code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
digraph = networkx.MultiDiGraph() from rdflib.namespace import RDF label_map = {} for c in rg.subjects(RDF.type, OWL.Class): cid = contract_uri_wrap(c) logging.info("C={}".format(cid)) for lit in rg.objects(c, RDFS.label): label_map[cid] = lit.value digraph.add_node(cid, label=lit.value) for s in rg.objects(c, RDFS.subClassOf): # todo - blank nodes sid = contract_uri_wrap(s) digraph.add_edge(sid, cid, pred='subClassOf') logging.info("G={}".format(digraph)) payload = { 'graph': digraph, #'xref_graph': xref_graph, #'graphdoc': obographdoc, #'logical_definitions': logical_definitions } ont = Ontology(handle='wd', payload=payload) return ont
def rdfgraph_to_ontol(rg)
Return an Ontology object from an rdflib graph object Status: Incomplete
4.374811
4.473859
0.977861
if entities is None: entities = [] results = search_associations(subjects=entities, subject_direct=True, rows=0, facet_fields=[M.IS_DEFINED_BY, M.SUBJECT_TAXON, M.SUBJECT_CATEGORY], object_category=object_category, facet_mincount=3, # TODO facet_limit=-1, json_facet={ 'categories':{ 'limit':-1, 'type': 'terms', 'field' : M.OBJECT_CLOSURE, 'facet' : { 'uniq_subject': "unique(subject)" } } }, **kwargs) buckets = results['facets']['categories']['buckets'] cmap = {} for bucket in buckets: if bucket['uniq_subject'] >= min_count: cmap[bucket['val']] = bucket['uniq_subject'] return (cmap, results)
def get_counts(entities=None, object_category=None, min_count=1, **kwargs)
given a set of entities (genes, diseases, etc), finds the number of entities associated with each descriptor in a given category. The result is a tuple (cmap, results), where cmap is a dict of TERM:COUNT
4.788345
5.056205
0.947024
if sample_entities is None: sample_entites = [] (sample_counts, sample_results) = get_counts(entities=sample_entities, object_category=object_category, min_count=2, **kwargs) print(str(sample_counts)) sample_fcs = sample_results['facet_counts'] taxon_count_dict = sample_fcs[M.SUBJECT_TAXON] taxon=None for (t,tc) in taxon_count_dict.items(): # TODO - throw error if multiple taxa taxon = t if background_entities is None: objects = list(sample_counts.keys()) print("OBJECTS="+str(objects)) background_entities = get_background(objects, taxon, object_category) # TODO: consider caching (bg_counts,_) = get_counts(entities=background_entities, object_category=object_category, **kwargs) sample_n = len(sample_entities) # TODO - annotated only? pop_n = len(background_entities) # adapted from goatools for (sample_termid,sample_count) in sample_counts.items(): pop_count = bg_counts[sample_termid] # https://en.wikipedia.org/wiki/Fisher's_exact_test # Cls NotCls # study/sample [a, b] # rest of ref [c, d] # a = sample_count b = sample_n - sample_count c = pop_count - sample_count d = pop_n - pop_count - b print("ABCD="+str((sample_termid,a,b,c,d,sample_n))) _, p_uncorrected = sp.stats.fisher_exact( [[a, b], [c, d]]) print("P="+str(p_uncorrected))
def find_enriched(sample_entities=None, background_entities=None, object_category=None, **kwargs)
Given a sample set of sample_entities (e.g. overexpressed genes) and a background set (e.g. all genes assayed), and a category of descriptor (e.g. phenotype, function), return enriched descriptors/classes
4.355319
4.428957
0.983373
results = search_associations(id=id, **kwargs) assoc = results['associations'][0] if len(results['associations']) > 0 else {} return assoc
def get_association(id, **kwargs)
Fetch an association object by ID
3.187003
3.24258
0.98286
logging.info("CREATING_GOLR_QUERY {}".format(kwargs)) q = GolrAssociationQuery(**kwargs) return q.exec()
def search_associations(**kwargs)
Fetch a set of association objects based on a query.
10.516428
11.028956
0.953529
searchresult = search_associations(subject=subject, fetch_objects=True, rows=0, object_category=object_category, relation=relation, **kwargs ) objs = searchresult['objects'] return objs
def get_objects_for_subject(subject=None, object_category=None, relation=None, **kwargs)
Convenience method: Given a subject (e.g. gene, disease, variant), return all associated objects (phenotypes, functions, interacting genes, etc)
5.75712
5.38828
1.068452
searchresult = search_associations(object=object, fetch_subjects=True, rows=0, subject_category=subject_category, subject_taxon=subject_taxon, relation=relation, **kwargs ) subjs = searchresult['subjects'] return subjs
def get_subjects_for_object(object=None, subject_category=None, subject_taxon=None, relation=None, **kwargs)
Convenience method: Given a object (e.g. ontology term like phenotype or GO; interacting gene; disease; pathway etc), return all associated subjects (genes, variants, pubs, etc)
4.32998
4.305616
1.005659
logging.info("SLIM SUBJECTS:{} SLIM:{} CAT:{}".format(subjects,slim,kwargs.get('category'))) searchresult = search_associations(subjects=subjects, slim=slim, facet_fields=[], **kwargs ) pmap = {} for a in searchresult['associations']: subj = a['subject']['id'] slimmed_terms = a['slim'] #logging.info('SLIM: {} {}'.format(subj,slimmed_terms)) for t in slimmed_terms: k = (subj,t) if k not in pmap: pmap[k] = [] pmap[k].append(a) results = [ {'subject': subj, 'slim':t, 'assocs': assocs} for ((subj,t),assocs) in pmap.items()] return results
def map2slim(subjects, slim, **kwargs)
Maps a set of subjects (e.g. genes) to a set of slims Result is a list of unique subject-class pairs, with a list of source assocations
3.757544
3.840617
0.97837
assert subject_category is not None assert object_category is not None time.sleep(1) logging.info("Bulk query: {} {} {}".format(subject_category, object_category, taxon)) assocs = search_associations_compact(subject_category=subject_category, object_category=object_category, subject_taxon=taxon, rows=rows, iterate=True, **kwargs) logging.info("Rows retrieved: {}".format(len(assocs))) if len(assocs) == 0: logging.error("No associations returned for query: {} {} {}".format(subject_category, object_category, taxon)) return assocs
def bulk_fetch(subject_category, object_category, taxon, rows=MAX_ROWS, **kwargs)
Fetch associations for a species and pair of categories in bulk. Arguments: - subject_category: String (not None) - object_category: String (not None) - taxon: String - rows: int Additionally, any argument for search_associations can be passed
2.676638
2.809132
0.952835
if facet_pivot_fields is None: facet_pivot_fields = [] results = search_associations(rows=0, facet_fields=[facet], #facet_pivot_fields=facet_pivot_fields + [facet], facet_pivot_fields=facet_pivot_fields, **kwargs) return results
def pivot_query(facet=None, facet_pivot_fields=None, **kwargs)
Pivot query
3.121475
3.121576
0.999968
if facet_pivot_fields is None: facet_pivot_fields = [] logging.info("Additional args: {}".format(kwargs)) fp = search_associations(rows=0, facet_fields=[facet], facet_pivot_fields=facet_pivot_fields, **kwargs)['facet_pivot'] # we assume only one results = list(fp.items())[0][1] tups = [] xtype=None ytype=None xlabels=set() ylabels=set() for r in results: logging.info("R={}".format(r)) xtype=r['field'] rv = r['value'] xlabels.add(rv) for piv in r['pivot']: ytype=piv['field'] pv = piv['value'] ylabels.add(pv) tups.append( (rv,pv,piv['count']) ) z = [ [0] * len(xlabels) for i1 in range(len(ylabels)) ] xlabels=list(xlabels) ylabels=list(ylabels) xmap = dict([x[::-1] for x in enumerate(xlabels)]) ymap = dict([x[::-1] for x in enumerate(ylabels)]) for t in tups: z[ymap[t[1]]][xmap[t[0]]] = t[2] m = {'xtype':xtype, 'ytype':ytype, 'xaxis':xlabels, 'yaxis':ylabels, 'z':z} return m
def pivot_query_as_matrix(facet=None, facet_pivot_fields=None, **kwargs)
Pivot query
2.869816
2.871862
0.999288
go_golr_url = "http://golr.geneontology.org/solr/" go_solr = pysolr.Solr(go_golr_url, timeout=5) go_solr.get_session().headers['User-Agent'] = get_user_agent(caller_name=__name__) return search_associations(subject_category, object_category, relation, subject, solr=go_solr, field_mapping=goassoc_fieldmap(), **kwargs)
def search_associations_go( subject_category=None, object_category=None, relation=None, subject=None, **kwargs)
