path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
128010348/cell_33 | [
"image_output_4.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n'
print(history.history.keys())
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.plot(history.history['accuracy'])
plt.plot(history.history['loss'])
plt.title('model accuracy vs loss')
plt.xlabel('epoch')
plt.legend(['accuracy', 'loss'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.plot(history.history['val_accuracy'])
plt.plot(history.history['val_loss'])
plt.title('model validation accuracy vs loss')
plt.xlabel('epoch')
plt.legend(['val_accuracy', 'val_loss'], loc='upper left')
plt.show() | code |
128010348/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
df.columns | code |
128010348/cell_2 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df.head() | code |
128010348/cell_11 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.head() | code |
128010348/cell_19 | [
"image_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
sns.heatmap(df.corr(), annot=True)
plt.title('Heatmap of co-relation between variables', fontsize=16)
plt.show() | code |
128010348/cell_18 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
sns.countplot(x='Species', data=df)
plt.show() | code |
128010348/cell_32 | [
"image_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.utils import plot_model
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n'
plot_model(model, show_shapes=True) | code |
128010348/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
print(df['Species'].unique())
print(df['Species'].value_counts()) | code |
128010348/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
df.describe() | code |
128010348/cell_38 | [
"image_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n'
y_pred_proba = model.predict(X_test_ex)
y_pred = np.argmax(y_pred_proba, axis=1)
y_test_ex2 = y_test_ex
y_test_ex = np.argmax(y_test_ex, axis=1)
df_y_pred = pd.DataFrame(y_pred, columns=['Predicted'])
df_y_test = pd.DataFrame(list(y_test_ex), columns=['Actual'])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
sns.countplot(x=df_y_test['Actual'], palette='Set2', ax=ax[0])
sns.countplot(x=df_y_pred['Predicted'], palette='Set2', ax=ax[1])
fig.show() | code |
128010348/cell_35 | [
"text_plain_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n'
y_pred_proba = model.predict(X_test_ex)
y_pred = np.argmax(y_pred_proba, axis=1) | code |
128010348/cell_31 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n' | code |
128010348/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
scaler = MinMaxScaler()
cols_to_scale = df.columns[:-1]
df_norm = pd.DataFrame(scaler.fit_transform(df[cols_to_scale]), columns=cols_to_scale)
df_norm = pd.concat([df_norm, df.iloc[:, -1]], axis=1)
df = df_norm
df.shape | code |
128010348/cell_27 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from catboost import CatBoostClassifier, Pool
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
lr = LogisticRegression(C=1, solver='newton-cg', random_state=42)
rf = RandomForestClassifier(n_estimators=50, max_depth=10, random_state=42)
gb = GradientBoostingClassifier(n_estimators=10, learning_rate=0.005, random_state=42)
svm = SVC(C=100, kernel='rbf', random_state=42)
knn = KNeighborsClassifier(weights='uniform', n_neighbors=5, metric='manhattan')
xgb = XGBClassifier(n_estimators=250, max_depth=10, learning_rate=0.0001, random_state=42)
cat = CatBoostClassifier(iterations=50, max_depth=10, learning_rate=0.005, loss_function='MultiClass', eval_metric='MultiClass', random_state=42)
dt = DecisionTreeClassifier(max_features='sqrt', max_depth=5, criterion='gini', ccp_alpha=0.001, random_state=42)
lr.fit(X_train_ex, y_train_ex)
rf.fit(X_train_ex, y_train_ex)
gb.fit(X_train_ex, y_train_ex)
svm.fit(X_train_ex, y_train_ex)
knn.fit(X_train_ex, y_train_ex)
xgb.fit(X_train_ex, y_train_ex)
cat.fit(X_train_ex, y_train_ex)
dt.fit(X_train_ex, y_train_ex) | code |
128010348/cell_36 | [
"text_plain_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Sequential, Model, load_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Conv2D, MaxPool2D, Activation, Dropout, BatchNormalization, LeakyReLU
from tensorflow.keras.layers import Input, Dense, Flatten, GlobalAveragePooling2D, concatenate
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
import numpy as np
import pandas as pd
df = pd.read_csv('/kaggle/input/iris/Iris.csv')
df = df.dropna()
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.drop(['Id'], axis=1)
y_train_ex = to_categorical(y_train_ex)
y_test_ex = to_categorical(y_test_ex)
def create_model(neurons, dropout_rate, kernel_regularizer, learning_rate):
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, verbose=0)
neurons = [64, 128, 256, 512, 1024, 2048]
dropout_rate = [0, 0.25, 0.5, 0.75]
kernel_regularizer = [0.01, 0.001, 0.0001]
learning_rate = [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
batch_size = [16, 32, 64]
epochs = [50, 100, 150, 300, 500, 1000]
param_grid = dict(neurons=neurons, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, learning_rate=learning_rate, batch_size=batch_size, epochs=epochs)
n_iter_search = 50
random_search = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=n_iter_search, cv=5, n_jobs=-1, scoring='accuracy')
random_search.fit(X_train_ex, y_train_ex)
neurons = 1024
dropout_rate = 0.5
kernel_regularizer = 0.0001
learning_rate = 0.0001
batch_size = 32
epochs = 1000
input_shape = (X_train_ex.shape[1],)
model = Sequential()
model.add(Dense(neurons, activation='relu', input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 2, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 4, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(neurons // 8, activation='relu', kernel_regularizer=regularizers.l2(kernel_regularizer)))
model.add(Dropout(dropout_rate))
model.add(Dense(3, activation='softmax'))
opt = Adam(learning_rate=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(X_train_ex, y_train_ex, validation_data=(X_test_ex, y_test_ex), epochs=epochs, batch_size=batch_size)
'\nEpoch 1000/1000\n4/4 [==============================] - 0s 20ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0114 - val_accuracy: 1.0000\n'
y_pred_proba = model.predict(X_test_ex)
y_pred = np.argmax(y_pred_proba, axis=1)
y_pred | code |
17133428/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import numpy as np
import pandas as pd
df = pd.read_csv('../input/raw_lemonade_data.csv')
df['Date'] = pd.to_datetime(df['Date'])
df['Price'] = df.Price.str.replace('$', '').replace(' ', '')
df['Price'] = df.Price.astype(np.float64)
df = df.set_index(df['Date'])
df = df.drop('Date', 1)
df['Revenue'] = df.Price * df.Sales
df = df[['Revenue', 'Temperature', 'Rainfall', 'Flyers']]
X = df[['Flyers']]
y = df[['Revenue']]
flyer_linear_model = LinearRegression().fit(X, y)
print('Coefficient for flyers:', flyer_linear_model.coef_)
print('Linear model coefficients are the weights of the model') | code |
17133428/cell_10 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LinearRegression
import numpy as np
import pandas as pd
df = pd.read_csv('../input/raw_lemonade_data.csv')
df['Date'] = pd.to_datetime(df['Date'])
df['Price'] = df.Price.str.replace('$', '').replace(' ', '')
df['Price'] = df.Price.astype(np.float64)
df = df.set_index(df['Date'])
df = df.drop('Date', 1)
df['Revenue'] = df.Price * df.Sales
df = df[['Revenue', 'Temperature', 'Rainfall', 'Flyers']]
X = df[['Flyers']]
y = df[['Revenue']]
flyer_linear_model = LinearRegression().fit(X, y)
print('Intercept:', flyer_linear_model.intercept_[0])
print("We'll sell about $4.18 in revenue at the minimum level of flyers") | code |
17133428/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('../input/raw_lemonade_data.csv')
df['Date'] = pd.to_datetime(df['Date'])
df['Price'] = df.Price.str.replace('$', '').replace(' ', '')
df['Price'] = df.Price.astype(np.float64)
df = df.set_index(df['Date'])
df = df.drop('Date', 1)
df['Revenue'] = df.Price * df.Sales
df = df[['Revenue', 'Temperature', 'Rainfall', 'Flyers']]
df.head() | code |
73067513/cell_9 | [
"text_plain_output_1.png"
] | s = 'Hi. Welcome to Filoger Bootcamp.'
