path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129024934/cell_24
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df
code
129024934/cell_22
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df
code
129024934/cell_53
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3
code
129024934/cell_27
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y']
code
129024934/cell_37
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df
code
129024934/cell_12
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser1['USA']
code
129024934/cell_5
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels)
code
33095866/cell_13
[ "text_html_output_2.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px # plotly express lockdown_df = pd.read_csv(files['countryLockdowndates.csv']) lockdown_df['LockDown Date'] = pd.to_datetime(lockdown_df['Date'], format='%d/%m/%Y') lockdown_df.sort_values('LockDown Date', inplace=True) df = pd.read_csv(files['time_series_covid_19_confirmed.csv']) df[df.columns[df.columns.str.contains('/20')]] = df[df.columns[df.columns.str.contains('/20')]].clip(lower=0) country_col = 'Country/Region' confirmed_col = 'Confirmed Cases' confirmed_df = pd.melt(df[df.columns.difference(['Province/State', 'Lat', 'Long'])].groupby([country_col, 'iso_codes']).sum().reset_index(), id_vars=[country_col, 'iso_codes'], var_name='Date', value_name=confirmed_col) confirmed_df = pd.merge(confirmed_df, lockdown_df[[country_col, 'LockDown Date']].groupby(country_col).first(), left_on=country_col, right_on=country_col, how='left') confirmed_df['Date'] = pd.to_datetime(confirmed_df['Date']) confirmed_df.sort_values('Date', inplace=True) fig = px.choropleth(confirmed_df, locations='iso_codes', hover_name=country_col, animation_frame=confirmed_df['Date'].astype(str), color=confirmed_col, color_continuous_scale=px.colors.sequential.Rainbow, projection='natural earth', title='Confirmed Cases over the world') top_affected_countries = df.sort_values(confirmed_df['Date'].max().strftime('%-m/%-d/%y'), ascending=False)[country_col].iloc[:10].values confirmed_df = confirmed_df[confirmed_df[country_col].isin(top_affected_countries)].sort_values('Date') fig = px.line(confirmed_df, color=country_col, x='Date', y=confirmed_col, title='Confirmed Case vs Date for top 10 infected countries') fig.update_xaxes(rangeslider_visible=True) confirmed_pct_df = pd.concat([confirmed_df, confirmed_df.groupby([country_col])[confirmed_col].pct_change().rename('Percentage Change') * 100], axis=1) fig = px.line(confirmed_pct_df, color=country_col, x='Date', y='Percentage Change', title='Percentage Change each day for top 10 infected countries') fig.update_layout(yaxis={'ticksuffix': '%'}) fig.update_xaxes(rangeslider_visible=True) confirmed_pct_df['Percentage Change'] = confirmed_pct_df[[confirmed_col, 'Percentage Change']].apply(lambda x: x['Percentage Change'] if x['Percentage Change'] != np.inf else x[confirmed_col] * 100, axis=1) confirmed_pct_df['After LockDown'] = (confirmed_pct_df['Date'] > confirmed_pct_df['LockDown Date']).astype(str) Mean_Median_Confirmed_df = confirmed_pct_df[[country_col, 'After LockDown', 'Percentage Change']].groupby([country_col, 'After LockDown']).agg(['mean', 'std']) Mean_Median_Confirmed_df.columns = Mean_Median_Confirmed_df.columns.droplevel(0) Mean_Median_Confirmed_df.rename({'mean': 'Mean', 'std': 'Standard Deviation'}, axis=1, inplace=True) Mean_Median_Confirmed_df = Mean_Median_Confirmed_df.reset_index() fig = px.bar(Mean_Median_Confirmed_df, x=country_col, y='Standard Deviation', color='After LockDown', barmode='group', title='Standard Deviation Comparison of Percentage Change Before & After Lockdown for top 10 infected countries') fig.show() fig = px.bar(Mean_Median_Confirmed_df, x=country_col, y='Mean', color='After LockDown', barmode='group', title='Mean Comparison of Percentage Change Before & After Lockdown for top 10 infected countries') fig.show()
code
33095866/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px # plotly express lockdown_df = pd.read_csv(files['countryLockdowndates.csv']) lockdown_df['LockDown Date'] = pd.to_datetime(lockdown_df['Date'], format='%d/%m/%Y') lockdown_df.sort_values('LockDown Date', inplace=True) df = pd.read_csv(files['time_series_covid_19_confirmed.csv']) df[df.columns[df.columns.str.contains('/20')]] = df[df.columns[df.columns.str.contains('/20')]].clip(lower=0) country_col = 'Country/Region' confirmed_col = 'Confirmed Cases' confirmed_df = pd.melt(df[df.columns.difference(['Province/State', 'Lat', 'Long'])].groupby([country_col, 'iso_codes']).sum().reset_index(), id_vars=[country_col, 'iso_codes'], var_name='Date', value_name=confirmed_col) confirmed_df = pd.merge(confirmed_df, lockdown_df[[country_col, 'LockDown Date']].groupby(country_col).first(), left_on=country_col, right_on=country_col, how='left') confirmed_df['Date'] = pd.to_datetime(confirmed_df['Date']) confirmed_df.sort_values('Date', inplace=True) fig = px.choropleth(confirmed_df, locations='iso_codes', hover_name=country_col, animation_frame=confirmed_df['Date'].astype(str), color=confirmed_col, color_continuous_scale=px.colors.sequential.Rainbow, projection='natural earth', title='Confirmed Cases over the world') fig.show()
code
33095866/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) lockdown_df = pd.read_csv(files['countryLockdowndates.csv']) lockdown_df['LockDown Date'] = pd.to_datetime(lockdown_df['Date'], format='%d/%m/%Y') lockdown_df.sort_values('LockDown Date', inplace=True) df = pd.read_csv(files['time_series_covid_19_confirmed.csv']) df[df.columns[df.columns.str.contains('/20')]] = df[df.columns[df.columns.str.contains('/20')]].clip(lower=0) country_col = 'Country/Region' confirmed_col = 'Confirmed Cases' df.head()
code
33095866/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import plotly.express as px import pycountry from geopy.geocoders import Nominatim import os file_input = ['/kaggle/input', '../../../datasets/extracts/'] files = {} for dirname, _, filenames in os.walk(file_input[0]): for filename in filenames: files[filename] = os.path.join(dirname, filename) print(filename)
code
33095866/cell_8
