path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17136778/cell_11
[ "image_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet18, metrics=[accuracy], model_dir='/kaggle/working/models') learn.lr_find() learn.recorder.plot(suggestion=True)
code
17136778/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) data.show_batch(rows=3, figsize=(5, 5))
code
17136778/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet18, metrics=[accuracy], model_dir='/kaggle/working/models') learn.lr_find() learn.fit_one_cycle(4, max_lr=0.01) learn.unfreeze() learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001)) interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix()
code
17136778/cell_14
[ "text_html_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet18, metrics=[accuracy], model_dir='/kaggle/working/models') learn.lr_find() learn.fit_one_cycle(4, max_lr=0.01) learn.unfreeze() learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001))
code
17136778/cell_10
[ "text_plain_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet18, metrics=[accuracy], model_dir='/kaggle/working/models')
code
17136778/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
test = CustomImageList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0) data = CustomImageList.from_csv_custom(path=path, csv_name='train.csv', imgIdx=1).split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test, label=0).transform(get_transforms(do_flip=False)).databunch(bs=128, num_workers=0).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet18, metrics=[accuracy], model_dir='/kaggle/working/models') learn.lr_find() learn.fit_one_cycle(4, max_lr=0.01)
code
89130914/cell_42
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1['Close'].plot(xlim=['2017-12-31', '2018-12-31'], figsize=(20, 5), color='r') plt.title('Airtel in 2018 Crash', fontsize=18)
code
89130914/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1[['Close', 'Rolling 30: 30Days Rolling', 'Rolling 7: 7Days Rolling']].plot(figsize=(20, 9), color=['green', 'blue', 'orange']) plt.title('AIRTEL Stock Price - 5Y (7 Days and 30 days rolling)', fontsize=18) plt.plot()
code
89130914/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df.info()
code
89130914/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df.info()
code
89130914/cell_26
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5)
code
89130914/cell_54
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1['Close'].plot(xlim=['2021-10-01', '2021-11-30'], figsize=(20, 5), color='r') plt.title('Effect During plan Price Hike', fontsize=18)
code
89130914/cell_50
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1.resample(rule='W').max()['Close'].plot(xlim=['2020-02-20', '2020-04-07'], figsize=(12, 5), color='Orange', ls='dashed') plt.ylabel('High') plt.title('Airtel Stock Price in 2020 Market Crash (Weekly)', fontsize=15)
code
89130914/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1['Close'].plot(xlim=['2018-12-31', '2019-12-31'], figsize=(20, 5), color='r', ls='dashed') plt.title('Airtel After 2018 Crash (for next 1 year)', fontsize=18)
code
89130914/cell_49
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1['Close'].plot(xlim=['2020-02-20', '2020-04-07'], figsize=(12, 5), color='r') plt.ylabel('Closing Price') plt.title('Airtel Stock Price in 2020 Market Crash', fontsize=15)
code
89130914/cell_18
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df.tail(2)
code
89130914/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Close'].plot(figsize=(20, 5), color='g') plt.title('AIRTEL Stock Price - 5Y', fontsize=20)
code
89130914/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1.plot()
code
89130914/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.head(2)
code
89130914/cell_17
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5)
code
89130914/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns
code
89130914/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape df.columns df.sample(5) df_1 = df.set_index('Date') df_1.sample(5) df_1['Rolling 7: 7Days Rolling'] = df_1.High.rolling(7).mean() df_1['Rolling 30: 30Days Rolling'] = df_1.High.rolling(30).mean() df_1['Close'].plot(xlim=['2022-02-05', '2022-02-25'], figsize=(12, 5), color='g') plt.title('Airtel Stock Price in last 20 Days', fontsize=17)
code
89130914/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/bharti-airtel-stock-proce/BHARTIARTL.NS.csv') df.shape
code
74056813/cell_6
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data X = data.drop('MEDV', axis=1).values Y = data['MEDV'].values X Room_number = X[:, 5] Room_number = Room_number.reshape(-1, 1) Y = Y.reshape(-1, 1) from sklearn.linear_model import LinearRegression regression = LinearRegression() regression.fit(Room_number, Y) regression_line = np.linspace(min(Room_number), max(Room_number)) plt.scatter(Room_number, Y, color='green') plt.xlabel('Average Room number') plt.ylabel('Average price (x1000 $)') plt.title('The relationship between the number of rooms and the price of the house') plt.plot(regression_line, regression.predict(regression_line), color='black', linewidth=3) plt.show()
code
74056813/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data
code
74056813/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data X = data.drop('MEDV', axis=1).values Y = data['MEDV'].values X Room_number = X[:, 5] Room_number = Room_number.reshape(-1, 1) Y = Y.reshape(-1, 1) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=30) regression_all = LinearRegression() regression_all.fit(X_train, Y_train) Y_prediction = regression_all.predict(X_test) print('R^2: {}'.format(regression_all.score(X_test, Y_test)))
code
74056813/cell_8
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data X = data.drop('MEDV', axis=1).values Y = data['MEDV'].values X Room_number = X[:, 5] Room_number = Room_number.reshape(-1, 1) Y = Y.reshape(-1, 1) from sklearn.linear_model import LinearRegression regression = LinearRegression() regression.fit(Room_number, Y) regression_line = np.linspace(min(Room_number), max(Room_number)) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=30) regression_all = LinearRegression() regression_all.fit(X_train, Y_train) Y_prediction = regression_all.predict(X_test) from sklearn.metrics import mean_squared_error Y_prediction = regression_all.predict(X_test) error = np.sqrt(mean_squared_error(Y_test, Y_prediction)) print('error: {}'.format(error))
code
74056813/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data X = data.drop('MEDV', axis=1).values Y = data['MEDV'].values X
code
74056813/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv') data = data.dropna() data X = data.drop('MEDV', axis=1).values Y = data['MEDV'].values X Room_number = X[:, 5] Room_number = Room_number.reshape(-1, 1) Y = Y.reshape(-1, 1) plt.scatter(Room_number, Y) plt.xlabel('Average Room number') plt.ylabel('Average price (x1000 $)') plt.title('The relationship between the number of rooms and the price of the house') plt.show()
code
128041288/cell_13
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr from sklearn.preprocessing import LabelEncoder, StandardScaler le = LabelEncoder() df['gender'] = le.fit_transform(df['gender']) df['lunch'] = le.fit_transform(df['lunch']) df['test preparation course'] = le.fit_transform(df['test preparation course']) df.head()
code
128041288/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T df.skew()
code
128041288/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum()
code
128041288/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T
code
128041288/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T df.skew() df.corr
code
128041288/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128041288/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T df.hist(figsize=(16, 10), color='green')
code
