path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128031091/cell_21
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts() numerical = [var for var in dataset.columns if dataset[var].dtype != 'O'] dataset[numerical].isnull().sum()
code
128031091/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts()
code
128031091/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts()
code
128031091/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape dataset.head()
code
128031091/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts() numerical = [var for var in dataset.columns if dataset[var].dtype != 'O'] dataset[numerical].head()
code
128031091/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] print('There are {} categorical variables\n'.format(len(categorical))) print('The categorical variables are :\n\n', categorical) dataset[categorical].head()
code
128031091/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
128031091/cell_11
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique()
code
128031091/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts() numerical = [var for var in dataset.columns if dataset[var].dtype != 'O'] print('There are {} numerical variables\n'.format(len(numerical))) print('The numerical variables are :', numerical)
code
128031091/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128031091/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset[categorical].isnull().sum()
code
128031091/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts() for var in categorical: print(var, ' contains ', len(dataset[var].unique()), ' labels')
code
128031091/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique()
code
128031091/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts()
code
128031091/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts()
code
128031091/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique() dataset.native_country.value_counts() dataset['native_country'].replace('?', np.NaN, inplace=True) dataset.native_country.value_counts() dataset[categorical].isnull().sum()
code
128031091/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts() dataset['occupation'].replace('?', np.NaN, inplace=True) dataset.occupation.value_counts() dataset.native_country.unique()
code
128031091/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts()
code
128031091/cell_12
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns categorical = [var for var in dataset.columns if dataset[var].dtype == 'O'] dataset.workclass.unique() dataset.workclass.value_counts() dataset['workclass'].replace('?', np.NaN, inplace=True) dataset.workclass.value_counts() dataset.occupation.unique() dataset.occupation.value_counts()
code
128031091/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = '/kaggle/input/adult-dataset/adult.csv' dataset = pd.read_csv(dataset, header=None, sep=',\\s') dataset.shape col_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income'] dataset.columns = col_names dataset.columns dataset.head()
code
72072461/cell_4
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from xgboost import XGBRegressor import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split X_full = pd.read_csv('../input/housingdataset/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/housingdataset/test.csv', index_col='Id') X_full.dropna(axis=0, subset=['SalePrice'], inplace=True) y = X_full.SalePrice X_full.drop(['SalePrice'], axis=1, inplace=True) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = X_test_full[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) X_train, X_valid = X_train.align(X_valid, join='left', axis=1) X_train, X_test = X_train.align(X_test, join='left', axis=1) from xgboost import XGBRegressor my_model_1 = XGBRegressor(random_state=0) my_model_1.fit(X_train, y_train)
code
72072461/cell_6
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split X_full = pd.read_csv('../input/housingdataset/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/housingdataset/test.csv', index_col='Id') X_full.dropna(axis=0, subset=['SalePrice'], inplace=True) y = X_full.SalePrice X_full.drop(['SalePrice'], axis=1, inplace=True) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = X_test_full[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) X_train, X_valid = X_train.align(X_valid, join='left', axis=1) X_train, X_test = X_train.align(X_test, join='left', axis=1) my_model_2 = XGBRegressor(n_estimators=900, learning_rate=0.09) my_model_2.fit(X_train, y_train) predictions_2 = my_model_2.predict(X_valid) mae_2 = mean_absolute_error(predictions_2, y_valid) print('Mean Absolute Error:', mae_2)
code
72072461/cell_2
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split X_full = pd.read_csv('../input/housingdataset/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/housingdataset/test.csv', index_col='Id') X_full.dropna(axis=0, subset=['SalePrice'], inplace=True) y = X_full.SalePrice X_full.drop(['SalePrice'], axis=1, inplace=True) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = X_test_full[my_cols].copy() X_train.head()
code
72072461/cell_5
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split X_full = pd.read_csv('../input/housingdataset/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/housingdataset/test.csv', index_col='Id') X_full.dropna(axis=0, subset=['SalePrice'], inplace=True) y = X_full.SalePrice X_full.drop(['SalePrice'], axis=1, inplace=True) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2, random_state=0) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = X_test_full[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) X_train, X_valid = X_train.align(X_valid, join='left', axis=1) X_train, X_test = X_train.align(X_test, join='left', axis=1) from xgboost import XGBRegressor my_model_1 = XGBRegressor(random_state=0) my_model_1.fit(X_train, y_train) from sklearn.metrics import mean_absolute_error predictions_1 = my_model_1.predict(X_valid) mae_1 = mean_absolute_error(predictions_1, y_valid) print('Mean Absolute Error:', mae_1)
code
