code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if context.readDataFile('senaite.lims.txt') is None:
return
logger.info("SENAITE setup handler [BEGIN]")
portal = context.getSite() # noqa
# Custom setup handlers
setup_html_filter(portal)
logger.info("SENAITE setup handler [DONE]") | def setup_handler(context) | Generic setup handler | 14.861157 | 14.389626 | 1.032769 |
logger.info("*** Setup HTML Filter ***")
# bypass the broken API from portal_transforms
adapter = IFilterSchema(portal)
style_whitelist = adapter.style_whitelist
for style in ALLOWED_STYLES:
logger.info("Allow style '{}'".format(style))
if style not in style_whitelist:
style_whitelist.append(style)
adapter.style_whitelist = style_whitelist | def setup_html_filter(portal) | Setup HTML filtering for resultsinterpretations | 7.214129 | 7.423172 | 0.971839 |
logger.info("SENAITE LIMS pre-install handler [BEGIN]")
# https://docs.plone.org/develop/addons/components/genericsetup.html#custom-installer-code-setuphandlers-py
profile_id = "profile-senaite.lims:default"
context = portal_setup._getImportContext(profile_id)
portal = context.getSite() # noqa
# Only install the core once!
qi = portal.portal_quickinstaller
if not qi.isProductInstalled("bika.lims"):
portal_setup.runAllImportStepsFromProfile("profile-bika.lims:default")
logger.info("SENAITE LIMS pre-install handler [DONE]") | def pre_install(portal_setup) | Runs berfore the first import step of the *default* profile
This handler is registered as a *pre_handler* in the generic setup profile
:param portal_setup: SetupTool | 9.387812 | 9.203812 | 1.019992 |
logger.info("Run all import steps from SENAITE LIMS ...")
context = portal_setup._getImportContext(PROFILE_ID)
portal = context.getSite()
setup_html_filter(portal)
portal_setup.runAllImportStepsFromProfile(PROFILE_ID)
logger.info("Run all import steps from SENAITE LIMS [DONE]") | def to_1000(portal_setup) | Initial version to 1000
:param portal_setup: The portal_setup tool | 11.158612 | 11.323108 | 0.985473 |
catalogs = [
CATALOG_ANALYSIS_REQUEST_LISTING,
"portal_catalog",
"bika_setup_catalog",
"bika_catalog",
"bika_catalog_worksheet_listing"
]
search_results = []
for catalog in catalogs:
search_results.extend(search(catalog=catalog))
# extract the data from all the brains
items = map(get_brain_info, search_results)
return {
"count": len(items),
"items": sorted(items, key=itemgetter("title")),
} | def spotlight_search_route(context, request) | The spotlight search route | 5.659213 | 5.714409 | 0.990341 |
icon = api.get_icon(brain)
# avoid 404 errors with these guys
if "document_icon.gif" in icon:
icon = ""
id = api.get_id(brain)
url = api.get_url(brain)
title = api.get_title(brain)
description = api.get_description(brain)
parent = api.get_parent(brain)
parent_title = api.get_title(parent)
parent_url = api.get_url(parent)
return {
"id": id,
"title": title,
"title_or_id": title or id,
"description": description,
"url": url,
"parent_title": parent_title,
"parent_url": parent_url,
"icon": icon,
} | def get_brain_info(brain) | Extract the brain info | 2.568847 | 2.536528 | 1.012742 |
if query is None:
query = make_query(catalog)
if query is None:
return []
return api.search(query, catalog=catalog) | def search(query=None, catalog=None) | Search | 3.847989 | 4.073045 | 0.944745 |
searchable_text_index = "SearchableText"
listing_searchable_text_index = "listing_searchable_text"
if catalog == CATALOG_ANALYSIS_REQUEST_LISTING:
tool = api.get_tool(catalog)
indexes = tool.indexes()
if listing_searchable_text_index in indexes:
return listing_searchable_text_index
return searchable_text_index | def get_search_index_for(catalog) | Returns the search index to query | 4.80531 | 4.781503 | 1.004979 |
query = {}
request = api.get_request()
index = get_search_index_for(catalog)
limit = request.form.get("limit")
q = request.form.get("q")
if len(q) > 0:
query[index] = q + "*"
else:
return None
portal_type = request.form.get("portal_type")
if portal_type:
if not isinstance(portal_type, list):
portal_type = [portal_type]
query["portal_type"] = portal_type