l = s.split(' ')
l1 = s.split('.')
print('saize jomalat in text :'.format(s), len(l1) - 1) | code |
73067513/cell_4 | [
"text_plain_output_1.png"
] | s = 'Hi. Welcome to Filoger Bootcamp.'
l = s.split(' ')
print(l) | code |
73067513/cell_6 | [
"text_plain_output_1.png"
] | s = 'Hi. Welcome to Filoger Bootcamp.'
l = s.split(' ')
print('saize klamat in text :'.format(s), len(l)) | code |
73067513/cell_18 | [
"text_plain_output_1.png"
] | def a(email):
pass
def a(speed):
speed > 80
a(100) | code |
73067513/cell_15 | [
"text_plain_output_1.png"
] | def my_func(str):
return 'Iran' in str
my_func('welcome to Iran') | code |
73067513/cell_12 | [
"text_plain_output_1.png"
] | def a(email):
pass
a('[email protected]')
a('[email protected]') | code |
17114755/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from PIL import Image
from sklearn.model_selection import train_test_split
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
x_train = np.reshape(x_train, (-1, 1, 28, 28))
x_test = np.reshape(x_test, (-1, 1, 28, 28))
(x_train.shape, x_test.shape)
random_seed = 234
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed)
(x_train.shape, x_val.shape, y_train.shape, y_val.shape)
def display(rows, columns, images, values=[], predictions=[], save_image=False, filename='image.png', show=False):
fig = plt.figure(figsize=(15, 15))
# plt.ioff()
ax = []
for i in range( columns*rows ):
img = images[i]
ax.append(fig.add_subplot(rows, columns, i+1))
title = ""
if(len(values) == 0 and len(predictions) != 0):
title = "Pred:" + str(predictions[i])
elif(len(values) != 0 and len(predictions) == 0):
title = "Value:" + str(values[i])
elif(len(values) != 0 and len(predictions) != 0):
title = "\nValue:" + str(values[i]) + "\nPred:" + str(predictions[i])
ax[-1].set_title(title) # set title
plt.imshow(img)
plt.axis('off')
if save_image:
plt.savefig(filename)
if not show:
plt.close(fig)
# plt.show()
idx = np.random.randint(1, 1000, size=9)
images = x_train[idx,:]
images = images[:,0]
values = y_train[idx]
print(images.shape)
display(rows=3, columns=3, images=images, values=values, predictions=[], save_image=True, filename='Autoencoder-validation.png', show=True)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class customLoss(nn.Module):
def __init__(self):
super(customLoss, self).__init__()
self.mse_loss = nn.MSELoss(reduction='sum')
def forward(self, x_recon, x, mu, logvar):
loss_MSE = self.mse_loss(x_recon, x)
loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return loss_MSE + loss_KLD
class VAE_CNN(nn.Module):
def __init__(self):
super(VAE_CNN, self).__init__()
self.e_conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.e_bn1 = nn.BatchNorm2d(16)
self.e_conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, bias=False)
self.e_bn2 = nn.BatchNorm2d(32)
self.e_conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.e_bn3 = nn.BatchNorm2d(64)
self.e_conv4 = nn.Conv2d(64, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.e_bn4 = nn.BatchNorm2d(16)
self.e_fc1 = nn.Linear(7 * 7 * 16, 512)
self.e_fc_bn1 = nn.BatchNorm1d(512)
self.e_fc2 = nn.Linear(512, 256)
self.e_fc_bn2 = nn.BatchNorm1d(256)
self.lv_fc1 = nn.Linear(256, 256)
self.lv_fc2 = nn.Linear(256, 256)
self.d_fc1 = nn.Linear(256, 512)
self.d_fc_bn1 = nn.BatchNorm1d(512)
self.d_fc2 = nn.Linear(512, 7 * 7 * 16)
self.d_fc_bn2 = nn.BatchNorm1d(7 * 7 * 16)
self.d_conv1 = nn.ConvTranspose2d(16, 64, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.d_bn1 = nn.BatchNorm2d(64)
self.d_conv2 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.d_bn2 = nn.BatchNorm2d(32)
self.d_conv3 = nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.d_bn3 = nn.BatchNorm2d(16)
self.d_conv4 = nn.ConvTranspose2d(16, 1, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU()
def encode(self, x, test=False):
x = self.relu(self.e_bn1(self.e_conv1(x)))
x = self.relu(self.e_bn2(self.e_conv2(x)))
x = self.relu(self.e_bn3(self.e_conv3(x)))
x = self.relu(self.e_bn4(self.e_conv4(x)))
x = x.view(-1, 16 * 7 * 7)
x = self.relu(self.e_fc_bn1(self.e_fc1(x)))
x = self.relu(self.e_fc_bn2(self.e_fc2(x)))
r1 = self.lv_fc1(x)
r2 = self.lv_fc1(x)
return (r1, r2)
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z, test=False):
z = self.relu(self.d_fc_bn1(self.d_fc1(z)))
z = self.relu(self.d_fc_bn2(self.d_fc2(z)))
z = z.view(-1, 16, 7, 7)
z = self.relu(self.d_bn1(self.d_conv1(z)))
z = self.relu(self.d_bn2(self.d_conv2(z)))
z = self.relu(self.d_bn3(self.d_conv3(z)))
z = self.d_conv4(z)
return z
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return (self.decode(z), mu, logvar)
def print(self, t, test=False):
pass
def setup(self, train_data_loader, val_data_loader, epochs=10, log_interval=10):
self.optimizer = optim.Adam(self.parameters(), lr=0.001)
self.loss_mse = customLoss()
self.epochs = epochs
self.epoch = 0
self.train_data_loader = train_data_loader
self.val_data_loader = val_data_loader
self.log_interval = log_interval
self.is_cuda = True
def validate_epoch(self):
it = iter(self.val_data_loader)
ii = random.randint(1, 30)
for i in range(ii):
data, _ = it.next()
output, _, _ = model(data.cuda())
data = data.numpy()
output = output.cpu().data.numpy()
data = data[:, 0]
output = output[:, 0]
images = []
for i in range(18):
images.append(data[i])
images.append(output[i])
def train_epoch(self):
self.train()
train_loss = 0.0
for batch_idx, (data, _) in enumerate(self.train_data_loader):
if self.is_cuda:
data = data.cuda()
self.optimizer.zero_grad()
recon_batch, mu, logvar = self(data)
loss = self.loss_mse(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
self.optimizer.step()
def train_model(self):
self.train()
self.validate_epoch()
for i in range(self.epochs):
self.train_epoch()
self.epoch += 1
self.validate_epoch()
model = VAE_CNN().cuda()
torch_x_train = torch.from_numpy(x_train).type(torch.FloatTensor)
torch_y_train = torch.from_numpy(y_train).type(torch.LongTensor)
torch_x_val = torch.from_numpy(x_val).type(torch.FloatTensor)
torch_y_val = torch.from_numpy(y_val).type(torch.LongTensor)
torch_x_test = torch.from_numpy(x_test).type(torch.FloatTensor)
train_dataset = torch.utils.data.TensorDataset(torch_x_train, torch_y_train)
val_dataset = torch.utils.data.TensorDataset(torch_x_val, torch_y_val)
test_dataset = torch.utils.data.TensorDataset(torch_x_test)
train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=100, shuffle=False)
val_data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=100, shuffle=False)
