code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
parts = domain.split('.') if len(parts) == 1: yield parts[0] else: for i in range(len(parts), 1, -1): yield ".".join(parts[-i:])
def _domain_variants(domain)
>>> list(_domain_variants("foo.bar.example.com")) ['foo.bar.example.com', 'bar.example.com', 'example.com'] >>> list(_domain_variants("example.com")) ['example.com'] >>> list(_domain_variants("localhost")) ['localhost']
2.309054
2.603086
0.887045
joined_regexes = "|".join(r for r in regexes if r) if not joined_regexes: return None if use_re2: import re2 return re2.compile(joined_regexes, flags=flags, max_mem=max_mem) return re.compile(joined_regexes, flags=flags)
def _combined_regex(regexes, flags=re.IGNORECASE, use_re2=False, max_mem=None)
Return a compiled regex combined (using OR) from a list of ``regexes``. If there is nothing to combine, None is returned. re2 library (https://github.com/axiak/pyre2) often can match and compile large regexes much faster than stdlib re module (10x is not uncommon), but there are some gotchas: * in case of "DFA out of memory" errors use ``max_mem`` argument to increase the amount of memory re2 is allowed to use.
2.111137
2.444226
0.863724
options = options or {} for optname in self.options: if optname == 'match-case': # TODO continue if optname not in options: raise ValueError("Rule requires option %s" % optname) if optname == 'domain': if not self._domain_matches(options['domain']): return False continue if options[optname] != self.options[optname]: return False return self._url_matches(url)
def match_url(self, url, options=None)
Return if this rule matches the URL. What to do if rule is matched is up to developer. Most likely ``.is_exception`` attribute should be taken in account.
3.611305
3.639492
0.992255
if self.is_comment: return False if self.is_html_rule: # HTML rules are not supported yet return False options = options or {} keys = set(options.keys()) if not keys.issuperset(self._options_keys): # some of the required options are not given return False return True
def matching_supported(self, options=None)
Return whether this rule can return meaningful result, given the `options` dict. If some options are missing, then rule shouldn't be matched against, and this function returns False. No options: >>> rule = AdblockRule("swf|") >>> rule.matching_supported({}) True Option is used in the rule, but its value is not available at matching time: >>> rule = AdblockRule("swf|$third-party") >>> rule.matching_supported({}) False Option is used in the rule, and option value is available at matching time: >>> rule = AdblockRule("swf|$third-party") >>> rule.matching_supported({'domain': 'example.com', 'third-party': False}) True Rule is a comment: >>> rule = AdblockRule("!this is not a rule") >>> rule.matching_supported({}) False
5.465715
5.075259
1.076933
if not rule: return rule # Check if the rule isn't already regexp if rule.startswith('/') and rule.endswith('/'): if len(rule) > 1: rule = rule[1:-1] else: raise AdblockParsingError('Invalid rule') return rule # escape special regex characters rule = re.sub(r"([.$+?{}()\[\]\\])", r"\\\1", rule) # XXX: the resulting regex must use non-capturing groups (?: # for performance reasons; also, there is a limit on number # of capturing groups, no using them would prevent building # a single regex out of several rules. # Separator character ^ matches anything but a letter, a digit, or # one of the following: _ - . %. The end of the address is also # accepted as separator. rule = rule.replace("^", "(?:[^\w\d_\-.%]|$)") # * symbol rule = rule.replace("*", ".*") # | in the end means the end of the address if rule[-1] == '|': rule = rule[:-1] + '$' # || in the beginning means beginning of the domain name if rule[:2] == '||': # XXX: it is better to use urlparse for such things, # but urlparse doesn't give us a single regex. # Regex is based on http://tools.ietf.org/html/rfc3986#appendix-B if len(rule) > 2: # | | complete part | # | scheme | of the domain | rule = r"^(?:[^:/?#]+:)?(?://(?:[^/?#]*\.)?)?" + rule[2:] elif rule[0] == '|': # | in the beginning means start of the address rule = '^' + rule[1:] # other | symbols should be escaped # we have "|$" in our regexp - do not touch it rule = re.sub("(\|)[^$]", r"\|", rule) return rule
def rule_to_regex(cls, rule)
Convert AdBlock rule to a regular expression.
6.214052
6.007249
1.034425
if general_re and general_re.search(url): return True rules = [] if 'domain' in options and domain_required_rules: src_domain = options['domain'] for domain in _domain_variants(src_domain): if domain in domain_required_rules: rules.extend(domain_required_rules[domain]) rules.extend(rules_with_options) if self.skip_unsupported_rules: rules = [rule for rule in rules if rule.matching_supported(options)] return any(rule.match_url(url, options) for rule in rules)
def _matches(self, url, options, general_re, domain_required_rules, rules_with_options)
Return if ``url``/``options`` are matched by rules defined by ``general_re``, ``domain_required_rules`` and ``rules_with_options``. ``general_re`` is a compiled regex for rules without options. ``domain_required_rules`` is a {domain: [rules_which_require_it]} mapping. ``rules_with_options`` is a list of AdblockRule instances that don't require any domain, but have other options.
2.956396
3.360999
0.879618
# check directives are correct if _format == "%S": def _fromatter(seconds): return "{:.2f}".format(seconds) elif _format == "%I": def _fromatter(seconds): return "{0}".format(int(seconds * 1000)) else: _format = _format.replace("%h", "{hrs:02d}") _format = _format.replace("%m", "{mins:02d}") _format = _format.replace("%s", "{secs:02d}") _format = _format.replace("%i", "{millis:03d}") try: i = _format.index("%") raise TimeFormatError("Unknow time format directive '{0}'".format(_format[i:i+2])) except ValueError: pass def _fromatter(seconds): millis = int(seconds * 1000) hrs, millis = divmod(millis, 3600000) mins, millis = divmod(millis, 60000) secs, millis = divmod(millis, 1000) return _format.format(hrs=hrs, mins=mins, secs=secs, millis=millis) return _fromatter
def seconds_to_str_fromatter(_format)
Accepted format directives: %i %s %m %h
2.175119
2.141628
1.015638
if not mode in [self.STRICT_MIN_LENGTH, self.DROP_TRAILING_SILENCE, self.STRICT_MIN_LENGTH | self.DROP_TRAILING_SILENCE, 0]: raise ValueError("Wrong value for mode") self._mode = mode self._strict_min_length = (mode & self.STRICT_MIN_LENGTH) != 0 self._drop_tailing_silence = (mode & self.DROP_TRAILING_SILENCE) != 0
def set_mode(self, mode)
:Parameters: `mode` : *(int)* New mode, must be one of: - `StreamTokenizer.STRICT_MIN_LENGTH` - `StreamTokenizer.DROP_TRAILING_SILENCE` - `StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE` - `0` See `StreamTokenizer.__init__` for more information about the mode.
3.322514
1.999731
1.661481
self._reinitialize() if callback is not None: self._deliver = callback while True: frame = data_source.read() if frame is None: break self._current_frame += 1 self._process(frame) self._post_process() if callback is None: _ret = self._tokens self._tokens = None return _ret
def tokenize(self, data_source, callback=None)
Read data from `data_source`, one frame a time, and process the read frames in order to detect sequences of frames that make up valid tokens. :Parameters: `data_source` : instance of the :class:`DataSource` class that implements a `read` method. 'read' should return a slice of signal, i.e. frame (of whatever \ type as long as it can be processed by validator) and None if \ there is no more signal. `callback` : an optional 3-argument function. If a `callback` function is given, it will be called each time a valid token is found. :Returns: A list of tokens if `callback` is None. Each token is tuple with the following elements: .. code python (data, start, end) where `data` is a list of read frames, `start`: index of the first frame in the original data and `end` : index of the last frame.
4.499291
4.212724
1.068024
if self._current >= len(self._data): return None self._current += 1 return self._data[self._current - 1]
def read(self)
Read one character from buffer. :Returns: Current character or None if end of buffer is reached
3.873673
3.670472
1.055361
if not isinstance(data, basestring): raise ValueError("data must an instance of basestring") self._data = data self._current = 0
def set_data(self, data)
Set a new data buffer. :Parameters: `data` : a basestring object New data buffer.
5.4413
4.459911
1.220047
signal = AudioEnergyValidator._convert(data, self.sample_width) return AudioEnergyValidator._signal_log_energy(signal) >= self._energy_threshold
def is_valid(self, data)
Check if data is valid. Audio data will be converted into an array (of signed values) of which the log energy is computed. Log energy is computed as follows: .. code:: python arr = AudioEnergyValidator._convert(signal, sample_width) energy = float(numpy.dot(arr, arr)) / len(arr) log_energy = 10. * numpy.log10(energy) :Parameters: `data` : either a *string* or a *Bytes* buffer `data` is converted into a numerical array using the `sample_width` given in the constructor. :Returns: True if `log_energy` >= `energy_threshold`, False otherwise.
