code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
stdev = self.semi_stdev(threshold=threshold, ddof=ddof, freq=freq)
return (self.anlzd_ret() - threshold) / stdev | def sortino_ratio(self, threshold=0.0, ddof=0, freq=None) | Return over a threshold per unit of downside deviation.
A performance appraisal ratio that replaces standard deviation
in the Sharpe ratio with downside deviation.
[Source: CFA Institute]
Parameters
----------
threshold : {float, TSeries, pd.Series}, default 0.
While zero is the default, it is also customary to use
a "minimum acceptable return" (MAR) or a risk-free rate.
Note: this is assumed to be a *periodic*, not necessarily
annualized, return.
ddof : int, default 0
Degrees of freedom, passed to pd.Series.std().
freq : str or None, default None
A frequency string used to create an annualization factor.
If None, `self.freq` will be used. If that is also None,
a frequency will be inferred. If none can be inferred,
an exception is raised.
It may be any frequency string or anchored offset string
recognized by Pandas, such as 'D', '5D', 'Q', 'Q-DEC', or
'BQS-APR'.
Returns
-------
float | 7.122885 | 8.918459 | 0.798668 |
er = self.excess_ret(benchmark=benchmark)
return er.anlzd_stdev(ddof=ddof) | def tracking_error(self, benchmark, ddof=0) | Standard deviation of excess returns.
The standard deviation of the differences between
a portfolio's returns and its benchmark's returns.
[Source: CFA Institute]
Also known as: tracking risk; active risk
Parameters
----------
benchmark : {pd.Series, TSeries, 1d np.ndarray}
The benchmark security to which `self` is compared.
ddof : int, default 0
Degrees of freedom, passed to pd.Series.std().
Returns
-------
float | 14.375051 | 18.369011 | 0.782571 |
benchmark = _try_to_squeeze(benchmark)
if benchmark.ndim > 1:
raise ValueError("Treynor ratio requires a single benchmark")
rf = self._validate_rf(rf)
beta = self.beta(benchmark)
return (self.anlzd_ret() - rf) / beta | def treynor_ratio(self, benchmark, rf=0.02) | Return over `rf` per unit of systematic risk.
A measure of risk-adjusted performance that relates a
portfolio's excess returns to the portfolio's beta.
[Source: CFA Institute]
Parameters
----------
benchmark : {pd.Series, TSeries, 1d np.ndarray}
The benchmark security to which `self` is compared.
rf : {float, TSeries, pd.Series}, default 0.02
If float, this represents an *compounded annualized*
risk-free rate; 2.0% is the default.
If a TSeries or pd.Series, this represents a time series
of periodic returns to a risk-free security.
To download a risk-free rate return series using
3-month US T-bill yields, see:`pyfinance.datasets.load_rf`.
Returns
-------
float | 6.595362 | 6.791247 | 0.971156 |
slf, bm = self.upmarket_filter(
benchmark=benchmark,
threshold=threshold,
compare_op=compare_op,
include_benchmark=True,
)
return slf.geomean() / bm.geomean() | def up_capture(self, benchmark, threshold=0.0, compare_op="ge") | Upside capture ratio.
Measures the performance of `self` relative to benchmark
conditioned on periods where `benchmark` is gt or ge to
`threshold`.
Upside capture ratios are calculated by taking the fund's
monthly return during the periods of positive benchmark
performance and dividing it by the benchmark return.
[Source: CFA Institute]
Parameters
----------
benchmark : {pd.Series, TSeries, 1d np.ndarray}
The benchmark security to which `self` is compared.
threshold : float, default 0.
The threshold at which the comparison should be done.
`self` and `benchmark` are "filtered" to periods where
`benchmark` is gt/ge `threshold`.
compare_op : {'ge', 'gt'}
Comparison operator used to compare to `threshold`.
'gt' is greater-than; 'ge' is greater-than-or-equal.
Returns
-------
float
Note
----
This metric uses geometric, not arithmetic, mean return. | 7.392924 | 6.541338 | 1.130185 |
return self._mkt_filter(
benchmark=benchmark,
threshold=threshold,
compare_op=compare_op,
include_benchmark=include_benchmark,
) | def upmarket_filter(
self,
benchmark,
threshold=0.0,
compare_op="ge",
include_benchmark=False,
) | Drop elementwise samples where `benchmark` < `threshold`.
Filters `self` (and optionally, `benchmark`) to periods
where `benchmark` > `threshold`. (Or >= `threshold`.)
Parameters
----------
benchmark : {pd.Series, TSeries, 1d np.ndarray}
The benchmark security to which `self` is compared.
threshold : float, default 0.0
The threshold at which the comparison should be done.
`self` and `benchmark` are "filtered" to periods where
`benchmark` is gt/ge `threshold`.
compare_op : {'ge', 'gt'}
Comparison operator used to compare to `threshold`.
'gt' is greater-than; 'ge' is greater-than-or-equal.
include_benchmark : bool, default False
If True, return tuple of (`self`, `benchmark`) both
filtered. If False, return only `self` filtered.
Returns
-------
TSeries or tuple of TSeries
TSeries if `include_benchmark=False`, otherwise, tuple. | 2.429896 | 3.237752 | 0.750489 |
return ols.OLS(
y=self, x=benchmark, has_const=has_const, use_const=use_const
) | def CAPM(self, benchmark, has_const=False, use_const=True) | Interface to OLS regression against `benchmark`.
`self.alpha()`, `self.beta()` and several other methods
stem from here. For the full method set, see
`pyfinance.ols.OLS`.
Parameters
----------
benchmark : {pd.Series, TSeries, pd.DataFrame, np.ndarray}
The benchmark securitie(s) to which `self` is compared.
has_const : bool, default False
Specifies whether `benchmark` includes a user-supplied constant
(a column vector). If False, it is added at instantiation.
use_const : bool, default True
Whether to include an intercept term in the model output. Note the
difference between `has_const` and `use_const`: the former
specifies whether a column vector of 1s is included in the
input; the latter specifies whether the model itself
should include a constant (intercept) term. Exogenous
data that is ~N(0,1) would have a constant equal to zero;
specify use_const=False in this situation.
Returns
-------
pyfinance.ols.OLS | 4.437985 | 4.962368 | 0.894328 |
def load_13f(url):
resp = requests.get(url).text
data = xmltodict.parse(resp)["informationTable"]["infoTable"]
df = pd.DataFrame(data).drop(
["shrsOrPrnAmt", "investmentDiscretion"], axis=1
)
df["votingAuthority"] = df["votingAuthority"].apply(lambda d: d["Sole"])
df.loc[:, "value"] = pd.to_numeric(df["value"], errors="coerce")
df.loc[:, "votingAuthority"] = pd.to_numeric(
df["votingAuthority"], errors="coerce"
)
return df | Load and parse an SEC.gov-hosted 13F XML file to Pandas DataFrame.
Provide the URL to the raw .xml form13fInfoTable. (See example below.)
Parameters
----------
url : str
Link to .xml file.
Returns
-------
df : pd.DataFrame
Holdings snapshot.
Example
-------
# Third Point LLC June 2017 13F
>>> from pyfinance import datasets
>>> url = 'https://www.sec.gov/Archives/edgar/data/1040273/000108514617001787/form13fInfoTable.xml' # noqa
>>> df = datasets.load_13f(url=url)
.. _U.S. SEC: Accessing EDGAR Data:
https://www.sec.gov/edgar/searchedgar/accessing-edgar-data.htm | null | null | null |
|
def load_industries():
n = [5, 10, 12, 17, 30, 38, 48]
port = ("%s_Industry_Portfolios" % i for i in n)
rets = []
for p in port:
ret = pdr.get_data_famafrench(p, start=DSTART)[0]
rets.append(ret.to_timestamp(how="end", copy=False))
industries = dict(zip(n, rets))
return industries | Load industry portfolio returns from Ken French's website.
Returns
-------
industries : dictionary of Pandas DataFrames
Each key is a portfolio group.
Example
-------
>>> from pyfinance import datasets
>>> ind = datasets.load_industries()
# Monthly returns to 5 industry portfolios
>>> ind[5].head()
Cnsmr Manuf HiTec Hlth Other
Date
1950-01-31 1.26 1.47 3.21 1.06 3.19
1950-02-28 1.91 1.29 2.06 1.92 1.02
1950-03-31 0.28 1.93 3.46 -2.90 -0.68
1950-04-30 3.22 5.21 3.58 5.52 1.50
1950-05-31 3.81 6.18 1.07 3.96 1.36 | null | null | null |
|
def load_rates(freq="D"):
months = [1, 3, 6]
years = [1, 2, 3, 5, 7, 10, 20, 30]
# Nested dictionaries of symbols from fred.stlouisfed.org
nom = {
"D": ["DGS%sMO" % m for m in months] + ["DGS%s" % y for y in years],
"W": ["WGS%sMO" % m for m in months] + ["WGS%sYR" % y for y in years],
"M": ["GS%sM" % m for m in months] + ["GS%s" % y for y in years],
}
tips = {
"D": ["DFII%s" % y for y in years[3:7]],
"W": ["WFII%s" % y for y in years[3:7]],
"M": ["FII%s" % y for y in years[3:7]],
}
fcp = {
"D": ["DCPF1M", "DCPF2M", "DCPF3M"],
"W": ["WCPF1M", "WCPF2M", "WCPF3M"],
"M": ["CPF1M", "CPF2M", "CPF3M"],
}
nfcp = {
"D": ["DCPN30", "DCPN2M", "DCPN3M"],
"W": ["WCPN1M", "WCPN2M", "WCPN3M"],
"M": ["CPN1M", "CPN2M", "CPN3M"],
}
short = {
"D": ["DFF", "DPRIME", "DPCREDIT"],
"W": ["FF", "WPRIME", "WPCREDIT"],
"M": ["FEDFUNDS", "MPRIME", "MPCREDIT"],
}
rates = list(
itertools.chain.from_iterable(
[d[freq] for d in [nom, tips, fcp, nfcp, short]]
)
)
rates = pdr.DataReader(rates, "fred", start=DSTART)
l1 = (
["Nominal"] * 11
+ ["TIPS"] * 4
+ ["Fncl CP"] * 3
+ ["Non-Fncl CP"] * 3
+ ["Short Rates"] * 3
)
l2 = (
["%sm" % m for m in months]
+ ["%sy" % y for y in years]
+ ["%sy" % y for y in years[3:7]]
+ 2 * ["%sm" % m for m in range(1, 4)]
+ ["Fed Funds", "Prime Rate", "Primary Credit"]
)
rates.columns = pd.MultiIndex.from_arrays([l1, l2])
return rates | Load interest rates from https://fred.stlouisfed.org/.
