code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if unit not in ('kelvin', 'celsius', 'fahrenheit'):
raise ValueError("Invalid value for parameter 'unit'")
minimum = min(self._purge_none_samples(self.temperature_series()),
key=itemgetter(1))
if unit == 'kelvin':
result = minimum
if unit == 'celsius':
result = (minimum[0], temputils.kelvin_to_celsius(minimum[1]))
if unit == 'fahrenheit':
result = (minimum[0], temputils.kelvin_to_fahrenheit(minimum[1]))
return result | def min_temperature(self, unit='kelvin') | Returns a tuple containing the min value in the temperature
series preceeded by its timestamp
:param unit: the unit of measure for the temperature values. May be
among: '*kelvin*' (default), '*celsius*' or '*fahrenheit*'
:type unit: str
:returns: a tuple
:raises: ValueError when invalid values are provided for the unit of
measure or the measurement series is empty | 2.998776 | 2.682125 | 1.11806 |
if unit not in ('kelvin', 'celsius', 'fahrenheit'):
raise ValueError("Invalid value for parameter 'unit'")
average = self._average(self._purge_none_samples(
self.temperature_series()))
if unit == 'kelvin':
result = average
if unit == 'celsius':
result = temputils.kelvin_to_celsius(average)
if unit == 'fahrenheit':
result = temputils.kelvin_to_fahrenheit(average)
return result | def average_temperature(self, unit='kelvin') | Returns the average value in the temperature series
:param unit: the unit of measure for the temperature values. May be
among: '*kelvin*' (default), '*celsius*' or '*fahrenheit*'
:type unit: str
:returns: a float
:raises: ValueError when invalid values are provided for the unit of
measure or the measurement series is empty | 2.982603 | 2.959298 | 1.007875 |
return max(self._purge_none_samples(self.rain_series()),
key=lambda item:item[1]) | def max_rain(self) | Returns a tuple containing the max value in the rain
series preceeded by its timestamp
:returns: a tuple
:raises: ValueError when the measurement series is empty | 23.049131 | 16.254669 | 1.418001 |
return json.dumps({"reception_time": self._reception_time,
"Location": json.loads(self._location.to_JSON()),
"Weather": json.loads(self._weather.to_JSON())
}) | def to_JSON(self) | Dumps object fields into a JSON formatted string
:returns: the JSON string | 4.321323 | 5.516061 | 0.783407 |
root_node = self._to_DOM()
if xmlns:
xmlutils.annotate_with_XMLNS(root_node,
OBSERVATION_XMLNS_PREFIX,
OBSERVATION_XMLNS_URL)
return xmlutils.DOM_node_to_XML(root_node, xml_declaration) | def to_XML(self, xml_declaration=True, xmlns=True) | Dumps object fields to an XML-formatted string. The 'xml_declaration'
switch enables printing of a leading standard XML line containing XML
version and encoding. The 'xmlns' switch enables printing of qualified
XMLNS prefixes.
:param XML_declaration: if ``True`` (default) prints a leading XML
declaration line
:type XML_declaration: bool
:param xmlns: if ``True`` (default) prints full XMLNS prefixes
:type xmlns: bool
:returns: an XML-formatted string | 4.193828 | 5.447153 | 0.769912 |
root_node = ET.Element("observation")
reception_time_node = ET.SubElement(root_node, "reception_time")
reception_time_node.text = str(self._reception_time)
root_node.append(self._location._to_DOM())
root_node.append(self._weather._to_DOM())
return root_node | def _to_DOM(self) | Dumps object data to a fully traversable DOM representation of the
object.
:returns: a ``xml.etree.Element`` object | 2.587985 | 2.922067 | 0.885669 |
lat = str(params_dict['lat'])
lon = str(params_dict['lon'])
params = dict(lat=lat, lon=lon)
# build request URL
uri = http_client.HttpClient.to_url(UV_INDEX_URL, self._API_key, None)
_, json_data = self._client.cacheable_get_json(uri, params=params)
return json_data | def get_uvi(self, params_dict) | Invokes the UV Index endpoint
:param params_dict: dict of parameters
:returns: a string containing raw JSON data
:raises: *ValueError*, *APICallError* | 5.583093 | 6.19362 | 0.901426 |
lat = str(params_dict['lat'])
lon = str(params_dict['lon'])
start = str(params_dict['start'])
end = str(params_dict['end'])
params = dict(lat=lat, lon=lon, start=start, end=end)
# build request URL
uri = http_client.HttpClient.to_url(UV_INDEX_HISTORY_URL,
self._API_key,
None)
_, json_data = self._client.cacheable_get_json(uri, params=params)
return json_data | def get_uvi_history(self, params_dict) | Invokes the UV Index History endpoint
:param params_dict: dict of parameters
:returns: a string containing raw JSON data
:raises: *ValueError*, *APICallError* | 4.073776 | 4.277472 | 0.952379 |
return [
cls.TEMPERATURE,
cls.PRESSURE,
cls.HUMIDITY,
cls.WIND_SPEED,
cls.WIND_DIRECTION,
cls.CLOUDS
] | def items(cls) | All values for this enum
:return: list of str | 3.368231 | 3.342222 | 1.007782 |
return [
cls.GREATER_THAN,
cls.GREATER_THAN_EQUAL,
cls.LESS_THAN,
cls.LESS_THAN_EQUAL,
cls.EQUAL,
cls.NOT_EQUAL
] | def items(cls) | All values for this enum
:return: list of str | 2.615578 | 2.641977 | 0.990008 |
if JSON_string is None:
raise parse_response_error.ParseResponseError('JSON data is None')
d = json.loads(JSON_string)
# Check if server returned errors: this check overcomes the lack of use
# of HTTP error status codes by the OWM API 2.5. This mechanism is
# supposed to be deprecated as soon as the API fully adopts HTTP for
# conveying errors to the clients
if 'message' in d and 'cod' in d:
if d['cod'] == "404":
print("OWM API: data not found - response payload: " + json.dumps(d), d['cod'])
return None
elif d['cod'] != "200":
raise api_response_error.APIResponseError("OWM API: error - response payload: " + json.dumps(d), d['cod'])
try:
place = location.location_from_dictionary(d)
except KeyError:
raise parse_response_error.ParseResponseError(''.join([__name__,
': impossible to read location info from JSON data']))
# Handle the case when no results are found
if 'count' in d and d['count'] == "0":
weathers = []
elif 'cnt' in d and d['cnt'] == 0:
weathers = []
else:
if 'list' in d:
try:
weathers = [weather.weather_from_dictionary(item) \
for item in d['list']]
except KeyError:
raise parse_response_error.ParseResponseError(
''.join([__name__, ': impossible to read weather ' \
'info from JSON data'])
)
else:
raise parse_response_error.ParseResponseError(
''.join([__name__, ': impossible to read weather ' \
'list from JSON data'])
)
current_time = int(round(time.time()))
return forecast.Forecast(None, current_time, place, weathers) | def parse_JSON(self, JSON_string) | Parses a *Forecast* instance out of raw JSON data. Only certain
properties of the data are used: if these properties are not found or
cannot be parsed, an error is issued.
:param JSON_string: a raw JSON string
:type JSON_string: str
:returns: a *Forecast* instance or ``None`` if no data is available
:raises: *ParseResponseError* if it is impossible to find or parse the
data needed to build the result, *APIResponseError* if the JSON
string embeds an HTTP status error | 3.809572 | 3.649621 | 1.043827 |
return evaluation.evaluate_density(
dist, numpy.arcsinh(x), cache=cache)/numpy.sqrt(1+x*x) | def _pdf(self, x, dist, cache) | Probability density function. | 8.854574 | 9.185193 | 0.964005 |
args = list(args)
# expand args to match dim
if len(args) < poly.dim:
args = args + [np.nan]*(poly.dim-len(args))
elif len(args) > poly.dim:
raise ValueError("too many arguments")
# Find and perform substitutions, if any
x0, x1 = [], []
for idx, arg in enumerate(args):
if isinstance(arg, Poly):
poly_ = Poly({
tuple(np.eye(poly.dim)[idx]): np.array(1)
})
x0.append(poly_)
x1.append(arg)
args[idx] = np.nan
if x0:
poly = call(poly, args)
return substitute(poly, x0, x1)
# Create masks
masks = np.zeros(len(args), dtype=bool)
for idx, arg in enumerate(args):
if np.ma.is_masked(arg) or np.any(np.isnan(arg)):
masks[idx] = True
args[idx] = 0
shape = np.array(
args[
np.argmax(
[np.prod(np.array(arg).shape) for arg in args]
)
]
).shape
args = np.array([np.ones(shape, dtype=int)*arg for arg in args])
A = {}
for key in poly.keys:
key_ = np.array(key)*(1-masks)
val = np.outer(poly.A[key], np.prod((args.T**key_).T, \
axis=0))
val = np.reshape(val, poly.shape + tuple(shape))
val = np.where(val != val, 0, val)
mkey = tuple(np.array(key)*(masks))
if not mkey in A:
A[mkey] = val
else:
A[mkey] = A[mkey] + val
out = Poly(A, poly.dim, None, None)
if out.keys and not np.sum(out.keys):
out = out.A[out.keys[0]]
elif not out.keys:
out = np.zeros(out.shape, dtype=out.dtype)
return out | def call(poly, args) | Evaluate a polynomial along specified axes.
Args:
poly (Poly):
Input polynomial.
args (numpy.ndarray):
Argument to be evaluated. Masked values keeps the variable intact.
Returns:
(Poly, numpy.ndarray):
If masked values are used the Poly is returned. Else an numpy array
matching the polynomial's shape is returned. | 3.293467 | 3.310491 | 0.994858 |
x0,x1 = map(Poly, [x0,x1])
dim = np.max([p.dim for p in [P,x0,x1]])
dtype = chaospy.poly.typing.dtyping(P.dtype, x0.dtype, x1.dtype)
P, x0, x1 = [chaospy.poly.dimension.setdim(p, dim) for p in [P,x0,x1]]
if x0.shape:
x0 = [x for x in x0]
else:
x0 = [x0]
if x1.shape:
x1 = [x for x in x1]
else:
x1 = [x1]
# Check if substitution is needed.
valid = False
C = [x.keys[0].index(1) for x in x0]
for key in P.keys:
if np.any([key[c] for c in C]):
valid = True
break
if not valid:
return P
dims = [tuple(np.array(x.keys[0])!=0).index(True) for x in x0]
dec = is_decomposed(P)
if not dec:
P = decompose(P)
P = chaospy.poly.dimension.dimsplit(P)
shape = P.shape
P = [p for p in chaospy.poly.shaping.flatten(P)]
for i in range(len(P)):
for j in range(len(dims)):
if P[i].keys and P[i].keys[0][dims[j]]:
P[i] = x1[j].__pow__(P[i].keys[0][dims[j]])
break
P = Poly(P, dim, None, dtype)
P = chaospy.poly.shaping.reshape(P, shape)
P = chaospy.poly.collection.prod(P, 0)
if not dec:
P = chaospy.poly.collection.sum(P, 0)
return P | def substitute(P, x0, x1, V=0) | Substitute a variable in a polynomial array.
Args:
P (Poly) : Input data.
x0 (Poly, int) : The variable to substitute. Indicated with either unit
variable, e.g. `x`, `y`, `z`, etc. or through an integer
matching the unit variables dimension, e.g. `x==0`, `y==1`,
`z==2`, etc.
x1 (Poly) : Simple polynomial to substitute `x0` in `P`. If `x1` is an
polynomial array, an error will be raised.
Returns:
(Poly) : The resulting polynomial (array) where `x0` is replaced with
`x1`.
Examples:
>>> x,y = cp.variable(2)
>>> P = cp.Poly([y*y-1, y*x])
>>> print(cp.substitute(P, y, x+1))
[q0^2+2q0, q0^2+q0]
With multiple substitutions:
>>> print(cp.substitute(P, [x,y], [y,x]))
[q0^2-1, q0q1] | 3.113055 | 3.197649 | 0.973545 |
if P.shape:
return min([is_decomposed(poly) for poly in P])
return len(P.keys) <= 1 | def is_decomposed(P) | Check if a polynomial (array) is on component form.
Args:
P (Poly):
Input data.
Returns:
(bool):
True if all polynomials in ``P`` are on component form.
Examples:
>>> x,y = cp.variable(2)
>>> print(cp.is_decomposed(cp.Poly([1,x,x*y])))
True
>>> print(cp.is_decomposed(cp.Poly([x+1,x*y])))
False | 7.765771 | 10.465626 | 0.742026 |
P = P.copy()
if not P:
return P
out = [Poly({key:P.A[key]}) for key in P.keys]
return Poly(out, None, None, None) | def decompose(P) | Decompose a polynomial to component form.
In array missing values are padded with 0 to make decomposition compatible
with ``chaospy.sum(Q, 0)``.
Args:
P (Poly) : Input data.
Returns:
(Poly) : Decomposed polynomial with `P.shape==(M,)+Q.shape` where
`M` is the number of components in `P`.