test_data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=100, shuffle=False)
model = VAE_CNN().cuda()
model.setup(train_data_loader, val_data_loader, epochs=100)
import PIL
images = []
values = []
for i in range(10):
image = Image.open('Autoencoder-validation-' + str(i) + '.png')
images.append(np.asarray(image))
values.append('Epoch ' + str(i))
class Classifier(nn.Module):
def __init__(self, vae_cnn, demo=False):
super(Classifier, self).__init__()
self.demo = demo
self.vae_cnn = vae_cnn
self.classifier_fc1 = nn.Linear(256, 1024)
self.classifier_fc_bn1 = nn.BatchNorm1d(1024)
self.classifier_fc2 = nn.Linear(1024, 512)
self.classifier_fc_bn2 = nn.BatchNorm1d(512)
self.classifier_fc3 = nn.Linear(512, 256)
self.classifier_fc_bn3 = nn.BatchNorm1d(256)
self.classifier_fc4 = nn.Linear(256, 128)
self.classifier_fc_bn4 = nn.BatchNorm1d(128)
self.classifier_fc5 = nn.Linear(128, 10)
def forward(self, x):
mu, logvar = self.vae_cnn.encode(x)
x = F.relu(self.classifier_fc_bn1(self.classifier_fc1(mu)))
x = F.relu(self.classifier_fc_bn2(self.classifier_fc2(x)))
x = F.relu(self.classifier_fc_bn3(self.classifier_fc3(x)))
x = F.relu(self.classifier_fc_bn4(self.classifier_fc4(x)))
x = self.classifier_fc5(x)
return F.log_softmax(x, dim=1)
def print(self, t):
pass
classifier = Classifier(model).cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(classifier.parameters(), lr=0.1, momentum=0.9)
with torch.no_grad():
correct_classification = 0
total = 0
id_codes = []
diagnosis = []
for i, data in enumerate(val_data_loader, 0):
images, labels = data
images_cuda = images.cuda()
output_cuda = classifier(images_cuda)
output = output_cuda.cpu().data
_, predicted = torch.max(output, 1)
correct_classification += torch.sum(labels == predicted).item()
total += len(labels)
predicted = predicted.cpu().numpy()
print('Accuracy of the network %.2f %%' % (100 * correct_classification / total)) | code |
17114755/cell_4 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
x_train = np.reshape(x_train, (-1, 1, 28, 28))
x_test = np.reshape(x_test, (-1, 1, 28, 28))
(x_train.shape, x_test.shape) | code |
17114755/cell_20 | [
"text_plain_output_1.png"
] | epochs = 100
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_data_loader, 0):
inputs, labels = data
inputs, labels = (inputs.cuda(), labels.cuda())
optimizer.zero_grad()
outputs = classifier(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
average_loss = running_loss / len(train_data_loader)
print('[%d] loss: %.8f' % (epoch + 1, average_loss)) | code |
17114755/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
x_train = np.reshape(x_train, (-1, 1, 28, 28))
x_test = np.reshape(x_test, (-1, 1, 28, 28))
(x_train.shape, x_test.shape)
random_seed = 234
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed)
(x_train.shape, x_val.shape, y_train.shape, y_val.shape)
def display(rows, columns, images, values=[], predictions=[], save_image=False, filename='image.png', show=False):
fig = plt.figure(figsize=(15, 15))
ax = []
for i in range(columns * rows):
img = images[i]
ax.append(fig.add_subplot(rows, columns, i + 1))
title = ''
if len(values) == 0 and len(predictions) != 0:
title = 'Pred:' + str(predictions[i])
elif len(values) != 0 and len(predictions) == 0:
title = 'Value:' + str(values[i])
elif len(values) != 0 and len(predictions) != 0:
title = '\nValue:' + str(values[i]) + '\nPred:' + str(predictions[i])
ax[-1].set_title(title)
plt.imshow(img)
plt.axis('off')
if save_image:
plt.savefig(filename)
if not show:
plt.close(fig)
idx = np.random.randint(1, 1000, size=9)
images = x_train[idx, :]
images = images[:, 0]
values = y_train[idx]
print(images.shape)
display(rows=3, columns=3, images=images, values=values, predictions=[], save_image=True, filename='Autoencoder-validation.png', show=True) | code |
17114755/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
print(train.shape, test.shape) | code |
17114755/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import random
from sklearn.model_selection import train_test_split
import struct
import torch
from PIL import Image
import matplotlib.pyplot as plt
import torchvision
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import copy
import os
print(os.listdir('../input')) | code |
17114755/cell_7 | [
"image_output_1.png"
] | import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device) | code |
17114755/cell_16 | [
"text_plain_output_1.png"
] | from PIL import Image
from sklearn.model_selection import train_test_split
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
import torch
import torch.nn as nn
import torch.optim as optim
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
x_train = np.reshape(x_train, (-1, 1, 28, 28))
x_test = np.reshape(x_test, (-1, 1, 28, 28))
(x_train.shape, x_test.shape)
random_seed = 234
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed)
(x_train.shape, x_val.shape, y_train.shape, y_val.shape)
def display(rows, columns, images, values=[], predictions=[], save_image=False, filename='image.png', show=False):
fig = plt.figure(figsize=(15, 15))
# plt.ioff()
ax = []
for i in range( columns*rows ):
img = images[i]
ax.append(fig.add_subplot(rows, columns, i+1))
title = ""
if(len(values) == 0 and len(predictions) != 0):
title = "Pred:" + str(predictions[i])
elif(len(values) != 0 and len(predictions) == 0):
title = "Value:" + str(values[i])
elif(len(values) != 0 and len(predictions) != 0):
title = "\nValue:" + str(values[i]) + "\nPred:" + str(predictions[i])
ax[-1].set_title(title) # set title
plt.imshow(img)
plt.axis('off')
if save_image:
plt.savefig(filename)
if not show:
plt.close(fig)
# plt.show()
idx = np.random.randint(1, 1000, size=9)
images = x_train[idx,:]
images = images[:,0]
values = y_train[idx]
print(images.shape)
display(rows=3, columns=3, images=images, values=values, predictions=[], save_image=True, filename='Autoencoder-validation.png', show=True)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class customLoss(nn.Module):
def __init__(self):
super(customLoss, self).__init__()
self.mse_loss = nn.MSELoss(reduction='sum')
def forward(self, x_recon, x, mu, logvar):
loss_MSE = self.mse_loss(x_recon, x)
loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return loss_MSE + loss_KLD
class VAE_CNN(nn.Module):
def __init__(self):
super(VAE_CNN, self).__init__()
self.e_conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.e_bn1 = nn.BatchNorm2d(16)
self.e_conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, bias=False)
self.e_bn2 = nn.BatchNorm2d(32)