128041288/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr from sklearn.preprocessing import LabelEncoder, StandardScaler le = LabelEncoder() df['gender'] = le.fit_transform(df['gender']) df['lunch'] = le.fit_transform(df['lunch']) df['test preparation course'] = le.fit_transform(df['test preparation course']) race_dummies = pd.get_dummies(df['race/ethnicity'], prefix='race') df = pd.concat([df, race_dummies], axis=1) df = df.drop('race/ethnicity', axis=1) parental_dummies = pd.get_dummies(df['parental level of education'], prefix='LOE') df = pd.concat([df, parental_dummies], axis=1) df = df.drop('parental level of education', axis=1) X = df.drop(['math score'], axis=1) Y = df['math score'] print(X.shape) print(Y.shape)
code
128041288/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis = plt.subplots(nrows=1, ncols=3, figsize=(16, 6)) sns.boxplot(data=df[['math score']], ax=axis[0]) sns.boxplot(data=df[['reading score']], ax=axis[1]) sns.boxplot(data=df[['writing score']], ax=axis[2])
code
128041288/cell_15
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr from sklearn.preprocessing import LabelEncoder, StandardScaler le = LabelEncoder() df['gender'] = le.fit_transform(df['gender']) df['lunch'] = le.fit_transform(df['lunch']) df['test preparation course'] = le.fit_transform(df['test preparation course']) race_dummies = pd.get_dummies(df['race/ethnicity'], prefix='race') df = pd.concat([df, race_dummies], axis=1) df = df.drop('race/ethnicity', axis=1) parental_dummies = pd.get_dummies(df['parental level of education'], prefix='LOE') df = pd.concat([df, parental_dummies], axis=1) df = df.drop('parental level of education', axis=1) df.head()
code
128041288/cell_3
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df
code
128041288/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr from sklearn.preprocessing import LabelEncoder, StandardScaler le = LabelEncoder() df['gender'] = le.fit_transform(df['gender']) df['lunch'] = le.fit_transform(df['lunch']) df['test preparation course'] = le.fit_transform(df['test preparation course']) race_dummies = pd.get_dummies(df['race/ethnicity'], prefix='race') df = pd.concat([df, race_dummies], axis=1) df = df.drop('race/ethnicity', axis=1) parental_dummies = pd.get_dummies(df['parental level of education'], prefix='LOE') df = pd.concat([df, parental_dummies], axis=1) df = df.drop('parental level of education', axis=1) df.head()
code
128041288/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr from sklearn.preprocessing import LabelEncoder, StandardScaler le = LabelEncoder() df['gender'] = le.fit_transform(df['gender']) df['lunch'] = le.fit_transform(df['lunch']) df['test preparation course'] = le.fit_transform(df['test preparation course']) race_dummies = pd.get_dummies(df['race/ethnicity'], prefix='race') df = pd.concat([df, race_dummies], axis=1) df = df.drop('race/ethnicity', axis=1) df.head()
code
128041288/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() sns.pairplot(df, hue='gender')
code
128041288/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.describe().T fig, axis= plt.subplots(nrows=1, ncols=3, figsize= (16,6)) sns.boxplot(data=df[['math score']], ax= axis[0]); sns.boxplot(data=df[['reading score']], ax= axis[1]); sns.boxplot(data=df[['writing score']], ax= axis[2]); df.skew() df.corr plt.figure(figsize=(16, 9)) sns.heatmap(df.corr(), annot=True)
code
128041288/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') df df.isnull().sum() df.info()
code
32068524/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing
code
32068524/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') test_data.head()
code
32068524/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestClassifier import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068524/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) print('Categorical columns that will be label encoded:', good_label_cols) print('\nCategorical columns that will be dropped from the dataset:', bad_label_cols)
code
32068524/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_nunique = list(map(lambda col: train_data[col].nunique(), object_cols)) d = dict(zip(object_cols, object_nunique)) object_nunique_test = list(map(lambda col: test_data[col].nunique(), test_object_cols)) d_test = dict(zip(test_object_cols, object_nunique_test)) sorted(d.items(), key=lambda x: x[1]) sorted(d.items(), key=lambda x: x[1])
code
32068524/cell_44
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OneHotEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=100, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) from sklearn.preprocessing import OneHotEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_col_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_col_valid = pd.DataFrame(OH_encoder.fit_transform(X_valid[object_cols])) OH_col_train.index = X_train.index OH_col_valid.index = X_valid.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_col_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_col_valid], axis=1) import pandas as pd from sklearn.model_selection import train_test_split X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train.columns if X_train[cname].nunique() < 10 and X_train[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train.columns if X_train[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train[my_cols].copy() X_valid = X_valid[my_cols].copy() X_test = X_test[my_cols].copy() from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder numerical_transformer = SimpleImputer(strategy='constant') categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols), ('cat', categorical_transformer, categorical_cols)]) from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=100, random_state=0) from sklearn.metrics import mean_absolute_error my_pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)]) my_pipeline.fit(X_train, y_train) preds = my_pipeline.predict(X_valid) preds_test = my_pipeline.predict(X_test) score = mean_absolute_error(y_valid, preds) print('MAE:', score)
code
32068524/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols
code
32068524/cell_40
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OneHotEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) from sklearn.preprocessing import OneHotEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_col_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_col_valid = pd.DataFrame(OH_encoder.fit_transform(X_valid[object_cols])) OH_col_train.index = X_train.index OH_col_valid.index = X_valid.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_col_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_col_valid], axis=1) import pandas as pd from sklearn.model_selection import train_test_split X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train.columns if X_train[cname].nunique() < 10 and X_train[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train.columns if X_train[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train[my_cols].copy() X_valid = X_valid[my_cols].copy() X_test = X_test[my_cols].copy() from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder numerical_transformer = SimpleImputer(strategy='constant') categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols), ('cat', categorical_transformer, categorical_cols)])
code
32068524/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) print('Categorical columns that will be label encoded:', good_label_cols) print('\nCategorical columns that will be dropped from the dataset:', bad_label_cols)
code
32068524/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing
code
32068524/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') train_data.head()
code
32068524/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') train_data.describe()
code
32068524/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols
code
32068524/cell_38