if limit and limit.isdigit():
query["sort_limit"] = int(limit)
return query | def make_query(catalog) | A function to prepare a query | 3.192886 | 3.132154 | 1.01939 |
url = api.get_url(brain_or_object)
modified = api.get_modification_date(brain_or_object).millis()
key = "{}?modified={}".format(url, modified)
logger.debug("Generated Cache Key: {}".format(key))
return key | def icon_cache_key(method, self, brain_or_object) | Generates a cache key for the icon lookup
Includes the virtual URL to handle multiple HTTP/HTTPS domains
Example: http://senaite.local/clients?modified=1512033263370 | 4.5187 | 4.20082 | 1.075671 |
portal_types = api.get_tool("portal_types")
fti = portal_types.getTypeInfo(api.get_portal_type(brain_or_object))
icon = fti.getIcon()
if not icon:
return ""
# Always try to get the big icon for high-res displays
icon_big = icon.replace(".png", "_big.png")
# fall back to a default icon if the looked up icon does not exist
if self.context.restrictedTraverse(icon_big, None) is None:
icon_big = None
portal_url = api.get_url(api.get_portal())
title = api.get_title(brain_or_object)
html_tag = "<img title='{}' src='{}/{}' width='16' />".format(
title, portal_url, icon_big or icon)
logger.info("Generated Icon Tag for {}: {}".format(
api.get_path(brain_or_object), html_tag))
return html_tag | def get_icon_for(self, brain_or_object) | Get the navigation portlet icon for the brain or object
The cache key ensures that the lookup is done only once per domain name | 4.346063 | 4.306958 | 1.009079 |
values = {
'width': 'device-width',
'initial-scale': '1.0',
}
return ','.join('%s=%s' % (k, v) for k, v in values.items()) | def getViewportValues(self, view=None) | Determine the value of the viewport meta-tag | 3.719366 | 3.059568 | 1.215651 |
plone_view = getMultiAdapter(
(self.context, self.request), name=u'plone')
portal_state = getMultiAdapter(
(self.context, self.request), name=u'plone_portal_state')
sl = plone_view.have_portlets('plone.leftcolumn', view=view)
sr = plone_view.have_portlets('plone.rightcolumn', view=view)
isRTL = portal_state.is_rtl()
# pre-fill dictionary
columns = dict(one="", content="", two="")
if not sl and not sr:
# we don't have columns, thus conten takes the whole width
columns['content'] = "col-md-12"
elif sl and sr:
# In case we have both columns, content takes 50% of the whole
# width and the rest 50% is spread between the columns
columns['one'] = "col-xs-12 col-md-2"
columns['content'] = "col-xs-12 col-md-8"
columns['two'] = "col-xs-12 col-md-2"
elif (sr and not sl) and not isRTL:
# We have right column and we are NOT in RTL language
columns['content'] = "col-xs-12 col-md-10"
columns['two'] = "col-xs-12 col-md-2"
elif (sl and not sr) and isRTL:
# We have left column and we are in RTL language
columns['one'] = "col-xs-12 col-md-2"
columns['content'] = "col-xs-12 col-md-10"
elif (sl and not sr) and not isRTL:
# We have left column and we are in NOT RTL language
columns['one'] = "col-xs-12 col-md-2"
columns['content'] = "col-xs-12 col-md-10"
# # append cell to each css-string
# for key, value in columns.items():
# columns[key] = "cell " + value
return columns | def getColumnsClasses(self, view=None) | Determine whether a column should be shown. The left column is
called plone.leftcolumn; the right column is called
plone.rightcolumn. | 2.77755 | 2.70924 | 1.025214 |
icon_url = api.get_icon(brain, html_tag=False)
url, icon = icon_url.rsplit("/", 1)
relative_url = url.lstrip(self.portal.absolute_url())
name, ext = os.path.splitext(icon)
# big icons endwith _big
if not name.endswith("_big"):
icon = "{}_big{}".format(name, ext)
icon_big_url = "/".join([relative_url, icon])
# fall back to a default icon if the looked up icon does not exist
if self.context.restrictedTraverse(icon_big_url, None) is None:
icon_big_url = "++resource++senaite.lims.images/gears.png"
return icon_big_url | def get_icon_url(self, brain) | Returns the (big) icon URL for the given catalog brain | 5.688226 | 5.540761 | 1.026615 |
query = {
"path": {
"query": api.get_path(self.setup),