Perform association search using Monarch golr
3.792314
3.592713
1.055557
results = search_associations(rows=0, select_fields=[], facet_field_limits = { distinct_field : -1 }, facet_fields=[distinct_field], **kwargs ) # TODO: map field return list(results['facet_counts'][distinct_field].keys())
def select_distinct(distinct_field=None, **kwargs)
select distinct values for a given field for a given a query
9.542306
10.157862
0.939401
am = self.assocmodel a1 = am.inferred_types(s1) a2 = am.inferred_types(s2) num_union = len(a1 | a2) if num_union == 0: return 0.0 return len(a1 & a2) / num_union
def pw_score_jaccard(self, s1 : ClassId, s2 : ClassId) -> SimScore
Calculate jaccard index of inferred associations of two subjects |ancs(s1) /\ ancs(s2)| --- |ancs(s1) \/ ancs(s2)|
3.456918
3.294554
1.049282
df = self.assoc_df slice1 = df.loc[s1].values slice2 = df.loc[s2].values return 1 - cosine(slice1, slice2)
def pw_score_cosine(self, s1 : ClassId, s2 : ClassId) -> SimScore
Cosine similarity of two subjects Arguments --------- s1 : str class id Return ------ number A number between 0 and 1
3.970795
4.50141
0.882123
logging.info("Calculating all class ICs") df = self.assoc_df freqs = df.sum(axis=0) n_subjects, _ = df.shape ics = freqs.apply(lambda x: -math.log(x / n_subjects)/math.log(2)) self.ics = ics logging.info("DONE calculating all class ICs") return ics
def calculate_all_information_content(self) -> pd.Series
Calculate the Information Content (IC) value of every class Sets the internal icmap cache and returns an array Return ------ Series a pandas Series indexed by class id and with IC as value
4.680089
4.041819
1.157917
G = self.G # reflexive ancestors ancs1 = self._ancestors(c1) | {c1} ancs2 = self._ancestors(c2) | {c2} common_ancestors = ancs1 & ancs2 redundant = set() for a in common_ancestors: redundant = redundant | nx.ancestors(G, a) return common_ancestors - redundant
def calculate_mrcas(self, c1 : ClassId, c2 : ClassId) -> Set[ClassId]
Calculate the MRCA for a class pair
3.383085
3.253169
1.039935
G = self.G ics = self._information_content_frame() classes = list(dfs.dfs_preorder_nodes(G)) #mica_df = pd.DataFrame(index=classes, columns=classes) #mica_ic_df = pd.DataFrame(index=classes, columns=classes) ncs = len(classes) ic_grid = np.empty([ncs,ncs]) mica_arrs = [] logging.info('Calculating ICs for {} x {} classes'.format(ncs, ncs)) for c1i in range(0,ncs): c1 = classes[c1i] logging.debug('Calculating ICs for {}'.format(c1)) ancs1r = self._ancestors(c1) | {c1} c2i = 0 mica_arr = [] for c2i in range(0,ncs): c2 = classes[c2i] # TODO: optimize; matrix is symmetrical #if c1i > c2i: # continue ancs2r = self._ancestors(c2) | {c2} common_ancs = ancs1r & ancs2r if len(common_ancs) > 0: ic_cas = ics.loc[common_ancs] max_ic = float(ic_cas.max()) ic_micas = ic_cas[ic_cas >= max_ic] micas = set(ic_micas.index) mica_arr.append(micas) #mica_grid[c1i, c2i] = micas #mica_grid[c2i, c1i] = micas ic_grid[c1i, c2i] = max_ic #ic_grid[c2i, c1i] = max_ic else: ic_grid[c1i, c2i] = 0 mica_arr.append(set()) #ic_grid[c2i, c1i] = 0 # TODO: consider optimization step; blank out all anc pairs mica_arrs.append(mica_arr) logging.info('DONE Calculating ICs for {} x {} classes'.format(ncs, ncs)) #self.mica_df = pd.DataFrame(mica_grid, index=classes, columns=classes) self.mica_df = pd.DataFrame(mica_arrs, index=classes, columns=classes) self.mica_ic_df = pd.DataFrame(ic_grid, index=classes, columns=classes)
def calculate_all_micas(self)
Calculate the MICA (Most Informative Common Ancestor) of every class-pair
2.537143
2.454915
1.033496
pairs = self.mica_ic_df.loc[cset1, cset2] max0 = pairs.max(axis=0) max1 = pairs.max(axis=1) idxmax0 = pairs.idxmax(axis=0) idxmax1 = pairs.idxmax(axis=1) mean0 = max0.mean() mean1 = max1.mean() return (mean0+mean1)/2, mean0, mean1
def pw_compare_class_sets(self, cset1: Set[ClassId], cset2: Set[ClassId]) -> Tuple[ICValue, ICValue, ICValue]
Compare two class profiles
3.152204
3.027482
1.041197
raise NotImplementedError
def search(self, id_list: Set, negated_classes: Set, method: Optional) -> List[SimResult]
def search(self, cset: Set[ClassId]): slice = self.mica_ic_df.loc[cset] am = self.assocmodel for i in am.subjects: pass # TODO
790.639771
521.812866
1.515179
raise NotImplementedError
def compare(self, query_classes: Set, reference_classes: Set, method: Optional) -> SimResult
Given two lists of entites (classes, individual) return their similarity
2,542.900391
458.191376
5.549865
rdfgraph = rdflib.Graph() if format is None: if filename.endswith(".ttl"): format='turtle' elif filename.endswith(".rdf"): format='xml' rdfgraph.parse(filename, format=format) return self.process_rdfgraph(rdfgraph)
def process_file(self,filename=None, format=None)
Parse a file into an ontology object, using rdflib
2.792871
2.475906
1.12802
# TODO: ontology metadata if ont is None: ont = Ontology() subjs = list(rg.subjects(RDF.type, SKOS.ConceptScheme)) if len(subjs) == 0: logging.warning("No ConceptScheme") else: ont.id = self._uri2id(subjs[0]) subset_map = {} for concept in rg.subjects(RDF.type, SKOS.Concept): for s in self._get_schemes(rg, concept): subset_map[self._uri2id(s)] = s for concept in sorted(list(rg.subjects(RDF.type, SKOS.Concept))): concept_uri = str(concept) id=self._uri2id(concept) logging.info("ADDING: {}".format(id)) ont.add_node(id, self._get_label(rg,concept)) for defn in rg.objects(concept, SKOS.definition): if (defn.language == self.lang): td = TextDefinition(id, escape_value(defn.value)) ont.add_text_definition(td) for s in rg.objects(concept, SKOS.broader): ont.add_parent(id, self._uri2id(s)) for s in rg.objects(concept, SKOS.related): ont.add_parent(id, self._uri2id(s), self._uri2id(SKOS.related)) for m in rg.objects(concept, SKOS.exactMatch): ont.add_xref(id, self._uri2id(m)) for m in rg.objects(concept, SKOS.altLabel): syn = Synonym(id, val=self._uri2id(m)) ont.add_synonym(syn) for s in self._get_schemes(rg,concept): ont.add_to_subset(id, self._uri2id(s)) return ont
def process_rdfgraph(self, rg, ont=None)
Transform a skos terminology expressed in an rdf graph into an Ontology object Arguments --------- rg: rdflib.Graph graph object Returns ------- Ontology
2.662982
2.690495
0.989774
owlsim_url = url + 'searchByAttributeSet' params = { 'a': profile, 'limit': limit, 'target': namespace_filter } return requests.get(owlsim_url, params=params, timeout=TIMEOUT).json()
def search_by_attribute_set( url: str, profile: Tuple[str], limit: Optional[int] = 100, namespace_filter: Optional[str]=None) -> Dict
Given a list of phenotypes, returns a ranked list of individuals individuals can be filtered by namespace, eg MONDO, MGI, HGNC :returns Dict with the structure: { 'unresolved' : [...] 'query_IRIs' : [...] 'results': {...} } :raises JSONDecodeError: If the response body does not contain valid json.
5.16679
4.960226
1.041644
owlsim_url = url + 'compareAttributeSets' params = { 'a': profile_a, 'b': profile_b, } return requests.get(owlsim_url, params=params, timeout=TIMEOUT).json()
def compare_attribute_sets( url: str, profile_a: Tuple[str], profile_b: Tuple[str]) -> Dict
Given two phenotype profiles, returns their similarity :returns Dict with the structure: { 'unresolved' : [...] 'query_IRIs' : [...] 'target_IRIs': [...] 'results': {...} }
4.01807
3.489137
1.151594
owlsim_url = url + 'getAttributeInformationProfile' params = { 'a': profile, 'r': categories } return requests.get(owlsim_url, params=params, timeout=TIMEOUT).json()
def get_attribute_information_profile( url: str, profile: Optional[Tuple[str]]=None, categories: Optional[Tuple[str]]=None) -> Dict
Get the information content for a list of phenotypes and the annotation sufficiency simple and and categorical scores if categories are provied Ref: https://zenodo.org/record/834091#.W8ZnCxhlCV4 Note that the simple score varies slightly from the pub in that it uses max_max_ic instead of mean_max_ic If no arguments are passed this function returns the system (loaded cohort) stats :raises JSONDecodeError: If the response body does not contain valid json.