Examples:
>>> q = cp.variable()
>>> P = cp.Poly([q**2-1, 2])
>>> print(P)
[q0^2-1, 2]
>>> print(cp.decompose(P))
[[-1, 2], [q0^2, 0]]
>>> print(cp.sum(cp.decompose(P), 0))
[q0^2-1, 2] | 9.090894 | 12.346194 | 0.736332 |
logger = logging.getLogger(__name__)
assert len(k_data) == len(distribution), (
"distribution %s is not of length %d" % (distribution, len(k_data)))
assert len(k_data.shape) == 1
if numpy.all(k_data == 0):
return 1.
def cache_key(distribution):
return (tuple(k_data), distribution)
if cache is None:
cache = {}
else:
if cache_key(distribution) in cache:
return cache[cache_key(distribution)]
from .. import baseclass
try:
parameters = load_parameters(
distribution, "_mom", parameters, cache, cache_key)
out = distribution._mom(k_data, **parameters)
except baseclass.StochasticallyDependentError:
logger.warning(
"Distribution %s has stochastic dependencies; "
"Approximating moments with quadrature.", distribution)
from .. import approximation
out = approximation.approximate_moment(distribution, k_data)
if isinstance(out, numpy.ndarray):
out = out.item()
cache[cache_key(distribution)] = out
return out | def evaluate_moment(
distribution,
k_data,
parameters=None,
cache=None,
) | Evaluate raw statistical moments.
Args:
distribution (Dist):
Distribution to evaluate.
x_data (numpy.ndarray):
Locations for where evaluate moment of.
parameters (:py:data:typing.Any):
Collection of parameters to override the default ones in the
distribution.
cache (:py:data:typing.Any):
A collection of previous calculations in case the same distribution
turns up on more than one occasion.
Returns:
The raw statistical moment of ``distribution`` at location ``x_data``
using parameters ``parameters``. | 3.187715 | 3.269582 | 0.974961 |
from .mv_mul import MvMul
length = max(left, right)
if length == 1:
return Mul(left, right)
return MvMul(left, right) | def mul(left, right) | Distribution multiplication.
Args:
left (Dist, numpy.ndarray) : left hand side.
right (Dist, numpy.ndarray) : right hand side. | 5.679591 | 6.46332 | 0.878742 |
left = evaluation.get_forward_cache(left, cache)
right = evaluation.get_forward_cache(right, cache)
if isinstance(left, Dist):
if isinstance(right, Dist):
raise evaluation.DependencyError(
"under-defined distribution {} or {}".format(left, right))
elif not isinstance(right, Dist):
if self.matrix:
return 0.5*(numpy.dot(left, right) == xloc)
return 0.5*(left*right == xloc)
else:
if self.matrix:
Ci = numpy.linalg.inv(left)
xloc = numpy.dot(Ci, xloc)
assert len(xloc) == len(numpy.dot(Ci, xloc))
else:
left = (numpy.asfarray(left).T+numpy.zeros(xloc.shape).T).T
valids = left != 0
xloc.T[valids.T] = xloc.T[valids.T]/left.T[valids.T]
uloc = evaluation.evaluate_forward(right, xloc, cache=cache)
if not self.matrix:
uloc = numpy.where(left.T >= 0, uloc.T, 1-uloc.T).T
assert uloc.shape == xloc.shape
return uloc
if self.matrix:
Ci = numpy.linalg.inv(right)
xloc = numpy.dot(xloc.T, Ci).T
else:
right = (numpy.asfarray(right).T+numpy.zeros(xloc.shape).T).T
valids = right != 0
xloc.T[valids.T] = xloc.T[valids.T]/right.T[valids.T]
assert len(left) == len(xloc)
uloc = evaluation.evaluate_forward(left, xloc, cache=cache)
if not self.matrix:
uloc = numpy.where(right.T >= 0, uloc.T, 1-uloc.T).T
assert uloc.shape == xloc.shape
return uloc | def _cdf(self, xloc, left, right, cache) | Cumulative distribution function.
Example:
>>> print(chaospy.Uniform().fwd([-0.5, 0.5, 1.5, 2.5]))
[0. 0.5 1. 1. ]
>>> print(Mul(chaospy.Uniform(), 2).fwd([-0.5, 0.5, 1.5, 2.5]))
[0. 0.25 0.75 1. ]
>>> print(Mul(2, chaospy.Uniform()).fwd([-0.5, 0.5, 1.5, 2.5]))
[0. 0.25 0.75 1. ]
>>> print(Mul(1, 1.5).fwd([-0.5, 0.5, 1.5, 2.5]))
[0. 0. 0.5 1. ]
>>> dist = chaospy.Mul([2, 1], chaospy.Iid(chaospy.Uniform(), 2))
>>> print(dist.fwd([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]]))
[[0.25 0.3 0.75]
[0.5 0.6 1. ]]
>>> dist = chaospy.Mul(chaospy.Iid(chaospy.Uniform(), 2), [1, 2])
>>> print(dist.fwd([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]]))
[[0.5 0.6 1. ]
[0.25 0.3 0.75]] | 2.435273 | 2.481699 | 0.981292 |
left = evaluation.get_inverse_cache(left, cache)
right = evaluation.get_inverse_cache(right, cache)
if isinstance(left, Dist):
if isinstance(right, Dist):
raise evaluation.DependencyError(
"under-defined distribution {} or {}".format(left, right))
elif not isinstance(right, Dist):
if self.matrix:
return numpy.dot(left, right)
return left*right
else:
if not self.matrix:
uloc = numpy.where(numpy.asfarray(left).T > 0, uloc.T, 1-uloc.T).T
xloc = evaluation.evaluate_inverse(right, uloc, cache=cache)
if self.matrix:
xloc = numpy.dot(left, xloc)
else:
xloc *= left
return xloc
if not self.matrix:
uloc = numpy.where(numpy.asfarray(right).T > 0, uloc.T, 1-uloc.T).T
xloc = evaluation.evaluate_inverse(left, uloc, cache=cache)
if self.matrix:
xloc = numpy.dot(xloc.T, right).T
else:
xloc *= right
assert uloc.shape == xloc.shape
return xloc | def _ppf(self, uloc, left, right, cache) | Point percentile function.
Example:
>>> print(chaospy.Uniform().inv([0.1, 0.2, 0.9]))
[0.1 0.2 0.9]
>>> print(Mul(chaospy.Uniform(), 2).inv([0.1, 0.2, 0.9]))
[0.2 0.4 1.8]
>>> print(Mul(2, chaospy.Uniform()).inv([0.1, 0.2, 0.9]))
[0.2 0.4 1.8]
>>> print(Mul(2, 2).inv([0.1, 0.2, 0.9]))
[4. 4. 4.]
>>> dist = chaospy.Mul([2, 1], chaospy.Iid(chaospy.Uniform(), 2))
>>> print(dist.inv([[0.5, 0.6, 0.7], [0.5, 0.6, 0.7]]))
[[1. 1.2 1.4]
[0.5 0.6 0.7]]
>>> dist = chaospy.Mul(chaospy.Iid(chaospy.Uniform(), 2), [1, 2])
>>> print(dist.inv([[0.5, 0.6, 0.7], [0.5, 0.6, 0.7]]))
[[0.5 0.6 0.7]
[1. 1.2 1.4]] | 2.616374 | 2.795278 | 0.935998 |
left = evaluation.get_forward_cache(left, cache)
right = evaluation.get_forward_cache(right, cache)
if isinstance(left, Dist):
if isinstance(right, Dist):
raise evaluation.DependencyError(
"under-defined distribution {} or {}".format(left, right))
elif not isinstance(right, Dist):
return numpy.inf
else:
if self.matrix:
Ci = numpy.linalg.inv(left)
xloc = numpy.dot(Ci, xloc)
else:
left = (numpy.asfarray(left).T+numpy.zeros(xloc.shape).T).T
valids = left != 0
xloc.T[valids.T] = xloc.T[valids.T]/left.T[valids.T]
pdf = evaluation.evaluate_density(right, xloc, cache=cache)
if self.matrix:
pdf = numpy.dot(Ci, pdf)
else:
pdf.T[valids.T] /= left.T[valids.T]
return pdf
if self.matrix:
Ci = numpy.linalg.inv(right)
xloc = numpy.dot(xloc.T, Ci).T
else:
right = (numpy.asfarray(right).T+numpy.zeros(xloc.shape).T).T
valids = right != 0
xloc.T[valids.T] = xloc.T[valids.T]/right.T[valids.T]
xloc.T[~valids.T] = numpy.inf
pdf = evaluation.evaluate_density(left, xloc, cache=cache)
if self.matrix:
pdf = numpy.dot(pdf.T, Ci).T
else:
pdf.T[valids.T] /= right.T[valids.T]
assert pdf.shape == xloc.shape
return pdf | def _pdf(self, xloc, left, right, cache) | Probability density function.
Example:
>>> print(chaospy.Uniform().pdf([-0.5, 0.5, 1.5, 2.5]))
[0. 1. 0. 0.]
>>> print(Mul(chaospy.Uniform(), 2).pdf([-0.5, 0.5, 1.5, 2.5]))
[0. 0.5 0.5 0. ]
>>> print(Mul(2, chaospy.Uniform()).pdf([-0.5, 0.5, 1.5, 2.5]))
[0. 0.5 0.5 0. ]
>>> print(Mul(1, 1.5).pdf([-0.5, 0.5, 1.5, 2.5])) # Dirac logic
[ 0. 0. inf 0.]
>>> dist = chaospy.Mul([2, 1], chaospy.Iid(chaospy.Uniform(), 2))
>>> print(dist.pdf([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]]))
[0.5 0.5 0. ]
>>> dist = chaospy.Mul(chaospy.Iid(chaospy.Uniform(), 2), [1, 2])
>>> print(dist.pdf([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]]))
[0.5 0.5 0. ] | 2.291155 | 2.371123 | 0.966274 |
if evaluation.get_dependencies(left, right):
raise evaluation.DependencyError(
"sum of dependent distributions not feasible: "
"{} and {}".format(left, right)
)
if isinstance(left, Dist):
left = evaluation.evaluate_moment(left, key, cache=cache)
else:
left = (numpy.array(left).T**key).T
if isinstance(right, Dist):
right = evaluation.evaluate_moment(right, key, cache=cache)
else:
right = (numpy.array(right).T**key).T
return numpy.sum(left*right) | def _mom(self, key, left, right, cache) | Statistical moments.
Example:
>>> print(numpy.around(chaospy.Uniform().mom([0, 1, 2, 3]), 4))
[1. 0.5 0.3333 0.25 ]
>>> print(numpy.around(Mul(chaospy.Uniform(), 2).mom([0, 1, 2, 3]), 4))
[1. 1. 1.3333 2. ]
>>> print(numpy.around(Mul(2, chaospy.Uniform()).mom([0, 1, 2, 3]), 4))
[1. 1. 1.3333 2. ]
>>> print(numpy.around(Mul(chaospy.Uniform(), chaospy.Uniform()).mom([0, 1, 2, 3]), 4))
[1. 0.25 0.1111 0.0625]
>>> print(numpy.around(Mul(2, 2).mom([0, 1, 2, 3]), 4))
[ 1. 4. 16. 64.] | 3.626057 | 3.636152 | 0.997224 |
from .. import baseclass
collection = [dist]
# create DAG as list of nodes and edges:
nodes = [dist]
edges = []
pool = [dist]
while pool:
dist = pool.pop()
for key in sorted(dist.prm):
value = dist.prm[key]
if not isinstance(value, baseclass.Dist):
continue
if (dist, value) not in edges:
edges.append((dist, value))
if value not in nodes:
nodes.append(value)
pool.append(value)
# temporary stores used by depth first algorith.
permanent_marks = set()
temporary_marks = set()
def visit(node):
if node in permanent_marks:
return
if node in temporary_marks:
raise DependencyError("cycles in dependency structure.")
nodes.remove(node)
temporary_marks.add(node)
for node1, node2 in edges:
if node1 is node:
visit(node2)
temporary_marks.remove(node)
permanent_marks.add(node)
pool.append(node)
# kickstart algorithm.
while nodes:
node = nodes[0]
visit(node)
if not reverse:
pool = list(reversed(pool))
return pool | def sorted_dependencies(dist, reverse=False) | Extract all underlying dependencies from a distribution sorted
topologically.
Uses depth-first algorithm. See more here:
Args:
dist (Dist):
Distribution to extract dependencies from.
reverse (bool):
If True, place dependencies in reverse order.
Returns:
dependencies (List[Dist]):
All distribution that ``dist`` is dependent on, sorted
topologically, including itself.
Examples:
>>> dist1 = chaospy.Uniform()
>>> dist2 = chaospy.Normal(dist1)
>>> print(sorted_dependencies(dist1))
[Uniform(lower=0, upper=1), Mul(uniform(), 0.5), uniform()]
>>> print(sorted_dependencies(dist2)) # doctest: +NORMALIZE_WHITESPACE
[Normal(mu=Uniform(lower=0, upper=1), sigma=1),
Uniform(lower=0, upper=1),
Mul(uniform(), 0.5),
uniform(),
Mul(normal(), 1),
normal()]
>>> dist1 in sorted_dependencies(dist2)
True
>>> dist2 in sorted_dependencies(dist1)
False
Raises:
DependencyError:
If the dependency DAG is cyclic, dependency resolution is not
possible.
See also:
Depth-first algorithm section:
https://en.wikipedia.org/wiki/Topological_sorting | 3.677789 | 3.512196 | 1.047148 |
from .. import baseclass
distributions = [
sorted_dependencies(dist) for dist in distributions
if isinstance(dist, baseclass.Dist)
]
dependencies = list()
for idx, dist1 in enumerate(distributions):
for dist2 in distributions[idx+1:]:
dependencies.extend([dist for dist in dist1 if dist in dist2])
return sorted(dependencies) | def get_dependencies(*distributions) | Get underlying dependencies that are shared between distributions.
If more than two distributions are provided, any pair-wise dependency
between any two distributions are included, implying that an empty set is
returned if and only if the distributions are i.i.d.
Args:
distributions:
Distributions to check for dependencies.
Returns:
dependencies (List[Dist]):
Distributions dependency shared at least between at least one pair
from ``distributions``.