"depth": 1,
},
}
items = api.search(query, "portal_catalog")
# filter out items
items = filter(lambda item: not item.exclude_from_nav, items)
# sort by (translated) title
def cmp_by_translated_title(brain1, brain2):
title1 = t(api.get_title(brain1))
title2 = t(api.get_title(brain2))
return cmp(title1, title2)
return sorted(items, cmp=cmp_by_translated_title) | def setupitems(self) | Lookup available setup items
:returns: catalog brains | 4.642097 | 4.190907 | 1.107659 |
if hasattr(self, '_content_type'):
return self._content_type
filename, extension = os.path.splitext(self._file_path)
if extension == '.csv':
self._content_type = 'text/csv'
elif extension == '.tsv':
self._content_type = 'text/tab-separated-values'
else:
self._content_type = 'text/plain'
return self._content_type | def content_type(self) | Returns the content-type value determined by file extension. | 1.992263 | 1.740264 | 1.144805 |
if self._file_size < self._SINGLE_UPLOAD_MAX:
resource = "{0}{1}".format(self._DEFAULT_RESOURCE, self.bucket)
response = self.__upload(resource, open(self._file_path, 'rb').read())
return response.headers['location']
else:
response = self.__init_chunked_upload()
min_chunk_size = int(response.headers['x-ton-min-chunk-size'])
chunk_size = min_chunk_size * self._DEFAULT_CHUNK_SIZE
location = response.headers['location']
f = open(self._file_path, 'rb')
bytes_read = 0
while True:
bytes = f.read(chunk_size)
if not bytes:
break
bytes_start = bytes_read
bytes_read += len(bytes)
response = self.__upload_chunk(location, chunk_size, bytes, bytes_start, bytes_read)
response_time = int(response.headers['x-response-time'])
chunk_size = min_chunk_size * size(self._DEFAULT_CHUNK_SIZE,
self._RESPONSE_TIME_MAX,
response_time)
f.close()
return location.split("?")[0] | def perform(self) | Executes the current TONUpload object. | 3.346987 | 3.123806 | 1.071445 |
# note: string conversion required here due to open encoding bug in requests-oauthlib.
headers = {
'x-ton-expires': http_time(self.options.get('x-ton-expires', self._DEFAULT_EXPIRE)),
'content-length': str(self._file_size),
'content-type': self.content_type
}
return Request(self._client, 'post', resource,
domain=self._DEFAULT_DOMAIN, headers=headers, body=bytes).perform() | def __upload(self, resource, bytes) | Performs a single chunk upload. | 9.060537 | 8.29646 | 1.092097 |
# note: string conversion required here due to open encoding bug in requests-oauthlib.
headers = {
'x-ton-content-type': self.content_type,
'x-ton-content-length': str(self._file_size),
'x-ton-expires': http_time(self.options.get('x-ton-expires', self._DEFAULT_EXPIRE)),
'content-length': str(0),
'content-type': self.content_type
}
resource = "{0}{1}?resumable=true".format(self._DEFAULT_RESOURCE, self._DEFAULT_BUCKET)
return Request(self._client, 'post', resource,
domain=self._DEFAULT_DOMAIN, headers=headers).perform() | def __init_chunked_upload(self) | Initialization for a multi-chunk upload. | 5.676779 | 5.475782 | 1.036707 |
# note: string conversion required here due to open encoding bug in requests-oauthlib.
headers = {
'content-type': self.content_type,
'content-length': str(min([chunk_size, self._file_size - bytes_read])),
'content-range': "bytes {0}-{1}/{2}".format(
bytes_start, bytes_read - 1, self._file_size)
}
return Request(self._client, 'put', resource,
domain=self._DEFAULT_DOMAIN, headers=headers, body=bytes).perform() | def __upload_chunk(self, resource, chunk_size, bytes, bytes_start, bytes_read) | Uploads a single chunk of a multi-chunk upload. | 4.973521 | 5.028262 | 0.989113 |
if self._current_index < len(self._collection):
value = self._collection[self._current_index]
self._current_index += 1
return value
elif self._next_cursor:
self.__fetch_next()
return self.next()
else:
self._current_index = 0
raise StopIteration | def next(self) | Returns the next item in the cursor. | 2.581895 | 2.392711 | 1.079067 |
params = self.to_params()
if 'tweet_id' in params:
params['tweet_ids'] = [params['tweet_id']]
del params['tweet_id']
if self.id:
raise HTTPError("Method PUT not allowed.")
