path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
18111545/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status'])
pd.crosstab(cr['terms'], cr['loan_status'], rownames=['terms'], colnames=['loan status'])
pd.crosstab(cr['Principal'], cr['loan_status'], rownames=['principal'], colnames=['loan status'])
pd.crosstab(cr['education'], cr['loan_status'], rownames=['education'], colnames=['loan status']) | code |
18111545/cell_28 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status'])
pd.crosstab(cr['terms'], cr['loan_status'], rownames=['terms'], colnames=['loan status'])
pd.crosstab(cr['Principal'], cr['loan_status'], rownames=['principal'], colnames=['loan status'])
pd.crosstab(cr['education'], cr['loan_status'], rownames=['education'], colnames=['loan status'])
pd.crosstab(cr['education'], cr['Gender'], rownames=['education'], colnames=['gender'])
pd.crosstab(cr['Gender'], cr['age'], rownames=['gender'], colnames=['age'])
cr['loan_status'].replace('PAIDOFF', 0, inplace=True)
cr['loan_status'].replace('COLLECTION_PAIDOFF', 1, inplace=True)
cr['loan_status'].replace('COLLECTION', 2, inplace=True)
cr.sample(20)
education_dummies = pd.get_dummies(cr.education, prefix='education')
education_dummies.sample(4)
education_dummies.drop(education_dummies.columns[0], axis=1, inplace=True)
cr = pd.concat([cr, education_dummies], axis=1)
cr.drop(cr.columns[9], axis=1, inplace=True)
cr.sample(15)
gender_dummies = pd.get_dummies(cr['Gender'], prefix='gender')
gender_dummies.drop(gender_dummies.columns[0], axis=1, inplace=True)
gender_dummies.head() | code |
18111545/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10) | code |
18111545/cell_15 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status']) | code |
18111545/cell_16 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status'])
pd.crosstab(cr['terms'], cr['loan_status'], rownames=['terms'], colnames=['loan status']) | code |
18111545/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.head() | code |
18111545/cell_17 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status'])
pd.crosstab(cr['terms'], cr['loan_status'], rownames=['terms'], colnames=['loan status'])
pd.crosstab(cr['Principal'], cr['loan_status'], rownames=['principal'], colnames=['loan status']) | code |
18111545/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date']) | code |
18111545/cell_22 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
cr['loan_status'].replace('PAIDOFF', 0, inplace=True)
cr['loan_status'].replace('COLLECTION_PAIDOFF', 1, inplace=True)
cr['loan_status'].replace('COLLECTION', 2, inplace=True)
cr.sample(20) | code |
18111545/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
plt.figure(figsize=(10, 7))
sns.boxplot(data=cr, x='loan_status', y='age', hue='Gender', linewidth=2, order=['PAIDOFF', 'COLLECTION_PAIDOFF', 'COLLECTION'])
plt.show() | code |
18111545/cell_27 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
pd.crosstab(cr['Gender'], cr['past_due_days'], rownames=['gender'], colnames=['Loan paidafter due date'])
pd.crosstab(cr['Gender'], cr['loan_status'], rownames=['gender'], colnames=['loan status'])
pd.crosstab(cr['terms'], cr['loan_status'], rownames=['terms'], colnames=['loan status'])
pd.crosstab(cr['Principal'], cr['loan_status'], rownames=['principal'], colnames=['loan status'])
pd.crosstab(cr['education'], cr['loan_status'], rownames=['education'], colnames=['loan status'])
pd.crosstab(cr['education'], cr['Gender'], rownames=['education'], colnames=['gender'])
pd.crosstab(cr['Gender'], cr['age'], rownames=['gender'], colnames=['age'])
cr['loan_status'].replace('PAIDOFF', 0, inplace=True)
cr['loan_status'].replace('COLLECTION_PAIDOFF', 1, inplace=True)
cr['loan_status'].replace('COLLECTION', 2, inplace=True)
cr.sample(20)
education_dummies = pd.get_dummies(cr.education, prefix='education')
education_dummies.sample(4)
education_dummies.drop(education_dummies.columns[0], axis=1, inplace=True)
cr = pd.concat([cr, education_dummies], axis=1)
cr.drop(cr.columns[9], axis=1, inplace=True)
cr.sample(15) | code |
18111545/cell_12 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import pandas_profiling as pdp
from sklearn.linear_model import LogisticRegression
pd.set_option('max_rows', 1200)
pd.set_option('max_columns', 1000)
cr = pd.read_csv('../input/Loan payments data.csv')
cr.profile_report(style={'full_width': True})
cr.fillna('0', axis=1, inplace=True)
cr.sample(10)
plt.figure(figsize=(60, 20))
sns.factorplot(data=cr, x='loan_status', y='age', hue='education', col='Gender', kind='box', order=['PAIDOFF', 'COLLECTION_PAIDOFF', 'COLLECTION'], aspect=1.5)
plt.show() | code |
128013563/cell_13 | [
"image_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints
im_with_keypoints = cv.drawKeypoints(
blob_gray,
keypoints,
np.array([]),
(255,0,),
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
coun = plt.imread('../input/opencv-samples-images/data/blox.jpg')
_, coun_thresh = cv.threshold(cv.cvtColor(coun, cv.COLOR_RGB2GRAY), 180, 255, cv.THRESH_BINARY)
plt.imshow(coun_thresh)
plt.show() | code |
128013563/cell_9 | [
"image_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints
im_with_keypoints = cv.drawKeypoints(
blob_gray,
keypoints,
np.array([]),
(255,0,),
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
plt.imshow(im_with_keypoints)
plt.show() | code |
128013563/cell_7 | [
"image_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints | code |
128013563/cell_15 | [
"image_output_1.png"
] | import cv2
import cv2 as cv
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints
im_with_keypoints = cv.drawKeypoints(
blob_gray,
keypoints,
np.array([]),
(255,0,),
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
coun = plt.imread('../input/opencv-samples-images/data/blox.jpg')
_, coun_thresh = cv.threshold(cv.cvtColor(coun, cv.COLOR_RGB2GRAY), 180, 255, cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(image=coun_thresh, mode=cv.RETR_TREE, method=cv.CHAIN_APPROX_NONE)
image_copy = coun.copy()
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('/kaggle/input/new-data-image/iron image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
plt.imshow(thresh, cmap='gray')
plt.show() | code |
128013563/cell_16 | [
"image_output_1.png"
] | import cv2
import cv2 as cv
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints
im_with_keypoints = cv.drawKeypoints(
blob_gray,
keypoints,
np.array([]),
(255,0,),
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
coun = plt.imread('../input/opencv-samples-images/data/blox.jpg')
_, coun_thresh = cv.threshold(cv.cvtColor(coun, cv.COLOR_RGB2GRAY), 180, 255, cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(image=coun_thresh, mode=cv.RETR_TREE, method=cv.CHAIN_APPROX_NONE)
image_copy = coun.copy()
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('/kaggle/input/new-data-image/iron image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
img_copy = img.copy()
cv2.drawContours(img_copy, contours, -1, (255, 0, 0), 10, cv2.LINE_AA)
plt.imshow(cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB))
plt.show() | code |
128013563/cell_14 | [
"text_plain_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
detector = cv.SimpleBlobDetector_create()
keypoints = detector.detect(blob_gray)
keypoints
im_with_keypoints = cv.drawKeypoints(
blob_gray,
keypoints,
np.array([]),
(255,0,),
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
coun = plt.imread('../input/opencv-samples-images/data/blox.jpg')
_, coun_thresh = cv.threshold(cv.cvtColor(coun, cv.COLOR_RGB2GRAY), 180, 255, cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(image=coun_thresh, mode=cv.RETR_TREE, method=cv.CHAIN_APPROX_NONE)
image_copy = coun.copy()
cv.drawContours(image=image_copy, contours=contours, contourIdx=-1, color=(255, 0, 0), thickness=2, lineType=cv.LINE_AA)
plt.imshow(image_copy)
plt.show() | code |
128013563/cell_5 | [
"image_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
blob = plt.imread('../input/opencv-samples-images/blobs.jpg')
blob_gray = cv.cvtColor(blob, cv.COLOR_RGB2GRAY)
plt.imshow(blob_gray)
plt.show() | code |
88098930/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | !pip install python-pptx | code |
88098930/cell_17 | [
"text_plain_output_1.png"
] | import pptx
prs = pptx.Presentation()
title_slide_layout = prs.slide_layouts[0]
slide = prs.slides.add_slide(title_slide_layout)
slide.shapes.title.text = "This is 'slide.shapes.title.text'."
slide.placeholders[1].text = "This is 'slide.placeholders[1].text'."
