path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
89141106/cell_82
[ "text_plain_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Incl. ST', ('#5735FD', '#3C78E8', '#2E90FF'), (0.05, 0.05, 0.05), 'Inclinação ST', 17)
code
89141106/cell_51
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Tipo de dor', None, None, False)
code
89141106/cell_62
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Glicemia', ('#140E36', '#091AAB'), (0.05, 0.05), 'Glicemia', 25)
code
89141106/cell_59
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Colesterol', [0, 150, 200, 250, 300, 350, 400, 1000], ['0-150', '150-200', '200-250', '250-300', '300-350', '350-400', '400+'])
code
89141106/cell_58
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_distribuicao(dados, 'Colesterol', 'Colesterol')
code
89141106/cell_78
[ "text_plain_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_distribuicao(dados, 'Oldpeak', 'Oldpeak')
code
89141106/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados
code
89141106/cell_75
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Dor por exec.', None, None, False)
code
89141106/cell_66
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Eletro', ('#5735FD', '#3C78E8', '#2E90FF'), (0.05, 0.05, 0.05), 'Eletrocardiograma', 25)
code
89141106/cell_93
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec from sklearn import preprocessing import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T colunas = ['Sexo', 'Tipo de dor', 'Glicemia', 'Eletro', 'Dor por exec.', 'Incl. ST', 'DCV'] sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) colunas = [coluna for coluna in dados.columns if dados[coluna].dtype == 'object'] codificador = preprocessing.LabelEncoder() for coluna in colunas: dados[coluna] = codificador.fit_transform(dados[coluna]) plt.figure(figsize=(15, 10)) mascara = np.triu(dados.corr()) sns.heatmap(data=dados.corr(), cmap='Blues', mask=mascara, annot=True) plt.show()
code
89141106/cell_105
[ "text_html_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier rfc = RandomForestClassifier(n_jobs=-1, n_estimators=500, max_depth=70, max_features=2, random_state=0) knn = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree', weights='uniform', n_jobs=-1) gbc = GradientBoostingClassifier(learning_rate=0.01, loss='exponential', max_depth=70, max_features=2, n_estimators=500, random_state=0) rfc.fit(X_treino, y_treino)
code
89141106/cell_27
[ "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T colunas = ['Sexo', 'Tipo de dor', 'Glicemia', 'Eletro', 'Dor por exec.', 'Incl. ST', 'DCV'] for coluna in colunas: print(f'{coluna}: {dados[coluna].unique()}')
code
89141106/cell_12
[ "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados
code
89141106/cell_71
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'BPM', [0, 80, 100, 120, 140, 160, 180, 200, 1000], ['0-80', '80-100', '100-120', '120-140', '140-160', '160-180', '180-200', '200+'])
code
89141106/cell_70
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_distribuicao(dados, 'BPM', 'Batimento Cardíaco Máximo')
code
18104935/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') X_con_col = list(X_con.columns) #outlier detection and replacing them with mean def outlier_detect(df): for i in df.describe().columns: Q1=df.describe().at['25%',i] Q3=df.describe().at['75%',i] IQR=Q3 - Q1 LTV=Q1 - 1.5 * IQR UTV=Q3 + 1.5 * IQR x=np.array(df[i]) p=[] for j in x: if j < LTV or j>UTV: p.append(df[i].median()) else: p.append(j) df[i]=p return df X_con = outlier_detect(X_con) X_con.isnull().sum()
code
18104935/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) sns.heatmap(df.corr())
code
18104935/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() df['SalePrice'].isnull().sum()
code
18104935/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') X_con_col = list(X_con.columns) #outlier detection and replacing them with mean def outlier_detect(df): for i in df.describe().columns: Q1=df.describe().at['25%',i] Q3=df.describe().at['75%',i] IQR=Q3 - Q1 LTV=Q1 - 1.5 * IQR UTV=Q3 + 1.5 * IQR x=np.array(df[i]) p=[] for j in x: if j < LTV or j>UTV: p.append(df[i].median()) else: p.append(j) df[i]=p return df X_con = outlier_detect(X_con) X_cat = X.select_dtypes(include='object') X_cat_col = list(X_cat.columns) X_cat.isnull().sum() X_con.isnull().sum() X_cat.drop(['PoolQC', 'Fence', 'MiscFeature'], axis=1, inplace=True) X_cat.drop('Alley', 1, inplace=True) X_cat.isnull().sum() for col in X_cat.columns: X_cat[col] = X_cat[col].fillna(X_cat[col].mode()[0]) for cols in X_cat.columns: sns.set(style="whitegrid") ax = sns.barplot(x=cols, y="SalePrice", data=df) plt.show() X_con.isnull().sum() for col in X_con.columns: X_con[col] = X_con[col].replace(to_replace=np.nan, value=0) for cols in X_con.columns: sns.set() sns.distplot(X_con[cols]) plt.show()
code
18104935/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') X_cat = X.select_dtypes(include='object') X_cat_col = list(X_cat.columns) X_cat.isnull().sum()
code