Parameters
----------
reload : bool, default True
If True, download the data from source rather than loading pickled data
freq : str {'D', 'W', 'M'}, default 'D'
Frequency of time series; daily, weekly, or monthly
start : str or datetime, default '1963', optional
Start date of time series
dropna : bool, default True
If True, drop NaN along rows in resulting DataFrame
how : str, default 'any'
Passed to dropna()
Original source
---------------
Board of Governors of the Federal Reserve System
H.15 Selected Interest Rates
https://www.federalreserve.gov/releases/h15/ | null | null | null |
|
def load_shiller():
xls = "http://www.econ.yale.edu/~shiller/data/ie_data.xls"
cols = [
"date",
"sp50p",
"sp50d",
"sp50e",
"cpi",
"frac",
"real_rate",
"real_sp50p",
"real_sp50d",
"real_sp50e",
"cape",
]
iedata = pd.read_excel(
xls, sheet_name="Data", skiprows=7, skip_footer=1, names=cols
).drop("frac", axis=1)
dt = iedata["date"].astype(str).str.replace(".", "") + "01"
iedata["date"] = pd.to_datetime(dt, format="%Y%m%d") + offsets.MonthEnd()
return iedata.set_index("date") | Load market & macroeconomic data from Robert Shiller's website.
Returns
-------
iedata : pd.DataFrame
Time series of S&P 500 and interest rate variables.
Example
-------
>>> from pyfinance import datasets
>>> shiller = datasets.load_shiller()
>>> shiller.iloc[:7, :5]
sp50p sp50d sp50e cpi real_rate
date
1871-01-31 4.44 0.26 0.4 12.4641 5.3200
1871-02-28 4.50 0.26 0.4 12.8446 5.3233
1871-03-31 4.61 0.26 0.4 13.0350 5.3267
1871-04-30 4.74 0.26 0.4 12.5592 5.3300
1871-05-31 4.86 0.26 0.4 12.2738 5.3333
1871-06-30 4.82 0.26 0.4 12.0835 5.3367
1871-07-31 4.73 0.26 0.4 12.0835 5.3400
.. _ONLINE DATA ROBERT SHILLER:
http://www.econ.yale.edu/~shiller/data.htm | null | null | null |
|
def appender(defaultdocs, passed_to=None):
def _doc(func):
params = inspect.signature(func).parameters
params = [param.name for param in params.values()]
msg = "\n**kwargs : passed to `%s`"
params = "".join(
[
textwrap.dedent(defaultdocs.get(param, msg % passed_to))
for param in params
]
)
func.__doc__ += "\n\nParameters\n" + 10 * "=" + params
return func
return _doc | Decorator for appending commonly used parameter definitions.
Useful in cases where functions repeatedly use the same parameters. (But
where a class implementation is not appropriate.)
`defaultdocs` -> dict, format as shown in Example below, with keys being
parameters and values being descriptions.
Example
-------
ddocs = {
'a' :
'''
a : int, default 0
the first parameter
''',
'b' :
'''
b : int, default 1
the second parameter
'''
}
@appender(ddocs)
def f(a, b):
'''Title doc.'''
# Params here
pass | null | null | null |
|
def avail(df):
avail = DataFrame(
{
"start": df.apply(lambda col: col.first_valid_index()),
"end": df.apply(lambda col: col.last_valid_index()),
}
)
return avail[["start", "end"]] | Return start & end availability for each column in a DataFrame. | null | null | null |
|
def constrain(*objs):
# TODO: build in the options to first dropna on each index before finding
# intersection, AND to use `dropcol` from this module. Note that this
# would require filtering out Series to which dropcol isn't applicable.
# A little bit of set magic below.
# Note that pd.Index.intersection only applies to 2 Index objects
common_idx = pd.Index(set.intersection(*[set(o.index) for o in objs]))
new_dfs = (o.reindex(common_idx) for o in objs)
return tuple(new_dfs) | Constrain group of DataFrames & Series to intersection of indices.
Parameters
----------
objs : iterable
DataFrames and/or Series to constrain
Returns
-------
new_dfs : list of DataFrames, copied rather than inplace | null | null | null |
|
def constrain_horizon(
r,
strict=False,
cust=None,
years=0,
quarters=0,
months=0,
days=0,
weeks=0,
year=None,
month=None,
day=None,
):
textnum = {
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9,
"ten": 10,
"eleven": 11,
"twelve": 12,
"thirteen": 13,
"fourteen": 14,
"fifteen": 15,
"sixteen": 16,
"seventeen": 17,
"eighteen": 18,
"nineteen": 19,
"twenty": 20,
"twenty four": 24,
"thirty six": 36,
}
relativedeltas = years, quarters, months, days, weeks, year, month, day
if cust is not None and any(relativedeltas):
raise ValueError(
"Cannot specify competing (nonzero) values for both"
" `cust` and other parameters."
)
if cust is not None:
cust = cust.lower()
if cust.endswith("y"):
years = int(re.search(r"\d+", cust).group(0))
elif cust.endswith("m"):
months = int(re.search(r"\d+", cust).group(0))
elif cust.endswith(("years ago", "year ago", "year", "years")):
pos = cust.find(" year")
years = textnum[cust[:pos].replace("-", "")]
elif cust.endswith(("months ago", "month ago", "month", "months")):
pos = cust.find(" month")
months = textnum[cust[:pos].replace("-", "")]
else:
raise ValueError("`cust` not recognized.")
# Convert quarters to months & combine for MonthOffset
months += quarters * 3
# Start date will be computed relative to `end`
end = r.index[-1]
# Establish some funky date conventions assumed in finance. If the end
# date is 6/30, the date *3 months prior* is 3/31, not 3/30 as would be
# produced by dateutil.relativedelta.
if end.is_month_end and days == 0 and weeks == 0:
if years != 0:
years *= 12
months += years
start = end - offsets.MonthBegin(months)
else:
start = end - offsets.DateOffset(
years=years,
months=months,
days=days - 1,
weeks=weeks,
year=year,
month=month,
day=day,
)
if strict and start < r.index[0]:
raise ValueError(
"`start` pre-dates first element of the Index, %s" % r.index[0]
)
return r[start:end] | Constrain a Series/DataFrame to a specified lookback period.
See the documentation for dateutil.relativedelta:
dateutil.readthedocs.io/en/stable/relativedelta.html
Parameters
----------
r : DataFrame or Series
The target pandas object to constrain
strict : bool, default False
If True, raise Error if the implied start date on the horizon predates
the actual start date of `r`. If False, just return `r` in this
situation
years, months, weeks, days : int, default 0
Relative information; specify as positive to subtract periods. Adding
or subtracting a relativedelta with relative information performs
the corresponding aritmetic operation on the original datetime value
with the information in the relativedelta
quarters : int, default 0
Similar to the other plural relative info periods above, but note that
this param is custom here. (It is not a standard relativedelta param)
year, month, day : int, default None
Absolute information; specify as positive to subtract periods. Adding
relativedelta with absolute information does not perform an aritmetic
operation, but rather REPLACES the corresponding value in the
original datetime with the value(s) in relativedelta | null | null | null |
|
def cumargmax(a):
# Thank you @Alex Riley
# https://stackoverflow.com/a/40675969/7954504
m = np.asarray(np.maximum.accumulate(a))
if a.ndim == 1:
x = np.arange(a.shape[0])
else:
x = np.repeat(np.arange(a.shape[0])[:, None], a.shape[1], axis=1)
x[1:] *= m[:-1] < m[1:]
np.maximum.accumulate(x, axis=0, out=x)
return x | Cumulative argmax.
Parameters
----------
a : np.ndarray
Returns
-------
np.ndarray | null | null | null |
|
def dropcols(df, start=None, end=None):
if isinstance(df, Series):
raise ValueError("func only applies to `pd.DataFrame`")
if start is None:
start = df.index[0]
if end is None:
end = df.index[-1]
subset = df.index[(df.index >= start) & (df.index <= end)]
return df.dropna(axis=1, subset=subset) | Drop columns that contain NaN within [start, end] inclusive.
A wrapper around DataFrame.dropna() that builds an easier *subset*
syntax for tseries-indexed DataFrames.