[ "text_html_output_2.png", "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px # plotly express lockdown_df = pd.read_csv(files['countryLockdowndates.csv']) lockdown_df['LockDown Date'] = pd.to_datetime(lockdown_df['Date'], format='%d/%m/%Y') lockdown_df.sort_values('LockDown Date', inplace=True) df = pd.read_csv(files['time_series_covid_19_confirmed.csv']) df[df.columns[df.columns.str.contains('/20')]] = df[df.columns[df.columns.str.contains('/20')]].clip(lower=0) country_col = 'Country/Region' confirmed_col = 'Confirmed Cases' confirmed_df = pd.melt(df[df.columns.difference(['Province/State', 'Lat', 'Long'])].groupby([country_col, 'iso_codes']).sum().reset_index(), id_vars=[country_col, 'iso_codes'], var_name='Date', value_name=confirmed_col) confirmed_df = pd.merge(confirmed_df, lockdown_df[[country_col, 'LockDown Date']].groupby(country_col).first(), left_on=country_col, right_on=country_col, how='left') confirmed_df['Date'] = pd.to_datetime(confirmed_df['Date']) confirmed_df.sort_values('Date', inplace=True) fig = px.choropleth(confirmed_df, locations='iso_codes', hover_name=country_col, animation_frame=confirmed_df['Date'].astype(str), color=confirmed_col, color_continuous_scale=px.colors.sequential.Rainbow, projection='natural earth', title='Confirmed Cases over the world') top_affected_countries = df.sort_values(confirmed_df['Date'].max().strftime('%-m/%-d/%y'), ascending=False)[country_col].iloc[:10].values confirmed_df = confirmed_df[confirmed_df[country_col].isin(top_affected_countries)].sort_values('Date') fig = px.line(confirmed_df, color=country_col, x='Date', y=confirmed_col, title='Confirmed Case vs Date for top 10 infected countries') fig.update_xaxes(rangeslider_visible=True) fig.show()
code
33095866/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px # plotly express lockdown_df = pd.read_csv(files['countryLockdowndates.csv']) lockdown_df['LockDown Date'] = pd.to_datetime(lockdown_df['Date'], format='%d/%m/%Y') lockdown_df.sort_values('LockDown Date', inplace=True) df = pd.read_csv(files['time_series_covid_19_confirmed.csv']) df[df.columns[df.columns.str.contains('/20')]] = df[df.columns[df.columns.str.contains('/20')]].clip(lower=0) country_col = 'Country/Region' confirmed_col = 'Confirmed Cases' confirmed_df = pd.melt(df[df.columns.difference(['Province/State', 'Lat', 'Long'])].groupby([country_col, 'iso_codes']).sum().reset_index(), id_vars=[country_col, 'iso_codes'], var_name='Date', value_name=confirmed_col) confirmed_df = pd.merge(confirmed_df, lockdown_df[[country_col, 'LockDown Date']].groupby(country_col).first(), left_on=country_col, right_on=country_col, how='left') confirmed_df['Date'] = pd.to_datetime(confirmed_df['Date']) confirmed_df.sort_values('Date', inplace=True) fig = px.choropleth(confirmed_df, locations='iso_codes', hover_name=country_col, animation_frame=confirmed_df['Date'].astype(str), color=confirmed_col, color_continuous_scale=px.colors.sequential.Rainbow, projection='natural earth', title='Confirmed Cases over the world') top_affected_countries = df.sort_values(confirmed_df['Date'].max().strftime('%-m/%-d/%y'), ascending=False)[country_col].iloc[:10].values confirmed_df = confirmed_df[confirmed_df[country_col].isin(top_affected_countries)].sort_values('Date') fig = px.line(confirmed_df, color=country_col, x='Date', y=confirmed_col, title='Confirmed Case vs Date for top 10 infected countries') fig.update_xaxes(rangeslider_visible=True) confirmed_pct_df = pd.concat([confirmed_df, confirmed_df.groupby([country_col])[confirmed_col].pct_change().rename('Percentage Change') * 100], axis=1) fig = px.line(confirmed_pct_df, color=country_col, x='Date', y='Percentage Change', title='Percentage Change each day for top 10 infected countries') fig.update_layout(yaxis={'ticksuffix': '%'}) fig.update_xaxes(rangeslider_visible=True) fig.show()
code
50227879/cell_4
[ "text_plain_output_1.png" ]
from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()
code
50227879/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt x = x_train[1] plt.imshow(x, cmap='gray')
code
50227879/cell_11
[ "text_plain_output_1.png" ]
import keras img_cols, img_rows = (28, 28) input_shape = (img_cols, img_rows, 1) batch_size = 128 num_classes = 10 epochs = 12 x_train = x_train.reshape(x_train.shape[0], img_cols, img_rows, 1) x_test = x_test.reshape(x_test.shape[0], img_cols, img_rows, 1) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) print(x_train.shape) print(x_test.shape) print(y_train.shape)
code
50227879/cell_19
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPool2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential import keras img_cols, img_rows = (28, 28) input_shape = (img_cols, img_rows, 1) batch_size = 128 num_classes = 10 epochs = 12 x_train = x_train.reshape(x_train.shape[0], img_cols, img_rows, 1) x_test = x_test.reshape(x_test.shape[0], img_cols, img_rows, 1) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) model.evaluate(x_test, y_test)
code
50227879/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50227879/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt x = x_train[1] x.shape
code
50227879/cell_18
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPool2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential import keras img_cols, img_rows = (28, 28) input_shape = (img_cols, img_rows, 1) batch_size = 128 num_classes = 10 epochs = 12 x_train = x_train.reshape(x_train.shape[0], img_cols, img_rows, 1) x_test = x_test.reshape(x_test.shape[0], img_cols, img_rows, 1) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
code
50227879/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
print('Train size : \n') print(x_train.shape) print(y_train.shape) print('\n Test size : \n') print(x_test.shape) print(y_test.shape)
code
50227879/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Conv2D, MaxPool2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential import keras img_cols, img_rows = (28, 28) input_shape = (img_cols, img_rows, 1) batch_size = 128 num_classes = 10 epochs = 12 x_train = x_train.reshape(x_train.shape[0], img_cols, img_rows, 1) x_test = x_test.reshape(x_test.shape[0], img_cols, img_rows, 1) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.summary()
code
33095778/cell_4
[ "image_output_1.png" ]
import yfinance raw_data = yfinance.download(tickers='^GSPC ^FTSE ^N225 ^GDAXI', start='1994-01-07', end='2019-09-01', interval='1d', group_by='ticker', auto_adjust=True, treads=True)
code
33095778/cell_34
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) model_ret_ma = ARIMA(df.ret_ftse[1:], order=(0, 0, 5)) results_ret_ma = model_ret_ma.fit() df_pred_ret_ma = results_ret_ma.predict(start=start_date, end=end_date) df_pred_ret_ma[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns) | MA', size=24) plt.show()
code
33095778/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt start_date = '2014-07-16' end_date = '2015-01-01' df_pred.predictions[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ftse[start_date:end_date].plot(color='blue') plt.title('Predictions v/s Actuals', size=24) plt.legend() plt.show()