16.494259
5.058117
3.260949
if len(data_buffer) % (self.sample_width * self.channels) != 0: raise ValueError("length of data_buffer must be a multiple of (sample_width * channels)") self._buffer = data_buffer self._index = 0 self._left = 0 if self._buffer is None else len(self._buffer)
def set_data(self, data_buffer)
Set new data for this audio stream. :Parameters: `data_buffer` : str, basestring, Bytes a string buffer with a length multiple of (sample_width * channels)
2.934616
2.557859
1.147294
if len(data_buffer) % (self.sample_width * self.channels) != 0: raise ValueError("length of data_buffer must be a multiple of (sample_width * channels)") self._buffer += data_buffer self._left += len(data_buffer)
def append_data(self, data_buffer)
Append data to this audio stream :Parameters: `data_buffer` : str, basestring, Bytes a buffer with a length multiple of (sample_width * channels)
3.385754
2.497061
1.355896
# Disable post_save during manage.py loaddata if kwargs.get("raw", False): return False user, created = kwargs["instance"], kwargs["created"] disabled = getattr(user, "_disable_account_creation", not settings.ACCOUNT_CREATE_ON_SAVE) if created and not disabled: Account.create(user=user)
def user_post_save(sender, **kwargs)
After User.save is called we check to see if it was a created user. If so, we check if the User object wants account creation. If all passes we create an Account object. We only run on user creation to avoid having to check for existence on each call to User.save.
6.326437
5.236073
1.208241
kwargs = {"user": self.request.user, "initial": self.get_initial()} if self.request.method in ["POST", "PUT"]: kwargs.update({ "data": self.request.POST, "files": self.request.FILES, }) return kwargs
def get_form_kwargs(self)
Returns the keyword arguments for instantiating the form.
2.008101
1.812596
1.107859
if not settings.ACCOUNT_PASSWORD_USE_HISTORY: return False if hasattr(user, "password_expiry"): # user-specific value expiry = user.password_expiry.expiry else: # use global value expiry = settings.ACCOUNT_PASSWORD_EXPIRY if expiry == 0: # zero indicates no expiration return False try: # get latest password info latest = user.password_history.latest("timestamp") except PasswordHistory.DoesNotExist: return False now = datetime.datetime.now(tz=pytz.UTC) expiration = latest.timestamp + datetime.timedelta(seconds=expiry) if expiration < now: return True else: return False
def check_password_expired(user)
Return True if password is expired and system is using password expiration, False otherwise.
3.573053
3.48214
1.026108
def decorator(view_func): @functools.wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if is_authenticated(request.user): return view_func(request, *args, **kwargs) return handle_redirect_to_login( request, redirect_field_name=redirect_field_name, login_url=login_url ) return _wrapped_view if func: return decorator(func) return decorator
def login_required(func=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None)
Decorator for views that checks that the user is logged in, redirecting to the log in page if necessary.
1.672116
1.739295
0.961376
bits = token.split_contents() if len(bits) == 2: user = bits[1] as_var = None elif len(bits) == 4: user = bits[1] as_var = bits[3] else: raise template.TemplateSyntaxError("'{0}' takes either two or four arguments".format(bits[0])) return UserDisplayNode(user, as_var)
def do_user_display(parser, token)
Example usage:: {% user_display user %} or if you need to use in a {% blocktrans %}:: {% user_display user as user_display} {% blocktrans %}{{ user_display }} has sent you a gift.{% endblocktrans %}
1.906242
2.030379
0.93886
bits = token.split_contents() if len(bits) < 2: raise template.TemplateSyntaxError( "'%s' takes at least one argument" " (path to a view)" % bits[0] ) viewname = parser.compile_filter(bits[1]) args = [] kwargs = {} asvar = None bits = bits[2:] if len(bits) >= 2 and bits[-2] == "as": asvar = bits[-1] bits = bits[:-2] if len(bits): for bit in bits: match = kwarg_re.match(bit) if not match: raise template.TemplateSyntaxError("Malformed arguments to url tag") name, value = match.groups() if name: kwargs[name] = parser.compile_filter(value) else: args.append(parser.compile_filter(value)) return URLNextNode(viewname, args, kwargs, asvar)
def urlnext(parser, token)
{% url %} copied from Django 1.7.
1.794623
1.652182
1.086214
if all([key in context for key in ["redirect_field_name", "redirect_field_value"]]): if context["redirect_field_value"]: url += "?" + urlencode({ context["redirect_field_name"]: context["redirect_field_value"], }) return url
def add_next(self, url, context)
With both `redirect_field_name` and `redirect_field_value` available in the context, add on a querystring to handle "next" redirecting.
3.025425
2.194296
1.378768
if "permakey" in request.headers: # Extract the permakey from the headers permakey = request.headers.get("permakey") # In production, probably should have some exception handling Here # in case the permakey is an empty string or some other bad value payload = self._decode(permakey, verify=verify) # Sometimes, the application will call _verify(...return_payload=True) # So, let's make sure to handle this scenario. if return_payload: return payload # Retrieve the user from the database user_id = payload.get("user_id", None) user = userid_table.get(user_id) # If wer cannot find a user, then this method should return # is_valid == False # reason == some text for why # status == some status code, probably a 401 if not user_id or not user: is_valid = False reason = "No user found" status = 401 else: # After finding a user, make sure the permakey matches, # or else return a bad status or some other error. # In production, both this scenario, and the above "No user found" # scenario should return an identical message and status code. # This is to prevent your application accidentally # leaking information about the existence or non-existence of users. is_valid = user.permakey == permakey reason = None if is_valid else "Permakey mismatch" status = 200 if is_valid else 401 return is_valid, status, reason else: return super()._verify( request=request, return_payload=return_payload, verify=verify, raise_missing=raise_missing, request_args=request_args, request_kwargs=request_kwargs, *args, **kwargs )
def _verify( self, request, return_payload=False, verify=True, raise_missing=False, request_args=None, request_kwargs=None, *args, **kwargs )
If there is a "permakey", then we will verify the token by checking the database. Otherwise, just do the normal verification. Typically, any method that begins with an underscore in sanic-jwt should not be touched. In this case, we are trying to break the rules a bit to handle a unique use case: handle both expirable and non-expirable tokens.
4.419889
4.027415
1.097451
if item in self: # noqa item = getattr(self, item) return item()
def get(self, item)
Helper method to avoid calling getattr
9.370337
7.731609
1.211952
return { x.lower()[10:]: app_config.get(x) for x in filter(lambda x: x.startswith("SANIC_JWT"), app_config) }
def extract_presets(app_config)
Pull the application's configurations for Sanic JWT
7.207795
4.142883
1.739802
if len(args) > 1: kwargs.update({"authenticate": args[1]}) return Initialize(args[0], **kwargs)
def initialize(*args, **kwargs)
Functional approach to initializing Sanic JWT. This was the original method, but was replaced by the Initialize class. It is recommended to use the class because it is more flexible. There is no current plan to remove this method, but it may be depracated in the future.