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) from sklearn.preprocessing import OneHotEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_col_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_col_valid = pd.DataFrame(OH_encoder.fit_transform(X_valid[object_cols])) OH_col_train.index = X_train.index OH_col_valid.index = X_valid.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_col_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_col_valid], axis=1) import pandas as pd from sklearn.model_selection import train_test_split X = train_data X_test = test_data X.dropna(axis=0, subset=['Survived'], inplace=True) y = X.Survived X.drop(['Survived'], axis=1, inplace=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train.columns if X_train[cname].nunique() < 10 and X_train[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train.columns if X_train[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train[my_cols].copy() X_valid = X_valid[my_cols].copy() X_test = X_test[my_cols].copy()
code
32068524/cell_35
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) from sklearn.preprocessing import OneHotEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_col_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_col_valid = pd.DataFrame(OH_encoder.fit_transform(X_valid[object_cols])) OH_col_train.index = X_train.index OH_col_valid.index = X_valid.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_col_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_col_valid], axis=1)
code
32068524/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols low_cardinality_cols = [col for col in object_cols if train_data[col].nunique() < 10] high_cardinality_cols = list(set(object_cols) - set(low_cardinality_cols)) print('Categorical columns that will be one-hot encoded:', low_cardinality_cols) print('\nCategorical columns that will be dropped from the dataset:', high_cardinality_cols)
code
32068524/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_nunique = list(map(lambda col: train_data[col].nunique(), object_cols)) d = dict(zip(object_cols, object_nunique)) object_nunique_test = list(map(lambda col: test_data[col].nunique(), test_object_cols)) d_test = dict(zip(test_object_cols, object_nunique_test)) sorted(d.items(), key=lambda x: x[1])
code
32068524/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') test_data.describe()
code
32068524/cell_36
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv', index_col='PassengerId') test_data = pd.read_csv('/kaggle/input/titanic/test.csv', index_col='PassengerId') cols_with_missing = [col for col in train_data.columns if train_data[col].isnull().any()] cols_with_missing cat = train_data.dtypes == 'object' object_cols = list(cat[cat].index) object_cols test_cols_with_missing = [col for col in test_data.columns if test_data[col].isnull().any()] test_cols_with_missing test_cat = test_data.dtypes == 'object' test_object_cols = list(test_cat[test_cat].index) test_object_cols object_cols = [col for col in train_data.columns if train_data[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(train_data[col]) == set(test_data[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=100, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cat = X_train.dtypes == 'object' object_cols = list(cat[cat].index) object_cols object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] good_label_cols = [col for col in object_cols if set(X_train[col]) == set(X_valid[col])] bad_label_cols = list(set(object_cols) - set(good_label_cols)) from sklearn.preprocessing import OneHotEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_col_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_col_valid = pd.DataFrame(OH_encoder.fit_transform(X_valid[object_cols])) OH_col_train.index = X_train.index OH_col_valid.index = X_valid.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_col_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_col_valid], axis=1) print('MAE from OHencoder :') print(score_dataset(OH_X_train, OH_X_valid, y_train, y_valid))
code
90128354/cell_4
[ "text_html_output_1.png", "image_output_1.png" ]
import os import pandas as pd data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] print('Training data shape:', train.shape) display(train.head())
code
90128354/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] plt.figure(figsize=(8, 6)) sns.histplot(data=train, x='data source', hue='class') plt.show() data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) else: print(f'Error! Not accounting for {len(data_classes)} no. of classes.') df_summary_count = pd.concat([df_summary_count, df_new]) display(df_summary_count)
code
90128354/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() print('Images are saved at:', images_path) fig, axs = plt.subplots(3, 3, figsize=(18, 14)) for i in range(3): for j in range(3): if j == 0: file_name, class_label = train[train['class'] == data_classes[0]].iloc[i, [1, 2]] elif j == 1: file_name, class_label = train[train['class'] == data_classes[1]].iloc[i, [1, 2]] elif j == 2 and len(data_classes) == 3: file_name, class_label = train[train['class'] == data_classes[2]].iloc[i, [1, 2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) print('Original:', 3 * i + j, np.asarray(img).shape) img = img.convert('L') axs[i, j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img).shape}') axs[i, j].axis('off') axs[i, j].imshow(img, cmap='gray') plt.show()
code
90128354/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) print('No. of unique patients by data source:') num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() display(num_patients_bydata) print('No. of unqiue patients by class:') num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() display(num_patients_byclass)
code
90128354/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() def crop_resize_image(gray_img, final_size=224): """ Set the new dimensions so the cropped image is a square """ width, height = gray_img.size diff = abs(width - height) left, right, top, bottom = (0, 0, 0, 0) if diff % 2 == 0: if width > height: bottom = height left = diff / 2 right = width - left elif height > width: top = diff / 2 bottom = height - top right = width elif width > height: bottom = height left = diff / 2 + 0.5 right = width - left + 1 elif height > width: top = diff / 2 + 0.5 bottom = height - top + 1 right = width img_cropped = gray_img.crop((left, top, right, bottom)) img_final = img_cropped.resize((final_size, final_size)) return img_final ### Look at a few images to explore: # a) what do the scans look like for each class? # b) what is the image resolution? # c) is there anything noticeable across classes / images? # Kaggle dataset print('Images are saved at:', images_path) fig, axs = plt.subplots(3, 3, figsize = (18,14)) for i in range(3): for j in range(3): if j==0: file_name, class_label = train[train['class']==data_classes[0]].iloc[i,[1,2]] elif j==1: file_name, class_label = train[train['class']==data_classes[1]].iloc[i,[1,2]] elif j==2 and len(data_classes)==3: file_name, class_label = train[train['class']==data_classes[2]].iloc[i,[1,2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) print('Original:', (3*i+j), np.asarray(img).shape) # Greyscale convert img = img.convert('L') axs[i,j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img).shape}') axs[i,j].axis('off') axs[i,j].imshow(img, cmap = 'gray') plt.show() final_size = 224 fig, axs = plt.subplots(3, 3, figsize=(18, 14)) for i in range(3): for j in range(3): if j == 0: file_name, class_label = train[train['class'] == data_classes[0]].iloc[i, [1, 2]] elif j == 1: file_name, class_label = train[train['class'] == data_classes[1]].iloc[i, [1, 2]] elif j == 2 and len(data_classes) == 3: file_name, class_label = train[train['class'] == data_classes[2]].iloc[i, [1, 2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) img = img.convert('L') img = crop_resize_image(img, final_size=224) axs[i, j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img_final).shape}') axs[i, j].axis('off') axs[i, j].imshow(img_final, cmap='gray') plt.show()
code
90128354/cell_5
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import pandas as pd data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] print('Classes:\n', train['class'].unique()) print('Data sources:\n', train['data source'].unique()) print('---------------------------------') print('No. of unique patients:', train['patient id'].nunique(), 'out of', train.shape[0], 'images.')