self.e_conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.e_bn3 = nn.BatchNorm2d(64)
self.e_conv4 = nn.Conv2d(64, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.e_bn4 = nn.BatchNorm2d(16)
self.e_fc1 = nn.Linear(7 * 7 * 16, 512)
self.e_fc_bn1 = nn.BatchNorm1d(512)
self.e_fc2 = nn.Linear(512, 256)
self.e_fc_bn2 = nn.BatchNorm1d(256)
self.lv_fc1 = nn.Linear(256, 256)
self.lv_fc2 = nn.Linear(256, 256)
self.d_fc1 = nn.Linear(256, 512)
self.d_fc_bn1 = nn.BatchNorm1d(512)
self.d_fc2 = nn.Linear(512, 7 * 7 * 16)
self.d_fc_bn2 = nn.BatchNorm1d(7 * 7 * 16)
self.d_conv1 = nn.ConvTranspose2d(16, 64, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.d_bn1 = nn.BatchNorm2d(64)
self.d_conv2 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.d_bn2 = nn.BatchNorm2d(32)
self.d_conv3 = nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.d_bn3 = nn.BatchNorm2d(16)
self.d_conv4 = nn.ConvTranspose2d(16, 1, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU()
def encode(self, x, test=False):
x = self.relu(self.e_bn1(self.e_conv1(x)))
x = self.relu(self.e_bn2(self.e_conv2(x)))
x = self.relu(self.e_bn3(self.e_conv3(x)))
x = self.relu(self.e_bn4(self.e_conv4(x)))
x = x.view(-1, 16 * 7 * 7)
x = self.relu(self.e_fc_bn1(self.e_fc1(x)))
x = self.relu(self.e_fc_bn2(self.e_fc2(x)))
r1 = self.lv_fc1(x)
r2 = self.lv_fc1(x)
return (r1, r2)
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z, test=False):
z = self.relu(self.d_fc_bn1(self.d_fc1(z)))
z = self.relu(self.d_fc_bn2(self.d_fc2(z)))
z = z.view(-1, 16, 7, 7)
z = self.relu(self.d_bn1(self.d_conv1(z)))
z = self.relu(self.d_bn2(self.d_conv2(z)))
z = self.relu(self.d_bn3(self.d_conv3(z)))
z = self.d_conv4(z)
return z
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return (self.decode(z), mu, logvar)
def print(self, t, test=False):
pass
def setup(self, train_data_loader, val_data_loader, epochs=10, log_interval=10):
self.optimizer = optim.Adam(self.parameters(), lr=0.001)
self.loss_mse = customLoss()
self.epochs = epochs
self.epoch = 0
self.train_data_loader = train_data_loader
self.val_data_loader = val_data_loader
self.log_interval = log_interval
self.is_cuda = True
def validate_epoch(self):
it = iter(self.val_data_loader)
ii = random.randint(1, 30)
for i in range(ii):
data, _ = it.next()
output, _, _ = model(data.cuda())
data = data.numpy()
output = output.cpu().data.numpy()
data = data[:, 0]
output = output[:, 0]
images = []
for i in range(18):
images.append(data[i])
images.append(output[i])
def train_epoch(self):
self.train()
train_loss = 0.0
for batch_idx, (data, _) in enumerate(self.train_data_loader):
if self.is_cuda:
data = data.cuda()
self.optimizer.zero_grad()
recon_batch, mu, logvar = self(data)
loss = self.loss_mse(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
self.optimizer.step()
def train_model(self):
self.train()
self.validate_epoch()
for i in range(self.epochs):
self.train_epoch()
self.epoch += 1
self.validate_epoch()
model = VAE_CNN().cuda()
import PIL
images = []
values = []
for i in range(10):
image = Image.open('Autoencoder-validation-' + str(i) + '.png')
images.append(np.asarray(image))
values.append('Epoch ' + str(i))
display(rows=3, columns=3, images=images, values=values, predictions=[], show=True) | code |
17114755/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
print((x_train.shape, y_train.shape), x_test.shape) | code |
17114755/cell_14 | [
"text_plain_output_1.png"
] | model.train_model() | code |
17114755/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
x_train = train.iloc[:, 1:].values / 255.0
y_train = train.iloc[:, 0].values
x_test = test.values / 255
x_train = np.reshape(x_train, (-1, 1, 28, 28))
x_test = np.reshape(x_test, (-1, 1, 28, 28))
(x_train.shape, x_test.shape)
random_seed = 234
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed)
(x_train.shape, x_val.shape, y_train.shape, y_val.shape) | code |
16166937/cell_21 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
poly.fit(df)
xtr2 = poly.transform(xtr)
xtr2.shape
lr2 = LogisticRegression()
lr2.fit(xtr2, ytr) | code |
16166937/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(xtr, ytr) | code |
16166937/cell_9 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
y.describe() | code |
16166937/cell_4 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
from sklearn.preprocessing import MinMaxScaler
minmax = MinMaxScaler()
df['average_montly_hours'] = minmax.fit_transform(df[['average_montly_hours']])
df['average_montly_hours'].describe() | code |
16166937/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
poly.fit(df)
xtr2 = poly.transform(xtr)
xtr2.shape
lr2 = LogisticRegression()
lr2.fit(xtr2, ytr)
xte2 = poly.transform(xte)
xte2.shape
lr2.fit(xtr2, ytr)
y_pred2 = lr2.predict(xte2)
print(classification_report(yte, y_pred2)) | code |
16166937/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary | code |
16166937/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.head() | code |
16166937/cell_11 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape) | code |
16166937/cell_19 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
poly.fit(df)
xtr2 = poly.transform(xtr)
xtr2.shape | code |
16166937/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16166937/cell_7 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
colormap = plt.cm.get_cmap('Greens')
fig, ax = plt.subplots(figsize=(12, 3))
plot = ax.pcolor(sales_salary.T, cmap=colormap, edgecolor='black')
ax.set_xlabel('sales')
ax.set_xticks(np.arange(len(sales_salary.index.values)) + 0.5)
ax.set_xticklabels(sales_salary.index.values)
ax.set_ylabel('salary')
ax.set_yticks(np.arange(len(sales_salary.columns.values)) + 0.5)
ax.set_yticklabels(sales_salary.columns.values)
cbar = fig.colorbar(plot)
cbar.ax.set_ylabel('quantity', rotation=360)
cbar.ax.get_yaxis().labelpad = 25 | code |
16166937/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import PolynomialFeatures
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
poly.fit(df) | code |
16166937/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
df.head() | code |
16166937/cell_15 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(xtr, ytr)
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
confusion_matrix(yte, lr.predict(xte)) | code |
16166937/cell_16 | [
"image_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(xtr, ytr)
y_pred = rf.predict(xte)
confusion_matrix(yte, y_pred) | code |
16166937/cell_3 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.describe() | code |