prs.save('title.pptx')
prs = Presentation('title.pptx')
text = []
for slide in prs.slides:
for shape in slide.shapes:
print(shape.text) | code |
122258415/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd
df_2 = pd.read_csv('/kaggle/input/usa-housing/USA_Housing.csv')
X = df_2[['Avg. Area Income']]
y = df_2['Price']
df_2.head
from sklearn.linear_model import LinearRegression
df_2 = LinearRegression()
df_2.fit(X_train, y_train)
predictions = df_2.predict(X_test)
import matplotlib.pyplot as plt
plt.scatter(X_train, y_train, color='g')
plt.plot(X_train, df_2.predict(X_train), color='k') | code |
122258415/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
df_2 = pd.read_csv('/kaggle/input/usa-housing/USA_Housing.csv')
X = df_2[['Avg. Area Income']]
y = df_2['Price']
df_2.head | code |
122258415/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import pandas as pd
import pandas as pd
df_2 = pd.read_csv('/kaggle/input/usa-housing/USA_Housing.csv')
X = df_2[['Avg. Area Income']]
y = df_2['Price']
df_2.head
from sklearn.linear_model import LinearRegression
df_2 = LinearRegression()
df_2.fit(X_train, y_train)
predictions = df_2.predict(X_test)
print('coefficient of determination:', df_2.score(X_train, y_train))
print('intercept:', df_2.intercept_)
print('slope:', df_2.coef_) | code |
34136040/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
data_cp = data_city_price.dropna()
data_cp.shape
import seaborn as sns
fig_dims = (14, 10)
fig, ax = plt.subplots(figsize=fig_dims)
sns.barplot(x='city_name', y='price', hue='property_type', ax=ax, data=data_cp)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
ax.set_xlabel('City')
ax.set_ylabel('Prices')
plt.show() | code |
34136040/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
plt.title('Missing Values')
plt.xlabel('Percentage')
plt.show() | code |
34136040/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes | code |
34136040/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
34136040/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
data_cp = data_city_price.dropna()
data_cp.shape
import seaborn as sns
fig_dims = (14, 10)
fig, ax = plt.subplots(figsize=fig_dims)
sns.barplot(x='city_name', y='price', hue='property_type', ax=ax, data=data_cp)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
ax.set_xlabel('City')
ax.set_ylabel('Prices')
plt.show()
sydney = data[data['city_name'] == 'Sydney'][['date_sold', 'price', 'property_type']]
sydney.shape
sydney = sydney.dropna()
sydney.shape
sydney.sort_values('date_sold')
import matplotlib.animation as animation
Writer = animation.writers['ffmpeg']
writer = Writer(fps=20, metadata=dict(artist='akshita'), bitrate=1800)
fig = plt.figure(figsize=(10, 6))
plt.xlim(2017, 2021)
plt.ylim(np.min(sydney['price']), np.max(sydney['price']))
plt.xlabel('Year', fontsize=20)
plt.ylabel('Prices', fontsize=20)
plt.title('Prices per Year', fontsize=20)
def animate(i):
d = sydney.iloc[:int(i + 1)]
p = sns.lineplot(x=data.index, y=data['price'], data=d)
p.tick_params(labelsize=17)
plt.setp(p.lines, linewidth=7)
ani = animation.FuncAnimation(fig, animate, frames=60, repeat=True)
plt.show() | code |
34136040/cell_15 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
sydney = data[data['city_name'] == 'Sydney'][['date_sold', 'price', 'property_type']]
sydney.shape | code |
34136040/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
sydney = data[data['city_name'] == 'Sydney'][['date_sold', 'price', 'property_type']]
sydney.shape
sydney = sydney.dropna()
sydney.shape | code |
34136040/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.head() | code |
34136040/cell_17 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
sydney = data[data['city_name'] == 'Sydney'][['date_sold', 'price', 'property_type']]
sydney.shape
sydney = sydney.dropna()
sydney.shape
sydney.sort_values('date_sold') | code |
34136040/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/aus-real-estate-sales-march-2019-to-april-2020/aus-property-sales-sep2018-april2020.csv')
data.dtypes
data_city_price = data[['city_name', 'price', 'property_type']]
import matplotlib.pyplot as plt
per = data_city_price.isnull().sum() / data.shape[0] * 100
per.plot.barh()
data_cp = data_city_price.dropna()
data_cp.shape | code |
90117868/cell_42 | [
"text_plain_output_1.png"
] | from imblearn.under_sampling import RandomUnderSampler
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
shape = 50 * 50 * 3
x_train = x_train.reshape(x_train.shape[0], shape)
x_test = x_test.reshape(x_test.shape[0], shape)
from imblearn.under_sampling import RandomUnderSampler
underampler = RandomUnderSampler(sampling_strategy='auto')
x_train_fit, y_train_fit = underampler.fit_resample(x_train, y_train)
X_test_fit, Y_test_fit = underampler.fit_resample(x_test, y_test)
x_train_ = x_train_fit.reshape(x_train_fit.shape[0], 50, 50, 3)
x_test_ = X_test_fit.reshape(X_test_fit.shape[0], 50, 50, 3)
batch_size = 32
image_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
test_data_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
train = image_gen.flow(x_train_, y_train_fit, shuffle=True, batch_size=batch_size)
test = test_data_gen.flow(x_test_, Y_test_fit, shuffle=True, batch_size=batch_size)
for train_img, train_label in train:
print('image shape ', train_img.shape)
print('label shape ', train_label.shape)
break | code |
90117868/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import os
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
print('Total Images :', len(images))
print('Total Labels :', len(all_labels))
print('Total Pathes', len(pathes)) | code |
90117868/cell_25 | [
"text_plain_output_1.png"
] | import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
print('Train Images shape is : ', x_train.shape)
print('Train Labels shape is : ', y_train.shape) | code |
90117868/cell_33 | [
"text_plain_output_1.png"
] | import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
shape = 50 * 50 * 3
x_train = x_train.reshape(x_train.shape[0], shape)
x_test = x_test.reshape(x_test.shape[0], shape)
print('shape of new train data is :', x_train.shape)
print('shape of new Test data is :', x_test.shape) | code |
90117868/cell_44 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
cnn_model = Sequential()
cnn_model.add(layers.Conv2D(64, (3, 3), padding='Same', activation='relu', input_shape=(50, 50, 3)))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.summary() | code |
90117868/cell_26 | [
"text_plain_output_1.png"
] | import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
print('Test Images shape is : ', x_test.shape)
print('Test Labels shape is : ', y_test.shape) | code |
90117868/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import os
image_path = '../input/breast-histopathology-images/'
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images, all_labels, pathes = load_images_from_directory(image_path) | code |
90117868/cell_19 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import os
import seaborn as sns
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
for i in range(30):
plt.xticks([])
plt.yticks([])
plt.title(' Labels Visualization')
sns.countplot(x=all_labels, palette='flare')
plt.show() | code |
90117868/cell_45 | [
"text_plain_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
cnn_model = Sequential()
cnn_model.add(layers.Conv2D(64, (3, 3), padding='Same', activation='relu', input_shape=(50, 50, 3)))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.summary()
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(1024, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(1024, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(1, activation='sigmoid'))
cnn_model.summary() | code |
90117868/cell_49 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from imblearn.under_sampling import RandomUnderSampler
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.callbacks import EarlyStopping,ReduceLROnPlateau
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
shape = 50 * 50 * 3
x_train = x_train.reshape(x_train.shape[0], shape)
x_test = x_test.reshape(x_test.shape[0], shape)
from imblearn.under_sampling import RandomUnderSampler
underampler = RandomUnderSampler(sampling_strategy='auto')
x_train_fit, y_train_fit = underampler.fit_resample(x_train, y_train)
X_test_fit, Y_test_fit = underampler.fit_resample(x_test, y_test)
x_train_ = x_train_fit.reshape(x_train_fit.shape[0], 50, 50, 3)
x_test_ = X_test_fit.reshape(X_test_fit.shape[0], 50, 50, 3)
batch_size = 32
image_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
test_data_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
train = image_gen.flow(x_train_, y_train_fit, shuffle=True, batch_size=batch_size)
test = test_data_gen.flow(x_test_, Y_test_fit, shuffle=True, batch_size=batch_size)
cnn_model = Sequential()
cnn_model.add(layers.Conv2D(64, (3, 3), padding='Same', activation='relu', input_shape=(50, 50, 3)))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(BatchNormalization())
cnn_model.summary()
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(1024, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(1024, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(1, activation='sigmoid'))
cnn_model.summary()
cnn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
early = EarlyStopping(monitor='loss', mode='min', min_delta=0, patience=10, verbose=1, restore_best_weights=True)
learning_rate_reduction = ReduceLROnPlateau(monitor='loss', patience=2, verbose=1, factor=0.3, min_lr=1e-06)
callbacks_list = [early, learning_rate_reduction]
n_training_samples = len(train)
n_validation_samples = len(test)
history = cnn_model.fit(train, epochs=150, validation_data=test, validation_steps=n_validation_samples // batch_size, shuffle=True, callbacks=callbacks_list) | code |
90117868/cell_18 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import os
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
plt.figure(figsize=(15, 10))
plt.suptitle(' Images', fontsize=20)
for i in range(30):
plt.subplot(5, 6, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.xlabel(get_Label(all_labels[i]))
plt.imshow(images[i], cmap=plt.cm.binary) | code |
90117868/cell_28 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
for i in range(30):
plt.xticks([])
plt.yticks([])
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
plt.title('Train Labels Visualization')
sns.countplot(x=y_train, palette='flare')
plt.show() | code |
90117868/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import os
import pandas as pd
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
df = pd.DataFrame({'image_path': pathes, 'label': all_labels})
df.shape | code |
90117868/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import os
