code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
# Fill this dict with config data return { 'hash_name': self.hash_name, 'dim': self.dim, 'projection_count': self.projection_count, 'normals': self.normals, 'tree_root': self.tree_root, 'minimum_result_size': self.minimum_result_size }
def get_config(self)
Returns pickle-serializable configuration struct for storage.
5.473358
4.984433
1.09809
self.hash_name = config['hash_name'] self.dim = config['dim'] self.projection_count = config['projection_count'] self.normals = config['normals'] self.tree_root = config['tree_root'] self.minimum_result_size = config['minimum_result_size']
def apply_config(self, config)
Applies config
4.075185
4.082365
0.998241
mongo_key = self._format_mongo_key(hash_name, bucket_key) val_dict = {} val_dict['lsh'] = mongo_key # Depending on type (sparse or not) fill value dict if scipy.sparse.issparse(v): # Make sure that we are using COO format (easy to handle) if not scipy.sparse.isspmatrix_coo(v): v = scipy.sparse.coo_matrix(v) # Construct list of [index, value] items, # one for each non-zero element of the sparse vector encoded_values = [] for k in range(v.data.size): row_index = v.row[k] value = v.data[k] encoded_values.append([int(row_index), value]) val_dict['sparse'] = 1 val_dict['nonzeros'] = encoded_values val_dict['dim'] = v.shape[0] else: # Make sure it is a 1d vector v = numpy.reshape(v, v.shape[0]) val_dict['vector'] = v.tostring() val_dict['dtype'] = v.dtype.name # Add data if set if data is not None: val_dict['data'] = data # Push JSON representation of dict to end of bucket list self.mongo_object.insert_one(val_dict)
def store_vector(self, hash_name, bucket_key, v, data)
Stores vector and JSON-serializable data in MongoDB with specified key.
3.609668
3.480994
1.036965
lsh_keys = [self._format_mongo_key(hash_name, key) for key in bucket_keys] self.mongo_object.remove({'lsh': {'$in': lsh_keys}, 'data': data})
def delete_vector(self, hash_name, bucket_keys, data)
Deletes vector and JSON-serializable data in buckets with specified keys.
4.91901
5.015842
0.980695
self.mongo_object.insert_one( {'hash_conf_name': lshash.hash_name+'_conf', 'hash_configuration': pickle.dumps(lshash.get_config()) } )
def store_hash_configuration(self, lshash)
Stores hash configuration
5.99978
5.682214
1.055888
conf = self.mongo_object.find_one( {'hash_conf_name': hash_name + '_conf'} ) return pickle.loads(conf['hash_configuration']) if conf is not None\ else None
def load_hash_configuration(self, hash_name)
Loads and returns hash configuration
6.044988
5.66542
1.066997
# If vectors is not a numpy matrix, create one if not isinstance(vectors, numpy.ndarray): V = numpy.zeros((vectors[0].shape[0], len(vectors))) for index in range(len(vectors)): vector = vectors[index] V[:, index] = vector return V return vectors
def numpy_array_from_list_or_numpy_array(vectors)
Returns numpy array representation of argument. Argument maybe numpy array (input is returned) or a list of numpy vectors.
3.190521
3.281312
0.972331
if scipy.sparse.issparse(vec): # convert scipy.sparse to standard numpy array vec = vec.tocsr() veclen = numpy.sqrt(numpy.sum(vec.data ** 2)) if veclen > 0.0: return vec / veclen else: return vec if isinstance(vec, numpy.ndarray): vec = numpy.asarray(vec, dtype=float) veclen = numpy.linalg.norm(vec) if veclen > 0.0: return vec / veclen else: return vec
def unitvec(vec)
Scale a vector to unit length. The only exception is the zero vector, which is returned back unchanged.
2.284688
2.257913
1.011858
# First subtract the mean M = (A-numpy.mean(A.T, axis=1)).T # Get eigenvectors and values of covariance matrix return numpy.linalg.eig(numpy.cov(M))
def perform_pca(A)
Computes eigenvalues and eigenvectors of covariance matrix of A. The rows of a correspond to observations, the columns to variables.
4.806037
4.409708
1.089876
c = ba.copy() for i in xrange(len(self.mapping)): ba[i] = c[self.mapping[i]] return ba
def permute(self, ba)
Permute the bitarray ba inplace.
4.273559
3.732336
1.145009
pba = ba.copy() self.permute(pba) assert(beam_size % 2 == 0) half_beam = beam_size / 2 # binary search (pba,ba) in bas idx = bisect_left(bas, (pba, ba)) start = int(max(0, idx - half_beam)) end = int(min(len(bas), idx + half_beam)) res = bas[start:end] # return the original(unpermuted) keys res = [x[1] for x in res] return res
def search_revert(self, bas, ba, beam_size)
ba: query bitarray bas: a sorted list of tuples of (permuted bitarray, original bitarray) return : query bitarray's beam-size neighbours (unpermuted bitarray)
4.468675
3.879549
1.151854
# We will store the normalized vector (used during retrieval) nv = unitvec(v) # Store vector in each bucket of all hashes for lshash in self.lshashes: for bucket_key in lshash.hash_vector(v): #print 'Storying in bucket %s one vector' % bucket_key self.storage.store_vector(lshash.hash_name, bucket_key, nv, data)
def store_vector(self, v, data=None)
Hashes vector v and stores it in all matching buckets in the storage. The data argument must be JSON-serializable. It is stored with the vector and will be returned in search results.
9.47507
8.755855
1.082141
# We will store the normalized vector (used during retrieval) nvs = [unitvec(i) for i in vs] # Store vector in each bucket of all hashes for lshash in self.lshashes: bucket_keys = [lshash.hash_vector(i)[0] for i in vs] self.storage.store_many_vectors(lshash.hash_name, bucket_keys, nvs, data)
def store_many_vectors(self, vs, data=None)
Store a batch of vectors. Hashes vector vs and stores them in all matching buckets in the storage. The data argument must be either None or a list of JSON-serializable object. It is stored with the vector and will be returned in search results.
6.29759
5.939366
1.060313
# Delete data id in each hashes for lshash in self.lshashes: if v is None: keys = self.storage.get_all_bucket_keys(lshash.hash_name) else: keys = lshash.hash_vector(v) self.storage.delete_vector(lshash.hash_name, keys, data)
def delete_vector(self, data, v=None)
Deletes vector v and his id (data) in all matching buckets in the storage. The data argument must be JSON-serializable.