16166937/cell_17 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(xtr, ytr)
y_pred = rf.predict(xte)
confusion_matrix(yte, y_pred)
print(classification_report(yte, y_pred)) | code |
16166937/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(xtr, ytr)
from sklearn.metrics import classification_report
print(classification_report(yte, lr.predict(xte))) | code |
16166937/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
y = df['low'].copy()
y[df['medium'] == 1] = 2
y[df['high'] == 1] = 3
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
from sklearn.model_selection import train_test_split
xtr, xte, ytr, yte = train_test_split(df, y, test_size=0.25)
(xtr.shape, xte.shape, ytr.shape, yte.shape)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
poly.fit(df)
xtr2 = poly.transform(xtr)
xtr2.shape
xte2 = poly.transform(xte)
xte2.shape | code |
16166937/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns
sales_salary = pd.crosstab(df['sales'], df['salary'], normalize=False)
sales_salary = sales_salary[['low', 'medium', 'high']]
sales_salary['temp'] = sales_salary.index.values
sales_salary.iloc[0, 3] = 'it'
sales_salary.iloc[1, 3] = 'rand_d'
sales_salary.sort_values(by='temp', inplace=True)
sales_salary.set_index('temp', inplace=True)
sales_salary.index.name = 'sales'
sales_salary
df = df.join(pd.get_dummies(df['salary']))
df = df.join(pd.get_dummies(df['sales']), rsuffix='d')
df.drop(labels=['sales', 'salary'], inplace=True, axis=1)
df.drop(labels=['low', 'medium', 'high'], axis=1, inplace=True)
df.head() | code |
16166937/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/HR_comma_sep.csv')
df.columns | code |
129002488/cell_21 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
accuracy = []
iter = 1
for i in range(31, 35):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train, y_train)
y_predi = knn.predict(X_test)
score = accuracy_score(y_test, y_predi)
accuracy.append(score * 100)
for i in accuracy:
print('ACCURACY OF ' + str(iter) + 'th model is: ' + str(i))
iter += 1 | code |
129002488/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier | code |
129002488/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
df['employment_type'].value_counts() | code |
129002488/cell_25 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [5, 7, 10, 11, 12], 'criterion': ['gini', 'entropy', 'log_loss'], 'max_depth': [7, 8, 9, 10], 'max_features': ['sqrt', 'log2']}
cv = GridSearchCV(RandomForestClassifier(), param_grid=param_grid, refit=True, cv=5, verbose=0)
cv.fit(X_train, y_train)
y_predCV = cv.predict(X_test)
scoreRFC_CV = accuracy_score(y_test, y_predCV)
print('ACCURACY OF ' + 'the RFC model is: ' + str(scoreRFC_CV * 100) + '%') | code |
129002488/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.head() | code |
129002488/cell_23 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
rfc = RandomForestClassifier(max_depth=7)
rfc.fit(X_train, y_train)
y_predRFC = rfc.predict(X_test)
scoreRFC = accuracy_score(y_test, y_predRFC)
print('ACCURACY OF ' + 'the KNeighboursClassifier model is: ' + str(scoreRFC * 100) + '%') | code |
129002488/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
catg = []
for i in df.columns:
if df[i].dtype == 'O':
catg.append(i)
import seaborn as sns
correl = df.corr()
x = df.drop(['company_size'], axis=1)
y = df['company_size']
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.15, random_state=42)
k = np.sqrt(df.shape[0])
k | code |
129002488/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum() | code |
129002488/cell_26 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [5, 7, 10, 11, 12], 'criterion': ['gini', 'entropy', 'log_loss'], 'max_depth': [7, 8, 9, 10], 'max_features': ['sqrt', 'log2']}
cv = GridSearchCV(RandomForestClassifier(), param_grid=param_grid, refit=True, cv=5, verbose=0)
cv.fit(X_train, y_train)
y_predCV = cv.predict(X_test)
scoreRFC_CV = accuracy_score(y_test, y_predCV)
cv.best_estimator_ | code |
129002488/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
df['experience_level'].unique() | code |
129002488/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
129002488/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
df['job_title'].value_counts() | code |
129002488/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
catg = []
for i in df.columns:
if df[i].dtype == 'O':
catg.append(i)
import seaborn as sns
correl = df.corr()
sns.heatmap(correl) | code |
129002488/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
catg = []
for i in df.columns:
if df[i].dtype == 'O':
catg.append(i)
import seaborn as sns
correl = df.corr()
df.head() | code |
129002488/cell_22 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
accuracy = []
iter = 1
for i in range(31, 35):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train, y_train)
y_predi = knn.predict(X_test)
score = accuracy_score(y_test, y_predi)
accuracy.append(score * 100)
for i in accuracy:
iter += 1
knn = KNeighborsClassifier(n_neighbors=32)
knn.fit(X_train, y_train)
y_predi = knn.predict(X_test)
score = accuracy_score(y_test, y_predi)
print('ACCURACY OF ' + 'the KNeighboursClassifier model is: ' + str(score * 100) + '%') | code |
129002488/cell_27 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [5, 7, 10, 11, 12], 'criterion': ['gini', 'entropy', 'log_loss'], 'max_depth': [7, 8, 9, 10], 'max_features': ['sqrt', 'log2']}
cv = GridSearchCV(RandomForestClassifier(), param_grid=param_grid, refit=True, cv=5, verbose=0)
cv.fit(X_train, y_train)
y_predCV = cv.predict(X_test)
scoreRFC_CV = accuracy_score(y_test, y_predCV)
cv.best_estimator_
cv.fit(X_train, y_train)
y_predCV = cv.predict(X_test)
scoreRFC_CV = accuracy_score(y_test, y_predCV)
print('ACCURACY OF ' + 'the RFC model is: ' + str(scoreRFC_CV * 100) + '%') | code |
129002488/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.isnull().sum().sum()
catg = []
for i in df.columns:
if df[i].dtype == 'O':
catg.append(i)
for i in catg:
print('UNIQUE VALUES IN {} ARE:'.format(i))
for i in df[i].unique():
print(i, end=' ')
print('\n') | code |
129002488/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/data-science-salaries-2023/ds_salaries.csv')
df.info() | code |
128024284/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
test[test.duplicated()] | code |
128024284/cell_25 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
fig, ax = plt.subplots(1, 3, figsize=(20, 6), sharey=True)
for i, col in enumerate(['fruitset', 'fruitmass', 'seeds']):
sns.scatterplot(train, x=col, y='yield', ax=ax[i])