6.538343
4.601611
1.420881
# Depracation notices if "SANIC_JWT_HANDLER_PAYLOAD_SCOPES" in self.app.config: raise exceptions.InvalidConfiguration( "SANIC_JWT_HANDLER_PAYLOAD_SCOPES has been deprecated. " "Instead, pass your handler method (not an import path) as " "initialize(add_scopes_to_payload=my_scope_extender)" ) if "SANIC_JWT_PAYLOAD_HANDLER" in self.app.config: raise exceptions.InvalidConfiguration( "SANIC_JWT_PAYLOAD_HANDLER has been deprecated. " "Instead, you will need to subclass Authentication. " ) if "SANIC_JWT_HANDLER_PAYLOAD_EXTEND" in self.app.config: raise exceptions.InvalidConfiguration( "SANIC_JWT_HANDLER_PAYLOAD_EXTEND has been deprecated. " "Instead, you will need to subclass Authentication. " "Check out the documentation for more information." )
def __check_deprecated(self)
Checks for deprecated configuration keys
3.914055
3.805525
1.028519
for mapping in endpoint_mappings: if all(map(self.config.get, mapping.keys)): self.__add_single_endpoint( mapping.cls, mapping.endpoint, mapping.is_protected ) self.bp.exception(exceptions.SanicJWTException)( self.responses.exception_response ) if not self.instance_is_blueprint: url_prefix = self._get_url_prefix() self.instance.blueprint(self.bp, url_prefix=url_prefix)
def __add_endpoints(self)
Initialize the Sanic JWT Blueprint and add to the instance initialized
7.261592
5.891119
1.232634
config = self.config if "class_views" in self.kwargs: class_views = self.kwargs.pop("class_views") for route, view in class_views: if issubclass(view, endpoints.BaseEndpoint) and isinstance( route, str ): self.bp.add_route( view.as_view( self.responses, config=self.config, instance=self.instance, ), route, strict_slashes=config.strict_slashes(), ) else: raise exceptions.InvalidClassViewsFormat()
def __add_class_views(self)
Include any custom class views on the Sanic JWT Blueprint
3.952794
3.364558
1.174833
# msg took from BaseAuthentication msg = ( "Sanic JWT was not initialized properly. It did not received " "an instance of {}" ) if not issubclass(self.authentication_class, Authentication): raise exceptions.InitializationFailure( message=msg.format("Authentication") ) if not issubclass(self.configuration_class, Configuration): raise exceptions.InitializationFailure( message=msg.format("Configuration") ) if not issubclass(self.responses_class, Responses): raise exceptions.InitializationFailure( message=msg.format("Responses") )
def __check_classes(self)
Check if any of the default classes (`Authentication`, `Configuration` and / or `Responses`) have been overwitten and if they're still valid
4.09703
3.260998
1.256373
config = self.config # Initialize instance of the Authentication class self.instance.auth = self.authentication_class(self.app, config=config) init_handlers = ( handlers if config.auth_mode() else auth_mode_agnostic_handlers ) for handler in init_handlers: if handler.keys is None: self.__check_method_in_auth(handler.name, handler.exception) else: if all(map(config.get, handler.keys)): self.__check_method_in_auth( handler.name, handler.exception ) for handler in init_handlers: if handler.name in self.kwargs: method = self.kwargs.pop(handler.name) setattr(self.instance.auth, handler.name, method)
def __initialize_instance(self)
Take any predefined methods/handlers and insert them into Sanic JWT
4.823294
4.303688
1.120735
handler_to_enable = filter(lambda h: h.keys is not None, handlers) for handler in handler_to_enable: if handler.name in self.kwargs: for k in handler.keys: self.kwargs.update({k: True}) self.config = self.configuration_class(self.app.config, **self.kwargs)
def __load_configuration(self)
Configure settings for the instance in the following order: 1. Sanic JWT's defaults 2. Custom Configuration class 3. Key word arguments passed to Initialize
5.406297
5.608552
0.963938
uid = self.config.user_id() if isinstance(user, dict): user_id = user.get(uid) elif hasattr(user, "to_dict"): _to_dict = await utils.call(user.to_dict) user_id = _to_dict.get(uid) else: raise exceptions.InvalidRetrieveUserObject() if asdict: return {uid: user_id} return user_id
async def _get_user_id(self, user, *, asdict=False)
Get a user_id from a user object. If `asdict` is True, will return it as a dict with `config.user_id` as key. The `asdict` keyword defaults to `False`.
3.852259
3.447374
1.117447
delta = timedelta(seconds=self.config.expiration_delta()) exp = datetime.utcnow() + delta additional = {"exp": exp} for option in ["iss", "iat", "nbf", "aud"]: setting = "claim_{}".format(option.lower()) if setting in self.config: # noqa attr = self.config.get(setting) if attr: self.claims.append(option) method_name = "build_claim_{}".format(option) method = getattr(utils, method_name) additional.update({option: method(attr, self.config)}) payload.update(additional) if self._custom_claims: custom_claims = {} for claim in self._custom_claims: custom_claims[claim.get_key()] = await utils.call( claim.setup, payload, user ) payload.update(custom_claims) return payload
async def add_claims(self, payload, user, *args, **kwargs)
Injects standard claims into the payload for: exp, iss, iat, nbf, aud. And, custom claims, if they exist
3.976106
3.691758
1.077022
try: is_valid, status, reasons = self._verify( request, request_args=request_args, request_kwargs=request_kwargs, ) except Exception as e: logger.debug(e.args) if self.config.debug(): raise e args = e.args if isinstance(e, SanicJWTException) else [] raise exceptions.Unauthorized(*args) return is_valid, status, reasons
def _check_authentication(self, request, request_args, request_kwargs)
Checks a request object to determine if that request contains a valid, and authenticated JWT. It returns a tuple: 1. Boolean whether the request is authenticated with a valid JWT 2. HTTP status code 3. Reasons (if any) for a potential authentication failure
4.584579
4.126944
1.110889
secret = self._get_secret() algorithm = self._get_algorithm() kwargs = {} for claim in self.claims: if claim != "exp": setting = "claim_{}".format(claim.lower()) if setting in self.config: # noqa value = self.config.get(setting) kwargs.update({claim_label[claim]: value}) kwargs["leeway"] = int(self.config.leeway()) if "claim_aud" in self.config: # noqa kwargs["audience"] = self.config.claim_aud() if "claim_iss" in self.config: # noqa kwargs["issuer"] = self.config.claim_iss() decoded = jwt.decode( token, secret, algorithms=[algorithm], verify=verify, options={"verify_exp": self.config.verify_exp()}, **kwargs ) return decoded
def _decode(self, token, verify=True)
Take a JWT and return a decoded payload. Optionally, will verify the claims on the token.
2.746236
2.631017
1.043793
payload = await utils.call(self.build_payload, user) if ( not isinstance(payload, dict) or self.config.user_id() not in payload ): raise exceptions.InvalidPayload payload = await utils.call(self.add_claims, payload, user) extend_payload_args = inspect.getfullargspec(self.extend_payload) args = [payload] if "user" in extend_payload_args.args: args.append(user) payload = await utils.call(self.extend_payload, *args) if self.config.scopes_enabled(): scopes = await utils.call(self.add_scopes_to_payload, user) if not isinstance(scopes, (tuple, list)): scopes = [scopes] payload[self.config.scopes_name()] = scopes claims = self.claims + [x.get_key() for x in self._custom_claims] missing = [x for x in claims if x not in payload] if missing: logger.debug("") raise exceptions.MissingRegisteredClaim(missing=missing) return payload
async def _get_payload(self, user)
Given a user object, create a payload and extend it as configured.
3.361009
3.15175
1.066394
if refresh_token: cookie_token_name_key = "cookie_refresh_token_name" else: cookie_token_name_key = "cookie_access_token_name" cookie_token_name = getattr(self.config, cookie_token_name_key) return request.cookies.get(cookie_token_name(), None)
def _get_token_from_cookies(self, request, refresh_token)
Extract the token if present inside the request cookies.
2.877366
2.591135
1.110466
header = request.headers.get(self.config.authorization_header(), None) if header is None: return None else: header_prefix_key = "authorization_header_prefix" header_prefix = getattr(self.config, header_prefix_key) if header_prefix(): try: prefix, token = header.split(" ") if prefix != header_prefix(): raise Exception except Exception: raise exceptions.InvalidAuthorizationHeader() else: token = header if refresh_token: token = request.json.get(self.config.refresh_token_name()) return token
def _get_token_from_headers(self, request, refresh_token)
Extract the token if present inside the headers of a request.
3.402554
3.23166
1.052881
if refresh_token: query_string_token_name_key = "query_string_refresh_token_name" else: query_string_token_name_key = "query_string_access_token_name" query_string_token_name = getattr( self.config, query_string_token_name_key ) return request.args.get(query_string_token_name(), None)
def _get_token_from_query_string(self, request, refresh_token)
Extract the token if present from the request args.
2.774218
2.480403
1.118454
if self.config.cookie_set(): token = self._get_token_from_cookies(request, refresh_token) if token: return token else: if self.config.cookie_strict(): raise exceptions.MissingAuthorizationCookie() if self.config.query_string_set(): token = self._get_token_from_query_string(request, refresh_token) if token: return token else: if self.config.query_string_strict(): raise exceptions.MissingAuthorizationQueryArg() token = self._get_token_from_headers(request, refresh_token) if token: return token raise exceptions.MissingAuthorizationHeader()
def _get_token(self, request, refresh_token=False)
Extract a token from a request object.
2.386865
2.251217
1.060255
try: token = self._get_token(request) is_valid = True reason = None except ( exceptions.MissingAuthorizationCookie, exceptions.MissingAuthorizationQueryArg, exceptions.MissingAuthorizationHeader, ) as e: token = None is_valid = False reason = list(e.args) status = e.status_code if self.config.debug() else 401 if raise_missing: if not self.config.debug(): e.status_code = 401 raise e if token: try: payload = self._decode(token, verify=verify) if verify: if self._extra_verifications: self._verify_extras(payload) if self._custom_claims: self._verify_custom_claims(payload) except ( jwt.exceptions.ExpiredSignatureError, jwt.exceptions.InvalidIssuerError, jwt.exceptions.ImmatureSignatureError, jwt.exceptions.InvalidIssuedAtError, jwt.exceptions.InvalidAudienceError, InvalidVerificationError, InvalidCustomClaimError, ) as e: # Make sure that the reasons all end with '.' for consistency reason = [ x if x.endswith(".") else "{}.".format(x) for x in list(e.args) ] payload = None status = 401 is_valid = False except jwt.exceptions.DecodeError as e: self._reasons = e.args # Make sure that the reasons all end with '.' for consistency reason = ( [ x if x.endswith(".") else "{}.".format(x) for x in list(e.args) ] if self.config.debug() else "Auth required." ) logger.debug(e.args) is_valid = False payload = None status = 400 if self.config.debug() else 401 else: payload = None if return_payload: return payload status = 200 if is_valid else status return is_valid, status, reason
def _verify( self, request, return_payload=False, verify=True, raise_missing=False, request_args=None, request_kwargs=None, *args, **kwargs )
Verify that a request object is authenticated.
