path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
106192280/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() sns.heatmap(df_cust.corr(), cmap='YlGnBu', annot=True) plt.title('Correlation Coefficient Heatmap') plt.show()
code
106192280/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns
code
106192280/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() plt.figure(figsize=(6, 6)) df_cust['Genre'].value_counts().plot(kind='pie', autopct='%1.0f%%', shadow=True, explode=[0, 0.1]) plt.title('Population Distribution') plt.show()
code
106192280/cell_32
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() df_genre = pd.DataFrame({'Genre': ['Female', 'Male'], 'Genre_code': [0, 1]}) df_cust = df_cust.merge(df_genre, on='Genre') df_cust['Genre_code'].value_counts()
code
106192280/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust.head()
code
106192280/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust[['CustomerID', 'Genre']].groupby('Genre').count()
code
106192280/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust['Genre'].value_counts()
code
106192280/cell_35
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() df_genre = pd.DataFrame({'Genre': ['Female', 'Male'], 'Genre_code': [0, 1]}) df_cust = df_cust.merge(df_genre, on='Genre') df_cust.drop('Genre', axis=1, inplace=True) df_cust.columns df_cust.head()
code
106192280/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() boxplot(df_cust, 'Genre', 'Annual Income (k$)', 'autumn', False, 'Annual Income distribution of Male and Female')
code
106192280/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust['Genre'].value_counts().index[0]
code
106192280/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum()
code
106192280/cell_37
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() df_genre = pd.DataFrame({'Genre': ['Female', 'Male'], 'Genre_code': [0, 1]}) df_cust = df_cust.merge(df_genre, on='Genre') df_cust.drop('Genre', axis=1, inplace=True) df_cust.columns df_cust.drop('CustomerID', axis=1, inplace=True) df_cust.head()
code
106192280/cell_12
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() np.mean(df_cust)
code
106192280/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.info()
code
18102745/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data = data.dropna(axis=0) X = data.drop(['SalePrice'], axis=1) y = data.SalePrice y.head()
code
18102745/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) print(data.columns) col = ['LotArea', 'SalePrice'] two = data[col]
code
18102745/cell_11
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data = data.dropna(axis=0) X = data.drop(['SalePrice'], axis=1) y = data.SalePrice y.count() from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor(random_state=1) model.fit(X, y)
code
18102745/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data = data.dropna(axis=0) X = data.drop(['SalePrice'], axis=1) y = data.SalePrice X.head()
code
18102745/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] data.head()
code
18102745/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data = data.dropna(axis=0) X = data.drop(['SalePrice'], axis=1) y = data.SalePrice y.count()
code
18102745/cell_12
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data = data.dropna(axis=0) X = data.drop(['SalePrice'], axis=1) y = data.SalePrice y.count() from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor(random_state=1) model.fit(X, y) print('Making predictions for the following 5 houses:') print(X.head()) print('The predictions are') print(model.predict(X.head()))
code
18102745/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col = ['LotArea', 'SalePrice'] two = data[col] features = ['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'OpenPorchSF', 'MoSold', 'YrSold', 'SalePrice'] data = data[features] data.describe()
code
73066361/cell_4
[ "text_html_output_1.png" ]
from sklearn import model_selection import pandas as pd import numpy as np import pandas as pd from sklearn import model_selection train = pd.read_csv('../input/30daysml/train.csv/train.csv') train['kfold'] = -1 kf = model_selection.KFold(n_splits=10, shuffle=True, random_state=0) for fold, (train_indicies, valid_indicies) in enumerate(kf.split(X=train)): train.loc[valid_indicies, 'kfold'] = fold train.head()
code
73066361/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn import model_selection train = pd.read_csv('../input/30daysml/train.csv/train.csv') train['kfold'] = -1 train.head()
code
73066361/cell_1
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn import model_selection train = pd.read_csv('../input/30daysml/train.csv/train.csv') train.head()
code
121154736/cell_11
[ "text_plain_output_1.png" ]
from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf df = pd.read_csv('/kaggle/input/sports-classification/sports.csv') test = df[df['data set'] == 'test'] df = df[df['data set'] == 'train'] df = df.sample(frac=1) data_augmentation = tf.keras.Sequential([layers.RandomFlip('horizontal_and_vertical'), layers.RandomRotation(0.2)]) model = Sequential([keras.layers.InputLayer(input_shape=(224, 224, 3)), data_augmentation, keras.layers.Conv2D(64, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Conv2D(32, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Conv2D(16, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Flatten(), keras.layers.Dense(200, activation='relu'), keras.layers.Dense(100, activation='sigmoid')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) def get_pic(filepath): img = cv2.imread('/kaggle/input/sports-classification/' + filepath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img d = {} u = list(df['labels'].unique()) for i, j in enumerate(u): d[j] = i x_test = list(test['filepaths'].apply(get_pic)) y_test = list(test['labels'].apply(lambda x: d[x])) y_test = np.array(y_test) x_test = np.array(x_test) / 255 img_loc = [] y_train = [] for i in range(100): start = 0 temp_df = df.sample(1000) img_loc = list(temp_df['filepaths'].apply(get_pic)) y_train = list(temp_df['labels'].apply(lambda x: d[x])) y_train = np.array(y_train) img_loc = np.array(img_loc) / 255 model.fit(img_loc, y_train, epochs=1, batch_size=64)
code
121154736/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf df = pd.read_csv('/kaggle/input/sports-classification/sports.csv') test = df[df['data set'] == 'test'] df = df[df['data set'] == 'train'] df = df.sample(frac=1) data_augmentation = tf.keras.Sequential([layers.RandomFlip('horizontal_and_vertical'), layers.RandomRotation(0.2)]) model = Sequential([keras.layers.InputLayer(input_shape=(224, 224, 3)), data_augmentation, keras.layers.Conv2D(64, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Conv2D(32, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Conv2D(16, 3, activation='relu'), keras.layers.MaxPooling2D(), keras.layers.Flatten(), keras.layers.Dense(200, activation='relu'), keras.layers.Dense(100, activation='sigmoid')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) def get_pic(filepath): img = cv2.imread('/kaggle/input/sports-classification/' + filepath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img d = {} u = list(df['labels'].unique()) for i, j in enumerate(u): d[j] = i x_test = list(test['filepaths'].apply(get_pic)) y_test = list(test['labels'].apply(lambda x: d[x])) y_test = np.array(y_test) x_test = np.array(x_test) / 255 img_loc = [] y_train = [] for i in range(100): start = 0 temp_df = df.sample(1000) img_loc = list(temp_df['filepaths'].apply(get_pic)) y_train = list(temp_df['labels'].apply(lambda x: d[x])) y_train = np.array(y_train) img_loc = np.array(img_loc) / 255 model.fit(img_loc, y_train, epochs=1, batch_size=64) model.evaluate(x_test, y_test)
code
34134672/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) print(str(train.shape[0] - train_clean.shape[0]) + ' rows deleted in train') train = train_clean
code
34134672/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) clf = RandomForestClassifier(max_depth=25, random_state=42, min_samples_leaf=5, n_estimators=25) scores = cross_val_score(clf, train, labels, cv=5) scores.mean() scores = clf.predict(test) len(scores)
code
34134672/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34134672/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) clf = RandomForestClassifier(max_depth=25, random_state=42, min_samples_leaf=5, n_estimators=25) scores = clf.predict(test)
code
34134672/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) clf = RandomForestClassifier(max_depth=25, random_state=42, min_samples_leaf=5, n_estimators=25) scores = cross_val_score(clf, train, labels, cv=5) scores.mean()
code
34134672/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) clf = RandomForestClassifier(max_depth=25, random_state=42, min_samples_leaf=5, n_estimators=25) print(clf.score(train, labels)) print(clf.score(X_test, y_test))
code
34134672/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) train.info()
code
34134672/cell_12