train[train.drop(columns=['yield']).duplicated()]
fig, ax = plt.subplots(2, 3, figsize=(20,6))
ax = ax.flatten()
for i, a in enumerate(['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange']):
sns.countplot(x=train[a], ax=ax[i])
fig, ax = plt.subplots(1, 2, figsize=(10, 3))
for i, a in enumerate(['AverageRainingDays', 'RainingDays']):
sns.countplot(x=train[a], ax=ax[i]) | code |
128024284/cell_23 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
fig, ax = plt.subplots(1, 3, figsize=(20, 6), sharey=True)
for i, col in enumerate(['fruitset', 'fruitmass', 'seeds']):
sns.scatterplot(train, x=col, y='yield', ax=ax[i])
train[train.drop(columns=['yield']).duplicated()]
fig, ax = plt.subplots(2, 3, figsize=(20, 6))
ax = ax.flatten()
for i, a in enumerate(['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange']):
sns.countplot(x=train[a], ax=ax[i]) | code |
128024284/cell_44 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import RepeatedKFold
from tqdm.notebook import tqdm
import catboost as cb
import lightgbm as lgbm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import shap
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_absolute_error
from sklearn import linear_model
import xgboost as xgb
import catboost as cb
import lightgbm as lgbm
RANDOM_STATE = 69
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
train[train.drop(columns=['yield']).duplicated()]
test[test.duplicated()]
for df in [train, test]:
trange_cols = [col for col in train.columns if 'TRange' in col]
rain_cols = [col for col in train.columns if 'RainingDays' in col]
df['TSum'] = df[trange_cols].sum(axis=1)
df['RSum'] = df[rain_cols].sum(axis=1)
df.drop(columns=trange_cols + rain_cols, inplace=True)
def kfold(model, X, y, n_splits=5, n_repeats=5):
kf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=RANDOM_STATE)
scores = np.zeros(n_splits * n_repeats)
for i, (train_idx, val_idx) in tqdm(enumerate(kf.split(X, y)), total=n_splits * n_repeats):
X_train, X_val = (X.iloc[train_idx], X.iloc[val_idx])
y_train, y_val = (y.iloc[train_idx], y.iloc[val_idx])
eval_set = [(X_val, y_val)]
if isinstance(model, lgbm.sklearn.LGBMRegressor):
callbacks = [lgbm.callback.early_stopping(100, verbose=False), lgbm.callback.log_evaluation(0)]
model.fit(X_train, y_train, eval_set=eval_set, eval_metric='MAE', callbacks=callbacks)
elif isinstance(model, cb.core.CatBoostRegressor):
model.fit(X_train, y_train, eval_set=eval_set, early_stopping_rounds=100)
else:
model.fit(X_train, y_train)
scores[i] = mean_absolute_error(y_val, model.predict(X_val))
return np.mean(scores)
models = {'cb': cb.CatBoostRegressor(verbose=0, random_state=RANDOM_STATE, objective='MAE'), 'lgbm': lgbm.LGBMRegressor(verbose=0, force_col_wise=True, random_state=RANDOM_STATE, objective='MAE'), 'linreg': linear_model.LinearRegression(), 'lasso': linear_model.LassoCV(), 'ridge': linear_model.RidgeCV()}
X, y = (train.drop(columns=['yield']), train['yield'])
model_scores = dict()
for name, model in models.items():
if name in ['cb', 'lgbm', 'xgb']:
model_scores[name] = kfold(model, X, y)
else:
model_scores[name] = kfold(model, X, y)
model = models['lgbm']
pred = model.predict(test)
submission = pd.DataFrame({'id': test.index, 'yield': pred}).set_index('id')
submission.to_csv('submission.csv') | code |
128024284/cell_29 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
fig, ax = plt.subplots(1, 3, figsize=(20, 6), sharey=True)
for i, col in enumerate(['fruitset', 'fruitmass', 'seeds']):
sns.scatterplot(train, x=col, y='yield', ax=ax[i])
train[train.drop(columns=['yield']).duplicated()]
test[test.duplicated()]
fig, ax = plt.subplots(2, 3, figsize=(20,6))
ax = ax.flatten()
for i, a in enumerate(['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange']):
sns.countplot(x=train[a], ax=ax[i])
fig, ax = plt.subplots(1, 2, figsize=(10,3))
for i, a in enumerate(['AverageRainingDays', 'RainingDays']):
sns.countplot(x=train[a], ax=ax[i])
for df in [train, test]:
trange_cols = [col for col in train.columns if 'TRange' in col]
rain_cols = [col for col in train.columns if 'RainingDays' in col]
df['TSum'] = df[trange_cols].sum(axis=1)
df['RSum'] = df[rain_cols].sum(axis=1)
df.drop(columns=trange_cols + rain_cols, inplace=True)
fig, ax = plt.subplots(2, 1, figsize=(10, 6))
for i, a in enumerate(['TSum', 'RSum']):
sns.countplot(y=train[a], ax=ax[i])
ax[i].xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: '{:.2f}'.format(x))) | code |
128024284/cell_39 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import RepeatedKFold
from tqdm.notebook import tqdm
import catboost as cb
import lightgbm as lgbm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import shap
import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import shap
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_absolute_error
from sklearn import linear_model
import xgboost as xgb
import catboost as cb
import lightgbm as lgbm
RANDOM_STATE = 69
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
train[train.drop(columns=['yield']).duplicated()]
test[test.duplicated()]
for df in [train, test]:
trange_cols = [col for col in train.columns if 'TRange' in col]
rain_cols = [col for col in train.columns if 'RainingDays' in col]
df['TSum'] = df[trange_cols].sum(axis=1)
df['RSum'] = df[rain_cols].sum(axis=1)
df.drop(columns=trange_cols + rain_cols, inplace=True)
def kfold(model, X, y, n_splits=5, n_repeats=5):
kf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=RANDOM_STATE)
scores = np.zeros(n_splits * n_repeats)
for i, (train_idx, val_idx) in tqdm(enumerate(kf.split(X, y)), total=n_splits * n_repeats):
X_train, X_val = (X.iloc[train_idx], X.iloc[val_idx])
y_train, y_val = (y.iloc[train_idx], y.iloc[val_idx])
eval_set = [(X_val, y_val)]
if isinstance(model, lgbm.sklearn.LGBMRegressor):
callbacks = [lgbm.callback.early_stopping(100, verbose=False), lgbm.callback.log_evaluation(0)]
model.fit(X_train, y_train, eval_set=eval_set, eval_metric='MAE', callbacks=callbacks)
elif isinstance(model, cb.core.CatBoostRegressor):
model.fit(X_train, y_train, eval_set=eval_set, early_stopping_rounds=100)
else:
model.fit(X_train, y_train)
scores[i] = mean_absolute_error(y_val, model.predict(X_val))
return np.mean(scores)
models = {'cb': cb.CatBoostRegressor(verbose=0, random_state=RANDOM_STATE, objective='MAE'), 'lgbm': lgbm.LGBMRegressor(verbose=0, force_col_wise=True, random_state=RANDOM_STATE, objective='MAE'), 'linreg': linear_model.LinearRegression(), 'lasso': linear_model.LassoCV(), 'ridge': linear_model.RidgeCV()}