code
32071200/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.groupby('YEAR').size() team_stats.groupby('TEAM').size()[team_stats.groupby('TEAM').size() == 1] team_stats['ADJOE'].idxmax() team_stats.loc[1]['POSTSEASON']
code
32071200/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.head(5)
code
32071200/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.groupby('YEAR').size() team_stats.groupby('TEAM').size()[team_stats.groupby('TEAM').size() == 1]
code
32071200/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.groupby('YEAR').size() team_stats.groupby('TEAM').size()[team_stats.groupby('TEAM').size() == 1] avg_off = team_stats['ADJOE'].mean() avg_def = team_stats['ADJDE'].mean() avg_def - team_stats[team_stats['POSTSEASON'] == 'Champions']['ADJDE'].mean()
code
32071200/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.groupby('YEAR').size()
code
32071200/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') team_stats.groupby('YEAR').size() team_stats.groupby('TEAM').size()[team_stats.groupby('TEAM').size() == 1] avg_off = team_stats['ADJOE'].mean() avg_def = team_stats['ADJDE'].mean() team_stats[team_stats['POSTSEASON'] == 'Champions']['ADJOE'].mean() - avg_off
code
72074805/cell_13
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') train_df = train_df[np.abs(train_df['count'] - train_df['count'].mean()) <= 3 * train_df['count'].std()] train_df.columns
code
72074805/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') train_df.info()
code
72074805/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') submission_df = pd.read_csv('/kaggle/input/bike-sharing-demand/sampleSubmission.csv') submission_df.head()
code
72074805/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') print(train_df.isnull().sum()) print('*' * 50) print(test_df.isnull().sum())
code
72074805/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') train_df.head()
code
72074805/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(nrows=2, ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=train_df, y='count', orient='v', ax=axes[0][0]) sns.boxplot(data=train_df, y='count', x='season', orient='v', ax=axes[0][1]) sns.boxplot(data=train_df, y='count', x='hour', orient='v', ax=axes[1][0]) sns.boxplot(data=train_df, y='count', x='workingday', orient='v', ax=axes[1][1]) axes[0][0].set(ylabel='Count', title='Box Plot On Count') axes[0][1].set(xlabel='Season', ylabel='Count', title='Box Plot On Count Across Season') axes[1][0].set(xlabel='Hour Of The Day', ylabel='Count', title='Box Plot On Count Across Hour Of The Day') axes[1][1].set(xlabel='Working Day', ylabel='Count', title='Box Plot On Count Across Working Day')
code
72074805/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72074805/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') train_df.describe()
code
72074805/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(nrows=2,ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=train_df,y="count",orient="v",ax=axes[0][0]) sns.boxplot(data=train_df,y="count",x="season",orient="v",ax=axes[0][1]) sns.boxplot(data=train_df,y="count",x="hour",orient="v",ax=axes[1][0]) sns.boxplot(data=train_df,y="count",x="workingday",orient="v",ax=axes[1][1]) axes[0][0].set(ylabel='Count',title="Box Plot On Count") axes[0][1].set(xlabel='Season', ylabel='Count',title="Box Plot On Count Across Season") axes[1][0].set(xlabel='Hour Of The Day', ylabel='Count',title="Box Plot On Count Across Hour Of The Day") axes[1][1].set(xlabel='Working Day', ylabel='Count',title="Box Plot On Count Across Working Day") train_df = train_df[np.abs(train_df['count'] - train_df['count'].mean()) <= 3 * train_df['count'].std()] train_df.columns train_df = train_df.drop(['datetime'], axis=1) fig, ax = plt.subplots(figsize=(15, 15)) sns.heatmap(train_df.corr(), annot=True, ax=ax)
code
72074805/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') test_df.head()
code
72074805/cell_12
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') print('shape with outliers: ', train_df.shape) train_df = train_df[np.abs(train_df['count'] - train_df['count'].mean()) <= 3 * train_df['count'].std()] print('shape without outliers: ', train_df.shape)
code
72074805/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test_df = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') submission_df = pd.read_csv('/kaggle/input/bike-sharing-demand/sampleSubmission.csv') submission_df['count'].value_counts()
code
32068402/cell_42
[ "text_plain_output_1.png" ]
from matplotlib import pylab from sklearn.manifold import TSNE from sklearn.preprocessing import normalize import numpy as np import os fasttext_model_dir = '../input/fasttext-no-subwords-trigrams' num_points = 400 first_line = True index_to_word = [] with open(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt'), 'r') as f: for line_num, line in enumerate(f): if first_line: dim = int(line.strip().split()[1]) word_vecs = np.zeros((num_points, dim), dtype=float) first_line = False continue line = line.strip() word = line.split()[0] vec = word_vecs[line_num - 1] for index, vec_val in enumerate(line.split()[1:]): vec[index] = float(vec_val) index_to_word.append(word) if line_num >= num_points: break word_vecs = normalize(word_vecs, copy=False, return_norm=False) tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=10000) two_d_embeddings = tsne.fit_transform(word_vecs[:num_points]) labels = index_to_word[:num_points] def plot(embeddings, labels): pylab.figure(figsize=(20, 20)) for i, label in enumerate(labels): x, y = embeddings[i, :] pylab.scatter(x, y) pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') pylab.show() plot(two_d_embeddings, labels)