import pandas as pd
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
df = pd.DataFrame({'image_path': pathes, 'label': all_labels})
df.shape
df['label'].value_counts() | code |
90117868/cell_38 | [
"text_plain_output_1.png"
] | from imblearn.under_sampling import RandomUnderSampler
import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
shape = 50 * 50 * 3
x_train = x_train.reshape(x_train.shape[0], shape)
x_test = x_test.reshape(x_test.shape[0], shape)
from imblearn.under_sampling import RandomUnderSampler
underampler = RandomUnderSampler(sampling_strategy='auto')
x_train_fit, y_train_fit = underampler.fit_resample(x_train, y_train)
X_test_fit, Y_test_fit = underampler.fit_resample(x_test, y_test)
x_train_ = x_train_fit.reshape(x_train_fit.shape[0], 50, 50, 3)
x_test_ = X_test_fit.reshape(X_test_fit.shape[0], 50, 50, 3)
print('Train data shape =', x_train_.shape)
print(' Test data shape =', x_test_.shape) | code |
90117868/cell_43 | [
"text_plain_output_1.png"
] | from imblearn.under_sampling import RandomUnderSampler
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
seed = 42
np.random.seed = seed
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
shape = 50 * 50 * 3
x_train = x_train.reshape(x_train.shape[0], shape)
x_test = x_test.reshape(x_test.shape[0], shape)
from imblearn.under_sampling import RandomUnderSampler
underampler = RandomUnderSampler(sampling_strategy='auto')
x_train_fit, y_train_fit = underampler.fit_resample(x_train, y_train)
X_test_fit, Y_test_fit = underampler.fit_resample(x_test, y_test)
x_train_ = x_train_fit.reshape(x_train_fit.shape[0], 50, 50, 3)
x_test_ = X_test_fit.reshape(X_test_fit.shape[0], 50, 50, 3)
batch_size = 32
image_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
test_data_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.3, height_shift_range=0.2, width_shift_range=0.2, fill_mode='nearest', horizontal_flip=True, rotation_range=20)
train = image_gen.flow(x_train_, y_train_fit, shuffle=True, batch_size=batch_size)
test = test_data_gen.flow(x_test_, Y_test_fit, shuffle=True, batch_size=batch_size)
for t_img, t_label in test:
print('image shape ', t_img.shape)
print('label shape ', t_label.shape)
break | code |
90117868/cell_14 | [
"text_html_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import os
import pandas as pd
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
df = pd.DataFrame({'image_path': pathes, 'label': all_labels})
df.head(5) | code |
90117868/cell_27 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
for i in range(30):
plt.xticks([])
plt.yticks([])
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
plt.title('Test Labels Visualization')
sns.countplot(x=y_test, palette='flare')
plt.show() | code |
90117868/cell_37 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
for i in range(30):
plt.xticks([])
plt.yticks([])
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
plt.title('Test Labels Visualization')
sns.countplot(x=Y_test_fit, palette='flare')
plt.show() | code |
90117868/cell_36 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['0', '1']
def load_images_from_directory(main_dirictory):
total_labels = []
images = []
pathes = []
total_normal = 0
total_infected = 0
folders = os.listdir(main_dirictory)
for i, file in enumerate(folders):
if file == 'IDC_regular_ps50_idx5':
continue
for lab in labels:
full_path = main_dirictory + os.path.join(file, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (50, 50))
images.append(img)
pathes.append(full_path + '/' + image)
if lab == '0':
label = 0
total_normal += 1
elif lab == '1':
label = 1
total_infected += 1
total_labels.append(label)
return shuffle(images, total_labels, pathes, random_state=756349782)
def get_Label(number):
labels = {0: 'Uninfected', 1: 'Infected'}
return labels[number]
images = images[0:150000]
all_labels = all_labels[0:150000]
pathes = pathes[0:150000]
for i in range(30):
plt.xticks([])
plt.yticks([])
x_train = np.asarray(x_train, np.float32) / 255
x_test = np.asarray(x_test, np.float32) / 255
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
plt.title('Train Labels Visualization')
sns.countplot(x=y_train_fit, palette='flare')
plt.show() | code |
74050322/cell_6 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set
data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv')
X = data.drop('MEDV', axis=1).values
Y = data['MEDV'].values
Room_number = X[:, 5]
Room_number = Room_number.reshape(-1, 1)
Y = Y.reshape(-1, 1)
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(Room_number, Y)
regression_line = np.linspace(min(Room_number), max(Room_number))
plt.scatter(Room_number, Y, color='green')
plt.xlabel('Average Room number')
plt.ylabel('Average price (x1000 $)')
plt.title('The relationship between the number of rooms and the price of the house')
plt.plot(regression_line, regression.predict(regression_line), color='black', linewidth=3)
plt.show() | code |
74050322/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set
data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv')
data.head() | code |
74050322/cell_5 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set
data = pd.read_csv('../input/boston-housing-dataset/HousingData.csv')
X = data.drop('MEDV', axis=1).values
Y = data['MEDV'].values
Room_number = X[:, 5]
Room_number = Room_number.reshape(-1, 1)
Y = Y.reshape(-1, 1)
plt.scatter(Room_number, Y)
plt.xlabel('Average Room number')
plt.ylabel('Average price (x1000 $)')
plt.title('The relationship between the number of rooms and the price of the house')
plt.show() | code |
18127820/cell_23 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from keras.layers import Input
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.merge import concatenate
from keras.layers.pooling import MaxPooling2D
from keras.models import Model, load_model
from keras.optimizers import Adam
from skimage.io import imread
from skimage.transform import resize
from tqdm import tqdm
import numpy as np
import os
import random
TRAIN_PATH = '../input/train/'
TEST_PATH = '../input/test/'
seed = 42
random.seed = seed
np.random.seed = seed
tot_num = 5635
IMG_HEIGHT = 128
IMG_WIDTH = 128
files = os.listdir(TRAIN_PATH)
masks_list = []
imgs_list = []
for f in files:
if 'mask' in f:
masks_list.append(f)
else:
imgs_list.append(f)
masks_list = sorted(masks_list)
imgs_list = sorted(imgs_list)
X_train = np.zeros((tot_num, IMG_HEIGHT, IMG_WIDTH), dtype=np.float32)
Y_train = np.zeros((tot_num, IMG_HEIGHT, IMG_WIDTH), dtype=np.float32)
Y_train_one = []
X_train_one = []
Y_train_zero = []
X_train_zero = []
for i, file in tqdm(enumerate(imgs_list), total=len(imgs_list)):
img_path = file
mask_path = img_path[:-4] + '_mask.tif'
mask = imread(TRAIN_PATH + mask_path)
mask = resize(mask, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
img = imread(TRAIN_PATH + img_path)
img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
if mask.any() == False:
Y_train_zero.append(mask)
X_train_zero.append(img)
else:
Y_train_one.append(mask)
X_train_one.append(img)
X_train_one = np.array(X_train_one)
Y_train_one = np.array(Y_train_one)
X_train_zero = np.array(X_train_zero)
Y_train_zero = np.array(Y_train_zero)
X_train = []
Y_train = []
def augmentation(imgs, masks):
for img, mask in zip(imgs, masks):
img_lr = np.fliplr(img)
mask_lr = np.fliplr(mask)
img_up = np.flipud(img)
mask_up = np.flipud(mask)
X_train.append(img)
Y_train.append(mask)
X_train.append(img_lr)
Y_train.append(mask_lr)
X_train.append(img_up)
Y_train.append(mask_up)
augmentation(X_train_one, Y_train_one)
X_train = np.array(X_train)
Y_train = np.array(Y_train)
X_train_ax = X_train[:, :, :, np.newaxis] / 255.0
Y_train_ax = Y_train[:, :, :, np.newaxis] / 255.0
def to_one(x):
if x == 0:
return 0
else:
return 1
to_one = np.vectorize(to_one)
Y_train_ax = to_one(Y_train_ax)
smooth = 1.0
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2.0 * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
inputs = Input((IMG_HEIGHT, IMG_WIDTH, 1))
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=Adam(lr=1e-05), loss=dice_coef_loss, metrics=[dice_coef])
results = model.fit(X_train_ax, Y_train_ax, validation_split=0.1, batch_size=8, epochs=18) | code |
18127820/cell_19 | [
"application_vnd.jupyter.stderr_output_1.png"
] | !pip3 install git+https://github.com/qubvel/segmentation_models
from segmentation_models import Unet
# model = Unet('densenet121',encorder_weights='imagenet',freeze_encorder=True) | code |
18127820/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import sys
import random
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from keras.models import Model, load_model
from keras.layers import Input
from keras.layers.core import Dropout, Lambda
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras import backend as K
from keras.optimizers import Adam
import tensorflow as tf
from skimage.io import imread
from skimage.transform import resize | code |
18127820/cell_5 | [
"text_plain_output_1.png"
] | from skimage.io import imread
from skimage.transform import resize
from tqdm import tqdm
import numpy as np
import os
import random
TRAIN_PATH = '../input/train/'
TEST_PATH = '../input/test/'
seed = 42
random.seed = seed
np.random.seed = seed
tot_num = 5635
IMG_HEIGHT = 128
IMG_WIDTH = 128
files = os.listdir(TRAIN_PATH)
masks_list = []
imgs_list = []
for f in files:
if 'mask' in f:
masks_list.append(f)
else:
imgs_list.append(f)
masks_list = sorted(masks_list)
imgs_list = sorted(imgs_list)
Y_train_one = []
X_train_one = []
Y_train_zero = []
X_train_zero = []
for i, file in tqdm(enumerate(imgs_list), total=len(imgs_list)):
img_path = file
mask_path = img_path[:-4] + '_mask.tif'
mask = imread(TRAIN_PATH + mask_path)
mask = resize(mask, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
img = imread(TRAIN_PATH + img_path)
img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
if mask.any() == False:
Y_train_zero.append(mask)
X_train_zero.append(img)
else:
Y_train_one.append(mask)
X_train_one.append(img) | code |
2014936/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(oil.head())
print(oil.shape)
print(oil.describe()) | code |
2014936/cell_9 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(holiday_events.head())
print(holiday_events.shape)
print(holiday_events.describe()) | code |
2014936/cell_25 | [
"text_plain_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = store_count.index, y = store_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('store_nbr',fontsize = 15)
ax.tick_params(labelsize=15)
item_count = pd.DataFrame()
item_count['count'] = train_sample['item_nbr'].value_counts().sort_index()
plt.plot(item_count.index) | code |
2014936/cell_4 | [
"text_html_output_1.png"
] | from subprocess import check_output