5.154251
4.637418
1.111449
# Collect candidates from all buckets from all hashes candidates = self._get_candidates(v) # print 'Candidate count is %d' % len(candidates) # Apply fetch vector filters if specified and return filtered list if fetch_vector_filters: candidates = self._apply_filter(fetch_vector_filters, candidates) # Apply distance implementation if specified if not distance: distance = self.distance candidates = self._append_distances(v, distance, candidates) # Apply vector filters if specified and return filtered list if not vector_filters: vector_filters = self.vector_filters candidates = self._apply_filter(vector_filters, candidates) # If there is no vector filter, just return list of candidates return candidates
def neighbours(self, v, distance=None, fetch_vector_filters=None, vector_filters=None)
Hashes vector v, collects all candidate vectors from the matching buckets in storage, applys the (optional) distance function and finally the (optional) filter function to construct the returned list of either (vector, data, distance) tuples or (vector, data) tuples.
3.560892
3.38752
1.05118
candidates = [] for lshash in self.lshashes: for bucket_key in lshash.hash_vector(v, querying=True): bucket_content = self.storage.get_bucket( lshash.hash_name, bucket_key, ) #print 'Bucket %s size %d' % (bucket_key, len(bucket_content)) candidates.extend(bucket_content) return candidates
def _get_candidates(self, v)
Collect candidates from all buckets from all hashes
4.548556
4.065653
1.118776
if filters: filter_input = candidates for fetch_vector_filter in filters: filter_input = fetch_vector_filter.filter_vectors(filter_input) return filter_input else: return candidates
def _apply_filter(self, filters, candidates)
Apply vector filters if specified and return filtered list
5.15001
3.874289
1.329279
if distance: # Normalize vector (stored vectors are normalized) nv = unitvec(v) candidates = [(x[0], x[1], self.distance.distance(x[0], nv)) for x in candidates] return candidates
def _append_distances(self, v, distance, candidates)
Apply distance implementation if specified
10.605128
9.059135
1.170656
if scipy.sparse.issparse(x): x = x.toarray().ravel() y = y.toarray().ravel() return 1.0 - numpy.dot(x, y)
def distance(self, x, y)
Computes distance measure between vectors x and y. Returns float.
3.428064
3.135672
1.093247
# We will fill this array with measures for all the engines. result = [] # For each engine, first index vectors and then retrieve neighbours for endine_idx, engine in enumerate(engine_list): print('Engine %d / %d' % (endine_idx, len(engine_list))) # Clean storage engine.clean_all_buckets() # Use this to compute average recall avg_recall = 0.0 # Use this to compute average precision avg_precision = 0.0 # Use this to compute average search time avg_search_time = 0.0 # Index all vectors and store them for index, v in enumerate(self.vectors): engine.store_vector(v, 'data_%d' % index) # Look for N nearest neighbours for query vectors for index in self.query_indices: # Get indices of the real nearest as set real_nearest = set(self.closest[index]) # We have to time the search search_time_start = time.time() # Get nearest N according to engine nearest = engine.neighbours(self.vectors[index]) # Get search time search_time = time.time() - search_time_start # For comparance we need their indices (as set) nearest = set([self.__index_of_vector(x[0]) for x in nearest]) # Remove query index from search result to make sure that # recall and precision make sense in terms of "neighbours". # If ONLY the query vector is retrieved, we want recall to be # zero! nearest.remove(index) # If the result list is empty, recall and precision are 0.0 if len(nearest) == 0: recall = 0.0 precision = 0.0 else: # Get intersection count inter_count = float(len(real_nearest & nearest)) # Normalize recall for this vector recall = inter_count/float(len(real_nearest)) # Normalize precision for this vector precision = inter_count/float(len(nearest)) # Add to accumulator avg_recall += recall # Add to accumulator avg_precision += precision # Add to accumulator avg_search_time += search_time # Normalize recall over query set avg_recall /= float(len(self.query_indices)) # Normalize precision over query set avg_precision /= float(len(self.query_indices)) # Normalize search time over query set avg_search_time = avg_search_time / float(len(self.query_indices)) # Normalize search time with respect to exact search avg_search_time /= self.exact_search_time_per_vector print(' recall=%f, precision=%f, time=%f' % (avg_recall, avg_precision, avg_search_time)) result.append((avg_recall, avg_precision, avg_search_time)) # Return (recall, precision, search_time) tuple return result
def perform_experiment(self, engine_list)
Performs nearest neighbour recall experiments with custom vector data for all engines in the specified list. Returns self.result contains list of (recall, precision, search_time) tuple. All are the averaged values over all request vectors. search_time is the average retrieval/search time compared to the average exact search time.
3.637051
3.40652
1.067674
return numpy.array_str(numpy.round(unitvec(vector), decimals=3))
def __vector_to_string(self, vector)
Returns string representation of vector.
11.811519
9.403504
1.256076
unique_dict = {} for v in input_list: unique_dict[v[1]] = v return list(unique_dict.values())
def filter_vectors(self, input_list)
Returns subset of specified input list.
3.785749
3.659706
1.034441
self.dim = dim # Reset all child hashes for child_hash in self.child_hashes: child_hash['hash'].reset(dim) child_hash['bucket_keys'] = {}
def reset(self, dim)
Resets / Initializes the hash for the specified dimension.
6.033827
5.264774
1.146075
bucket_keys = [] if querying: # If we are querying, use the permuted indexes to get bucket keys for child_hash in self.child_hashes: lshash = child_hash['hash'] # Make sure the permuted index for this hash is existing if not lshash.hash_name in self.permutation.permutedIndexs: raise AttributeError('Permuted index is not existing for hash with name %s' % lshash.hash_name) # Get regular bucket keys from hash for bucket_key in lshash.hash_vector(v, querying): #print 'Regular bucket key %s' % bucket_key # Get neighbour keys from permuted index neighbour_keys = self.permutation.get_neighbour_keys(lshash.hash_name,bucket_key) # Add them to result, but prefix with hash name for n in neighbour_keys: bucket_keys.append(lshash.hash_name+'_'+n) else: # If we are indexing (storing) just use child hashes without permuted index for child_hash in self.child_hashes: lshash = child_hash['hash'] # Get regular bucket keys from hash for bucket_key in lshash.hash_vector(v, querying): # Register bucket key in child hash dict child_hash['bucket_keys'][bucket_key] = bucket_key # Append bucket key to result prefixed with child hash name bucket_keys.append(lshash.hash_name+'_'+bucket_key) # Return all the bucket keys return bucket_keys
def hash_vector(self, v, querying=False)
Hashes the vector and returns the bucket key as string.
