path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2011179/cell_14
[ "text_html_output_1.png" ]
import pandas as pd movies = pd.read_csv('../input/movie.csv') tags = pd.read_csv('../input/tag.csv') ratings = pd.read_csv('../input/rating.csv') movies.isnull().values.any() movies.isnull().values.any()
code
2011179/cell_22
[ "text_html_output_1.png" ]
import pandas as pd movies = pd.read_csv('../input/movie.csv') tags = pd.read_csv('../input/tag.csv') ratings = pd.read_csv('../input/rating.csv') movies.isnull().values.any() movies.isnull().values.any() movies = movies.dropna() ind_animation = 'Animation' ind_children = 'Children' animation1 = movies['genres'].str.contains(ind_animation) animation0 = ~movies['genres'].str.contains(ind_animation) children1 = movies['genres'].str.contains(ind_children) children0 = ~movies['genres'].str.contains(ind_children) both = movies[animation1 & children1] just_anim = movies[animation1 & children0] just_chil = movies[animation0 & children1] just_chil_plt = just_chil[['rating', 'year']] just_chil_plt = just_chil_plt.groupby(['year'], as_index=False).mean() just_chil_plt.head(15)
code
2011179/cell_5
[ "text_html_output_1.png" ]
import pandas as pd movies = pd.read_csv('../input/movie.csv') tags = pd.read_csv('../input/tag.csv') ratings = pd.read_csv('../input/rating.csv') movies.head()
code
74064945/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.head()
code
74064945/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.quality.hist()
code
74064945/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) figure = plt.figure(figsize=(10, 10)) correlation = df.corr() sns.heatmap(correlation, annot=True)
code
74064945/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5, 5)) sns.barplot(x='quality', y='volatile acidity', data=df)
code
74064945/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') fig = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y='volatile acidity', data=df) sns.barplot(x='quality', y='citric acid', data=df)
code
74064945/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.describe()
code
106192728/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) sns.countplot(x='disease', hue='gender', data=df, palette='colorblind', edgecolor=sns.color_palette('dark', n_colors=1)) plt.show()
code
106192728/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T df['disease'].value_counts()
code
106192728/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt df.corr() df.drop(columns='age', inplace=True) plt.figure(figsize=(10, 10)) sns.heatmap(df.corr(), annot=True, fmt='.0%') plt.show()
code
106192728/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns
code
106192728/cell_34
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_params = {'n_estimators': [5, 50, 250], 'max_depth': [2, 4, 8, 16, 32, None]} cv = GridSearchCV(rf_model, rf_params, cv=5) cv.fit(x_train, y_train) rf_model = RandomForestClassifier(max_depth=8, n_estimators=50) rf_model.fit(x_train, y_train) rf_model.score(x_test, y_test) rf_pred = rf_model.predict(x_test) from sklearn.metrics import classification_report print(classification_report(rf_pred, y_test))
code
106192728/cell_23
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T df.corr()
code
106192728/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_params = {'n_estimators': [5, 50, 250], 'max_depth': [2, 4, 8, 16, 32, None]} cv = GridSearchCV(rf_model, rf_params, cv=5) cv.fit(x_train, y_train)
code
106192728/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt sns.countplot(x=df['gender'])
code
106192728/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum()
code
106192728/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt sns.countplot(x=df['alco'])
code
106192728/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106192728/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.info()
code
106192728/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt sns.countplot(x=df['smoke'])
code
106192728/cell_32
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_params = {'n_estimators': [5, 50, 250], 'max_depth': [2, 4, 8, 16, 32, None]} cv = GridSearchCV(rf_model, rf_params, cv=5) cv.fit(x_train, y_train) rf_model = RandomForestClassifier(max_depth=8, n_estimators=50) rf_model.fit(x_train, y_train) rf_model.score(x_test, y_test)
code
106192728/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T
code
106192728/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) sns.countplot(x='age_in_years', hue='disease', data=df, palette='colorblind', edgecolor=sns.color_palette('dark', n_colors=1)) plt.show()
code
106192728/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.head()
code
106192728/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T df['smoke'].value_counts()
code
106192728/cell_35
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt df.corr() df.drop(columns='age', inplace=True) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_params = {'n_estimators': [5, 50, 250], 'max_depth': [2, 4, 8, 16, 32, None]} cv = GridSearchCV(rf_model, rf_params, cv=5) cv.fit(x_train, y_train) rf_model = RandomForestClassifier(max_depth=8, n_estimators=50) rf_model.fit(x_train, y_train) rf_model.score(x_test, y_test) rf_pred = rf_model.predict(x_test) from sklearn.metrics import confusion_matrix plt.figure(figsize=(10, 10)) cf_matrix = confusion_matrix(y_test, rf_pred) sns.heatmap(cf_matrix, annot=True, annot_kws={'size': 25}) plt.show()
code
106192728/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_params = {'n_estimators': [5, 50, 250], 'max_depth': [2, 4, 8, 16, 32, None]} cv = GridSearchCV(rf_model, rf_params, cv=5) cv.fit(x_train, y_train) cv.best_estimator_
code
106192728/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T df.head()
code
106192728/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) sns.countplot(x='disease', hue='smoke', data=df, palette='colorblind', edgecolor=sns.color_palette('dark', n_colors=1)) plt.show()
code
106192728/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T import seaborn as sns sns.countplot(x=df['disease'])
code
106192728/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape df.isnull().sum() df.describe().T df.head()
code
106192728/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/heart-disease-detection/heart_disease.csv') df.columns df.shape
code
49129658/cell_21