6.449217
7.075823
0.911444
scigraph = OntologyFactory().create('scigraph:ontology') category_stats = {} categories = [enum.value for enum in HpoUpperLevel] sim_response = get_attribute_information_profile(url, categories=tuple(categories)) try: global_stats = IcStatistic( mean_mean_ic=float(sim_response['system_stats']['meanMeanIC']), mean_sum_ic=float(sim_response['system_stats']['meanSumIC']), mean_cls=float(sim_response['system_stats']['meanN']), max_max_ic=float(sim_response['system_stats']['maxMaxIC']), max_sum_ic=float(sim_response['system_stats']['maxSumIC']), individual_count=int(sim_response['system_stats']['individuals']), mean_max_ic=float(sim_response['system_stats']['meanMaxIC']) ) for cat_stat in sim_response['categorical_scores']: category_stats[cat_stat['id']] = IcStatistic( mean_mean_ic=float(cat_stat['system_stats']['meanMeanIC']), mean_sum_ic=float(cat_stat['system_stats']['meanSumIC']), mean_cls=float(cat_stat['system_stats']['meanN']), max_max_ic=float(cat_stat['system_stats']['maxMaxIC']), max_sum_ic=float(cat_stat['system_stats']['maxSumIC']), individual_count=int(cat_stat['system_stats']['individuals']), mean_max_ic=float(cat_stat['system_stats']['meanMaxIC']), descendants=scigraph.descendants(cat_stat['id'], relations=["subClassOf"]) ) except JSONDecodeError as json_exc: raise JSONDecodeError( "Cannot parse owlsim2 response: {}".format(json_exc.msg), json_exc.doc, json_exc.pos ) return global_stats, category_stats
def get_owlsim_stats(url) -> Tuple[IcStatistic, Dict[str, IcStatistic]]
:return Tuple[IcStatistic, Dict[str, IcStatistic]] :raises JSONDecodeError: If the response body does not contain valid json
2.578211
2.574678
1.001372
return self.filtered_search( id_list=id_list, negated_classes=negated_classes, limit=limit, taxon_filter=None, category_filter=None, method=method )
def search( self, id_list: List, negated_classes: List, limit: Optional[int] = 100, method: Optional[SimAlgorithm] = SimAlgorithm.PHENODIGM) -> SimResult
Owlsim2 search, calls search_by_attribute_set, and converts to SimResult object :raises JSONDecodeError: If the owlsim response is not valid json.
3.415732
3.390711
1.007379
if len(negated_classes) > 0: logging.warning("Owlsim2 does not support negation, ignoring neg classes") namespace_filter = self._get_namespace_filter(taxon_filter, category_filter) owlsim_results = search_by_attribute_set(self.url, tuple(id_list), limit, namespace_filter) return self._simsearch_to_simresult(owlsim_results, method)
def filtered_search( self, id_list: List, negated_classes: List, limit: Optional[int] = 100, taxon_filter: Optional[int] = None, category_filter: Optional[str] = None, method: Optional[SimAlgorithm] = SimAlgorithm.PHENODIGM) -> SimResult
Owlsim2 filtered search, resolves taxon and category to a namespace, calls search_by_attribute_set, and converts to SimResult object
6.134144
3.735488
1.642126
owlsim_results = compare_attribute_sets(self.url, tuple(reference_classes), tuple(query_classes)) return self._simcompare_to_simresult(owlsim_results, method)
def compare(self, reference_classes: List, query_classes: List, method: Optional[SimAlgorithm] = SimAlgorithm.PHENODIGM) -> SimResult
Owlsim2 compare, calls compare_attribute_sets, and converts to SimResult object :return: SimResult object
9.186742
5.448285
1.686171
return [ SimAlgorithm.PHENODIGM, SimAlgorithm.JACCARD, SimAlgorithm.SIM_GIC, SimAlgorithm.RESNIK, SimAlgorithm.SYMMETRIC_RESNIK ]
def matchers() -> List[SimAlgorithm]
Matchers in owlsim2
8.416718
8.545638
0.984914
sim_response = get_attribute_information_profile(self.url, tuple(profile)) profile_ic = {} try: for cls in sim_response['input']: profile_ic[cls['id']] = cls['IC'] except JSONDecodeError as json_exc: raise JSONDecodeError( "Cannot parse owlsim2 response: {}".format(json_exc.msg), json_exc.doc, json_exc.pos ) return profile_ic
def get_profile_ic(self, profile: List) -> Dict
Given a list of individuals, return their information content
5.587141
5.313993
1.051402
sim_ids = get_nodes_from_ids(sim_resp['query_IRIs']) sim_resp['results'] = OwlSim2Api._rank_results(sim_resp['results'], method) # get id type map: ids = [result['j']['id'] for result in sim_resp['results']] id_type_map = get_id_type_map(ids) matches = [] for result in sim_resp['results']: matches.append( SimMatch( id=result['j']['id'], label=result['j']['label'], rank=result['rank'], score=result[OwlSim2Api.method2key[method]], type=id_type_map[result['j']['id']][0], taxon=get_taxon(result['j']['id']), significance="NaN", pairwise_match=OwlSim2Api._make_pairwise_matches(result) ) ) return SimResult( query=SimQuery( ids=sim_ids, unresolved_ids=sim_resp['unresolved'], target_ids=[[]] ), matches=matches, metadata=SimMetadata( max_max_ic=self.statistics.max_max_ic ) )
def _simsearch_to_simresult(self, sim_resp: Dict, method: SimAlgorithm) -> SimResult
Convert owlsim json to SimResult object :param sim_resp: owlsim response from search_by_attribute_set() :param method: SimAlgorithm :return: SimResult object
4.479536
4.392605
1.01979
pairwise_matches = [] for pairwise_match in result['matches']: pairwise_matches.append( PairwiseMatch( reference=ICNode(**pairwise_match['a']), match=ICNode(**pairwise_match['b']), lcs=ICNode(**pairwise_match['lcs']) ) ) return pairwise_matches
def _make_pairwise_matches(result: Dict) -> List[PairwiseMatch]
Make a list of match object from owlsim results :param result: Single owlsim result :return: List of SimMatch objects
3.288114
3.565718
0.922146
# https://stackoverflow.com/a/73050 sorted_results = sorted( results, reverse=True, key=lambda k: k[OwlSim2Api.method2key[method]] ) if len(sorted_results) > 0: rank = 1 previous_score = sorted_results[0][OwlSim2Api.method2key[method]] for result in sorted_results: if previous_score > result[OwlSim2Api.method2key[method]]: rank += 1 result['rank'] = rank previous_score = result[OwlSim2Api.method2key[method]] return sorted_results
def _rank_results(results: List[Dict], method: SimAlgorithm) -> List[Dict]
Ranks results - for phenodigm results are ranks but ties need to accounted for for other methods, results need to be reranked :param results: Results from search_by_attribute_set()['results'] or compare_attribute_sets()['results'] :param method: sim method used to rank results :return: Sorted results list
2.800009
2.835686
0.987419
namespace_filter = None taxon_category_default = { 10090: 'gene', 9606: 'disease', 7227: 'gene', 6239: 'gene', 7955: 'gene' } if category_filter is not None and taxon_filter is None: raise ValueError("Must provide taxon filter along with category") elif category_filter is None and taxon_filter is not None: category_filter = taxon_category_default[taxon_filter] else: return namespace_filter return OwlSim2Api.TAX_TO_NS[taxon_filter][category_filter.lower()]
def _get_namespace_filter( taxon_filter: Optional[int]=None, category_filter: Optional[str]=None) -> Union[None, str]
Given either a taxon and/or category, return the correct namespace :raises ValueError: If category is provided without a taxon
3.537073
3.223225
1.097371
if 'facet_fields' not in fcs: return {} ffs = fcs['facet_fields'] rs={} for (facet, facetresults) in ffs.items(): if invert_subject_object: for (k,v) in INVERT_FIELDS_MAP.items(): if facet == k: facet = v break elif facet == v: facet = k break pairs = {} rs[facet] = pairs for i in range(int(len(facetresults)/2)): (fv,fc) = (facetresults[i*2],facetresults[i*2+1]) pairs[fv] = fc return rs
def translate_facet_field(fcs, invert_subject_object = False)
Translates solr facet_fields results into something easier to manipulate A solr facet field looks like this: [field1, count1, field2, count2, ..., fieldN, countN] We translate this to a dict {f1: c1, ..., fn: cn} This has slightly higher overhead for sending over the wire, but is easier to use
3.322618
3.329014
0.998079
return { M.SUBJECT: 'bioentity', M.SUBJECT_CLOSURE: 'bioentity', ## In the GO AmiGO instance, the type field is not correctly populated ## See above in the code for hack that restores this for planteome instance ## M.SUBJECT_CATEGORY: 'type', M.SUBJECT_CATEGORY: None, M.SUBJECT_LABEL: 'bioentity_label', M.SUBJECT_TAXON: 'taxon', M.SUBJECT_TAXON_LABEL: 'taxon_label', M.SUBJECT_TAXON_CLOSURE: 'taxon_closure', M.RELATION: 'qualifier', M.OBJECT: 'annotation_class', M.OBJECT_CLOSURE: REGULATES_CLOSURE if relationship_type == ACTS_UPSTREAM_OF_OR_WITHIN else ISA_PARTOF_CLOSURE, M.OBJECT_LABEL: 'annotation_class_label', M.OBJECT_TAXON: 'object_taxon', M.OBJECT_TAXON_LABEL: 'object_taxon_label', M.OBJECT_TAXON_CLOSURE: 'object_taxon_closure', M.OBJECT_CATEGORY: None, M.EVIDENCE_OBJECT_CLOSURE: 'evidence_subset_closure', M.IS_DEFINED_BY: 'assigned_by' }
def goassoc_fieldmap(relationship_type=ACTS_UPSTREAM_OF_OR_WITHIN)
Returns a mapping of canonical monarch fields to amigo-golr. See: https://github.com/geneontology/amigo/blob/master/metadata/ann-config.yaml
3.736805
3.594516
1.039585
if m is None: return fn if fn in m: return m[fn] else: return fn
def map_field(fn, m)
Maps a field name, given a mapping file. Returns input if fieldname is unmapped.
