestValidator class with empty username. Expects validation failure and correct error message.""" request = create_mock_request(master_password='abcd', master_key='1234', query_type=QUERY_GET_SECRETS_FOR_DOMAIN_AND_USERNAME_TYPE, domain='some_domain', username='') dbclient = create_mock_dbclient_with_master_collection(master_password='abcd', master_key='1234') valid, message = QueryRequestValidator(request, dbclient, acceptable_query_type=[ QUERY_GET_SECRETS_FOR_DOMAIN_AND_USERNAME_TYPE, QUERY_SEARCH_BY_DOMAIN_AND_USERNAME_TYPE ]).isValid() assert valid == False assert message == ERROR_USERNAME_SPECIFIED_BUT_BLANK
5,354,071
def ln_addTH(x : torch.Tensor, beta : torch.Tensor) -> torch.Tensor: """ out = x + beta[None, :, None] """ return x + beta[None, :, None]
5,354,072
def drude2(tags, e, p): """dielectric function according to Drude theory for fitting""" return drude(e, p[0], p[1], p[2], p[3])
5,354,073
def ParseFile(path): """Parse function names and comments from a .h path. Returns mapping from function name to comment. """ result = {} with open(path, 'r') as fp: lines = fp.readlines() i = 0 n = len(lines) while i < n: line = lines[i] m = MCRE.match(line) if m and not m.group('rest') and not m.group('params'): # Looks like a function definition. Consume all adjacent following # comment lines. name = m.group('name') tmpl = m.group('tmpl') params = m.group('params') if tmpl is not None: name += '<%s>' % tmpl if params is not None: name += '(%s)' % params # print '%3d: %s' % (i+1, m.groupdict()) comments = [] i += 1 while i < n: m = CRE.match(lines[i]) if not m: break comments.append(m.group('line')) i += 1 result[name] = comments else: i += 1 return result
5,354,074
def get_records(data: Dict[_Expr, Dict], column_order): """Output data as a list of records""" def cell_callback(expr, i, val, spreadsheet_data): spreadsheet_data[-1].append(val) return spreadsheet_data def row_callback(spreadsheet_data): spreadsheet_data[-1] = tuple(spreadsheet_data[-1]) spreadsheet_data.append([]) return spreadsheet_data out = [[]] out = print_analyses_v2(data, column_order, cell_callback, row_callback, out) return out[:-1]
5,354,075
def support_mask_to_label(support_masks, n_way, k_shot, num_points): """ Args: support_masks: binary (foreground/background) masks with shape (n_way, k_shot, num_points) """ support_masks = support_masks.view(n_way, k_shot*num_points) support_labels = [] for n in range(support_masks.shape[0]): support_mask = support_masks[n, :] #(k_shot*num_points) support_label = torch.zeros_like(support_mask) mask_index = torch.nonzero(support_mask).squeeze(1) support_label= support_label.scatter_(0, mask_index, n+1) support_labels.append(support_label) support_labels = torch.stack(support_labels, dim=0) support_labels = support_labels.view(n_way, k_shot, num_points) return support_labels.long()
5,354,076
def cal_covered_users(positions, heat_map, radius): """ :param positions: $k$ positions array of !!!(y, x)!!! :param heat_map: grid data with count :param radius: 0(1 grid), 1(8 grids), 2(25 grids) :return: coverage score """ row_num, col_num = heat_map.shape mask = np.zeros(heat_map.shape, dtype=int) for position in positions: center_x = position[1] center_y = position[0] max_x = center_x + radius if center_x + radius < col_num else col_num - 1 min_x = center_x - radius if center_x - radius >= 0 else 0 max_y = center_y + radius if center_y + radius < row_num else row_num - 1 min_y = center_y - radius if center_y - radius >= 0 else 0 for x in range(min_x, max_x + 1): for y in range(min_y, max_y + 1): mask[y, x] = 1 return np.sum(np.multiply(mask, heat_map))
5,354,077