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2014936/cell_30 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = store_count.index, y = store_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('store_nbr',fontsize = 15)
ax.tick_params(labelsize=15)
item_count = pd.DataFrame()
item_count['count'] = train_sample['item_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = item_count.index, y = item_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('item_nbr',fontsize = 15)
ax.tick_params(axis = 'x',which = 'both',top = 'off', bottom = 'off', labelbottom = 'off')
neg_unit_sale = pd.DataFrame()
neg_unit_sale['unit_sales'] = -train_sample[train_sample['unit_sales'] < 0]['unit_sales']
fig, ax = plt.subplots(figsize = (18, 5))
#ax.set_xscale('log')
np.log(neg_unit_sale['unit_sales']).plot.hist(ax = ax, log = True,edgecolor = 'white', bins = 50)
ax.set_xlabel('neg_unit_sales (log10 scale)', fontsize=15)
ax.set_ylabel('count', fontsize=15)
ax.tick_params(labelsize=15)
city_count = pd.DataFrame()
city_count['count'] = stores['city'].value_counts().sort_index()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 4))
g = sns.barplot(x=city_count.index, y=city_count['count'], ax=ax1)
ax1.set_ylabel('count', fontsize=15)
ax1.set_xlabel('city', fontsize=15)
ax1.tick_params(labelsize=15)
g.set_xticklabels(city_count.index, rotation=45)
state_count = pd.DataFrame()
state_count['count'] = stores['state'].value_counts().sort_index()
g2 = sns.barplot(x=state_count.index, y=state_count['count'], ax=ax2)
ax2.set_ylabel('count', fontsize=15)
ax2.set_xlabel('state', fontsize=15)
ax2.tick_params(labelsize=15)
g2.set_xticklabels(state_count.index, rotation=45) | code |
2014936/cell_20 | [
"text_plain_output_1.png"
] | import datetime
import pandas as pd
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
print(daily_sale.head(3))
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales') | code |
2014936/cell_6 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv') | code |
2014936/cell_26 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = store_count.index, y = store_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('store_nbr',fontsize = 15)
ax.tick_params(labelsize=15)
item_count = pd.DataFrame()
item_count['count'] = train_sample['item_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize=(18, 3))
sns.barplot(x=item_count.index, y=item_count['count'], ax=ax)
ax.set_ylabel('count', fontsize=15)
ax.set_xlabel('item_nbr', fontsize=15)
ax.tick_params(axis='x', which='both', top='off', bottom='off', labelbottom='off') | code |
2014936/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(len(items['family'].value_counts().index))
print(len(items['class'].value_counts().index))
print(items['perishable'].value_counts()) | code |
2014936/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
train_sample.head() | code |
2014936/cell_28 | [
"image_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = store_count.index, y = store_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('store_nbr',fontsize = 15)
ax.tick_params(labelsize=15)
item_count = pd.DataFrame()
item_count['count'] = train_sample['item_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = item_count.index, y = item_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('item_nbr',fontsize = 15)
ax.tick_params(axis = 'x',which = 'both',top = 'off', bottom = 'off', labelbottom = 'off')
neg_unit_sale = pd.DataFrame()
neg_unit_sale['unit_sales'] = -train_sample[train_sample['unit_sales'] < 0]['unit_sales']
fig, ax = plt.subplots(figsize=(18, 5))
np.log(neg_unit_sale['unit_sales']).plot.hist(ax=ax, log=True, edgecolor='white', bins=50)
ax.set_xlabel('neg_unit_sales (log10 scale)', fontsize=15)
ax.set_ylabel('count', fontsize=15)
ax.tick_params(labelsize=15) | code |
2014936/cell_15 | [
"text_plain_output_1.png"
] | import datetime
import pandas as pd
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
train_sample['onpromotion'].fillna(value='missing', inplace=True)
print(train_sample['onpromotion'].value_counts()) | code |
2014936/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(test.head())
print(test.shape)
print(test.describe())
print(test.isnull().sum()) | code |
2014936/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(test['onpromotion'].value_counts()) | code |
2014936/cell_24 | [
"text_plain_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize=(18, 3))
sns.barplot(x=store_count.index, y=store_count['count'], ax=ax)
ax.set_ylabel('count', fontsize=15)
ax.set_xlabel('store_nbr', fontsize=15)
ax.tick_params(labelsize=15) | code |
2014936/cell_14 | [
"text_plain_output_1.png"
] | import datetime
import pandas as pd
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
print(train_sample.head())
print(train_sample.shape)
print(train_sample.describe())
print(train_sample.isnull().sum()) | code |
2014936/cell_22 | [
"text_plain_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x=promotion_count.index, y=promotion_count['count'], ax=ax2)
ax2.set_ylabel('count', fontsize=15)
ax2.set_xlabel('onpromotion', fontsize=15)
ax2.tick_params(labelsize=15)
ax2.ticklabel_format(style='sci', scilimits=(0, 0), axis='y')
plt.subplot(1, 3, 3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize=15)
plt.xlabel('positive_unit_sales', fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.show() | code |
2014936/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
print(items.head())
print(items.shape)
print(items.describe()) | code |
2014936/cell_27 | [
"image_output_1.png"
] | import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
train_sample = train.sample(frac=0.05)
holiday_events = pd.read_csv('../input/holidays_events.csv')
items = pd.read_csv('../input/items.csv')
oil = pd.read_csv('../input/oil.csv')
stores = pd.read_csv('../input/stores.csv')
test = pd.read_csv('../input/test.csv')
transactions = pd.read_csv('../input/transactions.csv')
import datetime
train_sample['date'] = train_sample['date'].apply(datetime.datetime.strptime, args=('%Y-%m-%d',))
train_sample.sort_values(by='date', inplace=True)
daily_sale = pd.DataFrame()
daily_sale['count'] = train_sample['date'].value_counts()
daily_sale['date'] = train_sample['date'].value_counts().index
daily_sale = daily_sale.sort_values(by='date')
unit_sale = pd.DataFrame()
unit_sale['count'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts()
unit_sale['positive_unit_sales'] = train_sample[train['unit_sales'] > 0]['unit_sales'].value_counts().index
unit_sale = unit_sale.sort_values(by='positive_unit_sales')
promotion_count = pd.DataFrame()
promotion_count['count'] = train_sample['onpromotion'].value_counts()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize = (18,5))
sns.set_style('darkgrid')
ax1.plot(daily_sale['date'], daily_sale['count'])
ax1.set_xlabel('date', fontsize=15)
ax1.set_ylabel('count', fontsize=15)
ax1.tick_params(labelsize=15)
sns.barplot(x = promotion_count.index, y = promotion_count['count'],ax = ax2)
ax2.set_ylabel('count', fontsize = 15)
ax2.set_xlabel ('onpromotion',fontsize =15)
ax2.tick_params(labelsize = 15)
ax2.ticklabel_format(style = 'sci',scilimits = (0,0), axis = 'y')
plt.subplot(1,3,3)
plt.loglog(unit_sale['positive_unit_sales'], unit_sale['count'])
plt.ylabel('count', fontsize = 15)
plt.xlabel('positive_unit_sales', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
store_count = pd.DataFrame()
store_count['count'] = train_sample['store_nbr'].value_counts().sort_index()
fig, ax = plt.subplots(figsize = (18, 3))
sns.barplot(x = store_count.index, y = store_count['count'], ax = ax)
ax.set_ylabel('count', fontsize = 15)
ax.set_xlabel('store_nbr',fontsize = 15)
ax.tick_params(labelsize=15)
item_count = pd.DataFrame()
item_count['count'] = train_sample['item_nbr'].value_counts().sort_index()
neg_unit_sale = pd.DataFrame()
neg_unit_sale['unit_sales'] = -train_sample[train_sample['unit_sales'] < 0]['unit_sales']
neg_unit_sale.head() | code |
129012165/cell_21 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix,classification_report
import itertools
import keras
import matplotlib.image as img
import matplotlib.pyplot as plt
import numpy as np
import pathlib
path = pathlib.Path('/kaggle/input/5-flower-types-classification-dataset/flower_images')
lilly = list(path.glob('Lilly/*'))[:1000]
lotus = list(path.glob('Lotus/*'))[:1000]
orchid = list(path.glob('Orchid/*'))[:1000]
sunflower = list(path.glob('Sunflower/*'))[:1000]
tulip = list(path.glob('Tulip/*'))[:1000]
data = {'lilly': lilly, 'lotus': lotus, 'orchid': orchid, 'sunflower': sunflower, 'tulip': tulip}
flower_labels = {k: v for k, v in enumerate(data.keys())}
fig, ax = plt.subplots(5,5, figsize=(30,25))
fig.suptitle('Flower Category',color='magenta',fontsize=40)
for i in range(5):
for j in range(5):
image = img.imread(data.get(flower_labels.get(i))[j])
ax[i, j].imshow(image)
ax[i, j].set_title(flower_labels.get(i))
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
def plot(c):
pass
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10))
y_pred = cnn.predict(test_data)
main_y_pred = np.argmax(y_pred, axis=1)
test_steps_per_epoch = np.math.ceil(test_data.samples / test_data.batch_size)
predictions = cnn.predict_generator(test_data, steps=test_steps_per_epoch)
predicted_classes = np.argmax(predictions, axis=1)
true_classes = test_data.classes
class_labels = list(test_data.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
cm = confusion_matrix(test_data.classes, predicted_classes)
d1 = test_data.class_indices
classes = list(d1.keys())
cmap = plt.cm.YlGnBu
plt.figure(figsize=(6, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title('Confusion Matrix')
plt.colorbar(shrink=True)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment='center', color='aqua' if cm[i, j] > thresh else 'red')
plt.tight_layout()
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
cm | code |
129012165/cell_20 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix,classification_report
import keras
import numpy as np
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10))
y_pred = cnn.predict(test_data)
main_y_pred = np.argmax(y_pred, axis=1)
test_steps_per_epoch = np.math.ceil(test_data.samples / test_data.batch_size)
predictions = cnn.predict_generator(test_data, steps=test_steps_per_epoch)
predicted_classes = np.argmax(predictions, axis=1)
true_classes = test_data.classes
class_labels = list(test_data.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report) | code |
129012165/cell_18 | [
"image_output_2.png",
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import keras
import numpy as np
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10))
y_pred = cnn.predict(test_data)