Parameters
----------
df : DataFrame
start : str or datetime, default None
start cutoff date, inclusive
end : str or datetime, default None
end cutoff date, inclusive
Example
-------
df = DataFrame(np.random.randn(10,3),
index=pd.date_range('2017', periods=10))
# Drop in some NaN
df.set_value('2017-01-04', 0, np.nan)
df.set_value('2017-01-02', 2, np.nan)
df.loc['2017-01-05':, 1] = np.nan
# only col2 will be kept--its NaN value falls before `start`
print(dropcols(df, start='2017-01-03'))
2
2017-01-01 0.12939
2017-01-02 NaN
2017-01-03 0.16596
2017-01-04 1.06442
2017-01-05 -1.87040
2017-01-06 -0.17160
2017-01-07 0.94588
2017-01-08 1.49246
2017-01-09 0.02042
2017-01-10 0.75094 | null | null | null |
|
def dropout(a, p=0.5, inplace=False):
dt = a.dtype
if p == 0.5:
# Can't pass float dtype to `randint` directly.
rand = np.random.randint(0, high=2, size=a.shape).astype(dtype=dt)
else:
rand = np.random.choice([0, 1], p=[p, 1 - p], size=a.shape).astype(dt)
if inplace:
a *= rand
else:
return a * rand | Randomly set elements from `a` equal to zero, with proportion `p`.
Similar in concept to the dropout technique employed within
neural networks.
Parameters
----------
a: numpy.ndarray
Array to be modified.
p: float in [0, 1]
Expected proportion of elements in the result that will equal 0.
inplace: bool
Example
-------
>>> x = np.arange(10, 20, 2, dtype=np.uint8)
>>> z = dropout(x, p=0.6)
>>> z
array([10, 12, 0, 0, 0], dtype=uint8)
>>> x.dtype == z.dtype
True | null | null | null |
|
def _uniquewords(*args):
words = {}
n = 0
for word in itertools.chain(*args):
if word not in words:
words[word] = n
n += 1
return words | Dictionary of words to their indices. Helper function to `encode.` | null | null | null |
|
def encode(*args):
args = [arg.split() for arg in args]
unique = _uniquewords(*args)
feature_vectors = np.zeros((len(args), len(unique)))
for vec, s in zip(feature_vectors, args):
for word in s:
vec[unique[word]] = 1
return feature_vectors | One-hot encode the given input strings. | null | null | null |
|
def expanding_stdize(obj, **kwargs):
return (obj - obj.expanding(**kwargs).mean()) / (
obj.expanding(**kwargs).std()
) | Standardize a pandas object column-wise on expanding window.
**kwargs -> passed to `obj.expanding`
Example
-------
df = pd.DataFrame(np.random.randn(10, 3))
print(expanding_stdize(df, min_periods=5))
0 1 2
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 0.67639 -1.03507 0.96610
5 0.95008 -0.26067 0.27761
6 1.67793 -0.50816 0.19293
7 1.50364 -1.10035 -0.87859
8 -0.64949 0.08028 -0.51354
9 0.15280 -0.73283 -0.84907 | null | null | null |
|
def get_anlz_factor(freq):
# 'Q-NOV' would give us (2001, 1); we just want (2000, 1).
try:
base, mult = get_freq_code(freq)
except ValueError:
# The above will fail for a bunch of irregular frequencies, such
# as 'Q-NOV' or 'BQS-APR'
freq = freq.upper()
if freq.startswith(("A-", "BA-", "AS-", "BAS-")):
freq = "A"
elif freq.startswith(("Q-", "BQ-", "QS-", "BQS-")):
freq = "Q"
elif freq in {"MS", "BMS"}:
freq = "M"
else:
raise ValueError("Invalid frequency: %s" % freq)
base, mult = get_freq_code(freq)
return PERIODS_PER_YEAR[(base // 1000) * 1000] / mult | Find the number of periods per year given a frequency.
Parameters
----------
freq : str
Any frequency str or anchored offset str recognized by Pandas.
Returns
-------
float
Example
-------
>>> get_anlz_factor('D')
252.0
>>> get_anlz_factor('5D') # 5-business-day periods per year
50.4
>>> get_anlz_factor('Q')
4.0
>>> get_anlz_factor('Q-DEC')
4.0
>>> get_anlz_factor('BQS-APR')
4.0 | null | null | null |
|
def public_dir(obj, max_underscores=0, type_=None):
if max_underscores > 0:
cond1 = lambda i: not i.startswith("_" * max_underscores) # noqa
else:
cond1 = lambda i: True # noqa
if type_:
if isinstance(type_, str):
if type_ in ["callable", "func", "function"]:
type_ = Callable
elif "callable" in type_ or "func" in type_:
type_ = [
i
if i not in ["callable", "func", "function"]
else Callable
for i in type_
]
if isinstance(type_, str):
# 'str' --> str (class `type`)
type_ = eval(type_)
elif not isinstance(type_, type):
type_ = [eval(i) if isinstance(i, str) else i for i in type_]
# else: we have isinstance(type_, type)
cond2 = lambda i: isinstance(getattr(obj, i), type_) # noqa
else:
cond2 = lambda i: True # noqa
return [i for i in dir(obj) if cond1(i) and cond2(i)] | Like `dir()` with additional options for object inspection.
Attributes
----------
obj: object
Any object that could be passed to `dir()`
max_underscores: int, default 0
If > 0, names that begin with underscores repeated n or more
times will be excluded.
type_: None, sequence, str, or type
Filter to objects of these type(s) only. if 'callable' or
'func' is passed, gets mapped to collections.Callable. if the
string-version of a type (i.e. 'str') is passed, it gets
eval'd to its type.
Examples
--------
>>> import os
>>> # Get all public string constants from os.path
public_dir(os.path, max_underscores=1, type_=str)
['curdir', 'defpath', 'devnull', 'extsep', 'pardir', 'pathsep', 'sep']
>>> # Get integer constants
public_dir(os.path, max_underscores=1, type_='int')
['supports_unicode_filenames'] | null | null | null |
|
def random_tickers(
length, n_tickers, endswith=None, letters=None, slicer=itertools.islice
):
# The trick here is that we need uniqueness. That defeats the
# purpose of using NumPy because we need to generate 1x1.
# (Although the alternative is just to generate a "large
# enough" duplicated sequence and prune from it.)
if letters is None:
letters = string.ascii_uppercase
if endswith:
# Only generate substrings up to `endswith`
length = length - len(endswith)
join = "".join
def yield_ticker(rand=random.choices):
if endswith:
while True:
yield join(rand(letters, k=length)) + endswith
else:
while True:
yield join(rand(letters, k=length))
tickers = itertools.islice(unique_everseen(yield_ticker()), n_tickers)
return list(tickers) | Generate a length-n_tickers list of unique random ticker symbols.
Parameters
----------
length : int
The length of each ticker string.
n_tickers : int
Number of tickers to generate.
endswith : str, default None
Specify the ending element(s) of each ticker (for example, 'X').
letters : sequence, default None
Sequence of possible letters to choose from. If None, defaults to
`string.ascii_uppercase`.
Returns
-------
list of str
Examples
--------
>>> from pyfinance import utils
>>> utils.random_tickers(length=5, n_tickers=4, endswith='X')
['UZTFX', 'ROYAX', 'ZBVIX', 'IUWYX']
>>> utils.random_tickers(3, 8)
['SBW', 'GDF', 'FOG', 'PWO', 'QDH', 'MJJ', 'YZD', 'QST'] | null | null | null |
|
def random_weights(size, sumto=1.0):
w = np.random.random(size)
if w.ndim == 2:
if isinstance(sumto, (np.ndarray, list, tuple)):
sumto = np.asarray(sumto)[:, None]
w = sumto * w / w.sum(axis=-1)[:, None]
elif w.ndim == 1:
w = sumto * w / w.sum()
else:
raise ValueError("`w.ndim` must be 1 or 2, not %s" % w.ndim)
return w | Generate an array of random weights that sum to `sumto`.
The result may be of arbitrary dimensions. `size` is passed to
the `size` parameter of `np.random.random`, which acts as a shape
parameter in this case.
Note that `sumto` is subject to typical Python floating point limitations.
This function does not implement a softmax check.
Parameters
----------
size: int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn.
sumto: float, default 1.
Each vector of weights should sum to this in decimal terms.
Returns
-------
np.ndarray | null | null | null |
|
def rolling_windows(a, window):
if window > a.shape[0]:
raise ValueError(
"Specified `window` length of {0} exceeds length of"
" `a`, {1}.".format(window, a.shape[0])
)
if isinstance(a, (Series, DataFrame)):
a = a.values
if a.ndim == 1:
a = a.reshape(-1, 1)
shape = (a.shape[0] - window + 1, window) + a.shape[1:]
strides = (a.strides[0],) + a.strides
windows = np.squeeze(
np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
)
# In cases where window == len(a), we actually want to "unsqueeze" to 2d.
# I.e., we still want a "windowed" structure with 1 window.
if windows.ndim == 1:
windows = np.atleast_2d(windows)
return windows | Creates rolling-window 'blocks' of length `window` from `a`.
Note that the orientation of rows/columns follows that of pandas.