Examples:
>>> dist1 = chaospy.Uniform(1, 2)
>>> dist2 = chaospy.Uniform(1, 2) * dist1
>>> dist3 = chaospy.Uniform(3, 5)
>>> print(chaospy.get_dependencies(dist1, dist2))
[uniform(), Mul(uniform(), 0.5), Uniform(lower=1, upper=2)]
>>> print(chaospy.get_dependencies(dist1, dist3))
[]
>>> print(chaospy.get_dependencies(dist2, dist3))
[]
>>> print(chaospy.get_dependencies(dist1, dist2, dist3))
[uniform(), Mul(uniform(), 0.5), Uniform(lower=1, upper=2)] | 4.06251 | 4.932314 | 0.823652 |
polynomials, norms, _, _ = chaospy.quad.generate_stieltjes(
dist=dist, order=numpy.max(order), retall=True, **kws)
if normed:
for idx, poly in enumerate(polynomials):
polynomials[idx] = poly / numpy.sqrt(norms[:, idx])
norms = norms**0
dim = len(dist)
if dim > 1:
mv_polynomials = []
mv_norms = []
indices = chaospy.bertran.bindex(
start=0, stop=order, dim=dim, sort=sort,
cross_truncation=cross_truncation,
)
for index in indices:
poly = polynomials[index[0]][0]
for idx in range(1, dim):
poly = poly * polynomials[index[idx]][idx]
mv_polynomials.append(poly)
if retall:
for index in indices:
mv_norms.append(
numpy.prod([norms[idx, index[idx]] for idx in range(dim)]))
else:
mv_norms = norms[0]
mv_polynomials = polynomials
polynomials = chaospy.poly.flatten(chaospy.poly.Poly(mv_polynomials))
if retall:
return polynomials, numpy.array(mv_norms)
return polynomials | def orth_ttr(
order, dist, normed=False, sort="GR", retall=False,
cross_truncation=1., **kws) | Create orthogonal polynomial expansion from three terms recursion formula.
Args:
order (int):
Order of polynomial expansion.
dist (Dist):
Distribution space where polynomials are orthogonal If dist.ttr
exists, it will be used. Must be stochastically independent.
normed (bool):
If True orthonormal polynomials will be used.
sort (str):
Polynomial sorting. Same as in basis.
retall (bool):
If true return numerical stabilized norms as well. Roughly the same
as ``cp.E(orth**2, dist)``.
cross_truncation (float):
Use hyperbolic cross truncation scheme to reduce the number of
terms in expansion. only include terms where the exponents ``K``
satisfied the equation
``order >= sum(K**(1/cross_truncation))**cross_truncation``.
Returns:
(Poly, numpy.ndarray):
Orthogonal polynomial expansion and norms of the orthogonal
expansion on the form ``E(orth**2, dist)``. Calculated using
recurrence coefficients for stability.
Examples:
>>> Z = chaospy.Normal()
>>> print(chaospy.around(chaospy.orth_ttr(4, Z), 4))
[1.0, q0, q0^2-1.0, q0^3-3.0q0, q0^4-6.0q0^2+3.0] | 3.123797 | 3.478256 | 0.898093 |
return evaluation.evaluate_density(dist, -xloc, cache=cache) | def _pdf(self, xloc, dist, cache) | Probability density function. | 12.304729 | 12.991741 | 0.947119 |
return -evaluation.evaluate_inverse(dist, 1-q, cache=cache) | def _ppf(self, q, dist, cache) | Point percentile function. | 15.664988 | 15.168934 | 1.032702 |
return (-1)**numpy.sum(k)*evaluation.evaluate_moment(
dist, k, cache=cache) | def _mom(self, k, dist, cache) | Statistical moments. | 12.485264 | 13.14511 | 0.949803 |
a,b = evaluation.evaluate_recurrence_coefficients(dist, k)
return -a, b | def _ttr(self, k, dist, cache) | Three terms recursion coefficients. | 17.083439 | 12.68185 | 1.347078 |
order = sorted(GENZ_KEISTER_22.keys())[order]
abscissas, weights = GENZ_KEISTER_22[order]
abscissas = numpy.array(abscissas)
weights = numpy.array(weights)
weights /= numpy.sum(weights)
abscissas *= numpy.sqrt(2)
return abscissas, weights | def quad_genz_keister_22 ( order ) | Hermite Genz-Keister 22 rule.
Args:
order (int):
The quadrature order. Must be in the interval (0, 8).
Returns:
(:py:data:typing.Tuple[numpy.ndarray, numpy.ndarray]):
Abscissas and weights
Examples:
>>> abscissas, weights = quad_genz_keister_22(1)
>>> print(numpy.around(abscissas, 4))
[-1.7321 0. 1.7321]
>>> print(numpy.around(weights, 4))
[0.1667 0.6667 0.1667] | 2.77165 | 3.531353 | 0.784869 |
for datatype, identifier in {
int: _identify_scaler,
numpy.int8: _identify_scaler,
numpy.int16: _identify_scaler,
numpy.int32: _identify_scaler,
numpy.int64: _identify_scaler,
float: _identify_scaler,
numpy.float16: _identify_scaler,
numpy.float32: _identify_scaler,
numpy.float64: _identify_scaler,
chaospy.poly.base.Poly: _identify_poly,
dict: _identify_dict,
numpy.ndarray: _identify_iterable,
list: _identify_iterable,
tuple: _identify_iterable,
}.items():
if isinstance(core, datatype):
return identifier(core)
raise TypeError(
"Poly arg: 'core' is not a valid type " + repr(core)) | def identify_core(core) | Identify the polynomial argument. | 2.500088 | 2.374325 | 1.052968 |
return core.A, core.dim, core.shape, core.dtype | def _identify_poly(core) | Specification for a polynomial. | 13.977036 | 13.301918 | 1.050753 |
if not core:
return {}, 1, (), int
core = core.copy()
key = sorted(core.keys(), key=chaospy.poly.base.sort_key)[0]
shape = numpy.array(core[key]).shape
dtype = numpy.array(core[key]).dtype
dim = len(key)
return core, dim, shape, dtype | def _identify_dict(core) | Specification for a dictionary. | 5.738251 | 5.676239 | 1.010925 |
if isinstance(core, numpy.ndarray) and not core.shape:
return {(0,):core}, 1, (), core.dtype
core = [chaospy.poly.base.Poly(a) for a in core]
shape = (len(core),) + core[0].shape
dtype = chaospy.poly.typing.dtyping(*[_.dtype for _ in core])
dims = numpy.array([a.dim for a in core])
dim = numpy.max(dims)
if dim != numpy.min(dims):
core = [chaospy.poly.dimension.setdim(a, dim) for a in core]
out = {}
for idx, core_ in enumerate(core):
for key in core_.keys:
if not key in out:
out[key] = numpy.zeros(shape, dtype=dtype)
out[key][idx] = core_.A[key]
return out, dim, shape, dtype | def _identify_iterable(core) | Specification for a list, tuple, numpy.ndarray. | 3.891582 | 3.82898 | 1.016349 |
if isinstance(poly, distributions.Dist):
poly, dist = polynomials.variable(len(poly)), poly
else:
poly = polynomials.Poly(poly)
cov = Cov(poly, dist, **kws)
var = numpy.diag(cov)
vvar = numpy.sqrt(numpy.outer(var, var))
return numpy.where(vvar > 0, cov/vvar, 0) | def Corr(poly, dist=None, **kws) | Correlation matrix of a distribution or polynomial.
Args:
poly (Poly, Dist):
Input to take correlation on. Must have ``len(poly)>=2``.
dist (Dist):
Defines the space the correlation is taken on. It is ignored if
``poly`` is a distribution.
Returns:
(numpy.ndarray):
Correlation matrix with
``correlation.shape == poly.shape+poly.shape``.
Examples:
>>> Z = chaospy.MvNormal([3, 4], [[2, .5], [.5, 1]])
>>> print(numpy.around(chaospy.Corr(Z), 4))
[[1. 0.3536]
[0.3536 1. ]]
>>> x = chaospy.variable()
>>> Z = chaospy.Normal()
>>> print(numpy.around(chaospy.Corr([x, x**2], Z), 4))
[[1. 0.]
[0. 1.]] | 3.934036 | 4.729446 | 0.831817 |
from ...quad import quad_clenshaw_curtis
q1, w1 = quad_clenshaw_curtis(int(10**3*a), 0, a)
q2, w2 = quad_clenshaw_curtis(int(10**3*(1-a)), a, 1)
q = numpy.concatenate([q1,q2], 1)
w = numpy.concatenate([w1,w2])
w = w*numpy.where(q<a, 2*q/a, 2*(1-q)/(1-a))
from chaospy.poly import variable
x = variable()
orth = [x*0, x**0]
inner = numpy.sum(q*w, -1)
norms = [1., 1.]
A,B = [],[]
for n in range(k):
A.append(inner/norms[-1])
B.append(norms[-1]/norms[-2])
orth.append((x-A[-1])*orth[-1]-orth[-2]*B[-1])
y = orth[-1](*q)**2*w
inner = numpy.sum(q*y, -1)
norms.append(numpy.sum(y, -1))
A, B = numpy.array(A).T[0], numpy.array(B).T
return A[-1], B[-1] | def tri_ttr(k, a) | Custom TTR function.
Triangle distribution does not have an analytical TTR function, but because
of its non-smooth nature, a blind integration scheme will converge very
slowly. However, by splitting the integration into two divided at the
discontinuity in the derivative, TTR can be made operative. | 3.711617 | 3.795666 | 0.977856 |
if isinstance(poly, distributions.Dist):
x = polynomials.variable(len(poly))
poly, dist = x, poly
else:
poly = polynomials.Poly(poly)
if poly.dim < len(dist):
polynomials.setdim(poly, len(dist))
shape = poly.shape
poly = polynomials.flatten(poly)
m1 = E(poly, dist)
m2 = E(poly**2, dist)
m3 = E(poly**3, dist)
out = (m3-3*m2*m1+2*m1**3)/(m2-m1**2)**1.5
out = numpy.reshape(out, shape)
return out | def Skew(poly, dist=None, **kws) | Skewness operator.
Element by element 3rd order statistics of a distribution or polynomial.
Args:
poly (Poly, Dist):
Input to take skewness on.
dist (Dist):
Defines the space the skewness is taken on. It is ignored if
``poly`` is a distribution.
Returns:
(numpy.ndarray):
Element for element variance along ``poly``, where
``skewness.shape == poly.shape``.
Examples:
>>> dist = chaospy.J(chaospy.Gamma(1, 1), chaospy.Normal(0, 2))
>>> print(chaospy.Skew(dist))
[2. 0.]
>>> x, y = chaospy.variable(2)
>>> poly = chaospy.Poly([1, x, y, 10*x*y])
>>> print(chaospy.Skew(poly, dist))
[nan 2. 0. 0.] | 3.6403 | 3.653351 | 0.996428 |
assert len(x_data) == len(distribution), (
"distribution %s is not of length %d" % (distribution, len(x_data)))
assert hasattr(distribution, "_cdf"), (
"distribution require the `_cdf` method to function.")
cache = cache if cache is not None else {}
parameters = load_parameters(
distribution, "_cdf", parameters=parameters, cache=cache)
# Store cache.
cache[distribution] = x_data
# Evaluate forward function.
out = numpy.zeros(x_data.shape)
out[:] = distribution._cdf(x_data, **parameters)
return out | def evaluate_forward(
distribution,
x_data,
parameters=None,
cache=None,
) | Evaluate forward Rosenblatt transformation.
Args:
distribution (Dist):
Distribution to evaluate.
x_data (numpy.ndarray):
Locations for where evaluate forward transformation at.
parameters (:py:data:typing.Any):
Collection of parameters to override the default ones in the
distribution.
cache (:py:data:typing.Any):
A collection of previous calculations in case the same distribution
turns up on more than one occasion.
Returns:
The cumulative distribution values of ``distribution`` at location
``x_data`` using parameters ``parameters``. | 4.161135 | 4.162122 | 0.999763 |
if isinstance(poly, distributions.Dist):
x = polynomials.variable(len(poly))
poly, dist = x, poly
else:
poly = polynomials.Poly(poly)
dim = len(dist)
if poly.dim<dim:
polynomials.setdim(poly, dim)
shape = poly.shape
poly = polynomials.flatten(poly)
keys = poly.keys
N = len(keys)
A = poly.A
keys1 = numpy.array(keys).T
if dim==1:
keys1 = keys1[0]
keys2 = sum(numpy.meshgrid(keys, keys))
else:
keys2 = numpy.empty((dim, N, N))
for i in range(N):
for j in range(N):
keys2[:, i, j] = keys1[:, i]+keys1[:, j]
m1 = numpy.outer(*[dist.mom(keys1, **kws)]*2)
m2 = dist.mom(keys2, **kws)
mom = m2-m1
out = numpy.zeros(poly.shape)
for i in range(N):
a = A[keys[i]]
out += a*a*mom[i, i]
for j in range(i+1, N):
b = A[keys[j]]
out += 2*a*b*mom[i, j]
out = out.reshape(shape)
return out | def Var(poly, dist=None, **kws) | Element by element 2nd order statistics.
Args:
poly (Poly, Dist):
Input to take variance on.
dist (Dist):
Defines the space the variance is taken on. It is ignored if
``poly`` is a distribution.
Returns:
(numpy.ndarray):
Element for element variance along ``poly``, where
``variation.shape == poly.shape``.
Examples:
>>> dist = chaospy.J(chaospy.Gamma(1, 1), chaospy.Normal(0, 2))
>>> print(chaospy.Var(dist))
[1. 4.]
