code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
# no Test case for these # elif isinstance(t, typedesc.Argument): # elif isinstance(t, typedesc.CvQualifiedType): # elif isinstance(t, typedesc.Variable): # return "%s" % self.type_name(t.typ, generate) # elif isinstance(t, typedesc.Enumeration): # return t.name if isinstance(t, typedesc.FundamentalType): return self.FundamentalType(t) elif isinstance(t, typedesc.ArrayType): return "%s * %s" % (self.type_name(t.typ, generate), t.size) elif isinstance(t, typedesc.PointerType): self.enable_pointer_type() return "POINTER_T(%s)" % (self.type_name(t.typ, generate)) elif isinstance(t, typedesc.FunctionType): args = [ self.type_name( x, generate) for x in [ t.returns] + list( t.iterArgTypes())] if "__stdcall__" in t.attributes: return "ctypes.WINFUNCTYPE(%s)" % ", ".join(args) else: return "ctypes.CFUNCTYPE(%s)" % ", ".join(args) # elif isinstance(t, typedesc.Structure): # elif isinstance(t, typedesc.Typedef): # elif isinstance(t, typedesc.Union): return t.name
def type_name(self, t, generate=True)
Returns a string containing an expression that can be used to refer to the type. Assumes the 'from ctypes import *' namespace is available.
2.982191
2.920622
1.021081
# FIXME if self.generate_comments: self.print_comment(alias) print("%s = %s # alias" % (alias.name, alias.alias), file=self.stream) self._aliases += 1 return
def Alias(self, alias)
Handles Aliases. No test cases yet
7.401573
7.226116
1.024281
if macro.location is None: log.info('Ignoring %s with no location', macro.name) return if self.generate_locations: print("# %s:%s" % (macro.location), file=self.stream) if self.generate_comments: self.print_comment(macro) print("%s = %s # macro" % (macro.name, macro.body), file=self.stream) self.macros += 1 self.names.add(macro.name) return
def Macro(self, macro)
Handles macro. No test cases else that #defines.
4.218747
4.064962
1.037832
if item in self.done: return None if isinstance(item, typedesc.FundamentalType): return None if isinstance(item, typedesc.PointerType): return self.get_undeclared_type(item.typ) if isinstance(item, typedesc.ArrayType): return self.get_undeclared_type(item.typ) # else its an undeclared structure. return item
def get_undeclared_type(self, item)
Checks if a typed has already been declared in the python output or is a builtin python type.
3.383924
3.169788
1.067555
log.debug('HERE in FundamentalType for %s %s', _type, _type.name) if _type.name in ["None", "c_long_double_t", "c_uint128", "c_int128"]: self.enable_fundamental_type_wrappers() return _type.name return "ctypes.%s" % (_type.name)
def FundamentalType(self, _type)
Returns the proper ctypes class name for a fundamental type 1) activates generation of appropriate headers for ## int128_t ## c_long_double_t 2) return appropriate name for type
6.302347
4.665782
1.350759
if item in self.done: return # verbose output with location. if self.generate_locations and item.location: print("# %s:%d" % item.location, file=self.stream) if self.generate_comments: self.print_comment(item) log.debug("generate %s, %s", item.__class__.__name__, item.name) # #log.debug('generate: %s( %s )', type(item).__name__, name) #if name in self.known_symbols: # log.debug('item is in known_symbols %s'% name ) # mod = self.known_symbols[name] # print >> self.imports, "from %s import %s" % (mod, name) # self.done.add(item) # if isinstance(item, typedesc.Structure): # self.done.add(item.get_head()) # self.done.add(item.get_body()) # return # # to avoid infinite recursion, we have to mark it as done # before actually generating the code. self.done.add(item) # go to specific treatment mth = getattr(self, type(item).__name__) mth(item, *args) return
def _generate(self, item, *args)
wraps execution of specific methods.
4.4408
4.32977
1.025643
ldata = 200 degrees = np.arange(ldata+1, dtype=float) degrees[0] = np.inf power = degrees**(-1) clm1 = pyshtools.SHCoeffs.from_random(power, exact_power=False) clm2 = pyshtools.SHCoeffs.from_random(power, exact_power=True) fig, ax = plt.subplots() ax.plot(clm1.spectrum(unit='per_l'), label='Normal distributed power') ax.plot(clm2.spectrum(unit='per_l'), label='Exact power') ax.set(xscale='log', yscale='log', xlabel='degree l', ylabel='power per degree l') ax.grid(which='both') ax.legend() plt.show()
def example()
Plot random phase and Gaussian random variable spectra.
3.644089
3.421985
1.064905
if ax is None: fig, axes = self.rad.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.rad.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_rad(self, colorbar=True, cb_orientation='vertical', cb_label='$g_r$, m s$^{-2}$', ax=None, show=True, fname=None, **kwargs)
Plot the radial component of the gravity field. Usage ----- x.plot_rad([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$g_r$, m s$^{-2}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.73666
2.046936
0.848419
if ax is None: fig, axes = self.theta.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.theta.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_theta(self, colorbar=True, cb_orientation='vertical', cb_label='$g_\\theta$, m s$^{-2}$', ax=None, show=True, fname=None, **kwargs)
Plot the theta component of the gravity field. Usage ----- x.plot_theta([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$g_\\theta$, m s$^{-2}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.713806
1.998569
0.857517
if ax is None: fig, axes = self.phi.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.phi.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_phi(self, colorbar=True, cb_orientation='vertical', cb_label='$g_\phi$, m s$^{-2}$', ax=None, show=True, fname=None, **kwargs)
Plot the phi component of the gravity field. Usage ----- x.plot_phi([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$g_\phi$, m s$^{-2}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.761052
2.096796
0.839878
if self.normal_gravity is True: if cb_label is None: cb_label = 'Gravity disturbance, mGal' else: if cb_label is None: cb_label = 'Gravity disturbance, m s$^{-2}$' if ax is None: if self.normal_gravity is True: fig, axes = (self.total*1.e5).plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) else: fig, axes = self.total.plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: if self.normal_gravity is True: (self.total*1.e5).plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs) else: self.total.plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_total(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the total gravity disturbance. Usage ----- x.plot_total([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = 'gravity disturbance' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods. Notes ----- If the normal gravity is removed from the total gravitational acceleration, the output will be displayed in mGals.
1.79297
1.736164
1.032719
if ax is None: fig, axes = self.pot.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.pot.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_pot(self, colorbar=True, cb_orientation='vertical', cb_label='Potential, m$^2$ s$^{-2}$', ax=None, show=True, fname=None, **kwargs)
Plot the gravitational potential. Usage ----- x.plot_pot([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = 'potential, m s$^{-1}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.706247
2.034143
0.838804
if colorbar is True: if cb_orientation == 'horizontal': scale = 0.8 else: scale = 0.5 else: scale = 0.6 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, ax = _plt.subplots(2, 2, figsize=figsize) self.plot_rad(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[0], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_theta(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[1], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_phi(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[2], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, minor_tick_interval=minor_tick_interval, tick_labelsize=tick_labelsize,**kwargs) self.plot_total(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[3], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, ax
def plot(self, colorbar=True, cb_orientation='horizontal', tick_interval=[60, 60], minor_tick_interval=[20, 20], xlabel='Longitude', ylabel='Latitude', axes_labelsize=9, tick_labelsize=8, show=True, fname=None, **kwargs)
Plot the three vector components of the gravity field and the gravity disturbance. Usage ----- x.plot([tick_interval, minor_tick_interval, xlabel, ylabel, colorbar, cb_orientation, cb_label, axes_labelsize, tick_labelsize, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [60, 60] Intervals to use when plotting the major x and y ticks. If set to None, major ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [20, 20] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. xlabel : str, optional, default = 'Longitude' Label for the longitude axis. ylabel : str, optional, default = 'Latitude' Label for the latitude axis. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = None Text label for the colorbar. axes_labelsize : int, optional, default = 9 The font size for the x and y axes labels. tick_labelsize : int, optional, default = 8 The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.477131
1.558381
0.947863
if type(grid) != str: raise ValueError('grid must be a string. ' + 'Input type was {:s}' .format(str(type(grid)))) if nmax is None: nmax = self.nmax if self.galpha.kind == 'cap': shcoeffs = _shtools.SlepianCoeffsToSH(self.falpha, self.galpha.coeffs, nmax) else: shcoeffs = _shtools.SlepianCoeffsToSH(self.falpha, self.galpha.tapers, nmax) if grid.upper() in ('DH', 'DH1'): gridout = _shtools.MakeGridDH(shcoeffs, sampling=1, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='DH', copy=False) elif grid.upper() == 'DH2': gridout = _shtools.MakeGridDH(shcoeffs, sampling=2, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='DH', copy=False) elif grid.upper() == 'GLQ': if zeros is None: zeros, weights = _shtools.SHGLQ(self.galpha.lmax) gridout = _shtools.MakeGridGLQ(shcoeffs, zeros, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='GLQ', copy=False) else: raise ValueError( "grid must be 'DH', 'DH1', 'DH2', or 'GLQ'. " + "Input value was {:s}".format(repr(grid)))
def expand(self, nmax=None, grid='DH2', zeros=None)
Expand the function on a grid using the first n Slepian coefficients. Usage ----- f = x.expand([nmax, grid, zeros]) Returns ------- f : SHGrid class instance Parameters ---------- nmax : int, optional, default = x.nmax The number of expansion coefficients to use when calculating the spherical harmonic coefficients. grid : str, optional, default = 'DH2' 'DH' or 'DH1' for an equisampled lat/lon grid with nlat=nlon, 'DH2' for an equidistant lat/lon grid with nlon=2*nlat, or 'GLQ' for a Gauss-Legendre quadrature grid. zeros : ndarray, optional, default = None The cos(colatitude) nodes used in the Gauss-Legendre Quadrature grids.
2.636478
2.569355
1.026125
if type(normalization) != str: raise ValueError('normalization must be a string. ' + 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in set(['4pi', 'ortho', 'schmidt']): raise ValueError( "normalization must be '4pi', 'ortho' " + "or 'schmidt'. Provided value was {:s}" .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be 1 or -1. Input value was {:s}" .format(repr(csphase)) ) if nmax is None: nmax = self.nmax if self.galpha.kind == 'cap': shcoeffs = _shtools.SlepianCoeffsToSH(self.falpha, self.galpha.coeffs, nmax) else: shcoeffs = _shtools.SlepianCoeffsToSH(self.falpha, self.galpha.tapers, nmax) temp = SHCoeffs.from_array(shcoeffs, normalization='4pi', csphase=1) if normalization != '4pi' or csphase != 1: return temp.convert(normalization=normalization, csphase=csphase) else: return temp
def to_shcoeffs(self, nmax=None, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients using the first n Slepian coefficients. Usage ----- s = x.to_shcoeffs([nmax]) Returns ------- s : SHCoeffs class instance The spherical harmonic coefficients obtained from using the first n Slepian expansion coefficients. Parameters ---------- nmax : int, optional, default = x.nmax The maximum number of expansion coefficients to use when calculating the spherical harmonic coefficients. normalization : str, optional, default = '4pi' Normalization of the output class: '4pi', 'ortho' or 'schmidt' for geodesy 4pi-normalized, orthonormalized, or Schmidt semi-normalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it.
2.430209
2.405719
1.01018
''' Determine error message to print when a SHTOOLS Fortran 95 routine exits improperly. ''' if (status == 1): errmsg = 'Improper dimensions of input array.' elif (status == 2): errmsg = 'Improper bounds for input variable.' elif (status == 3): errmsg = 'Error allocating memory.' elif (status == 4): errmsg = 'File IO error.' else: errmsg = 'Unhandled Fortran 95 error.' return errmsg
def _shtools_status_message(status)
Determine error message to print when a SHTOOLS Fortran 95 routine exits improperly.
4.836959
2.881132
1.67884
if theta_degrees: tapers, eigenvalues, taper_order = _shtools.SHReturnTapers( _np.radians(theta), lmax) else: tapers, eigenvalues, taper_order = _shtools.SHReturnTapers( theta, lmax) return SlepianCap(theta, tapers, eigenvalues, taper_order, clat, clon, nmax, theta_degrees, coord_degrees, dj_matrix, copy=False)
def from_cap(cls, theta, lmax, clat=None, clon=None, nmax=None, theta_degrees=True, coord_degrees=True, dj_matrix=None)
Construct spherical cap Slepian functions. Usage ----- x = Slepian.from_cap(theta, lmax, [clat, clon, nmax, theta_degrees, coord_degrees, dj_matrix]) Returns ------- x : Slepian class instance Parameters ---------- theta : float Angular radius of the spherical-cap localization domain (default in degrees). lmax : int Spherical harmonic bandwidth of the Slepian functions. clat, clon : float, optional, default = None Latitude and longitude of the center of the rotated spherical-cap Slepian functions (default in degrees). nmax : int, optional, default (lmax+1)**2 Number of Slepian functions to compute. theta_degrees : bool, optional, default = True True if theta is in degrees. coord_degrees : bool, optional, default = True True if clat and clon are in degrees. dj_matrix : ndarray, optional, default = None The djpi2 rotation matrix computed by a call to djpi2.
