path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73067465/cell_28
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig,ax=plt.subplots(3,1,figsize=(15,13)) sns.heatmap(train.corr('spearman'),annot=True,ax=ax[0],label='spearman') #spearman sns.heatmap(train.corr('kendall'),annot=True,ax=ax[1],label='kendall') #Kendall sns.heatmap(train.corr('pearson'),annot=True,ax=ax[2],label='pearson') #pearson sns.ecdfplot(x='Age', data=train, hue='Survived') plt.annotate('The plot has a little up showing young children to survive', xy=(13, 0.17), xytext=(60, 0.3), arrowprops={'color': 'gray'}) plt.show()
code
73067465/cell_38
[ "text_plain_output_1.png" ]
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,VotingClassifier from sklearn.impute import KNNImputer,IterativeImputer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split,cross_val_score,StratifiedKFold from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig,ax=plt.subplots(3,1,figsize=(15,13)) sns.heatmap(train.corr('spearman'),annot=True,ax=ax[0],label='spearman') #spearman sns.heatmap(train.corr('kendall'),annot=True,ax=ax[1],label='kendall') #Kendall sns.heatmap(train.corr('pearson'),annot=True,ax=ax[2],label='pearson') #pearson train = pd.get_dummies(train, columns=['Pclass', 'Embarked', 'title', 'family'], drop_first=True) impute = KNNImputer(n_neighbors=13) train = pd.DataFrame(impute.fit_transform(train), columns=train.columns) model = [] model.append(('Logistic Regression', LogisticRegression(max_iter=1000))) model.append(('LDA', LinearDiscriminantAnalysis())) model.append(('SVC', SVC(kernel='rbf'))) model.append(('DTC', DecisionTreeClassifier())) model.append(('GBC', GradientBoostingClassifier())) model.append(('RFC', RandomForestClassifier())) model.append(('Kneig', KNeighborsClassifier())) x = train.drop('Survived', axis=1) y = train['Survived'] xtrain, xvalid, ytrain, yvalid = train_test_split(x, y, test_size=0.3) from sklearn.metrics import classification_report model = LogisticRegression(max_iter=3000) model.fit(xtrain, ytrain) ypred = model.predict(xvalid) model = RandomForestClassifier() model.fit(xtrain, ytrain) ypred = model.predict(xvalid) estimator = [] estimator.append(('LR', GradientBoostingClassifier())) estimator.append(('SVC', RandomForestClassifier())) estimator.append(('kd', LogisticRegression(max_iter=3000))) vot_hard = VotingClassifier(estimators=estimator, voting='hard') vot_hard.fit(xtrain, ytrain) ypred = vot_hard.predict(xvalid) print(classification_report(yvalid, ypred))
code
73067465/cell_35
[ "text_plain_output_1.png" ]
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,VotingClassifier from sklearn.impute import KNNImputer,IterativeImputer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split,cross_val_score,StratifiedKFold from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig,ax=plt.subplots(3,1,figsize=(15,13)) sns.heatmap(train.corr('spearman'),annot=True,ax=ax[0],label='spearman') #spearman sns.heatmap(train.corr('kendall'),annot=True,ax=ax[1],label='kendall') #Kendall sns.heatmap(train.corr('pearson'),annot=True,ax=ax[2],label='pearson') #pearson train = pd.get_dummies(train, columns=['Pclass', 'Embarked', 'title', 'family'], drop_first=True) impute = KNNImputer(n_neighbors=13) train = pd.DataFrame(impute.fit_transform(train), columns=train.columns) model = [] model.append(('Logistic Regression', LogisticRegression(max_iter=1000))) model.append(('LDA', LinearDiscriminantAnalysis())) model.append(('SVC', SVC(kernel='rbf'))) model.append(('DTC', DecisionTreeClassifier())) model.append(('GBC', GradientBoostingClassifier())) model.append(('RFC', RandomForestClassifier())) model.append(('Kneig', KNeighborsClassifier())) x = train.drop('Survived', axis=1) y = train['Survived'] xtrain, xvalid, ytrain, yvalid = train_test_split(x, y, test_size=0.3) from sklearn.metrics import classification_report model = LogisticRegression(max_iter=3000) model.fit(xtrain, ytrain) ypred = model.predict(xvalid) print(classification_report(yvalid, ypred))
code