code
32068402/cell_56
[ "text_plain_output_1.png" ]
from gensim.models.phrases import Phraser from pprint import pprint from sklearn.preprocessing import normalize import gensim.models.keyedvectors as word2vec import numpy as np import os import pandas as pd sentences_df = pd.read_csv('../input/covid19sentencesmetadata/sentences_with_metadata.csv') bigram_model = Phraser.load('../input/covid19phrasesmodels/covid_bigram_model_v0.pkl') trigram_model = Phraser.load('../input/covid19phrasesmodels/covid_trigram_model_v0.pkl') fasttext_model_dir = '../input/fasttext-no-subwords-trigrams' num_points = 400 first_line = True index_to_word = [] with open(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt'), 'r') as f: for line_num, line in enumerate(f): if first_line: dim = int(line.strip().split()[1]) word_vecs = np.zeros((num_points, dim), dtype=float) first_line = False continue line = line.strip() word = line.split()[0] vec = word_vecs[line_num - 1] for index, vec_val in enumerate(line.split()[1:]): vec[index] = float(vec_val) index_to_word.append(word) if line_num >= num_points: break word_vecs = normalize(word_vecs, copy=False, return_norm=False) from pprint import pprint import gensim.models.keyedvectors as word2vec fasttext_model = word2vec.KeyedVectors.load_word2vec_format(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt')) def print_most_similar(search_term): synonyms = fasttext_model.most_similar(search_term) def create_articles_metadata_mapping(sentences_df: pd.DataFrame) -> dict: sentence_id_to_metadata = {} for row_count, row in sentences_df.iterrows(): sentence_id_to_metadata[row_count] = dict(paper_id=row['paper_id'], cord_uid=row['cord_uid'], source=row['source'], url=row['url'], publish_time=row['publish_time'], authors=row['authors'], section=row['section'], sentence=row['sentence']) return sentence_id_to_metadata sentence_id_to_metadata = create_articles_metadata_mapping(sentences_df) search_engine = SearchEngine(sentence_id_to_metadata, sentences_df, bigram_model, trigram_model, fasttext_model)
code
32068402/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd sentences_df = pd.read_csv('../input/covid19sentencesmetadata/sentences_with_metadata.csv') sentences_df.head()
code
32068402/cell_33
[ "text_plain_output_1.png" ]
from gensim.models.phrases import Phraser from typing import List import contractions import ftfy import re import spacy import string import spacy import scispacy nlp = spacy.load('../input/scispacymodels/en_core_sci_sm/en_core_sci_sm-0.2.4') nlp.max_length = 2000000 import re CURRENCIES = {'$': 'USD', 'zł': 'PLN', '£': 'GBP', '¥': 'JPY', '฿': 'THB', '₡': 'CRC', '₦': 'NGN', '₩': 'KRW', '₪': 'ILS', '₫': 'VND', '€': 'EUR', '₱': 'PHP', '₲': 'PYG', '₴': 'UAH', '₹': 'INR'} RE_NUMBER = re.compile('(?:^|(?<=[^\\w,.]))[+–-]?(([1-9]\\d{0,2}(,\\d{3})+(\\.\\d*)?)|([1-9]\\d{0,2}([ .]\\d{3})+(,\\d*)?)|(\\d*?[.,]\\d+)|\\d+)(?:$|(?=\\b))') RE_URL = re.compile('((http://www\\.|https://www\\.|http://|https://)?' + '[a-z0-9]+([\\-.][a-z0-9]+)*\\.[a-z]{2,5}(:[0-9]{1,5})?(/.*)?)') STOP_WORDS = {'a', 'an', 'and', 'are', 'as', 'at', 'be', 'but', 'by', 'for', 'if', 'in', 'into', 'is', 'it', 'no', 'not', 'of', 'on', 'or', 'such', 'that', 'the', 'their', 'then', 'there', 'these', 'they', 'this', 'to', 'was', 'will', 'with'} import string from typing import List import ftfy import contractions def clean_tokenized_sentence(tokens: List[str], unicode_normalization='NFC', unpack_contractions=False, replace_currency_symbols=False, remove_punct=True, remove_numbers=False, lowercase=True, remove_urls=True, remove_stop_words=True) -> str: if remove_stop_words: tokens = [token for token in tokens if token not in STOP_WORDS] sentence = ' '.join(tokens) if unicode_normalization: sentence = ftfy.fix_text(sentence, normalization=unicode_normalization) if unpack_contractions: sentence = contractions.fix(sentence, slang=False) if replace_currency_symbols: for currency_sign, currency_tok in CURRENCIES.items(): sentence = sentence.replace(currency_sign, f'{currency_tok} ') if remove_urls: sentence = RE_URL.sub('_URL_', sentence) if remove_punct: sentence = sentence.translate(str.maketrans('', '', string.punctuation)) sentence = re.sub(' +', ' ', sentence) if remove_numbers: sentence = RE_NUMBER.sub('_NUMBER_', sentence) if lowercase: sentence = sentence.lower() return sentence def clean_sentence(sentence) -> str: doc = nlp(sentence) tokens = [str(token) for token in doc] return clean_tokenized_sentence(tokens) bigram_model = Phraser.load('../input/covid19phrasesmodels/covid_bigram_model_v0.pkl') trigram_model = Phraser.load('../input/covid19phrasesmodels/covid_trigram_model_v0.pkl') def clean_sentence(sentence, bigram_model=None, trigram_model=None) -> str: doc = nlp(sentence) tokens = [str(token) for token in doc] cleaned_sentence = clean_tokenized_sentence(tokens) if bigram_model and trigram_model: sentence_with_bigrams = bigram_model[cleaned_sentence.split(' ')] sentence_with_trigrams = trigram_model[sentence_with_bigrams] return ' '.join(sentence_with_trigrams) return cleaned_sentence print(clean_sentence('On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio', bigram_model, trigram_model))