2.762938
2.726427
1.013392
payload = self._verify( request, return_payload=True, verify=verify, *args, **kwargs ) return payload
def extract_payload(self, request, verify=True, *args, **kwargs)
Extract a payload from a request object.
4.681256
4.164984
1.123955
payload = self.extract_payload(request) if not payload: return None scopes_attribute = self.config.scopes_name() return payload.get(scopes_attribute, None)
def extract_scopes(self, request)
Extract scopes from a request object.
4.746887
4.130601
1.1492
payload = self.extract_payload(request) user_id_attribute = self.config.user_id() return payload.get(user_id_attribute, None)
def extract_user_id(self, request)
Extract a user id from a request object.
4.15063
3.710526
1.11861
payload = await self._get_payload(user) secret = self._get_secret(True) algorithm = self._get_algorithm() return jwt.encode(payload, secret, algorithm=algorithm).decode("utf-8")
async def generate_access_token(self, user)
Generate an access token for a given user.
3.551738
3.167809
1.121197
refresh_token = await utils.call(self.config.generate_refresh_token()) user_id = await self._get_user_id(user) await utils.call( self.store_refresh_token, user_id=user_id, refresh_token=refresh_token, request=request, ) return refresh_token
async def generate_refresh_token(self, request, user)
Generate a refresh token for a given user.
3.368185
3.193872
1.054577
if isinstance(df, (pd.DataFrame, pd.Series)): return df.iloc[0:shape], df.iloc[shape:] else: return df[0:shape], df[shape:]
def tsplit(df, shape)
Split array into two parts.
2.427065
2.225804
1.090422
if all([isinstance(df, (pd.DataFrame, pd.Series)) for df in [x, y]]): return pd.concat([x, y], axis=axis) else: if axis == 0: return np.concatenate([x, y]) else: return np.column_stack([x, y])
def concat(x, y, axis=0)
Concatenate a sequence of pandas or numpy objects into one entity.
2.240561
2.067863
1.083516
shape = df.shape if len(shape) == 1: return df.reshape(shape[0], 1) else: return df
def reshape_1d(df)
If parameter is 1D row vector then convert it into 2D matrix.
2.465646
2.037216
1.210302
if isinstance(df, (pd.DataFrame, pd.Series)): return df.iloc[index] else: return df[index, :]
def idx(df, index)
Universal indexing for numpy and pandas objects.
2.949727
2.749841
1.07269
pbar = tqdm(total=rounds) def callback(_, ): pbar.update(1) return callback
def xgb_progressbar(rounds=1000)
Progressbar for xgboost using tqdm library. Examples -------- >>> model = xgb.train(params, X_train, 1000, callbacks=[xgb_progress(1000), ])
6.633271
13.236678
0.501128
if isinstance(model, (Regressor, Classifier)): self.models.append(model) else: raise ValueError('Unrecognized estimator.')
def add(self, model)
Adds a single model. Parameters ---------- model : `Estimator`
5.977561
5.627124
1.062276
result_train = [] result_test = [] y = None for model in self.models: result = model.stack(k=k, stratify=stratify, shuffle=shuffle, seed=seed, full_test=full_test) train_df = pd.DataFrame(result.X_train, columns=generate_columns(result.X_train, model.name)) test_df = pd.DataFrame(result.X_test, columns=generate_columns(result.X_test, model.name)) result_train.append(train_df) result_test.append(test_df) if y is None: y = result.y_train result_train = pd.concat(result_train, axis=1) result_test = pd.concat(result_test, axis=1) if add_diff: result_train = feature_combiner(result_train) result_test = feature_combiner(result_test) ds = Dataset(X_train=result_train, y_train=y, X_test=result_test) return ds
def stack(self, k=5, stratify=False, shuffle=True, seed=100, full_test=True, add_diff=False)
Stacks sequence of models. Parameters ---------- k : int, default 5 Number of folds. stratify : bool, default False shuffle : bool, default True seed : int, default 100 full_test : bool, default True If True then evaluate test dataset on the full data otherwise take the mean of every fold. add_diff : bool, default False Returns ------- `DataFrame` Examples -------- >>> pipeline = ModelsPipeline(model_rf,model_lr) >>> stack_ds = pipeline.stack(k=10, seed=111)
1.934144
2.078803
0.930412
result_train = [] result_test = [] y = None for model in self.models: result = model.blend(proportion=proportion, stratify=stratify, seed=seed, indices=indices) train_df = pd.DataFrame(result.X_train, columns=generate_columns(result.X_train, model.name)) test_df = pd.DataFrame(result.X_test, columns=generate_columns(result.X_test, model.name)) result_train.append(train_df) result_test.append(test_df) if y is None: y = result.y_train result_train = pd.concat(result_train, axis=1, ignore_index=True) result_test = pd.concat(result_test, axis=1, ignore_index=True) if add_diff: result_train = feature_combiner(result_train) result_test = feature_combiner(result_test) return Dataset(X_train=result_train, y_train=y, X_test=result_test)
def blend(self, proportion=0.2, stratify=False, seed=100, indices=None, add_diff=False)
Blends sequence of models. Parameters ---------- proportion : float, default 0.2 stratify : bool, default False seed : int, default False indices : list(np.ndarray,np.ndarray), default None Two numpy arrays that contain indices for train/test slicing. add_diff : bool, default False Returns ------- `DataFrame` Examples -------- >>> pipeline = ModelsPipeline(model_rf,model_lr) >>> pipeline.blend(seed=15) >>> # Custom indices >>> train_index = np.array(range(250)) >>> test_index = np.array(range(250,333)) >>> res = model_rf.blend(indicies=(train_index,test_index))
1.892546
2.078174
0.910677
p = Optimizer(self.models, test_size=test_size, scorer=scorer) return p.minimize(method)
def find_weights(self, scorer, test_size=0.2, method='SLSQP')
Finds optimal weights for weighted average of models. Parameters ---------- scorer : function Scikit-learn like metric. test_size : float, default 0.2 method : str Type of solver. Should be one of: - 'Nelder-Mead' - 'Powell' - 'CG' - 'BFGS' - 'Newton-CG' - 'L-BFGS-B' - 'TNC' - 'COBYLA' - 'SLSQP' - 'dogleg' - 'trust-ncg' Returns ------- list
5.245756
9.535483
0.55013
return self.apply(lambda x: np.average(x, axis=0, weights=weights))
def weight(self, weights)
Applies weighted mean to models. Parameters ---------- weights : list Returns ------- np.ndarray Examples ---------- >>> pipeline = ModelsPipeline(model_rf,model_lr) >>> pipeline.weight([0.8,0.2])
4.977151
6.738085
0.73866
features = [f for f in features if f in train.columns] for column in features: if full: categories = pd.concat([train[column], test[column]]).dropna().unique() else: categories = train[column].dropna().unique() train[column] = train[column].astype('category', categories=categories) test[column] = test[column].astype('category', categories=categories) train = pd.get_dummies(train, columns=features, dummy_na=dummy_na, sparse=sparse) test = pd.get_dummies(test, columns=features, dummy_na=dummy_na, sparse=sparse) # d_cols = train.columns[(train == 0).all()] # train.drop(d_cols, 1, inplace=True) # test.drop(d_cols, 1, inplace=True) return train, test
def onehot_features(train, test, features, full=False, sparse=False, dummy_na=True)
Encode categorical features using a one-hot scheme. Parameters ---------- train : pd.DataFrame test : pd.DataFrame features : list Column names in the DataFrame to be encoded. full : bool, default False Whether use all columns from train/test or only from train. sparse : bool, default False Whether the dummy columns should be sparse or not. dummy_na : bool, default True Add a column to indicate NaNs, if False NaNs are ignored. Returns ------- train : pd.DataFrame test : pd.DataFrame
1.807366
1.908769
0.946875
for column in features: if full: vs = pd.concat([train[column], test[column]]) labels, indexer = pd.factorize(vs, sort=sort) else: labels, indexer = pd.factorize(train[column], sort=sort) train[column] = indexer.get_indexer(train[column]) test[column] = indexer.get_indexer(test[column]) if na_value != -1: train[column] = train[column].replace(-1, na_value) test[column] = test[column].replace(-1, na_value) return train, test
def factorize(train, test, features, na_value=-9999, full=False, sort=True)
Factorize categorical features. Parameters ---------- train : pd.DataFrame test : pd.DataFrame features : list Column names in the DataFrame to be encoded. na_value : int, default -9999 full : bool, default False Whether use all columns from train/test or only from train. sort : bool, default True Sort by values. Returns ------- train : pd.DataFrame test : pd.DataFrame
1.928013
2.054681
0.938352
def group_woe(group): event = float(group.sum()) non_event = group.shape[0] - event rel_event = event / event_total rel_non_event = non_event / non_event_total return np.log(rel_non_event / rel_event) * 100 if df[target_name].nunique() > 2: raise ValueError('Target column should be binary (1/0).') event_total = float(df[df[target_name] == 1.0].shape[0]) non_event_total = float(df.shape[0] - event_total) woe_vals = df.groupby(feature_name)[target_name].transform(group_woe) return woe_vals
def woe(df, feature_name, target_name)
Calculate weight of evidence. Parameters ---------- df: Dataframe feature_name: str Column name to encode. target_name: str Target column name. Returns ------- Series
2.559036
2.652428
0.96479
def group_mean(group): group_size = float(group.shape[0]) if C is None: return (group.mean() * group_size + global_mean) / group_size else: return (group.mean() * group_size + global_mean * C) / (group_size + C) global_mean = df[target_name].mean() return df.groupby(feature_name)[target_name].transform(group_mean)
def mean_target(df, feature_name, target_name, C=None)