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.drop(['Name'], axis=1, inplace=True) train.drop(['Cabin'], axis=1, inplace=True) train.drop(['Ticket'], axis=1, inplace=True) test.drop(['Name'], axis=1, inplace=True) test.drop(['Cabin'], axis=1, inplace=True) test.drop(['Ticket'], axis=1, inplace=True) train = train[train['Embarked'].notna()] train = train[train['Fare'] < 300] train_clean = train.dropna(thresh=train.shape[1] - 1) train = train_clean ids = train['PassengerId'] train.drop(['PassengerId'], axis=1, inplace=True) from sklearn.ensemble import AdaBoostClassifier ids_test = test['PassengerId'] test.drop(['PassengerId'], axis=1, inplace=True) labels = train['Survived'] train.drop(['Survived'], axis=1, inplace=True) train['Sex'] = pd.factorize(train['Sex'])[0] train['Embarked'] = pd.factorize(train['Embarked'])[0] test['Sex'] = pd.factorize(test['Sex'])[0] test['Embarked'] = pd.factorize(test['Embarked'])[0] dummy_columns = ['Sex', 'Pclass', 'Embarked'] for column in dummy_columns: just_dummies = pd.get_dummies(train[column]) train = pd.concat([train, just_dummies], axis=1) train = train.drop([column], axis=1) for column in dummy_columns: just_dummies = pd.get_dummies(test[column]) test = pd.concat([test, just_dummies], axis=1) test = test.drop([column], axis=1) scalerStd = StandardScaler() scalerStd.fit(train) scalerStd.transform(train)
code
16167842/cell_4
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input' train = pd.read_csv(f'{data_dir}/train.csv') test = pd.read_csv(f'{data_dir}/test.csv') sub = pd.read_csv(f'{data_dir}/sample_submission.csv') structures = pd.read_csv(f'{data_dir}/structures.csv') are_the_same_types = np.all(sorted(train['type'].unique()) == sorted(test['type'].unique())) train.head()
code
16167842/cell_6
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input' train = pd.read_csv(f'{data_dir}/train.csv') test = pd.read_csv(f'{data_dir}/test.csv') sub = pd.read_csv(f'{data_dir}/sample_submission.csv') structures = pd.read_csv(f'{data_dir}/structures.csv') are_the_same_types = np.all(sorted(train['type'].unique()) == sorted(test['type'].unique())) for type_ in np.unique(train['type']): ix = train['type'] == type_ fig, axes = plt.subplots(2, 2, figsize=(12, 4)) axes = axes.flatten() _ = axes[0].hist(x=train['atom_index_0'][ix], bins=50) _ = axes[1].hist(x=test['atom_index_0'][ix], bins=50) _ = axes[2].hist(x=train['atom_index_1'][ix], bins=50) _ = axes[3].hist(x=test['atom_index_1'][ix], bins=50) axes[0].set(xlabel='count', ylabel='atom_index_0', title=f'{type_}, train') axes[1].set(xlabel='count', ylabel='atom_index_0', title=f'{type_}, test') axes[2].set(xlabel='count', ylabel='atom_index_1', title=f'{type_}, train') axes[3].set(xlabel='count', ylabel='atom_index_1', title=f'{type_}, test') fig.tight_layout()
code
16167842/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os print(os.listdir('../input')) data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input'
code
16167842/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input' train = pd.read_csv(f'{data_dir}/train.csv') test = pd.read_csv(f'{data_dir}/test.csv') sub = pd.read_csv(f'{data_dir}/sample_submission.csv') structures = pd.read_csv(f'{data_dir}/structures.csv') are_the_same_types = np.all(sorted(train['type'].unique()) == sorted(test['type'].unique())) train['atom_index_1'].hist(bins=50)
code
16167842/cell_3
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input' train = pd.read_csv(f'{data_dir}/train.csv') test = pd.read_csv(f'{data_dir}/test.csv') sub = pd.read_csv(f'{data_dir}/sample_submission.csv') structures = pd.read_csv(f'{data_dir}/structures.csv') print('train shape', train.shape) print('test shape', train.shape) print('structures shape', structures.shape) print('sub', sub.shape) print('train cols', list(train.columns)) print('test cols', list(test.columns)) print('structures cols', list(structures.columns)) print('structures atoms', list(np.unique(structures['atom']))) print('') print(f"There are {train['molecule_name'].nunique()} distinct molecules in train data.") print(f"There are {test['molecule_name'].nunique()} distinct molecules in test data.") print(f"There are {structures['atom'].nunique()} unique atoms in structures") print(f"There are {train['type'].nunique()} unique types in train") print(f"There are {test['type'].nunique()} unique types in test") are_the_same_types = np.all(sorted(train['type'].unique()) == sorted(test['type'].unique())) print(f'Are all types in train and test the same? {are_the_same_types}')
code
16167842/cell_5
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import os data_dir = '../input/champs-scalar-coupling' if 'champs-scalar-coupling' in os.listdir('../input/') else '../input' train = pd.read_csv(f'{data_dir}/train.csv') test = pd.read_csv(f'{data_dir}/test.csv') sub = pd.read_csv(f'{data_dir}/sample_submission.csv') structures = pd.read_csv(f'{data_dir}/structures.csv') are_the_same_types = np.all(sorted(train['type'].unique()) == sorted(test['type'].unique())) structures.head()
code
74058130/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/segment-road/Train (1).csv') test = pd.read_csv('../input/segment-road/Test (1).csv') sub = pd.read_csv('../input/segment-road/SampleSubmission.csv') train.head()
code
74058130/cell_18
[ "text_plain_output_1.png" ]
from kaggle_datasets import KaggleDatasets from keras.applications import VGG19,ResNet50,Xception,InceptionResNetV2,InceptionV3,ResNet152V2 import efficientnet.tfkeras as efn import numpy as np import os import pandas as pd import tensorflow as tf def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 42 train = pd.read_csv('../input/segment-road/Train (1).csv') test = pd.read_csv('../input/segment-road/Test (1).csv') sub = pd.read_csv('../input/segment-road/SampleSubmission.csv') def auto_select_accelerator(): """ Reference: * https://www.kaggle.com/mgornergoogle/getting-started-with-100-flowers-on-tpu * https://www.kaggle.com/xhlulu/ranzcr-efficientnet-tpu-training """ try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy def build_decoder(with_labels=True, target_size=(256, 256), ext='png'): def decode(path): file_bytes = tf.io.read_file(path) if ext == 'png': img = tf.image.decode_png(file_bytes, channels=3) elif ext in ['jpg', 'jpeg']: img = tf.image.decode_jpeg(file_bytes, channels=3) else: raise ValueError('Image extension not supported') img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, target_size) return img def decode_with_labels(path, label): return (decode(path), label) return decode_with_labels if with_labels else decode def build_augmenter(with_labels=True): def augment(image): image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_saturation(image, lower=0.75, upper=1.5) image = tf.image.random_hue(image, max_delta=0.15) image = tf.image.random_contrast(image, lower=0.75, upper=1.5) image = tf.image.rot90(image) image = tf.image.transpose(image) return image def augment_with_labels(img, label): return (augment(img), label) return augment_with_labels if with_labels else augment def build_dataset(paths, labels=None, bsize=32, cache=True, decode_fn=None, augment_fn=None, augment=True, repeat=True, shuffle=1024, cache_dir=''): if cache_dir != '' and cache is True: os.makedirs(cache_dir, exist_ok=True) if decode_fn is None: decode_fn = build_decoder(labels is not None) if augment_fn is None: augment_fn = build_augmenter(labels is not None) AUTO = tf.data.experimental.AUTOTUNE slices = paths if labels is None else (paths, labels) dset = tf.data.Dataset.from_tensor_slices(slices) dset = dset.map(decode_fn, num_parallel_calls=AUTO) dset = dset.cache(cache_dir) if cache else dset dset = dset.map(augment_fn, num_parallel_calls=AUTO) if augment else dset dset = dset.repeat() if repeat else dset dset = dset.shuffle(shuffle) if shuffle else dset dset = dset.batch(bsize).prefetch(AUTO) return dset COMPETITION_NAME = 'road-segment-dataset' strategy = auto_select_accelerator() BATCH_SIZE = strategy.num_replicas_in_sync * 8 GCS_DS_PATH = KaggleDatasets().get_gcs_path(COMPETITION_NAME) paths = [] labels = [] for i in range(len(train['file_path'].values)): name = train['Image_ID'].values[i] label = train['Target'].values[i] paths.append(GCS_DS_PATH + '/Images/' + name + '.png') labels.append(label) paths = np.array(paths) labels = np.array(labels) def get_model(name): if name == 'effnetb0': with strategy.scope(): base_model = efn.EfficientNetB0(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb1': with strategy.scope(): base_model = efn.EfficientNetB1(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb2': with strategy.scope(): base_model = efn.EfficientNetB2(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb3': with strategy.scope(): base_model = efn.EfficientNetB3(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb4': with strategy.scope(): base_model = efn.EfficientNetB4(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb5': with strategy.scope(): base_model = efn.EfficientNetB5(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb6': with strategy.scope(): base_model = efn.EfficientNetB6(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb7': with strategy.scope(): base_model = efn.EfficientNetB7(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'resnet': with strategy.scope(): base_model = ResNet50(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'xception': with strategy.scope(): base_model = Xception(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inception': with strategy.scope(): base_model = InceptionV3(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inceptionresnet': with strategy.scope(): base_model = InceptionResNetV2(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) with strategy.scope(): model = tf.keras.Sequential([base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(1, activation='sigmoid')]) model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=0.001), metrics=[tf.keras.metrics.AUC()]) return model test_paths = [] for i in range(len(test['file_path'].values)): name = test['Image_ID'].values[i] test_paths.append(GCS_DS_PATH + '/Images/' + name + '.png') IMSIZES = (224, 240, 260, 300, 380, 456, 512, 600) im_size = 250 decoder = build_decoder(with_labels=True, target_size=(im_size, im_size)) test_decoder = build_decoder(with_labels=False, target_size=(im_size, im_size)) train_dataset = build_dataset(train_paths, train_labels, bsize=BATCH_SIZE, decode_fn=decoder) valid_dataset = build_dataset(valid_paths, valid_labels, bsize=BATCH_SIZE, decode_fn=decoder, repeat=False, shuffle=False, augment=False) test_decoder = build_decoder(with_labels=False, target_size=(im_size, im_size)) dtest = build_dataset(test_paths, bsize=BATCH_SIZE, repeat=False, shuffle=False, augment=False, cache=False, decode_fn=test_decoder) model_name = 'effnetb1' model = get_model(model_name) model.summary() train_paths = np.array(train_paths) steps_per_epoch = train_paths.shape[0] // BATCH_SIZE checkpoint = tf.keras.callbacks.ModelCheckpoint(f'{model_name}_best_auc.h5', save_best_only=True, monitor='val_auc', mode='max') lr_reducer = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_auc', patience=3, min_lr=1e-07, mode='min') history = model.fit(train_dataset, epochs=30, verbose=1, callbacks=[checkpoint, lr_reducer], steps_per_epoch=steps_per_epoch, validation_data=valid_dataset) model.load_weights(f'./{model_name}_best_auc.h5') preds1 = model.predict(dtest, verbose=1)
code
74058130/cell_8
[ "text_plain_output_1.png" ]
from kaggle_datasets import KaggleDatasets import numpy as np import os import tensorflow as tf def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 42 def auto_select_accelerator(): """ Reference: * https://www.kaggle.com/mgornergoogle/getting-started-with-100-flowers-on-tpu * https://www.kaggle.com/xhlulu/ranzcr-efficientnet-tpu-training """ try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy def build_decoder(with_labels=True, target_size=(256, 256), ext='png'): def decode(path): file_bytes = tf.io.read_file(path) if ext == 'png': img = tf.image.decode_png(file_bytes, channels=3) elif ext in ['jpg', 'jpeg']: img = tf.image.decode_jpeg(file_bytes, channels=3) else: raise ValueError('Image extension not supported') img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, target_size) return img def decode_with_labels(path, label): return (decode(path), label) return decode_with_labels if with_labels else decode def build_augmenter(with_labels=True): def augment(image): image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_saturation(image, lower=0.75, upper=1.5) image = tf.image.random_hue(image, max_delta=0.15) image = tf.image.random_contrast(image, lower=0.75, upper=1.5) image = tf.image.rot90(image) image = tf.image.transpose(image) return image def augment_with_labels(img, label): return (augment(img), label) return augment_with_labels if with_labels else augment def build_dataset(paths, labels=None, bsize=32, cache=True, decode_fn=None, augment_fn=None, augment=True, repeat=True, shuffle=1024, cache_dir=''): if cache_dir != '' and cache is True: os.makedirs(cache_dir, exist_ok=True) if decode_fn is None: decode_fn = build_decoder(labels is not None) if augment_fn is None: augment_fn = build_augmenter(labels is not None) AUTO = tf.data.experimental.AUTOTUNE slices = paths if labels is None else (paths, labels) dset = tf.data.Dataset.from_tensor_slices(slices) dset = dset.map(decode_fn, num_parallel_calls=AUTO) dset = dset.cache(cache_dir) if cache else dset dset = dset.map(augment_fn, num_parallel_calls=AUTO) if augment else dset dset = dset.repeat() if repeat else dset dset = dset.shuffle(shuffle) if shuffle else dset dset = dset.batch(bsize).prefetch(AUTO) return dset COMPETITION_NAME = 'road-segment-dataset' strategy = auto_select_accelerator() BATCH_SIZE = strategy.num_replicas_in_sync * 8 GCS_DS_PATH = KaggleDatasets().get_gcs_path(COMPETITION_NAME)
code
74058130/cell_15
[ "text_plain_output_1.png" ]
from kaggle_datasets import KaggleDatasets from keras.applications import VGG19,ResNet50,Xception,InceptionResNetV2,InceptionV3,ResNet152V2 import efficientnet.tfkeras as efn import numpy as np import os import pandas as pd import tensorflow as tf def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 42 train = pd.read_csv('../input/segment-road/Train (1).csv') test = pd.read_csv('../input/segment-road/Test (1).csv') sub = pd.read_csv('../input/segment-road/SampleSubmission.csv') def auto_select_accelerator(): """ Reference: * https://www.kaggle.com/mgornergoogle/getting-started-with-100-flowers-on-tpu * https://www.kaggle.com/xhlulu/ranzcr-efficientnet-tpu-training """ try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy def build_decoder(with_labels=True, target_size=(256, 256), ext='png'): def decode(path): file_bytes = tf.io.read_file(path) if ext == 'png': img = tf.image.decode_png(file_bytes, channels=3) elif ext in ['jpg', 'jpeg']: img = tf.image.decode_jpeg(file_bytes, channels=3) else: raise ValueError('Image extension not supported') img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, target_size) return img def decode_with_labels(path, label): return (decode(path), label) return decode_with_labels if with_labels else decode def build_augmenter(with_labels=True): def augment(image): image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_saturation(image, lower=0.75, upper=1.5) image = tf.image.random_hue(image, max_delta=0.15) image = tf.image.random_contrast(image, lower=0.75, upper=1.5) image = tf.image.rot90(image) image = tf.image.transpose(image) return image def augment_with_labels(img, label): return (augment(img), label) return augment_with_labels if with_labels else augment def build_dataset(paths, labels=None, bsize=32, cache=True, decode_fn=None, augment_fn=None, augment=True, repeat=True, shuffle=1024, cache_dir=''): if cache_dir != '' and cache is True: os.makedirs(cache_dir, exist_ok=True) if decode_fn is None: decode_fn = build_decoder(labels is not None) if augment_fn is None: augment_fn = build_augmenter(labels is not None) AUTO = tf.data.experimental.AUTOTUNE slices = paths if labels is None else (paths, labels) dset = tf.data.Dataset.from_tensor_slices(slices) dset = dset.map(decode_fn, num_parallel_calls=AUTO) dset = dset.cache(cache_dir) if cache else dset dset = dset.map(augment_fn, num_parallel_calls=AUTO) if augment else dset dset = dset.repeat() if repeat else dset dset = dset.shuffle(shuffle) if shuffle else dset dset = dset.batch(bsize).prefetch(AUTO) return dset COMPETITION_NAME = 'road-segment-dataset' strategy = auto_select_accelerator() BATCH_SIZE = strategy.num_replicas_in_sync * 8 GCS_DS_PATH = KaggleDatasets().get_gcs_path(COMPETITION_NAME) paths = [] labels = [] for i in range(len(train['file_path'].values)): name = train['Image_ID'].values[i] label = train['Target'].values[i] paths.append(GCS_DS_PATH + '/Images/' + name + '.png') labels.append(label) paths = np.array(paths) labels = np.array(labels) def get_model(name): if name == 'effnetb0': with strategy.scope(): base_model = efn.EfficientNetB0(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb1': with strategy.scope(): base_model = efn.EfficientNetB1(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb2': with strategy.scope(): base_model = efn.EfficientNetB2(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb3': with strategy.scope(): base_model = efn.EfficientNetB3(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb4': with strategy.scope(): base_model = efn.EfficientNetB4(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb5': with strategy.scope(): base_model = efn.EfficientNetB5(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb6': with strategy.scope(): base_model = efn.EfficientNetB6(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb7': with strategy.scope(): base_model = efn.EfficientNetB7(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'resnet': with strategy.scope(): base_model = ResNet50(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'xception': with strategy.scope(): base_model = Xception(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inception': with strategy.scope(): base_model = InceptionV3(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inceptionresnet': with strategy.scope(): base_model = InceptionResNetV2(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) with strategy.scope(): model = tf.keras.Sequential([base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(1, activation='sigmoid')]) model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=0.001), metrics=[tf.keras.metrics.AUC()]) return model model_name = 'effnetb1' model = get_model(model_name) model.summary()
code
74058130/cell_17
[ "text_plain_output_1.png" ]