Example
-------
import numpy as np
onedim = np.arange(20)
twodim = onedim.reshape((5,4))
print(twodim)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]]
print(rwindows(onedim, 3)[:5])
[[0 1 2]
[1 2 3]
[2 3 4]
[3 4 5]
[4 5 6]]
print(rwindows(twodim, 3)[:5])
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
[[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]]] | null | null | null |
|
def unique_everseen(iterable, filterfalse_=itertools.filterfalse):
# Itertools recipes:
# https://docs.python.org/3/library/itertools.html#itertools-recipes
seen = set()
seen_add = seen.add
for element in filterfalse_(seen.__contains__, iterable):
seen_add(element)
yield element | Unique elements, preserving order. | null | null | null |
|
def uniqify(seq):
if PY37:
# Credit: Raymond Hettinger
return list(dict.fromkeys(seq))
else:
# Credit: Dave Kirby
# https://www.peterbe.com/plog/uniqifiers-benchmark
seen = set()
# We don't care about truth value of `not seen.add(x)`;
# just there to add to `seen` inplace.
return [x for x in seq if x not in seen and not seen.add(x)] | `Uniqify` a sequence, preserving order.
A plain-vanilla version of itertools' `unique_everseen`.
Example
-------
>>> s = list('zyxabccabxyz')
>>> uniqify(s)
['z', 'y', 'x', 'a', 'b', 'c'
Returns
-------
list | null | null | null |
|
return super(GetAppListJsonView, self).dispatch(*args, **kwargs) | def dispatch(self, *args, **kwargs) | Only staff members can access this view | 9.445714 | 8.375665 | 1.127757 |
self.app_list = site.get_app_list(request)
self.apps_dict = self.create_app_list_dict()
# no menu provided
items = get_config('MENU')
if not items:
voices = self.get_default_voices()
else:
voices = []
for item in items:
self.add_voice(voices, item)
return JsonResponse(voices, safe=False) | def get(self, request) | Returns a json representing the menu voices
in a format eaten by the js menu.
Raised ImproperlyConfigured exceptions can be viewed
in the browser console | 5.74608 | 4.849069 | 1.184986 |
voice = None
if item.get('type') == 'title':
voice = self.get_title_voice(item)
elif item.get('type') == 'app':
voice = self.get_app_voice(item)
elif item.get('type') == 'model':
voice = self.get_app_model_voice(item)
elif item.get('type') == 'free':
voice = self.get_free_voice(item)
if voice:
voices.append(voice) | def add_voice(self, voices, item) | Adds a voice to the list | 2.047537 | 2.026294 | 1.010483 |
view = True
if item.get('perms', None):
view = self.check_user_permission(item.get('perms', []))
elif item.get('apps', None):
view = self.check_apps_permission(item.get('apps', []))
if view:
return {
'type': 'title',
'label': item.get('label', ''),
'icon': item.get('icon', None)
}
return None | def get_title_voice(self, item) | Title voice
Returns the js menu compatible voice dict if the user
can see it, None otherwise | 3.11827 | 3.021215 | 1.032124 |
view = True
if item.get('perms', None):
view = self.check_user_permission(item.get('perms', []))
elif item.get('apps', None):
view = self.check_apps_permission(item.get('apps', []))
if view:
return {
'type': 'free',
'label': item.get('label', ''),
'icon': item.get('icon', None),
'url': item.get('url', None)
}
return None | def get_free_voice(self, item) | Free voice
Returns the js menu compatible voice dict if the user
can see it, None otherwise | 2.784549 | 2.764332 | 1.007314 |
if item.get('name', None) is None:
raise ImproperlyConfigured('App menu voices must have a name key')
if self.check_apps_permission([item.get('name', None)]):
children = []
if item.get('models', None) is None:
for name, model in self.apps_dict[item.get('name')]['models'].items(): # noqa
children.append({
'type': 'model',
'label': model.get('name', ''),
'url': model.get('admin_url', '')
})
else:
for model_item in item.get('models', []):
voice = self.get_model_voice(item.get('name'), model_item)
if voice:
children.append(voice)
return {
'type': 'app',
'label': item.get('label', ''),
'icon': item.get('icon', None),
'children': children
}
return None | def get_app_voice(self, item) | App voice
Returns the js menu compatible voice dict if the user
can see it, None otherwise | 2.912383 | 2.776037 | 1.049115 |
if app_model_item.get('name', None) is None:
raise ImproperlyConfigured('Model menu voices must have a name key') # noqa
if app_model_item.get('app', None) is None:
raise ImproperlyConfigured('Model menu voices must have an app key') # noqa
return self.get_model_voice(app_model_item.get('app'), app_model_item) | def get_app_model_voice(self, app_model_item) | App Model voice
Returns the js menu compatible voice dict if the user
can see it, None otherwise | 3.038272 | 2.99329 | 1.015028 |
if model_item.get('name', None) is None:
raise ImproperlyConfigured('Model menu voices must have a name key') # noqa
if self.check_model_permission(app, model_item.get('name', None)):
return {
'type': 'model',
'label': model_item.get('label', ''),
'icon': model_item.get('icon', None),
'url': self.apps_dict[app]['models'][model_item.get('name')]['admin_url'], # noqa
}
return None | def get_model_voice(self, app, model_item) | Model voice
Returns the js menu compatible voice dict if the user
can see it, None otherwise | 3.67502 | 3.393629 | 1.082917 |
d = {}
for app in self.app_list:
models = {}
for model in app.get('models', []):
models[model.get('object_name').lower()] = model
d[app.get('app_label').lower()] = {
'app_url': app.get('app_url', ''),
'app_label': app.get('app_label'),
'models': models
}
return d | def create_app_list_dict(self) | Creates a more efficient to check dictionary from
the app_list list obtained from django admin | 2.447576 | 2.179962 | 1.12276 |
for app in apps:
if app in self.apps_dict:
return True
return False | def check_apps_permission(self, apps) | Checks if one of apps is listed in apps_dict
Since apps_dict is derived from the app_list
given by django admin, it lists only the apps
the user can view | 5.049221 | 3.925662 | 1.286209 |
if self.apps_dict.get(app, False) and model in self.apps_dict[app]['models']:
return True
return False | def check_model_permission(self, app, model) | Checks if model is listed in apps_dict
Since apps_dict is derived from the app_list
given by django admin, it lists only the apps
and models the user can view | 4.437167 | 3.83407 | 1.157299 |
voices = []
for app in self.app_list:
children = []
for model in app.get('models', []):
child = {
'type': 'model',
'label': model.get('name', ''),
'url': model.get('admin_url', '')
}
children.append(child)
voice = {
'type': 'app',
'label': app.get('name', ''),
'url': app.get('app_url', ''),
'children': children
}
voices.append(voice)
return voices | def get_default_voices(self) | When no custom menu is defined in settings
Retrieves a js menu ready dict from the django admin app list | 2.517753 | 2.168968 | 1.160807 |
if not index.isValid():
return
dataFrame = self.model().dataFrame()
# get all infos from dataFrame
dfindex = dataFrame.iloc[[index.row()]].index
columnName = dataFrame.columns[index.column()]
dtype = dataFrame[columnName].dtype
value = dataFrame[columnName][dfindex]
# create the mime data
mimePayload = PandasCellPayload(
dfindex,
columnName,
value,
dtype,
hex(id(self.model()))
)
mimeData = MimeData()
mimeData.setData(mimePayload)
# create the drag icon and start drag operation
drag = QtGui.QDrag(self)
drag.setMimeData(mimeData)
pixmap = QtGui.QPixmap(":/icons/insert-table.png")
drag.setHotSpot(QtCore.QPoint(pixmap.width()/3, pixmap.height()/3))
drag.setPixmap(pixmap)
result = drag.start(Qt.MoveAction) | def startDrag(self, index) | start a drag operation with a PandasCellPayload on defined index.
Args:
index (QModelIndex): model index you want to start the drag operation. | 3.271029 | 3.050652 | 1.072239 |
for button in self.buttons[1:]:
button.setEnabled(enabled)
if button.isChecked():
button.setChecked(False)
model = self.tableView.model()
if model is not None:
model.enableEditing(enabled) | def enableEditing(self, enabled) | Enable the editing buttons to add/remove rows/columns and to edit the data.
This method is also a slot.
In addition, the data of model will be made editable,
if the `enabled` parameter is true.
Args:
enabled (bool): This flag indicates, if the buttons
shall be activated. | 3.676249 | 4.351478 | 0.844828 |
#for button in self.buttons[1:]:
for button in self.buttons:
# supress editButtons toggled event
button.blockSignals(True)
if button.isChecked():
button.setChecked(False)
button.blockSignals(False) | def uncheckButton(self) | Removes the checked stated of all buttons in this widget.
This method is also a slot. | 5.373014 | 5.435134 | 0.988571 |
model = self.tableView.model()
if model is not None:
model.addDataFrameColumn(columnName, dtype, defaultValue)
self.addColumnButton.setChecked(False) | def addColumn(self, columnName, dtype, defaultValue) | Adds a column with the given parameters to the underlying model
This method is also a slot.
If no model is set, nothing happens.
Args:
columnName (str): The name of the new column.
dtype (numpy.dtype): The datatype of the new column.
defaultValue (object): Fill the column with this value. | 5.236551 | 6.77341 | 0.773104 |
if triggered:
dialog = AddAttributesDialog(self)
dialog.accepted.connect(self.addColumn)
dialog.rejected.connect(self.uncheckButton)
dialog.show() | def showAddColumnDialog(self, triggered) | Display the dialog to add a column to the model.
This method is also a slot.
Args:
triggered (bool): If the corresponding button was
activated, the dialog will be created and shown. | 4.507356 | 5.496082 | 0.820103 |
if triggered:
model = self.tableView.model()
model.addDataFrameRows()
self.sender().setChecked(False) | def addRow(self, triggered) | Adds a row to the model.
This method is also a slot.