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from keras.layers import Activation, Flatten, Dense, Dropout ,Input from tensorflow.keras import backend from tensorflow.keras import backend, models, layers, regularizers , optimizers from tensorflow.keras.applications import InceptionV3 from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import BatchNormalization , Concatenate from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.image as mpimg import matplotlib.pyplot as plt import os import os import random import numpy as np import pandas as pd import os train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices num_classes = len(train_generator.class_indices) def display_random_grid(ncols=5, ds_path=train_directory): fig, ax = plt.subplots(ncols=ncols, nrows=ncols, figsize=(15, 15)) for i in range(ncols): for j in range(ncols): bird_species = random.choice(os.listdir(ds_path)) random_bird_path = random.choice(os.listdir(ds_path + '/'+ bird_species)) random_bird = mpimg.imread(ds_path + '/' + bird_species + '/' + random_bird_path) ax[i, j].imshow(random_bird) ax[i, j].set_title(bird_species) ax[i, j].axis('off') display_random_grid() backend.clear_session() model_base = models.Sequential() model_base.add(layers.Conv2D(512, (3, 3), activation='relu', input_shape=(224, 224, 3))) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(512, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(256, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Flatten()) model_base.add(layers.Dense(128, activation='relu')) model_base.add(layers.Dropout(0.5)) model_base.add(layers.Dense(num_classes, activation='softmax')) model_base.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_base.fit_generator(train_generator, epochs=50, validation_data=validation_generator, validation_steps=20, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_base.evaluate_generator(test_generator, steps=20) backend.clear_session() visible = Input(shape=(224, 224, 3)) conv_1_1 = Conv2D(64, (1, 1), padding='same', activation='relu', strides=2)(visible) conv_1_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_2 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_1_2) conv_1_3 = AveragePooling2D((3, 3), padding='same', strides=2)(visible) conv_2_3 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_3) conv_1_4 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_4 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_4) conv_3_4 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_2_4) merge = Concatenate(axis=-1)([conv_1_1, conv_2_2, conv_2_3, conv_3_4]) flat = Flatten()(merge) hidden = Dense(32, activation='relu')(flat) drop = Dropout(0.5)(hidden) output = Dense(num_classes, activation='softmax')(drop) model_birdcl = Model(inputs=visible, outputs=output) model_birdcl.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_birdcl.fit_generator(train_generator, steps_per_epoch=1001, epochs=50, validation_data=validation_generator, validation_steps=29, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_birdcl.evaluate_generator(test_generator, steps=29) history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] acc_values = history_dict['accuracy'] val_acc_values = history_dict['val_accuracy'] epochs = range(1, len(history_dict['accuracy']) + 1) backend.clear_session() incbasemodel4 = InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) incbasemodel4.trainable = False modelinceptionv3_vers4 = models.Sequential() modelinceptionv3_vers4.add(incbasemodel4) modelinceptionv3_vers4.add(layers.Conv2D(1024, (3, 3), padding='same', activation='relu')) modelinceptionv3_vers4.add(BatchNormalization()) modelinceptionv3_vers4.add(layers.Dropout(0.5)) modelinceptionv3_vers4.add(layers.Flatten()) modelinceptionv3_vers4.add(layers.Dense(512, activation='relu')) modelinceptionv3_vers4.add(layers.Dropout(0.5)) modelinceptionv3_vers4.add(layers.Dense(num_classes, activation='softmax')) modelinceptionv3_vers4.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = modelinceptionv3_vers4.fit_generator(train_generator, steps_per_epoch=1001, epochs=50, validation_data=validation_generator, validation_steps=29, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = modelinceptionv3_vers4.evaluate_generator(test_generator, steps=29) print('Using InceptionV3 Model and Adam Optimizer the accuracy is ---', test_acc) history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] acc_values = history_dict['accuracy'] val_acc_values = history_dict['val_accuracy'] epochs = range(1, len(history_dict['accuracy']) + 1) plt.plot(epochs, loss_values, 'bo', label='Training loss') plt.plot(epochs, val_loss_values, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(epochs, acc_values, 'bo', label='Training accuracy') plt.plot(epochs, val_acc_values, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show()
code
49129658/cell_20
[ "image_output_1.png" ]
from keras.layers import Activation, Flatten, Dense, Dropout ,Input from tensorflow.keras import backend from tensorflow.keras import backend, models, layers, regularizers , optimizers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import BatchNormalization , Concatenate from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.utils import plot_model import matplotlib.image as mpimg import matplotlib.pyplot as plt import os import os import random import numpy as np import pandas as pd import os train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices num_classes = len(train_generator.class_indices) def display_random_grid(ncols=5, ds_path=train_directory): fig, ax = plt.subplots(ncols=ncols, nrows=ncols, figsize=(15, 15)) for i in range(ncols): for j in range(ncols): bird_species = random.choice(os.listdir(ds_path)) random_bird_path = random.choice(os.listdir(ds_path + '/'+ bird_species)) random_bird = mpimg.imread(ds_path + '/' + bird_species + '/' + random_bird_path) ax[i, j].imshow(random_bird) ax[i, j].set_title(bird_species) ax[i, j].axis('off') display_random_grid() backend.clear_session() model_base = models.Sequential() model_base.add(layers.Conv2D(512, (3, 3), activation='relu', input_shape=(224, 224, 3))) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(512, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(256, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Flatten()) model_base.add(layers.Dense(128, activation='relu')) model_base.add(layers.Dropout(0.5)) model_base.add(layers.Dense(num_classes, activation='softmax')) model_base.