from kaggle_datasets import KaggleDatasets from keras.applications import VGG19,ResNet50,Xception,InceptionResNetV2,InceptionV3,ResNet152V2 import efficientnet.tfkeras as efn import numpy as np import os import pandas as pd import tensorflow as tf def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 42 train = pd.read_csv('../input/segment-road/Train (1).csv') test = pd.read_csv('../input/segment-road/Test (1).csv') sub = pd.read_csv('../input/segment-road/SampleSubmission.csv') def auto_select_accelerator(): """ Reference: * https://www.kaggle.com/mgornergoogle/getting-started-with-100-flowers-on-tpu * https://www.kaggle.com/xhlulu/ranzcr-efficientnet-tpu-training """ try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy def build_decoder(with_labels=True, target_size=(256, 256), ext='png'): def decode(path): file_bytes = tf.io.read_file(path) if ext == 'png': img = tf.image.decode_png(file_bytes, channels=3) elif ext in ['jpg', 'jpeg']: img = tf.image.decode_jpeg(file_bytes, channels=3) else: raise ValueError('Image extension not supported') img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, target_size) return img def decode_with_labels(path, label): return (decode(path), label) return decode_with_labels if with_labels else decode def build_augmenter(with_labels=True): def augment(image): image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_saturation(image, lower=0.75, upper=1.5) image = tf.image.random_hue(image, max_delta=0.15) image = tf.image.random_contrast(image, lower=0.75, upper=1.5) image = tf.image.rot90(image) image = tf.image.transpose(image) return image def augment_with_labels(img, label): return (augment(img), label) return augment_with_labels if with_labels else augment def build_dataset(paths, labels=None, bsize=32, cache=True, decode_fn=None, augment_fn=None, augment=True, repeat=True, shuffle=1024, cache_dir=''): if cache_dir != '' and cache is True: os.makedirs(cache_dir, exist_ok=True) if decode_fn is None: decode_fn = build_decoder(labels is not None) if augment_fn is None: augment_fn = build_augmenter(labels is not None) AUTO = tf.data.experimental.AUTOTUNE slices = paths if labels is None else (paths, labels) dset = tf.data.Dataset.from_tensor_slices(slices) dset = dset.map(decode_fn, num_parallel_calls=AUTO) dset = dset.cache(cache_dir) if cache else dset dset = dset.map(augment_fn, num_parallel_calls=AUTO) if augment else dset dset = dset.repeat() if repeat else dset dset = dset.shuffle(shuffle) if shuffle else dset dset = dset.batch(bsize).prefetch(AUTO) return dset COMPETITION_NAME = 'road-segment-dataset' strategy = auto_select_accelerator() BATCH_SIZE = strategy.num_replicas_in_sync * 8 GCS_DS_PATH = KaggleDatasets().get_gcs_path(COMPETITION_NAME) paths = [] labels = [] for i in range(len(train['file_path'].values)): name = train['Image_ID'].values[i] label = train['Target'].values[i] paths.append(GCS_DS_PATH + '/Images/' + name + '.png') labels.append(label) paths = np.array(paths) labels = np.array(labels) def get_model(name): if name == 'effnetb0': with strategy.scope(): base_model = efn.EfficientNetB0(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb1': with strategy.scope(): base_model = efn.EfficientNetB1(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb2': with strategy.scope(): base_model = efn.EfficientNetB2(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb3': with strategy.scope(): base_model = efn.EfficientNetB3(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb4': with strategy.scope(): base_model = efn.EfficientNetB4(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb5': with strategy.scope(): base_model = efn.EfficientNetB5(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb6': with strategy.scope(): base_model = efn.EfficientNetB6(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'effnetb7': with strategy.scope(): base_model = efn.EfficientNetB7(input_shape=(im_size, im_size, 3), weights='noisy-student', include_top=False) elif name == 'resnet': with strategy.scope(): base_model = ResNet50(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'xception': with strategy.scope(): base_model = Xception(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inception': with strategy.scope(): base_model = InceptionV3(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) elif name == 'inceptionresnet': with strategy.scope(): base_model = InceptionResNetV2(input_shape=(im_size, im_size, 3), weights='imagenet', include_top=False) with strategy.scope(): model = tf.keras.Sequential([base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(1, activation='sigmoid')]) model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=0.001), metrics=[tf.keras.metrics.AUC()]) return model test_paths = [] for i in range(len(test['file_path'].values)): name = test['Image_ID'].values[i] test_paths.append(GCS_DS_PATH + '/Images/' + name + '.png') IMSIZES = (224, 240, 260, 300, 380, 456, 512, 600) im_size = 250 decoder = build_decoder(with_labels=True, target_size=(im_size, im_size)) test_decoder = build_decoder(with_labels=False, target_size=(im_size, im_size)) train_dataset = build_dataset(train_paths, train_labels, bsize=BATCH_SIZE, decode_fn=decoder) valid_dataset = build_dataset(valid_paths, valid_labels, bsize=BATCH_SIZE, decode_fn=decoder, repeat=False, shuffle=False, augment=False) test_decoder = build_decoder(with_labels=False, target_size=(im_size, im_size)) dtest = build_dataset(test_paths, bsize=BATCH_SIZE, repeat=False, shuffle=False, augment=False, cache=False, decode_fn=test_decoder) model_name = 'effnetb1' model = get_model(model_name) model.summary() train_paths = np.array(train_paths) steps_per_epoch = train_paths.shape[0] // BATCH_SIZE checkpoint = tf.keras.callbacks.ModelCheckpoint(f'{model_name}_best_auc.h5', save_best_only=True, monitor='val_auc', mode='max') lr_reducer = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_auc', patience=3, min_lr=1e-07, mode='min') history = model.fit(train_dataset, epochs=30, verbose=1, callbacks=[checkpoint, lr_reducer], steps_per_epoch=steps_per_epoch, validation_data=valid_dataset)
code
74058130/cell_10
[ "text_html_output_1.png" ]
from kaggle_datasets import KaggleDatasets import numpy as np import os import pandas as pd import tensorflow as tf def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed = 42 train = pd.read_csv('../input/segment-road/Train (1).csv') test = pd.read_csv('../input/segment-road/Test (1).csv') sub = pd.read_csv('../input/segment-road/SampleSubmission.csv') def auto_select_accelerator(): """ Reference: * https://www.kaggle.com/mgornergoogle/getting-started-with-100-flowers-on-tpu * https://www.kaggle.com/xhlulu/ranzcr-efficientnet-tpu-training """ try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() return strategy def build_decoder(with_labels=True, target_size=(256, 256), ext='png'): def decode(path): file_bytes = tf.io.read_file(path) if ext == 'png': img = tf.image.decode_png(file_bytes, channels=3) elif ext in ['jpg', 'jpeg']: img = tf.image.decode_jpeg(file_bytes, channels=3) else: raise ValueError('Image extension not supported') img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, target_size) return img def decode_with_labels(path, label): return (decode(path), label) return decode_with_labels if with_labels else decode def build_augmenter(with_labels=True): def augment(image): image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_saturation(image, lower=0.75, upper=1.5) image = tf.image.random_hue(image, max_delta=0.15) image = tf.image.random_contrast(image, lower=0.75, upper=1.5) image = tf.image.rot90(image) image = tf.image.transpose(image) return image def augment_with_labels(img, label): return (augment(img), label) return augment_with_labels if with_labels else augment def build_dataset(paths, labels=None, bsize=32, cache=True, decode_fn=None, augment_fn=None, augment=True, repeat=True, shuffle=1024, cache_dir=''): if cache_dir != '' and cache is True: os.makedirs(cache_dir, exist_ok=True) if decode_fn is None: decode_fn = build_decoder(labels is not None) if augment_fn is None: augment_fn = build_augmenter(labels is not None) AUTO = tf.data.experimental.AUTOTUNE slices = paths if labels is None else (paths, labels) dset = tf.data.Dataset.from_tensor_slices(slices) dset = dset.map(decode_fn, num_parallel_calls=AUTO) dset = dset.cache(cache_dir) if cache else dset dset = dset.map(augment_fn, num_parallel_calls=AUTO) if augment else dset dset = dset.repeat() if repeat else dset dset = dset.shuffle(shuffle) if shuffle else dset dset = dset.batch(bsize).prefetch(AUTO) return dset COMPETITION_NAME = 'road-segment-dataset' strategy = auto_select_accelerator() BATCH_SIZE = strategy.num_replicas_in_sync * 8 GCS_DS_PATH = KaggleDatasets().get_gcs_path(COMPETITION_NAME) paths = [] labels = [] for i in range(len(train['file_path'].values)): name = train['Image_ID'].values[i] label = train['Target'].values[i] paths.append(GCS_DS_PATH + '/Images/' + name + '.png') labels.append(label) paths = np.array(paths) labels = np.array(labels) (len(paths), len(labels))
code
72121714/cell_12