73067465/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig, ax = plt.subplots(3, 1, figsize=(15, 13)) sns.heatmap(train.corr('spearman'), annot=True, ax=ax[0], label='spearman') sns.heatmap(train.corr('kendall'), annot=True, ax=ax[1], label='kendall') sns.heatmap(train.corr('pearson'), annot=True, ax=ax[2], label='pearson')
code
73067465/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig,ax=plt.subplots(3,1,figsize=(15,13)) sns.heatmap(train.corr('spearman'),annot=True,ax=ax[0],label='spearman') #spearman sns.heatmap(train.corr('kendall'),annot=True,ax=ax[1],label='kendall') #Kendall sns.heatmap(train.corr('pearson'),annot=True,ax=ax[2],label='pearson') #pearson sns.countplot(x='title', data=train, hue='Survived')
code
73067465/cell_36
[ "text_plain_output_1.png" ]
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,VotingClassifier from sklearn.impute import KNNImputer,IterativeImputer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split,cross_val_score,StratifiedKFold from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold from sklearn.experimental import enable_iterative_imputer from sklearn.impute import KNNImputer, IterativeImputer from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier sns.set_style('whitegrid') from sklearn.metrics import accuracy_score train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') submit = pd.DataFrame(test['PassengerId']) train['title'] = 0 for i in range(0, len(train)): train.loc[i, 'title'] = train['Name'].iloc[i].split(',')[1].split('.')[0][1:] train['title'].replace({'Mr': 1, 'Miss': 2, 'Mrs': 2, 'Master': 3, 'Dr': 4, 'Rev': 5}, inplace=True) train['title'].replace(['Major', 'Mlle', 'Col', 'Don', 'the Countess', 'Sir', 'Capt', 'Mme', 'Lady', 'Jonkheer', 'Ms'], 6, inplace=True) for i in range(len(train)): if not pd.isnull(train['Cabin'].iloc[i]): train.loc[i, 'Cabin'] = train['Cabin'].loc[i][0] train['Cabin'].replace({'C': 1, 'B': 2, 'D': 3, 'E': 4, 'A': 5, 'F': 6, 'G': 7, 'T': 8}, inplace=True) train['Fare'] = np.sqrt(train['Fare']) train.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'PassengerId', 'Cabin'], axis=1, inplace=True) fig,ax=plt.subplots(3,1,figsize=(15,13)) sns.heatmap(train.corr('spearman'),annot=True,ax=ax[0],label='spearman') #spearman sns.heatmap(train.corr('kendall'),annot=True,ax=ax[1],label='kendall') #Kendall sns.heatmap(train.corr('pearson'),annot=True,ax=ax[2],label='pearson') #pearson train = pd.get_dummies(train, columns=['Pclass', 'Embarked', 'title', 'family'], drop_first=True) impute = KNNImputer(n_neighbors=13) train = pd.DataFrame(impute.fit_transform(train), columns=train.columns) model = [] model.append(('Logistic Regression', LogisticRegression(max_iter=1000))) model.append(('LDA', LinearDiscriminantAnalysis())) model.append(('SVC', SVC(kernel='rbf'))) model.append(('DTC', DecisionTreeClassifier())) model.append(('GBC', GradientBoostingClassifier())) model.append(('RFC', RandomForestClassifier())) model.append(('Kneig', KNeighborsClassifier())) x = train.drop('Survived', axis=1) y = train['Survived'] xtrain, xvalid, ytrain, yvalid = train_test_split(x, y, test_size=0.3) from sklearn.metrics import classification_report model = LogisticRegression(max_iter=3000) model.fit(xtrain, ytrain) ypred = model.predict(xvalid) model = RandomForestClassifier() model.fit(xtrain, ytrain) ypred = model.predict(xvalid) print(classification_report(yvalid, ypred))
code
122251830/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) df.info()
code
122251830/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df[['deck', 'num', 'side']] = df['Cabin'].str.split(pat='/', expand=True) df[['Passenger', '_Id']] = df['PassengerId'].str.split(pat='_', expand=True) df[['Nome', 'Sobrenome']] = df['Name'].str.split(pat=' ', expand=True) df.drop(columns=['Cabin', 'Name'], inplace=True) df.replace({False: 0, True: 1}, inplace=True) df.groupby(['HomePlanet']).deck.value_counts() df.loc[df.deck == 'G', 'HomePlanet'] = 'Earth' df.loc[(df.deck == 'T') | (df.deck == 'A') | (df.deck == 'B') | (df.deck == 'C'), 'HomePlanet'] = 'Europa' df.groupby(['VIP']).deck.value_counts()