3.841644
3.75306
1.023603
for child_hash in self.child_hashes: # Get config values for child hash config = child_hash['config'] num_permutation = config['num_permutation'] beam_size = config['beam_size'] num_neighbour = config['num_neighbour'] # Get used buckets keys for child hash bucket_keys = child_hash['bucket_keys'].keys() # Get actual child hash lshash = child_hash['hash'] # Compute permuted index for this hash self.permutation.build_permuted_index(lshash,bucket_keys,num_permutation,beam_size,num_neighbour)
def build_permuted_index(self)
Build PermutedIndex for all your binary hashings. PermutedIndex would be used to find the neighbour bucket key in terms of Hamming distance. Permute_configs is nested dict in the following format: permuted_config = {"<hash_name>": { "num_permutation":50, "beam_size":10, "num_neighbour":100 } }
4.514143
3.165601
1.425999
if scipy.sparse.issparse(x): return numpy.sum(numpy.absolute((x-y).toarray().ravel())) else: return numpy.sum(numpy.absolute(x-y))
def distance(self, x, y)
Computes the Manhattan distance between vectors x and y. Returns float.
3.038918
2.722173
1.116357
if scipy.sparse.issparse(x): return numpy.linalg.norm((x-y).toarray().ravel()) else: return numpy.linalg.norm(x-y)
def distance(self, x, y)
Computes distance measure between vectors x and y. Returns float.
3.179564
2.906702
1.093874
self._add_vector(hash_name, bucket_key, v, data, self.redis_object)
def store_vector(self, hash_name, bucket_key, v, data)
Stores vector and JSON-serializable data in bucket with specified key.
5.77138
5.912184
0.976184
with self.redis_object.pipeline() as pipeline: if data is None: data = [None] * len(vs) for bucket_key, data, v in zip(bucket_keys, data, vs): self._add_vector(hash_name, bucket_key, v, data, pipeline) pipeline.execute()
def store_many_vectors(self, hash_name, bucket_keys, vs, data)
Store a batch of vectors in Redis. Stores vector and JSON-serializable data in bucket with specified key.
2.77481
2.727688
1.017276
''' Store vector and JSON-serializable data in bucket with specified key. ''' redis_key = self._format_redis_key(hash_name, bucket_key) val_dict = {} # Depending on type (sparse or not) fill value dict if scipy.sparse.issparse(v): # Make sure that we are using COO format (easy to handle) if not scipy.sparse.isspmatrix_coo(v): v = scipy.sparse.coo_matrix(v) # Construct list of [index, value] items, # one for each non-zero element of the sparse vector encoded_values = [] for k in range(v.data.size): row_index = v.row[k] value = v.data[k] encoded_values.append([int(row_index), value]) val_dict['sparse'] = 1 val_dict['nonzeros'] = encoded_values val_dict['dim'] = v.shape[0] else: # Make sure it is a 1d vector v = numpy.reshape(v, v.shape[0]) val_dict['vector'] = v.tostring() val_dict['dtype'] = v.dtype.name # Add data if set if data is not None: val_dict['data'] = data # Push JSON representation of dict to end of bucket list self.redis_object.rpush(redis_key, pickle.dumps(val_dict, protocol=2))
def _add_vector(self, hash_name, bucket_key, v, data, redis_object)
Store vector and JSON-serializable data in bucket with specified key.
3.551115
3.187419
1.114103
with self.redis_object.pipeline() as pipeline: for key in bucket_keys: redis_key = self._format_redis_key(hash_name, key) rows = [(row, pickle.loads(row).get('data')) for row in self._get_bucket_rows(hash_name, key)] for _, id_data in rows: if id_data == data: break else: # Deleted data is not present in this bucket continue pipeline.delete(redis_key) pipeline.rpush(redis_key, *(row for row, id_data in rows if id_data != data)) pipeline.execute()
def delete_vector(self, hash_name, bucket_keys, data)
Deletes vector and JSON-serializable data in buckets with specified keys.
3.643746
3.674469
0.991639
results = [] for row in self._get_bucket_rows(hash_name, bucket_key): val_dict = pickle.loads(row) # Depending on type (sparse or not) reconstruct vector if 'sparse' in val_dict: # Fill these for COO creation row = [] col = [] data = [] # For each non-zero element, append values for e in val_dict['nonzeros']: row.append(e[0]) # Row index data.append(e[1]) # Value col.append(0) # Column index (always 0) # Create numpy arrays for COO creation coo_row = numpy.array(row, dtype=numpy.int32) coo_col = numpy.array(col, dtype=numpy.int32) coo_data = numpy.array(data) # Create COO sparse vector vector = scipy.sparse.coo_matrix((coo_data, (coo_row, coo_col)), shape=(val_dict['dim'], 1)) else: vector = numpy.fromstring(val_dict['vector'], dtype=val_dict['dtype']) # Add data to result tuple, if present results.append((vector, val_dict.get('data'))) return results
def get_bucket(self, hash_name, bucket_key)
Returns bucket content as list of tuples (vector, data).
3.167316
2.97832
1.063457
bucket_keys = self._iter_bucket_keys(hash_name) self.redis_object.delete(*bucket_keys)
def clean_buckets(self, hash_name)
Removes all buckets and their content for specified hash.
5.657625
4.925003
1.148756
bucket_keys = self.redis_object.keys(pattern='nearpy_*') if len(bucket_keys) > 0: self.redis_object.delete(*bucket_keys)
def clean_all_buckets(self)
Removes all buckets from all hashes and their content.