3.593344
4.116504
0.872912
if nmax is None: nmax = (lmax + 1)**2 else: if nmax > (lmax + 1)**2: raise ValueError('nmax must be less than or equal to ' + '(lmax + 1)**2. lmax = {:d} and nmax = {:d}' .format(lmax, nmax)) if dh_mask.shape[0] % 2 != 0: raise ValueError('The number of latitude bands in dh_mask ' + 'must be even. nlat = {:d}' .format(dh_mask.shape[0])) if dh_mask.shape[1] == dh_mask.shape[0]: _sampling = 1 elif dh_mask.shape[1] == 2 * dh_mask.shape[0]: _sampling = 2 else: raise ValueError('dh_mask must be dimensioned as (n, n) or ' + '(n, 2 * n). Input shape is ({:d}, {:d})' .format(dh_mask.shape[0], dh_mask.shape[1])) mask_lm = _shtools.SHExpandDH(dh_mask, sampling=_sampling, lmax_calc=0) area = mask_lm[0, 0, 0] * 4 * _np.pi tapers, eigenvalues = _shtools.SHReturnTapersMap(dh_mask, lmax, ntapers=nmax) return SlepianMask(tapers, eigenvalues, area, copy=False)
def from_mask(cls, dh_mask, lmax, nmax=None)
Construct Slepian functions that are optimally concentrated within the region specified by a mask. Usage ----- x = Slepian.from_mask(dh_mask, lmax, [nmax]) Returns ------- x : Slepian class instance Parameters ---------- dh_mask :ndarray, shape (nlat, nlon) A Driscoll and Healy (1994) sampled grid describing the concentration region R. All elements should either be 1 (for inside the concentration region) or 0 (for outside the concentration region). The grid must have dimensions nlon=nlat or nlon=2*nlat, where nlat is even. lmax : int The spherical harmonic bandwidth of the Slepian functions. nmax : int, optional, default = (lmax+1)**2 The number of best-concentrated eigenvalues and eigenfunctions to return.
2.963971
2.83879
1.044097
if nmax is None: nmax = (self.lmax+1)**2 elif nmax is not None and nmax > (self.lmax+1)**2: raise ValueError( "nmax must be less than or equal to (lmax+1)**2 " + "where lmax is {:s}. Input value is {:s}" .format(repr(self.lmax), repr(nmax)) ) coeffsin = flm.to_array(normalization='4pi', csphase=1, lmax=self.lmax) return self._expand(coeffsin, nmax)
def expand(self, flm, nmax=None)
Return the Slepian expansion coefficients of the input function. Usage ----- s = x.expand(flm, [nmax]) Returns ------- s : SlepianCoeff class instance The Slepian expansion coefficients of the input function. Parameters ---------- flm : SHCoeffs class instance The input function to expand in Slepian functions. nmax : int, optional, default = (x.lmax+1)**2 The number of Slepian expansion coefficients to compute. Description ----------- The global function f is input using its spherical harmonic expansion coefficients flm. The expansion coefficients of the function f using Slepian functions g is given by f_alpha = sum_{lm}^{lmax} f_lm g(alpha)_lm
3.337901
3.275884
1.018931
if alpha is None: if nmax is None: nmax = self.nmax spectra = _np.zeros((self.lmax+1, nmax)) for iwin in range(nmax): coeffs = self.to_array(iwin) spectra[:, iwin] = _spectrum(coeffs, normalization='4pi', convention=convention, unit=unit, base=base) else: coeffs = self.to_array(alpha) spectra = _spectrum(coeffs, normalization='4pi', convention=convention, unit=unit, base=base) return spectra
def spectra(self, alpha=None, nmax=None, convention='power', unit='per_l', base=10.)
Return the spectra of one or more Slepian functions. Usage ----- spectra = x.spectra([alpha, nmax, convention, unit, base]) Returns ------- spectra : ndarray, shape (lmax+1, nmax) A matrix with each column containing the spectrum of a Slepian function, and where the functions are arranged with increasing concentration factors. If alpha is set, only a single vector is returned, whereas if nmax is set, the first nmax spectra are returned. Parameters ---------- alpha : int, optional, default = None The function number of the output spectrum, where alpha=0 corresponds to the best concentrated Slepian function. nmax : int, optional, default = 1 The number of best concentrated Slepian function power spectra to return. convention : str, optional, default = 'power' The type of spectrum to return: 'power' for power spectrum, 'energy' for energy spectrum, and 'l2norm' for the l2 norm spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. Description ----------- This function returns either the power spectrum, energy spectrum, or l2-norm spectrum of one or more of the Slepian funtions. Total power is defined as the integral of the function squared over all space, divided by the area the function spans. If the mean of the function is zero, this is equivalent to the variance of the function. The total energy is the integral of the function squared over all space and is 4pi times the total power. The l2-norm is the sum of the magnitude of the coefficients squared. The output spectrum can be expresed using one of three units. 'per_l' returns the contribution to the total spectrum from all angular orders at degree l. 'per_lm' returns the average contribution to the total spectrum from a single coefficient at degree l. The 'per_lm' spectrum is equal to the 'per_l' spectrum divided by (2l+1). 'per_dlogl' returns the contribution to the total spectrum from all angular orders over an infinitessimal logarithmic degree band. The contrubution in the band dlog_a(l) is spectrum(l, 'per_dlogl')*dlog_a(l), where a is the base, and where spectrum(l, 'per_dlogl) is equal to spectrum(l, 'per_l')*l*log(a).
2.673187
2.767267
0.966002
if self.coeffs is None: self.rotate(clat=90., clon=0., nrot=nmax) falpha = _shtools.SlepianCoeffs(self.coeffs, coeffsin, self.nrot) else: falpha = _shtools.SlepianCoeffs(self.coeffs, coeffsin, self.nrot) return SlepianCoeffs(falpha, self)
def _expand(self, coeffsin, nmax)
Determine the Slepian expansion coefficients of a function.
5.011766
4.501101
1.113453
taperm = self.orders[alpha] coeffs = _np.zeros((2, self.lmax + 1, self.lmax + 1)) if taperm < 0: coeffs[1, :, abs(taperm)] = self.tapers[:, alpha] else: coeffs[0, :, abs(taperm)] = self.tapers[:, alpha] return coeffs
def _taper2coeffs(self, alpha)
Return the spherical harmonic coefficients of the unrotated Slepian function i as an array, where i = 0 is the best concentrated function.
3.938465
3.9328
1.001441
if self.coeffs is None: coeffs = _np.copy(self._taper2coeffs(alpha)) else: if alpha > self.nrot - 1: raise ValueError('alpha must be less than or equal to ' + 'nrot - 1. alpha = {:d}, nrot = {:d}' .format(alpha, self.nrot)) coeffs = _shtools.SHVectorToCilm(self.coeffs[:, alpha]) if normalization == 'schmidt': for l in range(self.lmax + 1): coeffs[:, l, :l+1] *= _np.sqrt(2.0 * l + 1.0) elif normalization == 'ortho': coeffs *= _np.sqrt(4.0 * _np.pi) if csphase == -1: for m in range(self.lmax + 1): if m % 2 == 1: coeffs[:, :, m] = - coeffs[:, :, m] return coeffs
def _to_array(self, alpha, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of Slepian function i as an array, where i = 0 is the best concentrated function.
3.279573
3.184323
1.029912
falpha = _shtools.SlepianCoeffs(self.tapers, coeffsin, nmax) return SlepianCoeffs(falpha, self)
def _expand(self, coeffsin, nmax)
Determine the Slepian expansion coefficients of a function.
10.318316
7.798131
1.323178
coeffs = _shtools.SHVectorToCilm(self.tapers[:, alpha]) if normalization == 'schmidt': for l in range(self.lmax + 1): coeffs[:, l, :l+1] *= _np.sqrt(2.0 * l + 1.0) elif normalization == 'ortho': coeffs *= _np.sqrt(4.0 * _np.pi) if csphase == -1: for m in range(self.lmax + 1): if m % 2 == 1: coeffs[:, :, m] = - coeffs[:, :, m] return coeffs
def _to_array(self, alpha, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of Slepian function i as an array, where i=0 is the best concentrated function.
3.433356
3.399576
1.009936
if ax is None: fig, axes = self.total.plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.total.plot( colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_total(self, colorbar=True, cb_orientation='vertical', cb_label='$|B|$, nT', ax=None, show=True, fname=None, **kwargs)
Plot the total magnetic intensity. Usage ----- x.plot_total([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$|B|$, nT' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.715566
2.058744
0.833307
if _np.iscomplexobj(coeffs): raise TypeError('The input array must be real.') if type(normalization) != str: raise ValueError('normalization must be a string. ' 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError( "The normalization must be '4pi', 'ortho', 'schmidt', " "or 'unnorm'. Input value was {:s}." .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be either 1 or -1. Input value was {:s}." .format(repr(csphase)) ) if errors is not None: if coeffs.shape != errors.shape: raise ValueError( "The shape of coeffs and errors must be the same." "Shape of coeffs = {:s}, shape of errors = {:s}" .format(repr(coeffs.shape), repr(coeffs.errors)) ) lmaxin = coeffs.shape[1] - 1 if lmax is None: lmax = lmaxin else: if lmax > lmaxin: lmax = lmaxin if normalization.lower() == 'unnorm' and lmax > 85: _warnings.warn("Calculations using unnormalized coefficients " "are stable only for degrees less than or equal " "to 85. lmax for the coefficients will be set to " "85. Input value was {:d}.".format(lmax), category=RuntimeWarning) lmax = 85 if errors is not None: clm = SHMagRealCoeffs(coeffs[:, 0:lmax+1, 0:lmax+1], r0=r0, errors=errors[:, 0:lmax+1, 0:lmax+1], normalization=normalization.lower(), csphase=csphase, copy=copy) else: clm = SHMagRealCoeffs(coeffs[:, 0:lmax+1, 0:lmax+1], r0=r0, normalization=normalization.lower(), csphase=csphase, copy=copy) return clm
def from_array(self, coeffs, r0, errors=None, normalization='schmidt', csphase=1, lmax=None, copy=True)
Initialize the class with spherical harmonic coefficients from an input array. Usage ----- x = SHMagCoeffs.from_array(array, r0, [errors, normalization, csphase, lmax, copy]) Returns ------- x : SHMagCoeffs class instance. Parameters ---------- array : ndarray, shape (2, lmaxin+1, lmaxin+1). The input spherical harmonic coefficients. r0 : float The reference radius of the spherical harmonic coefficients. errors : ndarray, optional, default = None The uncertainties of the spherical harmonic coefficients. normalization : str, optional, default = 'schmidt' '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = None The maximum spherical harmonic degree to include in the returned class instance. This must be less than or equal to lmaxin. copy : bool, optional, default = True If True, make a copy of array when initializing the class instance. If False, initialize the class instance with a reference to array. Notes ----- The coefficients in the input array are assumed to have units of nT.
2.029154
1.843296
1.100829
# Ensure that the type is correct values = _np.array(values) ls = _np.array(ls) ms = _np.array(ms) mneg_mask = (ms < 0).astype(_np.int) self.coeffs[mneg_mask, ls, _np.abs(ms)] = values
def set_coeffs(self, values, ls, ms)
Set spherical harmonic coefficients in-place to specified values. Usage ----- x.set_coeffs(values, ls, ms) Parameters ---------- values : float (list) The value(s) of the spherical harmonic coefficient(s). ls : int (list) The degree(s) of the coefficient(s) that should be set. ms : int (list) The order(s) of the coefficient(s) that should be set. Positive and negative values correspond to the cosine and sine components, respectively. Examples -------- x.set_coeffs(10., 1, 1) # x.coeffs[0, 1, 1] = 10. x.set_coeffs(5., 1, -1) # x.coeffs[1, 1, 1] = 5. x.set_coeffs([1., 2], [1, 2], [0, -2]) # x.coeffs[0, 1, 0] = 1. # x.coeffs[1, 2, 2] = 2.
4.069285
4.255247
0.956298
if normalization is None: normalization = self.normalization if csphase is None: csphase = self.csphase if lmax is None: lmax = self.lmax coeffs = _convert(self.coeffs, normalization_in=self.normalization, normalization_out=normalization, csphase_in=self.csphase, csphase_out=csphase, lmax=lmax) if self.errors is not None: errors = _convert(self.errors, normalization_in=self.normalization, normalization_out=normalization, csphase_in=self.csphase, csphase_out=csphase, lmax=lmax) return coeffs, errors else: return coeffs
def to_array(self, normalization=None, csphase=None, lmax=None)
Return spherical harmonic coefficients (and errors) as a numpy array. Usage ----- coeffs, [errors] = x.to_array([normalization, csphase, lmax]) Returns ------- coeffs : ndarry, shape (2, lmax+1, lmax+1) numpy ndarray of the spherical harmonic coefficients. errors : ndarry, shape (2, lmax+1, lmax+1) numpy ndarray of the errors of the spherical harmonic coefficients if they are not None. Parameters ---------- normalization : str, optional, default = x.normalization Normalization of the output coefficients: '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = x.csphase Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = x.lmax Maximum spherical harmonic degree to output. If lmax is greater than x.lmax, the array will be zero padded. Description ----------- This method will return an array of the spherical harmonic coefficients using a different normalization and Condon-Shortley phase convention, and a different maximum spherical harmonic degree. If the maximum degree is smaller than the maximum degree of the class instance, the coefficients will be truncated. Conversely, if this degree is larger than the maximum degree of the class instance, the output array will be zero padded. If the errors of the coefficients are set, they will be output as a separate array.