2028129/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/flights.csv') df = df[df['MONTH'] == 1] df.head()
code
2028129/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt matplotlib.style.use('ggplot')
code
2028129/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('../input/flights.csv') df = df[df['MONTH'] == 1] airlineList = df['AIRLINE'].unique() airlineList = airlineList.tolist() def calculate_Airline_D_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['DEPARTURE_DELAY'] > 0] li = d['DEPARTURE_DELAY'].tolist() li = np.array(li) return li def calculate_Airline_A_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['ARRIVAL_DELAY'] > 0] li = d['ARRIVAL_DELAY'].tolist() li = np.array(li) return li avgAirlineDD = [] avgAirlineAD = [] for a in airlineList: avgAirlineDD.append(calculate_Airline_D_Delays(a).mean()) avgAirlineAD.append(calculate_Airline_A_Delays(a).mean()) n_groups = len(airlineList) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.25 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = plt.bar(index, avgAirlineDD, bar_width, alpha=opacity, color='b', error_kw=error_config, label='Departure') rects2 = plt.bar(index + bar_width, avgAirlineAD, bar_width, alpha=opacity, color='r', error_kw=error_config, label='Arrival') plt.margins(0.01) plt.xlabel('Airlines') plt.ylabel('Average Delays (Min)') plt.title('Comparison of Departure/Arrival Delays') plt.xticks(index + bar_width / 2, airlineList) plt.legend(loc = 'upper left') plt.tight_layout() plt.show() def calculate_Airport_D_Delays(airportName): d = df[df['ORIGIN_AIRPORT'] == airportName] d = d[d['DEPARTURE_DELAY'] > 0] li = d['DEPARTURE_DELAY'].tolist() li = np.array(li) return li def calculate_Airport_A_Delays(airportName): d = df[df['DESTINATION_AIRPORT'] == airportName] d = d[d['ARRIVAL_DELAY'] > 0] li = d['ARRIVAL_DELAY'].tolist() li = np.array(li) return li airportDepList = df['ORIGIN_AIRPORT'].unique() airportDepList = airportDepList.tolist() airportArrList = df['DESTINATION_AIRPORT'].unique() airportArrList = airportArrList.tolist() avgAirportDD = [] avgAirportAD = [] for a in airportDepList: avgAirportDD.append(calculate_Airport_D_Delays(a).mean()) for a in airportArrList: avgAirportAD.append(calculate_Airport_A_Delays(a).mean()) x = zip(airportDepList, avgAirportDD) x = sorted(x, key=lambda item: item[1]) names = [] values = [] x = x[-20:] for i, j in x: names.append(i) values.append(j) n_groups = len(names) index = np.arange(n_groups) bar_width = 0.6 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = plt.bar(index, values, bar_width, alpha=opacity, color='b', error_kw=error_config, label='Departure') plt.margins(0.01) plt.xlabel('Airports') plt.ylabel('Average Delays (Min)') plt.title('Top 20 Airports with most Departure Delays') plt.xticks(index + bar_width / 2, names) plt.legend(loc='upper left') plt.tight_layout() plt.show()
code
2028129/cell_14
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('../input/flights.csv') df = df[df['MONTH'] == 1] airlineList = df['AIRLINE'].unique() airlineList = airlineList.tolist() def calculate_Airline_D_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['DEPARTURE_DELAY'] > 0] li = d['DEPARTURE_DELAY'].tolist() li = np.array(li) return li def calculate_Airline_A_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['ARRIVAL_DELAY'] > 0] li = d['ARRIVAL_DELAY'].tolist() li = np.array(li) return li avgAirlineDD = [] avgAirlineAD = [] for a in airlineList: avgAirlineDD.append(calculate_Airline_D_Delays(a).mean()) avgAirlineAD.append(calculate_Airline_A_Delays(a).mean()) n_groups = len(airlineList) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.25 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = plt.bar(index, avgAirlineDD, bar_width, alpha=opacity, color='b', error_kw=error_config, label='Departure') rects2 = plt.bar(index + bar_width, avgAirlineAD, bar_width, alpha=opacity, color='r', error_kw=error_config, label='Arrival') plt.margins(0.01) plt.xlabel('Airlines') plt.ylabel('Average Delays (Min)') plt.title('Comparison of Departure/Arrival Delays') plt.xticks(index + bar_width / 2, airlineList) plt.legend(loc = 'upper left') plt.tight_layout() plt.show() def calculate_Airport_D_Delays(airportName): d = df[df['ORIGIN_AIRPORT'] == airportName] d = d[d['DEPARTURE_DELAY'] > 0] li = d['DEPARTURE_DELAY'].tolist() li = np.array(li) return li def calculate_Airport_A_Delays(airportName): d = df[df['DESTINATION_AIRPORT'] == airportName] d = d[d['ARRIVAL_DELAY'] > 0] li = d['ARRIVAL_DELAY'].tolist() li = np.array(li) return li airportDepList = df['ORIGIN_AIRPORT'].unique() airportDepList = airportDepList.tolist() airportArrList = df['DESTINATION_AIRPORT'].unique() airportArrList = airportArrList.tolist() avgAirportDD = [] avgAirportAD = [] for a in airportDepList: avgAirportDD.append(calculate_Airport_D_Delays(a).mean()) for a in airportArrList: avgAirportAD.append(calculate_Airport_A_Delays(a).mean())
code
2028129/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('../input/flights.csv') df = df[df['MONTH'] == 1] airlineList = df['AIRLINE'].unique() airlineList = airlineList.tolist() def calculate_Airline_D_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['DEPARTURE_DELAY'] > 0] li = d['DEPARTURE_DELAY'].tolist() li = np.array(li) return li def calculate_Airline_A_Delays(airlineName): d = df[df['AIRLINE'] == airlineName] d = d[d['ARRIVAL_DELAY'] > 0] li = d['ARRIVAL_DELAY'].tolist() li = np.array(li) return li avgAirlineDD = [] avgAirlineAD = [] for a in airlineList: avgAirlineDD.append(calculate_Airline_D_Delays(a).mean()) avgAirlineAD.append(calculate_Airline_A_Delays(a).mean()) n_groups = len(airlineList) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.25 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = plt.bar(index, avgAirlineDD, bar_width, alpha=opacity, color='b', error_kw=error_config, label='Departure') rects2 = plt.bar(index + bar_width, avgAirlineAD, bar_width, alpha=opacity, color='r', error_kw=error_config, label='Arrival') plt.margins(0.01) plt.xlabel('Airlines') plt.ylabel('Average Delays (Min)') plt.title('Comparison of Departure/Arrival Delays') plt.xticks(index + bar_width / 2, airlineList) plt.legend(loc='upper left') plt.tight_layout() plt.show()