resource = self.RESOURCE_COLLECTION.format(account_id=self.account.id)
response = Request(self.account.client, 'post', resource, params=params).perform()
return self.from_response(response.body['data'][0]) | def save(self) | Saves or updates the current object instance depending on the
presence of `object.id`. | 3.927238 | 3.912968 | 1.003647 |
if self.id:
resource = self.PREVIEW
resource = resource.format(account_id=self.account.id, id=self.id)
response = Request(self.account.client, 'get', resource).perform()
return response.body['data'] | def preview(self) | Returns an HTML preview for a Scheduled Tweet. | 5.2021 | 4.802073 | 1.083303 |
resource = klass.RESOURCE.format(id=id)
response = Request(client, 'get', resource, params=kwargs).perform()
return klass(client).from_response(response.body['data']) | def load(klass, client, id, **kwargs) | Returns an object instance for a given resource. | 4.960845 | 4.599257 | 1.078619 |
resource = klass.RESOURCE_COLLECTION
request = Request(client, 'get', resource, params=kwargs)
return Cursor(klass, request, init_with=[client]) | def all(klass, client, **kwargs) | Returns a Cursor instance for a given resource. | 8.677993 | 6.513203 | 1.33237 |
self._validate_loaded()
resource = self.FEATURES.format(id=self.id)
response = Request(self.client, 'get', resource).perform()
return response.body['data'] | def features(self) | Returns a collection of features available to the current account. | 8.898976 | 7.174701 | 1.240327 |
self._validate_loaded()
params = {'user_id': id}
params.update(kwargs)
resource = self.SCOPED_TIMELINE.format(id=self.id)
response = Request(self.client, 'get', resource, params=params).perform()
return response.body['data'] | def scoped_timeline(self, *id, **kwargs) | Returns the most recent promotable Tweets created by the specified Twitter user. | 5.134161 | 4.833315 | 1.062244 |
start = min([parse(d['activity_start_time']) for d in data])
end = max([parse(d['activity_end_time']) for d in data])
start = remove_hours(start)
end = remove_hours(end) + timedelta(days=1)
return start, end | def date_range(data) | Returns the minimum activity start time and the maximum activity end time
from the active entities response. These dates are modified in the following
way. The hours (and minutes and so on) are removed from the start and end
times and a *day* is added to the end time. These are the dates that should
be used in the subsequent analytics request. | 2.929561 | 2.341412 | 1.251194 |
if isinstance(VERSION[-1], str):
return '.'.join(map(str, VERSION[:-1])) + VERSION[-1]
return '.'.join(map(str, VERSION)) | def get_version() | Returns a string representation of the current SDK version. | 3.155571 | 3.066943 | 1.028898 |
if not granularity:
if type(time) is datetime.date:
return format_date(time)
else:
return format_time(time)
if granularity == GRANULARITY.HOUR:
return format_time(remove_minutes(time))
elif granularity == GRANULARITY.DAY:
return format_date(remove_hours(time))
else:
return format_time(time) | def to_time(time, granularity) | Returns a truncated and rounded time string based on the specified granularity. | 2.429053 | 2.426227 | 1.001165 |
return formatdate(timeval=mktime(time.timetuple()), localtime=False, usegmt=True) | def http_time(time) | Formats a datetime as an RFC 1123 compliant string. | 4.245875 | 3.246936 | 1.307656 |
if response_time_actual == 0:
response_time_actual = 1
scale = 1 / (response_time_actual / response_time_max)
size = int(default_chunk_size * scale)
return min(max(size, 1), default_chunk_size) | def size(default_chunk_size, response_time_max, response_time_actual) | Determines the chunk size based on response times. | 2.33564 | 2.322495 | 1.00566 |
if response.code:
return ERRORS[response.code](response)
else:
return Error(response) | def from_response(response) | Returns the correct error type from a ::class::`Response` object. | 8.724373 | 5.672925 | 1.537897 |
def fget(self):
return self._options.get('sandbox', None)
def fset(self, value):
self._options['sandbox'] = value
return locals() | def sandbox() | Enables and disables sandbox mode. | 3.535611 | 3.106452 | 1.138151 |
def fget(self):
return self._options.get('trace', None)
def fset(self, value):
self._options['trace'] = value
return locals() | def trace() | Enables and disables request tracing. | 3.395801 | 3.055882 | 1.111234 |