Mean target. Original idea: Stanislav Semenov Parameters ---------- C : float, default None Regularization coefficient. The higher, the more conservative result. The optimal value lies between 10 and 50 depending on the data. feature_name : str target_name : str df: DataFrame Returns ------- Series
2.602562
2.595631
1.00267
import xgboost as xgb f_train = model.predict(xgb.DMatrix(X_train), pred_leaf=True) f_test = model.predict(xgb.DMatrix(X_test), pred_leaf=True) enc = OneHotEncoder() enc.fit(f_train) return enc.transform(f_train), enc.transform(f_test)
def xgb_to_features(model, X_train, X_test)
Converts xgboost model into categorical features. Reference: "Practical Lessons from Predicting Clicks on Ads at Facebook" https://research.fb.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/
2.067023
1.997741
1.03468
if not self.loaded: self.load() if stratify: stratify = self.y_train else: stratify = None if indices is None: X_train, X_test, y_train, y_test = train_test_split(self.X_train, self._y_train, test_size=test_size, random_state=seed, stratify=stratify, ) else: X_train, y_train = idx(self.X_train, indices[0]), self.y_train[indices[0]] X_test, y_test = idx(self.X_train, indices[1]), self.y_train[indices[1]] if inplace: self._X_train, self._X_test, self._y_train, self._y_test = X_train, X_test, y_train, y_test return X_train, y_train, X_test, y_test
def split(self, test_size=0.1, stratify=False, inplace=False, seed=33, indices=None)
Splits train set into two parts (train/test). Parameters ---------- test_size : float, default 0.1 stratify : bool, default False inplace : bool, default False If `True` then dataset's train/test sets will be replaced with new data. seed : int, default 33 indices : list(np.ndarray, np.ndarray), default None Two numpy arrays that contain indices for train/test slicing. Returns ------- X_train : np.ndarray y_train : np.ndarray X_test : np.ndarray y_test : np.ndarray Examples -------- >>> train_index = np.array(range(250)) >>> test_index = np.array(range(250,333)) >>> res = dataset.split(indices=(train_index,test_index)) >>> res = dataset.split(test_size=0.3,seed=1111)
1.678186
1.818038
0.923075
if stratify: kf = StratifiedKFold(n_splits=k, random_state=seed, shuffle=shuffle) else: kf = KFold(n_splits=k, random_state=seed, shuffle=shuffle) for train_index, test_index in kf.split(self.X_train, self.y_train): X_train, y_train = idx(self.X_train, train_index), self.y_train[train_index] X_test, y_test = idx(self.X_train, test_index), self.y_train[test_index] yield X_train, y_train, X_test, y_test, train_index, test_index
def kfold(self, k=5, stratify=False, shuffle=True, seed=33)
K-Folds cross validation iterator. Parameters ---------- k : int, default 5 stratify : bool, default False shuffle : bool, default True seed : int, default 33 Yields ------- X_train, y_train, X_test, y_test, train_index, test_index
1.446228
1.407865
1.027249
if self._hash is None: m = hashlib.new('md5') if self._preprocessor is None: # generate hash from numpy array m.update(numpy_buffer(self._X_train)) m.update(numpy_buffer(self._y_train)) if self._X_test is not None: m.update(numpy_buffer(self._X_test)) if self._y_test is not None: m.update(numpy_buffer(self._y_test)) elif callable(self._preprocessor): # generate hash from user defined object (source code) m.update(inspect.getsource(self._preprocessor).encode('utf-8')) self._hash = m.hexdigest() return self._hash
def hash(self)
Return md5 hash for current dataset.
2.631541
2.405409
1.09401
if not isinstance(ds, Dataset): raise ValueError('Expected `Dataset`, got %s.' % ds) X_train = concat(ds.X_train, self.X_train, axis=axis) y_train = concat(ds.y_train, self.y_train, axis=axis) if ds.X_test is not None: X_test = concat(ds.X_test, self.X_test, axis=axis) else: X_test = None if ds.y_test is not None: y_test = concat(ds.y_test, self.y_test, axis=axis) else: y_test = None if inplace: self._X_train = X_train self._y_train = y_train if X_test is not None: self._X_test = X_test if y_test is not None: self._y_test = y_test return None return Dataset(X_train, y_train, X_test, y_test)
def merge(self, ds, inplace=False, axis=1)
Merge two datasets. Parameters ---------- axis : {0,1} ds : `Dataset` inplace : bool, default False Returns ------- `Dataset`
1.592796
1.624605
0.980421
self._X_train = csc_matrix(self._X_train) self._X_test = csc_matrix(self._X_test)
def to_csc(self)
Convert Dataset to scipy's Compressed Sparse Column matrix.
2.801785
2.220721
1.261656
self._X_train = csr_matrix(self._X_train) self._X_test = csr_matrix(self._X_test)
def to_csr(self)
Convert Dataset to scipy's Compressed Sparse Row matrix.
2.633983
2.184759
1.205617
if hasattr(self._X_train, 'todense'): self._X_train = self._X_train.todense() self._X_test = self._X_test.todense()
def to_dense(self)
Convert sparse Dataset to dense matrix.
2.581041
2.098183
1.230131
m = hashlib.new('md5') m.update(self.hash.encode('utf-8')) for key in sorted(params.keys()): h_string = ('%s-%s' % (key, params[key])).encode('utf-8') m.update(h_string) return m.hexdigest()
def _dhash(self, params)
Generate hash of the dictionary object.
2.691644
2.570881
1.046973
if self.use_cache: pdict = {'k': k, 'stratify': stratify, 'shuffle': shuffle, 'seed': seed, 'test_size': test_size} if indices is not None: pdict['train_index'] = np_hash(indices[0]) pdict['test_index'] = np_hash(indices[1]) dhash = self._dhash(pdict) c = Cache(dhash, prefix='v') if c.available: logger.info('Loading %s\'s validation results from cache.' % self._name) elif (self.dataset.X_train is None) and (self.dataset.y_train is None): self.dataset.load() scores = [] y_true = [] y_pred = [] if k == 1: X_train, y_train, X_test, y_test = self.dataset.split(test_size=test_size, stratify=stratify, seed=seed, indices=indices) if self.use_cache and c.available: prediction = c.retrieve('0') else: prediction = self._predict(X_train, y_train, X_test, y_test) if self.use_cache: c.store('0', prediction) if scorer is not None: scores.append(scorer(y_test, prediction)) y_true.append(y_test) y_pred.append(prediction) else: for i, fold in enumerate(self.dataset.kfold(k, stratify=stratify, seed=seed, shuffle=shuffle)): X_train, y_train, X_test, y_test, train_index, test_index = fold if self.use_cache and c.available: prediction = c.retrieve(str(i)) else: prediction = None if prediction is None: logger.info('Calculating %s\'s fold #%s' % (self._name, i + 1)) prediction = self._predict(X_train, y_train, X_test, y_test) if self.use_cache: c.store(str(i), prediction) if scorer is not None: scores.append(scorer(y_test, prediction)) y_true.append(y_test) y_pred.append(prediction) if scorer is not None: report_score(scores, scorer) return y_true, y_pred
def validate(self, scorer=None, k=1, test_size=0.1, stratify=False, shuffle=True, seed=100, indices=None)
Evaluate score by cross-validation. Parameters ---------- scorer : function(y_true,y_pred), default None Scikit-learn like metric that returns a score. k : int, default 1 The number of folds for validation. If k=1 then randomly split X_train into two parts otherwise use K-fold approach. test_size : float, default 0.1 Size of the test holdout if k=1. stratify : bool, default False shuffle : bool, default True seed : int, default 100 indices : list(np.array,np.array), default None Two numpy arrays that contain indices for train/test slicing. (train_index,test_index) Returns ------- y_true: list Actual labels. y_pred: list Predicted labels. Examples -------- >>> # Custom indices >>> train_index = np.array(range(250)) >>> test_index = np.array(range(250,333)) >>> res = model_rf.validate(mean_absolute_error,indices=(train_index,test_index))
2.101317
2.155689
0.974777
train = None test = [] if self.use_cache: pdict = {'k': k, 'stratify': stratify, 'shuffle': shuffle, 'seed': seed, 'full_test': full_test} dhash = self._dhash(pdict) c = Cache(dhash, prefix='s') if c.available: logger.info('Loading %s\'s stack results from cache.' % self._name) train = c.retrieve('train') test = c.retrieve('test') y_train = c.retrieve('y_train') return Dataset(X_train=train, y_train=y_train, X_test=test) elif not self.dataset.loaded: self.dataset.load() for i, fold in enumerate(self.dataset.kfold(k, stratify=stratify, seed=seed, shuffle=shuffle)): X_train, y_train, X_test, y_test, train_index, test_index = fold logger.info('Calculating %s\'s fold #%s' % (self._name, i + 1)) if full_test: prediction = reshape_1d(self._predict(X_train, y_train, X_test, y_test)) else: xt_shape = X_test.shape[0] x_t = concat(X_test, self.dataset.X_test) prediction_concat = reshape_1d(self._predict(X_train, y_train, x_t)) prediction, prediction_test = tsplit(prediction_concat, xt_shape) test.append(prediction_test) if train is None: train = np.zeros((self.dataset.X_train.shape[0], prediction.shape[1])) train[test_index] = prediction if full_test: logger.info('Calculating %s\'s test data' % self._name) test = self._predict(self.dataset.X_train, self.dataset.y_train, self.dataset.X_test) else: test = np.mean(test, axis=0) test = reshape_1d(test) if self.use_cache: c.store('train', train) c.store('test', test) c.store('y_train', self.dataset.y_train) return Dataset(X_train=train, y_train=self.dataset.y_train, X_test=test)
def stack(self, k=5, stratify=False, shuffle=True, seed=100, full_test=True)
Stack a single model. You should rarely be using this method. Use `ModelsPipeline.stack` instead. Parameters ---------- k : int, default 5 stratify : bool, default False shuffle : bool, default True seed : int, default 100 full_test : bool, default True If `True` then evaluate test dataset on the full data otherwise take the mean of every fold. Returns ------- `Dataset` with out of fold predictions.