def certificate_from_file( filename: Union[str, pathlib.Path], format=OpenSSL.crypto.FILETYPE_PEM, ) -> TS.X509: """Load an X509 certificate from ``filename``. :param filename: The path to the certificate on disk. :param format: The format of the certificate, from :doc:`OpenSSL:api/crypto`. """ with open(filename, 'r') as handle: return certificate_from_string(handle.read(), format)
5,354,078
def import_syllable_csv(corpus_context, call_back=None, stop_check=None): """ Import a syllable from csv file Parameters ---------- corpus_context: :class:`~polyglotdb.corpus.syllabic.SyllabicContext` the corpus to load into """ import time speakers = corpus_context.speakers if call_back is not None: call_back('Importing syllables...') call_back(0, len(speakers)) try: corpus_context.execute_cypher('CREATE CONSTRAINT ON (node:syllable) ASSERT node.id IS UNIQUE') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE CONSTRAINT ON (node:syllable_type) ASSERT node.id IS UNIQUE') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE INDEX ON :syllable(begin)') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE INDEX ON :syllable(prev_id)') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE INDEX ON :syllable(end)') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE INDEX ON :syllable(label)') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise try: corpus_context.execute_cypher('CREATE INDEX ON :syllable_type(label)') except neo4j.exceptions.ClientError as e: if e.code != 'Neo.ClientError.Schema.EquivalentSchemaRuleAlreadyExists': raise for i, s in enumerate(speakers): if stop_check is not None and stop_check(): return if call_back is not None: call_back('Importing syllables for speaker {} of {} ({})...'.format(i, len(speakers), s)) call_back(i) discourses = corpus_context.get_discourses_of_speaker(s) for d in discourses: path = os.path.join(corpus_context.config.temporary_directory('csv'), '{}_{}_syllable.csv'.format(re.sub(r'\W', '_', s), d)) if corpus_context.config.debug: print('Importing syllables for speaker {} in discourse {}, using import file {}'.format(s, d, path)) # If on the Docker version, the files live in /site/proj if os.path.exists('/site/proj') and not path.startswith('/site/proj'): csv_path = 'file:///site/proj/{}'.format(make_path_safe(path)) else: csv_path = 'file:///{}'.format(make_path_safe(path)) begin = time.time() nucleus_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:{phone_name}:{corpus}:speech {{id: csvLine.vowel_id}})-[r:contained_by]->(w:{word_name}:{corpus}:speech) SET n :nucleus, n.syllable_position = 'nucleus' ''' statement = nucleus_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Nucleus definition took {} seconds.'.format(time.time() - begin)) begin = time.time() node_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MERGE (s_type:syllable_type:{corpus} {{id: csvLine.type_id}}) ON CREATE SET s_type.label = csvLine.label WITH s_type, csvLine CREATE (s:syllable:{corpus}:speech {{id: csvLine.id, prev_id: csvLine.prev_id, label: csvLine.label, begin: toFloat(csvLine.begin), end: toFloat(csvLine.end)}}), (s)-[:is_a]->(s_type) ''' statement = node_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Syllable node creation took {} seconds.'.format(time.time() - begin)) begin = time.time() rel_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:{phone_name}:{corpus}:speech:nucleus {{id: csvLine.vowel_id}})-[:contained_by]->(w:{word_name}:{corpus}:speech), (s:syllable:{corpus}:speech {{id: csvLine.id}}) WITH n, w, s CREATE (s)-[:contained_by]->(w), (n)-[:contained_by]->(s) ''' statement = rel_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Hierarchical relationship creation took {} seconds.'