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_base.fit_generator(train_generator, epochs=50, validation_data=validation_generator, validation_steps=20, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_base.evaluate_generator(test_generator, steps=20) backend.clear_session() visible = Input(shape=(224, 224, 3)) conv_1_1 = Conv2D(64, (1, 1), padding='same', activation='relu', strides=2)(visible) conv_1_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_2 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_1_2) conv_1_3 = AveragePooling2D((3, 3), padding='same', strides=2)(visible) conv_2_3 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_3) conv_1_4 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_4 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_4) conv_3_4 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_2_4) merge = Concatenate(axis=-1)([conv_1_1, conv_2_2, conv_2_3, conv_3_4]) flat = Flatten()(merge) hidden = Dense(32, activation='relu')(flat) drop = Dropout(0.5)(hidden) output = Dense(num_classes, activation='softmax')(drop) model_birdcl = Model(inputs=visible, outputs=output) model_birdcl.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_birdcl.fit_generator(train_generator, steps_per_epoch=1001, epochs=50, validation_data=validation_generator, validation_steps=29, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_birdcl.evaluate_generator(test_generator, steps=29) history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] acc_values = history_dict['accuracy'] val_acc_values = history_dict['val_accuracy'] epochs = range(1, len(history_dict['accuracy']) + 1) plot_model(model_birdcl)
code
49129658/cell_11
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices
code
49129658/cell_1
[ "text_plain_output_100.png", "text_plain_output_84.png", "text_plain_output_56.png", "text_plain_output_137.png", "text_plain_output_139.png", "text_plain_output_35.png", "text_plain_output_130.png", "text_plain_output_117.png", "text_plain_output_98.png", "text_plain_output_43.png", "text_plain_output_78.png", "text_plain_output_143.png", "text_plain_output_106.png", "text_plain_output_37.png", "text_plain_output_138.png", "text_plain_output_147.png", "text_plain_output_90.png", "text_plain_output_79.png", "text_plain_output_5.png", "text_plain_output_75.png", "text_plain_output_48.png", "text_plain_output_116.png", "text_plain_output_128.png", "text_plain_output_30.png", "text_plain_output_73.png", "text_plain_output_126.png", "text_plain_output_115.png", "text_plain_output_15.png", "text_plain_output_133.png", "text_plain_output_114.png", "text_plain_output_70.png", "text_plain_output_9.png", "text_plain_output_44.png", "text_plain_output_119.png", "text_plain_output_86.png", "text_plain_output_118.png", "text_plain_output_131.png", "text_plain_output_40.png", "text_plain_output_123.png", "text_plain_output_74.png", "text_plain_output_31.png", "text_plain_output_20.png", "text_plain_output_102.png", "text_plain_output_111.png", "text_plain_output_101.png", "text_plain_output_144.png", "text_plain_output_132.png", "text_plain_output_60.png", "text_plain_output_68.png", "text_plain_output_4.png", "text_plain_output_65.png", "text_plain_output_64.png", "text_plain_output_13.png", "text_plain_output_107.png", "text_plain_output_52.png", "text_plain_output_66.png", "text_plain_output_45.png", "text_plain_output_14.png", "text_plain_output_32.png", "text_plain_output_88.png", "text_plain_output_29.png", "text_plain_output_140.png", "text_plain_output_129.png", "text_plain_output_58.png", "text_plain_output_49.png", "text_plain_output_63.png", "text_plain_output_27.png", "text_plain_output_76.png", "text_plain_output_108.png", "text_plain_output_54.png", "text_plain_output_142.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_92.png", "text_plain_output_57.png", "text_plain_output_120.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_104.png", "text_plain_output_47.png", "text_plain_output_121.png", "text_plain_output_25.png", "text_plain_output_134.png", "text_plain_output_77.png", "text_plain_output_18.png", "text_plain_output_50.png", "text_plain_output_36.png", "text_plain_output_96.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_141.png", "text_plain_output_112.png", "text_plain_output_113.png", "text_plain_output_22.png", "text_plain_output_81.png", "text_plain_output_69.png", "text_plain_output_146.png", "text_plain_output_145.png", "text_plain_output_125.png", "text_plain_output_38.png", "text_plain_output_7.png", "text_plain_output_91.png", "text_plain_output_16.png", "text_plain_output_59.png", "text_plain_output_103.png", "text_plain_output_71.png", "text_plain_output_8.png", "text_plain_output_122.png", "text_plain_output_26.png", "text_plain_output_109.png", "text_plain_output_41.png", "text_plain_output_34.png", "text_plain_output_85.png", "text_plain_output_42.png", "text_plain_output_110.png", "text_plain_output_67.png", "text_plain_output_53.png", "text_plain_output_23.png", "text_plain_output_89.png", "text_plain_output_51.png", "text_plain_output_28.png", "text_plain_output_72.png", "text_plain_output_99.png", "text_plain_output_136.png", "text_plain_output_2.png", "text_plain_output_127.png", "text_plain_output_97.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_39.png", "text_plain_output_55.png", "text_plain_output_82.png", "text_plain_output_93.png", "text_plain_output_19.png", "text_plain_output_105.png", "text_plain_output_80.png", "text_plain_output_94.png", "text_plain_output_124.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "text_plain_output_62.png", "text_plain_output_95.png", "text_plain_output_61.png", "text_plain_output_83.png", "text_plain_output_135.png", "text_plain_output_46.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49129658/cell_18