4.22427
3.105083
1.360437
query = solrInstance.value + "select?q=*:*&fq=document_category:\"" + category.value + "\"&fq=id:\"" + id + "\"&fl=" + fields + "&wt=json&indent=on" response = requests.get(query) return response.json()['response']['docs'][0]
def run_solr_on(solrInstance, category, id, fields)
Return the result of a solr query on the given solrInstance (Enum ESOLR), for a certain document_category (ESOLRDoc) and id
3.142931
2.748322
1.143582
if optionals == None: optionals = "" query = solrInstance.value + "select?q=" + q + "&qf=" + qf + "&fq=document_category:\"" + category.value + "\"&fl=" + fields + "&wt=json&indent=on" + optionals # print("QUERY: ", query) response = requests.get(query) return response.json()['response']['docs']
def run_solr_text_on(solrInstance, category, q, qf, fields, optionals)
Return the result of a solr query on the given solrInstance (Enum ESOLR), for a certain document_category (ESOLRDoc) and id
3.259766
2.985462
1.09188
merged = [] for i in range(0, len(json[firstField])): merged.append({ json[firstField][i] : json[secondField][i] }) return merged
def merge(json, firstField, secondField)
merge two fields of a json into an array of { firstField : secondField }
2.776627
2.460368
1.128541
merged = [] for i in range(0, len(json[firstField])): merged.append({ firstFieldLabel : json[firstField][i], secondFieldLabel : json[secondField][i] }) return merged
def mergeWithLabels(json, firstField, firstFieldLabel, secondField, secondFieldLabel)
merge two fields of a json into an array of { firstFieldLabel : firstFieldLabel, secondFieldLabel : secondField }
2.426786
2.163764
1.121558
params = self.solr_params() logging.info("PARAMS=" + str(params)) results = self.solr.search(**params) logging.info("Docs found: {}".format(results.hits)) return self._process_search_results(results)
def search(self)
Execute solr search query
5.108134
4.378016
1.166769
self.facet = False params = self.solr_params() logging.info("PARAMS=" + str(params)) results = self.solr.search(**params) logging.info("Docs found: {}".format(results.hits)) return self._process_autocomplete_results(results)
def autocomplete(self)
Execute solr autocomplete
6.468285
5.626682
1.149573
# map go-golr fields to standard for doc in results.docs: if 'entity' in doc: doc['id'] = doc['entity'] doc['label'] = doc['entity_label'] highlighting = { doc['id']: self._process_highlight(results, doc)._asdict() for doc in results.docs if results.highlighting } payload = SearchResults( facet_counts=translate_facet_field(results.facets), highlighting=highlighting, docs=results.docs, numFound=results.hits ) logging.debug('Docs: {}'.format(len(results.docs))) return payload
def _process_search_results(self, results: pysolr.Results) -> SearchResults
Convert solr docs to biolink object :param results: pysolr.Results :return: model.GolrResults.SearchResults
5.13575
5.163779
0.994572
# map go-golr fields to standard for doc in results.docs: if 'entity' in doc: doc['id'] = doc['entity'] doc['label'] = doc['entity_label'] docs = [] for doc in results.docs: if results.highlighting: hl = self._process_highlight(results, doc) else: hl = Highlight(None, None, None) # In some cases a node does not have a category category = doc['category'] if 'category' in doc else [] doc['taxon'] = doc['taxon'] if 'taxon' in doc else "" doc['taxon_label'] = doc['taxon_label'] if 'taxon_label' in doc else "" doc = AutocompleteResult( id=doc['id'], label=doc['label'], match=hl.match, category=category, taxon=doc['taxon'], taxon_label=doc['taxon_label'], highlight=hl.highlight, has_highlight=hl.has_highlight ) docs.append(doc) payload = { 'docs': docs } logging.debug('Docs: {}'.format(len(results.docs))) return payload
def _process_autocomplete_results( self, results: pysolr.Results) -> Dict[str, List[AutocompleteResult]]
Convert results to biolink autocomplete object :param results: pysolr.Results :return: {'docs': List[AutocompleteResult]}
3.351672
3.230224
1.037598
len_dict = OrderedDict() for hl in highlights: # dummy tags to make it valid xml dummy_xml = "<p>" + hl + "</p>" try: element_tree = ET.fromstring(dummy_xml) hl_length = 0 for emph in element_tree.findall('em'): hl_length += len(emph.text) len_dict[hl] = hl_length except ET.ParseError: raise ET.ParseError return max(len_dict, key=len_dict.get)
def _get_longest_hl(self, highlights)
Given a list of highlighted text, returns the longest highlight For example: [ "<em>Muscle</em> <em>atrophy</em>, generalized", "Generalized <em>muscle</em> degeneration", "Diffuse skeletal <em>">muscle</em> wasting" ] and returns: <em>Muscle</em> <em>atrophy</em>, generalized If there are mutliple matches of the same length, returns the top (arbitrary) highlight :return:
3.949328
3.99338
0.988969
# dummy tags to make it valid xml dummy_xml = "<p>" + highlight + "</p>" try: element_tree = ET.fromstring(dummy_xml) except ET.ParseError: raise ET.ParseError return "".join(list(element_tree.itertext()))
def _hl_as_string(self, highlight)
Given a solr string of highlighted text, returns the str representations For example: "Foo <em>Muscle</em> bar <em>atrophy</em>, generalized" Returns: "Foo Muscle bar atrophy, generalized" :return: str
6.252608
6.339857
0.986238
params = self.set_lay_params() logging.info("PARAMS="+str(params)) results = self.solr.search(**params) logging.info("Docs found: {}".format(results.hits)) return self._process_layperson_results(results)
def autocomplete(self)
Execute solr query for autocomplete
9.764201
8.045691
1.213594
payload = { 'results': [] } for doc in results.docs: hl = self._process_highlight(results, doc) highlight = { 'id': doc['id'], 'highlight': hl.highlight, 'label': doc['label'], 'matched_synonym': hl.match } payload['results'].append(highlight) logging.debug('Docs: {}'.format(len(results.docs))) return payload
def _process_layperson_results(self, results)
Convert pysolr.Results to biolink object :param results: :return:
4.940706
4.878573
1.012736
logging.info("Attempting category inference on id={}".format(id)) toks = id.split(":") idspace = toks[0] c = None if idspace == 'DOID': c='disease' if c is not None: logging.info("Inferred category: {} based on id={}".format(c, id)) return c
def infer_category(self, id)
heuristic to infer a category from an id, e.g. DOID:nnn --> disease
5.071438
3.967789
1.278152
if id is not None: for (k,v) in PREFIX_NORMALIZATION_MAP.items(): s = k+':' if id.startswith(s): return id.replace(s,v+':') return id
def make_canonical_identifier(self,id)
E.g. MGI:MGI:nnnn --> MGI:nnnn
4.291788
4.166883
1.029975
if fname not in d: # TODO: consider adding arg for failure on null return None #lf = M.label_field(fname) v = d[fname] if not isinstance(v,list): v = [v] objs = [{'id': idval} for idval in v] # todo - labels return objs
def translate_objs(self,d,fname)
Translate a field whose value is expected to be a list
10.788476
9.987783
1.080167
if fname not in d: # TODO: consider adding arg for failure on null return None lf = M.label_field(fname) id = d[fname] id = self.make_canonical_identifier(id) #if id.startswith('MGI:MGI:'): # id = id.replace('MGI:MGI:','MGI:') obj = {'id': id} if id: if self._use_amigo_schema(self.object_category): iri = expand_uri(id) else: iri = expand_uri(id, [get_curie_map('{}/cypher/curies'.format(self.config.scigraph_data.url))]) obj['iri'] = iri if lf in d: obj['label'] = d[lf] cf = fname + "_category" if cf in d: obj['category'] = [d[cf]] if 'aspect' in d and id.startswith('GO:'): obj['category'] = [ASPECT_MAP[d['aspect']]] del d['aspect'] return obj
def translate_obj(self,d,fname)
Translate a field value from a solr document. This includes special logic for when the field value denotes an object, here we nest it
6.100399
6.26014
0.974483
if field_mapping is not None: self.map_doc(d, field_mapping) subject = self.translate_obj(d, M.SUBJECT) obj = self.translate_obj(d, M.OBJECT) # TODO: use a more robust method; we need equivalence as separate field in solr if map_identifiers is not None: if M.SUBJECT_CLOSURE in d: subject['id'] = self.map_id(subject, map_identifiers, d[M.SUBJECT_CLOSURE]) else: logging.info("NO SUBJECT CLOSURE IN: "+str(d)) if M.SUBJECT_TAXON in d: subject['taxon'] = self.translate_obj(d,M.SUBJECT_TAXON) if M.OBJECT_TAXON in d: obj['taxon'] = self.translate_obj(d, M.OBJECT_TAXON) qualifiers = [] if M.RELATION in d and isinstance(d[M.RELATION],list): # GO overloads qualifiers and relation relation = None for rel in d[M.RELATION]: if rel.lower() == 'not': qualifiers.append(rel) else: relation = rel if relation is not None: d[M.RELATION] = relation else: d[M.RELATION] = None negated = 'not' in qualifiers assoc = {'id':d.get(M.ID), 'subject': subject, 'object': obj, 'negated': negated, 'relation': self.translate_obj(d,M.RELATION), 'publications': self.translate_objs(d,M.SOURCE), # note 'source' is used in the golr schema } if self.invert_subject_object and assoc['relation'] is not None: assoc['relation']['inverse'] = True if len(qualifiers) > 0: assoc['qualifiers'] = qualifiers if M.OBJECT_CLOSURE in d: assoc['object_closure'] = d.get(M.OBJECT_CLOSURE) if M.IS_DEFINED_BY in d: if isinstance(d[M.IS_DEFINED_BY],list): assoc['provided_by'] = d[M.IS_DEFINED_BY] else: # hack for GO Golr instance assoc['provided_by'] = [d[M.IS_DEFINED_BY]] if M.EVIDENCE_OBJECT in d: assoc['evidence'] = d[M.EVIDENCE_OBJECT] assoc['types'] = [t for t in d[M.EVIDENCE_OBJECT] if t.startswith('ECO:')] if self._use_amigo_schema(self.object_category): for f in M.AMIGO_SPECIFIC_FIELDS: if f in d: assoc[f] = d[f] # solr does not allow nested objects, so evidence graph is json-encoded if M.EVIDENCE_GRAPH in d: assoc[M.EVIDENCE_GRAPH] = json.loads(d[M.EVIDENCE_GRAPH]) return assoc