main_y_pred = np.argmax(y_pred, axis=1) | code |
129012165/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.image as img
import matplotlib.pyplot as plt
import pathlib
path = pathlib.Path('/kaggle/input/5-flower-types-classification-dataset/flower_images')
lilly = list(path.glob('Lilly/*'))[:1000]
lotus = list(path.glob('Lotus/*'))[:1000]
orchid = list(path.glob('Orchid/*'))[:1000]
sunflower = list(path.glob('Sunflower/*'))[:1000]
tulip = list(path.glob('Tulip/*'))[:1000]
data = {'lilly': lilly, 'lotus': lotus, 'orchid': orchid, 'sunflower': sunflower, 'tulip': tulip}
flower_labels = {k: v for k, v in enumerate(data.keys())}
fig, ax = plt.subplots(5, 5, figsize=(30, 25))
fig.suptitle('Flower Category', color='magenta', fontsize=40)
for i in range(5):
for j in range(5):
image = img.imread(data.get(flower_labels.get(i))[j])
ax[i, j].imshow(image)
ax[i, j].set_title(flower_labels.get(i)) | code |
129012165/cell_16 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import keras
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)) | code |
129012165/cell_17 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import keras
import matplotlib.image as img
import matplotlib.pyplot as plt
import pathlib
path = pathlib.Path('/kaggle/input/5-flower-types-classification-dataset/flower_images')
lilly = list(path.glob('Lilly/*'))[:1000]
lotus = list(path.glob('Lotus/*'))[:1000]
orchid = list(path.glob('Orchid/*'))[:1000]
sunflower = list(path.glob('Sunflower/*'))[:1000]
tulip = list(path.glob('Tulip/*'))[:1000]
data = {'lilly': lilly, 'lotus': lotus, 'orchid': orchid, 'sunflower': sunflower, 'tulip': tulip}
flower_labels = {k: v for k, v in enumerate(data.keys())}
fig, ax = plt.subplots(5,5, figsize=(30,25))
fig.suptitle('Flower Category',color='magenta',fontsize=40)
for i in range(5):
for j in range(5):
image = img.imread(data.get(flower_labels.get(i))[j])
ax[i, j].imshow(image)
ax[i, j].set_title(flower_labels.get(i))
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
def plot(c):
pass
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10))
plot(cnn) | code |
129012165/cell_14 | [
"text_plain_output_1.png"
] | import keras
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary() | code |
129012165/cell_22 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix,classification_report
import itertools
import keras
import matplotlib.image as img
import matplotlib.pyplot as plt
import numpy as np
import pathlib
path = pathlib.Path('/kaggle/input/5-flower-types-classification-dataset/flower_images')
lilly = list(path.glob('Lilly/*'))[:1000]
lotus = list(path.glob('Lotus/*'))[:1000]
orchid = list(path.glob('Orchid/*'))[:1000]
sunflower = list(path.glob('Sunflower/*'))[:1000]
tulip = list(path.glob('Tulip/*'))[:1000]
data = {'lilly': lilly, 'lotus': lotus, 'orchid': orchid, 'sunflower': sunflower, 'tulip': tulip}
flower_labels = {k: v for k, v in enumerate(data.keys())}
fig, ax = plt.subplots(5,5, figsize=(30,25))
fig.suptitle('Flower Category',color='magenta',fontsize=40)
for i in range(5):
for j in range(5):
image = img.imread(data.get(flower_labels.get(i))[j])
ax[i, j].imshow(image)
ax[i, j].set_title(flower_labels.get(i))
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation')
def plot(c):
pass
cnn = keras.models.Sequential()
cnn.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='valid', activation='relu', input_shape=(224, 224, 3)))
cnn.add(keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(keras.layers.Flatten())
cnn.add(keras.layers.Dense(45, activation='relu'))
cnn.add(keras.layers.Dense(15, activation='relu'))
cnn.add(keras.layers.Dropout(rate=0.1, seed=100))
cnn.add(keras.layers.Dense(units=5, activation='sigmoid'))
cnn.summary()
cnn.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
cnn.fit(train_data, epochs=20, validation_data=test_data, shuffle=True, callbacks=keras.callbacks.EarlyStopping(monitor='val_loss', patience=10))
y_pred = cnn.predict(test_data)
main_y_pred = np.argmax(y_pred, axis=1)
test_steps_per_epoch = np.math.ceil(test_data.samples / test_data.batch_size)
predictions = cnn.predict_generator(test_data, steps=test_steps_per_epoch)
predicted_classes = np.argmax(predictions, axis=1)
true_classes = test_data.classes
class_labels = list(test_data.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
cm = confusion_matrix(test_data.classes, predicted_classes)
d1 = test_data.class_indices
classes = list(d1.keys())
cmap = plt.cm.YlGnBu
plt.colorbar(shrink=True)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment='center', color='aqua' if cm[i, j] > thresh else 'red')
plt.tight_layout()
cm
train_score = cnn2.evaluate(train_data, verbose=1)
test_score = cnn2.evaluate(test_data, verbose=1)
print('Train Loss: ', train_score[0])
print('Train Accuracy: ', train_score[1])
print('*****************************')
print('Test Loss: ', test_score[0])
print('Test Accuracy: ', test_score[1]) | code |
129012165/cell_10 | [
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
train_gen = ImageDataGenerator(rotation_range=10, rescale=1.0 / 255, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode='nearest', validation_split=0.2)
train_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=32, class_mode='categorical', shuffle=True, subset='training')
test_data = train_gen.flow_from_directory('/kaggle/input/5-flower-types-classification-dataset/flower_images', target_size=(224, 224), batch_size=1, shuffle=False, subset='validation') | code |
32068475/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_error, mean_squared_log_error
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import xgboost as xgb
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1))[:10]
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x) for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x) for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[test.Date > train.Date.max()].copy()
train = pd.concat((train, publictest), sort=False)
train.sort_values(['Country_Region', 'Province_State', 'Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region', 'Province_State', 'Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0) | train.ForecastId.notnull() | (train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('../input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region', 'Province_State', 'Date', 'Type', 'Reference']
dt = dt.loc[dt.Date == dt.Date]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid', 'Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df = df.loc[df.day >= valid_day - 50].copy()
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag0_8'] = df.groupby('cid')['target0'].shift(8)
df['lag0_8'] = df.groupby('cid')['lag0_8'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20).mean().values
df['m9'] = df.groupby('cid')['lag0_1'].rolling(25).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['m9'] = df.groupby('cid')['m9'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1 * (df['Country_Region'] == 'China')
df['flag_US'] = 1 * (df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1 * (df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1 * (df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1 * (df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1 * (df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1 * (df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1 * (df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1 * (df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1 * (df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1 * (df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1 * (df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1 * (df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1 * (df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1 * (df['cid'] == 'Honduras_')
df['flag_Bangladesh'] = 1 * (df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1 * (df['cid'] == 'Paraguay_')
tr = df.loc[df.day < valid_day].copy()
vl = df.loc[df.day == valid_day].copy()
tr = tr.loc[tr.lag0_1 > 0].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max').reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max').reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid', how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid', how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return (tr, vl)
def train_models(self, valid_day=10):
train = self.train.copy()
train.loc[(train.cid == 'China_Guizhou') & (train.Date == '2020-03-17'), 'target0'] = np.log1p(146)
train.loc[(train.cid == 'Guyana_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(12)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-29') & (train.Date <= '2020-03-29'), 'target0'] = np.log1p(24)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-30') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(27)
train.loc[(train.cid == 'Iceland_') & (train.Date >= '2020-03-15') & (train.Date <= '2020-03-15'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Kazakhstan_') & (train.Date >= '2020-03-20') & (train.Date <= '2020-03-20'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-26') & (train.Date <= '2020-03-26'), 'target1'] = np.log1p(5)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-27') & (train.Date <= '2020-03-27'), 'target1'] = np.log1p(6)
train.loc[(train.cid == 'Slovakia_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
train.loc[(train.cid == 'US_Hawaii') & (train.Date >= '2020-03-25') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
param = {'subsample': 1.0, 'colsample_bytree': 0.85, 'max_depth': 5, 'gamma': 0.0, 'learning_rate': 0.01, 'min_child_weight': 6.0, 'reg_alpha': 0.0, 'reg_lambda': 0.4, 'silent': 1, 'objective': 'reg:squarederror', 'nthread': 12, 'seed': self.seed}
tr, vl = self.create_features(train.copy(), valid_day)
features = [f for f in tr.columns if f not in ['lag0_8', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features0 = features
features = [f for f in tr.columns if f not in ['m0', 'm1', 'm2', 'm3', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features1 = features
nrounds0 = 680
nrounds1 = 630
dtrain = xgb.DMatrix(tr[self.features0], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed + 1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[self.features1], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed + 1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(self.vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'ypred0'] = self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'log0_max']
self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'ypred1'] = self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'log1_max']
VALID = self.vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo', 'day']