.format(time.time() - begin)) begin = time.time() rel_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:{phone_name}:{corpus}:speech:nucleus {{id: csvLine.vowel_id}}), (s:syllable:{corpus}:speech {{id: csvLine.id}}), (n)-[:spoken_by]->(sp:Speaker), (n)-[:spoken_in]->(d:Discourse) WITH sp, d, s CREATE (s)-[:spoken_by]->(sp), (s)-[:spoken_in]->(d) ''' statement = rel_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Spoken relationship creation took {} seconds.'.format(time.time() - begin)) begin = time.time() prev_rel_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (s:syllable:{corpus}:speech {{id: csvLine.id}}) with csvLine, s MATCH (prev:syllable {{id:csvLine.prev_id}}) CREATE (prev)-[:precedes]->(s) ''' statement = prev_rel_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Precedence relationship creation took {} seconds.'.format(time.time() - begin)) begin = time.time() del_rel_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:{phone_name}:{corpus}:speech:nucleus {{id: csvLine.vowel_id}})-[r:contained_by]->(w:{word_name}:{corpus}:speech) DELETE r ''' statement = del_rel_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Phone-word relationship deletion took {} seconds.'.format(time.time() - begin)) begin = time.time() onset_statement = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:{phone_name}:nucleus:{corpus}:speech)-[:contained_by]->(s:syllable:{corpus}:speech {{id: csvLine.id}})-[:contained_by]->(w:{word_name}:{corpus}:speech) WITH csvLine, s, w, n OPTIONAL MATCH (onset:{phone_name}:{corpus} {{id: csvLine.onset_id}}), onspath = (onset)-[:precedes*1..10]->(n) with n, w,s, csvLine, onspath UNWIND (case when onspath is not null then nodes(onspath)[0..-1] else [null] end) as o OPTIONAL MATCH (o)-[r:contained_by]->(w) with n, w,s, csvLine, [x in collect(o) WHERE x is not NULL| x] as ons, [x in collect(r) WHERE x is not NULL | x] as rels FOREACH (o in ons | SET o :onset, o.syllable_position = 'onset') FOREACH (o in ons | CREATE (o)-[:contained_by]->(s)) FOREACH (r in rels | DELETE r) ''' statement = onset_statement.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Onset hierarchical relationship creation took {} seconds.'.format(time.time() - begin)) begin = time.time() coda_statment = ''' USING PERIODIC COMMIT 2000 LOAD CSV WITH HEADERS FROM "{path}" as csvLine MATCH (n:nucleus:{corpus}:speech)-[:contained_by]->(s:syllable:{corpus}:speech {{id: csvLine.id}})-[:contained_by]->(w:{word_name}:{corpus}:speech) WITH csvLine, s, w, n OPTIONAL MATCH (coda:{phone_name}:{corpus} {{id: csvLine.coda_id}}), codapath = (n)-[:precedes*1..10]->(coda) WITH n, w, s, codapath UNWIND (case when codapath is not null then nodes(codapath)[1..] else [null] end) as c OPTIONAL MATCH (c)-[r:contained_by]->(w) WITH n, w,s, [x in collect(c) WHERE x is not NULL | x] as cod, [x in collect(r) WHERE x is not NULL | x] as rels FOREACH (c in cod | SET c :coda, c.syllable_position = 'coda') FOREACH (c in cod | CREATE (c)-[:contained_by]->(s)) FOREACH (r in rels | DELETE r) ''' statement = coda_statment.format(path=csv_path, corpus=corpus_context.cypher_safe_name, word_name=corpus_context.word_name, phone_name=corpus_context.phone_name) corpus_context.execute_cypher(statement) if corpus_context.config.debug: print('Coda hierarchical relationship creation took {} seconds.'.format(time.time() - begin)) os.remove(path)
5,354,079