5.311347
4.835534
1.098399
self.redis_object.set(lshash.hash_name+'_conf', pickle.dumps(lshash.get_config()))
def store_hash_configuration(self, lshash)
Stores hash configuration
6.086175
5.469382
1.112772
conf = self.redis_object.get(hash_name+'_conf') return pickle.loads(conf) if conf is not None else None
def load_hash_configuration(self, hash_name)
Loads and returns hash configuration
6.038921
5.42087
1.114013
bucket_keys = [] if querying: # If we are querying, use the bucket key map for lshash in self.child_hashes: # Get regular bucket keys from hash for bucket_key in lshash.hash_vector(v, querying): prefixed_key = lshash.hash_name+'_'+bucket_key # Get entries from map (bucket keys with hamming distance of 1) if prefixed_key in self.bucket_key_map: bucket_keys.extend(self.bucket_key_map[prefixed_key].keys()) else: # If we are indexing (storing) just use child hashes without permuted index for lshash in self.child_hashes: # Get regular bucket keys from hash for bucket_key in lshash.hash_vector(v, querying): # Get permuted keys perm_keys = self.permuted_keys(bucket_key) # Put extact hit key into list perm_keys.append(bucket_key) # Append key for storage (not the permutations) bucket_keys.append(lshash.hash_name+'_'+bucket_key) # For every permutation register all the variants for perm_key in perm_keys: prefixed_key = lshash.hash_name+'_'+perm_key # Make sure dictionary exists if not prefixed_key in self.bucket_key_map: self.bucket_key_map[prefixed_key] = {} for variant in perm_keys: prefixed_variant = lshash.hash_name+'_'+variant self.bucket_key_map[prefixed_key][prefixed_variant] = 1 # Return all the bucket keys return bucket_keys
def hash_vector(self, v, querying=False)
Hashes the vector and returns the bucket key as string.
3.694949
3.624125
1.019542
self.hash_name = config['hash_name'] self.dim = config['dim'] self.bucket_key_map = config['bucket_key_map']
def apply_config(self, config)
Applies config
4.958089
5.133315
0.965865
# Hash must generate binary keys if not (isinstance(child_hash,PCABinaryProjections) or isinstance(child_hash,RandomBinaryProjections) or isinstance(child_hash,RandomBinaryProjectionTree)): raise ValueError('Child hashes must generate binary keys') # Add both hash and config to array of child hashes. Also we are going to # accumulate used bucket keys for every hash in order to build the permuted index self.child_hashes.append(child_hash)
def add_child_hash(self, child_hash)
Adds specified child hash. The hash must be one of the binary types.
12.130672
12.457427
0.97377
# convert query_key into bitarray query_key = bitarray(bucket_key) topk = set() for i in xrange(len(self.permutes)): p = self.permutes[i] plist = self.permuted_lists[i] candidates = p.search_revert(plist, query_key, self.beam_size) topk = topk.union(set(candidates)) topk = list(topk) # sort the topk neighbour keys according to the Hamming distance to qurey key topk = sorted(topk, key=lambda x: self.hamming_distance(x, query_key)) # return the top k items topk_bin = [x.to01() for x in topk[:k]] return topk_bin
def get_neighbour_keys(self, bucket_key, k)
The computing complexity is O( np*beam*log(np*beam) ) where, np = number of permutations beam = self.beam_size Make sure np*beam is much less than the number of bucket keys, otherwise we could use brute-force to get the neighbours
4.526962
4.003171
1.130844
try: # Return filtered (vector, data, distance )tuple list. Will fail # if input is list of (vector, data) tuples. return [x for x in input_list if x[2] < self.distance_threshold] except: # Otherwise just return input list return input_list
def filter_vectors(self, input_list)
Returns subset of specified input list.
6.897334
6.469519
1.066128
# We will fill this array with measures for all the engines. result = [] # For each engine, first index vectors and then retrieve neighbours for engine in engine_list: print('Engine %d / %d' % (engine_list.index(engine), len(engine_list))) # Clean storage engine.clean_all_buckets() # Use this to compute average distance_ratio avg_distance_ratio = 0.0 # Use this to compute average result set size avg_result_size = 0.0 # Use this to compute average search time avg_search_time = 0.0 # Index all vectors and store them for index in range(self.vectors.shape[1]): engine.store_vector(self.vectors[:, index], 'data_%d' % index) # Look for N nearest neighbours for query vectors for index in self.query_indices: # We have to time the search search_time_start = time.time() # Get nearest N according to engine nearest = engine.neighbours(self.vectors[:, index]) # Get search time search_time = time.time() - search_time_start # Get average distance ratio (with respect to radius # of real N closest neighbours) distance_ratio = 0.0 for n in nearest: # If the vector is outside the real neighbour radius if n[2] > self.nearest_radius[index]: # Compute distance to real neighbour radius d = (n[2] - self.nearest_radius[index]) # And normalize it. 1.0 means: distance to # real neighbour radius is identical to radius d /= self.nearest_radius[index] # If all neighbours are in the radius, the # distance ratio is 0.0 distance_ratio += d # Normalize distance ratio over all neighbours distance_ratio /= len(nearest) # Add to accumulator avg_distance_ratio += distance_ratio # Add to accumulator avg_result_size += len(nearest) # Add to accumulator avg_search_time += search_time # Normalize distance ratio over query set avg_distance_ratio /= float(len(self.query_indices)) # Normalize avg result size avg_result_size /= float(len(self.query_indices)) # Normalize search time over query set avg_search_time = avg_search_time / float(len(self.query_indices)) # Normalize search time with respect to exact search avg_search_time /= self.exact_search_time_per_vector print(' distance_ratio=%f, result_size=%f, time=%f' % (avg_distance_ratio, avg_result_size, avg_search_time)) result.append((avg_distance_ratio, avg_result_size, avg_search_time)) return result
def perform_experiment(self, engine_list)
Performs nearest neighbour experiments with custom vector data for all engines in the specified list. Returns self.result contains list of (distance_ratio, search_time) tuple. All are the averaged values over all request vectors. search_time is the average retrieval/search time compared to the average exact search time.
3.395542
3.206398
1.05899
if self.dim != dim: self.dim = dim self.normals = self.rand.randn(self.projection_count, dim)
def reset(self, dim)
Resets / Initializes the hash for the specified dimension.
6.743516
6.618704
1.018857
if scipy.sparse.issparse(v): # If vector is sparse, make sure we have the CSR representation # of the projection matrix if self.normals_csr == None: self.normals_csr = scipy.sparse.csr_matrix(self.normals) # Make sure that we are using CSR format for multiplication if not scipy.sparse.isspmatrix_csr(v): v = scipy.sparse.csr_matrix(v) # Project vector onto all hyperplane normals projection = self.normals_csr.dot(v) else: # Project vector onto all hyperplane normals projection = numpy.dot(self.normals, v) # Return binary key return [''.join(['1' if x > 0.0 else '0' for x in projection])]
def hash_vector(self, v, querying=False)
Hashes the vector and returns the binary bucket key as string.
3.632188
3.365052
1.079385
try: # Return filtered (vector, data, distance )tuple list. Will fail # if input is list of (vector, data) tuples. sorted_list = sorted(input_list, key=lambda x: x[2]) return sorted_list[:self.N] except: # Otherwise just return input list return input_list
def filter_vectors(self, input_list)
Returns subset of specified input list.