code
33095778/cell_41
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) model_ret_ma = ARIMA(df.ret_ftse[1:], order=(0, 0, 5)) results_ret_ma = model_ret_ma.fit() df_pred_ret_ma = results_ret_ma.predict(start=start_date, end=end_date) model_ret_arma = ARIMA(df.ret_ftse[1:], order=(4, 0, 5)) results_ret_arma = model_ret_arma.fit() df_pred_ret_arma = results_ret_arma.predict(start=start_date, end=end_date) model_ret_armax = ARIMA(df.ret_ftse[1:], exog=df[['ret_spx', 'ret_dax', 'ret_nikkei']][1:], order=(1, 0, 1)) results_ret_armax = model_ret_armax.fit() df_pred_ret_armax = results_ret_armax.predict(start=start_date, end=end_date, exog=df_test[['ret_spx', 'ret_dax', 'ret_nikkei']][start_date:end_date]) df_test['int_ftse_ret'] = df_test.ftse.diff(1) model_arima = ARIMA(df.ret_ftse[1:], order=(1, 1, 1)) results_arima = model_arima.fit() df_pred_arima = results_arima.predict(start=start_date, end=end_date) df_pred_arima[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns) | ARIMA', size=24) plt.show()
code
33095778/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import scipy import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns import sklearn import statsmodels.graphics.tsaplots as sgt import statsmodels.tsa.stattools as sts from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX !pip install pmdarima -U from pmdarima.arima import auto_arima !pip install arch -U from arch import arch_model !pip install yfinance -U import yfinance import warnings warnings.filterwarnings("ignore") sns.set()
code
33095778/cell_28
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) df_pred_ret_ar[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns) | AR', size=24) plt.show()
code
33095778/cell_16
[ "text_plain_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() df.tail()
code
33095778/cell_38
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) model_ret_ma = ARIMA(df.ret_ftse[1:], order=(0, 0, 5)) results_ret_ma = model_ret_ma.fit() df_pred_ret_ma = results_ret_ma.predict(start=start_date, end=end_date) model_ret_arma = ARIMA(df.ret_ftse[1:], order=(4, 0, 5)) results_ret_arma = model_ret_arma.fit() df_pred_ret_arma = results_ret_arma.predict(start=start_date, end=end_date) model_ret_armax = ARIMA(df.ret_ftse[1:], exog=df[['ret_spx', 'ret_dax', 'ret_nikkei']][1:], order=(1, 0, 1)) results_ret_armax = model_ret_armax.fit() df_pred_ret_armax = results_ret_armax.predict(start=start_date, end=end_date, exog=df_test[['ret_spx', 'ret_dax', 'ret_nikkei']][start_date:end_date]) df_pred_ret_armax[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns)|ARMAX', size=24) plt.show()
code
33095778/cell_43
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) model_ret_ma = ARIMA(df.ret_ftse[1:], order=(0, 0, 5)) results_ret_ma = model_ret_ma.fit() df_pred_ret_ma = results_ret_ma.predict(start=start_date, end=end_date) model_ret_arma = ARIMA(df.ret_ftse[1:], order=(4, 0, 5)) results_ret_arma = model_ret_arma.fit() df_pred_ret_arma = results_ret_arma.predict(start=start_date, end=end_date) model_ret_armax = ARIMA(df.ret_ftse[1:], exog=df[['ret_spx', 'ret_dax', 'ret_nikkei']][1:], order=(1, 0, 1)) results_ret_armax = model_ret_armax.fit() df_pred_ret_armax = results_ret_armax.predict(start=start_date, end=end_date, exog=df_test[['ret_spx', 'ret_dax', 'ret_nikkei']][start_date:end_date]) df_test['int_ftse_ret'] = df_test.ftse.diff(1) model_arima = ARIMA(df.ret_ftse[1:], order=(1, 1, 1)) results_arima = model_arima.fit() df_pred_arima = results_arima.predict(start=start_date, end=end_date) model_arimax = ARIMA(df.ret_ftse[1:], exog=df[['ret_spx', 'ret_dax', 'ret_nikkei']][1:], order=(1, 1, 1)) results_arimax = model_arimax.fit() df_pred_arimax = results_arimax.predict(start=start_date, end=end_date, exog=df_test[['ret_spx', 'ret_dax', 'ret_nikkei']][start_date:end_date]) df_pred_arimax[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns)|ARIMAX', size=24) plt.show()
code
33095778/cell_36
[ "image_output_1.png" ]
from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt model_ar = ARIMA(df.ftse, order=(1, 0, 0)) results_ar = model_ar.fit() start_date = '2014-07-16' end_date = '2015-01-01' model_ret_ar = ARIMA(df.ret_ftse[1:], order=(5, 0, 0)) results_ret_ar = model_ret_ar.fit() df_pred_ret_ar = results_ret_ar.predict(start=start_date, end=end_date) model_ret_ma = ARIMA(df.ret_ftse[1:], order=(0, 0, 5)) results_ret_ma = model_ret_ma.fit() df_pred_ret_ma = results_ret_ma.predict(start=start_date, end=end_date) model_ret_arma = ARIMA(df.ret_ftse[1:], order=(4, 0, 5)) results_ret_arma = model_ret_arma.fit() df_pred_ret_arma = results_ret_arma.predict(start=start_date, end=end_date) df_pred_ret_arma[start_date:end_date].plot(figsize=(20, 5), color='red') df_test.ret_ftse[start_date:end_date].plot(color='blue') plt.title('Predictions vs Actuals(Returns) | ARMA', size=24) plt.show()
code
128029153/cell_13
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model train_batch_size = 1 train_shuffle_dl = True num_workers_dl = 4 num_classes = 2 num_epochs = 2 lr = 0.005 momentum = 0.9 weight_decay = 0.005 import torch my_dataset = myOwnDataset(root=path2data, annotation=path2json, transforms=get_transform()) data_loader = torch.utils.data.DataLoader(my_dataset, batch_size=train_batch_size, shuffle=train_shuffle_dl, num_workers=num_workers_dl, collate_fn=collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') for imgs, annotations in data_loader: imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] model = get_model_instance_segmentation(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) len_dataloader = len(data_loader) for epoch in range(num_epochs): model.train() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum((loss for loss in loss_dict.values())) optimizer.zero_grad() losses.backward() optimizer.step() model.eval() from PIL import Image, ImageDraw sample_image_path = '/kaggle/input/levi9-hack9-2023/test/005.jpg' sample_image = Image.open(sample_image_path) sample_image transformed_img = torchvision.transforms.transforms.ToTensor()(sample_image) result = model([transformed_img.to(device)]) result boat_id = 1 boat_boxes = [x.cpu().detach().numpy().tolist() for i, x in enumerate(result[0]['boxes']) if result[0]['labels'][i] == boat_id] boat_boxes
code