>>> x, y = chaospy.variable(2)
>>> poly = chaospy.Poly([1, x, y, 10*x*y])
>>> print(chaospy.Var(poly, dist))
[ 0. 1. 4. 800.] | 3.160985 | 3.203896 | 0.986607 |
if not isinstance(poly, (distributions.Dist, polynomials.Poly)):
print(type(poly))
print("Approximating expected value...")
out = quadrature.quad(poly, dist, veceval=True, **kws)
print("done")
return out
if isinstance(poly, distributions.Dist):
dist, poly = poly, polynomials.variable(len(poly))
if not poly.keys:
return numpy.zeros(poly.shape, dtype=int)
if isinstance(poly, (list, tuple, numpy.ndarray)):
return [E(_, dist, **kws) for _ in poly]
if poly.dim < len(dist):
poly = polynomials.setdim(poly, len(dist))
shape = poly.shape
poly = polynomials.flatten(poly)
keys = poly.keys
mom = dist.mom(numpy.array(keys).T, **kws)
A = poly.A
if len(dist) == 1:
mom = mom[0]
out = numpy.zeros(poly.shape)
for i in range(len(keys)):
out += A[keys[i]]*mom[i]
out = numpy.reshape(out, shape)
return out | def E(poly, dist=None, **kws) | Expected value operator.
1st order statistics of a probability distribution or polynomial on a given
probability space.
Args:
poly (Poly, Dist):
Input to take expected value on.
dist (Dist):
Defines the space the expected value is taken on. It is ignored if
``poly`` is a distribution.
Returns:
(numpy.ndarray):
The expected value of the polynomial or distribution, where
``expected.shape == poly.shape``.
Examples:
>>> dist = chaospy.J(chaospy.Gamma(1, 1), chaospy.Normal(0, 2))
>>> print(chaospy.E(dist))
[1. 0.]
>>> x, y = chaospy.variable(2)
>>> poly = chaospy.Poly([1, x, y, 10*x*y])
>>> print(chaospy.E(poly, dist))
[1. 1. 0. 0.] | 3.671103 | 3.671416 | 0.999915 |
dim = len(dist)
if poly.dim<dim:
poly = chaospy.poly.setdim(poly, len(dist))
zero = [0]*dim
out = numpy.zeros((dim, dim) + poly.shape)
mean = E(poly, dist)
V_total = Var(poly, dist)
E_cond_i = [None]*dim
V_E_cond_i = [None]*dim
for i in range(dim):
zero[i] = 1
E_cond_i[i] = E_cond(poly, zero, dist, **kws)
V_E_cond_i[i] = Var(E_cond_i[i], dist, **kws)
zero[i] = 0
for i in range(dim):
zero[i] = 1
for j in range(i+1, dim):
zero[j] = 1
E_cond_ij = E_cond(poly, zero, dist, **kws)
out[i, j] = ((Var(E_cond_ij, dist, **kws)-V_E_cond_i[i] - V_E_cond_i[j]) /
(V_total+(V_total == 0))*(V_total != 0))
out[j, i] = out[i, j]
zero[j] = 0
zero[i] = 0
return out | def Sens_m2(poly, dist, **kws) | Variance-based decomposition/Sobol' indices.
Second order sensitivity indices.
Args:
poly (Poly):
Polynomial to find second order Sobol indices on.
dist (Dist):
The distributions of the input used in ``poly``.
Returns:
(numpy.ndarray):
First order sensitivity indices for each parameters in ``poly``,
with shape ``(len(dist), len(dist)) + poly.shape``.
Examples:
>>> x, y = chaospy.variable(2)
>>> poly = chaospy.Poly([1, x*y, x*x*y*y, x*y*y*y])
>>> dist = chaospy.Iid(chaospy.Uniform(0, 1), 2)
>>> indices = chaospy.Sens_m2(poly, dist)
>>> print(indices)
[[[0. 0. 0. 0. ]
[0. 0.14285714 0.28571429 0.20930233]]
<BLANKLINE>
[[0. 0.14285714 0.28571429 0.20930233]
[0. 0. 0. 0. ]]] | 2.615709 | 2.695558 | 0.970378 |
x_data = .5*numpy.cos(numpy.arange(order, 0, -1)*numpy.pi/(order+1)) + .5
x_data = chaospy.quad.combine([x_data]*dim)
return x_data.T | def create_chebyshev_samples(order, dim=1) | Chebyshev sampling function.
Args:
order (int):
The number of samples to create along each axis.
dim (int):
The number of dimensions to create samples for.
Returns:
samples following Chebyshev sampling scheme mapped to the
``[0, 1]^dim`` hyper-cube and ``shape == (dim, order)``. | 5.207179 | 6.62358 | 0.786158 |
dim = len(dist)
basis = chaospy.poly.basis(
start=1, stop=order, dim=dim, sort=sort,
cross_truncation=cross_truncation,
)
length = len(basis)
cholmat = chaospy.chol.gill_king(chaospy.descriptives.Cov(basis, dist))
cholmat_inv = numpy.linalg.inv(cholmat.T).T
if not normed:
diag_mesh = numpy.repeat(numpy.diag(cholmat_inv), len(cholmat_inv))
cholmat_inv /= diag_mesh.reshape(cholmat_inv.shape)
coefs = numpy.empty((length+1, length+1))
coefs[1:, 1:] = cholmat_inv
coefs[0, 0] = 1
coefs[0, 1:] = 0
expected = -numpy.sum(
cholmat_inv*chaospy.descriptives.E(basis, dist, **kws), -1)
coefs[1:, 0] = expected
coefs = coefs.T
out = {}
out[(0,)*dim] = coefs[0]
for idx in range(length):
index = basis[idx].keys[0]
out[index] = coefs[idx+1]
polynomials = chaospy.poly.Poly(out, dim, coefs.shape[1:], float)
return polynomials | def orth_chol(order, dist, normed=True, sort="GR", cross_truncation=1., **kws) | Create orthogonal polynomial expansion from Cholesky decomposition.
Args:
order (int):
Order of polynomial expansion
dist (Dist):
Distribution space where polynomials are orthogonal
normed (bool):
If True orthonormal polynomials will be used instead of monic.
sort (str):
Ordering argument passed to poly.basis. If custom basis is used,
argument is ignored.
cross_truncation (float):
Use hyperbolic cross truncation scheme to reduce the number of
terms in expansion.
Examples:
>>> Z = chaospy.Normal()
>>> print(chaospy.around(chaospy.orth_chol(3, Z), 4))
[1.0, q0, 0.7071q0^2-0.7071, 0.4082q0^3-1.2247q0] | 3.825425 | 4.024458 | 0.950544 |
P = P.copy()
if not chaospy.poly.caller.is_decomposed(P):
raise TypeError("Polynomial not on component form.")
A = []
dim = P.dim
coef = P(*(1,)*dim)
M = coef!=0
zero = (0,)*dim
ones = [1]*dim
A = [{zero: coef}]
if zero in P.A:
del P.A[zero]
P.keys.remove(zero)
for key in P.keys:
P.A[key] = (P.A[key]!=0)
for i in range(dim):
A.append({})
ones[i] = numpy.nan
Q = P(*ones)
ones[i] = 1
if isinstance(Q, numpy.ndarray):
continue
Q = Q.A
if zero in Q:
del Q[zero]
for key in Q:
val = Q[key]
A[-1][key] = val
A = [Poly(a, dim, None, P.dtype) for a in A]
P = Poly(A, dim, None, P.dtype)
P = P + 1*(P(*(1,)*dim)==0)*M
return P | def dimsplit(P) | Segmentize a polynomial (on decomposed form) into it's dimensions.
In array missing values are padded with 1 to make dimsplit compatible with
``poly.prod(Q, 0)``.
Args:
P (Poly):
Input polynomial.
Returns:
(Poly):
Segmentet polynomial array where ``Q.shape==P.shape+(P.dim+1,)``.
The surplus element in ``P.dim+1`` is used for coefficients.
Examples:
>>> x,y = chaospy.variable(2)
>>> P = chaospy.Poly([2, x*y, 2*x])
>>> Q = chaospy.dimsplit(P)
>>> print(Q)
[[2, 1, 2], [1, q0, q0], [1, q1, 1]]
>>> print(chaospy.prod(Q, 0))
[2, q0q1, 2q0] | 5.602407 | 5.587273 | 1.002709 |
P = P.copy()
ldim = P.dim
if not dim:
dim = ldim+1
if dim==ldim:
return P
P.dim = dim
if dim>ldim:
key = numpy.zeros(dim, dtype=int)
for lkey in P.keys:
key[:ldim] = lkey
P.A[tuple(key)] = P.A.pop(lkey)
else:
key = numpy.zeros(dim, dtype=int)
for lkey in P.keys:
if not sum(lkey[ldim-1:]) or not sum(lkey):
P.A[lkey[:dim]] = P.A.pop(lkey)
else:
del P.A[lkey]
P.keys = sorted(P.A.keys(), key=sort_key)
return P | def setdim(P, dim=None) | Adjust the dimensions of a polynomial.
Output the results into Poly object
Args:
P (Poly) : Input polynomial
dim (int) : The dimensions of the output polynomial. If omitted,
increase polynomial with one dimension. If the new dim is
smaller then P's dimensions, variables with cut components are
all cut.
Examples:
>>> x,y = chaospy.variable(2)
>>> P = x*x-x*y
>>> print(chaospy.setdim(P, 1))
q0^2 | 3.095418 | 3.649969 | 0.848067 |
return evaluation.evaluate_density(
dist, base**xloc, cache=cache)*base**xloc*numpy.log(base) | def _pdf(self, xloc, dist, base, cache) | Probability density function. | 9.344839 | 9.099339 | 1.02698 |
return evaluation.evaluate_forward(dist, base**xloc, cache=cache) | def _cdf(self, xloc, dist, base, cache) | Cumulative distribution function. | 14.817529 | 12.1355 | 1.221007 |
mat = numpy.asfarray(mat)
size = mat.shape[0]
# Calculate gamma(mat) and xi_(mat).
gamma = 0.0
xi_ = 0.0
for idy in range(size):
gamma = max(abs(mat[idy, idy]), gamma)
for idx in range(idy+1, size):
xi_ = max(abs(mat[idy, idx]), xi_)
# Calculate delta and beta.
delta = eps * max(gamma + xi_, 1.0)
if size == 1:
beta = numpy.sqrt(max(gamma, eps))
else:
beta = numpy.sqrt(max(gamma, xi_ / numpy.sqrt(size*size - 1.0), eps))
# Initialise data structures.
mat_a = 1.0 * mat
mat_r = 0.0 * mat
perm = numpy.eye(size, dtype=int)
# Main loop.
for idx in range(size):
# Row and column swapping, find the index > idx of the largest
# idzgonal element.
idz = idx
for idy in range(idx+1, size):
if abs(mat_a[idy, idy]) >= abs(mat_a[idz, idz]):
idz = idy
if idz != idx:
mat_a, mat_r, perm = swap_across(idz, idx, mat_a, mat_r, perm)
# Calculate a_pred.
theta_j = 0.0
if idx < size-1:
for idy in range(idx+1, size):
theta_j = max(theta_j, abs(mat_a[idx, idy]))
a_pred = max(abs(mat_a[idx, idx]), (theta_j/beta)**2, delta)
# Calculate row idx of r and update a.
mat_r[idx, idx] = numpy.sqrt(a_pred)
for idy in range(idx+1, size):
mat_r[idx, idy] = mat_a[idx, idy] / mat_r[idx, idx]
for idz in range(idx+1, idy+1):
# Keep matrix a symmetric:
mat_a[idy, idz] = mat_a[idz, idy] = \
mat_a[idz, idy] - mat_r[idx, idy] * mat_r[idx, idz]
# The Cholesky factor of mat.
return perm, mat_r.T | def gill_murray_wright(mat, eps=1e-16) | Gill-Murray-Wright algorithm for pivoting modified Cholesky decomposition.
Return ``(perm, lowtri, error)`` such that
`perm.T*mat*perm = lowtri*lowtri.T` is approximately correct.
Args:
mat (numpy.ndarray):
Must be a non-singular and symmetric matrix
eps (float):
Error tolerance used in algorithm.
Returns:
(:py:data:typing.Tuple[numpy.ndarray, numpy.ndarray]):
Permutation matrix used for pivoting and lower triangular factor.
Examples:
>>> mat = numpy.matrix([[4, 2, 1], [2, 6, 3], [1, 3, -.004]])
>>> perm, lowtri = gill_murray_wright(mat)
>>> perm, lowtri = numpy.matrix(perm), numpy.matrix(lowtri)
>>> print(perm)
[[0 1 0]
[1 0 0]
[0 0 1]]
>>> print(numpy.around(lowtri, 4))
[[ 2.4495 0. 0. ]
[ 0.8165 1.8257 0. ]
[ 1.2247 -0. 1.2264]]
>>> print(numpy.around(perm*lowtri*lowtri.T*perm.T, 4))
[[4. 2. 1. ]
[2. 6. 3. ]
[1. 3. 3.004]] | 2.941397 | 3.018938 | 0.974315 |
# Temporary permutation matrix for swaping 2 rows or columns.
size = mat_a.shape[0]
perm_new = numpy.eye(size, dtype=int)
# Modify the permutation matrix perm by swaping columns.
perm_row = 1.0*perm[:, idx]
perm[:, idx] = perm[:, idy]
perm[:, idy] = perm_row
# Modify the permutation matrix p by swaping rows (same as
# columns because p = pT).
row_p = 1.0 * perm_new[idx]
perm_new[idx] = perm_new[idy]
perm_new[idy] = row_p
# Permute mat_a and r (p = pT).
mat_a = numpy.dot(perm_new, numpy.dot(mat_a, perm_new))
mat_r = numpy.dot(mat_r, perm_new)
return mat_a, mat_r, perm | def swap_across(idx, idy, mat_a, mat_r, perm) | Interchange row and column idy and idx. | 3.411592 | 3.330359 | 1.024392 |
primes = list(primes)
if not primes:
prime_order = 10*dim
while len(primes) < dim:
primes = create_primes(prime_order)
prime_order *= 2
primes = primes[:dim]
assert len(primes) == dim, "not enough primes"
if burnin < 0:
burnin = max(primes)
out = numpy.empty((dim, order))
indices = [idx+burnin for idx in range(order)]
for dim_ in range(dim):
out[dim_] = create_van_der_corput_samples(
indices, number_base=primes[dim_])
return out | def create_halton_samples(order, dim=1, burnin=-1, primes=()) | Create Halton sequence.