def translate_doc(self, d, field_mapping=None, map_identifiers=None, **kwargs)
Translate a solr document (i.e. a single result row)
3.126755
3.080554
1.014998
for d in ds: self.map_doc(d, {}, self.invert_subject_object) return [self.translate_doc(d, **kwargs) for d in ds]
def translate_docs(self, ds, **kwargs)
Translate a set of solr results
7.9879
8.002921
0.998123
amap = {} logging.info("Translating docs to compact form. Slim={}".format(slim)) for d in ds: self.map_doc(d, field_mapping, invert_subject_object=invert_subject_object) subject = d[M.SUBJECT] subject_label = d[M.SUBJECT_LABEL] # TODO: use a more robust method; we need equivalence as separate field in solr if map_identifiers is not None: if M.SUBJECT_CLOSURE in d: subject = self.map_id(subject, map_identifiers, d[M.SUBJECT_CLOSURE]) else: logging.debug("NO SUBJECT CLOSURE IN: "+str(d)) rel = d.get(M.RELATION) skip = False # TODO if rel == 'not' or rel == 'NOT': skip = True # this is a list in GO if isinstance(rel,list): if 'not' in rel or 'NOT' in rel: skip = True if len(rel) > 1: logging.warn(">1 relation: {}".format(rel)) rel = ";".join(rel) if skip: logging.debug("Skipping: {}".format(d)) continue subject = self.make_canonical_identifier(subject) #if subject.startswith('MGI:MGI:'): # subject = subject.replace('MGI:MGI:','MGI:') k = (subject,rel) if k not in amap: amap[k] = {'subject':subject, 'subject_label':subject_label, 'relation':rel, 'objects': []} if slim is not None and len(slim)>0: mapped_objects = [x for x in d[M.OBJECT_CLOSURE] if x in slim] logging.debug("Mapped objects: {}".format(mapped_objects)) amap[k]['objects'] += mapped_objects else: amap[k]['objects'].append(d[M.OBJECT]) for k in amap.keys(): amap[k]['objects'] = list(set(amap[k]['objects'])) return list(amap.values())
def translate_docs_compact(self, ds, field_mapping=None, slim=None, map_identifiers=None, invert_subject_object=False, **kwargs)
Translate golr association documents to a compact representation
3.09137
3.081394
1.003238
prefixc = prefix + ':' ids = [eid for eid in closure_list if eid.startswith(prefixc)] # TODO: add option to fail if no mapping, or if >1 mapping if len(ids) == 0: # default to input return id return ids[0]
def map_id(self,id, prefix, closure_list)
Map identifiers based on an equivalence closure list.
6.744778
6.531178
1.032705
meta = AssociationSetMetadata(subject_category=subject_category, object_category=object_category, taxon=taxon) if file is not None: return self.create_from_file(file=file, fmt=fmt, ontology=ontology, meta=meta, skim=skim) logging.info("Fetching assocs from store") assocs = bulk_fetch_cached(subject_category=subject_category, object_category=object_category, evidence=evidence, taxon=taxon) logging.info("Creating map for {} subjects".format(len(assocs))) amap = {} subject_label_map = {} for a in assocs: rel = a['relation'] subj = a['subject'] subject_label_map[subj] = a['subject_label'] amap[subj] = a['objects'] aset = AssociationSet(ontology=ontology, meta=meta, subject_label_map=subject_label_map, association_map=amap) return aset
def create(self, ontology=None,subject_category=None,object_category=None,evidence=None,taxon=None,relation=None, file=None, fmt=None, skim=True)
creates an AssociationSet Currently, this uses an eager binding to a `ontobio.golr` instance. All compact associations for the particular combination of parameters are fetched. Arguments --------- ontology: an `Ontology` object subject_category: string representing category of subjects (e.g. gene, disease, variant) object_category: string representing category of objects (e.g. function, phenotype, disease) taxon: string holding NCBITaxon:nnnn ID
3.044979
3.134846
0.971333
amap = {} subject_label_map = {} for a in tuples: subj = a[0] subject_label_map[subj] = a[1] if subj not in amap: amap[subj] = [] amap[subj].append(a[2]) aset = AssociationSet(subject_label_map=subject_label_map, association_map=amap, **args) return aset
def create_from_tuples(self, tuples, **args)
Creates from a list of (subj,subj_name,obj) tuples
2.863269
2.619595
1.09302
amap = defaultdict(list) subject_label_map = {} for a in assocs: subj = a['subject'] subj_id = subj['id'] subj_label = subj['label'] subject_label_map[subj_id] = subj_label if not a['negated']: amap[subj_id].append(a['object']['id']) aset = AssociationSet(subject_label_map=subject_label_map, association_map=amap, **args) aset.associations_by_subj = defaultdict(list) aset.associations_by_subj_obj = defaultdict(list) for a in assocs: sub_id = a['subject']['id'] obj_id = a['object']['id'] aset.associations_by_subj[sub_id].append(a) aset.associations_by_subj_obj[(sub_id,obj_id)].append(a) return aset
def create_from_assocs(self, assocs, **args)
Creates from a list of association objects
2.183576
2.198201
0.993347
if fmt is not None and not fmt.startswith('.'): fmt = '.{}'.format(fmt) d = { '.gaf' : GafParser, '.gpad' : GpadParser, '.hpoa' : HpoaParser, } if fmt is None: filename = file if isinstance(file, str) else file.name suffixes = pathlib.Path(filename).suffixes iterator = (fn() for ext, fn in d.items() if ext in suffixes) else: iterator = (fn() for ext, fn in d.items() if ext == fmt) try: parser = next(iterator) except StopIteration: logging.error("Format not recognized: {}".format(fmt)) logging.info("Parsing {} with {}/{}".format(file, fmt, parser)) if skim: results = parser.skim(file) return self.create_from_tuples(results, **args) else: assocs = parser.parse(file, skipheader=True) return self.create_from_assocs(assocs, **args)
def create_from_file(self, file=None, fmt='gaf', skim=True, **args)
Creates from a file. If fmt is set to None then the file suffixes will be used to choose a parser. Arguments --------- file : str or file input file or filename fmt : str name of format e.g. gaf
2.936506
2.878464
1.020164
import requests url = "http://snapshot.geneontology.org/annotations/{}.gaf.gz".format(group) r = requests.get(url, stream=True, headers={'User-Agent': get_user_agent(modules=[requests], caller_name=__name__)}) p = GafParser() results = p.skim(r.raw) return self.create_from_tuples(results, **args)
def create_from_remote_file(self, group, snapshot=True, **args)
Creates from remote GAF
5.28143
4.871509
1.084147
if args.slim.find('m') > -1: logging.info("SLIMMING") g = get_minimal_subgraph(g, query_ids) w = GraphRenderer.create(args.to) if args.showdefs: w.config.show_text_definition = True if args.render: if 'd' in args.render: logging.info("Showing text defs") w.config.show_text_definition = True if args.outfile is not None: w.outfile = args.outfile w.write(ont, query_ids=query_ids, container_predicates=args.container_properties)
def render(ont, query_ids, args)
Writes or displays graph
6.184359
5.997313
1.031188
parser = argparse.ArgumentParser( description='Command line interface to python-ontobio.golr library' , formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-A', '--associations', dest='associations', action='store_true', default=False, help='Path to output file') parser.add_argument('-s', '--settings', type=str, help='Path to config file') parser.add_argument('-o', '--outfile', type=str, required=False, help='Path to output file') parser.add_argument('-f', '--facets', type=str, required=False, help='Facet fields: comma-delimited') parser.add_argument('-q', '--fq', type=json.loads, default={}, required=False, help='Facet query (solr fq) - should be json') parser.add_argument('-Q', '--qargs', type=json.loads, default={}, required=False, help='Query to be passed directly to python golr_associations query') parser.add_argument('-l', '--legacy_solr', dest='legacy_solr', action='store_true', default=False, help='Set for legacy solr schema (solr3 golr)') parser.add_argument('-u', '--url', type=str, required=False, help='Solr URL. E.g. http://localhost:8983/solr/golr') parser.add_argument('-v', '--verbosity', default=0, action='count', help='Increase output verbosity') parser.add_argument('search', type=str, help='Search terms') args = parser.parse_args() if args.verbosity >= 2: logging.basicConfig(level=logging.DEBUG) elif args.verbosity == 1: logging.basicConfig(level=logging.INFO) else: logging.basicConfig(level=logging.WARNING) logging.info("Welcome!") facets = [] if args.facets is not None: facets = args.facets.split(",") config = None if args.settings is not None: from ontobio.config import load_config config = load_config(args.settings) results = None if args.associations: q = None if args.search != '%': q = args.search q = GolrAssociationQuery(q=q, is_go=args.legacy_solr, fq=args.fq, facet_fields=facets, url=args.url) results = q.exec() #print("RESULTS={}".format(results)) docs = results['associations'] print("RESULTS: {}".format(len(docs))) for r in docs: print(str(r)) else: logging.info("FQ={}".format(args.fq)) q = GolrSearchQuery(args.search, is_go=args.legacy_solr, fq=args.fq, facet_fields=facets, url=args.url) results = q.exec() #print("RESULTS={}".format(results)) docs = results['docs'] print("RESULTS: {}".format(len(docs))) for r in docs: print(" {} '{}' {} // {}".format(r['id'],r['label'],r['score'], r['category'])) if len(facets) > 0: #from collections import OrderedDict fcs = results['facet_counts'] for f in facets: d = fcs[f] print(str(d)) print("## FACET: {}".format(f)) for k,v in sorted(d.items(), key=lambda t: -t[1]): print(" {:5d}: {}".format(v,k))