code
2025927/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/SkillCraft.csv') y = df.LeagueIndex.astype(int) X = df.drop(['LeagueIndex', 'GameID'], axis=1)
code
2025927/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier, GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier import time from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2025927/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
set(y_train)
code
2025927/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/SkillCraft.csv') y = df.LeagueIndex.astype(int) X = df.drop(['LeagueIndex', 'GameID'], axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
code
2025927/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/SkillCraft.csv') print(df.shape) df.head()
code
2025927/cell_10
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import classification_report from sklearn.neighbors import KNeighborsClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import pandas as pd df = pd.read_csv('../input/SkillCraft.csv') y = df.LeagueIndex.astype(int) X = df.drop(['LeagueIndex', 'GameID'], axis=1) classifiers = [GradientBoostingClassifier(n_estimators=150, max_depth=4), RandomForestClassifier(n_estimators=200, max_depth=9), KNeighborsClassifier(15)] target_names = list(set(y)) for classifier in classifiers: print(classifier.__class__.__name__) start = time.time() classifier.fit(X_train, y_train) print(' -> Training time:', time.time() - start) preds = classifier.predict(X_test) print() print(classification_report(y_test, preds, target_names=target_names))
code
128049391/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') def summary(df): print(f'Dataset Shape: {df.shape}') summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Feature Name'] = summary['index'] summary = summary[['Feature Name', 'dtypes']] summary['missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values return summary summary(df)
code
128049391/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') df.head(5)
code
128049391/cell_29
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') def summary(df): summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Feature Name'] = summary['index'] summary = summary[['Feature Name', 'dtypes']] summary['missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values return summary summary(df) df.drop(['Customer Id', 'Artist Name'], axis=1, inplace=True) df.drop(['Scheduled Date', 'Delivery Date', 'duration'], axis=1, inplace=True) df['State'] = df['Customer Location'].str.split(' ').str[-2] df.drop(['Customer Location'], axis=1, inplace=True) imputed_height_values = np.random.choice(df[~df['Height'].isna()]['Height'].values, size=df['Height'].isna().sum()) height_null_indices = df[df['Height'].isna()].index df.loc[height_null_indices, 'Height'] = imputed_height_values imputed_width_values = np.random.choice(df[~df['Width'].isna()]['Width'].values, size=df['Width'].isna().sum()) width_null_indices = df[df['Width'].isna()].index df.loc[width_null_indices, 'Width'] = imputed_width_values imputed_artist_values = np.random.choice(df[~df['Artist Reputation'].isna()]['Artist Reputation'].values, size=df['Artist Reputation'].isna().sum()) artist_null_indices = df[df['Artist Reputation'].isna()].index df.loc[artist_null_indices, 'Artist Reputation'] = imputed_artist_values df.describe()
code
128049391/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128049391/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') def summary(df): summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Feature Name'] = summary['index'] summary = summary[['Feature Name', 'dtypes']] summary['missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values return summary summary(df) df.drop(['Customer Id', 'Artist Name'], axis=1, inplace=True) df['duration'].value_counts(sort=True)
code
128049391/cell_38
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') def summary(df): summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Feature Name'] = summary['index'] summary = summary[['Feature Name', 'dtypes']] summary['missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values return summary summary(df) df.drop(['Customer Id', 'Artist Name'], axis=1, inplace=True) df['Scheduled Date'] = pd.to_datetime(df['Scheduled Date']) df['Delivery Date'] = pd.to_datetime(df['Delivery Date']) df.drop(['Scheduled Date', 'Delivery Date', 'duration'], axis=1, inplace=True) df['State'] = df['Customer Location'].str.split(' ').str[-2] df.drop(['Customer Location'], axis=1, inplace=True) imputed_height_values = np.random.choice(df[~df['Height'].isna()]['Height'].values, size=df['Height'].isna().sum()) height_null_indices = df[df['Height'].isna()].index df.loc[height_null_indices, 'Height'] = imputed_height_values imputed_width_values = np.random.choice(df[~df['Width'].isna()]['Width'].values, size=df['Width'].isna().sum()) width_null_indices = df[df['Width'].isna()].index df.loc[width_null_indices, 'Width'] = imputed_width_values imputed_artist_values = np.random.choice(df[~df['Artist Reputation'].isna()]['Artist Reputation'].values, size=df['Artist Reputation'].isna().sum()) artist_null_indices = df[df['Artist Reputation'].isna()].index df.loc[artist_null_indices, 'Artist Reputation'] = imputed_artist_values df.corr() from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(sparse=False, handle_unknown='ignore') df_encoded = encoder.fit_transform(df[['Material', 'International', 'Express Shipment', 'Installation Included', 'Transport', 'Fragile', 'Customer Information', 'Remote Location']]) df_encoded = pd.DataFrame(df_encoded, columns=encoder.get_feature_names_out(['Material', 'International', 'Express Shipment', 'Installation Included', 'Transport', 'Fragile', 'Customer Information', 'Remote Location'])) df_encoded.sample(5)
code
128049391/cell_31