18104935/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/train.csv' df = pd.read_csv(path) df.head()
code
18104935/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') #outlier detection and replacing them with mean def outlier_detect(df): for i in df.describe().columns: Q1=df.describe().at['25%',i] Q3=df.describe().at['75%',i] IQR=Q3 - Q1 LTV=Q1 - 1.5 * IQR UTV=Q3 + 1.5 * IQR x=np.array(df[i]) p=[] for j in x: if j < LTV or j>UTV: p.append(df[i].median()) else: p.append(j) df[i]=p return df X_cat = X.select_dtypes(include='object') X_cat_col = list(X_cat.columns) X_cat.isnull().sum() X_cat.drop(['PoolQC', 'Fence', 'MiscFeature'], axis=1, inplace=True) X_cat.drop('Alley', 1, inplace=True) X_cat.isnull().sum() for col in X_cat.columns: X_cat[col] = X_cat[col].fillna(X_cat[col].mode()[0]) for cols in X_cat.columns: sns.set(style='whitegrid') ax = sns.barplot(x=cols, y='SalePrice', data=df) plt.show()
code
18104935/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) sns.pairplot(df[cols], size=2.5) plt.show()
code
18104935/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18104935/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/train.csv' df = pd.read_csv(path) df.columns
code
18104935/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') X_con_col = list(X_con.columns) #outlier detection and replacing them with mean def outlier_detect(df): for i in df.describe().columns: Q1=df.describe().at['25%',i] Q3=df.describe().at['75%',i] IQR=Q3 - Q1 LTV=Q1 - 1.5 * IQR UTV=Q3 + 1.5 * IQR x=np.array(df[i]) p=[] for j in x: if j < LTV or j>UTV: p.append(df[i].median()) else: p.append(j) df[i]=p return df X_con = outlier_detect(X_con) X_con.isnull().sum() X_con.isnull().sum()
code
18104935/cell_8
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "image_output_17.png", "image_output_30.png", "image_output_14.png", "image_output_28.png", "image_output_23.png", "image_output_34.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_21.png", "image_output_7.png", "image_output_31.png", "image_output_20.png", "image_output_32.png", "image_output_4.png", "image_output_35.png", "image_output_36.png", "image_output_8.png", "image_output_37.png", "image_output_16.png", "image_output_27.png", "image_output_6.png", "image_output_12.png", "image_output_22.png", "image_output_3.png", "image_output_29.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_33.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2 = fig.add_subplot(2, 2, 2) ax3 = fig.add_subplot(2, 2, 3) ax4 = fig.add_subplot(2, 2, 4) df.plot.scatter(x='LotFrontage', y='SalePrice', ax=ax1) df.plot.scatter(x='LotArea', y='SalePrice', ax=ax2) df.plot.scatter(x='MSSubClass', y='SalePrice', ax=ax3) df.plot.scatter(x='OverallQual', y='SalePrice', ax=ax4) plt.show()
code
18104935/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') X_cat = X.select_dtypes(include='object') X_cat_col = list(X_cat.columns) X_cat.isnull().sum() X_cat.drop(['PoolQC', 'Fence', 'MiscFeature'], axis=1, inplace=True) X_cat.drop('Alley', 1, inplace=True) X_cat.isnull().sum()
code
18104935/cell_27
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns path = '../input/train.csv' df = pd.read_csv(path) df.columns fig = plt.figure(2) ax1 = fig.add_subplot(2, 2, 1) ax2=fig.add_subplot(2,2,2) ax3=fig.add_subplot(2,2,3) ax4=fig.add_subplot(2,2,4) df.plot.scatter(x='LotFrontage',y='SalePrice',ax=ax1) df.plot.scatter(x='LotArea',y='SalePrice',ax=ax2) df.plot.scatter(x='MSSubClass',y='SalePrice',ax=ax3) df.plot.scatter(x='OverallQual',y='SalePrice',ax=ax4) plt.show() sns.set() cols = list(df.columns) X = df.drop('SalePrice', axis=1) X_con = X.select_dtypes(exclude='object') #outlier detection and replacing them with mean def outlier_detect(df): for i in df.describe().columns: Q1=df.describe().at['25%',i] Q3=df.describe().at['75%',i] IQR=Q3 - Q1 LTV=Q1 - 1.5 * IQR UTV=Q3 + 1.5 * IQR x=np.array(df[i]) p=[] for j in x: if j < LTV or j>UTV: p.append(df[i].median()) else: p.append(j) df[i]=p return df X_cat = X.select_dtypes(include='object') X_cat_col = list(X_cat.columns) X_cat.isnull().sum() X_cat.drop(['PoolQC', 'Fence', 'MiscFeature'], axis=1, inplace=True) X_cat.drop('Alley', 1, inplace=True) X_cat.isnull().sum() for col in X_cat.columns: X_cat[col] = X_cat[col].fillna(X_cat[col].mode()[0]) for cols in X_cat.columns: sns.set(style="whitegrid") ax = sns.barplot(x=cols, y="SalePrice", data=df) plt.show() X_cat.isnull().sum()
code
130009993/cell_2
[ "text_plain_output_1.png" ]
!pip install pandasai
code
130009993/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot, plot import plotly as py init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px import math import seaborn as sns from pandas_profiling import ProfileReport import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130009993/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pandasai import PandasAI from pandasai.llm.openai import OpenAI
code
34119091/cell_42