[ "image_output_11.png", "application_vnd.jupyter.stderr_output_27.png", "application_vnd.jupyter.stderr_output_35.png", "application_vnd.jupyter.stderr_output_24.png", "image_output_24.png", "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_52.png", "application_vnd.jupyter.stderr_output_53.png", "text_plain_output_43.png", "image_output_25.png", "application_vnd.jupyter.stderr_output_48.png", "text_plain_output_30.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "image_output_17.png", "application_vnd.jupyter.stderr_output_11.png", "image_output_30.png", "application_vnd.jupyter.stderr_output_38.png", "image_output_14.png", "image_output_39.png", "image_output_28.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_26.png", "image_output_23.png", "application_vnd.jupyter.stderr_output_6.png", "image_output_34.png", "application_vnd.jupyter.stderr_output_31.png", "application_vnd.jupyter.stderr_output_33.png", "application_vnd.jupyter.stderr_output_25.png", "image_output_13.png", "text_plain_output_45.png", "image_output_40.png", "image_output_5.png", "application_vnd.jupyter.stderr_output_12.png", "text_plain_output_14.png", "image_output_18.png", "text_plain_output_32.png", "text_plain_output_29.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_58.png", "image_output_21.png", "image_output_7.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_23.png", "image_output_31.png", "text_plain_output_47.png", "application_vnd.jupyter.stderr_output_34.png", "image_output_20.png", "text_plain_output_18.png", "image_output_32.png", "text_plain_output_3.png", "application_vnd.jupyter.stderr_output_19.png", "image_output_4.png", "application_vnd.jupyter.stderr_output_44.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_42.png", "application_vnd.jupyter.stderr_output_5.png", "image_output_35.png", "image_output_36.png", "image_output_8.png", "image_output_37.png", "text_plain_output_16.png", "image_output_16.png", "application_vnd.jupyter.stderr_output_15.png", "text_plain_output_59.png", "application_vnd.jupyter.stderr_output_17.png", "image_output_27.png", "application_vnd.jupyter.stderr_output_28.png", "application_vnd.jupyter.stderr_output_46.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_41.png", "application_vnd.jupyter.stderr_output_20.png", "application_vnd.jupyter.stderr_output_49.png", "application_vnd.jupyter.stderr_output_36.png", "application_vnd.jupyter.stderr_output_57.png", "application_vnd.jupyter.stderr_output_22.png", "image_output_12.png", "image_output_22.png", "application_vnd.jupyter.stderr_output_56.png", "application_vnd.jupyter.stderr_output_50.png", "text_plain_output_1.png", "image_output_3.png", "application_vnd.jupyter.stderr_output_51.png", "image_output_29.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "application_vnd.jupyter.stderr_output_39.png", "image_output_33.png", "application_vnd.jupyter.stderr_output_21.png", "application_vnd.jupyter.stderr_output_54.png", "image_output_15.png", "application_vnd.jupyter.stderr_output_55.png", "image_output_9.png", "image_output_19.png", "application_vnd.jupyter.stderr_output_40.png", "application_vnd.jupyter.stderr_output_37.png", "image_output_38.png", "image_output_26.png" ]
from torchvision.utils import make_grid from tqdm import tqdm import copy import matplotlib.pyplot as plt import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn as nn import torch.nn.functional as F import torchvision.datasets as datasets import torchvision.transforms as transforms device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') runs = [{'latent': 20, 'nE': 100, 'bs': 64, 'cap': 64, 'lr': 0.001, 'wd': 1e-05, 'vb': 1}, {'latent': 20, 'nE': 200, 'bs': 64, 'cap': 64, 'lr': 0.001, 'wd': 1e-05, 'vb': 1}, {'latent': 20, 'nE': 100, 'bs': 64, 'cap': 64, 'lr': 0.001, 'wd': 1e-05, 'vb': 0.5}, {'latent': 20, 'nE': 200, 'bs': 64, 'cap': 64, 'lr': 0.001, 'wd': 1e-05, 'vb': 0.5}] train_dir = '../input/covid19-chest-ct-image-augmentation-gan-dataset/COVID-19/COVID-19/train' train_dataset = datasets.ImageFolder(train_dir, transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()])) def show_image(image_tensor, num_images=25, size=(1, 28, 28)): ''' Function for visualizing images: Given a tensor of images, number of images, and size per image, plots and prints the images in an uniform grid. ''' image_tensor = (image_tensor + 1) / 2 image_unflat = image_tensor.detach().cpu() image_grid = make_grid(image_unflat[:num_images], nrow=5) plt.imshow(image_grid.permute(1, 2, 0).squeeze()) plt.show() def plot_loss(training_loss, settings): fig, ax = plt.subplots() ax.plot(range(len(training_loss)), training_loss) ax.set(xlabel='epochs', ylabel='BCE loss') ax.set_title(f'Loss for {settings}', y=1.1) ax.grid() fig.savefig("test.png") plt.show() class Encoder(nn.Module): """encoder for VAE, goes from image conv net to linear latent layer""" def __init__(self, capacity, latent_dims): super(Encoder, self).__init__() c = capacity self.conv1 = nn.Conv2d(in_channels=3, out_channels=c, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv2d(in_channels=c, out_channels=c * 2, kernel_size=4, stride=2, padding=1) self.conv3 = nn.Conv2d(in_channels=c * 2, out_channels=c * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv4 = nn.Conv2d(in_channels=c * 2 * 2, out_channels=c * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv5 = nn.Conv2d(in_channels=c * 2 * 2 * 2, out_channels=c * 2 * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv6 = nn.Conv2d(in_channels=c * 2 * 2 * 2 * 2, out_channels=c * 2 * 2 * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) self.fc_mu = nn.Linear(in_features=32768, out_features=latent_dims) self.fc_logvar = nn.Linear(in_features=32768, out_features=latent_dims) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = F.relu(self.conv6(x)) x = x.view(x.size(0), -1) x_mu = self.fc_mu(x) x_logvar = self.fc_logvar(x) return (x_mu, x_logvar) class Decoder(nn.Module): """decoder for VAE, goes from linear latent layer to deconv layers to reconstruct image""" def __init__(self, capacity, latent_dims): super(Decoder, self).__init__() c = capacity self.fc = nn.Linear(in_features=latent_dims, out_features=32768) self.conv1 = nn.ConvTranspose2d(in_channels=c, out_channels=3, kernel_size=4, stride=2, padding=1) self.conv2 = nn.ConvTranspose2d(out_channels=c, in_channels=c * 2, kernel_size=4, stride=2, padding=1) self.conv3 = nn.ConvTranspose2d(out_channels=c * 2, in_channels=c * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv4 = nn.ConvTranspose2d(out_channels=c * 2 * 2, in_channels=c * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv5 = nn.ConvTranspose2d(out_channels=c * 2 * 2 * 2, in_channels=c * 2 * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) self.conv6 = nn.ConvTranspose2d(out_channels=c * 2 * 2 * 2 * 2, in_channels=c * 2 * 2 * 2 * 2 * 2, kernel_size=4, stride=2, padding=1) def forward(self, x): x = self.fc(x) x = x.view(x.size(0), 2048, 4, 4) x = F.relu(self.conv6(x)) x = F.relu(self.conv5(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv2(x)) x = torch.sigmoid(self.conv1(x)) return x class VAE(nn.Module): """VAE architecture for encoder -> sample from latent -> decode latent sample""" def __init__(self, capacity, latent_dims): super(VAE, self).__init__() self.encoder = Encoder(capacity, latent_dims) self.decoder = Decoder(capacity, latent_dims) def forward(self, x): latent_mu, latent_logvar = self.encoder(x) latent = self.latent_sample(latent_mu, latent_logvar) x_recon = self.decoder(latent) return (x_recon, latent_mu, latent_logvar) def latent_sample(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() eps = torch.empty_like(std).normal_() return eps.mul(std).add_(mu) else: return mu def vae_loss(recon_x, x, mu, logvar, variational_beta): recon_loss = F.binary_cross_entropy(recon_x.view(-1, 65536), x.view(-1, 65536), reduction='sum') kldivergence = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return recon_loss + variational_beta * kldivergence def setup_model(capacity, latent_dims): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') vae = VAE(capacity=capacity, latent_dims=latent_dims).to(device) return vae def train(vae, train_loader, n_epochs, learning_rate, weight_decay, variational_beta): optimizer = torch.optim.Adam(params=vae.parameters(), lr=learning_rate, weight_decay=weight_decay) vae.train() train_loss = [] best_model_wts = None bmw_epoch = 0 for epoch in tqdm(range(n_epochs)): num_batches = 0 avg_loss = 0 best_loss = 0 image_batch_recon = None for image_batch, _ in train_loader: image_batch = image_batch.to(device) image_batch_recon, latent_mu, latent_logvar = vae(image_batch) loss = vae_loss(image_batch_recon, image_batch, latent_mu, latent_logvar, variational_beta) optimizer.zero_grad() loss.backward() optimizer.step() avg_loss += loss.item() num_batches += 1 avg_loss /= num_batches train_loss.append(avg_loss) if epoch == 0: best_loss = avg_loss best_model_wts = copy.deepcopy(vae.state_dict()) if avg_loss < best_loss: best_model_wts = copy.deepcopy(vae.state_dict()) best_loss = avg_loss bmw_epoch = epoch + 1 return (vae, best_model_wts, bmw_epoch, train_loss) for k, settings in enumerate(runs): print(f'starting run ... {k}/{len(runs)}') print(settings) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=settings['bs'], shuffle=True, num_workers=0) vae = setup_model(settings['cap'], settings['latent']) vae, best_model_wts, bmw_epoch, train_loss = train(vae, train_loader, settings['nE'], settings['lr'], settings['wd'], settings['vb']) last_modeL_wts = vae.state_dict() plot_loss(train_loss, settings) print('-------------------------------------------------------------------') print('saving weights for model') torch.save(vae.state_dict(), f"n_{settings['nE']}.ld_{settings['latent']}.lr_{settings['lr']}.vb_{settings['vb']}.last_model.wts") vae.load_state_dict(best_model_wts) torch.save(vae.state_dict(), f"n_{bmw_epoch}.ld_{settings['latent']}.lr_{settings['lr']}.vb_{settings['vb']}.lowest_loss_model.wts") print('-------------------------------------------------------------------') print()