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') def summary(df): summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary['Feature Name'] = summary['index'] summary = summary[['Feature Name', 'dtypes']] summary['missing'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values return summary summary(df) df.drop(['Customer Id', 'Artist Name'], axis=1, inplace=True) df.drop(['Scheduled Date', 'Delivery Date', 'duration'], axis=1, inplace=True) df['State'] = df['Customer Location'].str.split(' ').str[-2] df.drop(['Customer Location'], axis=1, inplace=True) imputed_height_values = np.random.choice(df[~df['Height'].isna()]['Height'].values, size=df['Height'].isna().sum()) height_null_indices = df[df['Height'].isna()].index df.loc[height_null_indices, 'Height'] = imputed_height_values imputed_width_values = np.random.choice(df[~df['Width'].isna()]['Width'].values, size=df['Width'].isna().sum()) width_null_indices = df[df['Width'].isna()].index df.loc[width_null_indices, 'Width'] = imputed_width_values imputed_artist_values = np.random.choice(df[~df['Artist Reputation'].isna()]['Artist Reputation'].values, size=df['Artist Reputation'].isna().sum()) artist_null_indices = df[df['Artist Reputation'].isna()].index df.loc[artist_null_indices, 'Artist Reputation'] = imputed_artist_values df.corr()
code
128049391/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') df.info()
code
128049391/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_columns', None) import datetime from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge df = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/train.csv') df_test = pd.read_csv('/kaggle/input/hackerearth-machine-learning-exhibit-art/dataset/test.csv') df.describe()
code
320866/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
from dateutil.parser import parse import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd data = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') import matplotlib.pyplot as plt from dateutil.parser import parse years = [] for i in range(len(data)): years.append(parse(data.Date[i]).year) data.Fatalities = data.Fatalities.fillna(data.Fatalities.mean()) temp = zip(years, data.Fatalities) temp = [(x, y) for x, y in temp if y > 50] temp = pd.DataFrame(temp, columns=['massive_years', 'Fatalities']) counts = temp.massive_years.value_counts() plt.figure(figsize=(11, 7)) plt.bar(counts.index, counts.values) plt.ylabel('Number of Massive Crashes(fatalities>50)', fontsize=15) plt.xlabel('Year', fontsize=15) plt.yticks(fontsize=15) plt.xticks(fontsize=15)
code
32071213/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidhosp = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') covidhosp1 = covidhosp.drop([1, 36], axis=0) covidindi = pd.read_csv('/kaggle/input/covid19-in-india/IndividualDetails.csv') covidindi['current_status'].unique() covidpopu = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') covidpopu.tail()
code
32071213/cell_13
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') fig = px.bar(covidstatestpivot1, x='State', y='TotalSamples', hover_data=['Negative', 'Positive'], color='Positive', labels={'TotalSamples': 'Total Samples'}, height=400) fig.show()
code
32071213/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidpivot.plot()
code
32071213/cell_4
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.figure(figsize=(23, 10)) plt.bar(covid.Date, covid.Confirmed, label='Confirmed') plt.xlabel('Date') plt.ylabel('Count') plt.xticks(rotation=45) plt.legend(frameon=True, fontsize=12) plt.title('Confrim', fontsize=30) plt.show() plt.figure(figsize=(23, 10)) plt.bar(covid.Date, covid.Cured, label='Cured') plt.xlabel('Date') plt.ylabel('Count') plt.xticks(rotation=90) plt.legend(frameon=True, fontsize=12) plt.title('Cured', fontsize=30) plt.show() plt.figure(figsize=(23, 10)) plt.bar(covid.Date, covid.Deaths, label='Deaths') plt.xlabel('Date') plt.ylabel('Count') plt.xticks(rotation=45) plt.legend(frameon=True, fontsize=12) plt.title('Deaths', fontsize=30) plt.show()
code
32071213/cell_20
[ "text_html_output_2.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidhosp = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') covidhosp1 = covidhosp.drop([1, 36], axis=0) covidindi = pd.read_csv('/kaggle/input/covid19-in-india/IndividualDetails.csv') covidindi['current_status'].unique() covidindigrp = covidindi.groupby(['current_status']) covidindigrp.head()
code
32071213/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage
code
32071213/cell_11
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatest.tail()
code
32071213/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidhosp = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') covidhosp1 = covidhosp.drop([1, 36], axis=0) covidindi = pd.read_csv('/kaggle/input/covid19-in-india/IndividualDetails.csv') covidindi.tail() covidindi['current_status'].unique()
code
32071213/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32071213/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage plt.figure(figsize=(23, 10)) plt.bar(covidage.AgeGroup, covidage.TotalCases, label='Age Group') plt.xlabel('Age Group') plt.ylabel('Cases') plt.legend(frameon=True, fontsize=25) plt.title('Affected Age Group', fontsize=30) plt.show()
code
32071213/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.graph_objects as go import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') fig = px.bar(covidstatestpivot1, x='State', y='TotalSamples', hover_data=['Negative', 'Positive'], color='Positive',labels={'TotalSamples':'Total Samples'}, height=400) fig.show() covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidtestgrp = covidtest.groupby('state').count() covidtestgrp = covidtestgrp.reset_index('state') covidtestgrp import plotly.graph_objects as go fig = go.Figure([go.Bar(x=covidtestgrp['state'], y=covidtestgrp['lab'])]) fig.update_layout(title_text='Number of Testing Labs in Each State') covidhosp = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') covidhosp1 = covidhosp.drop([1, 36], axis=0) fig = go.Figure() fig.add_trace(go.Bar(x=covidhosp1['State/UT'], y=covidhosp1['NumUrbanHospitals_NHP18'], name='Urban Hospitals', marker_color='indianred')) fig.add_trace(go.Bar(x=covidhosp1['State/UT'], y=covidhosp1['NumRuralHospitals_NHP18'], name='Rural Hospitals', marker_color='lightsalmon')) fig.add_trace(go.Bar(x=covidhosp1['State/UT'], y=covidhosp1['TotalPublicHealthFacilities_HMIS'], name='Total Public Hospitals', marker_color='green')) fig.update_layout(barmode='group', xaxis_tickangle=-45, title_text='Number of Urban, Rural and Total Public Hospitals in Each State') fig.show()