2.444574
2.447735
0.998709
if self.use_cache: pdict = {'proportion': proportion, 'stratify': stratify, 'seed': seed, 'indices': indices} if indices is not None: pdict['train_index'] = np_hash(indices[0]) pdict['test_index'] = np_hash(indices[1]) dhash = self._dhash(pdict) c = Cache(dhash, prefix='b') if c.available: logger.info('Loading %s\'s blend results from cache.' % self._name) train = c.retrieve('train') test = c.retrieve('test') y_train = c.retrieve('y_train') return Dataset(X_train=train, y_train=y_train, X_test=test) elif not self.dataset.loaded: self.dataset.load() X_train, y_train, X_test, y_test = self.dataset.split(test_size=proportion, stratify=stratify, seed=seed, indices=indices) xt_shape = X_test.shape[0] x_t = concat(X_test, self.dataset.X_test) prediction_concat = reshape_1d(self._predict(X_train, y_train, x_t)) new_train, new_test = tsplit(prediction_concat, xt_shape) if self.use_cache: c.store('train', new_train) c.store('test', new_test) c.store('y_train', y_test) return Dataset(new_train, y_test, new_test)
def blend(self, proportion=0.2, stratify=False, seed=100, indices=None)
Blend a single model. You should rarely be using this method. Use `ModelsPipeline.blend` instead. Parameters ---------- proportion : float, default 0.2 Test size holdout. stratify : bool, default False seed : int, default 100 indices : list(np.ndarray,np.ndarray), default None Two numpy arrays that contain indices for train/test slicing. (train_index,test_index) Returns ------- `Dataset`
3.132591
3.051775
1.026482
# Credits to: https://github.com/joblib/joblib/blob/04b001861e1dd03a857b7b419c336de64e05714c/joblib/hashing.py if isinstance(ndarray, (pd.Series, pd.DataFrame)): ndarray = ndarray.values if ndarray.flags.c_contiguous: obj_c_contiguous = ndarray elif ndarray.flags.f_contiguous: obj_c_contiguous = ndarray.T else: obj_c_contiguous = ndarray.flatten() obj_c_contiguous = obj_c_contiguous.view(np.uint8) if hasattr(np, 'getbuffer'): return np.getbuffer(obj_c_contiguous) else: return memoryview(obj_c_contiguous)
def numpy_buffer(ndarray)
Creates a buffer from c_contiguous numpy ndarray.
3.549568
3.448649
1.029263
if not os.path.exists(self._hash_dir): os.makedirs(self._hash_dir) if isinstance(data, pd.DataFrame): columns = data.columns.tolist() np.save(os.path.join(self._hash_dir, key), data.values) json.dump(columns, open(os.path.join(self._hash_dir, '%s.json' % key), 'w')) else: np.save(os.path.join(self._hash_dir, key), data)
def store(self, key, data)
Takes an array and stores it in the cache.
1.961933
1.917922
1.022947
column_file = os.path.join(self._hash_dir, '%s.json' % key) cache_file = os.path.join(self._hash_dir, '%s.npy' % key) if os.path.exists(cache_file): data = np.load(cache_file) if os.path.exists(column_file): with open(column_file, 'r') as json_file: columns = json.load(json_file) data = pd.DataFrame(data, columns=columns) else: return None return data
def retrieve(self, key)
Retrieves a cached array if possible.
2.351834
2.20527
1.06646
if hasattr(sys, 'pypy_version_info'): return (sys.version_info[0], sys.pypy_version_info.major, sys.pypy_version_info.minor) else: return (sys.version_info[0], sys.version_info[1])
def _pep425_version()
:return: A tuple of integers representing the Python version number
2.046251
1.87512
1.091264
try: import _manylinux return bool(_manylinux.manylinux1_compatible) except (ImportError, AttributeError): pass # Check for glibc 2.5 try: proc = ctypes.CDLL(None) gnu_get_libc_version = proc.gnu_get_libc_version gnu_get_libc_version.restype = ctypes.c_char_p ver = gnu_get_libc_version() if not isinstance(ver, str_cls): ver = ver.decode('ascii') match = re.match(r'(\d+)\.(\d+)', ver) return match and match.group(1) == '2' and int(match.group(2)) >= 5 except (AttributeError): return False
def _pep425_supports_manylinux()
:return: A boolean indicating if the machine can use manylinux1 packages
2.689173
2.577302
1.043406
try: soabi = sysconfig.get_config_var('SOABI') if soabi: if soabi.startswith('cpython-'): return 'cp%s' % soabi.split('-')[1] return soabi.replace('.', '_').replace('-', '_') except (IOError, NameError): pass impl = _pep425_implementation() suffix = '' if impl == 'cp': suffix += 'm' if sys.maxunicode == 0x10ffff and sys.version_info < (3, 3): suffix += 'u' return '%s%s%s' % (impl, ''.join(map(str_cls, _pep425_version())), suffix)
def _pep425_get_abi()
:return: A unicode string of the system abi. Will be something like: "cp27m", "cp33m", etc.