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage sqrt_mileage.skew() cube_root_mileage = np.cbrt(data['mileage']) cube_root_mileage cube_root_mileage.skew() sns.distplot(cube_root_mileage, hist=True)
code
34119091/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.info()
code
34119091/cell_34
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage
code
34119091/cell_30
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage log_mileage.skew()
code
34119091/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape sns.distplot(data['mileage'], hist=True)
code
34119091/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage cube_root_mileage = np.cbrt(data['mileage']) cube_root_mileage
code
34119091/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage
code
34119091/cell_41
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage cube_root_mileage = np.cbrt(data['mileage']) cube_root_mileage cube_root_mileage.skew()
code
34119091/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape data['mileage'].skew()
code
34119091/cell_7
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34119091/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage cube_root_mileage = np.cbrt(data['mileage']) cube_root_mileage recipr_mileage = np.reciprocal(data['mileage']) recipr_mileage
code
34119091/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape import seaborn as sns data['price'].hist(grid=False)
code
34119091/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape data['price'].skew()
code
34119091/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape sns.distplot(data['price'], hist=True)
code
34119091/cell_35
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage sqrt_mileage.skew()
code
34119091/cell_46
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage cube_root_mileage = np.cbrt(data['mileage']) cube_root_mileage recipr_mileage = np.reciprocal(data['mileage']) recipr_mileage recipr_mileage.skew()
code
34119091/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape
code
34119091/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data.head(2)
code
34119091/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.head(2)
code
34119091/cell_36
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv') data = data.drop(['Unnamed: 0'], axis=1) data.shape log_mileage = np.log(data['mileage']) log_mileage sqrt_mileage = np.sqrt(data['mileage']) sqrt_mileage sqrt_mileage.skew() sns.distplot(sqrt_mileage, hist=True)
code
73082288/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') target_mean = train_df['target'].mean() target_median = train_df['target'].median() target_std = train_df['target'].std() target_min = train_df['target'].min() target_25 = np.percentile(train_df['target'], 25) target_50 = np.percentile(train_df['target'], 50) target_75 = np.percentile(train_df['target'], 75) target_max = train_df['target'].max() target_skew = train_df['target'].skew(axis=0, skipna=True) print('standard_error Variable') print('----------') standard_error_mean = train_df['standard_error'].mean() print(f'Mean: {standard_error_mean}') standard_error_median = train_df['standard_error'].median() print(f'Median: {standard_error_median}') standard_error_std = train_df['standard_error'].std() print(f'Standard Deviation: {standard_error_std}') standard_error_min = train_df['standard_error'].min() print(f'Minimum Value: {standard_error_min}') standard_error_25 = np.percentile(train_df['standard_error'], 25) print(f'25th Percentile: {standard_error_25}') standard_error_50 = np.percentile(train_df['standard_error'], 50) print(f'50th Percentile: {standard_error_50}') standard_error_75 = np.percentile(train_df['standard_error'], 75) print(f'75th Percentile: {standard_error_75}') standard_error_max = train_df['standard_error'].max() print(f'Maximum Value: {standard_error_max}') standard_error_skew = train_df['target'].skew(axis=0, skipna=True) print(f'Skew: {standard_error_skew}') plt.hist(train_df['standard_error'], edgecolor='black', bins=50)
code
73082288/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') excerpt1 = train_df['excerpt'].min() print(excerpt1)
code
73082288/cell_11
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import numpy as np import pandas as pd import xgboost as xgb train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') target_mean = train_df['target'].mean() target_median = train_df['target'].median() target_std = train_df['target'].std() target_min = train_df['target'].min() target_25 = np.percentile(train_df['target'], 25) target_50 = np.percentile(train_df['target'], 50) target_75 = np.percentile(train_df['target'], 75) target_max = train_df['target'].max() target_skew = train_df['target'].skew(axis=0, skipna=True) standard_error_mean = train_df['standard_error'].mean() standard_error_median = train_df['standard_error'].median() standard_error_std = train_df['standard_error'].std() standard_error_min = train_df['standard_error'].min() standard_error_25 = np.percentile(train_df['standard_error'], 25) standard_error_50 = np.percentile(train_df['standard_error'], 