code
32071213/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot
code
32071213/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidtestgrp = covidtest.groupby('state').count() covidtestgrp = covidtestgrp.reset_index('state') covidtestgrp
code
32071213/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.graph_objects as go import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') fig = px.bar(covidstatestpivot1, x='State', y='TotalSamples', hover_data=['Negative', 'Positive'], color='Positive',labels={'TotalSamples':'Total Samples'}, height=400) fig.show() covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidtestgrp = covidtest.groupby('state').count() covidtestgrp = covidtestgrp.reset_index('state') covidtestgrp import plotly.graph_objects as go fig = go.Figure([go.Bar(x=covidtestgrp['state'], y=covidtestgrp['lab'])]) fig.update_layout(title_text='Number of Testing Labs in Each State') fig.show()
code
32071213/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') covid.tail()
code
32071213/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidhosp = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') covidhosp1 = covidhosp.drop([1, 36], axis=0) covidhosp1.tail()
code
32071213/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot covidstatest = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') covidstatestpivot = pd.pivot_table(covidstatest, ['TotalSamples', 'Negative', 'Positive'], 'State', aggfunc=sum) covidstatestpivot1 = covidstatestpivot.reset_index('State') covidtest = pd.read_csv('/kaggle/input/covid19-in-india/ICMRTestingLabs.csv') covidtest.tail()
code
32071213/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23,10)) plt.bar(covid.Date, covid.Confirmed,label="Confirmed") plt.bar(covid.Date, covid.Cured,label="Cured") plt.bar(covid.Date, covid.Deaths,label="Deaths") plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths',fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23,10)) ax=sns.scatterplot(x="Date", y="Confirmed", data=covid, color="black",label = "Confirm") ax=sns.scatterplot(x="Date", y="Cured", data=covid, color="red",label = "Cured") ax=sns.scatterplot(x="Date", y="Deaths", data=covid, color="blue",label = "Deaths") plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed,zorder=1,color="black") plt.plot(covid.Date, covid.Cured,zorder=1,color="red") plt.plot(covid.Date, covid.Deaths,zorder=1,color="blue") covidage = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') covidage covidpivot = pd.pivot_table(covid, ['Cured', 'Confirmed', 'Deaths'], 'State/UnionTerritory', aggfunc=sum) covidpivot cm = sns.light_palette('orange', as_cmap=True) covidpivot.style.background_gradient(cmap=cm)
code
32071213/cell_5
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly as py import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px pd.set_option('display.max_rows', None) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') plt.xticks(rotation=45) plt.xticks(rotation=90) plt.xticks(rotation=45) plt.figure(figsize=(23, 10)) plt.bar(covid.Date, covid.Confirmed, label='Confirmed') plt.bar(covid.Date, covid.Cured, label='Cured') plt.bar(covid.Date, covid.Deaths, label='Deaths') plt.xlabel('Date') plt.xticks(rotation=90) plt.ylabel('Count') plt.legend(frameon=True, fontsize=12) plt.title('Confrimed vs Cured vs Deaths', fontsize=30) plt.show() f, ax = plt.subplots(figsize=(23, 10)) ax = sns.scatterplot(x='Date', y='Confirmed', data=covid, color='black', label='Confirm') ax = sns.scatterplot(x='Date', y='Cured', data=covid, color='red', label='Cured') ax = sns.scatterplot(x='Date', y='Deaths', data=covid, color='blue', label='Deaths') plt.xticks(rotation=90) plt.plot(covid.Date, covid.Confirmed, zorder=1, color='black') plt.plot(covid.Date, covid.Cured, zorder=1, color='red') plt.plot(covid.Date, covid.Deaths, zorder=1, color='blue')
code
90127412/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
code
90127412/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path from torch import nn from torch.utils.data import Dataset, ConcatDataset from torchmetrics.functional import accuracy, f1_score, precision, recall import pandas as pd import pytorch_lightning as pl import torch import torch_optimizer as optim import transformers as T TRAIN_DATASET = '../input/starpredict-dataset/train.parquet' VAL_DATASET = '../input/starpredict-dataset/val.parquet' TEST_DATASET = '../input/starpredict-dataset/test.parquet' SAMPLE_DATASET = '../input/starpredict-dataset/sample.parquet' class YelpDataset(Dataset): def __init__(self, path: Path): super().__init__() self.data = pd.read_parquet(path) def __getitem__(self, key): row = self.data.iloc[key] return {'user_id': row['user_id_encode'], 'product_id': row['business_id_encode'], 'input_ids': torch.tensor(row['input_ids']), 'attention_mask': torch.tensor(row['attention_mask']), 'stars': row['stars_transform']} def __len__(self): return self.data.shape[0] train_dataset = YelpDataset(TRAIN_DATASET) val_dataset = YelpDataset(VAL_DATASET) test_dataset = YelpDataset(TEST_DATASET) sample_dataset = YelpDataset(SAMPLE_DATASET) class StarPredictSystem(pl.LightningModule): def __init__(self, num_users, num_products, merge_size=512, lr=0.001, num_classes=5, from_='bert-base-uncased'): super().