def redistributeHitsForNode(node, hits, rank): """ recursive call used by redistributeHits if rank is not rank and any children have hits, redistribute hits to children """ if rank is not None and rank == node.rank: logger.debug("Node %s has rank %s, skipping" % (node.name, rank)) return nodeHits = hits.get(node, []) if not isinstance(nodeHits, list): nodeHits = [nodeHits, ] hits[node] = nodeHits logger.warn("Hit for %s was a list: %s" % (node.name, nodeHits[0])) nodeHitCount = len(nodeHits) # check children for hits childCounts = {} total = 0 for child in node.children: if child is node: # root is sometimes a child of itself! continue # add up all hits to child and its children and on up the tree kidHits = getTotalHits(child, hits) if kidHits > 0: total += kidHits childCounts[child] = kidHits logger.debug("Child hits: %s" % (childCounts)) if nodeHitCount != 0: if total > 0: # redistribute logger.debug( "Redistributing %d hits from %s to %s" % (nodeHitCount, node.name, [ n.name for n in childCounts.keys()])) logger.debug(str(childCounts)) remainders = {} for child in sorted( childCounts.keys(), key=lambda kid: childCounts[kid], reverse=True): logger.debug("---\n%s\n----" % (nodeHits)) # calculate number of hits for this child (as a float) newKidHits = nodeHitCount * childCounts[child] / float(total) logger.debug( "Add %f = %d * %d / %d new hits to %s" % (newKidHits, nodeHitCount, childCounts[child], total, child.name)) if child not in hits: # special case where child has children with hits, but no # hits itself hits[child] = [] # move hits one at a time to child until remainder <1 while newKidHits >= 1 and len(nodeHits) > 0: nextHit = nodeHits.pop(0) logger.debug( "nkh: %f child: %s hit: %s" % (newKidHits, child.name, nextHit)) hits[child].append(nextHit) newKidHits -= 1 remainders[child] = newKidHits # sort children by remainder size and assign remaining hits in that # order logger.debug( "%d hits left. Remainders: %s" % (len(nodeHits), remainders)) mostDeserving = sorted( remainders.keys(), key=lambda kid: remainders[kid], reverse=True) while len(nodeHits) > 0: hits.get(mostDeserving.pop(0), []).append(nodeHits.pop(0)) # Now call this method on all tthe children recursively for child in childCounts.keys(): redistributeHitsForNode(child, hits, rank)
5,354,080
def get_welcome_response(session): """ Welcome the user to my python skill """ card_title = "Welcome" speech_output = "Welcome to my python skill. You can search for GitHub repositories. " # If the user either does not reply to the welcome message or says something # that is not understood, they will be prompted again with this text. reprompt_text = "Ask me to search GitHub for a repository. " session_attributes = session.get('attributes', {}) speechlet_response = build_speechlet_response( card_title, speech_output, reprompt_text ) return build_response(session_attributes, speechlet_response)
5,354,081
def password_dialog(title, message): """ Show a Gtk password dialog. :param str title: :param str message: :returns: the password or ``None`` if the user aborted the operation :rtype: str :raises RuntimeError: if Gtk can not be properly initialized """ Gtk = require_Gtk() builder = Gtk.Builder.new() builder.add_from_string(dialog_definition) dialog = builder.get_object('entry_dialog') label = builder.get_object('message') entry = builder.get_object('entry') dialog.set_title(title) label.set_label(message) dialog.show_all() response = yield Dialog(dialog) dialog.hide() if response == Gtk.ResponseType.OK: yield Return(entry.get_text()) else: yield Return(None)
5,354,082
def addFiles(path, tar, exclude_func): """ Add files in path to tar """ for root, dirs, files in os.walk(path): files.sort() # sorted page revs may compress better for name in files: path = os.path.join(root, name) if exclude_func(path): continue tar.add(path)