Args:
triggered (bool): If the corresponding button was
activated, the row will be appended to the end. | 10.053901 | 11.573091 | 0.868731 |
if triggered:
model = self.tableView.model()
selection = self.tableView.selectedIndexes()
rows = [index.row() for index in selection]
model.removeDataFrameRows(set(rows))
self.sender().setChecked(False) | def removeRow(self, triggered) | Removes a row to the model.
This method is also a slot.
Args:
triggered (bool): If the corresponding button was
activated, the selected row will be removed
from the model. | 4.598934 | 5.269763 | 0.872702 |
model = self.tableView.model()
if model is not None:
model.removeDataFrameColumns(columnNames)
self.removeColumnButton.setChecked(False) | def removeColumns(self, columnNames) | Removes one or multiple columns from the model.
This method is also a slot.
Args:
columnNames (list): A list of columns, which shall
be removed from the model. | 5.855736 | 7.779119 | 0.752751 |
if triggered:
model = self.tableView.model()
if model is not None:
columns = model.dataFrameColumns()
dialog = RemoveAttributesDialog(columns, self)
dialog.accepted.connect(self.removeColumns)
dialog.rejected.connect(self.uncheckButton)
dialog.show() | def showRemoveColumnDialog(self, triggered) | Display the dialog to remove column(s) from the model.
This method is also a slot.
Args:
triggered (bool): If the corresponding button was
activated, the dialog will be created and shown. | 4.16858 | 4.443394 | 0.938152 |
if isinstance(model, DataFrameModel):
self.enableEditing(False)
self.uncheckButton()
selectionModel = self.tableView.selectionModel()
self.tableView.setModel(model)
model.dtypeChanged.connect(self.updateDelegate)
model.dataChanged.connect(self.updateDelegates)
del selectionModel | def setViewModel(self, model) | Sets the model for the enclosed TableView in this widget.
Args:
model (DataFrameModel): The model to be displayed by
the Table View. | 5.912446 | 6.072576 | 0.973631 |
for index, column in enumerate(self.tableView.model().dataFrame().columns):
dtype = self.tableView.model().dataFrame()[column].dtype
self.updateDelegate(index, dtype) | def updateDelegates(self) | reset all delegates | 4.873944 | 4.490877 | 1.085299 |
thread = QtCore.QThread(parent)
thread.started.connect(worker.doWork)
worker.finished.connect(thread.quit)
if deleteWorkerLater:
thread.finished.connect(worker.deleteLater)
worker.moveToThread(thread)
worker.setParent(parent)
return thread | def createThread(parent, worker, deleteWorkerLater=False) | Create a new thread for given worker.
Args:
parent (QObject): parent of thread and worker.
worker (ProgressWorker): worker to use in thread.
deleteWorkerLater (bool, optional): delete the worker if thread finishes.
Returns:
QThread | 2.263613 | 2.88274 | 0.78523 |
# lists, tuples, dicts refer to numpy.object types and
# return a 'text' description - working as intended or bug?
try:
value = np.dtype(value)
except TypeError as e:
return None
for (dtype, string) in self._all:
if dtype == value:
return string
# no match found return given value
return None | def description(self, value) | Fetches the translated description for the given datatype.
The given value will be converted to a `numpy.dtype` object, matched
against the supported datatypes and the description will be translated
into the preferred language. (Usually a settings dialog should be
available to change the language).
If the conversion fails or no match can be found, `None` will be returned.
Args:
value (type|numpy.dtype): Any object or type.
Returns:
str: The translated description of the datatype
None: If no match could be found or an error occured during convertion. | 14.750491 | 13.184709 | 1.118757 |
for (dtype, string) in self._all:
if string == value:
return dtype
return None | def dtype(self, value) | Gets the datatype for the given `value` (description).
Args:
value (str): A text description for any datatype.
Returns:
numpy.dtype: The matching datatype for the given text.
None: If no match can be found, `None` will be returned. | 9.28178 | 9.096848 | 1.020329 |
if column.dtype == object:
column.fillna('', inplace=True)
return column | def fillNoneValues(column) | Fill all NaN/NaT values of a column with an empty string
Args:
column (pandas.Series): A Series object with all rows.
Returns:
column: Series with filled NaN values. | 4.559227 | 6.353499 | 0.717593 |
tempColumn = column
try:
# Try to convert the first row and a random row instead of the complete
# column, might be faster
# tempValue = np.datetime64(column[0])
tempValue = np.datetime64(column[randint(0, len(column.index) - 1)])
tempColumn = column.apply(to_datetime)
except Exception:
pass
return tempColumn | def convertTimestamps(column) | Convert a dtype of a given column to a datetime.
This method tries to do this by brute force.
Args:
column (pandas.Series): A Series object with all rows.
Returns:
column: Converted to datetime if no errors occured, else the
original column will be returned. | 6.149848 | 6.101107 | 1.007989 |
if isinstance(filepath, pd.DataFrame):
return filepath
assert isinstance(first_codec, str), "first_codec must be a string"
codecs = ['UTF_8', 'ISO-8859-1', 'ASCII', 'UTF_16', 'UTF_32']
try:
codecs.remove(first_codec)
except ValueError as not_in_list:
pass
codecs.insert(0, first_codec)
errors = []
for c in codecs:
try:
return pd.read_csv(filepath,
usecols=usecols,
low_memory=low_memory,
encoding=c,
dtype=dtype,
parse_dates=parse_dates,
sep=sep,
chunksize=chunksize,
**kwargs)
# Need to catch `UnicodeError` here, not just `UnicodeDecodeError`,
# because pandas 0.23.1 raises it when decoding with UTF_16 and the
# file is not in that format:
except (UnicodeError, UnboundLocalError) as e:
errors.append(e)
except Exception as e:
errors.append(e)
if 'tokenizing' in str(e):
pass
else:
raise
if verbose:
[print(e) for e in errors]
raise UnicodeDecodeError("Tried {} codecs and failed on all: \n CODECS: {} \n FILENAME: {}".format(
len(codecs), codecs, os.path.basename(filepath))) | def superReadCSV(filepath, first_codec='UTF_8', usecols=None,
low_memory=False, dtype=None, parse_dates=True,
sep=',', chunksize=None, verbose=False, **kwargs) | A wrap to pandas read_csv with mods to accept a dataframe or
filepath. returns dataframe untouched, reads filepath and returns
dataframe based on arguments. | 2.991992 | 2.996599 | 0.998462 |
ext = os.path.splitext(filepath)[1].lower()
allowed_exts = ['.csv', '.txt', '.tsv']
assert ext in ['.csv', '.txt'], "Unexpected file extension {}. \
Supported extensions {}\n filename: {}".format(
ext, allowed_exts, os.path.basename(filepath))
maybe_seps = ['|',
';',
',',
'\t',
':']
with open(filepath,'r') as fp:
header = fp.__next__()
count_seps_header = {sep: _count(sep, header) for sep in maybe_seps}
count_seps_header = {sep: count for sep,
count in count_seps_header.items() if count > 0}
if count_seps_header:
return max(count_seps_header.__iter__(),
key=(lambda key: count_seps_header[key]))
else:
raise Exception("Couldn't identify the sep from the header... here's the information:\n HEADER: {}\n SEPS SEARCHED: {}".format(header, maybe_seps)) | def identify_sep(filepath) | Identifies the separator of data in a filepath.
It reads the first line of the file and counts supported separators.
Currently supported separators: ['|', ';', ',','\t',':'] | 3.88712 | 3.61266 | 1.075972 |
if isinstance(filepath, pd.DataFrame):
return filepath
sep = kwargs.get('sep', None)
ext = os.path.splitext(filepath)[1].lower()
if sep is None:
if ext == '.tsv':
kwargs['sep'] = '\t'
elif ext == '.csv':
kwargs['sep'] = ','
else:
found_sep = identify_sep(filepath)
print(found_sep)
kwargs['sep'] = found_sep
return superReadCSV(filepath, **kwargs) | def superReadText(filepath, **kwargs) | A wrapper to superReadCSV which wraps pandas.read_csv().
The benefit of using this function is that it automatically identifies the
column separator.
.tsv files are assumed to have a \t (tab) separation
.csv files are assumed to have a comma separation.