1.57257
1.599988
0.982864
if normalization is None: normalization = self.normalization if csphase is None: csphase = self.csphase if lmax is None: lmax = self.lmax # check argument consistency if type(normalization) != str: raise ValueError('normalization must be a string. ' 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError( "normalization must be '4pi', 'ortho', 'schmidt', or " "'unnorm'. Provided value was {:s}" .format(repr(normalization))) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be 1 or -1. Input value was {:s}" .format(repr(csphase))) if self.errors is not None: coeffs, errors = self.to_array(normalization=normalization.lower(), csphase=csphase, lmax=lmax) return SHMagCoeffs.from_array( coeffs, r0=self.r0, errors=errors, normalization=normalization.lower(), csphase=csphase, copy=False) else: coeffs = self.to_array(normalization=normalization.lower(), csphase=csphase, lmax=lmax) return SHMagCoeffs.from_array( coeffs, r0=self.r0, normalization=normalization.lower(), csphase=csphase, copy=False)
def convert(self, normalization=None, csphase=None, lmax=None)
Return an SHMagCoeffs class instance with a different normalization convention. Usage ----- clm = x.convert([normalization, csphase, lmax]) Returns ------- clm : SHMagCoeffs class instance Parameters ---------- normalization : str, optional, default = x.normalization Normalization of the output class: '4pi', 'ortho', 'schmidt', or 'unnorm', for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = x.csphase Condon-Shortley phase convention for the output class: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = x.lmax Maximum spherical harmonic degree to output. Description ----------- This method will return a new class instance of the spherical harmonic coefficients using a different normalization and Condon-Shortley phase convention. A different maximum spherical harmonic degree of the output coefficients can be specified, and if this maximum degree is smaller than the maximum degree of the original class, the coefficients will be truncated. Conversely, if this degree is larger than the maximum degree of the original class, the coefficients of the new class will be zero padded.
1.819914
1.698618
1.071408
clm = self.copy() if lmax <= self.lmax: clm.coeffs = clm.coeffs[:, :lmax+1, :lmax+1] clm.mask = clm.mask[:, :lmax+1, :lmax+1] if self.errors is not None: clm.errors = clm.errors[:, :lmax+1, :lmax+1] else: clm.coeffs = _np.pad(clm.coeffs, ((0, 0), (0, lmax - self.lmax), (0, lmax - self.lmax)), 'constant') if self.errors is not None: clm.errors = _np.pad( clm.errors, ((0, 0), (0, lmax - self.lmax), (0, lmax - self.lmax)), 'constant') mask = _np.zeros((2, lmax + 1, lmax + 1), dtype=_np.bool) for l in _np.arange(lmax + 1): mask[:, l, :l + 1] = True mask[1, :, 0] = False clm.mask = mask clm.lmax = lmax return clm
def pad(self, lmax)
Return an SHMagCoeffs class where the coefficients are zero padded or truncated to a different lmax. Usage ----- clm = x.pad(lmax) Returns ------- clm : SHMagCoeffs class instance Parameters ---------- lmax : int Maximum spherical harmonic degree to output.
1.786165
1.832826
0.974541
if lmax is None: lmax = self.lmax clm = self.pad(lmax) if r0 is not None and r0 != self.r0: for l in _np.arange(lmax+1): clm.coeffs[:, l, :l+1] *= (self.r0 / r0)**(l+2) if self.errors is not None: clm.errors[:, l, :l+1] *= (self.r0 / r0)**(l+2) clm.r0 = r0 return clm
def change_ref(self, r0=None, lmax=None)
Return a new SHMagCoeffs class instance with a different reference r0. Usage ----- clm = x.change_ref([r0, lmax]) Returns ------- clm : SHMagCoeffs class instance. Parameters ---------- r0 : float, optional, default = self.r0 The reference radius of the spherical harmonic coefficients. lmax : int, optional, default = self.lmax Maximum spherical harmonic degree to output. Description ----------- This method returns a new class instance of the magnetic potential, but using a difference reference r0. When changing the reference radius r0, the spherical harmonic coefficients will be upward or downward continued under the assumption that the reference radius is exterior to the body.
2.857186
2.89627
0.986505
if a is None: a = self.r0 if f is None: f = 0. if lmax is None: lmax = self.lmax if lmax_calc is None: lmax_calc = lmax if self.errors is not None: coeffs, errors = self.to_array(normalization='schmidt', csphase=1) else: coeffs = self.to_array(normalization='schmidt', csphase=1) rad, theta, phi, total, pot = _MakeMagGridDH( coeffs, self.r0, a=a, f=f, lmax=lmax, lmax_calc=lmax_calc, sampling=sampling) return _SHMagGrid(rad, theta, phi, total, pot, a, f, lmax, lmax_calc)
def expand(self, a=None, f=None, lmax=None, lmax_calc=None, sampling=2)
Create 2D cylindrical maps on a flattened and rotating ellipsoid of all three components of the magnetic field, the total magnetic intensity, and the magnetic potential, and return as a SHMagGrid class instance. Usage ----- mag = x.expand([a, f, lmax, lmax_calc, sampling]) Returns ------- mag : SHMagGrid class instance. Parameters ---------- a : optional, float, default = self.r0 The semi-major axis of the flattened ellipsoid on which the field is computed. f : optional, float, default = 0 The flattening of the reference ellipsoid: f=(a-b)/a. lmax : optional, integer, default = self.lmax The maximum spherical harmonic degree, which determines the number of samples of the output grids, n=2lmax+2, and the latitudinal sampling interval, 90/(lmax+1). lmax_calc : optional, integer, default = lmax The maximum spherical harmonic degree used in evaluating the functions. This must be less than or equal to lmax. sampling : optional, integer, default = 2 If 1 the output grids are equally sampled (n by n). If 2 (default), the grids are equally spaced in degrees (n by 2n). Description ----------- This method will create 2-dimensional cylindrical maps of the three components of the magnetic field, the total field, and the magnetic potential, and return these as an SHMagGrid class instance. Each map is stored as an SHGrid class instance using Driscoll and Healy grids that are either equally sampled (n by n) or equally spaced (n by 2n) in latitude and longitude. All grids use geocentric coordinates, and the units are either in nT (for the magnetic field), or nT m (for the potential), The magnetic potential is given by V = r0 Sum_{l=1}^lmax (r0/r)^{l+1} Sum_{m=-l}^l g_{lm} Y_{lm} and the magnetic field is B = - Grad V. The coefficients are referenced to a radius r0, and the function is computed on a flattened ellipsoid with semi-major axis a (i.e., the mean equatorial radius) and flattening f.
3.104939
2.567515
1.209317
if line.isspace(): return True elif len(line.split()) >= 3: try: # python 3 str if line.split()[0].isdecimal() and line.split()[1].isdecimal(): return False except: # python 2 str if (line.decode().split()[0].isdecimal() and line.split()[1].decode().isdecimal()): return False return True else: return True
def _iscomment(line)
Determine if a line is a comment line. A valid line contains at least three words, with the first two being integers. Note that Python 2 and 3 deal with strings differently.
3.248134
2.876065
1.129367
# ---- split f2py document in its parts # 0=Call Signature # 1=Parameters # 2=Other (optional) Parameters (only if present) # 3=Returns docparts = re.split('\n--', f2pydoc) if len(docparts) == 4: doc_has_optionals = True elif len(docparts) == 3: doc_has_optionals = False else: print('-- uninterpretable f2py documentation --') return f2pydoc # ---- replace arguments with _d suffix with empty string in ---- # ---- function signature (remove them): ---- docparts[0] = re.sub('[\[(,]\w+_d\d', '', docparts[0]) # ---- replace _d arguments of the return arrays with their default value: if doc_has_optionals: returnarray_dims = re.findall('[\[(,](\w+_d\d)', docparts[3]) for arg in returnarray_dims: searchpattern = arg + ' : input.*\n.*Default: (.*)\n' match = re.search(searchpattern, docparts[2]) if match: default = match.group(1) docparts[3] = re.sub(arg, default, docparts[3]) docparts[2] = re.sub(searchpattern, '', docparts[2]) # ---- remove all optional _d# from optional argument list: if doc_has_optionals: searchpattern = '\w+_d\d : input.*\n.*Default: (.*)\n' docparts[2] = re.sub(searchpattern, '', docparts[2]) # ---- combine doc parts to a single string processed_signature = '\n--'.join(docparts) return processed_signature
def process_f2pydoc(f2pydoc)
this function replace all optional _d0 arguments with their default values in the function signature. These arguments are not intended to be used and signify merely the array dimensions of the associated argument.
4.543833
4.115574
1.104058
if theta_degrees: tapers, eigenvalues, taper_order = _shtools.SHReturnTapers( _np.radians(theta), lwin) else: tapers, eigenvalues, taper_order = _shtools.SHReturnTapers( theta, lwin) return SHWindowCap(theta, tapers, eigenvalues, taper_order, clat, clon, nwin, theta_degrees, coord_degrees, dj_matrix, weights, copy=False)
def from_cap(cls, theta, lwin, clat=None, clon=None, nwin=None, theta_degrees=True, coord_degrees=True, dj_matrix=None, weights=None)
Construct spherical cap localization windows. Usage ----- x = SHWindow.from_cap(theta, lwin, [clat, clon, nwin, theta_degrees, coord_degrees, dj_matrix, weights]) Returns ------- x : SHWindow class instance Parameters ---------- theta : float Angular radius of the spherical cap localization domain (default in degrees). lwin : int Spherical harmonic bandwidth of the localization windows. clat, clon : float, optional, default = None Latitude and longitude of the center of the rotated spherical cap localization windows (default in degrees). nwin : int, optional, default (lwin+1)**2 Number of localization windows. theta_degrees : bool, optional, default = True True if theta is in degrees. coord_degrees : bool, optional, default = True True if clat and clon are in degrees. dj_matrix : ndarray, optional, default = None The djpi2 rotation matrix computed by a call to djpi2. weights : ndarray, optional, default = None Taper weights used with the multitaper spectral analyses.
3.622627
3.680443
0.984291
if nwin is None: nwin = (lwin + 1)**2 else: if nwin > (lwin + 1)**2: raise ValueError('nwin must be less than or equal to ' + '(lwin + 1)**2. lwin = {:d} and nwin = {:d}' .format(lwin, nwin)) if dh_mask.shape[0] % 2 != 0: raise ValueError('The number of latitude bands in dh_mask ' + 'must be even. nlat = {:d}' .format(dh_mask.shape[0])) if dh_mask.shape[1] == dh_mask.shape[0]: _sampling = 1 elif dh_mask.shape[1] == 2 * dh_mask.shape[0]: _sampling = 2 else: raise ValueError('dh_mask must be dimensioned as (n, n) or ' + '(n, 2 * n). Input shape is ({:d}, {:d})' .format(dh_mask.shape[0], dh_mask.shape[1])) mask_lm = _shtools.SHExpandDH(dh_mask, sampling=_sampling, lmax_calc=0) area = mask_lm[0, 0, 0] * 4 * _np.pi tapers, eigenvalues = _shtools.SHReturnTapersMap(dh_mask, lwin, ntapers=nwin) return SHWindowMask(tapers, eigenvalues, weights, area, copy=False)
def from_mask(cls, dh_mask, lwin, nwin=None, weights=None)
Construct localization windows that are optimally concentrated within the region specified by a mask. Usage ----- x = SHWindow.from_mask(dh_mask, lwin, [nwin, weights]) Returns ------- x : SHWindow class instance Parameters ---------- dh_mask :ndarray, shape (nlat, nlon) A Driscoll and Healy (1994) sampled grid describing the concentration region R. All elements should either be 1 (for inside the concentration region) or 0 (for outside the concentration region). The grid must have dimensions nlon=nlat or nlon=2*nlat, where nlat is even. lwin : int The spherical harmonic bandwidth of the localization windows. nwin : int, optional, default = (lwin+1)**2 The number of best concentrated eigenvalues and eigenfunctions to return. weights ndarray, optional, default = None Taper weights used with the multitaper spectral analyses.
3.098976
2.832755
1.093979
if type(normalization) != str: raise ValueError('normalization must be a string. ' + 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in ('4pi', 'ortho', 'schmidt'): raise ValueError( "normalization must be '4pi', 'ortho' " + "or 'schmidt'. Provided value was {:s}" .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be 1 or -1. Input value was {:s}" .format(repr(csphase)) ) return self._to_array( itaper, normalization=normalization.lower(), csphase=csphase)
def to_array(self, itaper, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of taper i as a numpy array. Usage ----- coeffs = x.to_array(itaper, [normalization, csphase]) Returns ------- coeffs : ndarray, shape (2, lwin+1, lwin+11) 3-D numpy ndarray of the spherical harmonic coefficients of the window. Parameters ---------- itaper : int Taper number, where itaper=0 is the best concentrated. normalization : str, optional, default = '4pi' Normalization of the output coefficients: '4pi', 'ortho' or 'schmidt' for geodesy 4pi normalized, orthonormalized, or Schmidt semi-normalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it.
2.031988
2.130975
0.953549
if type(normalization) != str: raise ValueError('normalization must be a string. ' + 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in set(['4pi', 'ortho', 'schmidt']): raise ValueError( "normalization must be '4pi', 'ortho' " + "or 'schmidt'. Provided value was {:s}" .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be 1 or -1. Input value was {:s}" .format(repr(csphase)) ) coeffs = self.to_array(itaper, normalization=normalization.lower(), csphase=csphase) return SHCoeffs.from_array(coeffs, normalization=normalization.lower(), csphase=csphase, copy=False)
def to_shcoeffs(self, itaper, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of taper i as a SHCoeffs class instance. Usage ----- clm = x.to_shcoeffs(itaper, [normalization, csphase]) Returns ------- clm : SHCoeffs class instance Parameters ---------- itaper : int Taper number, where itaper=0 is the best concentrated. normalization : str, optional, default = '4pi' Normalization of the output class: '4pi', 'ortho' or 'schmidt' for geodesy 4pi-normalized, orthonormalized, or Schmidt semi-normalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it.