3.023723
2.931614
1.031419
tags = [] versions = [] version_info = _pep425_version() major = version_info[:-1] for minor in range(version_info[-1], -1, -1): versions.append(''.join(map(str, major + (minor,)))) impl = _pep425_implementation() abis = [] abi = _pep425_get_abi() if abi: abis.append(abi) abi3 = _pep425_implementation() == 'cp' and sys.version_info >= (3,) if abi3: abis.append('abi3') abis.append('none') if sys.platform == 'darwin': plat_ver = platform.mac_ver() ver_parts = plat_ver[0].split('.') minor = int(ver_parts[1]) arch = plat_ver[2] if sys.maxsize == 2147483647: arch = 'i386' arches = [] while minor > 5: arches.append('macosx_10_%s_%s' % (minor, arch)) arches.append('macosx_10_%s_intel' % (minor,)) arches.append('macosx_10_%s_universal' % (minor,)) minor -= 1 else: if sys.platform == 'win32': if 'amd64' in sys.version.lower(): arches = ['win_amd64'] arches = [sys.platform] elif hasattr(os, 'uname'): (plat, _, _, _, machine) = os.uname() plat = plat.lower().replace('/', '') machine.replace(' ', '_').replace('/', '_') if plat == 'linux' and sys.maxsize == 2147483647: machine = 'i686' arch = '%s_%s' % (plat, machine) if _pep425_supports_manylinux(): arches = [arch.replace('linux', 'manylinux1'), arch] else: arches = [arch] for abi in abis: for arch in arches: tags.append(('%s%s' % (impl, versions[0]), abi, arch)) if abi3: for version in versions[1:]: for arch in arches: tags.append(('%s%s' % (impl, version), 'abi3', arch)) for arch in arches: tags.append(('py%s' % (versions[0][0]), 'none', arch)) tags.append(('%s%s' % (impl, versions[0]), 'none', 'any')) tags.append(('%s%s' % (impl, versions[0][0]), 'none', 'any')) for i, version in enumerate(versions): tags.append(('py%s' % (version,), 'none', 'any')) if i == 0: tags.append(('py%s' % (version[0]), 'none', 'any')) tags.append(('py2.py3', 'none', 'any')) return tags
def _pep425tags()
:return: A list of 3-element tuples with unicode strings or None: [0] implementation tag - cp33, pp27, cp26, py2, py2.py3 [1] abi tag - cp26m, None [2] arch tag - linux_x86_64, macosx_10_10_x85_64, etc
2.220657
2.195899
1.011275
x_bytes = int(math.ceil(math.log(x, 2) / 8.0)) y_bytes = int(math.ceil(math.log(y, 2) / 8.0)) num_bytes = max(x_bytes, y_bytes) byte_string = b'\x04' byte_string += int_to_bytes(x, width=num_bytes) byte_string += int_to_bytes(y, width=num_bytes) return cls(byte_string)
def from_coords(cls, x, y)
Creates an ECPoint object from the X and Y integer coordinates of the point :param x: The X coordinate, as an integer :param y: The Y coordinate, as an integer :return: An ECPoint object
2.197099
2.062053
1.065491
data = self.native first_byte = data[0:1] # Uncompressed if first_byte == b'\x04': remaining = data[1:] field_len = len(remaining) // 2 x = int_from_bytes(remaining[0:field_len]) y = int_from_bytes(remaining[field_len:]) return (x, y) if first_byte not in set([b'\x02', b'\x03']): raise ValueError(unwrap( ''' Invalid EC public key - first byte is incorrect ''' )) raise ValueError(unwrap( ''' Compressed representations of EC public keys are not supported due to patent US6252960 ''' ))
def to_coords(self)
Returns the X and Y coordinates for this EC point, as native Python integers :return: A 2-element tuple containing integers (X, Y)
5.177841
4.457948
1.161485
if not isinstance(private_key, byte_cls) and not isinstance(private_key, Asn1Value): raise TypeError(unwrap( ''' private_key must be a byte string or Asn1Value, not %s ''', type_name(private_key) )) if algorithm == 'rsa': if not isinstance(private_key, RSAPrivateKey): private_key = RSAPrivateKey.load(private_key) params = Null() elif algorithm == 'dsa': if not isinstance(private_key, DSAPrivateKey): private_key = DSAPrivateKey.load(private_key) params = DSAParams() params['p'] = private_key['p'] params['q'] = private_key['q'] params['g'] = private_key['g'] public_key = private_key['public_key'] private_key = private_key['private_key'] elif algorithm == 'ec': if not isinstance(private_key, ECPrivateKey): private_key = ECPrivateKey.load(private_key) else: private_key = private_key.copy() params = private_key['parameters'] del private_key['parameters'] else: raise ValueError(unwrap( ''' algorithm must be one of "rsa", "dsa", "ec", not %s ''', repr(algorithm) )) private_key_algo = PrivateKeyAlgorithm() private_key_algo['algorithm'] = PrivateKeyAlgorithmId(algorithm) private_key_algo['parameters'] = params container = cls() container._algorithm = algorithm container['version'] = Integer(0) container['private_key_algorithm'] = private_key_algo container['private_key'] = private_key # Here we save the DSA public key if possible since it is not contained # within the PKCS#8 structure for a DSA key if algorithm == 'dsa': container._public_key = public_key return container
def wrap(cls, private_key, algorithm)
Wraps a private key in a PrivateKeyInfo structure :param private_key: A byte string or Asn1Value object of the private key :param algorithm: A unicode string of "rsa", "dsa" or "ec" :return: A PrivateKeyInfo object
2.180042
2.036631
1.070416
if self.algorithm == 'dsa': params = self['private_key_algorithm']['parameters'] return Integer(pow( params['g'].native, self['private_key'].parsed.native, params['p'].native )) if self.algorithm == 'rsa': key = self['private_key'].parsed return RSAPublicKey({ 'modulus': key['modulus'], 'public_exponent': key['public_exponent'], }) if self.algorithm == 'ec': curve_type, details = self.curve if curve_type == 'implicit_ca': raise ValueError(unwrap( ''' Unable to compute public key for EC key using Implicit CA parameters ''' )) if curve_type == 'specified': if details['field_id']['field_type'] == 'characteristic_two_field': raise ValueError(unwrap( ''' Unable to compute public key for EC key over a characteristic two field ''' )) curve = PrimeCurve( details['field_id']['parameters'], int_from_bytes(details['curve']['a']), int_from_bytes(details['curve']['b']) ) base_x, base_y = self['private_key_algorithm']['parameters'].chosen['base'].to_coords() base_point = PrimePoint(curve, base_x, base_y) elif curve_type == 'named': if details not in ('secp192r1', 'secp224r1', 'secp256r1', 'secp384r1', 'secp521r1'): raise ValueError(unwrap( ''' Unable to compute public key for EC named curve %s, parameters not currently included ''', details )) base_point = { 'secp192r1': SECP192R1_BASE_POINT, 'secp224r1': SECP224R1_BASE_POINT, 'secp256r1': SECP256R1_BASE_POINT, 'secp384r1': SECP384R1_BASE_POINT, 'secp521r1': SECP521R1_BASE_POINT, }[details] public_point = base_point * self['private_key'].parsed['private_key'].native return ECPointBitString.from_coords(public_point.x, public_point.y)
def _compute_public_key(self)
Computes the public key corresponding to the current private key. :return: For RSA keys, an RSAPublicKey object. For DSA keys, an Integer object. For EC keys, an ECPointBitString.
2.738171
2.596045
1.054747
if self.algorithm == 'rsa': return self['private_key'].parsed if self.algorithm == 'dsa': params = self['private_key_algorithm']['parameters'] return DSAPrivateKey({ 'version': 0, 'p': params['p'], 'q': params['q'], 'g': params['g'], 'public_key': self.public_key, 'private_key': self['private_key'].parsed, }) if self.algorithm == 'ec': output = self['private_key'].parsed output['parameters'] = self['private_key_algorithm']['parameters'] output['public_key'] = self.public_key return output
def unwrap(self)
Unwraps the private key into an RSAPrivateKey, DSAPrivateKey or ECPrivateKey object :return: An RSAPrivateKey, DSAPrivateKey or ECPrivateKey object
2.678163
2.341287
1.143885
if self._algorithm is None: self._algorithm = self['private_key_algorithm']['algorithm'].native return self._algorithm
def algorithm(self)
:return: A unicode string of "rsa", "dsa" or "ec"
9.06269
5.777138
1.568716
if self._bit_size is None: if self.algorithm == 'rsa': prime = self['private_key'].parsed['modulus'].native elif self.algorithm == 'dsa': prime = self['private_key_algorithm']['parameters']['p'].native elif self.algorithm == 'ec': prime = self['private_key'].parsed['private_key'].native self._bit_size = int(math.ceil(math.log(prime, 2))) modulus = self._bit_size % 8 if modulus != 0: self._bit_size += 8 - modulus return self._bit_size
def bit_size(self)
:return: The bit size of the private key, as an integer
3.089659
2.822469
1.094665
if self._public_key is None: if self.algorithm == 'ec': key = self['private_key'].parsed if key['public_key']: self._public_key = key['public_key'].untag() else: self._public_key = self._compute_public_key() else: self._public_key = self._compute_public_key() return self._public_key
def public_key(self)
:return: If an RSA key, an RSAPublicKey object. If a DSA key, an Integer object. If an EC key, an ECPointBitString object.