6.309251
5.994796
1.052455
if scipy.sparse.issparse(v): # If vector is sparse, make sure we have the CSR representation # of the projection matrix if self.components_csr == None: self.components_csr = scipy.sparse.csr_matrix(self.components) # Make sure that we are using CSR format for multiplication if not scipy.sparse.isspmatrix_csr(v): v = scipy.sparse.csr_matrix(v) # Project vector onto all hyperplane normals projection = (self.components_csr.dot(v) / self.bin_width).floor().toarray() else: # Project vector onto components projection = numpy.dot(self.components, v) projection = numpy.floor(projection / self.bin_width) # Return key return ['_'.join([str(int(x)) for x in projection])]
def hash_vector(self, v, querying=False)
Hashes the vector and returns the binary bucket key as string.
4.194028
3.929011
1.067452
# Fill this dict with config data return { 'hash_name': self.hash_name, 'dim': self.dim, 'bin_width': self.bin_width, 'projection_count': self.projection_count, 'components': self.components }
def get_config(self)
Returns pickle-serializable configuration struct for storage.
5.551315
4.925254
1.127113
self.hash_name = config['hash_name'] self.dim = config['dim'] self.bin_width = config['bin_width'] self.projection_count = config['projection_count'] self.components = config['components']
def apply_config(self, config)
Applies config
3.933044
3.965411
0.991838
# Fill this dict with config data return { 'hash_name': self.hash_name, 'dim': self.dim, 'bin_width': self.bin_width, 'projection_count': self.projection_count, 'normals': self.normals }
def get_config(self)
Returns pickle-serializable configuration struct for storage.
5.763402
5.125233
1.124515
self.hash_name = config['hash_name'] self.dim = config['dim'] self.bin_width = config['bin_width'] self.projection_count = config['projection_count'] self.normals = config['normals']
def apply_config(self, config)
Applies config
4.118427
4.154921
0.991217
# Init a PermutedIndex pi = PermutedIndex( lshash, buckets, num_permutation, beam_size, num_neighbour) # get hash_name hash_name = lshash.hash_name self.permutedIndexs[hash_name] = pi
def build_permuted_index( self, lshash, buckets, num_permutation, beam_size, num_neighbour)
Build a permutedIndex and store it into the dict self.permutedIndexs. lshash: the binary lshash object (nearpy.hashes.lshash). buckets: the buckets object corresponding to lshash. It's a dict object which can get from nearpy.storage.buckets[lshash.hash_name] num_permutation: the number of sorted randomly-permuted bucket key lists (SRPBKL). beam_size: beam size, details please refer to __init__() in nearpy.hashes.permutation.PermutedIndex num_neighbour: the number of neighbour bucket keys needed to return in self.get_neighbour_keys().
3.268638
2.487446
1.314054
# get the permutedIndex given hash_name permutedIndex = self.permutedIndexs[hash_name] # return neighbour bucket keys of query bucket key return permutedIndex.get_neighbour_keys( bucket_key, permutedIndex.num_neighbour)
def get_neighbour_keys(self, hash_name, bucket_key)
Return the neighbour buckets given hash_name and query bucket key.
7.742778
5.945529
1.302286
assert isinstance(editor, Editor) assert isinstance(rc_file, six.string_types) # Expand tildes. rc_file = os.path.expanduser(rc_file) # Check whether this file exists. if not os.path.exists(rc_file): print('Impossible to read %r' % rc_file) _press_enter_to_continue() return # Run the rc file in an empty namespace. try: namespace = {} with open(rc_file, 'r') as f: code = compile(f.read(), rc_file, 'exec') six.exec_(code, namespace, namespace) # Now we should have a 'configure' method in this namespace. We call this # method with editor as an argument. if 'configure' in namespace: namespace['configure'](editor) except Exception as e: # Handle possible exceptions in rc file. traceback.print_exc() _press_enter_to_continue()
def run_rc_file(editor, rc_file)
Run rc file.
3.013687
2.944743
1.023413
if character.encode(encoding, 'replace') == b'?': return backup else: return character
def _try_char(character, backup, encoding=sys.stdout.encoding)
Return `character` if it can be encoded using sys.stdout, else return the backup character.
4.857211
4.501878
1.07893
@Condition def overlay_is_visible(): app = get_app() text = editor.command_buffer.text.lstrip() return app.layout.has_focus(editor.command_buffer) and ( any(text.startswith(p) for p in ['b ', 'b! ', 'buffer', 'buffer!'])) return overlay_is_visible
def _bufferlist_overlay_visible(editor)
True when the buffer list overlay should be displayed. (This is when someone starts typing ':b' or ':buffer' in the command line.)
7.24599
6.01845
1.203963
# Start with an empty frames list everytime, to avoid memory leaks. existing_frames = self._frames self._frames = {} def create_layout_from_node(node): if isinstance(node, window_arrangement.Window): # Create frame for Window, or reuse it, if we had one already. key = (node, node.editor_buffer) frame = existing_frames.get(key) if frame is None: frame, pt_window = self._create_window_frame(node.editor_buffer) # Link layout Window to arrangement. node.pt_window = pt_window self._frames[key] = frame return frame elif isinstance(node, window_arrangement.VSplit): return VSplit( [create_layout_from_node(n) for n in node], padding=1, padding_char=self.get_vertical_border_char(), padding_style='class:frameborder') if isinstance(node, window_arrangement.HSplit): return HSplit([create_layout_from_node(n) for n in node]) layout = create_layout_from_node(self.window_arrangement.active_tab.root) self._fc.content = layout
def update(self)
Update layout to match the layout as described in the WindowArrangement.
5.147858
4.825688
1.066762
@Condition def wrap_lines(): return self.editor.wrap_lines window = Window( self._create_buffer_control(editor_buffer), allow_scroll_beyond_bottom=True, scroll_offsets=ScrollOffsets( left=0, right=0, top=(lambda: self.editor.scroll_offset), bottom=(lambda: self.editor.scroll_offset)), wrap_lines=wrap_lines, left_margins=[ConditionalMargin( margin=NumberedMargin( display_tildes=True, relative=Condition(lambda: self.editor.relative_number)), filter=Condition(lambda: self.editor.show_line_numbers))], cursorline=Condition(lambda: self.editor.cursorline), cursorcolumn=Condition(lambda: self.editor.cursorcolumn), colorcolumns=( lambda: [ColorColumn(pos) for pos in self.editor.colorcolumn]), ignore_content_width=True, ignore_content_height=True, get_line_prefix=partial(self._get_line_prefix, editor_buffer.buffer)) return HSplit([ window, VSplit([ WindowStatusBar(self.editor, editor_buffer), WindowStatusBarRuler(self.editor, window, editor_buffer.buffer), ], width=Dimension()), # Ignore actual status bar width. ]), window
def _create_window_frame(self, editor_buffer)
Create a Window for the buffer, with underneat a status bar.