50) standard_error_75 = np.percentile(train_df['standard_error'], 75) standard_error_max = train_df['standard_error'].max() standard_error_skew = train_df['target'].skew(axis=0, skipna=True) text = train_df.excerpt[0] wordcloud = WordCloud().generate(text) wordcloud = WordCloud(max_font_size=50, max_words=100, background_color='white').generate(text) wordcloud.generate(' '.join(train_df['excerpt_preprocessed'])) plt.axis('off') def training(model, X_train, y_train, X_test, y_test): model = make_pipeline(TfidfVectorizer(binary=True, ngram_range=(1, 1)), model) model.fit(X_train, y_train) y_pred = model.predict(X_test) MSE = mse(y_test, y_pred) xg = xgb.XGBRegressor(objective='reg:squarederror', colsample_bytree=0.3, learning_rate=0.1, max_depth=5, alpha=10, n_estimators=10) ridge = Ridge(fit_intercept=True, normalize=False) lr = LinearRegression() m = [xg, ridge, lr] mn = ['XGBoost Regression', 'Ridge Regression', 'Linear Regression'] print('Model:', mn) print('Mean Squared Error:', MSE) X = train_df['excerpt_preprocessed'].values y = train_df['target'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) for i in range(0, len(m)): training(model=m[i], X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test)
code
73082288/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') print('target Variable') print('----------') target_mean = train_df['target'].mean() print(f'Mean: {target_mean}') target_median = train_df['target'].median() print(f'Median: {target_median}') target_std = train_df['target'].std() print(f'Standard Deviation: {target_std}') target_min = train_df['target'].min() print(f'Minimum Value: {target_min}') target_25 = np.percentile(train_df['target'], 25) print(f'25th Percentile: {target_25}') target_50 = np.percentile(train_df['target'], 50) print(f'50th Percentile: {target_50}') target_75 = np.percentile(train_df['target'], 75) print(f'75th Percentile: {target_75}') target_max = train_df['target'].max() print(f'Maximum Value: {target_max}') target_skew = train_df['target'].skew(axis=0, skipna=True) print(f'Skew: {target_skew}') plt.hist(train_df['target'], edgecolor='black', bins=50)
code
73082288/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') train_df.head()
code
73082288/cell_10
[ "text_html_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import numpy as np import pandas as pd train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') target_mean = train_df['target'].mean() target_median = train_df['target'].median() target_std = train_df['target'].std() target_min = train_df['target'].min() target_25 = np.percentile(train_df['target'], 25) target_50 = np.percentile(train_df['target'], 50) target_75 = np.percentile(train_df['target'], 75) target_max = train_df['target'].max() target_skew = train_df['target'].skew(axis=0, skipna=True) standard_error_mean = train_df['standard_error'].mean() standard_error_median = train_df['standard_error'].median() standard_error_std = train_df['standard_error'].std() standard_error_min = train_df['standard_error'].min() standard_error_25 = np.percentile(train_df['standard_error'], 25) standard_error_50 = np.percentile(train_df['standard_error'], 50) standard_error_75 = np.percentile(train_df['standard_error'], 75) standard_error_max = train_df['standard_error'].max() standard_error_skew = train_df['target'].skew(axis=0, skipna=True) text = train_df.excerpt[0] wordcloud = WordCloud().generate(text) wordcloud = WordCloud(max_font_size=50, max_words=100, background_color='white').generate(text) wordcloud.generate(' '.join(train_df['excerpt_preprocessed'])) plt.figure() plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show()
code
73082288/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords import nltk import pandas as pd import re train_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/train.csv') train_df.drop(train_df[(train_df.target == 0) & (train_df.standard_error == 0)].index, inplace=True) train_df.reset_index(drop=True, inplace=True) test_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/test.csv') submission_df = pd.read_csv('/kaggle/input/commonlitreadabilityprize/sample_submission.csv') excerpt1 = train_df['excerpt'].min() e = re.sub('[^a-zA-Z]', ' ', excerpt1) e = e.lower() e = nltk.word_tokenize(e) e = [word for word in e if not word in set(stopwords.words('english'))] lemma = nltk.WordNetLemmatizer() e = [lemma.lemmatize(word) for word in e] e = ' '.join(e) print(e)
code
72085616/cell_63
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape
code
72085616/cell_21
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) reduced_X_valid
code
72085616/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape melb_predictors.dtypes X = melb_predictors.select_dtypes(exclude=['object']) X.shape
code
72085616/cell_25
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train
code
72085616/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape data.head()
code
72085616/cell_57
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True)
code