return Account.load(self, id) if id else Account.all(self) | def accounts(self, id=None) | Returns a collection of advertiser :class:`Accounts` available to
the current access token. | 6.362135 | 10.677545 | 0.595843 |
resource = klass.RESOURCE_OPTIONS + 'platform_versions'
request = Request(account.client, 'get', resource, params=kwargs)
return Cursor(None, request) | def platform_versions(klass, account, **kwargs) | Returns a list of supported platform versions | 11.420634 | 10.152625 | 1.124895 |
self._validate_loaded()
if id is None:
return TargetingCriteria.all(self.account, self.id, **kwargs)
else:
return TargetingCriteria.load(self.account, id, **kwargs) | def targeting_criteria(self, id=None, **kwargs) | Returns a collection of targeting criteria available to the
current line item. | 3.493034 | 3.837227 | 0.910302 |
params = {}
params.update(kwargs)
# handles array to string conversion for media IDs
if 'media_ids' in params and isinstance(params['media_ids'], list):
params['media_ids'] = ','.join(map(str, params['media_ids']))
resource = klass.TWEET_ID_PREVIEW if params.get('id') else klass.TWEET_PREVIEW
resource = resource.format(account_id=account.id, id=params.get('id'))
response = Request(account.client, 'get', resource, params=params).perform()
return response.body['data'] | def preview(klass, account, **kwargs) | Returns an HTML preview of a tweet, either new or existing. | 3.316408 | 3.027197 | 1.095538 |
params = {}
params.update(kwargs)
# handles array to string conversion for media IDs
if 'media_ids' in params and isinstance(params['media_ids'], list):
params['media_ids'] = ','.join(map(str, params['media_ids']))
resource = klass.TWEET_CREATE.format(account_id=account.id)
response = Request(account.client, 'post', resource, params=params).perform()
return response.body['data'] | def create(klass, account, **kwargs) | Creates a "Promoted-Only" Tweet using the specialized Ads API end point. | 3.616292 | 3.087183 | 1.171389 |
klass.PROPERTIES[name] = kwargs
def getter(self):
return getattr(self, '_%s' % name, kwargs.get('default', None))
if kwargs.get('readonly', False):
setattr(klass, name, property(getter))
else:
def setter(self, value):
setattr(self, '_%s' % name, value)
setattr(klass, name, property(getter, setter)) | def resource_property(klass, name, **kwargs) | Builds a resource object property. | 2.17367 | 2.212627 | 0.982393 |
for name in self.PROPERTIES:
attr = '_{0}'.format(name)
transform = self.PROPERTIES[name].get('transform', None)
value = response.get(name, None)
if transform and transform == TRANSFORM.TIME and value:
setattr(self, attr, dateutil.parser.parse(value))
if isinstance(value, int) and value == 0:
continue # skip attribute
else:
setattr(self, attr, value)
return self | def from_response(self, response) | Populates a given objects attributes from a parsed JSON API response.
This helper handles all necessary type coercions as it assigns
attribute values. | 4.154754 | 4.077163 | 1.019031 |
params = {}
for name in self.PROPERTIES:
attr = '_{0}'.format(name)
value = getattr(self, attr, None) or getattr(self, name, None)
# skip attribute
if value is None:
continue
if isinstance(value, datetime):
params[name] = format_time(value)
elif isinstance(value, list):
params[name] = ','.join(map(str, value))
elif isinstance(value, bool):
params[name] = str(value).lower()
else:
params[name] = value
return params | def to_params(self) | Generates a Hash of property values for the current object. This helper
handles all necessary type coercions as it generates its output. | 2.509379 | 2.415378 | 1.038918 |
resource = klass.BATCH_RESOURCE_COLLECTION.format(account_id=account.id)
json_body = []
for obj in objs:
entity_type = klass._ENTITY_MAP[klass.__name__].lower()
obj_json = {'params': obj.to_params()}
if obj.id is None:
obj_json['operation_type'] = 'Create'
elif obj.to_delete is True:
obj_json['operation_type'] = 'Delete'
obj_json['params'][entity_type + '_id'] = obj.id
else:
obj_json['operation_type'] = 'Update'
obj_json['params'][entity_type + '_id'] = obj.id
json_body.append(obj_json)
resource = klass.BATCH_RESOURCE_COLLECTION.format(account_id=account.id)
response = Request(account.client,
'post', resource,
body=json.dumps(json_body),
headers={'Content-Type': 'application/json'}).perform()
# persist each entity
for obj, res_obj in zip(objs, response.body['data']):