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from keras.layers import Activation, Flatten, Dense, Dropout ,Input from tensorflow.keras import backend from tensorflow.keras import backend, models, layers, regularizers , optimizers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import BatchNormalization , Concatenate from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.image as mpimg import matplotlib.pyplot as plt import os import os import random import numpy as np import pandas as pd import os train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices num_classes = len(train_generator.class_indices) def display_random_grid(ncols=5, ds_path=train_directory): fig, ax = plt.subplots(ncols=ncols, nrows=ncols, figsize=(15, 15)) for i in range(ncols): for j in range(ncols): bird_species = random.choice(os.listdir(ds_path)) random_bird_path = random.choice(os.listdir(ds_path + '/'+ bird_species)) random_bird = mpimg.imread(ds_path + '/' + bird_species + '/' + random_bird_path) ax[i, j].imshow(random_bird) ax[i, j].set_title(bird_species) ax[i, j].axis('off') display_random_grid() backend.clear_session() model_base = models.Sequential() model_base.add(layers.Conv2D(512, (3, 3), activation='relu', input_shape=(224, 224, 3))) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(512, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(256, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Flatten()) model_base.add(layers.Dense(128, activation='relu')) model_base.add(layers.Dropout(0.5)) model_base.add(layers.Dense(num_classes, activation='softmax')) model_base.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_base.fit_generator(train_generator, epochs=50, validation_data=validation_generator, validation_steps=20, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_base.evaluate_generator(test_generator, steps=20) backend.clear_session() visible = Input(shape=(224, 224, 3)) conv_1_1 = Conv2D(64, (1, 1), padding='same', activation='relu', strides=2)(visible) conv_1_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_2 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_1_2) conv_1_3 = AveragePooling2D((3, 3), padding='same', strides=2)(visible) conv_2_3 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_3) conv_1_4 = Conv2D(64, (1, 1), padding='same', activation='relu')(visible) conv_2_4 = Conv2D(64, (3, 3), padding='same', activation='relu')(conv_1_4) conv_3_4 = Conv2D(64, (3, 3), padding='same', activation='relu', strides=2)(conv_2_4) merge = Concatenate(axis=-1)([conv_1_1, conv_2_2, conv_2_3, conv_3_4]) flat = Flatten()(merge) hidden = Dense(32, activation='relu')(flat) drop = Dropout(0.5)(hidden) output = Dense(num_classes, activation='softmax')(drop) model_birdcl = Model(inputs=visible, outputs=output) model_birdcl.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_birdcl.fit_generator(train_generator, steps_per_epoch=1001, epochs=50, validation_data=validation_generator, validation_steps=29, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_birdcl.evaluate_generator(test_generator, steps=29) print('Using Functional API and Adam Optimizer the accuracy is ---', test_acc) history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] acc_values = history_dict['accuracy'] val_acc_values = history_dict['val_accuracy'] epochs = range(1, len(history_dict['accuracy']) + 1) plt.plot(epochs, loss_values, 'bo', label='Training loss') plt.plot(epochs, val_loss_values, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(epochs, acc_values, 'bo', label='Training accuracy') plt.plot(epochs, val_acc_values, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show()
code
49129658/cell_16
[ "text_plain_output_1.png" ]
from tensorflow.keras import backend from tensorflow.keras import backend, models, layers, regularizers , optimizers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import BatchNormalization , Concatenate from tensorflow.keras.preprocessing.image import ImageDataGenerator train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices num_classes = len(train_generator.class_indices) backend.clear_session() model_base = models.Sequential() model_base.add(layers.Conv2D(512, (3, 3), activation='relu', input_shape=(224, 224, 3))) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(512, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Conv2D(256, (3, 3), activation='relu')) model_base.add(layers.MaxPool2D((2, 2))) model_base.add(BatchNormalization()) model_base.add(layers.Flatten()) model_base.add(layers.Dense(128, activation='relu')) model_base.add(layers.Dropout(0.5)) model_base.add(layers.Dense(num_classes, activation='softmax')) model_base.compile(optimizer=optimizers.Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model_base.fit_generator(train_generator, epochs=50, validation_data=validation_generator, validation_steps=20, verbose=1, callbacks=[EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)]) test_loss, test_acc = model_base.evaluate_generator(test_generator, steps=20) print('test_acc:', test_acc)
code
49129658/cell_14
[ "image_output_1.png" ]
import matplotlib.image as mpimg import matplotlib.pyplot as plt import os import os import random import numpy as np import pandas as pd import os train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' def display_random_grid(ncols=5, ds_path=train_directory): fig, ax = plt.subplots(ncols=ncols, nrows=ncols, figsize=(15, 15)) for i in range(ncols): for j in range(ncols): bird_species = random.choice(os.listdir(ds_path)) random_bird_path = random.choice(os.listdir(ds_path + '/' + bird_species)) random_bird = mpimg.imread(ds_path + '/' + bird_species + '/' + random_bird_path) ax[i, j].imshow(random_bird) ax[i, j].set_title(bird_species) ax[i, j].axis('off') display_random_grid()
code
49129658/cell_10
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse')
code
49129658/cell_12
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator train_directory = '../input/100-bird-species/train' val_directory = '../input/100-bird-species/valid' test_directory = '../input/100-bird-species/test' train_datagen = ImageDataGenerator(rescale=1 / 255) val_datagen = ImageDataGenerator(rescale=1 / 255) test_datagen = ImageDataGenerator(rescale=1 / 255) train_generator = train_datagen.flow_from_directory(train_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') validation_generator = train_datagen.flow_from_directory(val_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') test_generator = test_datagen.flow_from_directory(test_directory, target_size=(224, 224), batch_size=32, color_mode='rgb', class_mode='sparse') train_generator.class_indices num_classes = len(train_generator.class_indices) print(num_classes)
code
2034195/cell_9
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) msno.bar(state_ts, color='r')
code