.txt (or any other type) get the first line of the file opened
and get tested for various separators as defined in the identify_sep
function. | 3.073235 | 2.291147 | 1.341352 |
if isinstance(filepath, pd.DataFrame):
return filepath
ext = os.path.splitext(filepath)[1].lower()
if ext in ['.xlsx', '.xls']:
df = pd.read_excel(filepath, **kwargs)
elif ext in ['.pkl', '.p', '.pickle', '.pk']:
df = pd.read_pickle(filepath)
else:
# Assume it's a text-like file and try to read it.
try:
df = superReadText(filepath, **kwargs)
except Exception as e:
# TODO: Make this trace back better? Custom Exception? Raise original?
raise Exception("Error reading file: {}".format(e))
return df | def superReadFile(filepath, **kwargs) | Uses pandas.read_excel (on excel files) and returns a dataframe of the
first sheet (unless sheet is specified in kwargs)
Uses superReadText (on .txt,.tsv, or .csv files) and returns a dataframe of
the data. One function to read almost all types of data files. | 3.554359 | 3.345788 | 1.062338 |
cols = list(frame.columns)
for i, item in enumerate(frame.columns):
if item in frame.columns[:i]:
cols[i] = "toDROP"
frame.columns = cols
return frame.drop("toDROP", 1, errors='ignore') | def dedupe_cols(frame) | Need to dedupe columns that have the same name. | 4.113492 | 3.855443 | 1.066931 |
counts = {}
positions = {pos: fld for pos, fld in enumerate(cols)}
for c in cols:
if c in counts.keys():
counts[c] += 1
else:
counts[c] = 1
fixed_cols = {}
for pos, col in positions.items():
if counts[col] > 1:
fix_cols = {pos: fld for pos, fld in positions.items() if fld == col}
keys = [p for p in fix_cols.keys()]
min_pos = min(keys)
cnt = 1
for p, c in fix_cols.items():
if not p == min_pos:
cnt += 1
c = c + str(cnt)
fixed_cols.update({p: c})
positions.update(fixed_cols)
cols = [x for x in positions.values()]
return cols | def rename_dupe_cols(cols) | Takes a list of strings and appends 2,3,4 etc to duplicates. Never
appends a 0 or 1. Appended #s are not always in order...but if you wrap
this in a dataframe.to_sql function you're guaranteed to not have dupe
column name errors importing data to SQL...you'll just have to check
yourself to see which fields were renamed. | 2.798503 | 2.883444 | 0.970542 |
editor = BigIntSpinbox(parent)
try:
editor.setMinimum(self.minimum)
editor.setMaximum(self.maximum)
editor.setSingleStep(self.singleStep)
except TypeError as err:
# initiate the editor with default values
pass
return editor | def createEditor(self, parent, option, index) | Returns the widget used to edit the item specified by index for editing. The parent widget and style option are used to control how the editor widget appears.
Args:
parent (QWidget): parent widget.
option (QStyleOptionViewItem): controls how editor widget appears.
index (QModelIndex): model data index. | 5.304949 | 7.079028 | 0.74939 |
if index.isValid():
value = index.model().data(index, QtCore.Qt.EditRole)
spinBox.setValue(value) | def setEditorData(self, spinBox, index) | Sets the data to be displayed and edited by the editor from the data model item specified by the model index.
Args:
spinBox (BigIntSpinbox): editor widget.
index (QModelIndex): model data index. | 2.396078 | 2.883996 | 0.830819 |
editor = QtGui.QDoubleSpinBox(parent)
try:
editor.setMinimum(self.minimum)
editor.setMaximum(self.maximum)
editor.setSingleStep(self.singleStep)
editor.setDecimals(self.decimals)
except TypeError as err:
# initiate the spinbox with default values.
pass
return editor | def createEditor(self, parent, option, index) | Returns the widget used to edit the item specified by index for editing. The parent widget and style option are used to control how the editor widget appears.
Args:
parent (QWidget): parent widget.
option (QStyleOptionViewItem): controls how editor widget appears.
index (QModelIndex): model data index. | 3.106763 | 3.888836 | 0.798893 |
spinBox.interpretText()
value = spinBox.value()
model.setData(index, value, QtCore.Qt.EditRole) | def setModelData(self, spinBox, model, index) | Gets data from the editor widget and stores it in the specified model at the item index.
Args:
spinBox (QDoubleSpinBox): editor widget.
model (QAbstractItemModel): parent model.
index (QModelIndex): model data index. | 3.872892 | 4.385142 | 0.883185 |
editor = QtGui.QLineEdit(parent)
return editor | def createEditor(self, parent, option, index) | Returns the widget used to edit the item specified by index for editing. The parent widget and style option are used to control how the editor widget appears.
Args:
parent (QWidget): parent widget.
option (QStyleOptionViewItem): controls how editor widget appears.
index (QModelIndex): model data index. | 6.734537 | 17.852448 | 0.377233 |
if index.isValid():
value = editor.text()
model.setData(index, value, QtCore.Qt.EditRole) | def setModelData(self, editor, model, index) | Gets data from the editor widget and stores it in the specified model at the item index.
Args:
editor (QtGui.QLineEdit): editor widget.
model (QAbstractItemModel): parent model.
index (QModelIndex): model data index. | 3.14307 | 2.750444 | 1.14275 |
combo = QtGui.QComboBox(parent)
combo.addItems(SupportedDtypes.names())
combo.currentIndexChanged.connect(self.currentIndexChanged)
return combo | def createEditor(self, parent, option, index) | Creates an Editor Widget for the given index.
Enables the user to manipulate the displayed data in place. An editor
is created, which performs the change.
The widget used will be a `QComboBox` with all available datatypes in the
`pandas` project.
Args:
parent (QtCore.QWidget): Defines the parent for the created editor.
option (QtGui.QStyleOptionViewItem): contains all the information
that QStyle functions need to draw the items.
index (QtCore.QModelIndex): The item/index which shall be edited.
Returns:
QtGui.QWidget: he widget used to edit the item specified by index
for editing. | 5.295277 | 5.202297 | 1.017873 |
editor.blockSignals(True)
data = index.data()
dataIndex = editor.findData(data)
# dataIndex = editor.findData(data, role=Qt.EditRole)
editor.setCurrentIndex(dataIndex)
editor.blockSignals(False) | def setEditorData(self, editor, index) | Sets the current data for the editor.
The data displayed has the same value as `index.data(Qt.EditRole)`
(the translated name of the datatype). Therefor a lookup for all items
of the combobox is made and the matching item is set as the currently
displayed item.
Signals emitted by the editor are blocked during exection of this method.
Args:
editor (QtGui.QComboBox): The current editor for the item. Should be
a `QtGui.QComboBox` as defined in `createEditor`.
index (QtCore.QModelIndex): The index of the current item. | 3.290253 | 3.538611 | 0.929815 |
model.setData(index, editor.itemText(editor.currentIndex())) | def setModelData(self, editor, model, index) | Updates the model after changing data in the editor.
Args:
editor (QtGui.QComboBox): The current editor for the item. Should be
a `QtGui.QComboBox` as defined in `createEditor`.
model (ColumnDtypeModel): The model which holds the displayed data.
index (QtCore.QModelIndex): The index of the current item of the model. | 7.276262 | 7.360343 | 0.988577 |
try:
bytestream = pickle.dumps(data)
super(MimeData, self).setData(self._mimeType, bytestream)
except TypeError:
raise TypeError(self.tr("can not pickle added data"))
except:
raise | def setData(self, data) | Add some data.
Args:
data (object): Object to add as data. This object has to be pickable.
Qt objects don't work!
Raises:
TypeError if data is not pickable | 7.596085 | 6.770501 | 1.121938 |
try:
bytestream = super(MimeData, self).data(self._mimeType).data()
return pickle.loads(bytestream)
except:
raise | def data(self) | return stored data
Returns:
unpickled data | 7.805067 | 7.450575 | 1.047579 |
#return super(DataFrameExportDialog, self).accepted
try:
self._saveModel()
except Exception as err:
self._statusBar.showMessage(str(err))
raise
else:
self._resetWidgets()
self.exported.emit(True)
self.accept() | def accepted(self) | Successfully close the widget and emit an export signal.
This method is also a `SLOT`.
The dialog will be closed, when the `Export Data` button is
pressed. If errors occur during the export, the status bar
will show the error message and the dialog will not be closed. | 7.471069 | 5.620615 | 1.329226 |
self._resetWidgets()
self.exported.emit(False)
self.reject() | def rejected(self) | Close the widget and reset its inital state.
This method is also a `SLOT`.
The dialog will be closed and all changes reverted, when the
`cancel` button is pressed. | 19.90596 | 18.24507 | 1.091032 |
delimiter = self._delimiterBox.currentSelected()
header = self._headerCheckBox.isChecked() # column labels
if self._filename is None:
filename = self._filenameLineEdit.text()
else:
filename = self._filename
ext = os.path.splitext(filename)[1].lower()
index = False # row labels
encodingIndex = self._encodingComboBox.currentIndex()
encoding = self._encodingComboBox.itemText(encodingIndex)
encoding = _calculateEncodingKey(encoding.lower())
try:
dataFrame = self._model.dataFrame()
except AttributeError as err:
raise AttributeError('No data loaded to export.')
else:
print("Identifying export type for {}".format(filename))
try:
if ext in ['.txt','.csv']:
dataFrame.to_csv(filename, encoding=encoding, header=header, index=index, sep=delimiter)
elif ext == '.tsv':
sep = '\t'
dataFrame.to_csv(filename, encoding=encoding, header=header, index=index, sep=delimiter)
elif ext in ['.xlsx','.xls']:
dataFrame.to_excel(filename, encoding=encoding, header=header, index=index, sep=delimiter)
except IOError as err:
raise IOError('No filename given')
except UnicodeError as err:
raise UnicodeError('Could not encode all data. Choose a different encoding')
except Exception:
raise
self.signalExportFilenames.emit(self._model._filePath, filename) | def _saveModel(self) | Reimplements _saveModel to utilize all of the
Pandas export options based on file extension.
:return: None | 3.716372 | 3.597037 | 1.033176 |
if value >= self.minimum() and value <= self.maximum():
self._lineEdit.setText(str(value))
elif value < self.minimum():
self._lineEdit.setText(str(self.minimum()))
elif value > self.maximum():
self._lineEdit.setText(str(self.maximum()))
return True | def setValue(self, value) | setter function to _lineEdit.text. Sets minimum/maximum as new value if value is out of bounds.
Args:
value (int/long): new value to set.
Returns
True if all went fine. | 2.092934 | 1.909061 | 1.096316 |
self.setValue(self.value() + steps*self.singleStep()) | def stepBy(self, steps) | steps value up/down by a single step. Single step is defined in singleStep().