__init__() self.lr = lr self.num_classes = num_classes self.bert = T.DistilBertModel.from_pretrained('distilbert-base-uncased') self.bert_classifier = nn.Linear(self.bert.config.hidden_size, merge_size) self.user_embedding = nn.Embedding(num_users, merge_size) self.product_embedding = nn.Embedding(num_products, merge_size) self.classifier = nn.Sequential(nn.Linear(merge_size * 3, 64), nn.ReLU(), nn.Linear(64, num_classes), nn.Softmax(dim=1)) def forward(self, x): user_x = x['user_id'] user_x = self.user_embedding(user_x) product_x = x['product_id'] product_x = self.product_embedding(product_x) text_x = self.bert(input_ids=x['input_ids'], attention_mask=x['attention_mask']).last_hidden_state[:, 0] text_x = self.bert_classifier(text_x) x = torch.cat([user_x, product_x, text_x], dim=-1) x = self.classifier(x) return x def configure_optimizers(self): return optim.Lamb(self.parameters(), lr=self.lr, weight_decay=0.02) def training_step(self, batch, batch_idx): y = batch['stars'].long() y_hat = self(batch) loss = F.cross_entropy(y_hat, y) acc = accuracy(y_hat, y) self.log('acc', acc, prog_bar=True, batch_size=batch['stars'].shape[0]) return loss def validation_step(self, batch, batch_idx): y = batch['stars'].long() y_hat = self(batch) loss = F.cross_entropy(y_hat, y) metrics = {'val_loss': loss, 'val_acc': accuracy(y_hat, y), 'val_f1': f1_score(y_hat, y), 'val_prec': precision(y_hat, y), 'val_recall': recall(y_hat, y)} self.log_dict(metrics, batch_size=batch['stars'].shape[0]) return metrics def test_step(self, batch, batch_idx): y = batch['stars'].long() - 1 y_hat = self(batch) loss = F.cross_entropy(y_hat, y) metrics = {'test_loss': loss, 'test_acc': accuracy(y_hat, y), 'test_f1': f1_score(y_hat, y), 'test_prec': precision(y_hat, y), 'test_recall': recall(y_hat, y)} self.log_dict(metrics, batch_size=batch['stars'].shape[0]) return metrics BATCH_SIZE = 8 LEARNING_RATE = 0.0003 EPOCHS = 3 MERGE_SIZE = 128 NUM_CLASSES = 5 NUM_WORKERS = 2 datasets = [train_dataset, val_dataset, test_dataset] num_users = max((dataset.data['user_id_encode'].max() for dataset in datasets)) num_products = max((dataset.data['business_id_encode'].max() for dataset in datasets)) model = StarPredictSystem(num_users=num_users, num_products=num_products, merge_size=MERGE_SIZE, lr=LEARNING_RATE, num_classes=NUM_CLASSES, from_='bert-base-uncased') datamodule = pl.LightningDataModule.from_datasets(train_dataset=train_dataset, val_dataset=val_dataset, test_dataset=test_dataset, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS) trainer = pl.Trainer(max_epochs=EPOCHS, gpus=-1) trainer.fit(model, datamodule=datamodule)
code
90127412/cell_12
[ "text_plain_output_1.png" ]
from pathlib import Path from torch.utils.data import Dataset, ConcatDataset import pandas as pd import torch TRAIN_DATASET = '../input/starpredict-dataset/train.parquet' VAL_DATASET = '../input/starpredict-dataset/val.parquet' TEST_DATASET = '../input/starpredict-dataset/test.parquet' SAMPLE_DATASET = '../input/starpredict-dataset/sample.parquet' class YelpDataset(Dataset): def __init__(self, path: Path): super().__init__() self.data = pd.read_parquet(path) def __getitem__(self, key): row = self.data.iloc[key] return {'user_id': row['user_id_encode'], 'product_id': row['business_id_encode'], 'input_ids': torch.tensor(row['input_ids']), 'attention_mask': torch.tensor(row['attention_mask']), 'stars': row['stars_transform']} def __len__(self): return self.data.shape[0] train_dataset = YelpDataset(TRAIN_DATASET) val_dataset = YelpDataset(VAL_DATASET) test_dataset = YelpDataset(TEST_DATASET) sample_dataset = YelpDataset(SAMPLE_DATASET) BATCH_SIZE = 8 LEARNING_RATE = 0.0003 EPOCHS = 3 MERGE_SIZE = 128 NUM_CLASSES = 5 NUM_WORKERS = 2 datasets = [train_dataset, val_dataset, test_dataset] num_users = max((dataset.data['user_id_encode'].max() for dataset in datasets)) num_products = max((dataset.data['business_id_encode'].max() for dataset in datasets)) model = StarPredictSystem(num_users=num_users, num_products=num_products, merge_size=MERGE_SIZE, lr=LEARNING_RATE, num_classes=NUM_CLASSES, from_='bert-base-uncased')
code
73061961/cell_21
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix,classification_report y_train.value_counts() from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) from imblearn.under_sampling import NearMiss nr = NearMiss() X_train_miss, y_train_miss = nr.fit_resample(X_train, y_train.ravel()) lr2 = LogisticRegression() lr2.fit(X_train_miss, y_train_miss.ravel()) predictions2 = lr2.predict(X_valid) print(classification_report(y_valid, predictions2))
code
73061961/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression y_train.value_counts() lr = LogisticRegression() lr.fit(X_train, y_train)
code
73061961/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') pd.set_option('display.max_columns', None) data.drop(['Time', 'Amount'], axis=1, inplace=True) data
code
73061961/cell_20
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss y_train.value_counts() from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) print("Before Undersampling, counts of label '1': {}".format(sum(y_train == 1))) print("Before Undersampling, counts of label '0': {} \n".format(sum(y_train == 0))) from imblearn.under_sampling import NearMiss nr = NearMiss() X_train_miss, y_train_miss = nr.fit_resample(X_train, y_train.ravel()) print('After Undersampling, the shape of train_X: {}'.format(X_train_miss.shape)) print('After Undersampling, the shape of train_y: {} \n'.format(y_train_miss.shape)) print("After Undersampling, counts of label '1': {}".format(sum(y_train_miss == 1))) print("After Undersampling, counts of label '0': {}".format(sum(y_train_miss == 0)))
code
73061961/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') pd.set_option('display.max_columns', None) data['Class'].value_counts()
code
73061961/cell_19
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix,classification_report y_train.value_counts() from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) lr1 = LogisticRegression() lr1.fit(X_train_res, y_train_res) predictions1 = lr1.predict(X_valid) confusion_matrix(y_valid, predictions1)
code
73061961/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73061961/cell_15