2034195/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) data = [go.Scatter(x=state_ts['Date'], y=state_ts['DaysOnZillow_AllHomes'], line=dict(color='#17BECF'))] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-08-01']}} state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape state_month = state_ts.resample('M', on='Date').median() state_month = state_month.reset_index() state_month.shape data = [go.Scatter(x=state_month['Date'], y=state_month['DaysOnZillow_AllHomes'])] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-09-01']}} data = [go.Scatter(x=state_month['Date'], y=state_month['InventorySeasonallyAdjusted_AllHomes'], name='Seasonally'), go.Scatter(x=state_month['Date'], y=state_month['InventoryRaw_AllHomes'], name='Raw')] layout = {'title': 'Inventory of All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2009-01-01', '2017-10-01']}} data = [go.Scatter(x=state_month['Date'], y=state_month['HomesSoldAsForeclosuresRatio_AllHomes'], name='Sold')] layout = {'title': 'Home Sold As Foreclosure Ratio of All Homes', 'font': dict(size=16)} py.iplot({'data': data, 'layout': layout})
code
2034195/cell_4
[ "image_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) print('Number of rows and columns in state ts:', state_ts.shape)
code
2034195/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) data = [go.Scatter(x=state_ts['Date'], y=state_ts['DaysOnZillow_AllHomes'], line=dict(color='#17BECF'))] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-08-01']}} state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape state_month = state_ts.resample('M', on='Date').median() state_month = state_month.reset_index() state_month.shape data = [go.Scatter(x=state_month['Date'], y=state_month['DaysOnZillow_AllHomes'])] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-09-01']}} data = [go.Scatter(x=state_month['Date'], y=state_month['InventorySeasonallyAdjusted_AllHomes'], name='Seasonally'), go.Scatter(x=state_month['Date'], y=state_month['InventoryRaw_AllHomes'], name='Raw')] layout = {'title': 'Inventory of All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2009-01-01', '2017-10-01']}} py.iplot({'data': data, 'layout': layout})
code
2034195/cell_30
[ "image_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) data = [go.Scatter(x=state_ts['Date'], y=state_ts['DaysOnZillow_AllHomes'], line=dict(color='#17BECF'))] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-08-01']}} state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape state_month = state_ts.resample('M', on='Date').median() state_month = state_month.reset_index() state_month.shape data = [go.Scatter(x=state_month['Date'], y=state_month['DaysOnZillow_AllHomes'])] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-09-01']}} data = [go.Scatter(x=state_month['Date'], y=state_month['InventorySeasonallyAdjusted_AllHomes'], name='Seasonally'), go.Scatter(x=state_month['Date'], y=state_month['InventoryRaw_AllHomes'], name='Raw')] layout = {'title': 'Inventory of All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2009-01-01', '2017-10-01']}} data = [go.Scatter(x=state_month['Date'], y=state_month['HomesSoldAsForeclosuresRatio_AllHomes'], name='Sold')] layout = {'title': 'Home Sold As Foreclosure Ratio of All Homes', 'font': dict(size=16)} data = [go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_1Bedroom'], name='1 Bedroom'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_2Bedroom'], name='2 Bedroom'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_3Bedroom'], name='3 Bedroom'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_4Bedroom'], name='4 Bedroom'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_5BedroomOrMore'], name='5 or more Bedroom'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_CondoCoop'], name='Condo Coop'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_DuplexTriplex'], name='Duplex Triplex'), go.Scatter(x=state_month['Date'], y=state_month['MedianListingPricePerSqft_SingleFamilyResidence'], name='Single Family')] layout = {'title': 'Median Listing Price$/sqft', 'font': dict(size=16), 'xaxis': {'range': ['2009-01-01', '2017-10-01']}} py.iplot({'data': data, 'layout': layout})
code
2034195/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) data = [go.Scatter(x=state_ts['Date'], y=state_ts['DaysOnZillow_AllHomes'], line=dict(color='#17BECF'))] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-08-01']}} state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape state_month = state_ts.resample('M', on='Date').median() state_month = state_month.reset_index() state_month.shape data = [go.Scatter(x=state_month['Date'], y=state_month['DaysOnZillow_AllHomes'])] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-09-01']}} py.iplot({'data': data, 'layout': layout})
code
2034195/cell_6
[ "image_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) state_ts.info()
code
2034195/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls plt.style.use('fivethirtyeight')
code
2034195/cell_19
[ "image_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape state_month = state_ts.resample('M', on='Date').median() state_month = state_month.reset_index() state_month.shape
code
2034195/cell_7
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) state_ts.describe()
code
2034195/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) data = [go.Scatter(x=state_ts['Date'], y=state_ts['DaysOnZillow_AllHomes'], line=dict(color='#17BECF'))] layout = {'title': 'Days On Zillow All Homes', 'font': dict(size=16), 'xaxis': {'range': ['2010-01-01', '2017-08-01']}} py.iplot({'data': data, 'layout': layout})
code
2034195/cell_17
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape
code
2034195/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) cnt = state_ts['RegionName'].value_counts().to_frame() state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape fig, ax = plt.subplots(1, 2, figsize=(16, 10), sharey='all') ax1, ax2 = ax.flatten() sns.barplot(state_vise['InventorySeasonallyAdjusted_AllHomes'], state_vise.index, palette='magma', ax=ax1) sns.barplot(state_vise['InventoryRaw_AllHomes'], state_vise.index, palette='magma', ax=ax2)
code
2034195/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) cnt = state_ts['RegionName'].value_counts().to_frame() print('Number of States', state_ts['RegionName'].nunique()) plt.figure(figsize=(15, 10)) sns.barplot(cnt['RegionName'], cnt.index)
code
2034195/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) cnt = state_ts['RegionName'].value_counts().to_frame() state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape plt.figure(figsize=(14, 10)) sns.barplot(state_vise['DaysOnZillow_AllHomes'], state_vise.index, palette='magma')
code