X, y = (train.drop(columns=['yield']), train['yield'])
model_scores = dict()
for name, model in models.items():
if name in ['cb', 'lgbm', 'xgb']:
model_scores[name] = kfold(model, X, y)
else:
model_scores[name] = kfold(model, X, y)
explainer = shap.TreeExplainer(models['cb'])
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X) | code |
128024284/cell_41 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import RepeatedKFold
from tqdm.notebook import tqdm
import catboost as cb
import lightgbm as lgbm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import shap
import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import shap
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_absolute_error
from sklearn import linear_model
import xgboost as xgb
import catboost as cb
import lightgbm as lgbm
RANDOM_STATE = 69
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
train[train.drop(columns=['yield']).duplicated()]
test[test.duplicated()]
for df in [train, test]:
trange_cols = [col for col in train.columns if 'TRange' in col]
rain_cols = [col for col in train.columns if 'RainingDays' in col]
df['TSum'] = df[trange_cols].sum(axis=1)
df['RSum'] = df[rain_cols].sum(axis=1)
df.drop(columns=trange_cols + rain_cols, inplace=True)
def kfold(model, X, y, n_splits=5, n_repeats=5):
kf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=RANDOM_STATE)
scores = np.zeros(n_splits * n_repeats)
for i, (train_idx, val_idx) in tqdm(enumerate(kf.split(X, y)), total=n_splits * n_repeats):
X_train, X_val = (X.iloc[train_idx], X.iloc[val_idx])
y_train, y_val = (y.iloc[train_idx], y.iloc[val_idx])
eval_set = [(X_val, y_val)]
if isinstance(model, lgbm.sklearn.LGBMRegressor):
callbacks = [lgbm.callback.early_stopping(100, verbose=False), lgbm.callback.log_evaluation(0)]
model.fit(X_train, y_train, eval_set=eval_set, eval_metric='MAE', callbacks=callbacks)
elif isinstance(model, cb.core.CatBoostRegressor):
model.fit(X_train, y_train, eval_set=eval_set, early_stopping_rounds=100)
else:
model.fit(X_train, y_train)
scores[i] = mean_absolute_error(y_val, model.predict(X_val))
return np.mean(scores)
models = {'cb': cb.CatBoostRegressor(verbose=0, random_state=RANDOM_STATE, objective='MAE'), 'lgbm': lgbm.LGBMRegressor(verbose=0, force_col_wise=True, random_state=RANDOM_STATE, objective='MAE'), 'linreg': linear_model.LinearRegression(), 'lasso': linear_model.LassoCV(), 'ridge': linear_model.RidgeCV()}
X, y = (train.drop(columns=['yield']), train['yield'])
model_scores = dict()
for name, model in models.items():
if name in ['cb', 'lgbm', 'xgb']:
model_scores[name] = kfold(model, X, y)
else:
model_scores[name] = kfold(model, X, y)
explainer = shap.TreeExplainer(models['cb'])
shap_values = explainer.shap_values(X)
explainer = shap.TreeExplainer(models['lgbm'])
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X) | code |
128024284/cell_2 | [
"image_output_1.png"
] | import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import shap
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_absolute_error
from sklearn import linear_model
import xgboost as xgb
import catboost as cb
import lightgbm as lgbm
RANDOM_STATE = 69 | code |
128024284/cell_19 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
train[train.drop(columns=['yield']).duplicated()] | code |
128024284/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True) | code |
128024284/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
fig, ax = plt.subplots(1, 3, figsize=(20, 6), sharey=True)
for i, col in enumerate(['fruitset', 'fruitmass', 'seeds']):
sns.scatterplot(train, x=col, y='yield', ax=ax[i]) | code |
128024284/cell_35 | [
"image_output_1.png"
] | from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import RepeatedKFold
from tqdm.notebook import tqdm
import catboost as cb
import lightgbm as lgbm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import shap
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_absolute_error
from sklearn import linear_model
import xgboost as xgb
import catboost as cb
import lightgbm as lgbm
RANDOM_STATE = 69
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True)
train[train.drop(columns=['yield']).duplicated()]
test[test.duplicated()]
for df in [train, test]:
trange_cols = [col for col in train.columns if 'TRange' in col]
rain_cols = [col for col in train.columns if 'RainingDays' in col]
df['TSum'] = df[trange_cols].sum(axis=1)
df['RSum'] = df[rain_cols].sum(axis=1)
df.drop(columns=trange_cols + rain_cols, inplace=True)
def kfold(model, X, y, n_splits=5, n_repeats=5):
kf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=RANDOM_STATE)
scores = np.zeros(n_splits * n_repeats)
for i, (train_idx, val_idx) in tqdm(enumerate(kf.split(X, y)), total=n_splits * n_repeats):
X_train, X_val = (X.iloc[train_idx], X.iloc[val_idx])
y_train, y_val = (y.iloc[train_idx], y.iloc[val_idx])
eval_set = [(X_val, y_val)]
if isinstance(model, lgbm.sklearn.LGBMRegressor):
callbacks = [lgbm.callback.early_stopping(100, verbose=False), lgbm.callback.log_evaluation(0)]
model.fit(X_train, y_train, eval_set=eval_set, eval_metric='MAE', callbacks=callbacks)
elif isinstance(model, cb.core.CatBoostRegressor):
model.fit(X_train, y_train, eval_set=eval_set, early_stopping_rounds=100)
else:
model.fit(X_train, y_train)
scores[i] = mean_absolute_error(y_val, model.predict(X_val))
return np.mean(scores)
models = {'cb': cb.CatBoostRegressor(verbose=0, random_state=RANDOM_STATE, objective='MAE'), 'lgbm': lgbm.LGBMRegressor(verbose=0, force_col_wise=True, random_state=RANDOM_STATE, objective='MAE'), 'linreg': linear_model.LinearRegression(), 'lasso': linear_model.LassoCV(), 'ridge': linear_model.RidgeCV()}
X, y = (train.drop(columns=['yield']), train['yield'])
model_scores = dict()
for name, model in models.items():
if name in ['cb', 'lgbm', 'xgb']:
model_scores[name] = kfold(model, X, y)
else:
model_scores[name] = kfold(model, X, y)
for name, score in model_scores.items():
print(f'{name}: {score:.3f}') | code |
128024284/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True) | code |
128024284/cell_12 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id')
original = pd.read_csv('/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv')
original['id'] = original['Row#']
original.drop(columns=['Row#'], inplace=True)
original.set_index('id', inplace=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(original.corr(), annot=True)
fig, ax = plt.subplots(1, 1, figsize=(15, 12))