Args:
steps (int): positiv int steps up, negativ steps down | 7.335743 | 5.461839 | 1.34309 |
if self.value() > self.minimum() and self.value() < self.maximum():
return self.StepUpEnabled | self.StepDownEnabled
elif self.value() <= self.minimum():
return self.StepUpEnabled
elif self.value() >= self.maximum():
return self.StepDownEnabled | def stepEnabled(self) | Virtual function that determines whether stepping up and down is legal at any given time.
Returns:
ored combination of StepUpEnabled | StepDownEnabled | 2.617961 | 2.299881 | 1.138303 |
if not isinstance(singleStep, int):
raise TypeError("Argument is not of type int")
# don't use negative values
self._singleStep = abs(singleStep)
return self._singleStep | def setSingleStep(self, singleStep) | setter to _singleStep. converts negativ values to positiv ones.
Args:
singleStep (int): new _singleStep value. converts negativ values to positiv ones.
Raises:
TypeError: If the given argument is not an integer.
Returns:
int or long: the absolute value of the given argument. | 5.141188 | 4.228911 | 1.215724 |
if not isinstance(minimum, int):
raise TypeError("Argument is not of type int or long")
self._minimum = minimum | def setMinimum(self, minimum) | setter to _minimum.
Args:
minimum (int or long): new _minimum value.
Raises:
TypeError: If the given argument is not an integer. | 5.340186 | 5.662768 | 0.943035 |
if not isinstance(maximum, int):
raise TypeError("Argument is not of type int or long")
self._maximum = maximum | def setMaximum(self, maximum) | setter to _maximum.
Args:
maximum (int or long): new _maximum value | 5.244268 | 5.597598 | 0.936878 |
df = self._models[filepath].dataFrame()
kwargs['index'] = kwargs.get('index', False)
if save_as is not None:
to_path = save_as
else:
to_path = filepath
ext = os.path.splitext(to_path)[1].lower()
if ext == ".xlsx":
kwargs.pop('sep', None)
df.to_excel(to_path, **kwargs)
elif ext in ['.csv','.txt']:
df.to_csv(to_path, **kwargs)
else:
raise NotImplementedError("Cannot save file of type {}".format(ext))
if save_as is not None:
if keep_orig is False:
# Re-purpose the original model
# Todo - capture the DataFrameModelManager._updates too
model = self._models.pop(filepath)
model._filePath = to_path
else:
# Create a new model.
model = DataFrameModel()
model.setDataFrame(df, copyDataFrame=True, filePath=to_path)
self._models[to_path] = model | def save_file(self, filepath, save_as=None, keep_orig=False, **kwargs) | Saves a DataFrameModel to a file.
:param filepath: (str)
The filepath of the DataFrameModel to save.
:param save_as: (str, default None)
The new filepath to save as.
:param keep_orig: (bool, default False)
True keeps the original filepath/DataFrameModel if save_as is specified.
:param kwargs:
pandas.DataFrame.to_excel(**kwargs) if .xlsx
pandas.DataFrame.to_csv(**kwargs) otherwise.
:return: None | 3.818239 | 3.469741 | 1.100439 |
assert isinstance(df_model, DataFrameModel), "df_model argument must be a DataFrameModel!"
df_model._filePath = file_path
try:
self._models[file_path]
except KeyError:
self.signalNewModelRead.emit(file_path)
self._models[file_path] = df_model | def set_model(self, df_model, file_path) | Sets a DataFrameModel and registers it to the given file_path.
:param df_model: (DataFrameModel)
The DataFrameModel to register.
:param file_path:
The file path to associate with the DataFrameModel.
*Overrides the current filePath on the DataFrameModel (if any)
:return: None | 4.214875 | 3.307338 | 1.274401 |
assert isinstance(df, pd.DataFrame), "Cannot update file with type '{}'".format(type(df))
self._models[filepath].setDataFrame(df, copyDataFrame=False)
if notes:
update = dict(date=pd.Timestamp(datetime.datetime.now()),
notes=notes)
self._updates[filepath].append(update)
self._paths_updated.append(filepath) | def update_file(self, filepath, df, notes=None) | Sets a new DataFrame for the DataFrameModel registered to filepath.
:param filepath (str)
The filepath to the DataFrameModel to be updated
:param df (pandas.DataFrame)
The new DataFrame to register to the model.
:param notes (str, default None)
Optional notes to register along with the update. | 6.043829 | 5.932638 | 1.018742 |
self._models.pop(filepath)
self._updates.pop(filepath, default=None)
self.signalModelDestroyed.emit(filepath) | def remove_file(self, filepath) | Removes the DataFrameModel from being registered.
:param filepath: (str)
The filepath to delete from the DataFrameModelManager.
:return: None | 8.896426 | 7.52484 | 1.182274 |
try:
model = self._models[filepath]
except KeyError:
model = read_file(filepath, **kwargs)
self._models[filepath] = model
self.signalNewModelRead.emit(filepath)
finally:
self._paths_read.append(filepath)
return self._models[filepath] | def read_file(self, filepath, **kwargs) | Reads a filepath into a DataFrameModel and registers
it.
Example use:
dfmm = DataFrameModelManger()
dfmm.read_file(path_to_file)
dfm = dfmm.get_model(path_to_file)
df = dfm.get_frame(path_to_file)
:param filepath: (str)
The filepath to read
:param kwargs:
.xlsx files: pandas.read_excel(**kwargs)
.csv files: pandas.read_csv(**kwargs)
:return: DataFrameModel | 3.843225 | 3.602902 | 1.066703 |
separator = '-' * 80
logFile = os.path.join(tempfile.gettempdir(), "error.log")
notice = "An unhandled exception occurred. Please report the problem.\n"
notice += .format(logFile)
timeString = time.strftime("%Y-%m-%d, %H:%M:%S")
tbinfofile = io.StringIO()
traceback.print_tb(tracebackobj, None, tbinfofile)
tbinfofile.seek(0)
tbinfo = tbinfofile.read()
if python_version < 3:
# Python3 has no str().decode()
tbinfo = tbinfo.decode('utf-8')
else:
pass
try:
if python_version < 3:
# Python3 has no str().decode()
excValueStr = str(excValue).decode('utf-8')
else:
excValueStr = str(excValue)
except UnicodeEncodeError:
excValueStr = str(excValue)
errmsg = '{0}: \n{1}'.format(excType, excValueStr)
sections = ['\n', separator, timeString, separator,
errmsg, separator, tbinfo]
try:
msg = '\n'.join(sections)
except TypeError:
# Remove all things not string.
sections = [item for item in sections if type(item) == str]
msg = '\n'.join(sections)
try:
f = codecs.open(logFile, "a+", encoding='utf-8')
f.write(msg)
f.close()
except IOError:
msgbox("unable to write to {0}".format(logFile), "Writing error")
# always show an error message
try:
if not _isQAppRunning():
app = QtGui.QApplication([])
_showMessageBox(str(notice) + str(msg))
except Exception:
msgbox(str(notice) + str(msg), "Error") | def excepthook(excType, excValue, tracebackobj) | Global function to catch unhandled exceptions.
@param excType exception type
@param excValue exception value
@param tracebackobj traceback object | 3.167089 | 3.240655 | 0.977299 |
return "".join(traceback.format_exception(
sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]
)) | def exception_format() | Convert exception info into a string suitable for display. | 2.501618 | 2.190529 | 1.142015 |
output_list = list()
for i, item in enumerate(input_list):
tempList = input_list[:i] + input_list[i + 1:]
if item not in tempList:
output_list.append(item)
else:
output_list.append('{0}_{1}'.format(item, i))
return output_list | def uniquify_list_of_strings(input_list) | Ensure that every string within input_list is unique.
:param list input_list: List of strings
:return: New list with unique names as needed. | 2.269139 | 2.385495 | 0.951224 |
ret_val = [text, None, None] # Default return values
if text is None:
return ret_val
# Single character, remain visible
res = re.search('(?<=\[).(?=\])', text)
if res:
start = res.start(0)
end = res.end(0)
caption = text[:start - 1] + text[start:end] + text[end + 1:]
ret_val = [caption, text[start:end], start - 1]
# Single character, hide it
res = re.search('(?<=\[\[).(?=\]\])', text)
if res:
start = res.start(0)
end = res.end(0)
caption = text[:start - 2] + text[end + 2:]
ret_val = [caption, text[start:end], None]
# a Keysym. Always hide it
res = re.search('(?<=\[\<).+(?=\>\])', text)
if res:
start = res.start(0)
end = res.end(0)
caption = text[:start - 2] + text[end + 2:]
ret_val = [caption, '<{}>'.format(text[start:end]), None]
return ret_val | def parse_hotkey(text) | Extract a desired hotkey from the text. The format to enclose
the hotkey in square braces
as in Button_[1] which would assign the keyboard key 1 to that button.
The one will be included in the
button text. To hide they key, use double square braces as in: Ex[[qq]]
it , which would assign
the q key to the Exit button. Special keys such as <Enter> may also be
used: Move [<left>] for a full
list of special keys, see this reference: http://infohost.nmt.edu/tcc/help/
pubs/tkinter/web/key-names.html
:param text:
:return: list containing cleaned text, hotkey, and hotkey position within
cleaned text. | 2.557001 | 2.392947 | 1.068557 |
if filename is None:
return None
if not os.path.isfile(filename):
raise ValueError('Image file {} does not exist.'.format(filename))
tk_image = None
filename = os.path.normpath(filename)
_, ext = os.path.splitext(filename)
try:
pil_image = PILImage.open(filename)
tk_image = PILImageTk.PhotoImage(pil_image)
except:
try:
# Fallback if PIL isn't available
tk_image = tk.PhotoImage(file=filename)
except:
msg = "Cannot load {}. Check to make sure it is an image file.".format(filename)
try:
_ = PILImage
except:
msg += "\nPIL library isn't installed. If it isn't installed, only .gif files can be used."
raise ValueError(msg)
return tk_image | def load_tk_image(filename) | Load in an image file and return as a tk Image.