4.71348
4.754698
0.991331
@Condition def preview_search(): return self.editor.incsearch input_processors = [ # Processor for visualising spaces. (should come before the # selection processor, otherwise, we won't see these spaces # selected.) ConditionalProcessor( ShowTrailingWhiteSpaceProcessor(), Condition(lambda: self.editor.display_unprintable_characters)), # Replace tabs by spaces. TabsProcessor( tabstop=(lambda: self.editor.tabstop), char1=(lambda: '|' if self.editor.display_unprintable_characters else ' '), char2=(lambda: _try_char('\u2508', '.', get_app().output.encoding()) if self.editor.display_unprintable_characters else ' '), ), # Reporting of errors, for Pyflakes. ReportingProcessor(editor_buffer), HighlightSelectionProcessor(), ConditionalProcessor( HighlightSearchProcessor(), Condition(lambda: self.editor.highlight_search)), ConditionalProcessor( HighlightIncrementalSearchProcessor(), Condition(lambda: self.editor.highlight_search) & preview_search), HighlightMatchingBracketProcessor(), DisplayMultipleCursors(), ] return BufferControl( lexer=DocumentLexer(editor_buffer), include_default_input_processors=False, input_processors=input_processors, buffer=editor_buffer.buffer, preview_search=preview_search, search_buffer_control=self.search_control, focus_on_click=True)
def _create_buffer_control(self, editor_buffer)
Create a new BufferControl for a given location.
6.037454
5.971081
1.011116
# Match with grammar and extract variables. m = COMMAND_GRAMMAR.match(input_string) if m is None: return variables = m.variables() command = variables.get('command') go_to_line = variables.get('go_to_line') shell_command = variables.get('shell_command') # Call command handler. if go_to_line is not None: # Handle go-to-line. _go_to_line(editor, go_to_line) elif shell_command is not None: # Handle shell commands. editor.application.run_system_command(shell_command) elif has_command_handler(command): # Handle other 'normal' commands. call_command_handler(command, editor, variables) else: # For unknown commands, show error message. editor.show_message('Not an editor command: %s' % input_string) return # After execution of commands, make sure to update the layout and focus # stack. editor.sync_with_prompt_toolkit()
def handle_command(editor, input_string)
Handle commands entered on the Vi command line.
3.991045
3.87886
1.028922
b = editor.application.current_buffer b.cursor_position = b.document.translate_row_col_to_index(max(0, int(line) - 1), 0)
def _go_to_line(editor, line)
Move cursor to this line in the current buffer.
3.605351
3.530185
1.021292
assert isinstance(location, six.string_types) if location.endswith('.py'): return report_pyflakes(document) else: return []
def report(location, document)
Run reporter on document and return list of ReporterError instances. (Depending on the location it will or won't run anything.) Returns a list of `ReporterError`.
5.557182
6.052848
0.91811
# Run pyflakes on input. reporter = _FlakesReporter() pyflakes.api.check(document.text, '', reporter=reporter) def format_flake_message(message): return [ ('class:flakemessage.prefix', 'pyflakes:'), ('', ' '), ('class:flakemessage', message.message % message.message_args) ] def message_to_reporter_error(message): start_index = document.translate_row_col_to_index(message.lineno - 1, message.col) end_index = start_index while end_index < len(document.text) and document.text[end_index] in WORD_CHARACTERS: end_index += 1 return ReporterError(lineno=message.lineno - 1, start_column=message.col, end_column=message.col + end_index - start_index, formatted_text=format_flake_message(message)) # Construct list of ReporterError instances. return [message_to_reporter_error(m) for m in reporter.messages]
def report_pyflakes(document)
Run pyflakes on document and return list of ReporterError instances.
3.532773
3.282362
1.07629
assert in_tab_pages + hsplit + vsplit <= 1 # Max one of these options. # When no files were given, open at least one empty buffer. locations2 = locations or [None] # First file self.window_arrangement.open_buffer(locations2[0]) for f in locations2[1:]: if in_tab_pages: self.window_arrangement.create_tab(f) elif hsplit: self.window_arrangement.hsplit(location=f) elif vsplit: self.window_arrangement.vsplit(location=f) else: self.window_arrangement.open_buffer(f) self.window_arrangement.active_tab_index = 0 if locations and len(locations) > 1: self.show_message('%i files loaded.' % len(locations))
def load_initial_files(self, locations, in_tab_pages=False, hsplit=False, vsplit=False)
Load a list of files.
3.458459
3.377812
1.023875
# Create Application. application = Application( input=self.input, output=self.output, editing_mode=EditingMode.VI, layout=self.editor_layout.layout, key_bindings=self.key_bindings, # get_title=lambda: get_terminal_title(self), style=DynamicStyle(lambda: self.current_style), paste_mode=Condition(lambda: self.paste_mode), # ignore_case=Condition(lambda: self.ignore_case), # TODO include_default_pygments_style=False, mouse_support=Condition(lambda: self.enable_mouse_support), full_screen=True, enable_page_navigation_bindings=True) # Handle command line previews. # (e.g. when typing ':colorscheme blue', it should already show the # preview before pressing enter.) def preview(_): if self.application.layout.has_focus(self.command_buffer): self.previewer.preview(self.command_buffer.text) self.command_buffer.on_text_changed += preview return application
def _create_application(self)
Create CommandLineInterface instance.
4.983061
4.609399
1.081065
current_buffer = self.application.current_buffer # Find/return the EditorBuffer with this name. for b in self.window_arrangement.editor_buffers: if b.buffer == current_buffer: return b
def current_editor_buffer(self)
Return the `EditorBuffer` that is currently active.
6.660748
5.755131
1.157358
try: self.current_style = get_editor_style_by_name(name) except pygments.util.ClassNotFound: pass
def use_colorscheme(self, name='default')
Apply new colorscheme. (By name.)