5,354,083
def rotate_quaternion ( angle, axis, old ): """Returns a quaternion rotated by angle about axis relative to old quaternion.""" import numpy as np # Note that the axis vector should be normalized and we test for this # In general, the old quaternion need not be normalized, and the same goes for the result # although in our applications we only ever use unit quaternions (to represent orientations) assert old.size==4, 'Error in old quaternion dimension' assert axis.size==3, 'Error in axis dimension' assert np.isclose (np.sum(axis**2),1.0), 'axis normalization error {} {} {}'.format(*axis) # Standard formula for rotation quaternion, using half angles rot = np.sin(0.5*angle) * axis rot = np.array([np.cos(0.5*angle),rot[0],rot[1],rot[2]],dtype=np.float_) e = quatmul ( rot, old ) # Apply rotation to old quaternion return e
5,354,084
def apogeeSpectroReduxDirPath(dr=None): """ NAME: apogeeSpectroReduxDirPath PURPOSE: returns the path of the spectro dir INPUT: dr= return the path corresponding to this data release OUTPUT: path string HISTORY: 2014-11-25 - Written - Bovy (IAS) """ if dr is None: dr= _default_dr() if dr.lower() == 'current': return os.path.join(_APOGEE_DATA,'apogeework', 'apogee','spectro','redux') else: return os.path.join(_APOGEE_DATA,'dr%s' % dr, 'apogee','spectro','redux')
5,354,085
def rochepot_dl(x, y, z, q): """ Dimensionless Roche potential (:math:`\\Phi_n`, synchronous rotation) More massive component (:math:`m_1`) is centered at (x,y,z) = (0,0,0). Less massive component (:math:`m_2`) is at (1,0,0). The unit of length is the distance between the objects. Both objects are in the x,y plane (x-axis along the connecting line and z perpendicular to the orbital plane). Parameters ---------- x, y, z : float or array Location(s) at which to calculate the potential. Unit of length is the distance between the masses m1 and m2. q : float Mass ratio (0 <= m2/m1 <= 1) Returns ------- Potential : float or array The potential at the specified location(s) """ _checkq(q) r1, r2 = _r1r2_dl(x, y, z) p = 2/((1+q)*r1) + 2*q/((1+q)*r2) + (x - q/(1+q))**2 + y**2 return p
5,354,086
def health_check(config): """ Tests the API to ensure it is working. """ itglue = ITGlue(config['api_key'], config['itglue_host']) try: itglue._make_request('organizations', {}) return True except: return False
5,354,087
def capture_image(resolution=(1024, 768), size=(320, 240), sleep=2): """ Captures image from raspberry pi camera resolution -- resolution of capture size -- size of output sleep -- sleep time in seconds """ stream = io.BytesIO() with picamera.PiCamera() as camera: #camera.led = False camera.resolution = resolution camera.start_preview() time.sleep(sleep) camera.capture(stream, format='jpeg', resize=size) # "Rewind" the stream to the beginning so we can read its content stream.seek(0) image = Image.open(stream) return image
5,354,088
def MLVR(XDATA,YDATA,xreference=0,residual=1,xlabel='',ylabel='',title='',alpha = 0.01,iters = 1000,plot=1): """Does Multivariant Linear Regression properties: XDATA = The Feature Dataframe YDATA = The Target Dataframe xreference = 1/0 -> The column index in XDATA for ploting graph xlabel = Label for X in Graph ylabel = Label for Y in Graph title = title for graph] alpha = Learning rate for model iters = the number of iteration to train the model """ XDATA.conv_type('float',change_self=True) xpure = XDATA[xreference] XDATA.normalize(change_self=True) YDATA.conv_type('float',change_self=True) ypure = YDATA.tolist[0] YDATA.normalize(change_self=True) X=XDATA y=YDATA df =DataFrame() ones = df.new(X.shape[0],1,elm=1.) X = df.concat(ones,X,axis=1) theta = DataFrame().new(1,length(X.columns),elm=0.) def computeCost(X,y,theta): dot_product = DataFrame().dot(X,theta.T) return float( ( (dot_product - y)**2 ).sum(axis=0) )/(2 * X.shape[0]) def gradientDescent(X,y,theta,iters,alpha): #cost = np.zeros(iters) cost = [] for i in range(iters): dot_product = DataFrame().dot(X,theta.T) derivative = DataFrame(dataframe = [[(alpha/X.shape[0])]]) * ( X*(dot_product - y) ).sum(axis = 0 ) theta = theta - derivative cost.append( computeCost(X, y, theta) ) #cost[i] = computeCost(X, y, theta) return theta,cost def print_equation(g): stra = "Estimated equation, y = %s"%g[0] g0 = g[0] del g[0] for c in range(length(g)): stra += " + %s*x%s"%(g[c],c+1) print(stra) def predict_li(XDATA,g): g0 = g[0] del g[0] y_pred = [] for row in range(XDATA.shape[0]): suma = 0 suma += sum(list_multiplication( g , XDATA.row(row) ) ) yres = g0 + suma y_pred.append(yres) return y_pred g,cost = gradientDescent(X,y,theta,iters,alpha) finalCost = computeCost(X,y,g) #g = g.T g = g.two2oneD() print("Thetas = %s"%g) #print("cost = ",cost) print("finalCost = %s" % finalCost) gN = g[:] print_equation(gN) gN = g[:] y_pred = predict_li(XDATA,gN) y_PRED = reference_reverse_normalize(ypure,y_pred) emin,emean,emax = minResidual(ypure , y_PRED),meanResidual(ypure , y_PRED),maxResidual(ypure , y_PRED) print("Min,Mean,Max residual = %s, %s, %s"%( emin,emean,emax ) ) print("Residual Min - Max Range = %s"%(emax-emin)) print("Residual range percentage = %s" %((emax-emin)/(max(ypure) - min(ypure))) ) print("Residual mean percentage = %s" %(emean/ArithmeticMean(ypure)) ) #-- If finalcost is lowest mean Residual or mean Error distance also will be lowest #y_pred = [g[0] + g[1]*my_data[0][c] + g[2]*my_data[1][c] for c in range(my_data.shape[0])] y_actual = YDATA.tolist[0] x = XDATA[xreference] if plot == 1: fig, ax = plt.subplots() ax.plot(numpy.arange(iters), cost, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title('Error vs. Training Epoch') plt.show() x_a, y_a = give_time_series(xpure,y_PRED)#give_time_series(x,y_pred) plt.plot(x_a,y_a,color='r',marker='.',label='Prediction') x_a, y_a = give_time_series(xpure,ypure)#give_time_series(x,y_actual) plt.plot(x_a,y_a,color='g',marker='.',label='Real') if residual == 1: plot_error_distance(xpure,y_PRED,ypure) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.legend() plt.show() else: print('plot off') return finalCost
5,354,089
def test_modifier_with_nested_modifier(): """Test instantiation of potential forms that has a modifier that has a nested modifier in its argument list""" k = u"A" v = u"zero >=1.0 sum(nested(constant 1.0 >2 zero), buck 10.0 0.1 32.0)" parser = ConfigParser(io.StringIO()) potential_forms = [ PMT(u'nested', [PFI(u'constant', [1.0], MRD(u'>',0.0), PFI(u'zero', [], MRD(u'>', 2), None))], MRD(u'>', 0.0), None), PFI(u'buck', [10.0, 0.1, 32.0], MRD(u'>', 0.0), None)] expect = PFI(u'zero', [], MRD(u'>', 0.0), PMT(u'sum', potential_forms, MRD(u'>=', 1.0), None)) expect = PairPotentialTuple(species = k, potential_form_instance = expect) actual = parser._parse_multi_range(k, v) assert DeepDiff(expect, actual) == {}
5,354,090