self.train['ypred0'] = pd.merge(self.train[feats], yesterday[feats + ['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[self.train.ypred0.notnull(), 'target0'] = self.train.loc[self.train.ypred0.notnull(), 'ypred0']
self.train['ypred1'] = pd.merge(self.train[feats], yesterday[feats + ['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[self.train.ypred1.notnull(), 'target1'] = self.train.loc[self.train.ypred1.notnull(), 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy(), self.day)
dvalid = xgb.DMatrix(vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[vl.ypred0 < vl.log0_max, 'ypred0'] = vl.loc[vl.ypred0 < vl.log0_max, 'log0_max']
vl.loc[vl.ypred1 < vl.log1_max, 'ypred1'] = vl.loc[vl.ypred1 < vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
TARGETS = ['ConfirmedCases', 'Fatalities']
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
def preprocess(df):
for col in ['Country_Region', 'Province_State']:
df[col].fillna('', inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x) for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df['day'] -= df['day'].min()
df['day'] -= df['day'].min()
TEST_FIRST = sub_df[sub_df['Date'] > df['Date'].max()]['Date'].min()
TEST_DAYS = (sub_df['Date'].max() - TEST_FIRST).days + 1
TEST_FIRST = (TEST_FIRST - df['Date'].min()).days
def get_blend(pred_dfs, weights, verbose=True):
blend_df = pred_dfs['giba1'].copy()
blend_df[TARGETS] = 0
for name, pred_df in pred_dfs.items():
blend_df[TARGETS] += weights[name] * pred_df[TARGETS].values
return blend_df
cov_models = {'ahmet': CovidModelAhmet(), 'giba1': CovidModelGIBA(lag=1), 'giba2': CovidModelGIBA(lag=2)}
weights = {'ahmet': 0.45, 'giba1': 0.275, 'giba2': 0.275}
pred_dfs = {name: cm.predict_first_day(TEST_FIRST).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = blend_df.copy()
for d in range(1, TEST_DAYS):
pred_dfs = {name: cm.predict_next_day(blend_df).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = eval_df.append(blend_df)
sub_df = sub_df.merge(df.append(eval_df, sort=False), on=['geo', 'day'], how='left')
sub_df.head() | code |
32068475/cell_6 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_error, mean_squared_log_error
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import xgboost as xgb
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1))[:10]
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x) for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x) for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[test.Date > train.Date.max()].copy()
train = pd.concat((train, publictest), sort=False)
train.sort_values(['Country_Region', 'Province_State', 'Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region', 'Province_State', 'Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0) | train.ForecastId.notnull() | (train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('../input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region', 'Province_State', 'Date', 'Type', 'Reference']
dt = dt.loc[dt.Date == dt.Date]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid', 'Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df = df.loc[df.day >= valid_day - 50].copy()
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag0_8'] = df.groupby('cid')['target0'].shift(8)
df['lag0_8'] = df.groupby('cid')['lag0_8'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20).mean().values
df['m9'] = df.groupby('cid')['lag0_1'].rolling(25).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['m9'] = df.groupby('cid')['m9'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1 * (df['Country_Region'] == 'China')
df['flag_US'] = 1 * (df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1 * (df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1 * (df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1 * (df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1 * (df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1 * (df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1 * (df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1 * (df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1 * (df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1 * (df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1 * (df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1 * (df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1 * (df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1 * (df['cid'] == 'Honduras_')
df['flag_Bangladesh'] = 1 * (df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1 * (df['cid'] == 'Paraguay_')
tr = df.loc[df.day < valid_day].copy()
vl = df.loc[df.day == valid_day].copy()
tr = tr.loc[tr.lag0_1 > 0].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max').reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max').reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid', how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid', how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return (tr, vl)
def train_models(self, valid_day=10):
train = self.train.copy()
train.loc[(train.cid == 'China_Guizhou') & (train.Date == '2020-03-17'), 'target0'] = np.log1p(146)
train.loc[(train.cid == 'Guyana_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(12)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-29') & (train.Date <= '2020-03-29'), 'target0'] = np.log1p(24)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-30') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(27)
train.loc[(train.cid == 'Iceland_') & (train.Date >= '2020-03-15') & (train.Date <= '2020-03-15'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Kazakhstan_') & (train.Date >= '2020-03-20') & (train.Date <= '2020-03-20'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-26') & (train.Date <= '2020-03-26'), 'target1'] = np.log1p(5)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-27') & (train.Date <= '2020-03-27'), 'target1'] = np.log1p(6)
train.loc[(train.cid == 'Slovakia_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
train.loc[(train.cid == 'US_Hawaii') & (train.Date >= '2020-03-25') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
param = {'subsample': 1.0, 'colsample_bytree': 0.85, 'max_depth': 5, 'gamma': 0.0, 'learning_rate': 0.01, 'min_child_weight': 6.0, 'reg_alpha': 0.0, 'reg_lambda': 0.4, 'silent': 1, 'objective': 'reg:squarederror', 'nthread': 12, 'seed': self.seed}
tr, vl = self.create_features(train.copy(), valid_day)
features = [f for f in tr.columns if f not in ['lag0_8', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features0 = features
features = [f for f in tr.columns if f not in ['m0', 'm1', 'm2', 'm3', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features1 = features
nrounds0 = 680
nrounds1 = 630
dtrain = xgb.DMatrix(tr[self.features0], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed + 1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[self.features1], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed + 1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(self.vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'ypred0'] = self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'log0_max']
self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'ypred1'] = self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'log1_max']
VALID = self.vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo', 'day']
self.train['ypred0'] = pd.merge(self.train[feats], yesterday[feats + ['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[self.train.ypred0.notnull(), 'target0'] = self.train.loc[self.train.ypred0.notnull(), 'ypred0']
self.train['ypred1'] = pd.merge(self.train[feats], yesterday[feats + ['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[self.train.ypred1.notnull(), 'target1'] = self.train.loc[self.train.ypred1.notnull(), 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy(), self.day)
dvalid = xgb.DMatrix(vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[vl.ypred0 < vl.log0_max, 'ypred0'] = vl.loc[vl.ypred0 < vl.log0_max, 'log0_max']
vl.loc[vl.ypred1 < vl.log1_max, 'ypred1'] = vl.loc[vl.ypred1 < vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
TARGETS = ['ConfirmedCases', 'Fatalities']
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
def preprocess(df):
for col in ['Country_Region', 'Province_State']:
df[col].fillna('', inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x) for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df['day'] -= df['day'].min()
df['day'] -= df['day'].min()
TEST_FIRST = sub_df[sub_df['Date'] > df['Date'].max()]['Date'].min()
print(TEST_FIRST)
TEST_DAYS = (sub_df['Date'].max() - TEST_FIRST).days + 1
TEST_FIRST = (TEST_FIRST - df['Date'].min()).days
print(TEST_FIRST, TEST_DAYS)
def get_blend(pred_dfs, weights, verbose=True):
if verbose:
for n1, n2 in [('giba1', 'ahmet'), ('giba2', 'ahmet')]:
print(n1, n2, np.round(rmse(pred_dfs[n1][TARGETS[0]], pred_dfs[n2][TARGETS[0]]), 4), np.round(rmse(pred_dfs[n1][TARGETS[1]], pred_dfs[n2][TARGETS[1]]), 4))
blend_df = pred_dfs['giba1'].copy()
blend_df[TARGETS] = 0
for name, pred_df in pred_dfs.items():
blend_df[TARGETS] += weights[name] * pred_df[TARGETS].values
return blend_df
cov_models = {'ahmet': CovidModelAhmet(), 'giba1': CovidModelGIBA(lag=1), 'giba2': CovidModelGIBA(lag=2)}
weights = {'ahmet': 0.45, 'giba1': 0.275, 'giba2': 0.275}
pred_dfs = {name: cm.predict_first_day(TEST_FIRST).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = blend_df.copy()
for d in range(1, TEST_DAYS):
pred_dfs = {name: cm.predict_next_day(blend_df).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = eval_df.append(blend_df)
print(d, eval_df.shape, flush=True) | code |
32068475/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068475/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_error, mean_squared_log_error
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import xgboost as xgb
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1))[:10]
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x) for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x) for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[test.Date > train.Date.max()].copy()
train = pd.concat((train, publictest), sort=False)
train.sort_values(['Country_Region', 'Province_State', 'Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region', 'Province_State', 'Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0) | train.ForecastId.notnull() | (train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('../input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region', 'Province_State', 'Date', 'Type', 'Reference']
dt = dt.loc[dt.Date == dt.Date]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid', 'Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df = df.loc[df.day >= valid_day - 50].copy()