5.462061
5.788658
0.94358
# After executing a command, make sure that the layout of # prompt-toolkit matches our WindowArrangement. self.editor_layout.update() # Make sure that the focus stack of prompt-toolkit has the current # page. window = self.window_arrangement.active_pt_window if window: self.application.layout.focus(window)
def sync_with_prompt_toolkit(self)
Update the prompt-toolkit Layout and FocusStack.
10.708269
8.058528
1.328812
# Make sure everything is in sync, before starting. self.sync_with_prompt_toolkit() def pre_run(): # Start in navigation mode. self.application.vi_state.input_mode = InputMode.NAVIGATION # Run eventloop of prompt_toolkit. self.application.run(pre_run=pre_run)
def run(self)
Run the event loop for the interface. This starts the interaction.
7.867511
7.109513
1.106617
self.application.layout.focus(self.command_buffer) self.application.vi_state.input_mode = InputMode.INSERT self.previewer.save()
def enter_command_mode(self)
Go into command mode.
9.96522
9.641544
1.033571
self.previewer.restore() self.application.layout.focus_last() self.application.vi_state.input_mode = InputMode.NAVIGATION self.command_buffer.reset(append_to_history=append_to_history)
def leave_command_mode(self, append_to_history=False)
Leave command mode. Focus document window again.
6.189885
5.841394
1.059659
if name == 'vim': vim_style = Style.from_dict(default_vim_style) else: vim_style = style_from_pygments_cls(get_style_by_name(name)) return merge_styles([ vim_style, Style.from_dict(style_extensions), ])
def get_editor_style_by_name(name)
Get Style class. This raises `pygments.util.ClassNotFound` when there is no style with this name.
3.574379
4.014341
0.890403
location = self.editor_buffer.location if location: if self.editor_buffer.in_file_explorer_mode: return PygmentsLexer(DirectoryListingLexer, sync_from_start=False).lex_document(document) return PygmentsLexer.from_filename(location, sync_from_start=False).lex_document(document) return SimpleLexer().lex_document(document)
def lex_document(self, document)
Call the lexer and return a get_tokens_for_line function.
6.660595
5.857017
1.137199
assert isinstance(data, six.binary_type) for e in ENCODINGS: try: return data.decode(e), e except UnicodeDecodeError: pass return data.decode('utf-8', 'ignore')
def _auto_decode(data)
Decode bytes. Return a (text, encoding) tuple.
3.10901
2.772999
1.121173
location = os.path.expanduser(location) # Try to open this file, using different encodings. for e in ENCODINGS: try: with codecs.open(location, 'r', e) as f: return f.read(), e except UnicodeDecodeError: pass # Try next codec. # Unable to open. raise Exception('Unable to open file: %r' % location)
def read(self, location)
Read file from disk.
3.654578
3.431651
1.064962
location = os.path.expanduser(location) with codecs.open(location, 'w', encoding) as f: f.write(text)
def write(self, location, text, encoding)
Write file to disk.
2.498857
2.472361
1.010717
location = os.path.expanduser(location) with gzip.open(location, 'wb') as f: f.write(text.encode(encoding))
def write(self, location, text, encoding)
Write file to disk.
2.821256
2.746268
1.027306
for io in self.editor.io_backends: if io.can_open_location(location): # Found an I/O backend. exists = io.exists(location) self.isdir = io.isdir(location) if exists in (True, NotImplemented): # File could exist. Read it. self.is_new = False try: text, self.encoding = io.read(location) # Replace \r\n by \n. text = text.replace('\r\n', '\n') # Drop trailing newline while editing. # (prompt-toolkit doesn't enforce the trailing newline.) if text.endswith('\n'): text = text[:-1] except Exception as e: self.editor.show_message('Cannot read %r: %r' % (location, e)) return '' else: return text else: # File doesn't exist. self.is_new = True return '' self.editor.show_message('Cannot read: %r' % location) return ''
def _read(self, location)
Read file I/O backend.
3.973068
3.717978
1.06861
text = self._read(self.location) cursor_position = min(self.buffer.cursor_position, len(text)) self.buffer.document = Document(text, cursor_position) self._file_content = text
def reload(self)
Reload file again from storage.
5.758167
5.186309
1.110263
# Take location and expand tilde. if location is not None: self.location = location assert self.location # Find I/O backend that handles this location. for io in self.editor.io_backends: if io.can_open_location(self.location): break else: self.editor.show_message('Unknown location: %r' % location) # Write it. try: io.write(self.location, self.buffer.text + '\n', self.encoding) self.is_new = False except Exception as e: # E.g. "No such file or directory." self.editor.show_message('%s' % e) else: # When the save succeeds: update: _file_content. self._file_content = self.buffer.text
def write(self, location=None)
Write file to I/O backend.
4.900016
4.475902
1.094755
if self.location is None: return '[New file]' elif short: return os.path.basename(self.location) else: return self.location
def get_display_name(self, short=False)
Return name as displayed.
4.55729
4.103029
1.110714
" Buffer text changed. " if not self._reporter_is_running: self._reporter_is_running = True text = self.buffer.text self.report_errors = [] # Don't run reporter when we don't have a location. (We need to # know the filetype, actually.) if self.location is None: return # Better not to access the document in an executor. document = self.buffer.document def in_executor(): # Call reporter report_errors = report(self.location, document) def ready(): self._reporter_is_running = False # If the text has not been changed yet in the meantime, set # reporter errors. (We were running in another thread.) if text == self.buffer.text: self.report_errors = report_errors get_app().invalidate() else: # Restart reporter when the text was changed. self.run_reporter() call_from_executor(ready) run_in_executor(in_executor)
def run_reporter(self)
Buffer text changed.
6.195288
5.546898
1.116892
e = self.editor self._style = e.current_style self._show_line_numbers = e.show_line_numbers self._highlight_search = e.highlight_search self._show_ruler = e.show_ruler self._relative_number = e.relative_number self._cursorcolumn = e.cursorcolumn self._cursorline = e.cursorline self._colorcolumn = e.colorcolumn
def save(self)
Back up current editor state.