def FilterAndTagWrapper(target, dontRemoveTag=False): """\ Returns a component that wraps a target component, tagging all traffic going into its inbox; and filtering outany traffic coming out of its outbox with the same unique id. """ if dontRemoveTag: Filter = FilterButKeepTag else: Filter = FilterTag return Graphline( TAGGER = UidTagger(), FILTER = Filter(), TARGET = target, linkages = { ("TARGET", "outbox") : ("FILTER", "inbox"), # filter data coming from target ("FILTER", "outbox") : ("self", "outbox"), ("TAGGER", "uid") : ("FILTER", "uid"), # ensure filter uses right uid ("self", "inbox") : ("TAGGER", "inbox"), # tag data going to target ("TAGGER", "outbox") : ("TARGET", "inbox"), ("self", "control") : ("TARGET", "control"), # shutdown signalling path ("TARGET", "signal") : ("TAGGER", "control"), ("TAGGER", "signal") : ("FILTER", "control"), ("FILTER", "signal") : ("self", "signal"), }, )
5,354,091
def print_progress_bar(count: int) -> None: """Print progress bar in 20% increments. Args: count (int): Number of 1000 query chunks. """ # left side of progress bar progress_bar = '[' # Fill in progress bar for i in range(0, count): progress_bar += '#' # Fill in remaining slots with an underscore while len(progress_bar) <= PROGRESS_BAR_LENGTH: progress_bar += '_' # Right side of progress bar progress_bar += ']' print(f'PROGRESS: {progress_bar}')
5,354,092
def format_time(seconds: Union[int, float]) -> str: """Convert the seconds to human readable string with days, hours, minutes and seconds.""" s = int(np.rint(seconds)) if s < 60: return "{0}s".format(s) elif s < 60 * 60: return "{0}m {1:02}s".format(s // 60, s % 60) elif s < 24 * 60 * 60: return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60) else: return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
5,354,093
def run_model(df, i, name, gscv, calibrate=True): """Given customercode values in dict_folds, 1. create balanced dataset 2. split into train, test sets 3. run grid search 4. get probability scores 5. calibrate as directed 6. find optimal cutoff from precision-recall 7. return predictions, data, scores """ df_undersampled = pd.concat([ df.query(target==0).sample(frac=0.3, random_state=0), df.query("target==1") ]) X = df_undersampled.drop("target", axis=1).copy() y = df_undersampled.loc[:, "target"].copy() X_tr, X_te, y_tr, y_te = train_test_split(X, y, train_size=0.7, stratify=y) model = gscv.fit(X_tr, y_tr) # Probabilities y_scores = model.predict_proba(X_te)[:, 1] if calibrate: sigmoid = CalibratedClassifierCV(model, cv=2, method="sigmoid") sigmoid.fit(X_tr, y_tr) y_probs = sigmoid.predict_proba(X_te)[:, 1] else: y_probs = np.array(y_scores) # Cutoff p, r, t = precision_recall_curve(y_te, y_probs, pos_label=1) df_pr = (pd.DataFrame(data=zip(p, r, t), columns=["precision", "recall", "threshold"]) .set_index("threshold")) cutoff = (pd.Series(data=np.abs(df_pr["precision"] - df_pr["recall"]), index=df_pr.index) .idxmin() .round(2)) # Predictions y_pred = (y_probs >= cutoff).astype(int) dict_data = { "X_tr": X_tr, "X_te": X_te, "y_tr": y_tr, "y_te": y_te, "y_scores": y_scores, "y_probs": y_probs, "y_pred": y_pred, } dict_scores = { "precision": precision_score(y_te, y_pred), "recall": recall_score(y_te, y_pred), } payload = { "name": name, "model": model, "data": dict_data, "scores": dict_scores } return payload
5,354,094
def launch_process(a_project, a_routine, a_work_text, a_done_text, a_focus_on_error=False, a_always_focus=False, post_routine=None): """ Standard launch for eiffel tools buffer management. It create/show the eiffel tools buffer in a window, launch `a_routine' with the eiffel tools buffer window, and get the focus back to the working window (if needed). `a_project' The currently opened Eiffel projectto see the success of a_routine. `a_routine' The routine to launch. `a_work_text' Text to help the user to know what is happening `a_done_text' Text to print in the status bar when finish `a_focus_on_error' The Eiffel tools window must be focus if error `a_always_focus' Always focus the Eiffel tools window on exit. """ if a_project: save_current_window_and_open_tools_window() set_tools_window_text(a_work_text) tools_buffer_number = get_tools_buffer_number() tools_buffer = environment.window(tools_buffer_number, True) environment.manual_fold() a_routine(tools_buffer) if post_routine: post_routine() set_tools_window_text(a_done_text) if not(a_always_focus or (a_focus_on_error and a_project.has_error())): select_saved_window() else: print("No Eiffel project opened")