code
32068402/cell_65
[ "text_plain_output_1.png" ]
bart_summarizer = BartSummarizer()
code
32068402/cell_48
[ "text_plain_output_1.png" ]
from pprint import pprint from sklearn.preprocessing import normalize import gensim.models.keyedvectors as word2vec import numpy as np import os fasttext_model_dir = '../input/fasttext-no-subwords-trigrams' num_points = 400 first_line = True index_to_word = [] with open(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt'), 'r') as f: for line_num, line in enumerate(f): if first_line: dim = int(line.strip().split()[1]) word_vecs = np.zeros((num_points, dim), dtype=float) first_line = False continue line = line.strip() word = line.split()[0] vec = word_vecs[line_num - 1] for index, vec_val in enumerate(line.split()[1:]): vec[index] = float(vec_val) index_to_word.append(word) if line_num >= num_points: break word_vecs = normalize(word_vecs, copy=False, return_norm=False) from pprint import pprint import gensim.models.keyedvectors as word2vec fasttext_model = word2vec.KeyedVectors.load_word2vec_format(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt')) def print_most_similar(search_term): synonyms = fasttext_model.most_similar(search_term) print_most_similar('pathogen')
code
32068402/cell_73
[ "text_plain_output_1.png" ]
from IPython.display import display, HTML from datetime import datetime from gensim.models.phrases import Phraser from pprint import pprint from sklearn.preprocessing import normalize from transformers import BartTokenizer, BartForConditionalGeneration from typing import List import contractions import ftfy import gensim.models.keyedvectors as word2vec import json import numpy as np import operator import os import pandas as pd import re import string import torch import re CURRENCIES = {'$': 'USD', 'zł': 'PLN', '£': 'GBP', '¥': 'JPY', '฿': 'THB', '₡': 'CRC', '₦': 'NGN', '₩': 'KRW', '₪': 'ILS', '₫': 'VND', '€': 'EUR', '₱': 'PHP', '₲': 'PYG', '₴': 'UAH', '₹': 'INR'} RE_NUMBER = re.compile('(?:^|(?<=[^\\w,.]))[+–-]?(([1-9]\\d{0,2}(,\\d{3})+(\\.\\d*)?)|([1-9]\\d{0,2}([ .]\\d{3})+(,\\d*)?)|(\\d*?[.,]\\d+)|\\d+)(?:$|(?=\\b))') RE_URL = re.compile('((http://www\\.|https://www\\.|http://|https://)?' + '[a-z0-9]+([\\-.][a-z0-9]+)*\\.[a-z]{2,5}(:[0-9]{1,5})?(/.*)?)') STOP_WORDS = {'a', 'an', 'and', 'are', 'as', 'at', 'be', 'but', 'by', 'for', 'if', 'in', 'into', 'is', 'it', 'no', 'not', 'of', 'on', 'or', 'such', 'that', 'the', 'their', 'then', 'there', 'these', 'they', 'this', 'to', 'was', 'will', 'with'} import string from typing import List import ftfy import contractions def clean_tokenized_sentence(tokens: List[str], unicode_normalization='NFC', unpack_contractions=False, replace_currency_symbols=False, remove_punct=True, remove_numbers=False, lowercase=True, remove_urls=True, remove_stop_words=True) -> str: if remove_stop_words: tokens = [token for token in tokens if token not in STOP_WORDS] sentence = ' '.join(tokens) if unicode_normalization: sentence = ftfy.fix_text(sentence, normalization=unicode_normalization) if unpack_contractions: sentence = contractions.fix(sentence, slang=False) if replace_currency_symbols: for currency_sign, currency_tok in CURRENCIES.items(): sentence = sentence.replace(currency_sign, f'{currency_tok} ') if remove_urls: sentence = RE_URL.sub('_URL_', sentence) if remove_punct: sentence = sentence.translate(str.maketrans('', '', string.punctuation)) sentence = re.sub(' +', ' ', sentence) if remove_numbers: sentence = RE_NUMBER.sub('_NUMBER_', sentence) if lowercase: sentence = sentence.lower() return sentence sentences_df = pd.read_csv('../input/covid19sentencesmetadata/sentences_with_metadata.csv') bigram_model = Phraser.load('../input/covid19phrasesmodels/covid_bigram_model_v0.pkl') trigram_model = Phraser.load('../input/covid19phrasesmodels/covid_trigram_model_v0.pkl') fasttext_model_dir = '../input/fasttext-no-subwords-trigrams' num_points = 400 first_line = True index_to_word = [] with open(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt'), 'r') as f: for line_num, line in enumerate(f): if first_line: dim = int(line.strip().split()[1]) word_vecs = np.zeros((num_points, dim), dtype=float) first_line = False continue line = line.strip() word = line.split()[0] vec = word_vecs[line_num - 1] for index, vec_val in enumerate(line.split()[1:]): vec[index] = float(vec_val) index_to_word.append(word) if line_num >= num_points: break word_vecs = normalize(word_vecs, copy=False, return_norm=False) from pprint import pprint import gensim.models.keyedvectors as word2vec fasttext_model = word2vec.KeyedVectors.load_word2vec_format(os.path.join(fasttext_model_dir, 'word-vectors-100d.txt')) def print_most_similar(search_term): synonyms = fasttext_model.most_similar(search_term) def create_articles_metadata_mapping(sentences_df: pd.DataFrame) -> dict: sentence_id_to_metadata = {} for row_count, row in sentences_df.iterrows(): sentence_id_to_metadata[row_count] = dict(paper_id=row['paper_id'], cord_uid=row['cord_uid'], source=row['source'], url=row['url'], publish_time=row['publish_time'], authors=row['authors'], section=row['section'], sentence=row['sentence']) return sentence_id_to_metadata sentence_id_to_metadata = create_articles_metadata_mapping(sentences_df) import operator from datetime import