code
34129243/cell_4
[ "image_output_2.png", "image_output_1.png" ]
df.hist(bins=20, figsize=(20, 15)) plt.show() correlation_matrix = df.corr() fig = plt.figure(figsize=(12, 9)) sns.heatmap(correlation_matrix, vmax=0.8, square=True) plt.show()
code
34129243/cell_6
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler,OneHotEncoder from sklearn.tree import DecisionTreeRegressor import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TRAIN_DATA = '/kaggle/input/cais-exec-team-in-house/train.csv' SUBMISSIONS_DATA = '/kaggle/input/cais-exec-team-in-house/sampleSubmission.csv' TEST_DATA = '/kaggle/input/cais-exec-team-in-house/test.csv' df = pd.read_csv(TRAIN_DATA, index_col='id') test_df = pd.read_csv(TEST_DATA, index_col='id') sub_df = pd.read_csv(SUBMISSIONS_DATA, index_col='id') numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_attribs = list(df.select_dtypes(include=numerics)) num_attribs.remove('grade') cat_attribs = list(df.select_dtypes(exclude=numerics)) num_pipline = make_pipeline(StandardScaler()) full_pipeline = make_column_transformer((num_pipline, num_attribs), (OneHotEncoder(), cat_attribs)) X = df.drop(columns='grade') full_pipeline = full_pipeline.fit(X) X = full_pipeline.transform(X) y = df.grade from sklearn.model_selection import cross_val_score from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] for model in models: scores = cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=5) real_scores = np.sqrt(-scores) print(f'The scores for {model.__class__.__name__} were {real_scores} and the average was {np.average(real_scores)}') print('-------------------------------------------------')
code
34129243/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TRAIN_DATA = '/kaggle/input/cais-exec-team-in-house/train.csv' SUBMISSIONS_DATA = '/kaggle/input/cais-exec-team-in-house/sampleSubmission.csv' TEST_DATA = '/kaggle/input/cais-exec-team-in-house/test.csv' df = pd.read_csv(TRAIN_DATA, index_col='id') test_df = pd.read_csv(TEST_DATA, index_col='id') sub_df = pd.read_csv(SUBMISSIONS_DATA, index_col='id') df.info()
code
34129243/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler,OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TRAIN_DATA = '/kaggle/input/cais-exec-team-in-house/train.csv' SUBMISSIONS_DATA = '/kaggle/input/cais-exec-team-in-house/sampleSubmission.csv' TEST_DATA = '/kaggle/input/cais-exec-team-in-house/test.csv' df = pd.read_csv(TRAIN_DATA, index_col='id') test_df = pd.read_csv(TEST_DATA, index_col='id') sub_df = pd.read_csv(SUBMISSIONS_DATA, index_col='id') numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_attribs = list(df.select_dtypes(include=numerics)) num_attribs.remove('grade') cat_attribs = list(df.select_dtypes(exclude=numerics)) num_pipline = make_pipeline(StandardScaler()) full_pipeline = make_column_transformer((num_pipline, num_attribs), (OneHotEncoder(), cat_attribs)) X = df.drop(columns='grade') full_pipeline = full_pipeline.fit(X) X = full_pipeline.transform(X) y = df.grade bestModel = RandomForestRegressor() bestModel.fit(X, y) test_X = full_pipeline.transform(test_df) predictions = bestModel.predict(test_X)
code
34129243/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TRAIN_DATA = '/kaggle/input/cais-exec-team-in-house/train.csv' SUBMISSIONS_DATA = '/kaggle/input/cais-exec-team-in-house/sampleSubmission.csv' TEST_DATA = '/kaggle/input/cais-exec-team-in-house/test.csv' df = pd.read_csv(TRAIN_DATA, index_col='id') test_df = pd.read_csv(TEST_DATA, index_col='id') sub_df = pd.read_csv(SUBMISSIONS_DATA, index_col='id') df.describe()
code
34129243/cell_5
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler,OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TRAIN_DATA = '/kaggle/input/cais-exec-team-in-house/train.csv' SUBMISSIONS_DATA = '/kaggle/input/cais-exec-team-in-house/sampleSubmission.csv' TEST_DATA = '/kaggle/input/cais-exec-team-in-house/test.csv' df = pd.read_csv(TRAIN_DATA, index_col='id') test_df = pd.read_csv(TEST_DATA, index_col='id') sub_df = pd.read_csv(SUBMISSIONS_DATA, index_col='id') numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_attribs = list(df.select_dtypes(include=numerics)) print(num_attribs) num_attribs.remove('grade') cat_attribs = list(df.select_dtypes(exclude=numerics)) num_pipline = make_pipeline(StandardScaler()) full_pipeline = make_column_transformer((num_pipline, num_attribs), (OneHotEncoder(), cat_attribs)) X = df.drop(columns='grade') full_pipeline = full_pipeline.fit(X) X = full_pipeline.transform(X) y = df.grade
code
32062015/cell_4
[ "text_html_output_1.png" ]
from multiprocessing.pool import ThreadPool from pyearth import Earth from sklearn.preprocessing import PolynomialFeatures import gc import numpy as np import numpy as np import pandas as pd import pandas as pd import warnings import pandas as pd import numpy as np import gc import warnings warnings.filterwarnings('ignore') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed'}, inplace=True) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') test.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed', 'ForecastId': 'Id'}, inplace=True) train['Type'] = 'train' test['Type'] = 'test' test['Confirmed'] = 0 test['Fatalities'] = 0 import pandas as pd import numpy as np import os, gc train['id_x'] = train['Date'].astype(str).values + '_' + train['State'].astype(str).values + '_' + train['Country'].astype(str).values + '_' + train['Type'].astype(str).values test['id_x'] = test['Date'].astype(str).values + '_' + test['State'].astype(str).values + '_' + test['Country'].astype(str).values + '_' + test['Type'].astype(str).values raw = pd.concat([train, test], axis=0, sort=False) raw['Date'] = pd.to_datetime(raw['Date']) raw.sort_values('Date', inplace=True) raw.fillna(0, inplace=True) Country_State = raw.Country + '_' + raw.State.astype(str) raw['Country_State_id'] = Country_State.astype('category').cat.codes raw['Day'] = raw['Date'].astype('category').cat.codes + 1 raw.set_index('Country_State_id', inplace=True) raw.Day = raw.Day.astype(np.int32) raw.reset_index(inplace=True) features = ['id_x', 'Day', 'Id', 'Country_State_id'] train = train.merge(raw[features], on=['id_x'], how='left') test = test.merge(raw[features], on=['id_x'], how='left') import os, gc from multiprocessing.pool import ThreadPool from sklearn.feature_selection import SelectFromModel from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler os.environ['OMP_NUM_THREADS'] = '1' gc.enable() features = ['id_x', 'Day'] X_train = [np.array(train[train.Country_State_id == x][features]) for x in list(train.Country_State_id.unique())] X_test = [np.array(test[test.Country_State_id == x][features]) for x in list(train.Country_State_id.unique())] y_target_c = [np.array(train[train.Country_State_id == x][['Confirmed']]) for x in list(train.Country_State_id.unique())] y_target_f = [np.array(train[train.Country_State_id == x][['Fatalities']]) for x in list(train.Country_State_id.unique())] poly = PolynomialFeatures(5) out_ = pd.DataFrame({'id_x': [], 'Confirmed': [], 'Fatalities': []}) from pyearth import Earth def fit_model(xtrain, xtest, ytrain, ytrain1, idx) -> np.array: X = xtrain[idx][:, 1] x_test = xtest[idx][:, 1] Y = ytrain[idx] Y1 = ytrain1[idx] X_transf = poly.fit_transform(X.reshape(-1, 1)) x_test_transf = poly.fit_transform(x_test.reshape(-1, 1)) model = Earth() model.fit(np.array(X_transf), Y) conf_p = model.predict(x_test_transf) model.fit(X_transf, Y1) conf_f = model.predict(x_test_transf) res = pd.DataFrame({'id_x': xtest[idx][:, 0], 'Confirmed': conf_p, 'Fatalities': conf_f}) return res with ThreadPool(processes=4) as pool: args = [(X_train, X_test, y_target_c, y_target_f, idx) for idx in test.Country_State_id.unique()] out_ = pd.concat(pool.starmap(fit_model, args)) out_ = test[['id_x']].merge(out_, on='id_x', how='left') pool.close() sub = pd.read_csv('../input/covid19-global-forecasting-week-4/submission.csv') sub_new = sub[['ForecastId']] result = pd.concat([out_.reset_index().Confirmed, out_.reset_index().Fatalities, sub_new], axis=1) result.columns = ['ConfirmedCases', 'Fatalities', 'ForecastId'] result = result[['ForecastId', 'ConfirmedCases', 'Fatalities']] result.to_csv('submission.csv', index=False) result.head()
code
32062015/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import pandas as pd import numpy as np import gc import warnings warnings.filterwarnings('ignore') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed'}, inplace=True) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') test.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed', 'ForecastId': 'Id'}, inplace=True) train['Type'] = 'train' test['Type'] = 'test' test['Confirmed'] = 0 test['Fatalities'] = 0 print(train['Date'].min(), train['Date'].max()) print(test['Date'].min(), test['Date'].max())
code