code
122251830/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df.head()
code
122251830/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df[['deck', 'num', 'side']] = df['Cabin'].str.split(pat='/', expand=True) df[['Passenger', '_Id']] = df['PassengerId'].str.split(pat='_', expand=True) df[['Nome', 'Sobrenome']] = df['Name'].str.split(pat=' ', expand=True) df.drop(columns=['Cabin', 'Name'], inplace=True) df.replace({False: 0, True: 1}, inplace=True) df.groupby(['HomePlanet']).deck.value_counts() df.loc[df.deck == 'G', 'HomePlanet'] = 'Earth' df.loc[(df.deck == 'T') | (df.deck == 'A') | (df.deck == 'B') | (df.deck == 'C'), 'HomePlanet'] = 'Europa' df.groupby(['VIP']).deck.value_counts() df.loc[(df.deck == 'G') | (df.deck == 'T'), 'VIP'] = 0 df.groupby(['CryoSleep']).deck.value_counts() df.loc[df.deck == 'T', 'CryoSleep'] = 0 df.groupby(['CryoSleep', 'VIP']).agg({'RoomService': ['mean', 'min', 'max'], 'FoodCourt': ['mean', 'min', 'max'], 'ShoppingMall': ['mean', 'min', 'max'], 'Spa': ['mean', 'min', 'max'], 'VRDeck': ['mean', 'min', 'max']})
code
122251830/cell_16
[ "text_html_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df[['deck', 'num', 'side']] = df['Cabin'].str.split(pat='/', expand=True) df[['Passenger', '_Id']] = df['PassengerId'].str.split(pat='_', expand=True) df[['Nome', 'Sobrenome']] = df['Name'].str.split(pat=' ', expand=True) df.drop(columns=['Cabin', 'Name'], inplace=True) df.replace({False: 0, True: 1}, inplace=True) df.groupby(['HomePlanet']).deck.value_counts()
code
122251830/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df[['deck', 'num', 'side']] = df['Cabin'].str.split(pat='/', expand=True) df[['Passenger', '_Id']] = df['PassengerId'].str.split(pat='_', expand=True) df[['Nome', 'Sobrenome']] = df['Name'].str.split(pat=' ', expand=True) df.drop(columns=['Cabin', 'Name'], inplace=True) df.replace({False: 0, True: 1}, inplace=True) df.groupby(['HomePlanet']).deck.value_counts() df.loc[df.deck == 'G', 'HomePlanet'] = 'Earth' df.loc[(df.deck == 'T') | (df.deck == 'A') | (df.deck == 'B') | (df.deck == 'C'), 'HomePlanet'] = 'Europa' df.groupby(['VIP']).deck.value_counts() df.loc[(df.deck == 'G') | (df.deck == 'T'), 'VIP'] = 0 df.groupby(['CryoSleep']).deck.value_counts()
code
122251830/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial
code
122251830/cell_12
[ "text_html_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test_pass_id = test.PassengerId.copy() train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') train_pass_id = train.PassengerId.copy() X = train.drop(columns='Transported') y = train[['Transported']] df = pd.concat([X, test], ignore_index=True) nan_inicial = df.isna().sum() nan_inicial df[['deck', 'num', 'side']] = df['Cabin'].str.split(pat='/', expand=True) df[['Passenger', '_Id']] = df['PassengerId'].str.split(pat='_', expand=True) df[['Nome', 'Sobrenome']] = df['Name'].str.split(pat=' ', expand=True) df.drop(columns=['Cabin', 'Name'], inplace=True) df.head()
code
130026158/cell_42
[ "text_plain_output_1.png" ]
number = input('Enter an integer: ') number = int(input('Enter an integer:')) print('The number is', number) print(type(number))
code
130026158/cell_9
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis
code
130026158/cell_25
[ "text_plain_output_1.png" ]
message = 'Python is a programming language.' message.split()
code
130026158/cell_4
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis
code
130026158/cell_57
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 x = 3.14 x *= 5 x = 3.14 x /= 5 print(x)
code
130026158/cell_56
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 x = 3.14 x *= 5 print(x)
code
130026158/cell_34
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] del nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis nlis[0] = 'hello python!' nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] clone_lis = nlis[:] clone_lis
code
130026158/cell_23
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] print('Before deleting:', nlis) del nlis print('After deleting:', nlis)