128029153/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model train_batch_size = 1 train_shuffle_dl = True num_workers_dl = 4 num_classes = 2 num_epochs = 2 lr = 0.005 momentum = 0.9 weight_decay = 0.005 import torch print('Torch version:', torch.__version__) my_dataset = myOwnDataset(root=path2data, annotation=path2json, transforms=get_transform()) data_loader = torch.utils.data.DataLoader(my_dataset, batch_size=train_batch_size, shuffle=train_shuffle_dl, num_workers=num_workers_dl, collate_fn=collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') for imgs, annotations in data_loader: imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] model = get_model_instance_segmentation(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) len_dataloader = len(data_loader) for epoch in range(num_epochs): print(f'Epoch: {epoch}/{num_epochs}') model.train() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum((loss for loss in loss_dict.values())) optimizer.zero_grad() losses.backward() optimizer.step() print(f'Iteration: {i}/{len_dataloader}, Loss: {losses}')
code
128029153/cell_4
[ "image_output_1.png" ]
import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor())
code
128029153/cell_6
[ "text_plain_output_1.png" ]
import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] print(img.size) print(target)
code
128029153/cell_2
[ "text_plain_output_1.png" ]
!pip install pycocotools
code
128029153/cell_11
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model from PIL import Image, ImageDraw sample_image_path = '/kaggle/input/levi9-hack9-2023/test/005.jpg' sample_image = Image.open(sample_image_path) sample_image
code
128029153/cell_14
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model train_batch_size = 1 train_shuffle_dl = True num_workers_dl = 4 num_classes = 2 num_epochs = 2 lr = 0.005 momentum = 0.9 weight_decay = 0.005 import torch my_dataset = myOwnDataset(root=path2data, annotation=path2json, transforms=get_transform()) data_loader = torch.utils.data.DataLoader(my_dataset, batch_size=train_batch_size, shuffle=train_shuffle_dl, num_workers=num_workers_dl, collate_fn=collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') for imgs, annotations in data_loader: imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] model = get_model_instance_segmentation(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) len_dataloader = len(data_loader) for epoch in range(num_epochs): model.train() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum((loss for loss in loss_dict.values())) optimizer.zero_grad() losses.backward() optimizer.step() model.eval() from PIL import Image, ImageDraw sample_image_path = '/kaggle/input/levi9-hack9-2023/test/005.jpg' sample_image = Image.open(sample_image_path) sample_image transformed_img = torchvision.transforms.transforms.ToTensor()(sample_image) result = model([transformed_img.to(device)]) result boat_id = 1 boat_boxes = [x.cpu().detach().numpy().tolist() for i, x in enumerate(result[0]['boxes']) if result[0]['labels'][i] == boat_id] boat_boxes sample_image_annotated = sample_image.copy() img_bbox = ImageDraw.Draw(sample_image_annotated) for bbox in boat_boxes: img_bbox.rectangle(bbox, outline='white') for bbox in boat_boxes: x1, x2, x3, x4 = map(int, bbox) print(x1, x2, x3, x4) img_bbox.rectangle([x1, x2, x3, x4], outline='red') sample_image_annotated
code
128029153/cell_10
[ "text_plain_output_1.png" ]
from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model train_batch_size = 1 train_shuffle_dl = True num_workers_dl = 4 num_classes = 2 num_epochs = 2 lr = 0.005 momentum = 0.9 weight_decay = 0.005 import torch my_dataset = myOwnDataset(root=path2data, annotation=path2json, transforms=get_transform()) data_loader = torch.utils.data.DataLoader(my_dataset, batch_size=train_batch_size, shuffle=train_shuffle_dl, num_workers=num_workers_dl, collate_fn=collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') for imgs, annotations in data_loader: imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] model = get_model_instance_segmentation(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) len_dataloader = len(data_loader) for epoch in range(num_epochs): model.train() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum((loss for loss in loss_dict.values())) optimizer.zero_grad() losses.backward() optimizer.step() model.eval()
code
128029153/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import os import os import torch import torch import torchvision import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import pandas as pd import os import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) img, target = coco_train[0] import os import torch import torch.utils.data import torchvision from PIL import Image from pycocotools.coco import COCO from torchvision.models.detection.faster_rcnn import FastRCNNPredictor class myOwnDataset(torch.utils.data.Dataset): def __init__(self, root, annotation, transforms=None): self.root = root self.transforms = transforms self.coco = COCO(annotation) self.ids = list(sorted(self.coco.imgs.keys())) def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) coco_annotation = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)) num_objs = len(coco_annotation) boxes = [] area = 0 for i in range(num_objs): xmin = coco_annotation[i]['bbox'][0] ymin = coco_annotation[i]['bbox'][1] xmax = xmin + coco_annotation[i]['bbox'][2] ymax = ymin + coco_annotation[i]['bbox'][3] area += (xmax - xmin) * (ymax - ymin) boxes.append([xmin, ymin, xmax, ymax]) if num_objs == 0: boxes = torch.zeros((0, 4), dtype=torch.float32) else: boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.ones((num_objs,), dtype=torch.int64) img_id = torch.tensor([img_id]) areas = [] for i in range(num_objs): areas.append(coco_annotation[i]['area']) area = torch.as_tensor(area, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) my_annotation = {} my_annotation['boxes'] = boxes my_annotation['labels'] = labels my_annotation['image_id'] = img_id my_annotation['area'] = area my_annotation['iscrowd'] = iscrowd if self.transforms is not None: img = self.transforms(img) return (img, my_annotation) def __len__(self): return len(self.ids) def get_transform(): custom_transforms = [] custom_transforms.append(torchvision.transforms.ToTensor()) return torchvision.transforms.Compose(custom_transforms) def collate_fn(batch): return tuple(zip(*batch)) def get_model_instance_segmentation(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, progress=True, pretrained_backbone=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model train_batch_size = 1 train_shuffle_dl = True num_workers_dl = 4 num_classes = 2 num_epochs = 2 lr = 