1.996986
2.057261
0.970702
if type(grid) != str: raise ValueError('grid must be a string. ' + 'Input type was {:s}' .format(str(type(grid)))) if grid.upper() in ('DH', 'DH1'): gridout = _shtools.MakeGridDH(self.to_array(itaper), sampling=1, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='DH', copy=False) elif grid.upper() == 'DH2': gridout = _shtools.MakeGridDH(self.to_array(itaper), sampling=2, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='DH', copy=False) elif grid.upper() == 'GLQ': if zeros is None: zeros, weights = _shtools.SHGLQ(self.lwin) gridout = _shtools.MakeGridGLQ(self.to_array(itaper), zeros, norm=1, csphase=1) return SHGrid.from_array(gridout, grid='GLQ', copy=False) else: raise ValueError( "grid must be 'DH', 'DH1', 'DH2', or 'GLQ'. " + "Input value was {:s}".format(repr(grid)))
def to_shgrid(self, itaper, grid='DH2', zeros=None)
Evaluate the coefficients of taper i on a spherical grid and return a SHGrid class instance. Usage ----- f = x.to_shgrid(itaper, [grid, zeros]) Returns ------- f : SHGrid class instance Parameters ---------- itaper : int Taper number, where itaper=0 is the best concentrated. grid : str, optional, default = 'DH2' 'DH' or 'DH1' for an equisampled lat/lon grid with nlat=nlon, 'DH2' for an equidistant lat/lon grid with nlon=2*nlat, or 'GLQ' for a Gauss-Legendre quadrature grid. zeros : ndarray, optional, default = None The cos(colatitude) nodes used in the Gauss-Legendre Quadrature grids. Description ----------- For more information concerning the spherical harmonic expansions and the properties of the output grids, see the documentation for SHExpandDH and SHExpandGLQ.
2.314469
2.214828
1.044988
return self._multitaper_spectrum(clm, k, convention=convention, unit=unit, **kwargs)
def multitaper_spectrum(self, clm, k, convention='power', unit='per_l', **kwargs)
Return the multitaper spectrum estimate and standard error. Usage ----- mtse, sd = x.multitaper_spectrum(clm, k, [convention, unit, lmax, taper_wt, clat, clon, coord_degrees]) Returns ------- mtse : ndarray, shape (lmax-lwin+1) The localized multitaper spectrum estimate, where lmax is the spherical-harmonic bandwidth of clm, and lwin is the spherical-harmonic bandwidth of the localization windows. sd : ndarray, shape (lmax-lwin+1) The standard error of the localized multitaper spectrum estimate. Parameters ---------- clm : SHCoeffs class instance SHCoeffs class instance containing the spherical harmonic coefficients of the global field to analyze. k : int The number of tapers to be utilized in performing the multitaper spectral analysis. convention : str, optional, default = 'power' The type of output spectra: 'power' for power spectra, and 'energy' for energy spectra. unit : str, optional, default = 'per_l' The units of the output spectra. If 'per_l', the spectra contain the total contribution for each spherical harmonic degree l. If 'per_lm', the spectra contain the average contribution for each coefficient at spherical harmonic degree l. lmax : int, optional, default = clm.lmax The maximum spherical-harmonic degree of clm to use. taper_wt : ndarray, optional, default = None 1-D numpy array of the weights used in calculating the multitaper spectral estimates and standard error. clat, clon : float, optional, default = 90., 0. Latitude and longitude of the center of the spherical-cap localization windows. coord_degrees : bool, optional, default = True True if clat and clon are in degrees.
2.410269
5.533176
0.435603
return self._multitaper_cross_spectrum(clm, slm, k, convention=convention, unit=unit, **kwargs)
def multitaper_cross_spectrum(self, clm, slm, k, convention='power', unit='per_l', **kwargs)
Return the multitaper cross-spectrum estimate and standard error. Usage ----- mtse, sd = x.multitaper_cross_spectrum(clm, slm, k, [convention, unit, lmax, taper_wt, clat, clon, coord_degrees]) Returns ------- mtse : ndarray, shape (lmax-lwin+1) The localized multitaper cross-spectrum estimate, where lmax is the smaller of the two spherical-harmonic bandwidths of clm and slm, and lwin is the spherical-harmonic bandwidth of the localization windows. sd : ndarray, shape (lmax-lwin+1) The standard error of the localized multitaper cross-spectrum estimate. Parameters ---------- clm : SHCoeffs class instance SHCoeffs class instance containing the spherical harmonic coefficients of the first global field to analyze. slm : SHCoeffs class instance SHCoeffs class instance containing the spherical harmonic coefficients of the second global field to analyze. k : int The number of tapers to be utilized in performing the multitaper spectral analysis. convention : str, optional, default = 'power' The type of output spectra: 'power' for power spectra, and 'energy' for energy spectra. unit : str, optional, default = 'per_l' The units of the output spectra. If 'per_l', the spectra contain the total contribution for each spherical harmonic degree l. If 'per_lm', the spectra contain the average contribution for each coefficient at spherical harmonic degree l. lmax : int, optional, default = min(clm.lmax, slm.lmax) The maximum spherical-harmonic degree of the input coefficients to use. taper_wt : ndarray, optional, default = None The weights used in calculating the multitaper cross-spectral estimates and standard error. clat, clon : float, optional, default = 90., 0. Latitude and longitude of the center of the spherical-cap localization windows. coord_degrees : bool, optional, default = True True if clat and clon are in degrees.
2.28215
4.49076
0.508188
return self._biased_spectrum(power, k, convention=convention, unit=unit, **kwargs)
def biased_spectrum(self, power, k, convention='power', unit='per_l', **kwargs)
Calculate the multitaper (cross-)spectrum expectation of a localized function. Usage ----- outspectrum = x.biased_spectrum(spectrum, k, [unit, power, taper_wt, save_cg, ldata]) Returns ------- outspectrum : ndarray, shape (ldata+lwin+1) The expectation of the windowed spectrum, where ldata is the spherical-harmonic bandwidth of the input spectrum, and lwin is the spherical-harmonic bandwidth of the localization windows. Parameters ---------- spectrum : ndarray, shape (ldata+1) The global spectrum. k : int The number of best-concentrated localization windows to use in constructing the windowed spectrum. convention : str, optional, default = 'power' The type of input global and output biased spectra: 'power' for power spectra, and 'energy' for energy spectra. unit : str, optional, default = 'per_l' The units of the input global and output biased spectra. If 'per_l', the spectra contain the total contribution for each spherical harmonic degree l. If 'per_lm', the spectra contain the average contribution for each coefficient at spherical harmonic degree l. taper_wt : ndarray, optional, default = None The weights used in calculating the multitaper spectral estimates and standard error. save_cg : int, optional, default = 0 If 1, the Clebsch-Gordon coefficients will be precomputed and saved for future use. If 0, the Clebsch-Gordon coefficients will be recomputed for each call. ldata : int, optional, default = len(power)-1 The maximum degree of the global unwindowed spectrum.
2.634682
6.345843
0.415182
if itaper is None: if nwin is None: nwin = self.nwin spectra = _np.zeros((self.lwin+1, nwin)) for iwin in range(nwin): coeffs = self.to_array(iwin) spectra[:, iwin] = _spectrum(coeffs, normalization='4pi', convention=convention, unit=unit, base=base) else: coeffs = self.to_array(itaper) spectra = _spectrum(coeffs, normalization='4pi', convention=convention, unit=unit, base=base) return spectra
def spectra(self, itaper=None, nwin=None, convention='power', unit='per_l', base=10.)
Return the spectra of one or more localization windows. Usage ----- spectra = x.spectra([itaper, nwin, convention, unit, base]) Returns ------- spectra : ndarray, shape (lwin+1, nwin) A matrix with each column containing the spectrum of a localization window, and where the windows are arranged with increasing concentration factors. If itaper is set, only a single vector is returned, whereas if nwin is set, the first nwin spectra are returned. Parameters ---------- itaper : int, optional, default = None The taper number of the output spectrum, where itaper=0 corresponds to the best concentrated taper. nwin : int, optional, default = 1 The number of best concentrated localization window power spectra to return. convention : str, optional, default = 'power' The type of spectrum to return: 'power' for power spectrum, 'energy' for energy spectrum, and 'l2norm' for the l2 norm spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. Description ----------- This function returns either the power spectrum, energy spectrum, or l2-norm spectrum of one or more of the localization windows. Total power is defined as the integral of the function squared over all space, divided by the area the function spans. If the mean of the function is zero, this is equivalent to the variance of the function. The total energy is the integral of the function squared over all space and is 4pi times the total power. The l2-norm is the sum of the magnitude of the coefficients squared. The output spectrum can be expresed using one of three units. 'per_l' returns the contribution to the total spectrum from all angular orders at degree l. 'per_lm' returns the average contribution to the total spectrum from a single coefficient at degree l. The 'per_lm' spectrum is equal to the 'per_l' spectrum divided by (2l+1). 'per_dlogl' returns the contribution to the total spectrum from all angular orders over an infinitessimal logarithmic degree band. The contrubution in the band dlog_a(l) is spectrum(l, 'per_dlogl')*dlog_a(l), where a is the base, and where spectrum(l, 'per_dlogl) is equal to spectrum(l, 'per_l')*l*log(a).
2.518591
2.397177
1.050649
if weights is not None: if nwin is not None: if len(weights) != nwin: raise ValueError( 'Length of weights must be equal to nwin. ' + 'len(weights) = {:d}, nwin = {:d}'.format(len(weights), nwin)) else: if len(weights) != self.nwin: raise ValueError( 'Length of weights must be equal to nwin. ' + 'len(weights) = {:d}, nwin = {:d}'.format(len(weights), self.nwin)) if mode == 'full': return self._coupling_matrix(lmax, nwin=nwin, weights=weights) elif mode == 'same': cmatrix = self._coupling_matrix(lmax, nwin=nwin, weights=weights) return cmatrix[:lmax+1, :] elif mode == 'valid': cmatrix = self._coupling_matrix(lmax, nwin=nwin, weights=weights) return cmatrix[:lmax - self.lwin+1, :] else: raise ValueError("mode has to be 'full', 'same' or 'valid', not " "{}".format(mode))
def coupling_matrix(self, lmax, nwin=None, weights=None, mode='full')
Return the coupling matrix of the first nwin tapers. This matrix relates the global power spectrum to the expectation of the localized multitaper spectrum. Usage ----- Mmt = x.coupling_matrix(lmax, [nwin, weights, mode]) Returns ------- Mmt : ndarray, shape (lmax+lwin+1, lmax+1) or (lmax+1, lmax+1) or (lmax-lwin+1, lmax+1) Parameters ---------- lmax : int Spherical harmonic bandwidth of the global power spectrum. nwin : int, optional, default = x.nwin Number of tapers used in the mutlitaper spectral analysis. weights : ndarray, optional, default = x.weights Taper weights used with the multitaper spectral analyses. mode : str, opitonal, default = 'full' 'full' returns a biased output spectrum of size lmax+lwin+1. The input spectrum is assumed to be zero for degrees l>lmax. 'same' returns a biased output spectrum with the same size (lmax+1) as the input spectrum. The input spectrum is assumed to be zero for degrees l>lmax. 'valid' returns a biased spectrum with size lmax-lwin+1. This returns only that part of the biased spectrum that is not influenced by the input spectrum beyond degree lmax.
1.841015
1.787617
1.029871
figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0]) if axes_labelsize is None: axes_labelsize = _mpl.rcParams['axes.labelsize'] if tick_labelsize is None: tick_labelsize = _mpl.rcParams['xtick.labelsize'] if ax is None: fig = _plt.figure(figsize=figsize) axes = fig.add_subplot(111) else: axes = ax axes.imshow(self.coupling_matrix(lmax, nwin=nwin, weights=weights, mode=mode), aspect='auto') axes.set_xlabel('Input power', fontsize=axes_labelsize) axes.set_ylabel('Output power', fontsize=axes_labelsize) axes.tick_params(labelsize=tick_labelsize) axes.minorticks_on() if ax is None: fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes
def plot_coupling_matrix(self, lmax, nwin=None, weights=None, mode='full', axes_labelsize=None, tick_labelsize=None, show=True, ax=None, fname=None)
Plot the multitaper coupling matrix. This matrix relates the global power spectrum to the expectation of the localized multitaper spectrum. Usage ----- x.plot_coupling_matrix(lmax, [nwin, weights, mode, axes_labelsize, tick_labelsize, show, ax, fname]) Parameters ---------- lmax : int Spherical harmonic bandwidth of the global power spectrum. nwin : int, optional, default = x.nwin Number of tapers used in the mutlitaper spectral analysis. weights : ndarray, optional, default = x.weights Taper weights used with the multitaper spectral analyses. mode : str, opitonal, default = 'full' 'full' returns a biased output spectrum of size lmax+lwin+1. The input spectrum is assumed to be zero for degrees l>lmax. 'same' returns a biased output spectrum with the same size (lmax+1) as the input spectrum. The input spectrum is assumed to be zero for degrees l>lmax. 'valid' returns a biased spectrum with size lmax-lwin+1. This returns only that part of the biased spectrum that is not influenced by the input spectrum beyond degree lmax. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. ax : matplotlib axes object, optional, default = None An array of matplotlib axes objects where the plots will appear. fname : str, optional, default = None If present, save the image to the specified file.