code
130026158/cell_20
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] print('Before changing:', nlis) nlis[0] = 'hello python!' print('After changing:', nlis) nlis[1] = 1.618 print('After changing:', nlis) nlis[2] = [3.14, 2022] print('After changing:', nlis)
code
130026158/cell_55
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 print(x)
code
130026158/cell_40
[ "text_plain_output_1.png" ]
text = 'p,y,t,h,o,n' text.split(',') text = input('Enter a string:') print('The text is', text) print(type(text))
code
130026158/cell_29
[ "text_plain_output_1.png" ]
nlis_1 = ['a', 'b', 'hello', 'Python'] nlis_2 = [1, 2, 3, 4, 5, 6] print(len(nlis_1)) print(len(nlis_2)) print(nlis_1 + nlis_2) print(nlis_1 * 3) print(nlis_2 * 3) for i in nlis_1: print(i) for i in nlis_2: print(i) print(4 in nlis_1) print(4 in nlis_2)
code
130026158/cell_48
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) a = float(input('Enter the pi number:')) b = float(input('Enter the golden ratio:')) total = a + b a = input('Enter your favorite fruit:') b = input('Enter your favorite food:') print('I like {} and {}.'.format(a, b)) print('I like {0} and {1}.'.format(a, b)) print('I like {1} and {0}.'.format(a, b))
code
130026158/cell_41
[ "text_plain_output_1.png" ]
number = input('Enter an integer: ') print('The number is', number) print(type(number))
code
130026158/cell_54
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 print(x)
code
130026158/cell_60
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 x = 3.14 x *= 5 x = 3.14 x /= 5 x = 3.14 x %= 5 x = 3.14 x //= 5 x = 3.14 x **= 5 print(x)
code
130026158/cell_50
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) a = float(input('Enter the pi number:')) b = float(input('Enter the golden ratio:')) total = a + b a = input('Enter your favorite fruit:') b = input('Enter your favorite food:') a = 3.14 b = 1.618 print('a>b is:', a > b) print('a<b is:', a < b) print('a<=b is:', a <= b) print('a>=b is:', a >= b) print('a==b is:', a == b) print('a!=b is:', a != b)
code
130026158/cell_52
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) a = float(input('Enter the pi number:')) b = float(input('Enter the golden ratio:')) total = a + b a = input('Enter your favorite fruit:') b = input('Enter your favorite food:') a = 3.14 b = 1.618 a = 3.14 b = 1.618 c = 12 d = 3.14 print(a > b and c > a) print(b > c and d > a) print(b < c or d > a) print(not a == b) print(not a == d)
code
130026158/cell_7
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis
code
130026158/cell_45
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) print('Sum of the expression is', total) print(type(expression)) print(type(total))
code
130026158/cell_18
[ "text_plain_output_1.png" ]
lis = [1, 2, 3, 4, 5, 6, 7] print(len(lis)) lis.append(4) print(lis) print(lis.count(4)) print(lis.index(2)) lis.insert(8, 9) print(lis) print(max(lis)) print(min(lis)) print(sum(lis))
code
130026158/cell_32
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] del nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] print(nlis) copy_list = nlis print(copy_list) print('copy_list[0]:', copy_list[0]) nlis[0] = 'hello python!' print('copy_list[0]:', copy_list[0])
code
130026158/cell_62
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) a = float(input('Enter the pi number:')) b = float(input('Enter the golden ratio:')) total = a + b a = input('Enter your favorite fruit:') b = input('Enter your favorite food:') a = 3.14 b = 1.618 a = 3.14 b = 1.618 c = 12 d = 3.14 a = 3.14 b = 1.618 print(a is b) print(a is not b) msg1 = 'Hello, Python!' msg2 = 'Hello, World!' print(msg1 is msg2) print(msg1 is not msg2) lis1 = [3.14, 1.618] lis2 = [3.14, 1.618] print(lis1 is lis2) print(lis1 is not lis2)
code
130026158/cell_59
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 x = 3.14 x *= 5 x = 3.14 x /= 5 x = 3.14 x %= 5 x = 3.14 x //= 5 print(x)
code
130026158/cell_58
[ "text_plain_output_1.png" ]
x = 3.14 x += 5 x = 3.14 x -= 5 x = 3.14 x *= 5 x = 3.14 x /= 5 x = 3.14 x %= 5 print(x)