5,354,095
def prepare_runkos(main_dir, discard_file=None): """Identify the positions with variations between 0.2 to 0.8 in the training population and calculate the mean and std for the variation. """ THRESHOLD_DROPNA = 32 # more than 40 columns should have a value not a nan. file_count = 0 list_of_dfs = [] list_dfs_var = [] file_csv_list = [] for file_csv in os.listdir(main_dir): # Ignore the file that is given as the validation dataset if discard_file and file_csv == discard_file: continue file_path = "%s/%s" % (main_dir, file_csv) dataframe = [] dataframe = pd.read_csv(file_path) # Ignore Insertions by getting only the first entity of the nucleotide at each row dataframe['mut'] = dataframe.apply(lambda row: row['mut'][0], axis=1) # Ignore insertion and deletions by merging the rows with equal pos and mut dataframe = dataframe.groupby(['pos', 'mut']).sum().reset_index() dataframe_pivot = [] dataframe_pivot = pd.pivot_table(dataframe, index='pos', columns='mut', values='freq', aggfunc='sum') # Rename columns dataframe_pivot.rename(lambda x: "%s_%s" % (x, file_count), axis='columns', inplace=True) list_dfs_var.append(dataframe_pivot.copy()) file_count += 1 file_csv_list.append(file_csv) df_merged = reduce(lambda x, y: pd.merge(x, y, how='outer', right_index=True, left_index=True), list_dfs_var) df_merged_filtered = df_merged.dropna(thresh=THRESHOLD_DROPNA) df_mean_std = calc_mean_std_population(df_merged_filtered, discard_file) return df_mean_std, list_of_dfs
5,354,096
def extract_date(db): """Extract Release Date from metadata and convert it into YYYY MM format""" date_pattern = 'releaseDate\":(\d{9,10})' def format_date(x): """Takes epoch time as argument and returns date in YYYY MM format""" date = re.search(date_pattern, x) if date: val = pd.to_datetime(date.group(1), unit='s') val = val.strftime('%Y %b') return val else: return 'No Date' db['date'] = db['meta'].apply(format_date) db = db.drop('meta', axis=1) return db
5,354,097
def set_provisioner_data(response, metrics, pod_name, pod_details): """ Update provisioner related metrics""" # Data from provisioner is the source of truth # Update only those metrics.storages data which is present in # provisioner, rest will remain with default values. storage_data_from_csi = response.json()["storages"] for index, storage in enumerate(metrics.storages): try: if storage["name"] == storage_data_from_csi[index]["name"]: storage.update(storage_data_from_csi[index]) except IndexError: # skip comparing rest of storages in metrics[default], # since storage_data_from_csi has reached its end, # and it contains no more data from healthy storage-pools logging.debug(logf( "Reached end of list of storages from csi. Skip comparing the rest." )) break metrics.provisioner.update({"pod_name": pod_name}) metrics.provisioner.update(response.json()["pod"]) metrics.provisioner.update(pod_details)
5,354,098
def split_test_image(aa): """ Separate image created by mk_test_image into x,y components """ if aa.dtype.kind == 'f': y = np.round((aa % 1)*1024) x = np.floor(aa) else: nshift = (aa.dtype.itemsize*8)//2 mask = (1 << nshift) - 1 y = aa & mask x = aa >> nshift return x, y
5,354,099