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag0_8'] = df.groupby('cid')['target0'].shift(8)
df['lag0_8'] = df.groupby('cid')['lag0_8'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20).mean().values
df['m9'] = df.groupby('cid')['lag0_1'].rolling(25).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['m9'] = df.groupby('cid')['m9'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1 * (df['Country_Region'] == 'China')
df['flag_US'] = 1 * (df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1 * (df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1 * (df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1 * (df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1 * (df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1 * (df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1 * (df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1 * (df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1 * (df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1 * (df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1 * (df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1 * (df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1 * (df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1 * (df['cid'] == 'Honduras_')
df['flag_Bangladesh'] = 1 * (df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1 * (df['cid'] == 'Paraguay_')
tr = df.loc[df.day < valid_day].copy()
vl = df.loc[df.day == valid_day].copy()
tr = tr.loc[tr.lag0_1 > 0].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max').reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max').reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid', how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid', how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return (tr, vl)
def train_models(self, valid_day=10):
train = self.train.copy()
train.loc[(train.cid == 'China_Guizhou') & (train.Date == '2020-03-17'), 'target0'] = np.log1p(146)
train.loc[(train.cid == 'Guyana_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(12)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-29') & (train.Date <= '2020-03-29'), 'target0'] = np.log1p(24)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-30') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(27)
train.loc[(train.cid == 'Iceland_') & (train.Date >= '2020-03-15') & (train.Date <= '2020-03-15'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Kazakhstan_') & (train.Date >= '2020-03-20') & (train.Date <= '2020-03-20'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-26') & (train.Date <= '2020-03-26'), 'target1'] = np.log1p(5)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-27') & (train.Date <= '2020-03-27'), 'target1'] = np.log1p(6)
train.loc[(train.cid == 'Slovakia_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
train.loc[(train.cid == 'US_Hawaii') & (train.Date >= '2020-03-25') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
param = {'subsample': 1.0, 'colsample_bytree': 0.85, 'max_depth': 5, 'gamma': 0.0, 'learning_rate': 0.01, 'min_child_weight': 6.0, 'reg_alpha': 0.0, 'reg_lambda': 0.4, 'silent': 1, 'objective': 'reg:squarederror', 'nthread': 12, 'seed': self.seed}
tr, vl = self.create_features(train.copy(), valid_day)
features = [f for f in tr.columns if f not in ['lag0_8', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features0 = features
features = [f for f in tr.columns if f not in ['m0', 'm1', 'm2', 'm3', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features1 = features
nrounds0 = 680
nrounds1 = 630
dtrain = xgb.DMatrix(tr[self.features0], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed + 1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[self.features1], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed + 1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(self.vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'ypred0'] = self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'log0_max']
self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'ypred1'] = self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'log1_max']
VALID = self.vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo', 'day']
self.train['ypred0'] = pd.merge(self.train[feats], yesterday[feats + ['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[self.train.ypred0.notnull(), 'target0'] = self.train.loc[self.train.ypred0.notnull(), 'ypred0']
self.train['ypred1'] = pd.merge(self.train[feats], yesterday[feats + ['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[self.train.ypred1.notnull(), 'target1'] = self.train.loc[self.train.ypred1.notnull(), 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy(), self.day)
dvalid = xgb.DMatrix(vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[vl.ypred0 < vl.log0_max, 'ypred0'] = vl.loc[vl.ypred0 < vl.log0_max, 'log0_max']
vl.loc[vl.ypred1 < vl.log1_max, 'ypred1'] = vl.loc[vl.ypred1 < vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
TARGETS = ['ConfirmedCases', 'Fatalities']
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
def preprocess(df):
for col in ['Country_Region', 'Province_State']:
df[col].fillna('', inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x) for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df['day'] -= df['day'].min()
df['day'] -= df['day'].min()
TEST_FIRST = sub_df[sub_df['Date'] > df['Date'].max()]['Date'].min()
TEST_DAYS = (sub_df['Date'].max() - TEST_FIRST).days + 1
TEST_FIRST = (TEST_FIRST - df['Date'].min()).days
def get_blend(pred_dfs, weights, verbose=True):
blend_df = pred_dfs['giba1'].copy()
blend_df[TARGETS] = 0
for name, pred_df in pred_dfs.items():
blend_df[TARGETS] += weights[name] * pred_df[TARGETS].values
return blend_df
cov_models = {'ahmet': CovidModelAhmet(), 'giba1': CovidModelGIBA(lag=1), 'giba2': CovidModelGIBA(lag=2)}
weights = {'ahmet': 0.45, 'giba1': 0.275, 'giba2': 0.275}
pred_dfs = {name: cm.predict_first_day(TEST_FIRST).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = blend_df.copy()
for d in range(1, TEST_DAYS):
pred_dfs = {name: cm.predict_next_day(blend_df).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = eval_df.append(blend_df)
eval_df.head() | code |
32068475/cell_8 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_error, mean_squared_log_error
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import xgboost as xgb
class CovidModel:
def __init__(self):
pass
def predict_first_day(self, date):
return None
def predict_next_day(self, yesterday_pred_df):
return None
class CovidModelGIBA(CovidModel):
def __init__(self, lag=1, seed=1):
self.lag = lag
self.seed = seed
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
train['Date'] = pd.to_datetime(train['Date'])
self.maxdate = str(train['Date'].max())[:10]
self.testdate = str(train['Date'].max() + pd.Timedelta(days=1))[:10]
train['Province_State'].fillna('', inplace=True)
train['day'] = train.Date.dt.dayofyear
self.day_min = train['day'].min()
train['day'] -= self.day_min
train['geo'] = ['_'.join(x) for x in zip(train['Country_Region'], train['Province_State'])]
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
test['Date'] = pd.to_datetime(test['Date'])
test['Province_State'].fillna('', inplace=True)
test['day'] = test.Date.dt.dayofyear
test['day'] -= self.day_min
test['geo'] = ['_'.join(x) for x in zip(test['Country_Region'], test['Province_State'])]
test['Id'] = -1
test['ConfirmedCases'] = 0
test['Fatalities'] = 0
self.trainmaxday = train['day'].max()
self.testday1 = train['day'].max() + 1
self.testdayN = test['day'].max()
publictest = test.loc[test.Date > train.Date.max()].copy()
train = pd.concat((train, publictest), sort=False)
train.sort_values(['Country_Region', 'Province_State', 'Date'], inplace=True)
train = train.reset_index(drop=True)
train['ForecastId'] = pd.merge(train, test, on=['Country_Region', 'Province_State', 'Date'], how='left')['ForecastId_y'].values
train['cid'] = train['Country_Region'] + '_' + train['Province_State']
train['log0'] = np.log1p(train['ConfirmedCases'])
train['log1'] = np.log1p(train['Fatalities'])
train = train.loc[(train.log0 > 0) | train.ForecastId.notnull() | (train.Date >= '2020-03-17')].copy()
train = train.reset_index(drop=True)
train['days_since_1case'] = train.groupby('cid')['Id'].cumcount()
dt = pd.read_csv('../input/covid19-lockdown-dates-by-country/countryLockdowndates.csv')
dt.columns = ['Country_Region', 'Province_State', 'Date', 'Type', 'Reference']
dt = dt.loc[dt.Date == dt.Date]
dt['Province_State'] = dt['Province_State'].fillna('')
dt['Date'] = pd.to_datetime(dt['Date'])
dt['Date'] = dt['Date'] + pd.Timedelta(days=8)
dt['Type'] = pd.factorize(dt['Type'])[0]
dt['cid'] = dt['Country_Region'] + '_' + dt['Province_State']
del dt['Reference'], dt['Country_Region'], dt['Province_State']
train = pd.merge(train, dt, on=['cid', 'Date'], how='left')
train['Type'] = train.groupby('cid')['Type'].fillna(method='ffill')
train['target0'] = np.log1p(train['ConfirmedCases'])
train['target1'] = np.log1p(train['Fatalities'])
self.train = train.copy()
def create_features(self, df, valid_day):
df = df.loc[df.day >= valid_day - 50].copy()
df['lag0_1'] = df.groupby('cid')['target0'].shift(self.lag)
df['lag0_1'] = df.groupby('cid')['lag0_1'].fillna(method='bfill')
df['lag0_8'] = df.groupby('cid')['target0'].shift(8)
df['lag0_8'] = df.groupby('cid')['lag0_8'].fillna(method='bfill')
df['lag1_1'] = df.groupby('cid')['target1'].shift(self.lag)
df['lag1_1'] = df.groupby('cid')['lag1_1'].fillna(method='bfill')
df['m0'] = df.groupby('cid')['lag0_1'].rolling(2).mean().values
df['m1'] = df.groupby('cid')['lag0_1'].rolling(3).mean().values
df['m2'] = df.groupby('cid')['lag0_1'].rolling(4).mean().values
df['m3'] = df.groupby('cid')['lag0_1'].rolling(5).mean().values
df['m4'] = df.groupby('cid')['lag0_1'].rolling(7).mean().values
df['m5'] = df.groupby('cid')['lag0_1'].rolling(10).mean().values
df['m6'] = df.groupby('cid')['lag0_1'].rolling(12).mean().values
df['m7'] = df.groupby('cid')['lag0_1'].rolling(16).mean().values
df['m8'] = df.groupby('cid')['lag0_1'].rolling(20).mean().values
df['m9'] = df.groupby('cid')['lag0_1'].rolling(25).mean().values
df['n0'] = df.groupby('cid')['lag1_1'].rolling(2).mean().values
df['n1'] = df.groupby('cid')['lag1_1'].rolling(3).mean().values
df['n2'] = df.groupby('cid')['lag1_1'].rolling(4).mean().values
df['n3'] = df.groupby('cid')['lag1_1'].rolling(5).mean().values
df['n4'] = df.groupby('cid')['lag1_1'].rolling(7).mean().values
df['n5'] = df.groupby('cid')['lag1_1'].rolling(10).mean().values
df['n6'] = df.groupby('cid')['lag1_1'].rolling(12).mean().values
df['n7'] = df.groupby('cid')['lag1_1'].rolling(16).mean().values