sns.heatmap(train.corr() - original.corr(), annot=True) | code |
90129110/cell_26 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn import metrics
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.read_csv('../input/yhydata/Dry_Bean.csv')
minmax = preprocessing.MinMaxScaler()
data_minmax = minmax.fit_transform(df.iloc[:, :-1])
le = preprocessing.LabelEncoder()
df['Class'] = le.fit_transform(df.iloc[:, -1])
label = df['Class']
df = pd.DataFrame(data_minmax, columns=df.columns[:-1])
df['Class'] = label
model = KNeighborsClassifier(n_neighbors=5)
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_knn = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = SVC()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_svm = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = GaussianNB()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_bayes = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = DecisionTreeClassifier()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_tree = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
recall_noise = 0
noise_array_knn = []
epsilon_array = []
for r in range(1, 501):
sensitivety = 1
epsilon = r
epsilon_array.append(1 / epsilon)
noise = np.random.laplace(0.0, sensitivety / epsilon, len(df))
df_noise = df.copy()
for i in range(len(df.columns) - 1):
for j in range(len(df)):
df_noise.iloc[j, i] += noise[j]
train_noise, _ = train_test_split(df_noise, test_size=0.2, random_state=7)
model = KNeighborsClassifier(n_neighbors=5)
model.fit(train_noise.iloc[:, :-1], train_noise.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
noise_array_knn.append(metrics.recall_score(test.iloc[:, -1], predict, average='micro'))
plt.plot(noise_array_knn)
plt.axhline(recall_original_knn, color='red') | code |
90129110/cell_27 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import numpy as np
import pandas as pd
df = pd.read_csv('../input/yhydata/Dry_Bean.csv')
minmax = preprocessing.MinMaxScaler()
data_minmax = minmax.fit_transform(df.iloc[:, :-1])
le = preprocessing.LabelEncoder()
df['Class'] = le.fit_transform(df.iloc[:, -1])
label = df['Class']
df = pd.DataFrame(data_minmax, columns=df.columns[:-1])
df['Class'] = label
model = KNeighborsClassifier(n_neighbors=5)
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_knn = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = SVC()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_svm = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = GaussianNB()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_bayes = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
model = DecisionTreeClassifier()
model.fit(train.iloc[:, :-1], train.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
recall_original_tree = metrics.recall_score(test.iloc[:, -1], predict, average='micro')
recall_noise = 0
noise_array_knn = []
epsilon_array = []
for r in range(1, 501):
sensitivety = 1
epsilon = r
epsilon_array.append(1 / epsilon)
noise = np.random.laplace(0.0, sensitivety / epsilon, len(df))
df_noise = df.copy()
for i in range(len(df.columns) - 1):
for j in range(len(df)):
df_noise.iloc[j, i] += noise[j]
train_noise, _ = train_test_split(df_noise, test_size=0.2, random_state=7)
model = KNeighborsClassifier(n_neighbors=5)
model.fit(train_noise.iloc[:, :-1], train_noise.iloc[:, -1])
predict = model.predict(test.iloc[:, :-1])
noise_array_knn.append(metrics.recall_score(test.iloc[:, -1], predict, average='micro'))
print(max(noise_array_knn))
print(min(noise_array_knn)) | code |
2040512/cell_13 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data['a'] = daily_Data.AppointmentDay.apply(lambda x: x.split('T')[0])
daily_Data['s'] = daily_Data.ScheduledDay.apply(lambda x: x.split('T')[0])
daily_Data.dtypes | code |
2040512/cell_9 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data.head() | code |
2040512/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
(daily_Data['Gender'] == 'F').value_counts() | code |
2040512/cell_6 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sn
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
f, ax = plt.subplots(figsize=(15, 10))
sn.countplot(y='Handcap', data=daily_Data, color='c') | code |
2040512/cell_11 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data['a'] = daily_Data.AppointmentDay.apply(lambda x: x.split('T')[0])
daily_Data['a'].head(2) | code |
2040512/cell_7 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data.head() | code |
2040512/cell_8 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
print('Age:', sorted(daily_Data.Age.unique()))
print('Gender:', daily_Data.Gender.unique())
print('Neighbourhood', daily_Data.Neighbourhood.unique())
print('Scholarship:', daily_Data.Scholarship.unique())
print('Hipertension:', daily_Data.Hipertension.unique())
print('Diabetes:', daily_Data.Diabetes.unique())
print('Alcoholism:', daily_Data.Alcoholism.unique())
print('Handcap:', daily_Data.Handcap.unique())
print('SMS_received:', daily_Data.SMS_received.unique()) | code |
2040512/cell_16 | [
"image_output_1.png"
] | from datetime import datetime
from sklearn import preprocessing
import calendar
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data['a'] = daily_Data.AppointmentDay.apply(lambda x: x.split('T')[0])
daily_Data['s'] = daily_Data.ScheduledDay.apply(lambda x: x.split('T')[0])
daily_Data.dtypes
daily_Data['weekday'] = daily_Data.a.apply(lambda dateString: calendar.day_name[datetime.strptime(dateString, '%Y-%m-%d').weekday()])
daily_Data.head() | code |
2040512/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
daily_Data.head() | code |
2040512/cell_17 | [
"text_html_output_1.png"
] | from datetime import datetime
from sklearn import preprocessing
import calendar
import pandas as pd
daily_Data = pd.read_csv('../input/KaggleV2-May-2016.csv')
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(daily_Data['Gender'])
daily_Data['Gender'] = le.transform(daily_Data['Gender'])
le.fit(daily_Data['No-show'])
daily_Data['No-show'] = le.transform(daily_Data['No-show'])
le.fit(daily_Data['Neighbourhood'])
daily_Data['Neighbourhood'] = le.transform(daily_Data['Neighbourhood'])
daily_Data['a'] = daily_Data.AppointmentDay.apply(lambda x: x.split('T')[0])
daily_Data['s'] = daily_Data.ScheduledDay.apply(lambda x: x.split('T')[0])
daily_Data.dtypes
daily_Data['weekday'] = daily_Data.a.apply(lambda dateString: calendar.day_name[datetime.strptime(dateString, '%Y-%m-%d').weekday()])
daily_Data.Age.unique() | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.