def main()
Wrapper for OGR
2.6845
2.705157
0.992364
results = search_associations(subject=subject, object_category=object_category, select_fields=[], facet_fields=[M.OBJECT_CLOSURE], facet_limit=-1, rows=0, **kwargs) return set(results['facet_counts'][M.OBJECT_CLOSURE].keys())
def get_object_closure(subject, object_category=None, **kwargs)
Find all terms used to annotate subject plus ancestors
5.045338
4.726793
1.067391
set1 = get_object_closure(subject1, object_category=object_category, **kwargs) set2 = get_object_closure(subject2, object_category=object_category, **kwargs) return len(set1.intersection(set2)), len(set1.union(set2))
def subject_pair_overlap(subject1, subject2, object_category=None, **kwargs)
Jaccard similarity
2.155009
2.203837
0.977844
i, u = subject_pair_overlap(subject1, subject2, **kwargs) if i==0: return 0.0 return i / u
def subject_pair_simj(subject1, subject2, **kwargs)
Jaccard similarity
4.911732
4.583309
1.071656
if assoc.get("header", False): return subj = assoc['subject'] db, db_object_id = self._split_prefix(subj) rel = assoc['relation'] qualifier = rel['id'] if assoc['negated']: qualifier = 'NOT|' + qualifier goid = assoc['object']['id'] ev = assoc['evidence'] evidence = self.ecomap.coderef_to_ecoclass(ev['type']) withfrom = "|".join(ev['with_support_from']) reference = "|".join(ev['has_supporting_reference']) date = assoc['date'] assigned_by = assoc['provided_by'] annotation_properties = '' # TODO interacting_taxon_id = assoc['interacting_taxon'] vals = [db, db_object_id, qualifier, goid, reference, evidence, withfrom, interacting_taxon_id, # TODO date, assigned_by, self._extension_expression(assoc['object_extensions']), annotation_properties] self._write_row(vals)
def write_assoc(self, assoc)
Write a single association to a line in the output file
5.886081
5.713414
1.030221
# Handle comment 'associations' if assoc.get("header", False): # Skip incoming gaf-version headers, as we created the version above already if re.match("![\s]*gaf.?version", assoc["line"]): return self._write(assoc["line"] + "\n") return subj = assoc['subject'] db, db_object_id = self._split_prefix(subj) qualifier = "|".join(assoc["qualifiers"]) # qualifier is | seperated string, filter on None removes empty strings in case qualifiers is empty if assoc['negated']: qualifier = "|".join(list(filter(None, ["NOT", qualifier]))) goid = assoc['object']['id'] ev = assoc['evidence'] evidence = ev['type'] withfrom = "|".join(ev['with_support_from']) reference = "|".join(ev['has_supporting_reference']) date = assoc['date'] assigned_by = assoc['provided_by'] annotation_properties = '' # TODO # if we have any subject extensions, list each one that has a "property" equal to "isoform", take the first one, and grab the "filler" gene_product_isoform = [e for e in assoc["subject_extensions"] if e["property"] == "isoform"][0]["filler"] if len(assoc["subject_extensions"]) > 0 else "" aspect = assoc['aspect'] interacting_taxon_id = assoc["interacting_taxon"] taxon = self._full_taxon_field(self.normalize_taxon(subj['taxon']['id']), self.normalize_taxon(interacting_taxon_id)) extension_expression = self._extension_expression(assoc['object_extensions']) vals = [db, db_object_id, subj.get('label'), qualifier, goid, reference, evidence, withfrom, aspect, subj["fullname"], "|".join(subj.get('synonyms',[])), subj.get('type'), taxon, date, assigned_by, extension_expression, gene_product_isoform] self._write_row(vals)
def write_assoc(self, assoc)
Write a single association to a line in the output file
5.957502
5.825386
1.022679
human_taxon = Node( id='NCBITaxon:9606', label='Homo sapiens' ) return { 'MGI': Node( id='NCBITaxon:10090', label='Mus musculus' ), 'MONDO': human_taxon, 'OMIM': human_taxon, 'MONARCH': human_taxon, 'HGNC': human_taxon, 'FlyBase': Node( id='NCBITaxon:7227', label='Drosophila melanogaster' ), 'WormBase': Node( id='NCBITaxon:6239', label='Caenorhabditis elegans' ), 'ZFIN': Node( id='NCBITaxon:7955', label='Danio rerio' ) }
def namespace_to_taxon() -> Dict[str, Node]
namespace to taxon mapping
2.023603
2.021732
1.000925
scigraph = OntologyFactory().create('scigraph:data') chunks = [id_list[i:i + 400] for i in range(0, len(list(id_list)), 400)] for chunk in chunks: params = { 'id': chunk, 'depth': 0 } try: result_graph = scigraph._neighbors_graph(**params) for node in result_graph['nodes']: yield node except JSONDecodeError as exception: # Assume json decode is due to an incorrect class ID # Should we handle this? raise ValueError(exception.doc)
def get_scigraph_nodes(id_list)-> Iterator[Dict]
Queries scigraph neighbors to get a list of nodes back We use the scigraph neighbors function because ids can be sent in batch which is faster than iteratively querying solr search or the scigraph graph/id function :return: json decoded result from scigraph_ontology._neighbors_graph :raises ValueError: If id is not in scigraph
5.257563
4.863532
1.081017
type_map = {} filter_out_types = [ 'cliqueLeader', 'Class', 'Node', 'Individual', 'quality', 'sequence feature' ] for node in get_scigraph_nodes(id_list): type_map[node['id']] = [typ.lower() for typ in node['meta']['types'] if typ not in filter_out_types] return type_map
def get_id_type_map(id_list: Iterable[str]) -> Dict[str, List[str]]
Given a list of ids return their types :param id_list: list of ids :return: dictionary where the id is the key and the value is a list of types
6.365052
6.921514
0.919604
node_list = [] for result in get_scigraph_nodes(id_list): if 'lbl' in result: label = result['lbl'] else: label = None # Empty string or None? node_list.append(Node(result['id'], label)) return node_list
def get_nodes_from_ids(id_list: Iterable[str]) -> List[Node]
Given a list of ids return their types :param id_list: list of ids :return: dictionary where the id is the key and the value is a list of types
4.14834
4.843112
0.856544
taxon = None namespace = id.split(":")[0] if namespace in namespace_to_taxon(): taxon = namespace_to_taxon()[namespace] return taxon
def get_taxon(id: str) -> Optional[Node]
get taxon for id Currently via hardcoding, should replace when scigraph when taxa are more universally annotated (having these as node properties would also be more performant) :param id: curie formatted id :return: Node where id is the NCBITaxon curie and label is the scientific name
4.062889
5.00545
0.811693
filter_out_types = [ 'cliqueLeader', 'Class', 'Node', 'Individual', 'quality', 'sequence feature' ] node = next(get_scigraph_nodes([id])) if 'lbl' in node: label = node['lbl'] else: label = None # Empty string or None? types = [typ.lower() for typ in node['meta']['types'] if typ not in filter_out_types] return TypedNode( id=node['id'], label=label, type=types[0], taxon = get_taxon(id) )
def typed_node_from_id(id: str) -> TypedNode
Get typed node from id :param id: id as curie :return: TypedNode object
6.85899
6.572224
1.043633
curie_map = {} response = requests.get(url) if response.status_code == 200: curie_map = response.json() else: curie_map = {} return curie_map
def get_curie_map(url)
Get CURIE prefix map from SciGraph cypher/curies endpoint
1.954912
1.872867
1.043807
return self.reporter.json(self.n_lines, self.n_assocs, self.skipped)
def to_report_json(self)
Generate a summary in json format
23.10018
17.071882
1.353113