32062015/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import pandas as pd import pandas as pd import warnings import pandas as pd import numpy as np import gc import warnings warnings.filterwarnings('ignore') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed'}, inplace=True) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') test.rename(columns={'Country_Region': 'Country', 'Province_State': 'State', 'ConfirmedCases': 'Confirmed', 'ForecastId': 'Id'}, inplace=True) train['Type'] = 'train' test['Type'] = 'test' test['Confirmed'] = 0 test['Fatalities'] = 0 import pandas as pd import numpy as np import os, gc train['id_x'] = train['Date'].astype(str).values + '_' + train['State'].astype(str).values + '_' + train['Country'].astype(str).values + '_' + train['Type'].astype(str).values test['id_x'] = test['Date'].astype(str).values + '_' + test['State'].astype(str).values + '_' + test['Country'].astype(str).values + '_' + test['Type'].astype(str).values raw = pd.concat([train, test], axis=0, sort=False) raw['Date'] = pd.to_datetime(raw['Date']) raw.sort_values('Date', inplace=True) raw.fillna(0, inplace=True) Country_State = raw.Country + '_' + raw.State.astype(str) raw['Country_State_id'] = Country_State.astype('category').cat.codes raw['Day'] = raw['Date'].astype('category').cat.codes + 1 raw.set_index('Country_State_id', inplace=True) raw.Day = raw.Day.astype(np.int32) raw.reset_index(inplace=True) features = ['id_x', 'Day', 'Id', 'Country_State_id'] train = train.merge(raw[features], on=['id_x'], how='left') test = test.merge(raw[features], on=['id_x'], how='left') print(train.shape, test.shape)
code
105176374/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.isna().sum() TrainCols = list(trainData.columns.values) TestCols = list(testData.columns.values) Xtrain = trainData.drop('TARGET', axis=1).copy() Ytrain = trainData[['TARGET']].copy() print(Xtrain.shape) print(Ytrain.shape) Xtest = testData.copy()
code
105176374/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) print(trainData.shape) print(testData.shape)
code
105176374/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.isna().sum()
code
105176374/cell_2
[ "text_html_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.head()
code
105176374/cell_7
[ "text_html_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.isna().sum() trainData.describe()
code
105176374/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.isna().sum() TrainCols = list(trainData.columns.values) TestCols = list(testData.columns.values) print(TrainCols) print(TestCols)
code
105176374/cell_3
[ "text_html_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) testData.head()
code
105176374/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd trainData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TRAIN.csv', index_col=0) testData = pd.read_csv('../input/santander-dataset/Santander Customer Satisfaction - TEST-Without TARGET.csv', index_col=0) trainData.info() print() testData.info()
code
17122208/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/data.csv') print(df.keys())
code
17122208/cell_23
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ fig = plt.gcf() fig.set_size_inches(x_inches, y_inches) return sns.barplot(x=x_column, y=y_column, hue=hue, data=data) position_longpassing = make_barplot('Position', 'LongPassing', df, 20, 10, 'Preferred Foot')
code
17122208/cell_33
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data); else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data); acc_stam_regression = make_scatterplot("Stamina", "Acceleration", df, "Preferred Foot") sns.relplot(x='Stamina', y='Acceleration', hue='Preferred Foot', data=df) plt.xlabel('Player Stamina Rating') plt.ylabel('Player Acceleration Rating') plt.title("FIFA Players' Stamina vs. Acceleration Ratings")
code
17122208/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import os print(os.listdir('../input')) import warnings warnings.filterwarnings('ignore') from matplotlib import pyplot as plt import seaborn as sns sns.set_style('darkgrid')
code
17122208/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data); else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data); acc_stam_regression = make_scatterplot("Stamina", "Acceleration", df, "Preferred Foot") plt.xlim(20, 60) plt.xlim(50, 80) plt.figure() fig = plt.gcf() fig.set_size_inches(10, 10) plt.subplot(2, 2, 1) sns.distplot(df['Age'], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) plt.subplot(2, 2, 2) sns.distplot(df['Potential'], kde=False, norm_hist=False) plt.subplots_adjust(left=0)
code
17122208/cell_19
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") uneven_bins_normalized = make_histogram('Age', [15, 20, 30, 35, 45], norm_hist=True)
code
17122208/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/data.csv') df.head()
code
17122208/cell_28
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data); else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data); acc_stam_regression = make_scatterplot("Stamina", "Acceleration", df, "Preferred Foot") acc_stam_regression = make_scatterplot('Stamina', 'Acceleration', df, regression=True)
code
17122208/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") uneven_bins = make_histogram('Age', [15, 20, 30, 35, 45])
code
17122208/cell_35
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data); else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data); acc_stam_regression = make_scatterplot("Stamina", "Acceleration", df, "Preferred Foot") sns.relplot(x='Stamina', y='Acceleration', data=df) plt.xlim(20, 60)
code
17122208/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") age_histogram = make_histogram('Age', [15, 20, 25, 30, 35, 40, 45])
code
17122208/cell_27
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data) else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data) acc_stam_regression = make_scatterplot('Stamina', 'Acceleration', df, 'Preferred Foot')
code
17122208/cell_37
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist); #sns.distplot(df["Age"], bins=[15, 20, 25, 30, 35, 40, 45], kde=False, norm_hist=False) age_histogram = make_histogram("Age") def make_barplot(x_column, y_column, data, x_inches, y_inches, hue=None): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param hue: hue column as a string :param data: dataframe containing above columns :returns: barplot of the columns """ #set size of plot bigger to fit the display fig = plt.gcf() #create the graph figure fig.set_size_inches(x_inches, y_inches) #set figure to x inches and y inches return sns.barplot(x=x_column, y=y_column, hue=hue, data=data); position_longpassing = make_barplot("Position", "LongPassing", df, 20, 10, "Preferred Foot") def make_scatterplot(x_column, y_column, data, hue=None, regression=False): """ This function returns a seaborn barplot based on the data columns passed in. :param x_column: x-axis column as a string :param y_column: y-axis column as a string :param data: dataframe containing above columns :param hue: hue column as a string :param regression: boolean of whether to plot regression :returns: barplot of the columns """ if not regression: return sns.relplot(x=x_column, y=y_column, hue=hue, data=data); else: assert hue is None, "Can't have Hue with Regression Plot" return sns.regplot(x=x_column, y=y_column, data=data); acc_stam_regression = make_scatterplot("Stamina", "Acceleration", df, "Preferred Foot") plt.xlim(20, 60) plt.plot(df['Overall'], df['Potential']) plt.plot(df['Overall'], df['Age']) plt.xlim(50, 80) plt.legend(['Potential', 'Age']) plt.xlabel('Overall')
code
17122208/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/data.csv') def make_histogram(column, bins=None, kde=False, norm_hist=False): """ This function returns a seaborn histogram based on an inputted dataset column. :param column: column of dataset :param bins: list of bin values of the histogram :param kde: boolean of fitting kernel density estimate :param norm_hist: boolean of normalizing histogram :returns: histogram of the column """ return sns.distplot(df[column], bins=bins, kde=kde, norm_hist=norm_hist) age_histogram = make_histogram('Age')
code
105205632/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import plotly_express as px df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod fig_o = px.pie(names = well_prod.index , values = well_prod.values , labels ={"names":"Well ", "values":"Total oil production (bbls)"}, ) fig_o.update_traces(textposition='inside', textinfo='percent+label' ,hoverinfo ='percent+label',marker=dict(line=dict(color='#000000', width=2))) fig_o.update_layout( title_text = "Contribution of each well in oil production",legend_title_text="Wells",legend_title_font_size=15, title_x=.5 , title_font_size=20, paper_bgcolor="#0C2D42",font_color="#fff" ) fig_o.show() well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g fig_g = px.pie(names=well_prod_g.index, values=well_prod_g.values, labels={'names': 'Well ', 'values': 'Total oil production (bbls)'}) fig_g.update_traces(textposition='inside', textinfo='percent+label', hoverinfo='percent+label', marker=dict(line=dict(color='#000000', width=2))) fig_g.update_layout(title_text='Contribution of each well in gas production', legend_title_text='Wells', legend_title_font_size=15, title_x=0.5, title_font_size=20, paper_bgcolor='#0C2D42', font_color='#fff') fig_g.show()
code