For ``dim == 1`` the sequence falls back to Van Der Corput sequence.
Args:
order (int):
The order of the Halton sequence. Defines the number of samples.
dim (int):
The number of dimensions in the Halton sequence.
burnin (int):
Skip the first ``burnin`` samples. If negative, the maximum of
``primes`` is used.
primes (tuple):
The (non-)prime base to calculate values along each axis. If
empty, growing prime values starting from 2 will be used.
Returns (numpy.ndarray):
Halton sequence with ``shape == (dim, order)``. | 3.431532 | 3.134362 | 1.09481 |
if x_data is None:
try:
x_data = evaluation.evaluate_inverse(
self, numpy.array([[0.5]]*len(self)))
except StochasticallyDependentError:
x_data = approximation.find_interior_point(self)
shape = (len(self),)
if hasattr(self, "_range"):
return self._range(x_data, {})
else:
x_data = numpy.asfarray(x_data)
shape = x_data.shape
x_data = x_data.reshape(len(self), -1)
q_data = evaluation.evaluate_bound(self, x_data)
q_data = q_data.reshape((2,)+shape)
return q_data | def range(self, x_data=None) | Generate the upper and lower bounds of a distribution.
Args:
x_data (numpy.ndarray) :
The bounds might vary over the sample space. By providing
x_data you can specify where in the space the bound should be
taken. If omitted, a (pseudo-)random sample is used.
Returns:
(numpy.ndarray):
The lower (out[0]) and upper (out[1]) bound where
out.shape=(2,)+x_data.shape | 3.861584 | 3.912972 | 0.986867 |
x_data = numpy.asfarray(x_data)
shape = x_data.shape
x_data = x_data.reshape(len(self), -1)
lower, upper = evaluation.evaluate_bound(self, x_data)
q_data = numpy.zeros(x_data.shape)
indices = x_data > upper
q_data[indices] = 1
indices = ~indices & (x_data >= lower)
q_data[indices] = numpy.clip(evaluation.evaluate_forward(
self, x_data), a_min=0, a_max=1)[indices]
q_data = q_data.reshape(shape)
return q_data | def fwd(self, x_data) | Forward Rosenblatt transformation.
Args:
x_data (numpy.ndarray):
Location for the distribution function. ``x_data.shape`` must
be compatible with distribution shape.
Returns:
(numpy.ndarray):
Evaluated distribution function values, where
``out.shape==x_data.shape``. | 2.994967 | 3.470877 | 0.862885 |
if len(self) > 1 and evaluation.get_dependencies(*self):
raise StochasticallyDependentError(
"Cumulative distribution does not support dependencies.")
q_data = self.fwd(x_data)
if len(self) > 1:
q_data = numpy.prod(q_data, 0)
return q_data | def cdf(self, x_data) | Cumulative distribution function.
Note that chaospy only supports cumulative distribution functions for
stochastically independent distributions.
Args:
x_data (numpy.ndarray):
Location for the distribution function. Assumes that
``len(x_data) == len(distribution)``.
Returns:
(numpy.ndarray):
Evaluated distribution function values, where output has shape
``x_data.shape`` in one dimension and ``x_data.shape[1:]`` in
higher dimensions. | 5.813375 | 5.700745 | 1.019757 |
q_data = numpy.asfarray(q_data)
assert numpy.all((q_data >= 0) & (q_data <= 1)), "sanitize your inputs!"
shape = q_data.shape
q_data = q_data.reshape(len(self), -1)
x_data = evaluation.evaluate_inverse(self, q_data)
lower, upper = evaluation.evaluate_bound(self, x_data)
x_data = numpy.clip(x_data, a_min=lower, a_max=upper)
x_data = x_data.reshape(shape)
return x_data | def inv(self, q_data, max_iterations=100, tollerance=1e-5) | Inverse Rosenblatt transformation.
If possible the transformation is done analytically. If not possible,
transformation is approximated using an algorithm that alternates
between Newton-Raphson and binary search.
Args:
q_data (numpy.ndarray):
Probabilities to be inverse. If any values are outside ``[0,
1]``, error will be raised. ``q_data.shape`` must be compatible
with distribution shape.
max_iterations (int):
If approximation is used, this sets the maximum number of
allowed iterations in the Newton-Raphson algorithm.
tollerance (float):
If approximation is used, this set the error tolerance level
required to define a sample as converged.
Returns:
(numpy.ndarray):
Inverted probability values where
``out.shape == q_data.shape``. | 2.965937 | 3.340713 | 0.887815 |
x_data = numpy.asfarray(x_data)
shape = x_data.shape
x_data = x_data.reshape(len(self), -1)
lower, upper = evaluation.evaluate_bound(self, x_data)
f_data = numpy.zeros(x_data.shape)
indices = (x_data <= upper) & (x_data >= lower)
f_data[indices] = evaluation.evaluate_density(self, x_data)[indices]
f_data = f_data.reshape(shape)
if len(self) > 1:
f_data = numpy.prod(f_data, 0)
return f_data | def pdf(self, x_data, step=1e-7) | Probability density function.
If possible the density will be calculated analytically. If not
possible, it will be approximated by approximating the one-dimensional
derivative of the forward Rosenblatt transformation and multiplying the
component parts. Note that even if the distribution is multivariate,
each component of the Rosenblatt is one-dimensional.
Args:
x_data (numpy.ndarray):
Location for the density function. ``x_data.shape`` must be
compatible with distribution shape.
step (float, numpy.ndarray):
If approximation is used, the step length given in the
approximation of the derivative. If array provided, elements
are used along each axis.
Returns:
(numpy.ndarray):
Evaluated density function values. Shapes are related through
the identity ``x_data.shape == dist.shape+out.shape``. | 2.732283 | 3.04945 | 0.895992 |
size_ = numpy.prod(size, dtype=int)
dim = len(self)
if dim > 1:
if isinstance(size, (tuple, list, numpy.ndarray)):
shape = (dim,) + tuple(size)
else:
shape = (dim, size)
else:
shape = size
from . import sampler
out = sampler.generator.generate_samples(
order=size_, domain=self, rule=rule, antithetic=antithetic)
try:
out = out.reshape(shape)
except:
if len(self) == 1:
out = out.flatten()
else:
out = out.reshape(dim, int(out.size/dim))
return out | def sample(self, size=(), rule="R", antithetic=None) | Create pseudo-random generated samples.
By default, the samples are created using standard (pseudo-)random
samples. However, if needed, the samples can also be created by either
low-discrepancy sequences, and/or variance reduction techniques.
Changing the sampling scheme, use the following ``rule`` flag:
+-------+-------------------------------------------------+
| key | Description |
+=======+=================================================+
| ``C`` | Roots of the first order Chebyshev polynomials. |
+-------+-------------------------------------------------+
| ``NC``| Chebyshev nodes adjusted to ensure nested. |
+-------+-------------------------------------------------+
| ``K`` | Korobov lattice. |
+-------+-------------------------------------------------+
| ``R`` | Classical (Pseudo-)Random samples. |
+-------+-------------------------------------------------+
| ``RG``| Regular spaced grid. |
+-------+-------------------------------------------------+
| ``NG``| Nested regular spaced grid. |
+-------+-------------------------------------------------+
| ``L`` | Latin hypercube samples. |
+-------+-------------------------------------------------+
| ``S`` | Sobol low-discrepancy sequence. |
+-------+-------------------------------------------------+
| ``H`` | Halton low-discrepancy sequence. |
+-------+-------------------------------------------------+
| ``M`` | Hammersley low-discrepancy sequence. |
+-------+-------------------------------------------------+
All samples are created on the ``[0, 1]``-hypercube, which then is
mapped into the domain of the distribution using the inverse Rosenblatt
transformation.
Args:
size (numpy.ndarray):
The size of the samples to generate.
rule (str):
Indicator defining the sampling scheme.
antithetic (bool, numpy.ndarray):
If provided, will be used to setup antithetic variables. If
array, defines the axes to mirror.
Returns:
(numpy.ndarray):
Random samples with shape ``(len(self),)+self.shape``. | 3.270472 | 3.179294 | 1.028679 |
K = numpy.asarray(K, dtype=int)
shape = K.shape
dim = len(self)
if dim > 1:
shape = shape[1:]
size = int(K.size/dim)
K = K.reshape(dim, size)
cache = {}
out = [evaluation.evaluate_moment(self, kdata, cache) for kdata in K.T]
out = numpy.array(out)
return out.reshape(shape) | def mom(self, K, **kws) | Raw statistical moments.
Creates non-centralized raw moments from the random variable. If
analytical options can not be utilized, Monte Carlo integration
will be used.
Args:
K (numpy.ndarray):
Index of the raw moments. k.shape must be compatible with
distribution shape. Sampling scheme when performing Monte
Carlo
rule (str):
rule for estimating the moment if the analytical method fails.
composite (numpy.ndarray):
If provided, composit quadrature will be used. Ignored in the
case if gaussian=True. If int provided, determines number of
even domain splits. If array of ints, determines number of even
domain splits along each axis. If array of arrays/floats,
determines location of splits.
antithetic (numpy.ndarray):
List of bool. Represents the axes to mirror using antithetic
variable during MCI.
Returns:
(numpy.ndarray):
Shapes are related through the identity
``k.shape == dist.shape+k.shape``. | 4.469238 | 4.471303 | 0.999538 |
kloc = numpy.asarray(kloc, dtype=int)
shape = kloc.shape
kloc = kloc.reshape(len(self), -1)
cache = {}
out = [evaluation.evaluate_recurrence_coefficients(self, k)
for k in kloc.T]
out = numpy.array(out).T
return out.reshape((2,)+shape) | def ttr(self, kloc, acc=10**3, verbose=1) | Three terms relation's coefficient generator
Args:
k (numpy.ndarray, int):
The order of the coefficients.
acc (int):
Accuracy of discretized Stieltjes if analytical methods are
unavailable.
Returns:
(Recurrence coefficients):
Where out[0] is the first (A) and out[1] is the second
coefficient With ``out.shape==(2,)+k.shape``. | 4.659978 | 3.9951 | 1.166423 |
if N is None:
N = len(poly)/2 + 1
corr = Corr(poly, dist, **kws)
out = numpy.empty(N)
for n in range(N):
out[n] = numpy.mean(corr.diagonal(n), 0)
return out | def Acf(poly, dist, N=None, **kws) | Auto-correlation function.
Args:
poly (Poly):
Polynomial of interest. Must have ``len(poly) > N``.
dist (Dist):
Defines the space the correlation is taken on.
N (int):
The number of time steps appart included. If omited set to
``len(poly)/2+1``.
Returns:
(numpy.ndarray) :
Auto-correlation of ``poly`` with shape ``(N,)``. Note that by
definition ``Q[0]=1``.
Examples:
>>> poly = chaospy.prange(10)[1:]
>>> Z = chaospy.Uniform()
>>> print(numpy.around(chaospy.Acf(poly, Z, 5), 4))
[1. 0.9915 0.9722 0.9457 0.9127] | 3.595758 | 4.88451 | 0.736155 |
rc("figure", figsize=[8.,4.])
rc("figure.subplot", left=.08, top=.95, right=.98)
rc("image", cmap="gray")
seed(1000)
Q1 = cp.Gamma(2)
Q2 = cp.Normal(0, Q1)
Q = cp.J(Q1, Q2)
#end
subplot(121)
s,t = meshgrid(linspace(0,5,200), linspace(-6,6,200))
contourf(s,t,Q.pdf([s,t]),50)
xlabel("$q_1$")
ylabel("$q_2$")
subplot(122)
Qr = Q.sample(500)
scatter(*Qr, s=10, c="k", marker="s")
xlabel("$Q_1$")
ylabel("$Q_2$")
axis([0,5,-6,6])
savefig("multivariate.png"); clf()
Q2 = cp.Gamma(1)
Q1 = cp.Normal(Q2**2, Q2+1)
Q = cp.J(Q1, Q2)
#end
subplot(121)
s,t = meshgrid(linspace(-4,7,200), linspace(0,3,200))
contourf(s,t,Q.pdf([s,t]),30)
xlabel("$q_1$")
ylabel("$q_2$")
subplot(122)
Qr = Q.sample(500)
scatter(*Qr)
xlabel("$Q_1$")
ylabel("$Q_2$")
axis([-4,7,0,3])
savefig("multivariate2.png"); clf() | def plot_figures() | Plot figures for multivariate distribution section. | 2.660733 | 2.612596 | 1.018425 |
if isinstance(vari, Poly):
shape = int(numpy.prod(vari.shape))
return reshape(vari, (shape,))
return numpy.array(vari).flatten() | def flatten(vari) | Flatten a shapeable quantity.