3.712824
3.294992
1.126808
e = self.editor # Parse command. m = COMMAND_GRAMMAR.match(input_string) if m is None: return variables = m.variables() command = variables.get('command') set_option = variables.get('set_option') # Preview colorschemes. if command == 'colorscheme': colorscheme = variables.get('colorscheme') if colorscheme: e.use_colorscheme(colorscheme) # Preview some set commands. if command == 'set': if set_option in ('hlsearch', 'hls'): e.highlight_search = True elif set_option in ('nohlsearch', 'nohls'): e.highlight_search = False elif set_option in ('nu', 'number'): e.show_line_numbers = True elif set_option in ('nonu', 'nonumber'): e.show_line_numbers = False elif set_option in ('ruler', 'ru'): e.show_ruler = True elif set_option in ('noruler', 'noru'): e.show_ruler = False elif set_option in ('relativenumber', 'rnu'): e.relative_number = True elif set_option in ('norelativenumber', 'nornu'): e.relative_number = False elif set_option in ('cursorline', 'cul'): e.cursorline = True elif set_option in ('cursorcolumn', 'cuc'): e.cursorcolumn = True elif set_option in ('nocursorline', 'nocul'): e.cursorline = False elif set_option in ('nocursorcolumn', 'nocuc'): e.cursorcolumn = False elif set_option in ('colorcolumn', 'cc'): value = variables.get('set_value', '') if value: e.colorcolumn = [ int(v) for v in value.split(',') if v.isdigit()]
def _apply(self, input_string)
Apply command.
2.554737
2.4914
1.025422
COMMANDS_TAKING_LOCATIONS.add(name) def decorator(func): @_cmd(name) def command_wrapper(editor, variables): location = variables.get('location') force = bool(variables['force']) if force and not accepts_force: editor.show_message('No ! allowed') elif accepts_force: func(editor, location, force=force) else: func(editor, location) return func return decorator
def location_cmd(name, accepts_force=False)
Decorator that registers a command that takes a location as (optional) parameter.
5.397895
5.280519
1.022228
def decorator(func): @_cmd(name) def command_wrapper(editor, variables): force = bool(variables['force']) if force and not accepts_force: editor.show_message('No ! allowed') elif accepts_force: func(editor, force=force) else: func(editor) return func return decorator
def cmd(name, accepts_force=False)
Decarator that registers a command that doesn't take any parameters.
5.486564
5.572062
0.984656
def decorator(func): SET_COMMANDS[name] = func if accepts_value: SET_COMMANDS_TAKING_VALUE.add(name) return func return decorator
def set_cmd(name, accepts_value=False)
Docorator that registers a ':set'-command.
3.611934
3.55584
1.015775
option = variables.get('set_option') value = variables.get('set_value') if option in SET_COMMANDS: # Call the correct handler. if option in SET_COMMANDS_TAKING_VALUE: SET_COMMANDS[option](editor, value) else: SET_COMMANDS[option](editor) else: editor.show_message('Unknown option: %s' % option)
def set_command_execute(editor, variables)
Execute a ':set' command.
3.302206
3.116886
1.059457
eb = editor.window_arrangement.active_editor_buffer if not force and eb.has_unsaved_changes: editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) else: editor.window_arrangement.go_to_next_buffer()
def _bn(editor, force=False)
Go to next buffer.
6.376222
5.087568
1.253295
eb = editor.window_arrangement.active_editor_buffer if not force and eb.has_unsaved_changes: editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) else: editor.window_arrangement.go_to_previous_buffer()
def _bp(editor, force=False)
Go to previous buffer.
6.527079
4.945643
1.319763
def handler(): wa = editor.window_arrangement for info in wa.list_open_buffers(): char = '%' if info.is_active else '' eb = info.editor_buffer print(' %3i %-2s %-20s line %i' % ( info.index, char, eb.location, (eb.buffer.document.cursor_position_row + 1))) six.moves.input('\nPress ENTER to continue...') run_in_terminal(handler)
def buffer_list(editor)
List all buffers.
8.67805
8.562952
1.013441
eb = editor.window_arrangement.active_editor_buffer force = bool(variables['force']) buffer_name = variables.get('buffer_name') if buffer_name: if not force and eb.has_unsaved_changes: editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) else: editor.window_arrangement.go_to_buffer(buffer_name)
def _buffer(editor, variables, force=False)
Go to one of the open buffers.
5.095321
4.856764
1.049118
eb = editor.window_arrangement.active_editor_buffer if not force and eb.has_unsaved_changes: editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) else: editor.window_arrangement.close_buffer()
def buffer_wipe(editor, force=False)
Wipe buffer.
6.286629
5.889089
1.067505
if location is None: # Edit/open without a location will reload the current file, if there are # no changes. eb = editor.window_arrangement.active_editor_buffer if eb.location is None: editor.show_message(_NO_FILE_NAME) elif not force and eb.has_unsaved_changes: editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) else: eb.reload() else: editor.file_explorer = '' editor.window_arrangement.open_buffer(location, show_in_current_window=True)
def buffer_edit(editor, location, force=False)
Edit new buffer.
6.675186
6.445652
1.035611
ebs = editor.window_arrangement.editor_buffers # When there are buffers that have unsaved changes, show balloon. if not force and any(eb.has_unsaved_changes for eb in ebs): editor.show_message(_NO_WRITE_SINCE_LAST_CHANGE_TEXT) # When there is more than one buffer open. elif not all_ and len(ebs) > 1: editor.show_message('%i more files to edit' % (len(ebs) - 1)) else: editor.application.exit()
def quit(editor, all_=False, force=False)
Quit.
6.191875
6.091478
1.016482
quit(editor, all_=True, force=force)
def quit_all(editor, force=False)
Quit all.
9.433381
8.623781
1.09388
if location and not force and os.path.exists(location): editor.show_message('File exists (add ! to overriwe)') else: eb = editor.window_arrangement.active_editor_buffer if location is None and eb.location is None: editor.show_message(_NO_FILE_NAME) else: eb.write(location)
def write(editor, location, force=False)
Write file.
7.254652
6.951474
1.043613
write(editor, location, force=force) editor.application.exit()
def write_and_quit(editor, location, force=False)
Write file and quit.
6.757911
6.241162
1.082797
eb = editor.window_arrangement.active_editor_buffer if eb.location is None: editor.show_message(_NO_FILE_NAME) else: eb.write() quit(editor, all_=True, force=False)
def write_and_quit_all(editor)
Write current buffer and quit all.
9.65898
8.477084
1.139422
" Change working directory. " try: os.chdir(location) except OSError as e: editor.show_message('{}'.format(e))
def pwd(editor, location)
Change working directory.
6.484644
6.259264
1.036007
colorscheme = variables.get('colorscheme') if colorscheme: editor.use_colorscheme(colorscheme)
def color_scheme(editor, variables)
Go to one of the open buffers.
3.533829
3.44703
1.025181