datetime class SearchEngine: def __init__(self, sentence_id_to_metadata: dict, sentences_df: pd.DataFrame, bigram_model, trigram_model, fasttext_model): self.sentence_id_to_metadata = sentence_id_to_metadata self.cleaned_sentences = sentences_df['cleaned_sentence'].tolist() self.bigram_model = bigram_model self.trigram_model = trigram_model self.fasttext_model = fasttext_model def _get_search_terms(self, keywords, synonyms_threshold): cleaned_terms = [clean_tokenized_sentence(keyword.split(' ')) for keyword in keywords] cleaned_terms = [term for term in cleaned_terms if term] terms_with_bigrams = self.bigram_model[' '.join(cleaned_terms).split(' ')] terms_with_trigrams = self.trigram_model[terms_with_bigrams] search_terms = [self.fasttext_model.most_similar(token) for token in terms_with_trigrams] search_terms = [synonym[0] for synonyms in search_terms for synonym in synonyms if synonym[1] >= synonyms_threshold] search_terms = list(terms_with_trigrams) + search_terms return search_terms def search(self, keywords: List[str], optional_keywords=None, top_n: int=10, synonyms_threshold=0.7, keyword_weight: float=3.0, optional_keyword_weight: float=0.5) -> List[dict]: if optional_keywords is None: optional_keywords = [] search_terms = self._get_search_terms(keywords, synonyms_threshold) optional_search_terms = self._get_search_terms(optional_keywords, synonyms_threshold) if optional_keywords else [] date_today = datetime.today() indexes = [] match_counts = [] days_diffs = [] for sentence_index, sentence in enumerate(self.cleaned_sentences): sentence_tokens = sentence.split(' ') sentence_tokens_set = set(sentence_tokens) match_count = sum([keyword_weight if keyword in sentence_tokens_set else 0 for keyword in search_terms]) if match_count > 0: indexes.append(sentence_index) if optional_search_terms: match_count += sum([optional_keyword_weight if keyword in sentence_tokens_set else 0 for keyword in optional_search_terms]) match_counts.append(match_count) article_date = self.sentence_id_to_metadata[sentence_index]['publish_time'] if article_date == '2020': article_date = '2020-01-01' article_date = datetime.strptime(article_date, '%Y-%m-%d') days_diff = (date_today - article_date).days days_diffs.append(days_diff) match_counts = [float(match_count) / sum(match_counts) for match_count in match_counts] days_diffs = [max(days_diffs) - days_diff for days_diff in days_diffs] days_diffs = [float(days_diff) / sum(days_diffs) for days_diff in days_diffs] index_to_score = {} for index, match_count, days_diff in zip(indexes, match_counts, days_diffs): index_to_score[index] = 0.7 * match_count + 0.3 * days_diff sorted_indexes = sorted(index_to_score.items(), key=operator.itemgetter(1), reverse=True) sorted_indexes = [item[0] for item in sorted_indexes] sorted_indexes = sorted_indexes[0:min(top_n, len(sorted_indexes))] results = [] for index in sorted_indexes: results.append(self.sentence_id_to_metadata[index]) return results task_id = 2 import json with open(f'../input/covid19seedsentences/{task_id}.json') as in_fp: seed_sentences_json = json.load(in_fp) import torch from transformers import BartTokenizer, BartForConditionalGeneration class BartSummarizer: def __init__(self): self.torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' model_name = 'bart-large-cnn' self.tokenizer_summarize = BartTokenizer.from_pretrained(model_name) self.model_summarize = BartForConditionalGeneration.from_pretrained(model_name) self.model_summarize.to(self.torch_device) self.model_summarize.eval() def create_summary(self, text: str, repetition_penalty=1.0) -> str: text_input_ids = self.tokenizer_summarize.batch_encode_plus([text], return_tensors='pt', max_length=1024)['input_ids'].to(self.torch_device) summary_ids = self.model_summarize.generate(text_input_ids, num_beams=4, max_length=1024, min_length=256, no_repeat_ngram_size=4, repetition_penalty=repetition_penalty) summary = self.tokenizer_summarize.decode(summary_ids.squeeze(), skip_special_tokens=True) return summary bart_summarizer = BartSummarizer() with open(f'../input/covid19seedsentences/{task_id}_relevant_sentences.json') as in_fp: relevant_sentences_json = json.load(in_fp) answers_results = [] for idx, sub_task_json in enumerate(relevant_sentences_json['subTasks']): sub_task_description = sub_task_json['sub_task_description'] best_sentences = seed_sentences_json['subTasks'][idx]['bestSentences'] relevant_sentences = sub_task_json['relevant_sentences'] relevant_sentences_texts = [result['sentence'] for result in relevant_sentences] sub_task_summary = bart_summarizer.create_summary(' '.join(best_sentences + relevant_sentences_texts)) answers_results.append(dict(sub_task_description=sub_task_description, relevant_sentences=relevant_sentences, sub_task_summary=sub_task_summary)) from IPython.display import display, HTML pd.set_option('display.max_colwidth', 0) def display_summary(summary: str): return def display_sub_task_description(sub_task_description): return def display_task_name(task_name): return def visualize_output(sub_task_json): """ Prints output for each sub-task """ results = sub_task_json.get('relevant_sentences') sentence_output = pd.DataFrame(sub_task_json.get('relevant_sentences')) sentence_output.rename(columns={'sentence': 'Relevant Sentence', 'cord_id': 'CORD UID', 'publish_time': 'Publish Time', 'url': 'URL', 'source': 'Source'}, inplace=True) display_task_name(seed_sentences_json['taskName']) for sub_task_json in answers_results: visualize_output(sub_task_json)