1.603733
1.770346
0.905887
taperm = self.orders[itaper] coeffs = _np.zeros((2, self.lwin + 1, self.lwin + 1)) if taperm < 0: coeffs[1, :, abs(taperm)] = self.tapers[:, itaper] else: coeffs[0, :, abs(taperm)] = self.tapers[:, itaper] return coeffs
def _taper2coeffs(self, itaper)
Return the spherical harmonic coefficients of the unrotated taper i as an array, where i = 0 is the best concentrated.
4.114479
3.992618
1.030522
if self.coeffs is None: coeffs = _np.copy(self._taper2coeffs(itaper)) else: if itaper > self.nwinrot - 1: raise ValueError('itaper must be less than or equal to ' + 'nwinrot - 1. itaper = {:d}, nwinrot = {:d}' .format(itaper, self.nwinrot)) coeffs = _shtools.SHVectorToCilm(self.coeffs[:, itaper]) if normalization == 'schmidt': for l in range(self.lwin + 1): coeffs[:, l, :l+1] *= _np.sqrt(2.0 * l + 1.0) elif normalization == 'ortho': coeffs *= _np.sqrt(4.0 * _np.pi) if csphase == -1: for m in range(self.lwin + 1): if m % 2 == 1: coeffs[:, :, m] = - coeffs[:, :, m] return coeffs
def _to_array(self, itaper, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of taper i as an array, where i = 0 is the best concentrated.
3.349682
3.210892
1.043224
self.coeffs = _np.zeros(((self.lwin + 1)**2, self.nwin)) self.clat = clat self.clon = clon self.coord_degrees = coord_degrees if nwinrot is not None: self.nwinrot = nwinrot else: self.nwinrot = self.nwin if self.coord_degrees: angles = _np.radians(_np.array([0., -(90. - clat), -clon])) else: angles = _np.array([0., -(_np.pi/2. - clat), -clon]) if dj_matrix is None: if self.dj_matrix is None: self.dj_matrix = _shtools.djpi2(self.lwin + 1) dj_matrix = self.dj_matrix else: dj_matrix = self.dj_matrix if ((coord_degrees is True and clat == 90. and clon == 0.) or (coord_degrees is False and clat == _np.pi/2. and clon == 0.)): for i in range(self.nwinrot): coeffs = self._taper2coeffs(i) self.coeffs[:, i] = _shtools.SHCilmToVector(coeffs) else: coeffs = _shtools.SHRotateTapers(self.tapers, self.orders, self.nwinrot, angles, dj_matrix) self.coeffs = coeffs
def rotate(self, clat, clon, coord_degrees=True, dj_matrix=None, nwinrot=None)
Rotate the spherical-cap windows centered on the North pole to clat and clon, and save the spherical harmonic coefficients in the attribute coeffs. Usage ----- x.rotate(clat, clon [coord_degrees, dj_matrix, nwinrot]) Parameters ---------- clat, clon : float Latitude and longitude of the center of the rotated spherical-cap localization windows (default in degrees). coord_degrees : bool, optional, default = True True if clat and clon are in degrees. dj_matrix : ndarray, optional, default = None The djpi2 rotation matrix computed by a call to djpi2. nwinrot : int, optional, default = (lwin+1)**2 The number of best concentrated windows to rotate, where lwin is the spherical harmonic bandwidth of the localization windows. Description ----------- This function will take the spherical-cap localization windows centered at the North pole (and saved in the attributes tapers and orders), rotate each function to the coordinate (clat, clon), and save the spherical harmonic coefficients in the attribute coeffs. Each column of coeffs contains a single window, and the coefficients are ordered according to the convention in SHCilmToVector.
2.795526
2.263902
1.234826
if nwin is None: nwin = self.nwin if weights is None: weights = self.weights if weights is None: return _shtools.SHMTCouplingMatrix(lmax, self.tapers**2, k=nwin) else: return _shtools.SHMTCouplingMatrix(lmax, self.tapers**2, k=nwin, taper_wt=self.weights)
def _coupling_matrix(self, lmax, nwin=None, weights=None)
Return the coupling matrix of the first nwin tapers.
3.385814
3.065946
1.104329
if lmax is None: lmax = clm.lmax if (clat is not None and clon is not None and clat == self.clat and clon == self.clon and coord_degrees is self.coord_degrees and k <= self.nwinrot): # use the already stored coeffs pass elif (clat is None and clon is None) and \ (self.clat is not None and self.clon is not None and k <= self.nwinrot): # use the already stored coeffs pass else: if clat is None: clat = self.clat if clon is None: clon = self.clon if (clat is None and clon is not None) or \ (clat is not None and clon is None): raise ValueError('clat and clon must both be input. ' + 'clat = {:s}, clon = {:s}' .format(repr(clat), repr(clon))) if clat is None and clon is None: self.rotate(clat=90., clon=0., coord_degrees=True, nwinrot=k) else: self.rotate(clat=clat, clon=clon, coord_degrees=coord_degrees, nwinrot=k) sh = clm.to_array(normalization='4pi', csphase=1, lmax=lmax) if taper_wt is None: mtse, sd = _shtools.SHMultiTaperMaskSE(sh, self.coeffs, lmax=lmax, k=k) else: mtse, sd = _shtools.SHMultiTaperMaskSE(sh, self.coeffs, lmax=lmax, k=k, taper_wt=taper_wt) if (unit == 'per_l'): pass elif (unit == 'per_lm'): degree_l = _np.arange(len(mtse)) mtse /= (2.0 * degree_l + 1.0) sd /= (2.0 * degree_l + 1.0) else: raise ValueError( "unit must be 'per_l' or 'per_lm'." + "Input value was {:s}".format(repr(unit))) if (convention == 'power'): return mtse, sd elif (convention == 'energy'): return mtse * 4.0 * _np.pi, sd * 4.0 * _np.pi else: raise ValueError( "convention must be 'power' or 'energy'." + "Input value was {:s}".format(repr(convention)))
def _multitaper_spectrum(self, clm, k, convention='power', unit='per_l', clat=None, clon=None, coord_degrees=True, lmax=None, taper_wt=None)
Return the multitaper spectrum estimate and standard error for an input SHCoeffs class instance.
2.328032
2.252114
1.03371
if lmax is None: lmax = min(clm.lmax, slm.lmax) if (clat is not None and clon is not None and clat == self.clat and clon == self.clon and coord_degrees is self.coord_degrees and k <= self.nwinrot): # use the already stored coeffs pass elif (clat is None and clon is None) and \ (self.clat is not None and self.clon is not None and k <= self.nwinrot): # use the already stored coeffs pass else: if clat is None: clat = self.clat if clon is None: clon = self.clon if (clat is None and clon is not None) or \ (clat is not None and clon is None): raise ValueError('clat and clon must both be input. ' + 'clat = {:s}, clon = {:s}' .format(repr(clat), repr(clon))) if clat is None and clon is None: self.rotate(clat=90., clon=0., coord_degrees=True, nwinrot=k) else: self.rotate(clat=clat, clon=clon, coord_degrees=coord_degrees, nwinrot=k) sh1 = clm.to_array(normalization='4pi', csphase=1, lmax=lmax) sh2 = slm.to_array(normalization='4pi', csphase=1, lmax=lmax) if taper_wt is None: mtse, sd = _shtools.SHMultiTaperMaskCSE(sh1, sh2, self.coeffs, lmax1=lmax, lmax2=lmax, k=k) else: mtse, sd = _shtools.SHMultiTaperMaskCSE(sh1, sh2, self.coeffs, lmax1=lmax, lmax2=lmax, k=k, taper_wt=taper_wt) if (unit == 'per_l'): pass elif (unit == 'per_lm'): degree_l = _np.arange(len(mtse)) mtse /= (2.0 * degree_l + 1.0) sd /= (2.0 * degree_l + 1.0) else: raise ValueError( "unit must be 'per_l' or 'per_lm'." + "Input value was {:s}".format(repr(unit))) if (convention == 'power'): return mtse, sd elif (convention == 'energy'): return mtse * 4.0 * _np.pi, sd * 4.0 * _np.pi else: raise ValueError( "convention must be 'power' or 'energy'." + "Input value was {:s}".format(repr(convention)))
def _multitaper_cross_spectrum(self, clm, slm, k, convention='power', unit='per_l', clat=None, clon=None, coord_degrees=True, lmax=None, taper_wt=None)
Return the multitaper cross-spectrum estimate and standard error for two input SHCoeffs class instances.
2.228705
2.166496
1.028714
coeffs = _shtools.SHVectorToCilm(self.tapers[:, itaper]) if normalization == 'schmidt': for l in range(self.lwin + 1): coeffs[:, l, :l+1] *= _np.sqrt(2.0 * l + 1.0) elif normalization == 'ortho': coeffs *= _np.sqrt(4.0 * _np.pi) if csphase == -1: for m in range(self.lwin + 1): if m % 2 == 1: coeffs[:, :, m] = - coeffs[:, :, m] return coeffs
def _to_array(self, itaper, normalization='4pi', csphase=1)
Return the spherical harmonic coefficients of taper i as an array, where i=0 is the best concentrated.
3.741787
3.465992
1.079572
if nwin is None: nwin = self.nwin if weights is None: weights = self.weights tapers_power = _np.zeros((self.lwin+1, nwin)) for i in range(nwin): tapers_power[:, i] = _spectrum(self.to_array(i), normalization='4pi', convention='power', unit='per_l') if weights is None: return _shtools.SHMTCouplingMatrix(lmax, tapers_power, k=nwin) else: return _shtools.SHMTCouplingMatrix(lmax, tapers_power, k=nwin, taper_wt=self.weights)
def _coupling_matrix(self, lmax, nwin=None, weights=None)
Return the coupling matrix of the first nwin tapers.
4.22186
4.00645
1.053766
if lmax is None: lmax = clm.lmax sh = clm.to_array(normalization='4pi', csphase=1, lmax=lmax) if taper_wt is None: mtse, sd = _shtools.SHMultiTaperMaskSE(sh, self.tapers, lmax=lmax, k=k) else: mtse, sd = _shtools.SHMultiTaperMaskSE(sh, self.tapers, lmax=lmax, k=k, taper_wt=taper_wt) if (unit == 'per_l'): pass elif (unit == 'per_lm'): degree_l = _np.arange(len(mtse)) mtse /= (2.0 * degree_l + 1.0) sd /= (2.0 * degree_l + 1.0) else: raise ValueError( "unit must be 'per_l' or 'per_lm'." + "Input value was {:s}".format(repr(unit))) if (convention == 'power'): return mtse, sd elif (convention == 'energy'): return mtse * 4.0 * _np.pi, sd * 4.0 * _np.pi else: raise ValueError( "convention must be 'power' or 'energy'." + "Input value was {:s}".format(repr(convention)))
def _multitaper_spectrum(self, clm, k, convention='power', unit='per_l', lmax=None, taper_wt=None)
Return the multitaper spectrum estimate and standard error for an input SHCoeffs class instance.
2.48546
2.354989
1.055402
if lmax is None: lmax = min(clm.lmax, slm.lmax) sh1 = clm.to_array(normalization='4pi', csphase=1, lmax=lmax) sh2 = slm.to_array(normalization='4pi', csphase=1, lmax=lmax) if taper_wt is None: mtse, sd = _shtools.SHMultiTaperMaskCSE(sh1, sh2, self.tapers, lmax=lmax, k=k) else: mtse, sd = _shtools.SHMultiTaperMaskCSE(sh1, sh2, self.tapers, lmax=lmax, k=k, taper_wt=taper_wt) if (unit == 'per_l'): pass elif (unit == 'per_lm'): degree_l = _np.arange(len(mtse)) mtse /= (2.0 * degree_l + 1.0) sd /= (2.0 * degree_l + 1.0) else: raise ValueError( "unit must be 'per_l' or 'per_lm'." + "Input value was {:s}".format(repr(unit))) if (convention == 'power'): return mtse, sd elif (convention == 'energy'): return mtse * 4.0 * _np.pi, sd * 4.0 * _np.pi else: raise ValueError( "convention must be 'power' or 'energy'." + "Input value was {:s}".format(repr(convention)))
def _multitaper_cross_spectrum(self, clm, slm, k, convention='power', unit='per_l', lmax=None, taper_wt=None)
Return the multitaper cross-spectrum estimate and standard error for two input SHCoeffs class instances.
2.302921
2.186738
1.053131
# The equation is not modified if the in- and out- spectra are power # or energy. However, the convention can not be l2norm, which depends # upon the normalization of the coefficients. if (convention != 'power' and convention != 'energy'): raise ValueError( "convention must be 'power' or 'energy'." + "Input value was {:s}".format(repr(convention))) if (unit == 'per_l'): outspectrum = _shtools.SHBiasKMask(self.tapers, spectrum, k=k, **kwargs) elif (unit == 'per_lm'): degree_l = _np.arange(len(spectrum)) temp = spectrum * (2.0 * degree_l + 1.0) outspectrum = _shtools.SHBiasKMask(self.tapers, temp, k=k, **kwargs) outspectrum /= (2.0 * degree_l + 1.0) else: raise ValueError( "unit must be 'per_l' or 'per_lm'." + "Input value was {:s}".format(repr(unit))) return outspectrum
def _biased_spectrum(self, spectrum, k, convention='power', unit='per_l', **kwargs)
Calculate the multitaper (cross-) spectrum expectation of a function localized by arbitary windows.