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix,classification_report y_train.value_counts() lr = LogisticRegression() lr.fit(X_train, y_train) predictions = lr.predict(X_valid) confusion_matrix(y_valid, predictions)
code
73061961/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') pd.set_option('display.max_columns', None) data.head(10)
code
73061961/cell_17
[ "text_html_output_1.png" ]
from imblearn.over_sampling import SMOTE y_train.value_counts() print("Before OverSampling, counts of label '1': {}".format(sum(y_train == 1))) print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train == 0))) from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape)) print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.shape)) print("After OverSampling, counts of label '1': {}".format(sum(y_train_res == 1))) print("After OverSampling, counts of label '0': {}".format(sum(y_train_res == 0)))
code
73061961/cell_22
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix,classification_report y_train.value_counts() from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel()) from imblearn.under_sampling import NearMiss nr = NearMiss() X_train_miss, y_train_miss = nr.fit_resample(X_train, y_train.ravel()) lr2 = LogisticRegression() lr2.fit(X_train_miss, y_train_miss.ravel()) predictions2 = lr2.predict(X_valid) confusion_matrix(y_valid, predictions2)
code
73061961/cell_12
[ "text_html_output_1.png" ]
y_train.value_counts()
code
73061961/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') pd.set_option('display.max_columns', None) data.info()
code
2035023/cell_9
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid) fig = QQ.qqplot(alpha=0.5, markersize=5, line='s') plt.title('QQ plot'); model_norm_resid = model.get_influence().resid_studentized_internal model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid)) model_leverage = model.get_influence().hat_matrix_diag plt.xlim(xmin=-0.0005, xmax=0.013) model.summary()
code
2035023/cell_6
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() QQ = ProbPlot(model.resid) fig = QQ.qqplot(alpha=0.5, markersize=5, line='s') plt.title('QQ plot')
code
2035023/cell_2
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df.head()
code
2035023/cell_11
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid) fig = QQ.qqplot(alpha=0.5, markersize=5, line='s') plt.title('QQ plot'); model_norm_resid = model.get_influence().resid_studentized_internal model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid)) model_leverage = model.get_influence().hat_matrix_diag plt.xlim(xmin=-0.0005, xmax=0.013) model.summary() model2 = sm.GLM(y, x, family=sm.families.Gaussian()).fit() fig = plt.figure(figsize=(12, 8)) fig = sm.graphics.plot_partregress_grid(model, fig=fig)
code
2035023/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.graphics.gofplots import ProbPlot
code
2035023/cell_7
[ "text_html_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid) fig = QQ.qqplot(alpha=0.5, markersize=5, line='s') plt.title('QQ plot'); model_norm_resid = model.get_influence().resid_studentized_internal model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid)) sns.regplot(model.fittedvalues, model_norm_resid_abs_sqrt, lowess=True, line_kws={'color': 'r', 'lw': 1}) plt.xlabel('Fitted values') plt.ylabel('Sqrt abs standardized residuals') plt.title('Scale-location')
code
2035023/cell_8
[ "text_plain_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid) fig = QQ.qqplot(alpha=0.5, markersize=5, line='s') plt.title('QQ plot'); model_norm_resid = model.get_influence().resid_studentized_internal model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid)) model_leverage = model.get_influence().hat_matrix_diag sns.regplot(model_leverage, model.resid_pearson, fit_reg=False) plt.xlim(xmin=-0.0005, xmax=0.013) plt.xlabel('Leverage') plt.ylabel('Pearson residuals') plt.title('Residuals vs leverage')
code
2035023/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() model2 = sm.GLM(y, x, family=sm.families.Gaussian()).fit() print('Null deviance: {:.1f}'.format(model2.null_deviance)) print('Residual deviance: {:.1f}'.format(model2.deviance))
code
2035023/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/ehresp_2014.csv', usecols=['erbmi', 'euexfreq', 'euwgt', 'euhgt', 'ertpreat']) df = df[df['erbmi'] > 0] x = df[['euexfreq', 'euwgt', 'euhgt', 'ertpreat']] y = df['erbmi'] x = sm.add_constant(x) model = sm.OLS(y, x).fit() sns.residplot(model.fittedvalues, df['erbmi'], lowess=True, line_kws={'color': 'r', 'lw': 1}) plt.title('Residual plot') plt.xlabel('Predicted values') plt.ylabel('Residuals')
code
72083691/cell_33
[ "text_html_output_1.png" ]
from mlxtend.frequent_patterns import apriori, association_rules,fpgrowth,fpmax def compute_association_rule(rule_matrix, metric='lift', min_thresh=1): """ Compute the final association rule rule_matrix: the corresponding algorithms matrix metric: the metric to be used (default is lift) min_thresh: the minimum threshold (default is 1) Returns Rules:: Information for each transaction satisfying the given metric & threshold """ rules = association_rules(rule_matrix, metric=metric, min_threshold=min_thresh) return rules fp_growth_rule = compute_association_rule(fpgrowth_matrix, metric='confidence', min_thresh=1) fp_growth_rule.head()
code
72083691/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import mlxtend as ml import mlxtend as ml print(ml.__version__)
code
72083691/cell_40
[ "text_html_output_1.png" ]
from mlxtend.frequent_patterns import apriori, association_rules,fpgrowth,fpmax def compute_association_rule(rule_matrix, metric='lift', min_thresh=1): """ Compute the final association rule rule_matrix: the corresponding algorithms matrix metric: the metric to be used (default is lift) min_thresh: the minimum threshold (default is 1) Returns Rules:: Information for each transaction satisfying the given metric & threshold """ rules = association_rules(rule_matrix, metric=metric, min_threshold=min_thresh) return rules apriori_rule_lift = compute_association_rule(apriori_matrix) apriori_rule_lift.head()