2034195/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) cnt = state_ts['RegionName'].value_counts().to_frame() state_vise = state_ts.groupby(['RegionName']).median() state_vise.shape fig,ax = plt.subplots(1,2,figsize=(16,10),sharey='all') ax1,ax2 = ax.flatten() sns.barplot(state_vise['InventorySeasonallyAdjusted_AllHomes'],state_vise.index,palette='magma',ax=ax1) sns.barplot(state_vise['InventoryRaw_AllHomes'],state_vise.index,palette='magma',ax=ax2); plt.figure(figsize=(14, 10)) sns.barplot(state_vise['HomesSoldAsForeclosuresRatio_AllHomes'], state_vise.index, palette='magma')
code
2034195/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) missing = state_ts.isnull().sum().sum() missing * 100 / (state_ts.shape[0] * state_ts.shape[1]) print('Date range:{} to {}'.format(state_ts['Date'].min(), state_ts['Date'].max())) print('\n', state_ts['Date'].describe())
code
2034195/cell_5
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/' state_ts = pd.read_csv(path + 'State_time_series.csv', parse_dates=['Date']) state_ts.head()
code
32068113/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0] collision.groupby('Area_Name').size().sort_values(ascending=True).plot.barh()
code
32068113/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0]
code
32068113/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns
code
32068113/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0] collision.groupby('Area_Name').size().sort_values(ascending=True).plot.barh() collision['Year'] = collision['Date_Occurred'].str[:4] import matplotlib.pyplot as plt plt.figure(figsize=(15, 6)) collision['Year_Month'] = collision['Date_Occurred'].str[:7] collision.groupby('Year_Month').size().plot()
code
32068113/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0] collision.groupby('Area_Name').size().sort_values(ascending=True).plot.barh() collision['Year'] = collision['Date_Occurred'].str[:4] collision.groupby('Year').size().plot.bar()
code
32068113/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood']
code
32068113/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0]
code
32068113/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0] collision[['Time_Occurred', 'Victim_Age']].mean()
code
32068113/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068113/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.shape[0] collision.columns collision[collision.Area_Name == 'Hollywood'] collision[(collision.Victim_Age == 29.0) & (collision.Victim_Sex == 'F') & (collision.Time_Occurred == 1450)].set_index('Area_Name').loc['Hollywood'].iloc[0] collision.sort_values('Time_Occurred', ascending=False).Time_Occurred.value_counts().iloc[:20].plot.bar()
code
32068113/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) collision = pd.read_csv('../input/traffic-collision-data-from-2010-to-present/traffic-collision-data-from-2010-to-present.csv') cols = collision.columns cols = cols.map(lambda x: x.replace(' ', '_')) collision.columns = cols collision.head()
code
32071330/cell_34
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape df_worlddata = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df_worlddata.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape df_worlddata.index = df_worlddata['Country'] df_worlddata = df_worlddata.drop(['Country'], axis=1) df_worlddata.head()
code
32071330/cell_30
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape plotScatterMatrix(df2, 20, 10)
code
32071330/cell_33
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape df_worlddata = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df_worlddata.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape print(f'There are {nRow} rows and {nCol} columns')
code
32071330/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape plotScatterMatrix(df1, 20, 10)
code
32071330/cell_6
[ "image_output_1.png" ]
!pip install pycountry_convert !pip install folium !pip install plotly
code
32071330/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape plotPerColumnDistribution(df2, 10, 5)
code
32071330/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape plotCorrelationMatrix(df1, 8)
code
32071330/cell_28
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape plotCorrelationMatrix(df2, 8)
code
32071330/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape plotPerColumnDistribution(df1, 10, 5)
code
32071330/cell_24
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape df2.head(5)
code
32071330/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape df1.head(5)
code
32071330/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape print(f'There are {nRow} rows and {nCol} columns')
code
32071330/cell_37
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape nRowsRead = 1000 df2 = pd.read_csv('/kaggle/input/testingdataworldwide_April_14.csv', delimiter=',', nrows=nRowsRead) df2.dataframeName = 'testingdataworldwide_April_14.csv' nRow, nCol = df2.shape df_worlddata = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df_worlddata.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape df_worlddata.index = df_worlddata['Country'] df_worlddata = df_worlddata.drop(['Country'], axis=1) df_test = df_worlddata.drop(['Total Cases', 'Cases', 'Total Deaths', 'Deaths', 'Total Recovers', 'Active', 'Total Cases/1M pop', 'Deaths/1M pop'], axis=1) f = plt.figure(figsize=(20, 15)) f.add_subplot(111) plt.axes(axisbelow=True) plt.barh(df_test.sort_values('Tests/1M pop')['Tests/1M pop'].index[-50:], df_test.sort_values('Tests/1M pop')['Tests/1M pop'].values[-50:], color='red') plt.tick_params(size=5, labelsize=13) plt.xlabel('Tests/1M pop ', fontsize=18) plt.title('Top Countries (Tests/1M pop )', fontsize=20) plt.grid(alpha=0.3)
code
32071330/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow for i in range(min(nCol, nGraphShown)): columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() plt.xticks(rotation=90) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna('columns') # drop columns with NaN df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2') return corr = df.corr() plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f'Correlation Matrix for {filename}', fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include =[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna('columns') df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values columnNames = list(df) if len(columnNames) > 10: # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix(df, alpha=0.75, figsize=[plotSize, plotSize], diagonal='kde') corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)): ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2), xycoords='axes fraction', ha='center', va='center', size=textSize) plt.suptitle('Scatter and Density Plot') plt.show() nRowsRead = 1000 df1 = pd.read_csv('/kaggle/input/testingdataworldwide_April_13.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'testingdataworldwide_April_13.csv' nRow, nCol = df1.shape print(f'There are {nRow} rows and {nCol} columns')