json = self.to_report_json() # summary = json['summary'] s = "# Group: {group} - Dataset: {dataset}\n".format(group=json["group"], dataset=json["dataset"]) s += "\n## SUMMARY\n\n" s += "This report generated on {}\n\n".format(datetime.date.today()) s += " * Associations: {}\n" . format(json["associations"]) s += " * Lines in file (incl headers): {}\n" . format(json["lines"]) s += " * Lines skipped: {}\n" . format(json["skipped_lines"]) # Header from GAF s += "## Header From Original Association File\n\n" s += "\n".join(["> {} ".format(head) for head in self.header]) ## Table of Contents s += "\n\n## Contents\n\n" for rule, messages in sorted(json["messages"].items(), key=lambda t: t[0]): any_suppress_tag_in_rule_metadata = any([tag in self.config.rule_metadata.get(rule, {}).get("tags", []) for tag in self.config.suppress_rule_reporting_tags]) # For each tag we say to suppress output for, check if it matches any tag in the rule. If any matches if self.config.rule_metadata and any_suppress_tag_in_rule_metadata: print("Skipping {rule_num} because the tag(s) '{tag}' are suppressed".format(rule_num=rule, tag=", ".join(self.config.suppress_rule_reporting_tags))) continue s += "[{rule}](#{rule})\n\n".format(rule=rule) s += "\n## MESSAGES\n\n" for (rule, messages) in sorted(json["messages"].items(), key=lambda t: t[0]): any_suppress_tag_in_rule_metadata = any([tag in self.config.rule_metadata.get(rule, {}).get("tags", []) for tag in self.config.suppress_rule_reporting_tags]) # Skip if the rule metadata has "silent" as a tag if self.config.rule_metadata and any_suppress_tag_in_rule_metadata: # If there is a rule metadata, and the rule ID is in the config, # get the list of tags if present and check for existence of "silent". # If contained, continue to the next rule. continue s += "### {rule}\n\n".format(rule=rule) if rule != "other" and self.config.rule_metadata: s += "{title}\n\n".format(title=self.config.rule_metadata.get(rule, {}).get("title", "")) s += "* total: {amount}\n".format(amount=len(messages)) if len(messages) > 0: s += "#### Messages\n" for message in messages: obj = " ({})".format(message["obj"]) if message["obj"] else "" s += "* {level} - {type}: {message}{obj} -- `{line}`\n".format(level=message["level"], type=message["type"], message=message["message"], line=message["line"], obj=obj) # for g in json['groups']: # s += " * {}: {}\n".format(g['level'], g['count']) # s += "\n\n" # for g in json['groups']: # level = g['level'] # msgs = g['messages'] # if len(msgs) > 0: # s += "### {}\n\n".format(level) # for m in msgs: # s += " * {}: obj:'{}' \"{}\" `{}`\n".format(m['type'],m['obj'],m['message'],m['line']) return s
def to_markdown(self)
Generate a summary in markdown format
3.209638
3.188005
1.006786
associations = self.association_generator(file, skipheader=skipheader, outfile=outfile) a = list(associations) return a
def parse(self, file, skipheader=False, outfile=None)
Parse a line-oriented association file into a list of association dict objects Note the returned list is of dict objects. TODO: These will later be specified using marshmallow and it should be possible to generate objects Arguments --------- file : file or string The file is parsed into association objects. Can be a http URL, filename or `file-like-object`, for input assoc file outfile : file Optional output file in which processed lines are written. This a file or `file-like-object` Return ------ list Associations generated from the file
6.066866
6.621714
0.916208
file = self._ensure_file(file) for line in file: parsed_result = self.parse_line(line) self.report.report_parsed_result(parsed_result, outfile, self.config.filtered_evidence_file, self.config.filter_out_evidence) for association in parsed_result.associations: # yield association if we don't care if it's a header or if it's definitely a real gaf line if not skipheader or "header" not in association: yield association logging.info(self.report.short_summary()) file.close()
def association_generator(self, file, skipheader=False, outfile=None) -> Dict
Returns a generator that yields successive associations from file Yields ------ association
6.482161
6.624885
0.978456
if subset is not None: logging.info("Creating mapping for subset: {}".format(subset)) class_map = ontology.create_slim_mapping(subset=subset, relations=relations) if class_map is None: raise ValueError("Neither class_map not subset is set") col = self.ANNOTATION_CLASS_COLUMN file = self._ensure_file(file) tuples = [] for line in file: if line.startswith("!"): continue vals = line.split("\t") logging.info("LINE: {} VALS: {}".format(line, vals)) if len(vals) < col: raise ValueError("Line: {} has too few cols, expect class id in col {}".format(line, col)) cid = vals[col] if cid not in class_map or len(class_map[cid]) == 0: self.report.error(line, Report.UNMAPPED_ID, cid) continue else: for mcid in class_map[cid]: vals[col] = mcid line = "\t".join(vals) if outfile is not None: outfile.write(line) else: print(line)
def map_to_subset(self, file, outfile=None, ontology=None, subset=None, class_map=None, relations=None)
Map a file to a subset, writing out results You can pass either a subset name (e.g. goslim_generic) or a dictionary with ready-made mappings Arguments --------- file: file Name or file object for input assoc file outfile: file Name or file object for output (mapped) assoc file; writes to stdout if not set subset: str Optional name of subset to map to, e.g. goslim_generic class_map: dict Mapping between asserted class ids and ids to map to. Many to many ontology: `Ontology` Ontology to extract subset from
3.382523
3.433395
0.985183
parser = argparse.ArgumentParser( description='Command line interface to python-ontobio.golr library' , formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-o', '--outfile', type=str, required=False, help='Path to output file') parser.add_argument('-f', '--facet', type=str, required=True, help='Facet field to query') parser.add_argument('-q', '--fq', type=json.loads, default={}, required=False, help='Facet query (solr fq) - should be json') parser.add_argument('-Q', '--qargs', type=json.loads, default={}, required=False, help='Query to be passed directly to python golr_associations query') parser.add_argument('-P', '--search', nargs='*', type=str, required=False, help='Search fields. E.f subject_category object_category, relation') parser.add_argument('-u', '--url', type=str, required=False, help='Solr URL. E.g. http://localhost:8983/solr/golr') parser.add_argument('-v', '--verbosity', default=0, action='count', help='Increase output verbosity') args = parser.parse_args() if args.verbosity >= 2: logging.basicConfig(level=logging.DEBUG) elif args.verbosity == 1: logging.basicConfig(level=logging.INFO) else: logging.basicConfig(level=logging.WARNING) logging.info("Welcome!") r = search_query_as_matrix(facet=args.facet, fq=args.fq, facet_search_fields=args.search, url=args.url, **args.qargs) print(str(r)) trace = go.Heatmap(z=r['z'], x=r['xaxis'], y=r['yaxis']) data=[trace] py.plot(data, filename='search-heatmap')
def main()
Wrapper for OGR
3.15307
3.191636
0.987917
if session.config is None: path = session.default_config_path if os.path.isfile(path): logging.info("LOADING FROM: {}".format(path)) session.config = load_config(path) else: session.config = Config() logging.info("using default session: {}, path does not exist: {}".format(session, path)) else: logging.info("Using pre-loaded object: {}".format(session.config)) return session.config
def get_config()
Return configuration for current session. When called for the first time, this will create a config object, using whatever is the default load path to find the config yaml
3.891671
3.753497
1.036812
logging.info("LOADING FROM: {}".format(path)) session.config = load_config(path) return session.config
def set_config(path)
Set configuration for current session.
7.179733
7.346335
0.977322
url = self.endpoint_url(self.solr_search) if use_amigo: url = self.endpoint_url(self.amigo_solr_search) return url
def get_solr_search_url(self, use_amigo=False)
Return solr URL to be used for lexical entity searches A solr search URL is used to search entities/concepts based on a limited set of parameters. Arguments --------- use_amigo : bool If true, get the URL for the GO/AmiGO instance of GOlr. This is typically used for category='function' queries
2.809652
3.884622
0.723276
url = self.endpoint_url(self.solr_assocs) if use_amigo: url = self.endpoint_url(self.amigo_solr_assocs) return url
def get_solr_assocs_url(self, use_amigo=False)
Return solr URL to be used for assocation (enhanced triple) queries A solr assocs URL is used to query triple-patterns in Solr, ie subject-relation-object There are two possible schemas: Monarch and AmiGO. The AmiGO schema is used for querying the GO and Planteome Golr instances
2.633345
3.243351
0.811921
gaf_urls = [ (data, data["source"]) for data in group_metadata["datasets"] if data["type"] == "gaf" and data["dataset"] not in exclusions ] # List of dataset metadata to gaf download url click.echo("Found {}".format(", ".join( [ kv[0]["dataset"] for kv in gaf_urls ] ))) downloaded_paths = [] for dataset_metadata, gaf_url in gaf_urls: dataset = dataset_metadata["dataset"] # Local target download path setup - path and then directories path = download_a_dataset_source(group_metadata["id"], dataset_metadata, target_dir, gaf_url, base_download_url=base_download_url) if dataset_metadata["compression"] == "gzip": # Unzip any downloaded file that has gzip, strip of the gzip extension unzipped = os.path.splitext(path)[0] unzip(path, unzipped) path = unzipped else: # otherwise file is coming in uncompressed. But we want to make sure # to zip up the original source also zipup(path) downloaded_paths.append((dataset_metadata, path)) return downloaded_paths
def download_source_gafs(group_metadata, target_dir, exclusions=[], base_download_url=None)
This looks at a group metadata dictionary and downloads each GAF source that is not in the exclusions list. For each downloaded file, keep track of the path of the file. If the file is zipped, it will unzip it here. This function returns a list of tuples of the dataset dictionary mapped to the downloaded source path.