72085616/cell_56
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing X_train_full.shape cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing
code
72085616/cell_79
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) object_cols = list(cat_variables[cat_variables].index) object_cols object_cols
code
72085616/cell_30
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns print('MAE from Approach 2 (Imputation):') print(score_dataset(imputed_X_train, imputed_X_valid, y_train, y_valid))
code
72085616/cell_33
[ "text_html_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing cols_with_missing
code
72085616/cell_20
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) reduced_X_train
code
72085616/cell_76
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) object_cols = list(cat_variables[cat_variables].index) object_cols drop_X_train = X_train.select_dtypes(exclude=['object']) drop_X_valid = X_valid.select_dtypes(exclude=['object']) drop_X_train.shape from sklearn.preprocessing import OrdinalEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() ordinal_encoder = OrdinalEncoder() label_X_train[object_cols] = ordinal_encoder.fit_transform(X_train[object_cols]) label_X_valid[object_cols] = ordinal_encoder.transform(X_valid[object_cols]) label_X_train
code
72085616/cell_40
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns imputed_X_train_plus
code
72085616/cell_29
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns imputed_X_valid
code
72085616/cell_26
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_valid
code
72085616/cell_48
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape data.shape y = data.Price y.shape
code
72085616/cell_41
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns print('MAE from Approach 3 (An Extension to Imputation):') print(score_dataset(imputed_X_train_plus, imputed_X_valid_plus, y_train, y_valid))
code
72085616/cell_61
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols
code
72085616/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape
code
72085616/cell_54
[ "text_plain_output_1.png" ]
X_valid_full.shape X_valid_full.columns X_valid_full.head()
code
72085616/cell_72
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) drop_X_train = X_train.select_dtypes(exclude=['object']) drop_X_valid = X_valid.select_dtypes(exclude=['object']) drop_X_train.shape print('MAE from Approach 1 (Drop categorical variables):') print(score_dataset(drop_X_train, drop_X_valid, y_train, y_valid))
code
72085616/cell_67
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) cat_variables
code
72085616/cell_69
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) object_cols = list(cat_variables[cat_variables].index) object_cols
code
72085616/cell_52
[ "text_plain_output_1.png" ]
X_valid_full.shape
code
72085616/cell_64
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape X_train.head()
code
72085616/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape
code
72085616/cell_49
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape melb_predictors.dtypes X = melb_predictors.select_dtypes(exclude=['object']) X.shape X.dtypes data.shape y = data.Price y.shape X = data.drop(['Price'], axis=1) X.shape
code
72085616/cell_18
[ "text_plain_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing
code
72085616/cell_51
[ "text_plain_output_1.png" ]
X_train_full.shape
code
72085616/cell_68
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) cat_variables[cat_variables]
code
72085616/cell_59
[ "text_html_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols
code
72085616/cell_28
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns imputed_X_train
code
72085616/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape melb_predictors.dtypes
code
72085616/cell_38
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus
code
72085616/cell_75
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) object_cols = list(cat_variables[cat_variables].index) object_cols object_cols
code
72085616/cell_47
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape data.shape
code
72085616/cell_66
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables)
code
72085616/cell_17
[ "text_html_output_1.png" ]
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing
code
72085616/cell_35
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_plus
code
72085616/cell_77
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) drop_X_train = X_train.select_dtypes(exclude=['object']) drop_X_valid = X_valid.select_dtypes(exclude=['object']) drop_X_train.shape from sklearn.preprocessing import OrdinalEncoder label_X_train = X_train.copy() label_X_valid = X_valid.copy() print('MAE from Approach 2 (Ordinal Encoding):') print(score_dataset(label_X_train, label_X_valid, y_train, y_valid))
code
72085616/cell_22
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) print('MAE from Approach 1 (Drop columns with missing values):') print(score_dataset(reduced_X_train, reduced_X_valid, y_train, y_valid))
code