code
32071330/cell_5
[ "image_output_1.png" ]
import os # accessing directory structure for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73097119/cell_30
[ "text_plain_output_1.png" ]
from os import listdir from os.path import isfile, join from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.models import Sequential from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import SGD from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import random K.clear_session() img_width = img_height = 224 training_data_dir = '../input/my-dogs-vs-cats/my-dogs-vs-cats/training' validation_data_dir = '../input/my-dogs-vs-cats/my-dogs-vs-cats/validation' batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) train_generator = train_datagen.flow_from_directory(training_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') valid_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = valid_datagen.flow_from_directory(validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) def VGG16(): model = Sequential() model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', input_shape=input_shape, activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Flatten(name='flatten')) model.add(Dense(4096, activation='relu', name='fc1')) model.add(Dense(4096, activation='relu', name='fc2')) model.add(Dense(1, activation='sigmoid', name='output')) return model model = VGG16() early_stopping = EarlyStopping(monitor='val_accuracy', mode='auto', verbose=1, patience=3) model_checkpoint = ModelCheckpoint(filepath='./checkpoint.h5', monitor='val_accuracy', save_best_only=True, mode='auto') callbacks = [early_stopping, model_checkpoint] opt = SGD(learning_rate=0.001, momentum=0.9) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) model.summary() epochs = 2 steps_per_epoch = len(train_generator) validation_steps = len(validation_generator) history = model.fit_generator(generator=train_generator, validation_data=validation_generator, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, callbacks=callbacks, verbose=1) model = load_model('../input/modelcheckpoint/final_model.h5') import matplotlib.pyplot as plt import random import pandas as pd from tensorflow.keras.preprocessing import image df = pd.read_csv('../input/my-dogs-vs-cats/my-dogs-vs-cats/sampleSubmission.csv') def updateValue(df: pd.DataFrame, id: int, value: str): df.loc[df['id'] == id, 'label'] = value predict_dir_path = '../input/my-dogs-vs-cats/my-dogs-vs-cats/test' onlyfiles = [f for f in listdir(predict_dir_path) if isfile(join(predict_dir_path, f))] random.shuffle(onlyfiles) dog_counter = 0 cat_counter = 0 counter = 0 times = 100 for file, counter in zip(onlyfiles, range(times)): img = image.load_img(predict_dir_path + '/' + file, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) classes = classes[0][0] id = str(file).split('.') id = int(id[0]) if classes == 0: updateValue(df, id, 'cat') cat_counter += 1 else: updateValue(df, id, 'dog') dog_counter += 1 df.to_csv('./sampleSubmission.csv', index=False) df = pd.read_csv('./sampleSubmission.csv') print(df.loc[df['label'] == 'dog'].to_string(index=False)) print('-------------------------') print(df.loc[df['label'] == 'cat'].to_string(index=False))
code
73097119/cell_29
[ "image_output_11.png", "image_output_98.png", "image_output_74.png", "image_output_82.png", "image_output_24.png", "image_output_46.png", "image_output_85.png", "image_output_25.png", "image_output_77.png", "image_output_47.png", "image_output_78.png", "image_output_17.png", "image_output_30.png", "image_output_73.png", "image_output_72.png", "image_output_14.png", "image_output_59.png", "image_output_39.png", "image_output_97.png", "image_output_28.png", "image_output_86.png", "image_output_84.png", "image_output_81.png", "image_output_23.png", "image_output_34.png", "image_output_64.png", "image_output_13.png", "image_output_40.png", "image_output_5.png", "image_output_48.png", "image_output_68.png", "image_output_75.png", "image_output_18.png", "image_output_58.png", "image_output_92.png", "image_output_21.png", "image_output_52.png", "image_output_60.png", "image_output_7.png", "image_output_62.png", "image_output_96.png", "image_output_56.png", "image_output_31.png", "image_output_65.png", "image_output_20.png", "image_output_69.png", "image_output_32.png", "image_output_53.png", "image_output_4.png", "image_output_51.png", "image_output_83.png", "image_output_42.png", "image_output_35.png", "image_output_90.png", "image_output_41.png", "image_output_57.png", "image_output_36.png", "image_output_8.png", "image_output_37.png", "image_output_66.png", "image_output_16.png", "image_output_91.png", "image_output_70.png", "image_output_67.png", "image_output_27.png", "image_output_54.png", "image_output_6.png", "image_output_45.png", "image_output_63.png", "image_output_71.png", "image_output_80.png", "image_output_95.png", "image_output_93.png", "image_output_12.png", "image_output_22.png", "image_output_89.png", "image_output_55.png", "text_plain_output_1.png", "image_output_94.png", "image_output_3.png", "image_output_29.png", "image_output_44.png", "image_output_43.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_88.png", "image_output_33.png", "image_output_87.png", "image_output_50.png", "image_output_15.png", "image_output_99.png", "image_output_49.png", "image_output_100.png", "image_output_76.png", "image_output_9.png", "image_output_19.png", "image_output_79.png", "image_output_61.png", "image_output_38.png", "image_output_26.png" ]