code
130026158/cell_16
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis
code
130026158/cell_47
[ "text_plain_output_1.png" ]
expression = '8+7' total = eval(expression) a = float(input('Enter the pi number:')) b = float(input('Enter the golden ratio:')) total = a + b print('Sum of {} and {} is {}.'.format(a, b, total))
code
130026158/cell_35
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] del nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis nlis[0] = 'hello python!' nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] clone_lis = nlis[:] clone_lis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] print(nlis) clone_list = nlis[:] print(clone_list) print('clone_list[0]:', clone_list[0]) nlis[0] = 'hello, python!' print('nlis[0]:', nlis[0])
code
130026158/cell_43
[ "text_plain_output_1.png" ]
number = input('Enter an integer: ') number = int(input('Enter an integer:')) number = float(input('Enter an integer:')) print('The number is', number) print(type(number))
code
130026158/cell_31
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] del nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] copy_list = nlis print('nlis:', nlis) print('copy_list:', copy_list)
code
130026158/cell_14
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis
code
130026158/cell_22
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.extend(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis.append(['hello world!', 1.618]) nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis[0] = 'hello python!' nlis[1] = 1.618 nlis[2] = [3.14, 2022] print('Before changing:', nlis) del nlis[0] print('After changing:', nlis) del nlis[-1] print('After changing:', nlis)
code
130026158/cell_10
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis len(nlis)
code
130026158/cell_27
[ "text_plain_output_1.png" ]
text = 'p,y,t,h,o,n' text.split(',')
code
130026158/cell_37
[ "text_plain_output_1.png" ]
a_list = ['a', 'b', ['c', 'd'], 'e'] b_list = [1, 2, 3, 4, 5, (6, 7), True, False] new_list = a_list + b_list print(new_list)
code
130026158/cell_12
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis nlis = ['python', 3.14, 2022, [1, 1, 2, 3, 5, 8, 13, 21, 34], ('hello', 'python', 3, 14, 2022)] nlis print(nlis[0:2]) print(nlis[2:4]) print(nlis[4:6])
code
130026158/cell_5
[ "text_plain_output_1.png" ]
nlis = ['python', 25, 2022] nlis print('Positive and negative indexing of the first element: \n - Positive index:', nlis[0], '\n - Negative index:', nlis[-3]) print('Positive and negative indexing of the second element: \n - Positive index:', nlis[1], '\n - Negative index:', nlis[-2]) print('Positive and negative indexing of the third element: \n - Positive index:', nlis[2], '\n - Negative index:', nlis[-1])
code
34129362/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T x_train = train_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_train = train_set['item_cnt_month'].astype(int) x_val = validation_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_val = validation_set['item_cnt_month'].astype(int) latest_records = pd.concat([train_set, validation_set]).drop_duplicates(subset=['shop_id', 'item_id'], keep='last') x_test = pd.merge(test_set, latest_records, on=['shop_id', 'item_id'], how='left', suffixes=['', '_']) x_test['year'] = 2015 x_test['month'] = 9 x_test.drop('item_cnt_month', axis=1, inplace=True) x_test = x_test[x_train.columns] ts = time.time() sets = [x_train, x_val, x_test] for dataset in sets: for shop_id in dataset['shop_id'].unique(): for column in dataset.columns: shop_median = dataset[dataset['shop_id'] == shop_id][column].median() dataset.loc[dataset[column].isnull() & (dataset['shop_id'] == shop_id), column] = shop_median x_test.fillna(x_test.mean(), inplace=True) print('Time taken : ', time.time() - ts)
code