5.474878
5.258955
1.041058
if categories is None: categories = [enum.value for enum in HpoUpperLevel] ic_map = self.ic_store.get_profile_ic(profile + negated_classes) # Simple score is the weighted average of the present and # explicitly stated negative/absent phenotypes # # Note that we're deviating from the publication # to match the reference java implementation where # mean_max_ic is replaced with max_max_ic: # https://github.com/owlcollab/owltools/blob/452b4a/ # OWLTools-Sim/src/main/java/owltools/sim2/AbstractOwlSim.java#L1038 simple_score = self._get_simple_score( profile, negated_classes, self.ic_store.statistics.mean_mean_ic, self.ic_store.statistics.max_max_ic, self.ic_store.statistics.mean_sum_ic, negation_weight, ic_map ) categorical_score = self._get_categorical_score( profile, negated_classes, categories, negation_weight, ic_map ) scaled_score = self._get_scaled_score( simple_score, categorical_score, category_weight) return AnnotationSufficiency( simple_score=simple_score, scaled_score=scaled_score, categorical_score=categorical_score )
def get_annotation_sufficiency( self, profile: List[str], negated_classes: List[str], categories: Optional[List] = None, negation_weight: Optional[float] = .25, category_weight: Optional[float] = .5) -> AnnotationSufficiency
Given a list of individuals, return the simple, scaled, and categorical scores
4.544084
4.275937
1.062711
if ic_map is None: ic_map = self.ic_store.get_profile_ic(profile + negated_classes) pos_map = {cls: ic for cls, ic in ic_map.items() if cls in profile} neg_map = {cls: ic for cls, ic in ic_map.items() if cls in negated_classes} mean_ic = mean(pos_map.values()) if len(profile) > 0 else 0 max_ic = max(pos_map.values()) if len(profile) > 0 else 0 sum_ic = sum(pos_map.values()) if len(profile) > 0 else 0 if len(negated_classes) > 0: weighted_ic = [ic * negation_weight for ic in neg_map.values()] mean_ic = max([np.average([mean_ic, mean(neg_map.values())], weights=[1, negation_weight]), mean_ic]) max_ic = max([max_ic] + weighted_ic) sum_ic = sum_ic + sum(weighted_ic) return mean([ min([mean_ic / bg_mean_pic, 1.0]), min([max_ic / bg_mean_max_pic, 1.0]), min([sum_ic / bg_mean_sum_pic, 1.0]) ])
def _get_simple_score(self, profile: List[str], negated_classes: List[str], bg_mean_pic: float, bg_mean_max_pic: float, bg_mean_sum_pic: float, negation_weight: Optional[float] = .25, ic_map: Optional[Dict[str, float]] = None) -> float
Simple score is the average of the relative mean ic, max ic, and sum ic (relative to global stats) :param ic_map: dictionary of class - information content mappings :param bg_mean_pic: the average of the average IC in the background profile annotations :param bg_mean_max_pic: max IC annotated to the background set of profiles :param bg_mean_sum_pic: Average of the profile sum IC in background set :param negation_weight: Average of the profile sum IC in background set :param ic_map: Average of the profile sum IC in background set :return: simple score (float)
1.931862
1.956863
0.987224
return np.average( [simple_score, categorical_score], weights=[1, category_weight] )
def _get_scaled_score( simple_score: float, categorical_score: float, category_weight: Optional[float] = .5) -> float
Scaled score is the weighted average of the simple score and categorical score
4.767496
4.067319
1.172147
if ic_map is None: ic_map = self.ic_store.get_profile_ic(profile + negated_classes) scores = [] for cat in categories: if cat not in self.ic_store.category_statistics: raise ValueError("statistics for {} not indexed".format(cat)) pos_profile = [cls for cls in profile if cls in self.ic_store.category_statistics[cat].descendants] neg_profile = [cls for cls in negated_classes if cls in self.ic_store.category_statistics[cat].descendants] # Note that we're deviating from the publication # to match the reference java implementation where # mean_max_ic is replaced by max_max_ic scores.append(self._get_simple_score( pos_profile, neg_profile, self.ic_store.category_statistics[cat].mean_mean_ic, self.ic_store.category_statistics[cat].max_max_ic, self.ic_store.category_statistics[cat].mean_sum_ic, negation_weight, ic_map )) return mean(scores)
def _get_categorical_score( self, profile: List, negated_classes: List, categories: List, negation_weight: Optional[float] = 1, ic_map: Optional[Dict[str, float]] = None) -> float
The average of the simple scores across a list of categories
3.161736
3.022929
1.045918
if negated_ids is None: negated_ids = [] if method not in self.sim_api.matchers(): raise NotImplementedError("Sim method not implemented " "in {}".format(str(self.sim_api))) # Determine if entity is a phenotype or individual containing # a pheno profile (gene, disease, case, etc) pheno_list = PhenoSimEngine._resolve_nodes_to_phenotypes(id_list) if taxon_filter is not None or category_filter is not None: if not isinstance(self.sim_api, FilteredSearchable): raise NotImplementedError("filtered search not implemented " "in {}".format(str(self.sim_api))) search_result = self.sim_api.filtered_search( pheno_list, negated_ids, limit, taxon_filter, category_filter, method ) else: search_result = self.sim_api.search(pheno_list, negated_ids, limit, method) return search_result
def search( self, id_list: List[str], negated_ids: Optional[List] = None, limit: Optional[int] = 100, taxon_filter: Optional[int]= None, category_filter: Optional[str]= None, method: Optional[SimAlgorithm] = SimAlgorithm.PHENODIGM ) -> SimResult
Execute a search using sim_api, resolving non-phenotype ids to phenotype lists then adding them to the profile (eg genes, diseases) :raises NotImplementedError: - If sim method or filters are not supported
3.596495
3.350421
1.073446
if method not in self.sim_api.matchers(): raise NotImplementedError("Sim method not implemented " "in {}".format(str(self.sim_api))) is_first_result = True comparisons = None reference_phenos = PhenoSimEngine._resolve_nodes_to_phenotypes(reference_ids) for query_profile in query_profiles: query_phenos = PhenoSimEngine._resolve_nodes_to_phenotypes(query_profile) sim_result = self.sim_api.compare(reference_phenos, query_phenos, method) if len(query_profile) > 1: id = " + ".join(query_profile) sim_result.matches[0].id = id sim_result.matches[0].label = id else: node = typed_node_from_id(query_profile[0]) sim_result.matches[0].id = node.id sim_result.matches[0].label = node.label sim_result.matches[0].type = node.type sim_result.matches[0].taxon = node.taxon if is_first_result: comparisons = sim_result is_first_result = False else: comparisons.matches.append(sim_result.matches[0]) comparisons.query.target_ids.append(sim_result.query.target_ids[0]) if len(reference_ids) == 1: comparisons.query.reference = typed_node_from_id(reference_ids[0]) else: reference_id = " + ".join(reference_ids) comparisons.query.reference = TypedNode( id=reference_id, label=reference_id, type='unknown' ) return comparisons
def compare(self, reference_ids: List, query_profiles: List[List], method: Optional[SimAlgorithm] = SimAlgorithm.PHENODIGM) -> SimResult
Execute one or more comparisons using sim_api :param reference_ids: a list of phenotypes or ids that comprise one or more phenotypes :param query_profiles: a list of lists of phenotypes or ids that comprise one or more phenotypes :param method: comparison method :return: SimResult object :raises NotImplementedError: If sim method or filters are not supported
2.536028
2.424379
1.046053
pheno_list = [] node_types = get_id_type_map(id_list) for node in id_list: if 'phenotype' in node_types[node]: pheno_list.append(node) else: phenotypes = get_objects_for_subject( subject=node, object_category='phenotype', relation='RO:0002200' ) pheno_list = pheno_list + phenotypes return pheno_list
def _resolve_nodes_to_phenotypes(id_list: List[str]) -> List[str]
Given a list of ids of unknown type, determine which ids are phenotypes, if the id is not a phenotype, check to see if it is associated with one or more phenotypes via the 'has_phenotype' relation :param id_list: list of ids of any type (curies as strings) :return: list of phenotypes (curies as strings)
3.292482
3.199154
1.029173
db, db_object_id = self._split_prefix(entity) taxon = normalize_taxon(entity["taxon"]["id"]) vals = [ db, db_object_id, entity.get('label'), entity.get('full_name'), entity.get('synonyms'), entity.get('type'), taxon, entity.get('parents'), entity.get('xrefs'), entity.get('properties') ] self._write_row(vals)
def write_entity(self, entity)
Write a single entity to a line in the output file
4.378431
3.954102
1.107314
pass
def search(self, id_list: Iterable, negated_classes: Iterable, limit: Optional[int], method: Optional) -> List[SimResult]
Given an input list of classes, searches for similar lists of classes and provides a ranked list of matches
23,094.4375
11,415.916016
2.023003
pass
def filtered_search(self, id_list: Iterable, negated_classes: Iterable, limit: Optional[int], taxon_filter: Optional, category_filter: Optional, method: Optional) -> SimResult
Given an input iterable of classes or individuals, provides a ranking of similar profiles
46,685.46875
13,824.976563
3.376893
pass
def compare(self, reference_ids: Iterable, query_profiles: Iterable[Iterable], method: Optional) -> SimResult
Given two lists of entities (classes, individuals), resolves them to some type (phenotypes, go terms, etc) and returns their similarity
77,436.351563
42,704.917969
1.813289