0.005 momentum = 0.9 weight_decay = 0.005 import torch my_dataset = myOwnDataset(root=path2data, annotation=path2json, transforms=get_transform()) data_loader = torch.utils.data.DataLoader(my_dataset, batch_size=train_batch_size, shuffle=train_shuffle_dl, num_workers=num_workers_dl, collate_fn=collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') for imgs, annotations in data_loader: imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] model = get_model_instance_segmentation(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) len_dataloader = len(data_loader) for epoch in range(num_epochs): model.train() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list((img.to(device) for img in imgs)) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum((loss for loss in loss_dict.values())) optimizer.zero_grad() losses.backward() optimizer.step() model.eval() from PIL import Image, ImageDraw sample_image_path = '/kaggle/input/levi9-hack9-2023/test/005.jpg' sample_image = Image.open(sample_image_path) sample_image transformed_img = torchvision.transforms.transforms.ToTensor()(sample_image) result = model([transformed_img.to(device)]) result
code
128029153/cell_5
[ "text_plain_output_1.png" ]
import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.models.detection.faster_rcnn import FastRCNNPredictor path2data = '/kaggle/input/levi9-hack9-2023/train' path2json = '/kaggle/input/levi9-hack9-2023/train.json' coco_train = dset.CocoDetection(root=path2data, annFile=path2json, transform=transforms.ToTensor()) print('Number of samples: ', len(coco_train))
code
16121288/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression import numpy as np # linear algebra from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) from sklearn import metrics print('MAE', metrics.mean_absolute_error(y_test, y_pred)) print('MSE', metrics.mean_squared_error(y_test, y_pred)) print('RMSE', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
code
16121288/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat=df.corr() fig=plt.figure(figsize=(12,9)) sns.heatmap(corrmat,vmax=.8, square= True,annot=True) plt.show() print(df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).head(10)) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).head(50) country_wise.plot(kind='bar', legend=False, figsize=(20, 8)) plt.show()
code
16121288/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/world-happiness-report-2019.csv') df.describe(include='all')
code
16121288/cell_20
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat=df.corr() fig=plt.figure(figsize=(12,9)) sns.heatmap(corrmat,vmax=.8, square= True,annot=True) plt.show() country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).head(50) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).tail(50) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']] from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) plt.scatter(y_test, y_pred) plt.xlabel('Y Test') plt.ylabel('Predicted y')
code
16121288/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() sns.pairplot(data=df)
code
16121288/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat=df.corr() fig=plt.figure(figsize=(12,9)) sns.heatmap(corrmat,vmax=.8, square= True,annot=True) plt.show() country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).head(50) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).tail(50) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']] country_wise.plot(kind='line', legend=False, figsize=(20, 8)) plt.show()
code
16121288/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os print(os.listdir('../input'))
code
16121288/cell_18
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) regressor.fit(X_train, y_train)
code
16121288/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat = df.corr() fig = plt.figure(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.8, square=True, annot=True) plt.show()
code
16121288/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/world-happiness-report-2019.csv') df.head()
code
16121288/cell_22
[ "image_output_1.png" ]
from sklearn import metrics from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression import numpy as np # linear algebra from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) from sklearn import metrics from sklearn import metrics metrics.r2_score(y_test, y_pred)
code
16121288/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat=df.corr() fig=plt.figure(figsize=(12,9)) sns.heatmap(corrmat,vmax=.8, square= True,annot=True) plt.show() country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).head(50) country_wise = df[['Country (region)', 'Healthy life\nexpectancy']].groupby('Country (region)').mean().sort_values('Healthy life\nexpectancy', ascending=False).tail(50) country_wise.plot(kind='bar', legend=False, figsize=(20, 8), color='red') plt.show()
code
16121288/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum() corrmat=df.corr() fig=plt.figure(figsize=(12,9)) sns.heatmap(corrmat,vmax=.8, square= True,annot=True) plt.show() sns.scatterplot(x='Ladder', y='Healthy life\nexpectancy', data=df)
code
16121288/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/world-happiness-report-2019.csv') df.isnull().sum()
code
18127116/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) print(predictions2) df
code
18127116/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") performance_df = pd.DataFrame({'Rider performance': df['rider_performance'], 'Horse performance': df['horse_performance']}) perfrormance_graph_comparison1 = performance_df.plot.bar(rot=0)
code
18127116/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x='date', y='time', rot=0) time_graph.set_xlabel('Date') time_graph.set_ylabel('Time')
code
18127116/cell_6
[ "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x='date', y='rider_performance', rot=0) rider_performance_graph.set_xlabel('Date') rider_performance_graph.set_ylabel('Rider perforamce')
code
18127116/cell_19
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) df y4 = df.time features4 = ['km'] X4 = df[features4] time_model = DecisionTreeRegressor(random_state=1) time_model.fit(X4, y4) predictions4 = time_model.predict(X4) df y5 = df.km features5 = ['time', 'rider_performance'] X5 = df[features5] km_model2 = DecisionTreeRegressor(random_state=1) km_model2.fit(X5, y5) predictions5 = km_model2.predict(X5) df y6 = df.km features6 = ['time', 'horse_performance'] X6 = df[features6] km_model3 = DecisionTreeRegressor(random_state=1) km_model3.fit(X6, y6) predictions6 = km_model3.predict(X6) print(predictions6) print(predictions3) df