df['n8'] = df.groupby('cid')['lag1_1'].rolling(20).mean().values
df['m0'] = df.groupby('cid')['m0'].fillna(method='bfill')
df['m1'] = df.groupby('cid')['m1'].fillna(method='bfill')
df['m2'] = df.groupby('cid')['m2'].fillna(method='bfill')
df['m3'] = df.groupby('cid')['m3'].fillna(method='bfill')
df['m4'] = df.groupby('cid')['m4'].fillna(method='bfill')
df['m5'] = df.groupby('cid')['m5'].fillna(method='bfill')
df['m6'] = df.groupby('cid')['m6'].fillna(method='bfill')
df['m7'] = df.groupby('cid')['m7'].fillna(method='bfill')
df['m8'] = df.groupby('cid')['m8'].fillna(method='bfill')
df['m9'] = df.groupby('cid')['m9'].fillna(method='bfill')
df['n0'] = df.groupby('cid')['n0'].fillna(method='bfill')
df['n1'] = df.groupby('cid')['n1'].fillna(method='bfill')
df['n2'] = df.groupby('cid')['n2'].fillna(method='bfill')
df['n3'] = df.groupby('cid')['n3'].fillna(method='bfill')
df['n4'] = df.groupby('cid')['n4'].fillna(method='bfill')
df['n5'] = df.groupby('cid')['n5'].fillna(method='bfill')
df['n6'] = df.groupby('cid')['n6'].fillna(method='bfill')
df['n7'] = df.groupby('cid')['n7'].fillna(method='bfill')
df['n8'] = df.groupby('cid')['n8'].fillna(method='bfill')
df['flag_China'] = 1 * (df['Country_Region'] == 'China')
df['flag_US'] = 1 * (df['Country_Region'] == 'US')
df['flag_Kosovo_'] = 1 * (df['cid'] == 'Kosovo_')
df['flag_Korea'] = 1 * (df['cid'] == 'Korea, South_')
df['flag_Nepal_'] = 1 * (df['cid'] == 'Nepal_')
df['flag_Holy See_'] = 1 * (df['cid'] == 'Holy See_')
df['flag_Suriname_'] = 1 * (df['cid'] == 'Suriname_')
df['flag_Ghana_'] = 1 * (df['cid'] == 'Ghana_')
df['flag_Togo_'] = 1 * (df['cid'] == 'Togo_')
df['flag_Malaysia_'] = 1 * (df['cid'] == 'Malaysia_')
df['flag_US_Rhode'] = 1 * (df['cid'] == 'US_Rhode Island')
df['flag_Bolivia_'] = 1 * (df['cid'] == 'Bolivia_')
df['flag_China_Tib'] = 1 * (df['cid'] == 'China_Tibet')
df['flag_Bahrain_'] = 1 * (df['cid'] == 'Bahrain_')
df['flag_Honduras_'] = 1 * (df['cid'] == 'Honduras_')
df['flag_Bangladesh'] = 1 * (df['cid'] == 'Bangladesh_')
df['flag_Paraguay_'] = 1 * (df['cid'] == 'Paraguay_')
tr = df.loc[df.day < valid_day].copy()
vl = df.loc[df.day == valid_day].copy()
tr = tr.loc[tr.lag0_1 > 0].copy()
maptarget0 = tr.groupby('cid')['target0'].agg(log0_max='max').reset_index()
maptarget1 = tr.groupby('cid')['target1'].agg(log1_max='max').reset_index()
vl['log0_max'] = pd.merge(vl, maptarget0, on='cid', how='left')['log0_max'].values
vl['log1_max'] = pd.merge(vl, maptarget1, on='cid', how='left')['log1_max'].values
vl['log0_max'] = vl['log0_max'].fillna(0)
vl['log1_max'] = vl['log1_max'].fillna(0)
return (tr, vl)
def train_models(self, valid_day=10):
train = self.train.copy()
train.loc[(train.cid == 'China_Guizhou') & (train.Date == '2020-03-17'), 'target0'] = np.log1p(146)
train.loc[(train.cid == 'Guyana_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(12)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-29') & (train.Date <= '2020-03-29'), 'target0'] = np.log1p(24)
train.loc[(train.cid == 'US_Virgin Islands') & (train.Date >= '2020-03-30') & (train.Date <= '2020-03-30'), 'target0'] = np.log1p(27)
train.loc[(train.cid == 'Iceland_') & (train.Date >= '2020-03-15') & (train.Date <= '2020-03-15'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Kazakhstan_') & (train.Date >= '2020-03-20') & (train.Date <= '2020-03-20'), 'target1'] = np.log1p(0)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-26') & (train.Date <= '2020-03-26'), 'target1'] = np.log1p(5)
train.loc[(train.cid == 'Serbia_') & (train.Date >= '2020-03-27') & (train.Date <= '2020-03-27'), 'target1'] = np.log1p(6)
train.loc[(train.cid == 'Slovakia_') & (train.Date >= '2020-03-22') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
train.loc[(train.cid == 'US_Hawaii') & (train.Date >= '2020-03-25') & (train.Date <= '2020-03-31'), 'target1'] = np.log1p(1)
param = {'subsample': 1.0, 'colsample_bytree': 0.85, 'max_depth': 5, 'gamma': 0.0, 'learning_rate': 0.01, 'min_child_weight': 6.0, 'reg_alpha': 0.0, 'reg_lambda': 0.4, 'silent': 1, 'objective': 'reg:squarederror', 'nthread': 12, 'seed': self.seed}
tr, vl = self.create_features(train.copy(), valid_day)
features = [f for f in tr.columns if f not in ['lag0_8', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features0 = features
features = [f for f in tr.columns if f not in ['m0', 'm1', 'm2', 'm3', 'Id', 'ConfirmedCases', 'Fatalities', 'log0', 'log1', 'target0', 'target1', 'ypred0', 'ypred1', 'Province_State', 'Country_Region', 'Date', 'ForecastId', 'cid', 'geo', 'day', 'GDP_region', 'TRUE POPULATION', 'pct_in_largest_city', ' TFR ', ' Avg_age ', 'latitude', 'longitude', 'abs_latitude', 'temperature', 'humidity', 'Personality_pdi', 'Personality_idv', 'Personality_mas', 'Personality_uai', 'Personality_ltowvs', 'Personality_assertive', 'personality_perform', 'personality_agreeableness', 'murder', 'High_rises', 'max_high_rises', 'AIR_CITIES', 'AIR_AVG', 'continent_gdp_pc', 'continent_happiness', 'continent_generosity', 'continent_corruption', 'continent_Life_expectancy']]
self.features1 = features
nrounds0 = 680
nrounds1 = 630
dtrain = xgb.DMatrix(tr[self.features0], tr['target0'])
param['seed'] = self.seed
self.model0 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
param['seed'] = self.seed + 1
self.model1 = xgb.train(param, dtrain, nrounds0, verbose_eval=0)
dtrain = xgb.DMatrix(tr[self.features1], tr['target1'])
param['seed'] = self.seed
self.model2 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
param['seed'] = self.seed + 1
self.model3 = xgb.train(param, dtrain, nrounds1, verbose_eval=0)
self.vl = vl
return 1
def predict_first_day(self, day):
self.day = day
self.train_models(day)
dvalid = xgb.DMatrix(self.vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(self.vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
self.vl['ypred0'] = ypred0
self.vl['ypred1'] = ypred1
self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'ypred0'] = self.vl.loc[self.vl.ypred0 < self.vl.log0_max, 'log0_max']
self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'ypred1'] = self.vl.loc[self.vl.ypred1 < self.vl.log1_max, 'log1_max']
VALID = self.vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
def predict_next_day(self, yesterday):
self.day += 1
feats = ['geo', 'day']
self.train['ypred0'] = pd.merge(self.train[feats], yesterday[feats + ['ConfirmedCases']], on=feats, how='left')['ConfirmedCases'].values
self.train.loc[self.train.ypred0.notnull(), 'target0'] = self.train.loc[self.train.ypred0.notnull(), 'ypred0']
self.train['ypred1'] = pd.merge(self.train[feats], yesterday[feats + ['Fatalities']], on=feats, how='left')['Fatalities'].values
self.train.loc[self.train.ypred1.notnull(), 'target1'] = self.train.loc[self.train.ypred1.notnull(), 'ypred1']
del self.train['ypred0'], self.train['ypred1']
tr, vl = self.create_features(self.train.copy(), self.day)
dvalid = xgb.DMatrix(vl[self.features0])
ypred0 = (self.model0.predict(dvalid) + self.model1.predict(dvalid)) / 2
dvalid = xgb.DMatrix(vl[self.features1])
ypred1 = (self.model2.predict(dvalid) + self.model3.predict(dvalid)) / 2
vl['ypred0'] = ypred0
vl['ypred1'] = ypred1
vl.loc[vl.ypred0 < vl.log0_max, 'ypred0'] = vl.loc[vl.ypred0 < vl.log0_max, 'log0_max']
vl.loc[vl.ypred1 < vl.log1_max, 'ypred1'] = vl.loc[vl.ypred1 < vl.log1_max, 'log1_max']
self.vl = vl
VALID = vl[['geo', 'day', 'ypred0', 'ypred1']].copy()
VALID.columns = ['geo', 'day', 'ConfirmedCases', 'Fatalities']
return VALID.reset_index(drop=True)
TARGETS = ['ConfirmedCases', 'Fatalities']
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
df = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
df[TARGETS] = np.log1p(df[TARGETS].values)
sub_df = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
def preprocess(df):
for col in ['Country_Region', 'Province_State']:
df[col].fillna('', inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df['day'] = df.Date.dt.dayofyear
df['geo'] = ['_'.join(x) for x in zip(df['Country_Region'], df['Province_State'])]
return df
df = preprocess(df)
sub_df = preprocess(sub_df)
sub_df['day'] -= df['day'].min()
df['day'] -= df['day'].min()
TEST_FIRST = sub_df[sub_df['Date'] > df['Date'].max()]['Date'].min()
TEST_DAYS = (sub_df['Date'].max() - TEST_FIRST).days + 1
TEST_FIRST = (TEST_FIRST - df['Date'].min()).days
def get_blend(pred_dfs, weights, verbose=True):
blend_df = pred_dfs['giba1'].copy()
blend_df[TARGETS] = 0
for name, pred_df in pred_dfs.items():
blend_df[TARGETS] += weights[name] * pred_df[TARGETS].values
return blend_df
cov_models = {'ahmet': CovidModelAhmet(), 'giba1': CovidModelGIBA(lag=1), 'giba2': CovidModelGIBA(lag=2)}
weights = {'ahmet': 0.45, 'giba1': 0.275, 'giba2': 0.275}
pred_dfs = {name: cm.predict_first_day(TEST_FIRST).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = blend_df.copy()
for d in range(1, TEST_DAYS):
pred_dfs = {name: cm.predict_next_day(blend_df).sort_values('geo') for name, cm in cov_models.items()}
blend_df = get_blend(pred_dfs, weights)
eval_df = eval_df.append(blend_df)
print(sub_df.shape)
sub_df = sub_df.merge(df.append(eval_df, sort=False), on=['geo', 'day'], how='left')
print(sub_df.shape)
print(sub_df[TARGETS].isnull().mean()) | code |
122260046/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
(train.shape, test.shape) | code |
122260046/cell_25 | [
"text_plain_output_1.png"
] | from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
(train.shape, test.shape)
X = train.drop('label', axis=1).values / 255.0
X = X.reshape(-1, 28, 28, 1)
X.shape
Y = train['label'].values
Y.shape
from tensorflow.keras.utils import to_categorical
Y = to_categorical(Y, num_classes=10)
Y.shape
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=200) | code |
122260046/cell_6 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
train.info() | code |
122260046/cell_29 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
(train.shape, test.shape)
A = test.values / 255.0
A = A.reshape(-1, 28, 28, 1)
A.shape
ids = [i + 1 for i in test.index]
len(ids) | code |
122260046/cell_26 | [
"text_plain_output_1.png"
] | from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
(train.shape, test.shape)
X = train.drop('label', axis=1).values / 255.0
X = X.reshape(-1, 28, 28, 1)
X.shape
Y = train['label'].values
Y.shape
from tensorflow.keras.utils import to_categorical
Y = to_categorical(Y, num_classes=10)
Y.shape
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=200)
pd.DataFrame(history.history) | code |
122260046/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
(train.shape, test.shape)
def select_pic(i):
arr = np.array(test[i:i + 1])
pix = arr.reshape(arr.shape[0], 28, 28)
img = pix[0]
for i in range(0, 1):
r = np.random.randint(i, 10000)
select_pic(r) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.