:param filename: image filename to load
:return: tk Image object | 2.940039 | 2.880591 | 1.020638 |
if not isinstance(dataFrame, pandas.core.frame.DataFrame):
raise TypeError('Argument is not of type pandas.core.frame.DataFrame')
self.layoutAboutToBeChanged.emit()
self._dataFrame = dataFrame
self.layoutChanged.emit() | def setDataFrame(self, dataFrame) | setter function to _dataFrame. Holds all data.
Note:
It's not implemented with python properties to keep Qt conventions.
Raises:
TypeError: if dataFrame is not of type pandas.core.frame.DataFrame.
Args:
dataFrame (pandas.core.frame.DataFrame): assign dataFrame to _dataFrame. Holds all the data displayed. | 2.764775 | 2.658953 | 1.039798 |
if not isinstance(editable, bool):
raise TypeError('Argument is not of type bool')
self._editable = editable | def setEditable(self, editable) | setter to _editable. apply changes while changing dtype.
Raises:
TypeError: if editable is not of type bool.
Args:
editable (bool): apply changes while changing dtype. | 3.945098 | 4.999915 | 0.789033 |
# an index is invalid, if a row or column does not exist or extends
# the bounds of self.columnCount() or self.rowCount()
# therefor a check for col>1 is unnecessary.
if not index.isValid():
return None
col = index.column()
#row = self._dataFrame.columns[index.column()]
columnName = self._dataFrame.columns[index.row()]
columnDtype = self._dataFrame[columnName].dtype
if role == Qt.DisplayRole or role == Qt.EditRole:
if col == 0:
if columnName == index.row():
return index.row()
return columnName
elif col == 1:
return SupportedDtypes.description(columnDtype)
elif role == DTYPE_ROLE:
if col == 1:
return columnDtype
else:
return None | def data(self, index, role=Qt.DisplayRole) | Retrieve the data stored in the model at the given `index`.
Args:
index (QtCore.QModelIndex): The model index, which points at a
data object.
role (Qt.ItemDataRole, optional): Defaults to `Qt.DisplayRole`. You
have to use different roles to retrieve different data for an
`index`. Accepted roles are `Qt.DisplayRole`, `Qt.EditRole` and
`DTYPE_ROLE`.
Returns:
None if an invalid index is given, the role is not accepted by the
model or the column is greater than `1`.
The column name will be returned if the given column number equals `0`
and the role is either `Qt.DisplayRole` or `Qt.EditRole`.
The datatype will be returned, if the column number equals `1`. The
`Qt.DisplayRole` or `Qt.EditRole` return a human readable, translated
string, whereas the `DTYPE_ROLE` returns the raw data type. | 4.782597 | 4.243036 | 1.127164 |
if role != DTYPE_CHANGE_ROLE or not index.isValid():
return False
if not self.editable():
return False
self.layoutAboutToBeChanged.emit()
dtype = SupportedDtypes.dtype(value)
currentDtype = np.dtype(index.data(role=DTYPE_ROLE))
if dtype is not None:
if dtype != currentDtype:
# col = index.column()
# row = self._dataFrame.columns[index.column()]
columnName = self._dataFrame.columns[index.row()]
try:
if dtype == np.dtype('<M8[ns]'):
if currentDtype in SupportedDtypes.boolTypes():
raise Exception("Can't convert a boolean value into a datetime value.")
self._dataFrame[columnName] = self._dataFrame[columnName].apply(pandas.to_datetime)
else:
self._dataFrame[columnName] = self._dataFrame[columnName].astype(dtype)
self.dtypeChanged.emit(index.row(), dtype)
self.layoutChanged.emit()
return True
except Exception:
message = 'Could not change datatype %s of column %s to datatype %s' % (currentDtype, columnName, dtype)
self.changeFailed.emit(message, index, dtype)
raise
# self._dataFrame[columnName] = self._dataFrame[columnName].astype(currentDtype)
# self.layoutChanged.emit()
# self.dtypeChanged.emit(columnName)
#raise NotImplementedError, "dtype changing not fully working, original error:\n{}".format(e)
return False | def setData(self, index, value, role=DTYPE_CHANGE_ROLE) | Updates the datatype of a column.
The model must be initated with a dataframe already, since valid
indexes are necessary. The `value` is a translated description of the
data type. The translations can be found at
`qtpandas.translation.DTypeTranslator`.
If a datatype can not be converted, e.g. datetime to integer, a
`NotImplementedError` will be raised.
Args:
index (QtCore.QModelIndex): The index of the column to be changed.
value (str): The description of the new datatype, e.g.
`positive kleine ganze Zahl (16 Bit)`.
role (Qt.ItemDataRole, optional): The role, which accesses and
changes data. Defaults to `DTYPE_CHANGE_ROLE`.
Raises:
NotImplementedError: If an error during conversion occured.
Returns:
bool: `True` if the datatype could be changed, `False` if not or if
the new datatype equals the old one. | 3.425548 | 3.434344 | 0.997439 |
if not index.isValid():
return Qt.NoItemFlags
col = index.column()
flags = Qt.ItemIsEnabled | Qt.ItemIsSelectable
if col > 0 and self.editable():
flags = Qt.ItemIsSelectable | Qt.ItemIsEnabled | Qt.ItemIsEditable
return flags | def flags(self, index) | Returns the item flags for the given index as ored value, e.x.: Qt.ItemIsUserCheckable | Qt.ItemIsEditable
Args:
index (QtCore.QModelIndex): Index to define column and row
Returns:
for column 'column': Qt.ItemIsSelectable | Qt.ItemIsEnabled
for column 'data type': Qt.ItemIsSelectable | Qt.ItemIsEnabled | Qt.ItemIsEditable | 2.967424 | 2.893338 | 1.025606 |
# there should be a grammar defined and some lexer/parser.
# instead of this quick-and-dirty implementation.
safeEnvDict = {
'freeSearch': self.freeSearch,
'extentSearch': self.extentSearch,
'indexSearch': self.indexSearch
}
for col in self._dataFrame.columns:
safeEnvDict[col] = self._dataFrame[col]
try:
searchIndex = eval(self._filterString, {
'__builtins__': None}, safeEnvDict)
except NameError:
return [], False
except SyntaxError:
return [], False
except ValueError:
# the use of 'and'/'or' is not valid, need to use binary operators.
return [], False
except TypeError:
# argument must be string or compiled pattern
return [], False
return searchIndex, True | def search(self) | Applies the filter to the stored dataframe.
A safe environment dictionary will be created, which stores all allowed
functions and attributes, which may be used for the filter.
If any object in the given `filterString` could not be found in the
dictionary, the filter does not apply and returns `False`.
Returns:
tuple: A (indexes, success)-tuple, which indicates identified objects
by applying the filter and if the operation was successful in
general. | 7.688715 | 6.467187 | 1.188881 |
if not self._dataFrame.empty:
# set question to the indexes of data and set everything to false.
question = self._dataFrame.index == -9999
for column in self._dataFrame.columns:
dfColumn = self._dataFrame[column]
dfColumn = dfColumn.apply(str)
question2 = dfColumn.str.contains(searchString,
flags=re.IGNORECASE,
regex=True, na=False)
question = np.logical_or(question, question2)
return question
else:
return [] | def freeSearch(self, searchString) | Execute a free text search for all columns in the dataframe.
Parameters
----------
searchString (str): Any string which may be contained in a column.
Returns
-------
list: A list containing all indexes with filtered data. Matches
will be `True`, the remaining items will be `False`. If the
dataFrame is empty, an empty list will be returned. | 4.490747 | 4.095984 | 1.096378 |
if not self._dataFrame.empty:
try:
questionMin = (self._dataFrame.lat >= xmin) & (
self._dataFrame.lng >= ymin)
questionMax = (self._dataFrame.lat <= xmax) & (
self._dataFrame.lng <= ymax)
return np.logical_and(questionMin, questionMax)
except AttributeError:
return []
else:
return [] | def extentSearch(self, xmin, ymin, xmax, ymax) | Filters the data by a geographical bounding box.
The bounding box is given as lower left point coordinates and upper
right point coordinates.
Note:
It's necessary that the dataframe has a `lat` and `lng` column
in order to apply the filter.
Check if the method could be removed in the future. (could be done
via freeSearch)
Returns
-------
list: A list containing all indexes with filtered data. Matches
will be `True`, the remaining items will be `False`. If the
dataFrame is empty, an empty list will be returned. | 3.237372 | 2.79717 | 1.157374 |
if not self._dataFrame.empty:
filter0 = self._dataFrame.index == -9999
for index in indexes:
filter1 = self._dataFrame.index == index
filter0 = np.logical_or(filter0, filter1)
return filter0
else:
return [] | def indexSearch(self, indexes) | Filters the data by a list of indexes.
Args:
indexes (list of int): List of index numbers to return.
Returns:
list: A list containing all indexes with filtered data. Matches
will be `True`, the remaining items will be `False`. If the
dataFrame is empty, an empty list will be returned. | 3.790253 | 3.304156 | 1.147117 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.