code
18127116/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18127116/cell_7
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x='date', y='horse_performance', rot=0) horse_performance_graph.set_xlabel('Date') horse_performance_graph.set_ylabel('Horse perforamce')
code
18127116/cell_18
[ "image_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) df y4 = df.time features4 = ['km'] X4 = df[features4] time_model = DecisionTreeRegressor(random_state=1) time_model.fit(X4, y4) predictions4 = time_model.predict(X4) df y5 = df.km features5 = ['time', 'rider_performance'] X5 = df[features5] km_model2 = DecisionTreeRegressor(random_state=1) km_model2.fit(X5, y5) predictions5 = km_model2.predict(X5) print(predictions5) print(predictions3) df
code
18127116/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x='date', y='avg_performance', rot=0) avg_performance_graph.set_xlabel('Date') avg_performance_graph.set_ylabel('Average perforamce')
code
18127116/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import DataFrame from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) df train_X2, val_X2, train_y2, val_y2 = train_test_split(X3, y3, random_state=1) val_predictions2 = km_model.predict(val_X2) print(val_predictions2) from sklearn.metrics import mean_absolute_error val_mae = mean_absolute_error(val_predictions2, val_y2) print(val_mae) df
code
18127116/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) df y4 = df.time features4 = ['km'] X4 = df[features4] time_model = DecisionTreeRegressor(random_state=1) time_model.fit(X4, y4) predictions4 = time_model.predict(X4) print(predictions4) df
code
18127116/cell_3
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df
code
18127116/cell_17
[ "image_output_1.png" ]
from pandas import DataFrame from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) df train_X2, val_X2, train_y2, val_y2 = train_test_split(X3, y3, random_state=1) val_predictions2 = km_model.predict(val_X2) from sklearn.metrics import mean_absolute_error val_mae = mean_absolute_error(val_predictions2, val_y2) df y4 = df.time features4 = ['km'] X4 = df[features4] time_model = DecisionTreeRegressor(random_state=1) time_model.fit(X4, y4) predictions4 = time_model.predict(X4) df from sklearn.model_selection import train_test_split train_X, val_X, train_y, val_y = train_test_split(X4, y4, random_state=1) val_predictions = time_model.predict(val_X) print(val_predictions) from sklearn.metrics import mean_absolute_error val_mae = mean_absolute_error(val_predictions, val_y) print(val_mae)
code
18127116/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) df y2 = df.rider_performance features2 = ['time', 'km', 'horse_performance'] X2 = df[features2] rider_performance_model = DecisionTreeRegressor(random_state=1) rider_performance_model.fit(X2, y2) predictions2 = rider_performance_model.predict(X2) df y3 = df.km features3 = ['time'] X3 = df[features3] km_model = DecisionTreeRegressor(random_state=1) km_model.fit(X3, y3) predictions3 = km_model.predict(X3) print(predictions3) df
code
18127116/cell_10
[ "text_html_output_1.png" ]
from pandas import DataFrame import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") performance_df = pd.DataFrame({'Rider performance': df["rider_performance"], 'Horse performance': df["horse_performance"]}) perfrormance_graph_comparison1 = performance_df.plot.bar(rot=0) performance_df2 = pd.DataFrame({'Rider performance': df['rider_performance'], 'Horse performance': df['horse_performance'], 'Average performance': df['avg_performance']}) perfrormance_graph_comparison2 = performance_df2.plot.bar(rot=0)
code
18127116/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import DataFrame from sklearn.tree import DecisionTreeRegressor import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x="date", y="km", rot=0) km_graph.set_xlabel("Date") km_graph.set_ylabel("Km") rider_performance_graph = df.plot.bar(x="date", y="rider_performance", rot=0) rider_performance_graph.set_xlabel("Date") rider_performance_graph.set_ylabel("Rider perforamce") horse_performance_graph = df.plot.bar(x="date", y="horse_performance", rot=0) horse_performance_graph.set_xlabel("Date") horse_performance_graph.set_ylabel("Horse perforamce") avg_performance_graph = df.plot.bar(x="date", y="avg_performance", rot=0) avg_performance_graph.set_xlabel("Date") avg_performance_graph.set_ylabel("Average perforamce") from sklearn.tree import DecisionTreeRegressor y = df.horse_performance features = ['time', 'km', 'rider_performance'] X = df[features] horse_performance_model = DecisionTreeRegressor(random_state=1) horse_performance_model.fit(X, y) predictions = horse_performance_model.predict(X) print(predictions) df
code
18127116/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from pandas import DataFrame import pandas as pd from pandas import DataFrame performance = {'id': [1, 2, 3, 4], 'date': ['19/12/2018', '20/12/2018', '21/12/2018', '22/12/2018'], 'time': [45, 50, 90, 50], 'km': [6.0, 5.5, 6.0, 4.0], 'rider_performance': [3, 4, 4, 4], 'horse_performance': [4, 4, 5, 5], 'avg_performance': [3.5, 4.0, 4.5, 4.5]} df = DataFrame(performance, columns=['Id', 'date', 'time', 'km', 'rider_performance', 'horse_performance', 'avg_performance']) df time_graph = df.plot.bar(x="date", y="time", rot=0) time_graph.set_xlabel("Date") time_graph.set_ylabel("Time") km_graph = df.plot.bar(x='date', y='km', rot=0) km_graph.set_xlabel('Date') km_graph.set_ylabel('Km')
code
16147946/cell_3
[ "text_plain_output_1.png" ]
!ls ../input
code
16147946/cell_10
[ "text_plain_output_1.png" ]
from pathlib import Path import pandas as pd import pandas as pd from pathlib import Path input_root_path = Path('../input') sub = pd.read_csv(input_root_path.joinpath('sample_submission.csv')) all_zeros = sub.copy() all_zeros['y'] = 0 all_zeros.to_csv('baseline_probe_0.0.csv', index=False) P_bp = -59.2822 idx_1_replace_100 = all_zeros.copy() idx_1_replace_100['y'][0] = 100 idx_1_replace_100.to_csv('probe_0001_100.csv', index=False) P_1_100 = -59.25187 idx_1_replace_100['y'][0] = 200 idx_1_replace_100.to_csv('probe_0001_200.csv', index=False) P_1_200 = -59.36366 S_tot = 20000.0 / (2 * P_1_100 - P_bp - P_1_200) print('Stot is : {:.5f}'.format(S_tot))
code
16147946/cell_12
[ "text_plain_output_1.png" ]