Args:
vari (chaospy.poly.base.Poly, numpy.ndarray):
Shapeable input quantity.
Returns:
(chaospy.poly.base.Poly, numpy.ndarray):
Same type as ``vari`` with `len(Q.shape)==1`.
Examples:
>>> P = chaospy.reshape(chaospy.prange(4), (2,2))
>>> print(P)
[[1, q0], [q0^2, q0^3]]
>>> print(chaospy.flatten(P))
[1, q0, q0^2, q0^3] | 5.530801 | 8.068131 | 0.685512 |
if isinstance(vari, Poly):
core = vari.A.copy()
for key in vari.keys:
core[key] = reshape(core[key], shape)
out = Poly(core, vari.dim, shape, vari.dtype)
return out
return numpy.asarray(vari).reshape(shape) | def reshape(vari, shape) | Reshape the shape of a shapeable quantity.
Args:
vari (chaospy.poly.base.Poly, numpy.ndarray):
Shapeable input quantity.
shape (tuple):
The polynomials new shape. Must be compatible with the number of
elements in ``vari``.
Returns:
(chaospy.poly.base.Poly, numpy.ndarray):
Same type as ``vari``.
Examples:
>>> poly = chaospy.prange(6)
>>> print(poly)
[1, q0, q0^2, q0^3, q0^4, q0^5]
>>> print(chaospy.reshape(poly, (2,3)))
[[1, q0, q0^2], [q0^3, q0^4, q0^5]] | 4.360572 | 5.256711 | 0.829525 |
if isinstance(vari, Poly):
core_old = vari.A.copy()
core_new = {}
for key in vari.keys:
core_new[key] = rollaxis(core_old[key], axis, start)
return Poly(core_new, vari.dim, None, vari.dtype)
return numpy.rollaxis(vari, axis, start) | def rollaxis(vari, axis, start=0) | Roll the specified axis backwards, until it lies in a given position.
Args:
vari (chaospy.poly.base.Poly, numpy.ndarray):
Input array or polynomial.
axis (int):
The axis to roll backwards. The positions of the other axes do not
change relative to one another.
start (int):
The axis is rolled until it lies before thes position. | 3.812619 | 3.609141 | 1.056378 |
if isinstance(vari, Poly):
core = vari.A.copy()
for key in vari.keys:
core[key] = swapaxes(core[key], ax1, ax2)
return Poly(core, vari.dim, None, vari.dtype)
return numpy.swapaxes(vari, ax1, ax2) | def swapaxes(vari, ax1, ax2) | Interchange two axes of a polynomial. | 3.792858 | 3.474431 | 1.091649 |
if isinstance(vari, Poly):
core = vari.A.copy()
for key in vari.keys:
core[key] = roll(core[key], shift, axis)
return Poly(core, vari.dim, None, vari.dtype)
return numpy.roll(vari, shift, axis) | def roll(vari, shift, axis=None) | Roll array elements along a given axis. | 3.803945 | 3.81055 | 0.998267 |
if isinstance(vari, Poly):
core = vari.A.copy()
for key in vari.keys:
core[key] = transpose(core[key])
return Poly(core, vari.dim, vari.shape[::-1], vari.dtype)
return numpy.transpose(vari) | def transpose(vari) | Transpose a shapeable quantety.
Args:
vari (chaospy.poly.base.Poly, numpy.ndarray):
Quantety of interest.
Returns:
(chaospy.poly.base.Poly, numpy.ndarray):
Same type as ``vari``.
Examples:
>>> P = chaospy.reshape(chaospy.prange(4), (2,2))
>>> print(P)
[[1, q0], [q0^2, q0^3]]
>>> print(chaospy.transpose(P))
[[1, q0^2], [q0, q0^3]] | 4.6151 | 5.578815 | 0.827255 |
samples = numpy.asfarray(samples)
assert numpy.all(samples <= 1) and numpy.all(samples >= 0), (
"all samples assumed on interval [0, 1].")
if len(samples.shape) == 1:
samples = samples.reshape(1, -1)
inverse_samples = 1-samples
dims = len(samples)
if not len(axes):
axes = (True,)
axes = numpy.asarray(axes, dtype=bool).flatten()
indices = {tuple(axes*idx) for idx in numpy.ndindex((2,)*dims)}
indices = sorted(indices, reverse=True)
indices = sorted(indices, key=lambda idx: sum(idx))
out = [numpy.where(idx, inverse_samples.T, samples.T).T for idx in indices]
out = numpy.dstack(out).reshape(dims, -1)
return out | def create_antithetic_variates(samples, axes=()) | Generate antithetic variables.
Args:
samples (numpy.ndarray):
The samples, assumed to be on the [0, 1]^D hyper-cube, to be
reflected.
axes (tuple):
Boolean array of which axes to reflect. If This to limit the number
of points created in higher dimensions by reflecting all axes at
once.
Returns (numpy.ndarray):
Same as ``samples``, but with samples internally reflected. roughly
equivalent to ``numpy.vstack([samples, 1-samples])`` in one dimensions. | 3.442806 | 3.357889 | 1.025289 |
core, dim_, shape_, dtype_ = chaospy.poly.constructor.identify_core(core)
core, shape = chaospy.poly.constructor.ensure_shape(core, shape, shape_)
core, dtype = chaospy.poly.constructor.ensure_dtype(core, dtype, dtype_)
core, dim = chaospy.poly.constructor.ensure_dim(core, dim, dim_)
# Remove empty elements
for key in list(core.keys()):
if np.all(core[key] == 0):
del core[key]
assert isinstance(dim, int), \
"not recognised type for dim: '%s'" % repr(type(dim))
assert isinstance(shape, tuple), str(shape)
assert dtype is not None, str(dtype)
# assert non-empty container
if not core:
core = {(0,)*dim: np.zeros(shape, dtype=dtype)}
else:
core = {key: np.asarray(value, dtype) for key, value in core.items()}
return core, dim, shape, dtype | def preprocess(core, dim, shape, dtype) | Constructor function for the Poly class. | 3.077038 | 2.960576 | 1.039338 |
args = [cleanup(arg) for arg in args]
if part is not None:
parts, orders = part
if numpy.array(orders).size == 1:
orders = [int(numpy.array(orders).item())]*len(args)
parts = numpy.array(parts).flatten()
for i, arg in enumerate(args):
m, n = float(parts[i]), float(orders[i])
l = len(arg)
args[i] = arg[int(m/n*l):int((m+1)/n*l)]
shapes = [arg.shape for arg in args]
size = numpy.prod(shapes, 0)[0]*numpy.sum(shapes, 0)[1]
if size > 10**9:
raise MemoryError("Too large sets")
if len(args) == 1:
out = args[0]
elif len(args) == 2:
out = combine_two(*args)
else:
arg1 = combine_two(*args[:2])
out = combine([arg1,]+args[2:])
return out | def combine(args, part=None) | All linear combination of a list of list.
Args:
args (numpy.ndarray) : List of input arrays. Components to take linear
combination of with `args[i].shape=(N[i], M[i])` where N is to be
taken linear combination of and M is static. M[i] is set to 1 if
missing.
Returns:
(numpy.array) : matrix of combinations with shape (numpy.prod(N),
numpy.sum(M)).
Examples:
>>> A, B = [1,2], [[4,4],[5,6]]
>>> print(chaospy.quad.combine([A, B]))
[[1. 4. 4.]
[1. 5. 6.]
[2. 4. 4.]
[2. 5. 6.]] | 3.29407 | 3.484626 | 0.945315 |
arg = numpy.asarray(arg)
if len(arg.shape) <= 1:
arg = arg.reshape(arg.size, 1)
elif len(arg.shape) > 2:
raise ValueError("shapes must be smaller than 3")
return arg | def cleanup(arg) | Clean up the input variable. | 3.377416 | 3.308555 | 1.020813 |
x_data = numpy.arange(1, order+1)/(order+1.)
x_data = chaospy.quad.combine([x_data]*dim)
return x_data.T | def create_grid_samples(order, dim=1) | Create samples from a regular grid.
Args:
order (int):
The order of the grid. Defines the number of samples.
dim (int):
The number of dimensions in the grid
Returns (numpy.ndarray):
Regular grid with ``shape == (dim, order)``. | 5.953828 | 6.854823 | 0.86856 |
idxm = numpy.array(multi_index(idxi, dim))
idxn = numpy.array(multi_index(idxj, dim))
out = single_index(idxm + idxn)
return out | def add(idxi, idxj, dim) | Bertran addition.
Example
-------
>>> print(chaospy.bertran.add(3, 3, 1))
6
>>> print(chaospy.bertran.add(3, 3, 2))
10 | 3.458387 | 6.20377 | 0.557465 |
return int(scipy.special.comb(order+dim, dim, 1)) | def terms(order, dim) | Count the number of polynomials in an expansion.
Parameters
----------
order : int
The upper order for the expansion.
dim : int
The number of dimensions of the expansion.
Returns
-------
N : int
The number of terms in an expansion of upper order `M` and
number of dimensions `dim`. | 10.498835 | 17.09058 | 0.614305 |
def _rec(idx, dim):
idxn = idxm = 0
if not dim:
return ()
if idx == 0:
return (0, )*dim
while terms(idxn, dim) <= idx:
idxn += 1
idx -= terms(idxn-1, dim)
if idx == 0:
return (idxn,) + (0,)*(dim-1)
while terms(idxm, dim-1) <= idx:
idxm += 1
return (int(idxn-idxm),) + _rec(idx, dim-1)
return _rec(idx, dim) | def multi_index(idx, dim) | Single to multi-index using graded reverse lexicographical notation.
Parameters
----------
idx : int
Index in interger notation
dim : int
The number of dimensions in the multi-index notation
Returns
-------
out : tuple
Multi-index of `idx` with `len(out)=dim`
Examples
--------
>>> for idx in range(5):
... print(chaospy.bertran.multi_index(idx, 3))
(0, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(2, 0, 0)
See Also
--------
single_index | 3.564613 | 3.809173 | 0.935797 |
if stop is None:
start, stop = 0, start
start = numpy.array(start, dtype=int).flatten()
stop = numpy.array(stop, dtype=int).flatten()
sort = sort.upper()
total = numpy.mgrid[(slice(numpy.max(stop), -1, -1),)*dim]
total = numpy.array(total).reshape(dim, -1)
if start.size > 1:
for idx, start_ in enumerate(start):
total = total[:, total[idx] >= start_]
else:
total = total[:, total.sum(0) >= start]
if stop.size > 1:
for idx, stop_ in enumerate(stop):
total = total[:, total[idx] <= stop_]
total = total.T.tolist()
if "G" in sort:
total = sorted(total, key=sum)
else:
def cmp_(idxi, idxj):
if not numpy.any(idxi):
return 0
if idxi[0] == idxj[0]:
return cmp(idxi[:-1], idxj[:-1])
return (idxi[-1] > idxj[-1]) - (idxi[-1] < idxj[-1])
key = functools.cmp_to_key(cmp_)
total = sorted(total, key=key)
if "I" in sort:
total = total[::-1]
if "R" in sort:
total = [idx[::-1] for idx in total]
for pos, idx in reversed(list(enumerate(total))):
idx = numpy.array(idx)
cross_truncation = numpy.asfarray(cross_truncation)
try:
if numpy.any(numpy.sum(idx**(1./cross_truncation)) > numpy.max(stop)**(1./cross_truncation)):
del total[pos]
except (OverflowError, ZeroDivisionError):
pass
return total | def bindex(start, stop=None, dim=1, sort="G", cross_truncation=1.) | Generator for creating multi-indices.
Args:
start (int):
The lower order of the indices
stop (:py:data:typing.Optional[int]):
the maximum shape included. If omitted: stop <- start; start <- 0
If int is provided, set as largest total order. If array of int,
set as largest order along each axis.
dim (int):
The number of dimensions in the expansion
cross_truncation (float):
Use hyperbolic cross truncation scheme to reduce the number of
terms in expansion.
Returns:
list:
Order list of indices.
Examples:
>>> print(chaospy.bertran.bindex(2, 3, 2))
[[2, 0], [1, 1], [0, 2], [3, 0], [2, 1], [1, 2], [0, 3]]
>>> print(chaospy.bertran.bindex(0, 1, 3))
[[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]] | 2.634143 | 2.723189 | 0.967301 |
if -1 in idxm:
return 0
order = int(sum(idxm))
dim = len(idxm)
if order == 0:
return 0
return terms(order-1, dim) + single_index(idxm[1:]) | def single_index(idxm) | Multi-index to single integer notation.
Uses graded reverse lexicographical notation.
Parameters
----------
idxm : numpy.ndarray
Index in multi-index notation
Returns
-------
idx : int
Integer index of `idxm`
Examples
--------
>>> for idx in range(3):
... print(chaospy.bertran.single_index(numpy.eye(3)[idx]))
1
2
3 | 5.231637 | 6.171939 | 0.847649 |
idxm = multi_index(idx, dim)
out = 0
while idxm[-1:] == (0,):
out += 1
idxm = idxm[:-1]
return out | def rank(idx, dim) | Calculate the index rank according to Bertran's notation. | 4.448659 | 4.485933 | 0.991691 |
idxm = multi_index(idx, dim)
if axis is None:
axis = dim - numpy.argmin(1*(numpy.array(idxm)[::-1] == 0))-1
if not idx:
return idx, axis
if idxm[axis] == 0:
idxi = parent(parent(idx, dim)[0], dim)[0]
while child(idxi+1, dim, axis) < idx:
idxi += 1
return idxi, axis
out = numpy.array(idxm) - 1*(numpy.eye(dim)[axis])
return single_index(out), axis | def parent(idx, dim, axis=None) | Parent node according to Bertran's notation.