3.929859
3.944344
0.996328
self.i0 = self.vxx + self.vyy + self.vzz self.i1 = (self.vxx*self.vyy + self.vyy*self.vzz + self.vxx*self.vzz - self.vxy**2 - self.vyz**2 - self.vxz**2) self.i2 = (self.vxx*(self.vyy*self.vzz - self.vyz**2) + self.vxy*(self.vyz*self.vxz - self.vxy*self.vzz) + self.vxz*(self.vxy*self.vyz - self.vxz*self.vyy)) self.i = (-1.) * (self.i2 / 2.)**2 self.i.data[1:, :] /= (self.i1.data[1:, :] / 3.)**3
def compute_invar(self)
Compute the three invariants (I0, I1, I2) of the tensor, as well as the quantity I = -(I2/2)**2 / (I1/3)**3.
2.395625
2.021655
1.184982
self.eig1 = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') self.eig2 = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') self.eig3 = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') for i in range(self.nlat): for j in range(self.nlon): a = _np.array([[self.vxx.data[i, j], self.vxy.data[i, j], self.vxz.data[i, j]], [self.vyx.data[i, j], self.vyy.data[i, j], self.vyz.data[i, j]], [self.vzx.data[i, j], self.vzy.data[i, j], self.vzz.data[i, j]]]) eigs = _eigvalsh(a) self.eig1.data[i, j] = eigs[2] self.eig2.data[i, j] = eigs[1] self.eig3.data[i, j] = eigs[0]
def compute_eig(self)
Compute the three eigenvalues of the tensor: eig1, eig2, ei3.
1.758176
1.67733
1.048199
self.eigh1 = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') self.eigh2 = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') self.eighh = _SHGrid.from_array(_np.zeros_like(self.vxx.data), grid='DH') for i in range(self.nlat): for j in range(self.nlon): a = _np.array([[self.vxx.data[i, j], self.vxy.data[i, j]], [self.vyx.data[i, j], self.vyy.data[i, j]]]) eigs = _eigvalsh(a) self.eigh1.data[i, j] = eigs[1] self.eigh2.data[i, j] = eigs[0] if abs(eigs[0]) >= abs(eigs[1]): self.eighh.data[i, j] = eigs[0] else: self.eighh.data[i, j] = eigs[1]
def compute_eigh(self)
Compute the two horizontal eigenvalues of the tensor (eigh1, and eigh2), as well as the combined maximum absolute value of the two (eighh).
1.946044
1.784612
1.090458
if cb_label is None: cb_label = self._vxx_label if ax is None: fig, axes = self.vxx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vxx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vxx(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vxx component of the tensor. Usage ----- x.plot_vxx([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = False If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{xx}$' Text label for the colorbar.. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.737735
2.025666
0.857858
if cb_label is None: cb_label = self._vyy_label if ax is None: fig, axes = self.vyy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vyy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vyy(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vyy component of the tensor. Usage ----- x.plot_vyy([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{yy}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.73791
2.036034
0.853576
if cb_label is None: cb_label = self._vzz_label if ax is None: fig, axes = self.vzz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vzz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vzz(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vzz component of the tensor. Usage ----- x.plot_vzz([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{zz}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.745698
2.047911
0.852429
if cb_label is None: cb_label = self._vxy_label if ax is None: fig, axes = self.vxy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vxy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vxy(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vxy component of the tensor. Usage ----- x.plot_vxy([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{xy}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.756477
2.017079
0.870802
if cb_label is None: cb_label = self._vyx_label if ax is None: fig, axes = self.vyx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vyx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vyx(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vyx component of the tensor. Usage ----- x.plot_vyx([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{yx}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.78252
2.087936
0.853724
if cb_label is None: cb_label = self._vxz_label if ax is None: fig, axes = self.vxz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vxz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vxz(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vxz component of the tensor. Usage ----- x.plot_vxz([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{xz}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.753365
2.041861
0.858709
if cb_label is None: cb_label = self._vzx_label if ax is None: fig, axes = self.vzx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vzx.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vzx(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vzx component of the tensor. Usage ----- x.plot_vzx([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{zx}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.742828
2.024994
0.860658
if cb_label is None: cb_label = self._vyz_label if ax is None: fig, axes = self.vyz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vyz.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vyz(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vyz component of the tensor. Usage ----- x.plot_vyz([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{yz}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.772613
2.108889
0.840543
if cb_label is None: cb_label = self._vzy_label if ax is None: fig, axes = self.vzy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.vzy.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_vzy(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the Vzy component of the tensor. Usage ----- x.plot_vzy([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$V_{zy}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.731398
2.032582
0.851822
if cb_label is None: cb_label = self._i0_label if self.i0 is None: self.compute_invar() if ax is None: fig, axes = self.i0.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.i0.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_i0(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the first invariant I0 (the trace) of the tensor I0 = vxx + vyy + vzz which should be identically zero. Usage ----- x.plot_i0([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = 'Tr $V_{ij}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.980922
2.275219
0.870651
if cb_label is None: cb_label = self._i1_label if self.i1 is None: self.compute_invar() if ax is None: fig, axes = self.i1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.i1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_i1(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the second invariant I1 of the tensor: I1 = vxx*vyy + vyy*vzz + vxx*vzz - vxy**2 - vyz**2 - vxz**2 Usage ----- x.plot_i1([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$I_1$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.969382
2.223373
0.885763
if cb_label is None: cb_label = self._i2_label if self.i2 is None: self.compute_invar() if ax is None: fig, axes = self.i2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.i2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_i2(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the third invariant I2 (the determinant) of the tensor: I2 = vxx*(vyy*vzz - vyz**2) + vxy*(vyz*vxz - vxy*vzz) + vxz*(vxy*vyz - vxz*vyy) Usage ----- x.plot_i2([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = 'det $V_{ij}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.972461
2.224842
0.886562
if cb_label is None: cb_label = self._i_label if self.i is None: self.compute_invar() if ax is None: fig, axes = self.i.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.i.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_i(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the dimensionless quantity I of Pedersen and Rasmussen (1990) I = -(I2/2)**2 / (I1/3)**3 that is bounded by 0 and 1. Usage ----- x.plot_i([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$-(I_2/2)^{2} / (I_1/3)^{3}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.986243
2.260373
0.878724
if colorbar is True: if cb_orientation == 'horizontal': scale = 0.8 else: scale = 0.5 else: scale = 0.6 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, ax = _plt.subplots(2, 2, figsize=figsize) self.plot_i0(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[0], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_i1(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[1], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_i2(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[2], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_i(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[3], tick_interval=tick_interval, xlabel=xlabel, ylabel=ylabel, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, ax
def plot_invar(self, colorbar=True, cb_orientation='horizontal', tick_interval=[60, 60], minor_tick_interval=[20, 20], xlabel='Longitude', ylabel='Latitude', axes_labelsize=9, tick_labelsize=8, show=True, fname=None, **kwargs)
Plot the three invariants of the tensor and the derived quantity I. Usage ----- x.plot_invar([tick_interval, minor_tick_interval, xlabel, ylabel, colorbar, cb_orientation, cb_label, axes_labelsize, tick_labelsize, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [60, 60] Intervals to use when plotting the major x and y ticks. If set to None, major ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [20, 20] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. xlabel : str, optional, default = 'Longitude' Label for the longitude axis. ylabel : str, optional, default = 'Latitude' Label for the latitude axis. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = None Text label for the colorbar. axes_labelsize : int, optional, default = 9 The font size for the x and y axes labels. tick_labelsize : int, optional, default = 8 The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.430316
1.488696
0.960785
if cb_label is None: cb_label = self._eig1_label if self.eig1 is None: self.compute_eig() if ax is None: fig, axes = self.eig1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eig1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eig1(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the first eigenvalue of the tensor. Usage ----- x.plot_eig1([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_1$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.777364
2.094292
0.848671
if cb_label is None: cb_label = self._eig2_label if self.eig2 is None: self.compute_eig() if ax is None: fig, axes = self.eig2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eig2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eig2(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the second eigenvalue of the tensor. Usage ----- x.plot_eig2([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_2$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.789871
2.113045
0.847058
if cb_label is None: cb_label = self._eig3_label if self.eig3 is None: self.compute_eig() if ax is None: fig, axes = self.eig3.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eig3.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eig3(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the third eigenvalue of the tensor. Usage ----- x.plot_eig3([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_3$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.785359
2.106384
0.847594
if colorbar is True: if cb_orientation == 'horizontal': scale = 2.3 else: scale = 1.4 else: scale = 1.65 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, ax = _plt.subplots(3, 1, figsize=figsize) self.plot_eig1(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[0], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_eig2(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[1], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_eig3(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[2], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, ax
def plot_eigs(self, colorbar=True, cb_orientation='vertical', tick_interval=[60, 60], minor_tick_interval=[20, 20], xlabel='Longitude', ylabel='Latitude', axes_labelsize=9, tick_labelsize=8, show=True, fname=None, **kwargs)
Plot the three eigenvalues of the tensor. Usage ----- x.plot_eigs([tick_interval, minor_tick_interval, xlabel, ylabel, colorbar, cb_orientation, cb_label, axes_labelsize, tick_labelsize, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [60, 60] Intervals to use when plotting the major x and y ticks. If set to None, major ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [20, 20] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. xlabel : str, optional, default = 'Longitude' Label for the longitude axis. ylabel : str, optional, default = 'Latitude' Label for the latitude axis. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = None Text label for the colorbar. axes_labelsize : int, optional, default = 9 The font size for the x and y axes labels. tick_labelsize : int, optional, default = 8 The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.512364
1.597049
0.946974
if cb_label is None: cb_label = self._eigh1_label if self.eigh1 is None: self.compute_eigh() if ax is None: fig, axes = self.eigh1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eigh1.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eigh1(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the first eigenvalue of the horizontal tensor. Usage ----- x.plot_eigh1([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_{h1}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.747223
1.98045
0.882235
if cb_label is None: cb_label = self._eigh2_label if self.eigh2 is None: self.compute_eigh() if ax is None: fig, axes = self.eigh2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eigh2.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eigh2(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the second eigenvalue of the horizontal tensor. Usage ----- x.plot_eigh2([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_{h2}$, Eotvos$^{-1}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.758707
1.9854
0.88582
if cb_label is None: cb_label = self._eighh_label if self.eighh is None: self.compute_eigh() if ax is None: fig, axes = self.eighh.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, show=False, **kwargs) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes else: self.eighh.plot(colorbar=colorbar, cb_orientation=cb_orientation, cb_label=cb_label, ax=ax, **kwargs)
def plot_eighh(self, colorbar=True, cb_orientation='vertical', cb_label=None, ax=None, show=True, fname=None, **kwargs)
Plot the maximum absolute value eigenvalue of the horizontal tensor. Usage ----- x.plot_eighh([tick_interval, xlabel, ylabel, ax, colorbar, cb_orientation, cb_label, show, fname]) Parameters ---------- tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = '$\lambda_{hh}$' Text label for the colorbar. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.749699
1.986944
0.880598
if colorbar is True: if cb_orientation == 'horizontal': scale = 2.3 else: scale = 1.4 else: scale = 1.65 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, ax = _plt.subplots(3, 1, figsize=figsize) self.plot_eigh1(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[0], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_eigh2(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[1], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) self.plot_eighh(colorbar=colorbar, cb_orientation=cb_orientation, ax=ax.flat[2], xlabel=xlabel, ylabel=ylabel, tick_interval=tick_interval, tick_labelsize=tick_labelsize, minor_tick_interval=minor_tick_interval, **kwargs) fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, ax
def plot_eigh(self, colorbar=True, cb_orientation='vertical', tick_interval=[60, 60], minor_tick_interval=[20, 20], xlabel='Longitude', ylabel='Latitude', axes_labelsize=9, tick_labelsize=8, show=True, fname=None, **kwargs)
Plot the two eigenvalues and maximum absolute value eigenvalue of the horizontal tensor. Usage ----- x.plot_eigh([tick_interval, minor_tick_interval, xlabel, ylabel, colorbar, cb_orientation, cb_label, axes_labelsize, tick_labelsize, show, fname, **kwargs]) Parameters ---------- tick_interval : list or tuple, optional, default = [60, 60] Intervals to use when plotting the major x and y ticks. If set to None, major ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [20, 20] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. xlabel : str, optional, default = 'Longitude' Label for the longitude axis. ylabel : str, optional, default = 'Latitude' Label for the latitude axis. colorbar : bool, optional, default = True If True, plot a colorbar. cb_orientation : str, optional, default = 'vertical' Orientation of the colorbar: either 'vertical' or 'horizontal'. cb_label : str, optional, default = None Text label for the colorbar. axes_labelsize : int, optional, default = 9 The font size for the x and y axes labels. tick_labelsize : int, optional, default = 8 The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if axes is not specified, save the image to the specified file. kwargs : optional Keyword arguements that will be sent to the SHGrid.plot() and plt.imshow() methods.