from pathlib import Path import pandas as pd import pandas as pd from pathlib import Path input_root_path = Path('../input') sub = pd.read_csv(input_root_path.joinpath('sample_submission.csv')) all_zeros = sub.copy() all_zeros['y'] = 0 all_zeros.to_csv('baseline_probe_0.0.csv', index=False) P_bp = -59.2822 idx_1_replace_100 = all_zeros.copy() idx_1_replace_100['y'][0] = 100 idx_1_replace_100.to_csv('probe_0001_100.csv', index=False) P_1_100 = -59.25187 idx_1_replace_100['y'][0] = 200 idx_1_replace_100.to_csv('probe_0001_200.csv', index=False) P_1_200 = -59.36366 S_tot = 20000.0 / (2 * P_1_100 - P_bp - P_1_200) def calc_y_value_any_idx(P_any_idx, p_bp=P_bp, s_tot=S_tot): return (s_tot * (P_any_idx - p_bp) + 10000.0) / 200.0 print('y_1 is : {:.5f}'.format(calc_y_value_any_idx(P_1_100)))
code
128018068/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score x_train = d[['Area', 'Perimeter', 'Major_Axis_Length', 'Minor_Axis_Length', 'Eccentricity', 'Convex_Area', 'Extent']] y_train = d['Class'] k = 3 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(x_train, y_train) x_test = np.array([[1.2, 1.0, 2.8, 1.2, 1.0, 2.8, 1.2]]) target = knn.predict(x_test) from sklearn.model_selection import train_test_split x_train, x_holdout, y_train, y_holdout = train_test_split(d[['Area', 'Perimeter', 'Major_Axis_Length', 'Minor_Axis_Length', 'Eccentricity', 'Convex_Area', 'Extent']], d['Class'], test_size=0.3, random_state=17) n_list = list(range(1, 50)) acclist = [] for n in n_list: knn = KNeighborsClassifier(n_neighbors=n) knn.fit(x_train, y_train) knn_pred = knn.predict(x_holdout) accur = accuracy_score(y_holdout, knn_pred) acclist.append(accur) plt.plot(n_list, acclist, label='Доля выборки при 0,3') plt.plot(n_list, acclist3, label='Доля выборки при 0,2') plt.plot(n_list, acclist2, label='Доля выборки при 0,1') plt.legend() plt.xlabel('Количество соседей (K)') plt.ylabel('Ошибка классификации (MSE)') plt.show()
code
128018068/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sb d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d sb.pairplot(d)
code
128018068/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sb d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d sb.pairplot(d, hue='Class')
code
128018068/cell_2
[ "text_html_output_1.png" ]
import pandas as pd d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d
code
128018068/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score x_train = d[['Area', 'Perimeter', 'Major_Axis_Length', 'Minor_Axis_Length', 'Eccentricity', 'Convex_Area', 'Extent']] y_train = d['Class'] k = 3 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(x_train, y_train) x_test = np.array([[1.2, 1.0, 2.8, 1.2, 1.0, 2.8, 1.2]]) target = knn.predict(x_test) print(target)
code
128018068/cell_8
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd d = pd.read_excel('/kaggle/input/rice-dataset-commeo-and-osmancik/Rice_Dataset_Commeo_and_Osmancik/Rice_Cammeo_Osmancik.xlsx') d from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score x_train = d[['Area', 'Perimeter', 'Major_Axis_Length', 'Minor_Axis_Length', 'Eccentricity', 'Convex_Area', 'Extent']] y_train = d['Class'] k = 3 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(x_train, y_train) x_test = np.array([[1.2, 1.0, 2.8, 1.2, 1.0, 2.8, 1.2]]) target = knn.predict(x_test) from sklearn.model_selection import train_test_split x_train, x_holdout, y_train, y_holdout = train_test_split(d[['Area', 'Perimeter', 'Major_Axis_Length', 'Minor_Axis_Length', 'Eccentricity', 'Convex_Area', 'Extent']], d['Class'], test_size=0.3, random_state=17) n_list = list(range(1, 50)) acclist = [] for n in n_list: knn = KNeighborsClassifier(n_neighbors=n) knn.fit(x_train, y_train) knn_pred = knn.predict(x_holdout) accur = accuracy_score(y_holdout, knn_pred) print('accuracy: ', accur) acclist.append(accur)
code
33111788/cell_13
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy list_output_logloss = [] for x in range(8): list_output_logloss.append([float(log_loss(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i])) for i in range(14)]) df_output_logloss = pd.DataFrame(list_output_logloss, columns=list_classes) df_output_logloss.index = [f'b{x}' for x in range(8)] df_output_logloss list_output_tp = [] for x in range(8): list_output_tp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[3]) for i in range(14)]) df_output_tp = pd.DataFrame(list_output_tp, columns=list_classes) df_output_tp.index = [f'b{x}' for x in range(8)] df_output_tp
code
33111788/cell_9
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid))
code
33111788/cell_11
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "text_plain_output_4.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_16.png", "application_vnd.jupyter.stderr_output_15.png", "text_plain_output_8.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "text_plain_output_12.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy
code
33111788/cell_1
[ "text_plain_output_1.png" ]
!pip install efficientnet_pytorch
code
33111788/cell_7
[ "text_html_output_1.png" ]
from pathlib import Path from tqdm import tqdm import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True)
code
33111788/cell_15
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy list_output_logloss = [] for x in range(8): list_output_logloss.append([float(log_loss(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i])) for i in range(14)]) df_output_logloss = pd.DataFrame(list_output_logloss, columns=list_classes) df_output_logloss.index = [f'b{x}' for x in range(8)] df_output_logloss list_output_tp = [] for x in range(8): list_output_tp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[3]) for i in range(14)]) df_output_tp = pd.DataFrame(list_output_tp, columns=list_classes) df_output_tp.index = [f'b{x}' for x in range(8)] df_output_tp list_output_fp = [] for x in range(8): list_output_fp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[1]) for i in range(14)]) df_output_fp = pd.DataFrame(list_output_fp, columns=list_classes) df_output_fp.index = [f'b{x}' for x in range(8)] df_output_fp list_output_fn = [] for x in range(8): list_output_fn.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[2]) for i in range(14)]) df_output_fn = pd.DataFrame(list_output_fn, columns=list_classes) df_output_fn.index = [f'b{x}' for x in range(8)] df_output_fn
code
33111788/cell_16