code
32068402/cell_61
[ "text_plain_output_1.png" ]
import json task_id = 2 import json with open(f'../input/covid19seedsentences/{task_id}.json') as in_fp: seed_sentences_json = json.load(in_fp) print(seed_sentences_json['taskName'])
code
32068402/cell_11
[ "text_plain_output_1.png" ]
# Install scispacy package !pip install scispacy
code
32068402/cell_19
[ "text_plain_output_1.png" ]
from typing import List import contractions import ftfy import re import spacy import string import spacy import scispacy nlp = spacy.load('../input/scispacymodels/en_core_sci_sm/en_core_sci_sm-0.2.4') nlp.max_length = 2000000 import re CURRENCIES = {'$': 'USD', 'zł': 'PLN', '£': 'GBP', '¥': 'JPY', '฿': 'THB', '₡': 'CRC', '₦': 'NGN', '₩': 'KRW', '₪': 'ILS', '₫': 'VND', '€': 'EUR', '₱': 'PHP', '₲': 'PYG', '₴': 'UAH', '₹': 'INR'} RE_NUMBER = re.compile('(?:^|(?<=[^\\w,.]))[+–-]?(([1-9]\\d{0,2}(,\\d{3})+(\\.\\d*)?)|([1-9]\\d{0,2}([ .]\\d{3})+(,\\d*)?)|(\\d*?[.,]\\d+)|\\d+)(?:$|(?=\\b))') RE_URL = re.compile('((http://www\\.|https://www\\.|http://|https://)?' + '[a-z0-9]+([\\-.][a-z0-9]+)*\\.[a-z]{2,5}(:[0-9]{1,5})?(/.*)?)') STOP_WORDS = {'a', 'an', 'and', 'are', 'as', 'at', 'be', 'but', 'by', 'for', 'if', 'in', 'into', 'is', 'it', 'no', 'not', 'of', 'on', 'or', 'such', 'that', 'the', 'their', 'then', 'there', 'these', 'they', 'this', 'to', 'was', 'will', 'with'} import string from typing import List import ftfy import contractions def clean_tokenized_sentence(tokens: List[str], unicode_normalization='NFC', unpack_contractions=False, replace_currency_symbols=False, remove_punct=True, remove_numbers=False, lowercase=True, remove_urls=True, remove_stop_words=True) -> str: if remove_stop_words: tokens = [token for token in tokens if token not in STOP_WORDS] sentence = ' '.join(tokens) if unicode_normalization: sentence = ftfy.fix_text(sentence, normalization=unicode_normalization) if unpack_contractions: sentence = contractions.fix(sentence, slang=False) if replace_currency_symbols: for currency_sign, currency_tok in CURRENCIES.items(): sentence = sentence.replace(currency_sign, f'{currency_tok} ') if remove_urls: sentence = RE_URL.sub('_URL_', sentence) if remove_punct: sentence = sentence.translate(str.maketrans('', '', string.punctuation)) sentence = re.sub(' +', ' ', sentence) if remove_numbers: sentence = RE_NUMBER.sub('_NUMBER_', sentence) if lowercase: sentence = sentence.lower() return sentence def clean_sentence(sentence) -> str: doc = nlp(sentence) tokens = [str(token) for token in doc] return clean_tokenized_sentence(tokens) print(clean_sentence("Let's clean this sentence!"))
code
32068402/cell_50
[ "text_plain_output_1.png" ]
[(0, '0.079"•" + 0.019"blood" + 0.015"associated" + 0.013"cells" + 0.012"ace2" + 0.012"protein" + 0.011"important" + 0.011"levels" + 0.010"diseases" + 0.010"cell"'), (1, '0.110"who" + 0.088"it" + 0.056"response" + 0.043"could" + 0.036"under" + 0.035"available" + 0.032"major" + 0.032"as" + 0.030"without" + 0.024"muscle"'), (2, '0.173"■" + 0.020"some" + 0.013"drugs" + 0.010"transmission" + 0.009"surgery" + 0.009"must" + 0.009"drug" + 0.009"there" + 0.008"increased" + 0.008"high"'), (3, '0.071"de" + 0.036"were" + 0.025"patient" + 0.023"1" + 0.022"after" + 0.018"a" + 0.018"more" + 0.015"all" + 0.015"when" + 0.014"cause"'), (4, '0.044"the" + 0.035"from" + 0.028"should" + 0.019"other" + 0.018"risk" + 0.017"oral" + 0.017"which" + 0.017"in" + 0.013"use" + 0.013"cases"'), (5, '0.069"may" + 0.033"can" + 0.031"have" + 0.029"disease" + 0.028"dental" + 0.022"also" + 0.020"has" + 0.020"been" + 0.018"health" + 0.016"virus"'), (6, '0.051"la" + 0.031"en" + 0.025"2" + 0.023"3" + 0.016"que" + 0.016"el" + 0.016"y" + 0.014"los" + 0.014"4" + 0.013"les"'), (7, '0.045"s" + 0.041"et" + 0.031"during" + 0.023"al" + 0.022"had" + 0.021"people" + 0.020"à" + 0.018"local" + 0.017"days" + 0.016"2020"'), (8, '0.062"patients" + 0.030"treatment" + 0.028"care" + 0.020"used" + 0.014"clinical" + 0.014"infection" + 0.013"common" + 0.013"severe" + 0.013"respiratory" + 0.012"dentistry"'), (9, '0.030"using" + 0.020"areas" + 0.018"ct" + 0.014"described" + 0.014"performed" + 0.013"lesions" + 0.013"above" + 0.012"day" + 0.011"learning" + 0.011"reactions"')]
code
32068402/cell_68
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import json task_id = 2 import json with open(f'../input/covid19seedsentences/{task_id}.json') as in_fp: seed_sentences_json = json.load(in_fp) bart_summarizer = BartSummarizer() with open(f'../input/covid19seedsentences/{task_id}_relevant_sentences.json') as in_fp: relevant_sentences_json = json.load(in_fp) answers_results = [] for idx, sub_task_json in enumerate(relevant_sentences_json['subTasks']): sub_task_description = sub_task_json['sub_task_description'] print(f'Working on task: {sub_task_description}') best_sentences = seed_sentences_json['subTasks'][idx]['bestSentences'] relevant_sentences = sub_task_json['relevant_sentences'] relevant_sentences_texts = [result['sentence'] for result in relevant_sentences] sub_task_summary = bart_summarizer.create_summary(' '.join(best_sentences + relevant_sentences_texts)) answers_results.append(dict(sub_task_description=sub_task_description, relevant_sentences=relevant_sentences, sub_task_summary=sub_task_summary))
code