34129362/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T x_train = train_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_train = train_set['item_cnt_month'].astype(int) x_val = validation_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_val = validation_set['item_cnt_month'].astype(int) latest_records = pd.concat([train_set, validation_set]).drop_duplicates(subset=['shop_id', 'item_id'], keep='last') x_test = pd.merge(test_set, latest_records, on=['shop_id', 'item_id'], how='left', suffixes=['', '_']) x_test['year'] = 2015 x_test['month'] = 9 x_test.drop('item_cnt_month', axis=1, inplace=True) x_test = x_test[x_train.columns] train_predictions = {'LR': M1_train, 'KN': M2_train, 'RF': M3_train} train_predictions = pd.DataFrame(train_predictions) train_predictions.head(10).T
code
34129362/cell_23
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler, MinMaxScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T x_train = train_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_train = train_set['item_cnt_month'].astype(int) x_val = validation_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_val = validation_set['item_cnt_month'].astype(int) latest_records = pd.concat([train_set, validation_set]).drop_duplicates(subset=['shop_id', 'item_id'], keep='last') x_test = pd.merge(test_set, latest_records, on=['shop_id', 'item_id'], how='left', suffixes=['', '_']) x_test['year'] = 2015 x_test['month'] = 9 x_test.drop('item_cnt_month', axis=1, inplace=True) x_test = x_test[x_train.columns] ts = time.time() sets = [x_train, x_val, x_test] for dataset in sets: for shop_id in dataset['shop_id'].unique(): for column in dataset.columns: shop_median = dataset[dataset['shop_id'] == shop_id][column].median() dataset.loc[dataset[column].isnull() & (dataset['shop_id'] == shop_id), column] = shop_median x_test.fillna(x_test.mean(), inplace=True) x_test.head().T all_f = ['shop_id', 'item_id', 'item_cnt', 'mean_item_cnt', 'transactions', 'year', 'month', 'item_cnt_mean', 'item_cnt_std', 'item_cnt_shifted1', 'item_cnt_shifted2', 'item_cnt_shifted3', 'item_trend', 'shop_mean', 'item_mean', 'shop_item_mean', 'year_mean', 'month_mean'] x_tr = x_train[all_f] x_va = x_val[all_f] x_te = x_test[all_f] def models(model, x_tr, y_train, x_va, x_te): model.fit(x_tr, y_train) train_pred = model.predict(x_tr) val_pred = model.predict(x_va) test_pred = model.predict(x_te) return (train_pred, val_pred, test_pred) x_t_knn = x_tr[:100000] y_t_knn = y_train[:100000] scaler = MinMaxScaler() scaler.fit(x_t_knn) scaled_x_t_knn = scaler.transform(x_t_knn) scaled_x_v = scaler.transform(x_v) KN = KNeighborsRegressor(n_neighbors=20, leaf_size=15, n_jobs=-1) M2_train, M2_val = models(KN, scaled_x_t_knn, y_t_knn, scaled_x_v, x_te) print('Train rmse:', np.sqrt(mean_squared_error(y_train, M3_train))) print('Validation rmse:', np.sqrt(mean_squared_error(y_val, M3_val)))
code
34129362/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34129362/cell_17
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_squared_error import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T x_train = train_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_train = train_set['item_cnt_month'].astype(int) x_val = validation_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_val = validation_set['item_cnt_month'].astype(int) print('Train rmse:', np.sqrt(mean_squared_error(y_train, M1_train))) print('Validation rmse:', np.sqrt(mean_squared_error(y_val, M1_val)))
code
34129362/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T x_train = train_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_train = train_set['item_cnt_month'].astype(int) x_val = validation_set.drop(['item_cnt_month', 'date_block_num'], axis=1) y_val = validation_set['item_cnt_month'].astype(int) latest_records = pd.concat([train_set, validation_set]).drop_duplicates(subset=['shop_id', 'item_id'], keep='last') x_test = pd.merge(test_set, latest_records, on=['shop_id', 'item_id'], how='left', suffixes=['', '_']) x_test['year'] = 2015 x_test['month'] = 9 x_test.drop('item_cnt_month', axis=1, inplace=True) x_test = x_test[x_train.columns] ts = time.time() sets = [x_train, x_val, x_test] for dataset in sets: for shop_id in dataset['shop_id'].unique(): for column in dataset.columns: shop_median = dataset[dataset['shop_id'] == shop_id][column].median() dataset.loc[dataset[column].isnull() & (dataset['shop_id'] == shop_id), column] = shop_median x_test.fillna(x_test.mean(), inplace=True) x_test.head().T