Parameters
----------
idx : int
Index of the child node.
dim : int
Dimensionality of the problem.
axis : int
Assume axis direction.
Returns
-------
out : int
Index of parent node with `j<=i`, and `j==i` iff `i==0`.
axis : int
Dimension direction the parent was found. | 5.029588 | 5.309032 | 0.947364 |
idxm = multi_index(idx, dim)
out = numpy.array(idxm) + 1*(numpy.eye(len(idxm))[axis])
return single_index(out) | def child(idx, dim, axis) | Child node according to Bertran's notation.
Parameters
----------
idx : int
Index of the parent node.
dim : int
Dimensionality of the problem.
axis : int
Dimension direction to define a child.
Must have `0<=axis<dim`
Returns
-------
out : int
Index of child node with `out > idx`.
Examples
--------
>>> print(chaospy.bertran.child(4, 1, 0))
5
>>> print(chaospy.bertran.child(4, 2, 1))
8 | 7.730153 | 15.745575 | 0.490941 |
idxm = [0]*dim
out = []
def _olindex(idx):
if numpy.sum(idxm) == order:
out.append(idxm[:])
return
if idx == dim:
return
idxm_sum = numpy.sum(idxm)
idx_saved = idxm[idx]
for idxi in range(order - numpy.sum(idxm) + 1):
idxm[idx] = idxi
if idxm_sum < order:
_olindex(idx+1)
else:
break
idxm[idx] = idx_saved
_olindex(0)
return numpy.array(out) | def olindex(order, dim) | Create an lexiographical sorted basis for a given order.
Examples
--------
>>> chaospy.bertran.olindex(3, 2)
array([[0, 3],
[1, 2],
[2, 1],
[3, 0]]) | 3.22001 | 3.936307 | 0.818028 |
indices = [olindex(o, dim) for o in range(order+1)]
indices = numpy.vstack(indices)
return indices | def olindices(order, dim) | Create an lexiographical sorted basis for a given order.
Examples:
>>> chaospy.bertran.olindices(2, 2)
array([[0, 0],
[0, 1],
[1, 0],
[0, 2],
[1, 1],
[2, 0]]) | 4.073516 | 7.252534 | 0.561668 |
core = core.copy()
if shape is None:
shape = shape_
elif isinstance(shape, int):
shape = (shape,)
if tuple(shape) == tuple(shape_):
return core, shape
ones = np.ones(shape, dtype=int)
for key, val in core.items():
core[key] = val*ones
return core, shape | def ensure_shape(core, shape, shape_) | Ensure shape is correct. | 2.958211 | 2.848765 | 1.038419 |
core = core.copy()
if dtype is None:
dtype = dtype_
if dtype_ == dtype:
return core, dtype
for key, val in {
int: chaospy.poly.typing.asint,
float: chaospy.poly.typing.asfloat,
np.float32: chaospy.poly.typing.asfloat,
np.float64: chaospy.poly.typing.asfloat,
}.items():
if dtype == key:
converter = val
break
else:
raise ValueError("dtype not recognised (%s)" % str(dtype))
for key, val in core.items():
core[key] = converter(val)
return core, dtype | def ensure_dtype(core, dtype, dtype_) | Ensure dtype is correct. | 2.844136 | 2.764337 | 1.028867 |
if dim is None:
dim = dim_
if not dim:
return core, 1
if dim_ == dim:
return core, int(dim)
if dim > dim_:
key_convert = lambda vari: vari[:dim_]
else:
key_convert = lambda vari: vari + (0,)*(dim-dim_)
new_core = {}
for key, val in core.items():
key_ = key_convert(key)
if key_ in new_core:
new_core[key_] += val
else:
new_core[key_] = val
return new_core, int(dim) | def ensure_dim(core, dim, dim_) | Ensure that dim is correct. | 2.831138 | 2.789147 | 1.015055 |
return numpy.sum((max(val)+1)**numpy.arange(len(val)-1, -1, -1)*val) | def sort_key(val) | Sort key for sorting keys in grevlex order. | 9.710356 | 9.675517 | 1.003601 |
return Poly(self.A.copy(), self.dim, self.shape,
self.dtype) | def copy(self) | Return a copy of the polynomial. | 17.558527 | 11.360004 | 1.545644 |
out = numpy.array([self.A[key] for key in self.keys])
out = numpy.rollaxis(out, -1)
return out | def coefficients(self) | Polynomial coefficients. | 5.197267 | 5.108103 | 1.017455 |
shape = poly.shape
poly = polynomials.flatten(poly)
dim = len(dist)
#sample from the inumpyut dist
samples = dist.sample(sample, **kws)
qoi_dists = []
for i in range(0, len(poly)):
#sample the polynomial solution
if dim == 1:
dataset = poly[i](samples)
else:
dataset = poly[i](*samples)
lo = dataset.min()
up = dataset.max()
#creates qoi_dist
qoi_dist = distributions.SampleDist(dataset, lo, up)
qoi_dists.append(qoi_dist)
#reshape the qoi_dists to match the shape of the inumpyut poly
qoi_dists = numpy.array(qoi_dists, distributions.Dist)
qoi_dists = qoi_dists.reshape(shape)
if not shape:
qoi_dists = qoi_dists.item()
return qoi_dists | def QoI_Dist(poly, dist, sample=10000, **kws) | Constructs distributions for the quantity of interests.
The function constructs a kernel density estimator (KDE) for each
polynomial (poly) by sampling it. With the KDEs, distributions (Dists) are
constructed. The Dists can be used for e.g. plotting probability density
functions (PDF), or to make a second uncertainty quantification simulation
with that newly generated Dists.
Args:
poly (Poly):
Polynomial of interest.
dist (Dist):
Defines the space where the samples for the KDE is taken from the
poly.
sample (int):
Number of samples used in estimation to construct the KDE.
Returns:
(numpy.ndarray):
The constructed quantity of interest (QoI) distributions, where
``qoi_dists.shape==poly.shape``.
Examples:
>>> dist = chaospy.Normal(0, 1)
>>> x = chaospy.variable(1)
>>> poly = chaospy.Poly([x])
>>> qoi_dist = chaospy.QoI_Dist(poly, dist)
>>> values = qoi_dist[0].pdf([-0.75, 0., 0.75])
>>> print(numpy.around(values, 8))
[0.29143037 0.39931708 0.29536329] | 3.640353 | 3.994255 | 0.911397 |
order = numpy.asarray(order, dtype=int).flatten()
lower = numpy.asarray(lower).flatten()
upper = numpy.asarray(upper).flatten()
dim = max(lower.size, upper.size, order.size)
order = numpy.ones(dim, dtype=int)*order
lower = numpy.ones(dim)*lower
upper = numpy.ones(dim)*upper
if composite is None:
composite = numpy.array(0)
composite = numpy.asarray(composite)
if not composite.size:
composite = numpy.array([numpy.linspace(0, 1, composite+1)]*dim)
else:
composite = numpy.array(composite)
if len(composite.shape) <= 1:
composite = numpy.transpose([composite])
composite = ((composite.T-lower)/(upper-lower)).T
results = [_gauss_legendre(order[i], composite[i]) for i in range(dim)]
abscis = numpy.array([_[0] for _ in results])
weights = numpy.array([_[1] for _ in results])
abscis = chaospy.quad.combine(abscis)
weights = chaospy.quad.combine(weights)
abscis = (upper-lower)*abscis + lower
weights = numpy.prod(weights*(upper-lower), 1)
return abscis.T, weights | def quad_gauss_legendre(order, lower=0, upper=1, composite=None) | Generate the quadrature nodes and weights in Gauss-Legendre quadrature.
Example:
>>> abscissas, weights = quad_gauss_legendre(3)
>>> print(numpy.around(abscissas, 4))
[[0.0694 0.33 0.67 0.9306]]
>>> print(numpy.around(weights, 4))
[0.1739 0.3261 0.3261 0.1739] | 2.474604 | 2.496356 | 0.991286 |
inner = numpy.ones(order+1)*0.5
outer = numpy.arange(order+1)**2
outer = outer/(16*outer-4.)
banded = numpy.diag(numpy.sqrt(outer[1:]), k=-1) + numpy.diag(inner) + \
numpy.diag(numpy.sqrt(outer[1:]), k=1)
vals, vecs = numpy.linalg.eig(banded)
abscis, weight = vals.real, vecs[0, :]**2
indices = numpy.argsort(abscis)
abscis, weight = abscis[indices], weight[indices]
n_abscis = len(abscis)
composite = numpy.array(composite).flatten()
composite = list(set(composite))
composite = [comp for comp in composite if (comp < 1) and (comp > 0)]
composite.sort()
composite = [0]+composite+[1]
abscissas = numpy.empty(n_abscis*(len(composite)-1))
weights = numpy.empty(n_abscis*(len(composite)-1))
for dim in range(len(composite)-1):
abscissas[dim*n_abscis:(dim+1)*n_abscis] = \
abscis*(composite[dim+1]-composite[dim]) + composite[dim]
weights[dim*n_abscis:(dim+1)*n_abscis] = \
weight*(composite[dim+1]-composite[dim])
return abscissas, weights | def _gauss_legendre(order, composite=1) | Backend function. | 2.506039 | 2.494658 | 1.004562 |
if len(dist) > 1:
if isinstance(order, int):
values = [quad_gauss_patterson(order, d) for d in dist]
else:
values = [quad_gauss_patterson(order[i], dist[i])
for i in range(len(dist))]
abscissas = [_[0][0] for _ in values]
weights = [_[1] for _ in values]
abscissas = chaospy.quad.combine(abscissas).T
weights = numpy.prod(chaospy.quad.combine(weights), -1)
return abscissas, weights
order = sorted(PATTERSON_VALUES.keys())[order]
abscissas, weights = PATTERSON_VALUES[order]
lower, upper = dist.range()
abscissas = .5*(abscissas*(upper-lower)+upper+lower)
abscissas = abscissas.reshape(1, abscissas.size)
weights /= numpy.sum(weights)
return abscissas, weights | def quad_gauss_patterson(order, dist) | Generate sets abscissas and weights for Gauss-Patterson quadrature.
Args:
order (int) : The quadrature order. Must be in the interval (0, 8).
dist (Dist) : The domain to create quadrature over.
Returns:
(numpy.ndarray, numpy.ndarray) : Abscissas and weights.
Example:
>>> X, W = chaospy.quad_gauss_patterson(3, chaospy.Uniform(0, 1))
>>> print(numpy.around(X, 4))
[[0.0031 0.0198 0.0558 0.1127 0.1894 0.2829 0.3883 0.5 0.6117 0.7171
0.8106 0.8873 0.9442 0.9802 0.9969]]
>>> print(numpy.around(W, 4))
[0.0085 0.0258 0.0465 0.0672 0.0858 0.1003 0.1096 0.1128 0.1096 0.1003
0.0858 0.0672 0.0465 0.0258 0.0085]
Reference:
Prem Kythe, Michael Schaeferkotter,
Handbook of Computational Methods for Integration,
Chapman and Hall, 2004,
ISBN: 1-58488-428-2,
LC: QA299.3.K98.
Thomas Patterson,
The Optimal Addition of Points to Quadrature Formulae,
Mathematics of Computation,
Volume 22, Number 104, October 1968, pages 847-856. | 2.665665 | 2.739207 | 0.973152 |
from ..distributions.baseclass import Dist
isdist = isinstance(domain, Dist)
if isdist:
dim = len(domain)
else:
dim = np.array(domain[0]).size
rule = rule.lower()
if len(rule) == 1:
rule = collection.QUAD_SHORT_NAMES[rule]
quad_function = collection.get_function(
rule,
domain,
normalize,
growth=growth,
composite=composite,
accuracy=accuracy,
)
if sparse:
order = np.ones(len(domain), dtype=int)*order
abscissas, weights = sparse_grid.sparse_grid(quad_function, order, dim)
else:
abscissas, weights = quad_function(order)
assert len(weights) == abscissas.shape[1]
assert len(abscissas.shape) == 2
return abscissas, weights | def generate_quadrature(
order, domain, accuracy=100, sparse=False, rule="C",
composite=1, growth=None, part=None, normalize=False, **kws
) | Numerical quadrature node and weight generator.
Args:
order (int):
The order of the quadrature.
domain (numpy.ndarray, Dist):
If array is provided domain is the lower and upper bounds (lo,up).