from os import listdir from os.path import isfile, join from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.models import Sequential from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import SGD from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import random K.clear_session() img_width = img_height = 224 training_data_dir = '../input/my-dogs-vs-cats/my-dogs-vs-cats/training' validation_data_dir = '../input/my-dogs-vs-cats/my-dogs-vs-cats/validation' batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) train_generator = train_datagen.flow_from_directory(training_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') valid_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = valid_datagen.flow_from_directory(validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) def VGG16(): model = Sequential() model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', input_shape=input_shape, activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(Conv2D(filters=512, kernel_size=(3, 3), padding='same', activation='relu', kernel_initializer='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Flatten(name='flatten')) model.add(Dense(4096, activation='relu', name='fc1')) model.add(Dense(4096, activation='relu', name='fc2')) model.add(Dense(1, activation='sigmoid', name='output')) return model model = VGG16() early_stopping = EarlyStopping(monitor='val_accuracy', mode='auto', verbose=1, patience=3) model_checkpoint = ModelCheckpoint(filepath='./checkpoint.h5', monitor='val_accuracy', save_best_only=True, mode='auto') callbacks = [early_stopping, model_checkpoint] opt = SGD(learning_rate=0.001, momentum=0.9) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) model.summary() epochs = 2 steps_per_epoch = len(train_generator) validation_steps = len(validation_generator) history = model.fit_generator(generator=train_generator, validation_data=validation_generator, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, callbacks=callbacks, verbose=1) model = load_model('../input/modelcheckpoint/final_model.h5') import matplotlib.pyplot as plt import random import pandas as pd from tensorflow.keras.preprocessing import image df = pd.read_csv('../input/my-dogs-vs-cats/my-dogs-vs-cats/sampleSubmission.csv') def updateValue(df: pd.DataFrame, id: int, value: str): df.loc[df['id'] == id, 'label'] = value predict_dir_path = '../input/my-dogs-vs-cats/my-dogs-vs-cats/test' onlyfiles = [f for f in listdir(predict_dir_path) if isfile(join(predict_dir_path, f))] random.shuffle(onlyfiles) dog_counter = 0 cat_counter = 0 counter = 0 times = 100 for file, counter in zip(onlyfiles, range(times)): img = image.load_img(predict_dir_path + '/' + file, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) classes = classes[0][0] id = str(file).split('.') id = int(id[0]) if classes == 0: updateValue(df, id, 'cat') if cat_counter < 100: plt.title('cat') plt.imshow(img) plt.show() cat_counter += 1 else: updateValue(df, id, 'dog') if dog_counter < 100: plt.title('dog') plt.imshow(img) plt.show() dog_counter += 1 df.to_csv('./sampleSubmission.csv', index=False) print('Total Dogs :', dog_counter) print('Total Cats :', cat_counter)
code
121151245/cell_13
[ "text_plain_output_1.png" ]
code
121151245/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import os import numpy as np import pandas as pd import os path_validation = Path('/kaggle/input/food-validation/images/') path_training = Path('/kaggle/input/food-training/images/') image_files = os.listdir(path_training) for i in range(2): image_path = os.path.join(path_training, image_files[i]) print(image_path) image_pathv = os.path.join(path_validation, image_files[i]) print(image_pathv)
code
121151245/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image import os import os import numpy as np import pandas as pd import os path_validation = Path('/kaggle/input/food-validation/images/') path_training = Path('/kaggle/input/food-training/images/') image_files = os.listdir(path_training) for i in range(2): image_path = os.path.join(path_training, image_files[i]) image_pathv = os.path.join(path_validation, image_files[i]) path_annotations = Path('/kaggle/input/food-training/annotations.json') label_func = lambda x: annotations[str(x.parent.name + '/' + x.name)]['name'] sample_image_file = os.listdir(path_training)[0] print(sample_image_file) sample_image = Image.open(path_training / sample_image_file) sample_label = label_func(sample_image) print(sample_label)
code
121151245/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
!ls /kaggle/input/food-training
code
121151245/cell_10
[ "text_plain_output_1.png" ]
import os import os import numpy as np import pandas as pd import os path_validation = Path('/kaggle/input/food-validation/images/') path_training = Path('/kaggle/input/food-training/images/') image_files = os.listdir(path_training) for i in range(2): image_path = os.path.join(path_training, image_files[i]) image_pathv = os.path.join(path_validation, image_files[i]) path_annotations = Path('/kaggle/input/food-training/annotations.json') label_func = lambda x: annotations[str(x.parent.name + '/' + x.name)]['name'] dls = ImageDataLoaders.from_folder(path_training, valid_path=path_validation, item_tfms=Resize(460), batch_tfms=aug_transforms(size=224, min_scale=0.75), label_func=label_func)
code
18108547/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.head()
code
18108547/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.shape df.isna().sum() df = df.dropna(axis=0, subset=['Preferred Foot']) df.isna().sum() import seaborn as sns sns.set() df['Growth_Left'] = df['Potential'] - df['Overall'] sns.lineplot(x='Age', y='Growth_Left', data=df)
code
18108547/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.shape df.isna().sum() df = df.dropna(axis=0, subset=['Preferred Foot']) df.isna().sum() top_100 = df[:100] top_100.shape age_100_plots = top_100['Age'].value_counts() age_100_plots.plot(kind='bar')
code
18108547/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.shape df.isna().sum() df = df.dropna(axis=0, subset=['Preferred Foot']) df.isna().sum() import seaborn as sns sns.set() sns.lineplot(x='Overall', y='Wage_Num', data=df)
code
18108547/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.shape df.isna().sum() df = df.dropna(axis=0, subset=['Preferred Foot']) df.isna().sum() import seaborn as sns sns.set() df['Growth_Left'] = df['Potential'] - df['Overall'] sns.lineplot(x='Age', y='Overall', data=df)
code
18108547/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/data.csv') list(df.columns) def clean_d(string): last_char = string[-1] if last_char == '0': return 0 string = string[1:-1] num = float(string) if last_char == 'K': num = num * 1000 elif last_char == 'M': num = num * 1000000 return num df['Wage_Num'] = df.apply(lambda row: clean_d(row['Wage']), axis=1) df['Value_Num'] = df.apply(lambda row: clean_d(row['Value']), axis=1) df.shape df.isna().sum() df = df.dropna(axis=0, subset=['Preferred Foot']) df.isna().sum() top_100 = df[:100] top_100.shape nationality_100_plots = top_100['Nationality'].value_counts() nationality_100_plots.plot(kind='bar')
code