code
34129362/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/train_set.csv') validation_set = pd.read_csv('/kaggle/input/preprocessed-sales-data/validation_set.csv') test_set = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') train_set.head().T
code
17101817/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c3 = df['Genres'].value_counts(dropna=False, sort=False) c3
code
17101817/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.head()
code
17101817/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c5 = df['Content Rating'].value_counts(dropna=False, sort=True, normalize=True) c5
code
17101817/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') ax = sns.boxplot(x="Rating", y="Content Rating", data=df) plt.xlabel('Rating counts from 0 to 5') df['Price'] = df[df.columns[7]].replace('[\\$,]', '', regex=True).astype(float) df['Price_Bin'].value_counts(sort=True, dropna=False, normalize=True).plot.bar() plt.title('Distribution of apps in price ranges') plt.xlabel('Price Ranges') plt.ylabel('Amount of apps in the price range in %')
code
17101817/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c5 = df['Content Rating'].value_counts(dropna=False, sort=True, normalize=True) c5.plot.bar()
code
17101817/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') c1 = df['Category'].value_counts(dropna=False, sort=False) c1
code
17101817/cell_1
[ "text_plain_output_1.png" ]
import os import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os print(os.listdir('../input'))
code
17101817/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') c1 = df['Category'].value_counts(dropna=False, sort=False) c1 len(c1)
code
17101817/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') df['Genres_Sele'].value_counts(normalize=True).plot.bar() plt.title('Frequency of App Genres')
code
17101817/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') ax = sns.boxplot(x="Rating", y="Content Rating", data=df) plt.xlabel('Rating counts from 0 to 5') df['Price'] = df[df.columns[7]].replace('[\\$,]', '', regex=True).astype(float) sns.regplot(x='Price', y='Rating', fit_reg=True, data=df) plt.xlabel('Price') plt.ylabel('Rating') plt.title('The relationship between app price and rating')
code
17101817/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] df['Price'] = df[df.columns[7]].replace('[\\$,]', '', regex=True).astype(float) print('Max:{} Min:{}'.format(df['Price'].max(), df['Price'].min()))
code
17101817/cell_35
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') ax = sns.boxplot(x="Rating", y="Content Rating", data=df) plt.xlabel('Rating counts from 0 to 5') df['Price'] = df[df.columns[7]].replace('[\\$,]', '', regex=True).astype(float) df_price = df[df['Price'] <= 50] sns.regplot(x='Price', y='Rating', fit_reg=True, data=df_price) plt.xlabel('Price') plt.ylabel('Rating') plt.title('The relationship between app price and rating from $0 to $50')
code
17101817/cell_43
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') df['Genres_List'] = list(map(lambda x: x.split(';'), df['Genres'])) df['Genres_Sele'] = list(map(lambda x: x[0], df['Genres_List'])) ax = sns.boxplot(x="Rating", y="Content Rating", data=df) plt.xlabel('Rating counts from 0 to 5') df['Price'] = df[df.columns[7]].replace('[\\$,]', '', regex=True).astype(float) df_price = df[df['Price'] <= 50] def KB_to_MB(kb): """converts all sizes in the DF to float MB size""" if 'Varies with device' in kb: return np.nan else: num = float(kb[:-1]) mes = kb[-1] if mes is 'k': mb = float(0.000976562) c_mb = mb * num return c_mb else: return num df['Size_MB'] = list(map(lambda x: KB_to_MB(x), df['Size'])) df = df.dropna() df['Installs'] = df[df.columns[5]].replace('[\\+,]', '', regex=True).astype(float) sns.regplot(x='Installs', y='Size_MB', fit_reg=True, data=df) plt.xlabel('Amount of installs in K') plt.ylabel('Size of App in MB') plt.title('The relationship between App Size and Download Frequency')