1.600249
1.697888
0.942494
d = os.path.dirname(__file__) # get release number from VERSION with open(os.path.join(d, 'VERSION')) as f: vre = re.compile('.Version: (.+)$', re.M) version = vre.search(f.read()).group(1) if os.path.isdir(os.path.join(d, '.git')): # Get the version using "git describe". cmd = 'git describe --tags' try: git_version = check_output(cmd.split()).decode().strip()[1:] except CalledProcessError: print('Unable to get version number from git tags\n' 'Setting to x.x') git_version = 'x.x' # PEP440 compatibility if '-' in git_version: git_revision = check_output(['git', 'rev-parse', 'HEAD']) git_revision = git_revision.strip().decode('ascii') # add post0 if the version is released # otherwise add dev0 if the version is not yet released if ISRELEASED: version += '.post0+' + git_revision[:7] else: version += '.dev0+' + git_revision[:7] return version
def get_version()
Get version from git and VERSION file. In the case where the version is not tagged in git, this function appends .post0+commit if the version has been released and .dev0+commit if the version has not yet been released. Derived from: https://github.com/Changaco/version.py
3.36836
3.021211
1.114904
compiler = get_default_fcompiler() if compiler == 'absoft': flags = ['-m64', '-O3', '-YEXT_NAMES=LCS', '-YEXT_SFX=_', '-fpic', '-speed_math=10'] elif compiler == 'gnu95': flags = ['-m64', '-fPIC', '-O3', '-ffast-math'] elif compiler == 'intel': flags = ['-m64', '-fpp', '-free', '-O3', '-Tf'] elif compiler == 'g95': flags = ['-O3', '-fno-second-underscore'] elif compiler == 'pg': flags = ['-fast'] else: flags = ['-m64', '-O3'] return flags
def get_compiler_flags()
Set fortran flags depending on the compiler.
5.475964
5.153579
1.062555
config = Configuration('', parent_package, top_path) F95FLAGS = get_compiler_flags() kwargs = { 'libraries': [], 'include_dirs': [], 'library_dirs': [], } kwargs['extra_compile_args'] = F95FLAGS kwargs['f2py_options'] = ['--quiet'] # numpy.distutils.fcompiler.FCompiler doesn't support .F95 extension compiler = FCompiler(get_default_fcompiler()) compiler.src_extensions.append('.F95') compiler.language_map['.F95'] = 'f90' # collect all Fortran sources files = os.listdir('src') exclude_sources = ['PlanetsConstants.f95', 'PythonWrapper.f95'] sources = [os.path.join('src', file) for file in files if file.lower().endswith(('.f95', '.c')) and file not in exclude_sources] # (from http://stackoverflow.com/questions/14320220/ # testing-python-c-libraries-get-build-path)): build_lib_dir = "{dirname}.{platform}-{version[0]}.{version[1]}" dirparams = {'dirname': 'temp', 'platform': sysconfig.get_platform(), 'version': sys.version_info} libdir = os.path.join('build', build_lib_dir.format(**dirparams)) print('searching SHTOOLS in:', libdir) # Fortran compilation config.add_library('SHTOOLS', sources=sources, **kwargs) # SHTOOLS kwargs['libraries'].extend(['SHTOOLS']) kwargs['include_dirs'].extend([libdir]) kwargs['library_dirs'].extend([libdir]) # FFTW info fftw_info = get_info('fftw', notfound_action=2) dict_append(kwargs, **fftw_info) if sys.platform != 'win32': kwargs['libraries'].extend(['m']) # BLAS / Lapack info lapack_info = get_info('lapack_opt', notfound_action=2) blas_info = get_info('blas_opt', notfound_action=2) dict_append(kwargs, **blas_info) dict_append(kwargs, **lapack_info) config.add_extension('pyshtools._SHTOOLS', sources=['src/pyshtools.pyf', 'src/PythonWrapper.f95'], **kwargs) return config
def configuration(parent_package='', top_path=None)
Configure all packages that need to be built.
3.568209
3.572069
0.998919
print('---- BUILDING ----') _build.run(self) # build documentation print('---- BUILDING DOCS ----') docdir = os.path.join(self.build_lib, 'pyshtools', 'doc') self.mkpath(docdir) doc_builder = os.path.join(self.build_lib, 'pyshtools', 'make_docs.py') doc_source = '.' check_call([sys.executable, doc_builder, doc_source, self.build_lib]) print('---- ALL DONE ----')
def run(self)
Build the Fortran library, all python extensions and the docs.
3.474157
3.065601
1.133271
print('---- CUSTOM DEVELOP ----') _develop.run(self) # build documentation print('---- BUILDING DOCS ----') docdir = os.path.join(self.setup_path, 'pyshtools', 'doc') self.mkpath(docdir) doc_builder = os.path.join(self.setup_path, 'pyshtools', 'make_docs.py') doc_source = '.' check_call([sys.executable, doc_builder, doc_source, self.setup_path]) print('---- ALL DONE ----')
def run(self)
Build the Fortran library, all python extensions and the docs.
4.631189
4.124975
1.122719
delta_t = epoch - ref_epoch trend = trnd * delta_t periodic_sum = _np.zeros_like(trnd) for period in periodic: for trifunc in periodic[period]: coeffs = periodic[period][trifunc] if trifunc == 'acos': periodic_sum += coeffs * _np.cos(2 * _np.pi / period * delta_t) elif trifunc == 'asin': periodic_sum += coeffs * _np.sin(2 * _np.pi / period * delta_t) return trend + periodic_sum
def _time_variable_part(epoch, ref_epoch, trnd, periodic)
Return sum of the time-variable part of the coefficients The formula is: G(t) = G(t0) + trnd*(t-t0) + asin1*sin(2pi/p1 * (t-t0)) + acos1*cos(2pi/p1 * (t-t0)) + asin2*sin(2pi/p2 * (t-t0)) + acos2*cos(2pi/p2 * (t-t0)) This function computes all terms after G(t0).
2.795751
2.757543
1.013856
# print('\n----',subroutine['name'],'----') #-- use original function from shtools: subroutine['use'] = {'shtools': {'map': {subroutine['name']: subroutine['name']}, 'only': 1}} #-- loop through variables: for varname, varattribs in subroutine['vars'].items(): #-- prefix function return variables with 'py' if varname == subroutine['name']: subroutine['vars']['py' + varname] = subroutine['vars'].pop(varname) varname = 'py' + varname # print('prefix added:',varname) #-- change assumed to explicit: if has_assumed_shape(varattribs): make_explicit(subroutine, varname, varattribs) # print('assumed shape variable modified to:',varname,varattribs['dimension']) #-- add py prefix to subroutine: subroutine['name'] = 'py' + subroutine['name']
def modify_subroutine(subroutine)
loops through variables of a subroutine and modifies them
6.842419
6.820755
1.003176
width_x = max_width * rel_width width_y = max_width * rel_width / aspect_ratio shtools = { # fonts 'font.size': 10, 'font.family': 'sans-serif', 'font.sans-serif': ['Myriad Pro', 'DejaVu Sans', 'Bitstream Vera Sans', 'Verdana', 'Arial', 'Helvetica'], 'axes.titlesize': 10, 'axes.labelsize': 10, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'legend.fontsize': 9, 'text.usetex': False, 'axes.formatter.limits': (-3, 3), # figure 'figure.dpi': screen_dpi, 'figure.figsize': (width_x, width_y), # line and tick widths 'axes.linewidth': 1, 'lines.linewidth': 1.5, 'xtick.major.width': 0.6, 'ytick.major.width': 0.6, 'xtick.minor.width': 0.6, 'xtick.minor.width': 0.6, 'xtick.top': True, 'ytick.right': True, # grids 'grid.linewidth': 0.3, 'grid.color': 'k', 'grid.linestyle': '-', # legends 'legend.framealpha': 1., 'legend.edgecolor': 'k', # images 'image.lut': 65536, # 16 bit # savefig 'savefig.bbox': 'tight', 'savefig.pad_inches': 0.02, 'savefig.dpi': 600, 'savefig.format': 'pdf' } _plt.style.use([shtools])
def figstyle(rel_width=0.75, screen_dpi=114, aspect_ratio=4/3, max_width=7.48031)
Set matplotlib parameters for creating publication quality graphics. Usage ----- figstyle([rel_width, screen_dpi, aspect_ratio, max_width]) Parameters ---------- rel_width : float, optional, default = 0.75 The relative width of the plot (from 0 to 1) wih respect to max_width. screen_dpi : int, optional, default = 114 The screen resolution of the display in dpi, which determines the size of the plot on the display. aspect_ratio : float, optional, default = 4/3 The aspect ratio of the plot. max_width : float, optional, default = 7.48031 The maximum width of the usable area of a journal page in inches. Description ----------- This function sets a variety of matplotlib parameters for creating publication quality graphics. The default parameters are tailored to AGU/Wiley-Blackwell journals that accept relative widths of 0.5, 0.75, and 1. To reset the maplotlib parameters to their default values, use matplotlib.pyplot.style.use('default')
2.056563
2.177752
0.944351
if kind.lower() not in ('real', 'complex'): raise ValueError( "Kind must be 'real' or 'complex'. " + "Input value was {:s}." .format(repr(kind)) ) if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError( "The normalization must be '4pi', 'ortho', 'schmidt', " + "or 'unnorm'. Input value was {:s}." .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be either 1 or -1. Input value was {:s}." .format(repr(csphase)) ) if normalization.lower() == 'unnorm' and lmax > 85: _warnings.warn("Calculations using unnormalized coefficients " + "are stable only for degrees less than or equal " + "to 85. lmax for the coefficients will be set to " + "85. Input value was {:d}.".format(lmax), category=RuntimeWarning) lmax = 85 nl = lmax + 1 if kind.lower() == 'real': coeffs = _np.zeros((2, nl, nl)) else: coeffs = _np.zeros((2, nl, nl), dtype=complex) for cls in self.__subclasses__(): if cls.istype(kind): return cls(coeffs, normalization=normalization.lower(), csphase=csphase)
def from_zeros(self, lmax, kind='real', normalization='4pi', csphase=1)
Initialize class with spherical harmonic coefficients set to zero from degree 0 to lmax. Usage ----- x = SHCoeffs.from_zeros(lmax, [normalization, csphase]) Returns ------- x : SHCoeffs class instance. Parameters ---------- lmax : int The highest spherical harmonic degree l of the coefficients. normalization : str, optional, default = '4pi' '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it. kind : str, optional, default = 'real' 'real' or 'complex' spherical harmonic coefficients.
2.117582
2.07353
1.021245
if _np.iscomplexobj(coeffs): kind = 'complex' else: kind = 'real' if type(normalization) != str: raise ValueError('normalization must be a string. ' + 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError( "The normalization must be '4pi', 'ortho', 'schmidt', " + "or 'unnorm'. Input value was {:s}." .format(repr(normalization)) ) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be either 1 or -1. Input value was {:s}." .format(repr(csphase)) ) lmaxin = coeffs.shape[1] - 1 if lmax is None: lmax = lmaxin else: if lmax > lmaxin: lmax = lmaxin if normalization.lower() == 'unnorm' and lmax > 85: _warnings.warn("Calculations using unnormalized coefficients " + "are stable only for degrees less than or equal " + "to 85. lmax for the coefficients will be set to " + "85. Input value was {:d}.".format(lmax), category=RuntimeWarning) lmax = 85 for cls in self.__subclasses__(): if cls.istype(kind): return cls(coeffs[:, 0:lmax+1, 0:lmax+1], normalization=normalization.lower(), csphase=csphase, copy=copy)
def from_array(self, coeffs, normalization='4pi', csphase=1, lmax=None, copy=True)
Initialize the class with spherical harmonic coefficients from an input array. Usage ----- x = SHCoeffs.from_array(array, [normalization, csphase, lmax, copy]) Returns ------- x : SHCoeffs class instance. Parameters ---------- array : ndarray, shape (2, lmaxin+1, lmaxin+1). The input spherical harmonic coefficients. normalization : str, optional, default = '4pi' '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = 1 Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = None The maximum spherical harmonic degree to include in the returned class instance. This must be less than or equal to lmaxin. copy : bool, optional, default = True If True, make a copy of array when initializing the class instance. If False, initialize the class instance with a reference to array.
2.131299
2.077052
1.026117
if format is 'shtools': with open(filename, mode='w') as file: if header is not None: file.write(header + '\n') for l in range(self.lmax+1): for m in range(l+1): file.write('{:d}, {:d}, {:.16e}, {:.16e}\n' .format(l, m, self.coeffs[0, l, m], self.coeffs[1, l, m])) elif format is 'npy': _np.save(filename, self.coeffs, **kwargs) else: raise NotImplementedError( 'format={:s} not implemented'.format(repr(format)))
def to_file(self, filename, format='shtools', header=None, **kwargs)
Save raw spherical harmonic coefficients to a file. Usage ----- x.to_file(filename, [format='shtools', header]) x.to_file(filename, [format='npy', **kwargs]) Parameters ---------- filename : str Name of the output file. format : str, optional, default = 'shtools' 'shtools' or 'npy'. See method from_file() for more information. header : str, optional, default = None A header string written to an 'shtools'-formatted file directly before the spherical harmonic coefficients. **kwargs : keyword argument list, optional for format = 'npy' Keyword arguments of numpy.save(). Description ----------- If format='shtools', the coefficients will be written to an ascii formatted file. The first line of the file is an optional user provided header line, and the spherical harmonic coefficients are then listed, with increasing degree and order, with the format l, m, coeffs[0, l, m], coeffs[1, l, m] where l and m are the spherical harmonic degree and order, respectively. If format='npy', the spherical harmonic coefficients will be saved to a binary numpy 'npy' file using numpy.save().