code
72083691/cell_26
[ "text_plain_output_1.png" ]
from mlxtend.frequent_patterns import apriori, association_rules,fpgrowth,fpmax from mlxtend.preprocessing import TransactionEncoder from mlxtend.preprocessing import TransactionEncoder import pandas as pd import time data = pd.read_csv('../input/groceries-dataset/Groceries_dataset.csv') data.shape all_transactions = [transaction[1]['itemDescription'].tolist() for transaction in list(data.groupby(['Member_number', 'Date']))] trans_encoder = TransactionEncoder() trans_encoder_matrix = trans_encoder.fit(all_transactions).transform(all_transactions) trans_encoder_matrix = pd.DataFrame(trans_encoder_matrix, columns=trans_encoder.columns_) def perform_rule_calculation(transact_items_matrix, rule_type, min_support=0.001): """ excution time for the corresponding algorithm """ start_time = 0 total_execution = 0 if rule_type == 'fpmax': start_time = time.time() rule_items = fpmax(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time if rule_type == 'apriori': start_time = time.time() rule_items = apriori(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time if rule_type == 'Fpgrowth': start_time = time.time() rule_items = fpgrowth(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time rule_items['number_of_items'] = rule_items['itemsets'].apply(lambda x: len(x)) return (rule_items, total_execution) fpgrowth_matrix, fp_growth_exec_time = perform_rule_calculation(trans_encoder_matrix, rule_type='Fpgrowth') print('Fp Growth execution took: {} seconds'.format(fp_growth_exec_time))
code
72083691/cell_48
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np def plot_metrics_relationship(rule_matrix, col1, col2): """ shows the relationship between the two input columns """ fit = np.polyfit(rule_matrix[col1], rule_matrix[col2], 1) fit_funt = np.poly1d(fit) def compare_time_exec(algo1=list, algo2=list, algo3=list): """ - Algo1 list contains first algo details. - Algo2 list having the details of second algorithm - Algo3 list have the data of third algorithm """ execution_times = [algo1[1], algo2[1], algo3[1]] algo_names = (algo1[0], algo2[0], algo3[0]) y = np.arange(len(algo_names)) plt.xticks(y, algo_names) algo1 = ['Fp Growth', fp_growth_exec_time] algo2 = ['Apriori', apriori_exec_time] algo3 = ['Fpmax', fpmax_exec_time] compare_time_exec(algo1, algo2, algo3)
code
72083691/cell_41
[ "text_html_output_1.png" ]
from mlxtend.frequent_patterns import apriori, association_rules,fpgrowth,fpmax import matplotlib.pyplot as plt import numpy as np def compute_association_rule(rule_matrix, metric='lift', min_thresh=1): """ Compute the final association rule rule_matrix: the corresponding algorithms matrix metric: the metric to be used (default is lift) min_thresh: the minimum threshold (default is 1) Returns Rules:: Information for each transaction satisfying the given metric & threshold """ rules = association_rules(rule_matrix, metric=metric, min_threshold=min_thresh) return rules def plot_metrics_relationship(rule_matrix, col1, col2): """ shows the relationship between the two input columns """ fit = np.polyfit(rule_matrix[col1], rule_matrix[col2], 1) fit_funt = np.poly1d(fit) apriori_rule_lift = compute_association_rule(apriori_matrix) plot_metrics_relationship(apriori_rule_lift, col1='lift', col2='confidence')
code
72083691/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/groceries-dataset/Groceries_dataset.csv') data.head() data.shape
code
72083691/cell_45
[ "text_html_output_1.png" ]
from mlxtend.frequent_patterns import apriori, association_rules,fpgrowth,fpmax from mlxtend.preprocessing import TransactionEncoder from mlxtend.preprocessing import TransactionEncoder import pandas as pd import time data = pd.read_csv('../input/groceries-dataset/Groceries_dataset.csv') data.shape all_transactions = [transaction[1]['itemDescription'].tolist() for transaction in list(data.groupby(['Member_number', 'Date']))] trans_encoder = TransactionEncoder() trans_encoder_matrix = trans_encoder.fit(all_transactions).transform(all_transactions) trans_encoder_matrix = pd.DataFrame(trans_encoder_matrix, columns=trans_encoder.columns_) def perform_rule_calculation(transact_items_matrix, rule_type, min_support=0.001): """ excution time for the corresponding algorithm """ start_time = 0 total_execution = 0 if rule_type == 'fpmax': start_time = time.time() rule_items = fpmax(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time if rule_type == 'apriori': start_time = time.time() rule_items = apriori(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time if rule_type == 'Fpgrowth': start_time = time.time() rule_items = fpgrowth(transact_items_matrix, min_support=min_support, use_colnames=True) total_execution = time.time() - start_time rule_items['number_of_items'] = rule_items['itemsets'].apply(lambda x: len(x)) return (rule_items, total_execution) fpmax_matrix, fpmax_exec_time = perform_rule_calculation(trans_encoder_matrix, rule_type='fpmax') print('fpmax Execuation took: {} seconds'.format(fpmax_exec_time))
code
72083691/cell_28
[ "text_html_output_1.png" ]
fpgrowth_matrix.tail()
code
72083691/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/groceries-dataset/Groceries_dataset.csv') data.shape all_transactions = [transaction[1]['itemDescription'].tolist() for transaction in list(data.groupby(['Member_number', 'Date']))] all_transactions[0:15]
code
72083691/cell_17
[ "text_plain_output_1.png" ]
from mlxtend.preprocessing import TransactionEncoder from mlxtend.preprocessing import TransactionEncoder import pandas as pd data = pd.read_csv('../input/groceries-dataset/Groceries_dataset.csv') data.shape all_transactions = [transaction[1]['itemDescription'].tolist() for transaction in list(data.groupby(['Member_number', 'Date']))] trans_encoder = TransactionEncoder() trans_encoder_matrix = trans_encoder.fit(all_transactions).transform(all_transactions) trans_encoder_matrix = pd.DataFrame(trans_encoder_matrix, columns=trans_encoder.columns_) trans_encoder_matrix.head()
code