code
17101817/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style='ticks') sns.set_context('paper') import plotly import plotly.plotly as py import plotly.graph_objs as go import os df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories') ax = sns.boxplot(x='Rating', y='Content Rating', data=df) plt.xlabel('Rating counts from 0 to 5')
code
17101817/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] df['Genres'].describe()
code
17101817/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df = df[df['Category'] != '1.9'] c2 = df['Category'].value_counts(dropna=True, sort=True, normalize=True).plot.bar() plt.title('Frequency of App Categories')
code
88082030/cell_42
[ "text_plain_output_1.png" ]
import pandas as pd mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) countries_df = pd.DataFrame(countries.items(), columns=['country', 'continent']) countries_df = pd.DataFrame.from_dict(countries, orient='index').reset_index() countries_df.columns = ['country', 'continent'] countries_df
code
88082030/cell_21
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict
code
88082030/cell_13
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys()
code
88082030/cell_9
[ "text_plain_output_1.png" ]
mydict = {} mydict
code
88082030/cell_25
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) type(countries)
code
88082030/cell_34
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values()))
code
88082030/cell_30
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India')
code
88082030/cell_33
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys())
code
88082030/cell_20
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem()
code
88082030/cell_40
[ "text_plain_output_1.png" ]
import pandas as pd mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) countries_df = pd.DataFrame(countries.items(), columns=['country', 'continent']) countries_df
code
88082030/cell_29
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries
code
88082030/cell_26
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries
code
88082030/cell_11
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values()
code
88082030/cell_19
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys()
code
88082030/cell_7
[ "text_plain_output_1.png" ]
mydict = {} mydict
code
88082030/cell_18
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e')
code
88082030/cell_32
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) countries
code
88082030/cell_15
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items()
code
88082030/cell_16
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a')
code
88082030/cell_35
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) 'Canada' in countries
code
88082030/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) countries_df = pd.DataFrame(countries.items(), columns=['country', 'continent']) for key, value in countries.items(): print('Key:', key, '|', 'Value:', value)
code
88082030/cell_14
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values()
code
88082030/cell_10
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys()
code
88082030/cell_37
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) list(countries)
code
88082030/cell_5
[ "text_html_output_1.png" ]
mydict = {} type(mydict)
code
88082030/cell_36
[ "text_plain_output_1.png" ]
mydict = {} mydict.keys() mydict.values() mydict.update({'c': 'cat', 'd': 'dog', 'e': 'elephant'}) mydict.keys() mydict.values() mydict.items() mydict.get('a') mydict.get('g') mydict.pop('e') mydict.keys() mydict.popitem() mydict.clear() keys = {'India', 'Srilanka', 'Bangladesh', 'Singapore', 'Japan'} val = 'Asia' countries = mydict.fromkeys(keys, val) countries.setdefault('USA', None) countries.setdefault('India') countries.update({'Nigeria': 'Africa', 'Egypt': 'Africa', 'Ethiopia': 'Africa', 'Kenya': 'Africa'}) list(countries.keys()) list(set(countries.values())) 'Nigeria' in countries
code