3.428432
3.25128
1.054487
if self._fingerprint is None: params = self['private_key_algorithm']['parameters'] key = self['private_key'].parsed if self.algorithm == 'rsa': to_hash = '%d:%d' % ( key['modulus'].native, key['public_exponent'].native, ) elif self.algorithm == 'dsa': public_key = self.public_key to_hash = '%d:%d:%d:%d' % ( params['p'].native, params['q'].native, params['g'].native, public_key.native, ) elif self.algorithm == 'ec': public_key = key['public_key'].native if public_key is None: public_key = self.public_key.native if params.name == 'named': to_hash = '%s:' % params.chosen.native to_hash = to_hash.encode('utf-8') to_hash += public_key elif params.name == 'implicit_ca': to_hash = public_key elif params.name == 'specified': to_hash = '%s:' % params.chosen['field_id']['parameters'].native to_hash = to_hash.encode('utf-8') to_hash += b':' + params.chosen['curve']['a'].native to_hash += b':' + params.chosen['curve']['b'].native to_hash += public_key if isinstance(to_hash, str_cls): to_hash = to_hash.encode('utf-8') self._fingerprint = hashlib.sha256(to_hash).digest() return self._fingerprint
def fingerprint(self)
Creates a fingerprint that can be compared with a public key to see if the two form a pair. This fingerprint is not compatible with fingerprints generated by any other software. :return: A byte string that is a sha256 hash of selected components (based on the key type)
2.6072
2.510405
1.038557
if not isinstance(public_key, byte_cls) and not isinstance(public_key, Asn1Value): raise TypeError(unwrap( ''' public_key must be a byte string or Asn1Value, not %s ''', type_name(public_key) )) if algorithm != 'rsa': raise ValueError(unwrap( ''' algorithm must "rsa", not %s ''', repr(algorithm) )) algo = PublicKeyAlgorithm() algo['algorithm'] = PublicKeyAlgorithmId(algorithm) algo['parameters'] = Null() container = cls() container['algorithm'] = algo if isinstance(public_key, Asn1Value): public_key = public_key.untag().dump() container['public_key'] = ParsableOctetBitString(public_key) return container
def wrap(cls, public_key, algorithm)
Wraps a public key in a PublicKeyInfo structure :param public_key: A byte string or Asn1Value object of the public key :param algorithm: A unicode string of "rsa" :return: A PublicKeyInfo object
3.13083
2.634705
1.188304
if self.algorithm == 'rsa': return self['public_key'].parsed key_type = self.algorithm.upper() a_an = 'an' if key_type == 'EC' else 'a' raise ValueError(unwrap( ''' Only RSA public keys may be unwrapped - this key is %s %s public key ''', a_an, key_type ))
def unwrap(self)
Unwraps an RSA public key into an RSAPublicKey object. Does not support DSA or EC public keys since they do not have an unwrapped form. :return: An RSAPublicKey object
7.818736
6.677591
1.170892
if self.algorithm != 'ec': raise ValueError(unwrap( ''' Only EC keys have a curve, this key is %s ''', self.algorithm.upper() )) params = self['algorithm']['parameters'] chosen = params.chosen if params.name == 'implicit_ca': value = None else: value = chosen.native return (params.name, value)
def curve(self)
Returns information about the curve used for an EC key :raises: ValueError - when the key is not an EC key :return: A two-element tuple, with the first element being a unicode string of "implicit_ca", "specified" or "named". If the first element is "implicit_ca", the second is None. If "specified", the second is an OrderedDict that is the native version of SpecifiedECDomain. If "named", the second is a unicode string of the curve name.
9.116862
5.079272
1.794915
if self.algorithm != 'dsa': raise ValueError(unwrap( ''' Only DSA keys are generated using a hash algorithm, this key is %s ''', self.algorithm.upper() )) parameters = self['algorithm']['parameters'] if parameters.native is None: return None byte_len = math.log(parameters['q'].native, 2) / 8 return 'sha1' if byte_len <= 20 else 'sha2'
def hash_algo(self)
Returns the name of the family of hash algorithms used to generate a DSA key :raises: ValueError - when the key is not a DSA key :return: A unicode string of "sha1" or "sha2" or None if no parameters are present
6.209733
4.743741
1.309037
if self._sha1 is None: self._sha1 = hashlib.sha1(byte_cls(self['public_key'])).digest() return self._sha1
def sha1(self)
:return: The SHA1 hash of the DER-encoded bytes of this public key info
5.531743
4.834927
1.144121
if self._sha256 is None: self._sha256 = hashlib.sha256(byte_cls(self['public_key'])).digest() return self._sha256
def sha256(self)
:return: The SHA-256 hash of the DER-encoded bytes of this public key info
4.160009
3.748952
1.109646
setup_file = os.path.join(package_root, 'setup.py') git_wc_proc = subprocess.Popen( ['git', 'status', '--porcelain', '-uno'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=package_root ) git_wc_status, _ = git_wc_proc.communicate() if len(git_wc_status) > 0: print(git_wc_status.decode('utf-8').rstrip(), file=sys.stderr) print('Unable to perform release since working copy is not clean', file=sys.stderr) return False git_tag_proc = subprocess.Popen( ['git', 'tag', '-l', '--contains', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=package_root ) tag, tag_error = git_tag_proc.communicate() if len(tag_error) > 0: print(tag_error.decode('utf-8').rstrip(), file=sys.stderr) print('Error looking for current git tag', file=sys.stderr) return False if len(tag) == 0: print('No git tag found on HEAD', file=sys.stderr) return False tag = tag.decode('ascii').strip() setuptools.sandbox.run_setup( setup_file, ['sdist', 'bdist_wheel', '--universal'] ) twine.cli.dispatch(['upload', 'dist/%s-%s*' % (package_name, tag)]) setuptools.sandbox.run_setup( setup_file, ['clean'] )
def run()
Creates a sdist .tar.gz and a bdist_wheel --univeral .whl and uploads them to pypi :return: A bool - if the packaging and upload process was successful
2.251318
2.188574
1.028669
xml_report_path = os.path.join(package_root, 'coverage.xml') if os.path.exists(xml_report_path): os.unlink(xml_report_path) cov = coverage.Coverage(include='%s/*.py' % package_name) cov.start() from .tests import run as run_tests result = run_tests() print() if ci: suite = unittest.TestSuite() loader = unittest.TestLoader() for other_package in other_packages: for test_class in _load_package_tests(other_package): suite.addTest(loader.loadTestsFromTestCase(test_class)) if suite.countTestCases() > 0: print('Running tests from other modularcrypto packages') sys.stdout.flush() runner_result = unittest.TextTestRunner(stream=sys.stdout, verbosity=1).run(suite) result = runner_result.wasSuccessful() and result print() sys.stdout.flush() cov.stop() cov.save() cov.report(show_missing=False) print() sys.stdout.flush() if ci: cov.xml_report() if ci and result and os.path.exists(xml_report_path): _codecov_submit() print() return result
def run(ci=False)
Runs the tests while measuring coverage :param ci: If coverage is being run in a CI environment - this triggers trying to run the tests for the rest of modularcrypto and uploading coverage data :return: A bool - if the tests ran successfully
2.978148
2.745761
1.084635
proc = subprocess.Popen( ['git'] + params, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=cwd ) stdout, stderr = proc.communicate() code = proc.wait() if code != 0: e = OSError('git exit code was non-zero') e.stdout = stdout raise e return stdout.decode('utf-8').strip()
def _git_command(params, cwd)
Executes a git command, returning the output :param params: A list of the parameters to pass to git :param cwd: The working directory to execute git in :return: A 2-element tuple of (stdout, stderr)
2.497513
2.405366
1.038309
output = {} for line in data.splitlines(): line = line.strip() if not line or '=' not in line: continue parts = line.split('=') if len(parts) != 2: continue name = parts[0] value = parts[1] if len(value) > 1: if value[0] == '"' and value[-1] == '"': value = value[1:-1] output[name] = value return output
def _parse_env_var_file(data)
Parses a basic VAR="value data" file contents into a dict :param data: A unicode string of the file data :return: A dict of parsed name/value data
1.970241
1.987518
0.991307
if sys.platform == 'darwin': version = _plat.mac_ver()[0] _plat_ver_info = tuple(map(int, version.split('.'))) if _plat_ver_info < (10, 12): name = 'OS X' else: name = 'macOS' return '%s %s' % (name, version) elif sys.platform == 'win32': _win_ver = sys.getwindowsversion() _plat_ver_info = (_win_ver[0], _win_ver[1]) return 'Windows %s' % _plat.win32_ver()[0] elif sys.platform in ['linux', 'linux2']: if os.path.exists('/etc/os-release'): with open('/etc/os-release', 'r', encoding='utf-8') as f: pairs = _parse_env_var_file(f.read()) if 'NAME' in pairs and 'VERSION_ID' in pairs: return '%s %s' % (pairs['NAME'], pairs['VERSION_ID']) version = pairs['VERSION_ID'] elif 'PRETTY_NAME' in pairs: return pairs['PRETTY_NAME'] elif 'NAME' in pairs: return pairs['NAME'] else: raise ValueError('No suitable version info found in /etc/os-release') elif os.path.exists('/etc/lsb-release'): with open('/etc/lsb-release', 'r', encoding='utf-8') as f: pairs = _parse_env_var_file(f.read()) if 'DISTRIB_DESCRIPTION' in pairs: return pairs['DISTRIB_DESCRIPTION'] else: raise ValueError('No suitable version info found in /etc/lsb-release') else: return 'Linux' else: return '%s %s' % (_plat.system(), _plat.release())
def _platform_name()
Returns information about the current operating system and version :return: A unicode string containing the OS name and version
1.876466
1.828416
1.02628
dir_patterns, file_patterns = _gitignore(root) paths = [] prefix = os.path.abspath(root) + os.sep for base, dirs, files in os.walk(root): for d in dirs: for dir_pattern in dir_patterns: if fnmatch(d, dir_pattern): dirs.remove(d) break for f in files: skip = False for file_pattern in file_patterns: if fnmatch(f, file_pattern): skip = True break if skip: continue full_path = os.path.join(base, f) if full_path[:len(prefix)] == prefix: full_path = full_path[len(prefix):] paths.append(full_path) return sorted(paths)
def _list_files(root)
Lists all of the files in a directory, taking into account any .gitignore file that is present :param root: A unicode filesystem path :return: A list of unicode strings, containing paths of all files not ignored by .gitignore with root, using relative paths
2.095335
2.095963
0.999701