105205632/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly_express as px import missingno as msn plt.style.use('bmh') df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() wells = df['NPD_WELL_BORE_NAME'].unique() plt.figure(figsize=(12, 20)) for i, well in enumerate(wells): d = df[df['NPD_WELL_BORE_NAME'] == well] plt.subplot(len(wells), 1, i + 1) plt.plot(d['DATEPRD'], d['BORE_OIL_VOL']) plt.plot(d['DATEPRD'], d['BORE_WAT_VOL']) plt.title(well) plt.xlabel('Time') plt.ylabel('Oil & Water production') plt.tight_layout() plt.show
code
105205632/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.head()
code
105205632/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape df_ml.columns df_ml = df_ml[['DATEPRD', 'NPD_WELL_BORE_NAME', 'ON_STREAM_HRS', 'AVG_DOWNHOLE_PRESSURE', 'AVG_DOWNHOLE_TEMPERATURE', 'AVG_DP_TUBING', 'BORE_OIL_VOL', 'BORE_GAS_VOL', 'BORE_WAT_VOL', 'AVG_WHP_P', 'AVG_WHT_P', 'DP_CHOKE_SIZE']] df_ml.rename(columns={'DATEPRD': 'date', 'NPD_WELL_BORE_NAME': 'well_name', 'ON_STREAM_HRS': 'prod_hrs', 'AVG_DOWNHOLE_PRESSURE': 'bhp', 'AVG_DOWNHOLE_TEMPERATURE': 'bht', 'AVG_DP_TUBING': 'dp_tubing', 'AVG_WHP_P': 'tht', 'AVG_WHT_P': 'thp', 'DP_CHOKE_SIZE': 'choke_size_percentage', 'BORE_OIL_VOL': 'oil_vol', 'BORE_GAS_VOL': 'gas_vol', 'BORE_WAT_VOL': 'water_vol'}, inplace=True) df_ml.head()
code
105205632/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape df_ml.columns df_ml = df_ml[['DATEPRD', 'NPD_WELL_BORE_NAME', 'ON_STREAM_HRS', 'AVG_DOWNHOLE_PRESSURE', 'AVG_DOWNHOLE_TEMPERATURE', 'AVG_DP_TUBING', 'BORE_OIL_VOL', 'BORE_GAS_VOL', 'BORE_WAT_VOL', 'AVG_WHP_P', 'AVG_WHT_P', 'DP_CHOKE_SIZE']] df_ml.rename(columns={'DATEPRD': 'date', 'NPD_WELL_BORE_NAME': 'well_name', 'ON_STREAM_HRS': 'prod_hrs', 'AVG_DOWNHOLE_PRESSURE': 'bhp', 'AVG_DOWNHOLE_TEMPERATURE': 'bht', 'AVG_DP_TUBING': 'dp_tubing', 'AVG_WHP_P': 'tht', 'AVG_WHT_P': 'thp', 'DP_CHOKE_SIZE': 'choke_size_percentage', 'BORE_OIL_VOL': 'oil_vol', 'BORE_GAS_VOL': 'gas_vol', 'BORE_WAT_VOL': 'water_vol'}, inplace=True) df_ml.isna().sum() df_ml = df_ml.dropna() df_ml.shape df_ml['oil_rate'] = df_ml['oil_vol'] * 24 / df_ml['prod_hrs'] df_ml['gas_rate'] = df_ml['gas_vol'] * 24 / df_ml['prod_hrs'] df_ml['water_rate'] = df_ml['water_vol'] * 24 / df_ml['prod_hrs'] df_ml['gor'] = df_ml['gas_rate'] / df_ml['oil_rate'] df_ml['wc'] = df_ml['water_rate'] / (df_ml['water_rate'] + df_ml['oil_rate']) df_ml.drop(['oil_vol', 'gas_vol', 'water_vol'], axis=1, inplace=True) df_ml.head()
code
105205632/cell_20
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape df_ml.columns
code
105205632/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum()
code
105205632/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape df_ml.columns df_ml = df_ml[['DATEPRD', 'NPD_WELL_BORE_NAME', 'ON_STREAM_HRS', 'AVG_DOWNHOLE_PRESSURE', 'AVG_DOWNHOLE_TEMPERATURE', 'AVG_DP_TUBING', 'BORE_OIL_VOL', 'BORE_GAS_VOL', 'BORE_WAT_VOL', 'AVG_WHP_P', 'AVG_WHT_P', 'DP_CHOKE_SIZE']] df_ml.rename(columns={'DATEPRD': 'date', 'NPD_WELL_BORE_NAME': 'well_name', 'ON_STREAM_HRS': 'prod_hrs', 'AVG_DOWNHOLE_PRESSURE': 'bhp', 'AVG_DOWNHOLE_TEMPERATURE': 'bht', 'AVG_DP_TUBING': 'dp_tubing', 'AVG_WHP_P': 'tht', 'AVG_WHT_P': 'thp', 'DP_CHOKE_SIZE': 'choke_size_percentage', 'BORE_OIL_VOL': 'oil_vol', 'BORE_GAS_VOL': 'gas_vol', 'BORE_WAT_VOL': 'water_vol'}, inplace=True) df_ml.isna().sum() df_ml = df_ml.dropna() df_ml.shape
code
105205632/cell_2
[ "text_plain_output_1.png" ]
!pip install openpyxl
code
105205632/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import plotly_express as px df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod fig_o = px.pie(names=well_prod.index, values=well_prod.values, labels={'names': 'Well ', 'values': 'Total oil production (bbls)'}) fig_o.update_traces(textposition='inside', textinfo='percent+label', hoverinfo='percent+label', marker=dict(line=dict(color='#000000', width=2))) fig_o.update_layout(title_text='Contribution of each well in oil production', legend_title_text='Wells', legend_title_font_size=15, title_x=0.5, title_font_size=20, paper_bgcolor='#0C2D42', font_color='#fff') fig_o.show()
code
105205632/cell_19
[ "text_html_output_2.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape
code
105205632/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly_express as px import missingno as msn plt.style.use('bmh') df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() plt.figure(figsize=(15, 6)) plt.title('Oil production for all wells') sns.lineplot(data=df, x='DATEPRD', y='BORE_OIL_VOL', hue='NPD_WELL_BORE_NAME')
code
105205632/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import plotly_express as px df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod fig_o = px.pie(names = well_prod.index , values = well_prod.values , labels ={"names":"Well ", "values":"Total oil production (bbls)"}, ) fig_o.update_traces(textposition='inside', textinfo='percent+label' ,hoverinfo ='percent+label',marker=dict(line=dict(color='#000000', width=2))) fig_o.update_layout( title_text = "Contribution of each well in oil production",legend_title_text="Wells",legend_title_font_size=15, title_x=.5 , title_font_size=20, paper_bgcolor="#0C2D42",font_color="#fff" ) fig_o.show() well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g fig_g = px.pie(names = well_prod_g.index , values = well_prod_g.values , labels ={"names":"Well ", "values":"Total oil production (bbls)"}, ) fig_g.update_traces(textposition='inside', textinfo='percent+label' ,hoverinfo ='percent+label',marker=dict(line=dict(color='#000000', width=2))) fig_g.update_layout( title_text = "Contribution of each well in gas production",legend_title_text="Wells",legend_title_font_size=15, title_x=.5 , title_font_size=20, paper_bgcolor="#0C2D42",font_color="#fff" ) fig_g.show() well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w fig_w = px.pie(names=well_prod_w.index, values=well_prod_w.values, labels={'names': 'Well ', 'values': 'Total oil production (bbls)'}) fig_w.update_traces(textposition='inside', textinfo='percent+label', hoverinfo='percent+label', marker=dict(line=dict(color='#000000', width=2))) fig_w.update_layout(title_text='Contribution of each well in water production', legend_title_text='Wells', legend_title_font_size=15, title_x=0.5, title_font_size=20, paper_bgcolor='#0C2D42', font_color='#fff') fig_w.show()
code
105205632/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df.hist(figsize=(18, 18))
code
105205632/cell_24
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w df_ml = df[df['WELL_TYPE'] == 'OP'] df_ml.shape df_ml.columns df_ml = df_ml[['DATEPRD', 'NPD_WELL_BORE_NAME', 'ON_STREAM_HRS', 'AVG_DOWNHOLE_PRESSURE', 'AVG_DOWNHOLE_TEMPERATURE', 'AVG_DP_TUBING', 'BORE_OIL_VOL', 'BORE_GAS_VOL', 'BORE_WAT_VOL', 'AVG_WHP_P', 'AVG_WHT_P', 'DP_CHOKE_SIZE']] df_ml.rename(columns={'DATEPRD': 'date', 'NPD_WELL_BORE_NAME': 'well_name', 'ON_STREAM_HRS': 'prod_hrs', 'AVG_DOWNHOLE_PRESSURE': 'bhp', 'AVG_DOWNHOLE_TEMPERATURE': 'bht', 'AVG_DP_TUBING': 'dp_tubing', 'AVG_WHP_P': 'tht', 'AVG_WHT_P': 'thp', 'DP_CHOKE_SIZE': 'choke_size_percentage', 'BORE_OIL_VOL': 'oil_vol', 'BORE_GAS_VOL': 'gas_vol', 'BORE_WAT_VOL': 'water_vol'}, inplace=True) df_ml.isna().sum()
code
105205632/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g well_prod_w = df.groupby('NPD_WELL_BORE_NAME')['BORE_WAT_VOL'].sum() well_prod_w
code
105205632/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod
code
105205632/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') df.isna().sum() well_prod = df.groupby('NPD_WELL_BORE_NAME')['BORE_OIL_VOL'].sum() well_prod well_prod_g = df.groupby('NPD_WELL_BORE_NAME')['BORE_GAS_VOL'].sum() well_prod_g
code
105205632/cell_5
[ "text_plain_output_1.png" ]
import missingno as msn import pandas as pd df = pd.read_excel('../input/volve-production-data/Volve production data.xlsx') msn.matrix(df)
code
90127845/cell_4
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import os import pandas as pd root = '/kaggle/input/tabular-playground-series-mar-2022' train_df = pd.read_csv(os.path.join(root, 'train.csv')) train_df['datetime'] = pd.to_datetime(train_df.time) train_df['date'] = train_df.datetime.dt.date train_df['time'] = train_df.datetime.dt.time test_df = pd.read_csv(os.path.join(root, 'test.csv')) test_df['datetime'] = pd.to_datetime(test_df.time) test_df['date'] = test_df.datetime.dt.date test_df['time'] = test_df.datetime.dt.time train_df
code
90127845/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import datetime import os import pandas as pd root = '/kaggle/input/tabular-playground-series-mar-2022' train_df = pd.read_csv(os.path.join(root, 'train.csv')) train_df['datetime'] = pd.to_datetime(train_df.time) train_df['date'] = train_df.datetime.dt.date train_df['time'] = train_df.datetime.dt.time test_df = pd.read_csv(os.path.join(root, 'test.csv')) test_df['datetime'] = pd.to_datetime(test_df.time) test_df['date'] = test_df.datetime.dt.date test_df['time'] = test_df.datetime.dt.time sep_30 = datetime.date(1991, 9, 30) mondays = train_df[train_df.datetime.dt.dayofweek == 0] mondays['is_morning'] = mondays.datetime.dt.hour < 12 mondays[mondays.datetime.dt.date < sep_30].groupby('date').congestion.mean().plot() plt.title('Congestion by date') plt.ylabel('avg daily congestion') plt.show()
code