2.373002
2.10193
1.128963
if normalization is None: normalization = self.normalization if csphase is None: csphase = self.csphase if lmax is None: lmax = self.lmax coeffs = _convert(self.coeffs, normalization_in=self.normalization, normalization_out=normalization, csphase_in=self.csphase, csphase_out=csphase, lmax=lmax) return coeffs
def to_array(self, normalization=None, csphase=None, lmax=None)
Return spherical harmonic coefficients as a numpy array. Usage ----- coeffs = x.to_array([normalization, csphase, lmax]) Returns ------- coeffs : ndarry, shape (2, lmax+1, lmax+1) numpy ndarray of the spherical harmonic coefficients. Parameters ---------- normalization : str, optional, default = x.normalization Normalization of the output coefficients: '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = x.csphase Condon-Shortley phase convention: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = x.lmax Maximum spherical harmonic degree to output. If lmax is greater than x.lmax, the array will be zero padded. Description ----------- This method will return an array of the spherical harmonic coefficients using a different normalization and Condon-Shortley phase convention, and a different maximum spherical harmonic degree. If the maximum degree is smaller than the maximum degree of the class instance, the coefficients will be truncated. Conversely, if this degree is larger than the maximum degree of the class instance, the output array will be zero padded.
1.897792
2.146807
0.884007
return _spectrum(self.coeffs, normalization=self.normalization, convention=convention, unit=unit, base=base, lmax=lmax)
def spectrum(self, lmax=None, convention='power', unit='per_l', base=10.)
Return the spectrum as a function of spherical harmonic degree. Usage ----- spectrum = x.spectrum([lmax, convention, unit, base]) Returns ------- power : ndarray, shape (lmax+1) 1-D numpy ndarray of the spectrum, where lmax is the maximum spherical harmonic degree. Parameters ---------- lmax : int, optional, default = x.lmax Maximum spherical harmonic degree of the spectrum to output. convention : str, optional, default = 'power' The type of spectrum to return: 'power' for power spectrum, 'energy' for energy spectrum, and 'l2norm' for the l2 norm spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. Description ----------- This method returns either the power spectrum, energy spectrum, or l2-norm spectrum. Total power is defined as the integral of the function squared over all space, divided by the area the function spans. If the mean of the function is zero, this is equivalent to the variance of the function. The total energy is the integral of the function squared over all space and is 4pi times the total power. For normalized coefficients ('4pi', 'ortho', or 'schmidt'), the l2-norm is the sum of the magnitude of the coefficients squared. The output spectrum can be expresed using one of three units. 'per_l' returns the contribution to the total spectrum from all angular orders at degree l. 'per_lm' returns the average contribution to the total spectrum from a single coefficient at degree l, which is equal to the 'per_l' spectrum divided by (2l+1). 'per_dlogl' returns the contribution to the total spectrum from all angular orders over an infinitessimal logarithmic degree band. The contrubution in the band dlog_a(l) is spectrum(l, 'per_dlogl')*dlog_a(l), where a is the base, and where spectrum(l, 'per_dlogl) is equal to spectrum(l, 'per_l')*l*log(a).
3.867964
5.565147
0.695034
if self.coeffs[0, 0, 0] == 0: raise ValueError('The volume of the object can not be calculated ' 'when the degree and order 0 term is equal to ' 'zero.') if self.kind == 'complex': raise ValueError('The volume of the object can not be calculated ' 'for complex functions.') if lmax is None: lmax = self.lmax r0 = self.coeffs[0, 0, 0] grid = self.expand(lmax=3*lmax) - r0 h200 = (grid**2).expand(lmax_calc=0).coeffs[0, 0, 0] h300 = (grid**3).expand(lmax_calc=0).coeffs[0, 0, 0] volume = 4 * _np.pi / 3 * (h300 + 3 * r0 * h200 + r0**3) return volume
def volume(self, lmax=None)
If the function is the real shape of an object, calculate the volume of the body. Usage ----- volume = x.volume([lmax]) Returns ------- volume : float The volume of the object. Parameters ---------- lmax : int, optional, default = x.lmax The maximum spherical harmonic degree to use when calculating the volume. Description ----------- If the function is the real shape of an object, this method will calculate the volume of the body exactly by integration. This routine raises the function to the nth power, with n from 1 to 3, and calculates the spherical harmonic degree and order 0 term. To avoid aliases, the function is first expand on a grid that can resolve spherical harmonic degrees up to 3*lmax.
3.662796
3.199164
1.144923
if type(convention) != str: raise ValueError('convention must be a string. ' + 'Input type was {:s}' .format(str(type(convention)))) if convention.lower() not in ('x', 'y'): raise ValueError( "convention must be either 'x' or 'y'. " + "Provided value was {:s}".format(repr(convention)) ) if convention is 'y': if body is True: angles = _np.array([-gamma, -beta, -alpha]) else: angles = _np.array([alpha, beta, gamma]) elif convention is 'x': if body is True: angles = _np.array([-gamma - _np.pi/2, -beta, -alpha + _np.pi/2]) else: angles = _np.array([alpha - _np.pi/2, beta, gamma + _np.pi/2]) if degrees: angles = _np.radians(angles) if self.lmax > 1200: _warnings.warn("The rotate() method is accurate only to about" + " spherical harmonic degree 1200. " + "lmax = {:d}".format(self.lmax), category=RuntimeWarning) rot = self._rotate(angles, dj_matrix) return rot
def rotate(self, alpha, beta, gamma, degrees=True, convention='y', body=False, dj_matrix=None)
Rotate either the coordinate system used to express the spherical harmonic coefficients or the physical body, and return a new class instance. Usage ----- x_rotated = x.rotate(alpha, beta, gamma, [degrees, convention, body, dj_matrix]) Returns ------- x_rotated : SHCoeffs class instance Parameters ---------- alpha, beta, gamma : float The three Euler rotation angles in degrees. degrees : bool, optional, default = True True if the Euler angles are in degrees, False if they are in radians. convention : str, optional, default = 'y' The convention used for the rotation of the second angle, which can be either 'x' or 'y' for a rotation about the x or y axes, respectively. body : bool, optional, default = False If true, rotate the physical body and not the coordinate system. dj_matrix : ndarray, optional, default = None The djpi2 rotation matrix computed by a call to djpi2. Description ----------- This method will take the spherical harmonic coefficients of a function, rotate the coordinate frame by the three Euler anlges, and output the spherical harmonic coefficients of the new function. If the optional parameter body is set to True, then the physical body will be rotated instead of the coordinate system. The rotation of a coordinate system or body can be viewed in two complementary ways involving three successive rotations. Both methods have the same initial and final configurations, and the angles listed in both schemes are the same. Scheme A: (I) Rotation about the z axis by alpha. (II) Rotation about the new y axis by beta. (III) Rotation about the new z axis by gamma. Scheme B: (I) Rotation about the z axis by gamma. (II) Rotation about the initial y axis by beta. (III) Rotation about the initial z axis by alpha. Here, the 'y convention' is employed, where the second rotation is with respect to the y axis. When using the 'x convention', the second rotation is instead with respect to the x axis. The relation between the Euler angles in the x and y conventions is given by alpha_y=alpha_x-pi/2, beta_y=beta_x, and gamma_y=gamma_x+pi/2. To perform the inverse transform associated with the three angles (alpha, beta, gamma), one would perform an additional rotation using the angles (-gamma, -beta, -alpha). The rotations can be viewed either as a rotation of the coordinate system or the physical body. To rotate the physical body without rotation of the coordinate system, set the optional parameter body to True. This rotation is accomplished by performing the inverse rotation using the angles (-gamma, -beta, -alpha).
2.574278
2.432061
1.058476
if normalization is None: normalization = self.normalization if csphase is None: csphase = self.csphase if lmax is None: lmax = self.lmax if kind is None: kind = self.kind # check argument consistency if type(normalization) != str: raise ValueError('normalization must be a string. ' + 'Input type was {:s}' .format(str(type(normalization)))) if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError( "normalization must be '4pi', 'ortho', 'schmidt', or " + "'unnorm'. Provided value was {:s}" .format(repr(normalization))) if csphase != 1 and csphase != -1: raise ValueError( "csphase must be 1 or -1. Input value was {:s}" .format(repr(csphase))) if (kind != self.kind): if (kind == 'complex'): temp = self._make_complex() else: temp = self._make_real(check=check) coeffs = temp.to_array(normalization=normalization.lower(), csphase=csphase, lmax=lmax) else: coeffs = self.to_array(normalization=normalization.lower(), csphase=csphase, lmax=lmax) return SHCoeffs.from_array(coeffs, normalization=normalization.lower(), csphase=csphase, copy=False)
def convert(self, normalization=None, csphase=None, lmax=None, kind=None, check=True)
Return a SHCoeffs class instance with a different normalization convention. Usage ----- clm = x.convert([normalization, csphase, lmax, kind, check]) Returns ------- clm : SHCoeffs class instance Parameters ---------- normalization : str, optional, default = x.normalization Normalization of the output class: '4pi', 'ortho', 'schmidt', or 'unnorm', for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. csphase : int, optional, default = x.csphase Condon-Shortley phase convention for the output class: 1 to exclude the phase factor, or -1 to include it. lmax : int, optional, default = x.lmax Maximum spherical harmonic degree to output. kind : str, optional, default = clm.kind 'real' or 'complex' spherical harmonic coefficients for the output class. check : bool, optional, default = True When converting complex coefficients to real coefficients, if True, check if function is entirely real. Description ----------- This method will return a new class instance of the spherical harmonic coefficients using a different normalization and Condon-Shortley phase convention. The coefficients can be converted between real and complex form, and a different maximum spherical harmonic degree of the output coefficients can be specified. If this maximum degree is smaller than the maximum degree of the original class, the coefficients will be truncated. Conversely, if this degree is larger than the maximum degree of the original class, the coefficients of the new class will be zero padded.
1.921493
1.811929
1.060468
if lat is not None and colat is not None: raise ValueError('lat and colat can not both be specified.') if lat is not None and lon is not None: if lmax_calc is None: lmax_calc = self.lmax values = self._expand_coord(lat=lat, lon=lon, degrees=degrees, lmax_calc=lmax_calc) return values if colat is not None and lon is not None: if lmax_calc is None: lmax_calc = self.lmax if type(colat) is list: lat = list(map(lambda x: 90 - x, colat)) else: lat = 90 - colat values = self._expand_coord(lat=lat, lon=lon, degrees=degrees, lmax_calc=lmax_calc) return values else: if lmax is None: lmax = self.lmax if lmax_calc is None: lmax_calc = lmax if type(grid) != str: raise ValueError('grid must be a string. ' + 'Input type was {:s}' .format(str(type(grid)))) if grid.upper() in ('DH', 'DH1'): gridout = self._expandDH(sampling=1, lmax=lmax, lmax_calc=lmax_calc) elif grid.upper() == 'DH2': gridout = self._expandDH(sampling=2, lmax=lmax, lmax_calc=lmax_calc) elif grid.upper() == 'GLQ': gridout = self._expandGLQ(zeros=zeros, lmax=lmax, lmax_calc=lmax_calc) else: raise ValueError( "grid must be 'DH', 'DH1', 'DH2', or 'GLQ'. " + "Input value was {:s}".format(repr(grid))) return gridout
def expand(self, grid='DH', lat=None, colat=None, lon=None, degrees=True, zeros=None, lmax=None, lmax_calc=None)
Evaluate the spherical harmonic coefficients either on a global grid or for a list of coordinates. Usage ----- f = x.expand([grid, lmax, lmax_calc, zeros]) g = x.expand(lat=lat, lon=lon, [lmax_calc, degrees]) g = x.expand(colat=colat, lon=lon, [lmax_calc, degrees]) Returns ------- f : SHGrid class instance g : float, ndarray, or list Parameters ---------- lat : int, float, ndarray, or list, optional, default = None Latitude coordinates where the function is to be evaluated. colat : int, float, ndarray, or list, optional, default = None Colatitude coordinates where the function is to be evaluated. lon : int, float, ndarray, or list, optional, default = None Longitude coordinates where the function is to be evaluated. degrees : bool, optional, default = True True if lat, colat and lon are in degrees, False if in radians. grid : str, optional, default = 'DH' 'DH' or 'DH1' for an equisampled lat/lon grid with nlat=nlon, 'DH2' for an equidistant lat/lon grid with nlon=2*nlat, or 'GLQ' for a Gauss-Legendre quadrature grid. lmax : int, optional, default = x.lmax The maximum spherical harmonic degree, which determines the grid spacing of the output grid. lmax_calc : int, optional, default = x.lmax The maximum spherical harmonic degree to use when evaluating the function. zeros : ndarray, optional, default = None The cos(colatitude) nodes used in the Gauss-Legendre Quadrature grids. Description ----------- This method either (1) evaluates the spherical harmonic coefficients on a global grid and returns an SHGrid class instance, or (2) evaluates the spherical harmonic coefficients for a list of (co)latitude and longitude coordinates. For the first case, the grid type is defined by the optional parameter grid, which can be 'DH', 'DH2' or 'GLQ'.For the second case, the optional parameters lon and either colat or lat must be provided.
1.859308
1.845897
1.007265
rcomplex_coeffs = _shtools.SHrtoc(self.coeffs, convention=1, switchcs=0) # These coefficients are using real floats, and need to be # converted to complex form. complex_coeffs = _np.zeros((2, self.lmax+1, self.lmax+1), dtype='complex') complex_coeffs[0, :, :] = (rcomplex_coeffs[0, :, :] + 1j * rcomplex_coeffs[1, :, :]) complex_coeffs[1, :, :] = complex_coeffs[0, :, :].conjugate() for m in self.degrees(): if m % 2 == 1: complex_coeffs[1, :, m] = - complex_coeffs[1, :, m] # complex_coeffs is initialized in this function and can be # passed as reference return SHCoeffs.from_array(complex_coeffs, normalization=self.normalization, csphase=self.csphase, copy=False)
def _make_complex(self)
Convert the real SHCoeffs class to the complex class.
4.270547
3.781253
1.1294