Invalid if gaussian is set. If Dist is provided, bounds and nodes
are adapted to the distribution. This includes weighting the nodes
in Clenshaw-Curtis quadrature.
accuracy (int):
If gaussian is set, but the Dist provieded in domain does not
provide an analytical TTR, ac sets the approximation order for the
descitized Stieltje's method.
sparse (bool):
If True used Smolyak's sparse grid instead of normal tensor product
grid.
rule (str):
Rule for generating abscissas and weights. Either done with
quadrature rules, or with random samples with constant weights.
composite (int):
If provided, composite quadrature will be used. Value determines
the number of domains along an axis. Ignored in the case
gaussian=True.
normalize (bool):
In the case of distributions, the abscissas and weights are not
tailored to a distribution beyond matching the bounds. If True, the
samples are normalized multiplying the weights with the density of
the distribution evaluated at the abscissas and normalized
afterwards to sum to one.
growth (bool):
If True sets the growth rule for the composite quadrature rule to
exponential for Clenshaw-Curtis quadrature. | 3.362618 | 3.381628 | 0.994378 |
@wraps(func)
def caller(*args, **kwargs):
logger = logging.getLogger(__name__)
instance = func(*args, **kwargs)
logger.warning(
"Distribution `chaospy.{}` has been renamed to ".format(name) +
"`chaospy.{}` and will be deprecated next release.".format(instance.__class__.__name__))
return instance
return caller | def deprecation_warning(func, name) | Add a deprecation warning do each distribution. | 4.686034 | 4.255038 | 1.101291 |
if poly.dim < len(dist):
poly = polynomials.setdim(poly, len(dist))
freeze = polynomials.Poly(freeze)
freeze = polynomials.setdim(freeze, len(dist))
keys = freeze.keys
if len(keys) == 1 and keys[0] == (0,)*len(dist):
freeze = list(freeze.A.values())[0]
else:
freeze = numpy.array(keys)
freeze = freeze.reshape(int(freeze.size/len(dist)), len(dist))
shape = poly.shape
poly = polynomials.flatten(poly)
kmax = numpy.max(poly.keys, 0) + 1
keys = [range(k) for k in kmax]
A = poly.A.copy()
keys = poly.keys
out = {}
zeros = [0]*poly.dim
for i in range(len(keys)):
key = list(keys[i])
a = A[tuple(key)]
for d in range(poly.dim):
for j in range(len(freeze)):
if freeze[j, d]:
key[d], zeros[d] = zeros[d], key[d]
break
tmp = a*dist.mom(tuple(key))
if tuple(zeros) in out:
out[tuple(zeros)] = out[tuple(zeros)] + tmp
else:
out[tuple(zeros)] = tmp
for d in range(poly.dim):
for j in range(len(freeze)):
if freeze[j, d]:
key[d], zeros[d] = zeros[d], key[d]
break
out = polynomials.Poly(out, poly.dim, poly.shape, float)
out = polynomials.reshape(out, shape)
return out | def E_cond(poly, freeze, dist, **kws) | Conditional expected value operator.
1st order statistics of a polynomial on a given probability space
conditioned on some of the variables.
Args:
poly (Poly):
Polynomial to find conditional expected value on.
freeze (numpy.ndarray):
Boolean values defining the conditional variables. True values
implies that the value is conditioned on, e.g. frozen during the
expected value calculation.
dist (Dist) :
The distributions of the input used in ``poly``.
Returns:
(chaospy.poly.base.Poly) :
Same as ``poly``, but with the variables not tagged in ``frozen``
integrated away.
Examples:
>>> x, y = chaospy.variable(2)
>>> poly = chaospy.Poly([1, x, y, 10*x*y])
>>> dist = chaospy.J(chaospy.Gamma(1, 1), chaospy.Normal(0, 2))
>>> print(chaospy.E_cond(poly, [1, 0], dist))
[1.0, q0, 0.0, 0.0]
>>> print(chaospy.E_cond(poly, [0, 1], dist))
[1.0, 1.0, q1, 10.0q1]
>>> print(chaospy.E_cond(poly, [1, 1], dist))
[1.0, q0, q1, 10.0q0q1]
>>> print(chaospy.E_cond(poly, [0, 0], dist))
[1.0, 1.0, 0.0, 0.0] | 2.856781 | 3.044801 | 0.938249 |
logger = logging.getLogger(__name__)
logger.debug("generating random samples using rule %s", rule)
rule = rule.upper()
if isinstance(domain, int):
dim = domain
trans = lambda x_data: x_data
elif isinstance(domain, (tuple, list, numpy.ndarray)):
domain = numpy.asfarray(domain)
if len(domain.shape) < 2:
dim = 1
else:
dim = len(domain[0])
trans = lambda x_data: ((domain[1]-domain[0])*x_data.T + domain[0]).T
else:
dist = domain
dim = len(dist)
trans = dist.inv
if antithetic is not None:
from .antithetic import create_antithetic_variates
antithetic = numpy.array(antithetic, dtype=bool).flatten()
if antithetic.size == 1 and dim > 1:
antithetic = numpy.repeat(antithetic, dim)
size = numpy.sum(1*numpy.array(antithetic))
order_saved = order
order = int(numpy.log(order - dim))
order = order if order > 1 else 1
while order**dim < order_saved:
order += 1
trans_ = trans
trans = lambda x_data: trans_(
create_antithetic_variates(x_data, antithetic)[:, :order_saved])
assert rule in SAMPLERS, "rule not recognised"
sampler = SAMPLERS[rule]
x_data = trans(sampler(order=order, dim=dim))
logger.debug("order: %d, dim: %d -> shape: %s", order, dim, x_data.shape)
return x_data | def generate_samples(order, domain=1, rule="R", antithetic=None) | Sample generator.
Args:
order (int):
Sample order. Determines the number of samples to create.
domain (Dist, int, numpy.ndarray):
Defines the space where the samples are generated. If integer is
provided, the space ``[0, 1]^domain`` will be used. If array-like
object is provided, a hypercube it defines will be used. If
distribution, the domain it spans will be used.
rule (str):
rule for generating samples. The various rules are listed in
:mod:`chaospy.distributions.sampler.generator`.
antithetic (tuple):
Sequence of boolean values. Represents the axes to mirror using
antithetic variable. | 3.110925 | 2.996636 | 1.038139 |
r
cords = np.array(cords)+1
slices = []
for cord in cords:
slices.append(slice(1, 2**cord+1, 2))
grid = np.mgrid[slices]
indices = grid.reshape(len(cords), np.prod(grid.shape[1:])).T
sgrid = indices*2.**-cords
return sgrid | def sparse_segment(cords) | r"""
Create a segment of a sparse grid.
Convert a ol-index to sparse grid coordinates on ``[0, 1]^N`` hyper-cube.
A sparse grid of order ``D`` coencide with the set of sparse_segments where
``||cords||_1 <= D``.
More specifically, a segment of:
.. math::
\cup_{cords \in C} sparse_segment(cords) == sparse_grid(M)
where:
.. math::
C = {cords: M=sum(cords)}
Args:
cords (numpy.ndarray):
The segment to extract. ``cord`` must consist of non-negative
integers.
Returns:
Q (numpy.ndarray):
Sparse segment where ``Q.shape==(K, sum(M))`` and ``K`` is segment
specific.
Examples:
>>> print(cp.bertran.sparse_segment([0, 2]))
[[0.5 0.125]
[0.5 0.375]
[0.5 0.625]
[0.5 0.875]]
>>> print(cp.bertran.sparse_segment([0, 1, 0, 0]))
[[0.5 0.25 0.5 0.5 ]
[0.5 0.75 0.5 0.5 ]] | 4.420599 | 5.403036 | 0.81817 |
abscissas = numpy.asfarray(abscissas)
if len(abscissas.shape) == 1:
abscissas = abscissas.reshape(1, abscissas.size)
dim, size = abscissas.shape
order = 1
while chaospy.bertran.terms(order, dim) <= size:
order += 1
indices = numpy.array(chaospy.bertran.bindex(0, order-1, dim, sort)[:size])
idx, idy = numpy.mgrid[:size, :size]
matrix = numpy.prod(abscissas.T[idx]**indices[idy], -1)
det = numpy.linalg.det(matrix)
if det == 0:
raise numpy.linalg.LinAlgError("invertible matrix required")
vec = chaospy.poly.basis(0, order-1, dim, sort)[:size]
coeffs = numpy.zeros((size, size))
if size == 1:
out = chaospy.poly.basis(0, 0, dim, sort)*abscissas.item()
elif size == 2:
coeffs = numpy.linalg.inv(matrix)
out = chaospy.poly.sum(vec*(coeffs.T), 1)
else:
for i in range(size):
for j in range(size):
coeffs[i, j] += numpy.linalg.det(matrix[1:, 1:])
matrix = numpy.roll(matrix, -1, axis=0)
matrix = numpy.roll(matrix, -1, axis=1)
coeffs /= det
out = chaospy.poly.sum(vec*(coeffs.T), 1)
return out | def lagrange_polynomial(abscissas, sort="GR") | Create Lagrange polynomials.
Args:
abscissas (numpy.ndarray):
Sample points where the Lagrange polynomials shall be defined.
Example:
>>> print(chaospy.around(lagrange_polynomial([-10, 10]), 4))
[-0.05q0+0.5, 0.05q0+0.5]
>>> print(chaospy.around(lagrange_polynomial([-1, 0, 1]), 4))
[0.5q0^2-0.5q0, -q0^2+1.0, 0.5q0^2+0.5q0]
>>> poly = lagrange_polynomial([[1, 0, 1], [0, 1, 2]])
>>> print(chaospy.around(poly, 4))
[0.5q0-0.5q1+0.5, -q0+1.0, 0.5q0+0.5q1-0.5]
>>> print(numpy.around(poly([1, 0, 1], [0, 1, 2]), 4))
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]] | 2.844051 | 2.937759 | 0.968102 |
samples = numpy.asarray(samples)
if lo is None:
lo = samples.min()
if up is None:
up = samples.max()
try:
#construct the kernel density estimator
dist = sample_dist(samples, lo, up)
#raised by gaussian_kde if dataset is singular matrix
except numpy.linalg.LinAlgError:
dist = Uniform(lower=-numpy.inf, upper=numpy.inf)
return dist | def SampleDist(samples, lo=None, up=None) | Distribution based on samples.
Estimates a distribution from the given samples by constructing a kernel
density estimator (KDE).
Args:
samples:
Sample values to construction of the KDE
lo (float) : Location of lower threshold
up (float) : Location of upper threshold
Example:
>>> distribution = chaospy.SampleDist([0, 1, 1, 1, 2])
>>> print(distribution)
sample_dist(lo=0, up=2)
>>> q = numpy.linspace(0, 1, 5)
>>> print(numpy.around(distribution.inv(q), 4))
[0. 0.6016 1. 1.3984 2. ]
>>> print(numpy.around(distribution.fwd(distribution.inv(q)), 4))
[0. 0.25 0.5 0.75 1. ]
>>> print(numpy.around(distribution.pdf(distribution.inv(q)), 4))
[0.2254 0.4272 0.5135 0.4272 0.2254]
>>> print(numpy.around(distribution.sample(4), 4)) # doctest: +SKIP
[-0.4123 1.1645 -0.0131 1.3302]
>>> print(numpy.around(distribution.mom(1), 4))
1.0
>>> print(numpy.around(distribution.ttr([1, 2, 3]), 4))
[[1.3835 0.7983 1.1872]
[0.2429 0.2693 0.4102]] | 4.553177 | 5.559444 | 0.818999 |
size_ = numpy.prod(size, dtype=int)
dim = len(self)
if dim > 1:
if isinstance(size, (tuple,list,numpy.ndarray)):
shape = (dim,) + tuple(size)
else:
shape = (dim, size)
else:
shape = size
out = self.kernel.resample(size_)[0]
try:
out = out.reshape(shape)
except:
if len(self) == 1:
out = out.flatten()
else:
out = out.reshape(dim, out.size/dim)
return out | def sample(self, size=(), rule="R", antithetic=None, verbose=False, **kws) | Overwrite sample() function, because the constructed Dist that is
based on the KDE is only working with the random sampling that is
given by the KDE itself. | 3.318597 | 3.224782 | 1.029092 |
mat_ref = numpy.asfarray(mat)
mat = mat_ref.copy()
diag_max = numpy.diag(mat).max()
assert len(mat.shape) == 2
size = len(mat)
hitri = numpy.zeros((size, size))
piv = numpy.arange(size)
for idx in range(size):
idx_max = numpy.argmax(numpy.diag(mat[idx:, idx:])) + idx
if mat[idx_max, idx_max] <= numpy.abs(diag_max*eps):
if not idx:
raise ValueError("Purly negative definite")
for j in range(idx, size):
hitri[j, j] = hitri[j-1, j-1]/float(j)
break
tmp = mat[:, idx].copy()
mat[:, idx] = mat[:, idx_max]
mat[:, idx_max] = tmp
tmp = hitri[:, idx].copy()
hitri[:, idx] = hitri[:, idx_max]
hitri[:, idx_max] = tmp
tmp = mat[idx, :].copy()
mat[idx, :] = mat[idx_max, :]
mat[idx_max, :] = tmp
piv[idx], piv[idx_max] = piv[idx_max], piv[idx]
hitri[idx, idx] = numpy.sqrt(mat[idx, idx])
rval = mat[idx, idx+1:]/hitri[idx, idx]
hitri[idx, idx+1:] = rval
mat[idx+1:, idx+1:] -= numpy.outer(rval, rval)
perm = numpy.zeros((size, size), dtype=int)
for idx in range(size):
perm[idx, piv[idx]] = 1
return perm, hitri.T | def bastos_ohagen(mat, eps=1e-16) | Bastos-O'Hagen algorithm for modified Cholesky decomposition.
Args:
mat (numpy.ndarray):
Input matrix to decompose. Assumed to close to positive definite.
eps (float):
Tolerance value for the eigenvalues. Values smaller
than `tol*numpy.diag(mat).max()` are considered to be zero.
Returns:
(:py:data:typing.Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]):
perm:
Permutation matrix
lowtri:
Upper triangular decomposition
errors:
Error matrix
Examples:
>>> mat = [[4, 2, 1], [2, 6, 3], [1, 3, -.004]]
>>> perm, lowtri = bastos_ohagen(mat)
>>> print(perm)
[[0 1 0]
[1 0 0]
[0 0 1]]
>>> print(numpy.around(lowtri, 4))
[[ 2.4495 0. 0. ]
[ 0.8165 1.8257 0. ]
[ 1.2247 -0. 0.9129]]
>>> comp = numpy.dot(perm, lowtri)
>>> print(numpy.around(numpy.dot(comp, comp.T), 4))
[[4. 2. 1. ]
[2. 6. 3. ]
[1. 3. 2.3333]] | 2.626387 | 2.568384 | 1.022583 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.