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy list_output_logloss = [] for x in range(8): list_output_logloss.append([float(log_loss(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i])) for i in range(14)]) df_output_logloss = pd.DataFrame(list_output_logloss, columns=list_classes) df_output_logloss.index = [f'b{x}' for x in range(8)] df_output_logloss list_output_tp = [] for x in range(8): list_output_tp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[3]) for i in range(14)]) df_output_tp = pd.DataFrame(list_output_tp, columns=list_classes) df_output_tp.index = [f'b{x}' for x in range(8)] df_output_tp list_output_fp = [] for x in range(8): list_output_fp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[1]) for i in range(14)]) df_output_fp = pd.DataFrame(list_output_fp, columns=list_classes) df_output_fp.index = [f'b{x}' for x in range(8)] df_output_fp list_output_fn = [] for x in range(8): list_output_fn.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[2]) for i in range(14)]) df_output_fn = pd.DataFrame(list_output_fn, columns=list_classes) df_output_fn.index = [f'b{x}' for x in range(8)] df_output_fn list_output_tn = [] for x in range(8): list_output_tn.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[0]) for i in range(14)]) df_output_tn = pd.DataFrame(list_output_tn, columns=list_classes) df_output_tn.index = [f'b{x}' for x in range(8)] df_output_tn
code
33111788/cell_14
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy list_output_logloss = [] for x in range(8): list_output_logloss.append([float(log_loss(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i])) for i in range(14)]) df_output_logloss = pd.DataFrame(list_output_logloss, columns=list_classes) df_output_logloss.index = [f'b{x}' for x in range(8)] df_output_logloss list_output_tp = [] for x in range(8): list_output_tp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[3]) for i in range(14)]) df_output_tp = pd.DataFrame(list_output_tp, columns=list_classes) df_output_tp.index = [f'b{x}' for x in range(8)] df_output_tp list_output_fp = [] for x in range(8): list_output_fp.append([int(confusion_matrix(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5).ravel()[1]) for i in range(14)]) df_output_fp = pd.DataFrame(list_output_fp, columns=list_classes) df_output_fp.index = [f'b{x}' for x in range(8)] df_output_fp
code
33111788/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc
code
33111788/cell_12
[ "text_html_output_1.png" ]
from efficientnet_pytorch import EfficientNet from pathlib import Path from sklearn.metrics import accuracy_score, confusion_matrix, log_loss, roc_auc_score from tqdm import tqdm import numpy as np import os import pandas as pd path_working_dir = Path().resolve() path_input_nih = (path_working_dir / f'../input/data').resolve() path_input_alias = (path_working_dir / f'./alias').resolve() path_input_model = (path_working_dir / f'../input/nih-chest-xrays-trained-models').resolve() IMAGE_SIZE = 224 BATCH_SIZE = 24 tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20, max_zoom=1.2, max_warp=0.25, p_affine=0.7, max_lighting=0.4, p_lighting=0.5) df_input_all = pd.read_csv(path_input_nih / 'Data_Entry_2017.csv') df_input_all['Finding Labels'] = df_input_all['Finding Labels'].str.replace('No Finding', '') df_list_train = pd.read_csv(path_input_nih / 'train_val_list.txt', header=None) df_list_valid = pd.read_csv(path_input_nih / 'test_list.txt', header=None) list_all = df_input_all['Image Index'].tolist() list_train = df_list_train[0].tolist() list_valid = df_list_valid[0].tolist() list_idx_train = [True if fname in list_train else False for fname in tqdm(list_all)] list_idx_valid = [True if fname in list_valid else False for fname in tqdm(list_all)] list_classes = sorted([target for target in set(df_input_all['Finding Labels'].tolist()) if not '|' in target and target != '']) df_input_train = df_input_all[list_idx_train].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_valid = df_input_all[list_idx_valid].reset_index(drop=True)[['Image Index', 'Finding Labels']] df_input_merge = pd.concat([df_input_train, df_input_valid]).reset_index(drop=True) img_list = ImageList.from_df(df_input_merge, path_input_alias, convert_mode='L') np_y_value_valid = LongTensor(np.array([[1 if list_classes[i] in label else 0 for label in df_input_valid['Finding Labels'].tolist()] for i in range(14)]).T) list_BATCH_SIZE = [160, 112, 104, 80, 56, 40, 32, 24] list_np_H_value_valid = [] for x in range(8): data = img_list.split_by_idxs(list(range(len(df_input_train))), list(range(len(df_input_train), len(df_input_train) + len(df_input_valid)))).label_from_df(cols='Finding Labels', classes=list_classes, label_delim='|').transform(tfms, size=IMAGE_SIZE).databunch(bs=list_BATCH_SIZE[x], num_workers=os.cpu_count()) bx = f'b{x}' model = EfficientNet.from_pretrained(f'efficientnet-{bx}', num_classes=14, in_channels=1) learn = Learner(data, model) learn = learn.load(path_input_model / f'efficientnet-b{x}_224x224x1_epoch_30/model_unfreeze_best') np_H_value_valid, np_H_01_valid, np_loss_valid = learn.get_preds(DatasetType.Valid, with_loss=True) list_np_H_value_valid.append(np_H_value_valid) np.save(f'np_H_value_valid_b{x}.npy', np.array(np_H_value_valid)) list_output_auc = [] for x in range(8): list_output_auc.append([float(auc_roc_score(list_np_H_value_valid[x][:, i], np_y_value_valid[:, i])) for i in range(14)]) df_output_auc = pd.DataFrame(list_output_auc, columns=list_classes) df_output_auc.index = [f'b{x}' for x in range(8)] df_output_auc list_output_accuracy = [] for x in range(8): list_output_accuracy.append([float(accuracy_score(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i] >= 0.5)) for i in range(14)]) df_output_accuracy = pd.DataFrame(list_output_accuracy, columns=list_classes) df_output_accuracy.index = [f'b{x}' for x in range(8)] df_output_accuracy list_output_logloss = [] for x in range(8): list_output_logloss.append([float(log_loss(np_y_value_valid[:, i], list_np_H_value_valid[x][:, i])) for i in range(14)]) df_output_logloss = pd.DataFrame(list_output_logloss, columns=list_classes) df_output_logloss.index = [f'b{x}' for x in range(8)] df_output_logloss
code
89135215/cell_13
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new['LotFrontage'].hist(bins=50) plt.show()
code
89135215/cell_25
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) corr = x_new.corr() plt.figure(figsize=(25, 25)) sns.heatmap(corr, annot=True) plt.show()
code
89135215/cell_23
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) sns.distplot(x_new['BsmtUnfSF'])
code
89135215/cell_20
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) sns.distplot(x_new['BsmtUnfSF'])
code
89135215/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89135215/cell_11
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new.hist(bins=50, figsize=(50, 50)) plt.show()
code
89135215/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) train.info()
code
89135215/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col
code