obj = obj.from_response(res_obj) | def batch_save(klass, account, objs) | Makes batch request(s) for a passed in list of objects | 2.814915 | 2.772583 | 1.015268 |
def stats(self, metrics, **kwargs): # noqa
return self.__class__.all_stats(self.account, [self.id], metrics, **kwargs) | Pulls a list of metrics for the current object instance. | null | null | null |
|
end_time = kwargs.get('end_time', datetime.utcnow())
start_time = kwargs.get('start_time', end_time - timedelta(seconds=604800))
granularity = kwargs.get('granularity', GRANULARITY.HOUR)
placement = kwargs.get('placement', PLACEMENT.ALL_ON_TWITTER)
params = {
'metric_groups': ','.join(metric_groups),
'start_time': to_time(start_time, granularity),
'end_time': to_time(end_time, granularity),
'granularity': granularity.upper(),
'entity': klass.ANALYTICS_MAP[klass.__name__],
'placement': placement
}
params['entity_ids'] = ','.join(ids)
return params | def _standard_params(klass, ids, metric_groups, **kwargs) | Sets the standard params for a stats request | 2.879827 | 2.826528 | 1.018857 |
params = klass._standard_params(ids, metric_groups, **kwargs)
resource = klass.RESOURCE_SYNC.format(account_id=account.id)
response = Request(account.client, 'get', resource, params=params).perform()
return response.body['data'] | def all_stats(klass, account, ids, metric_groups, **kwargs) | Pulls a list of metrics for a specified set of object IDs. | 4.790574 | 4.603015 | 1.040747 |
params = klass._standard_params(ids, metric_groups, **kwargs)
params['platform'] = kwargs.get('platform', None)
params['country'] = kwargs.get('country', None)
params['segmentation_type'] = kwargs.get('segmentation_type', None)
resource = klass.RESOURCE_ASYNC.format(account_id=account.id)
response = Request(account.client, 'post', resource, params=params).perform()
return response.body['data'] | def queue_async_stats_job(klass, account, ids, metric_groups, **kwargs) | Queues a list of metrics for a specified set of object IDs asynchronously | 3.60791 | 3.682081 | 0.979856 |
params = {
'job_ids': job_id
}
resource = klass.RESOURCE_ASYNC.format(account_id=account.id)
response = Request(account.client, 'get', resource, params=params).perform()
return response.body['data'][0] | def async_stats_job_result(klass, account, job_id, **kwargs) | Returns the results of the specified async job IDs | 4.790906 | 4.16679 | 1.149784 |
resource = urlparse(url)
domain = '{0}://{1}'.format(resource.scheme, resource.netloc)
response = Request(account.client, 'get', resource.path, domain=domain,
raw_body=True, stream=True).perform()
return response.body | def async_stats_job_data(klass, account, url, **kwargs) | Returns the results of the specified async job IDs | 6.103134 | 5.984114 | 1.019889 |
audience = klass(account)
getattr(audience, '__create_audience__')(name)
try:
return audience.reload()
except BadRequest as e:
audience.delete()
raise e | def create(klass, account, name) | Creates a new tailored audience. | 7.820993 | 6.61833 | 1.181717 |
resource = self.RESOURCE_USERS.format(account_id=self.account.id, id=self.id)
headers = {'Content-Type': 'application/json'}
response = Request(self.account.client,
'post',
resource,
headers=headers,
body=json.dumps(params)).perform()
success_count = response.body['data']['success_count']
total_count = response.body['data']['total_count']
return (success_count, total_count) | def users(self, params) | This is a private API and requires whitelisting from Twitter.
This endpoint will allow partners to add, update and remove users from a given
tailored_audience_id.
The endpoint will also accept multiple user identifier types per user as well. | 3.196924 | 3.171578 | 1.007992 |
self._validate_loaded()
return TailoredAudiencePermission.all(self.account, self.id, **kwargs) | def permissions(self, **kwargs) | Returns a collection of permissions for the curent tailored audience. | 14.566651 | 6.721651 | 2.167124 |
resource = klass.RESOURCE_COLLECTION.format(
account_id=account.id,
tailored_audience_id=tailored_audience_id)
request = Request(account.client, 'get', resource, params=kwargs)
return Cursor(klass, request, init_with=[account]) | def all(klass, account, tailored_audience_id, **kwargs) | Returns a Cursor instance for the given tailored audience permission resource. | 3.645778 | 3.316385 | 1.099323 |
if self.id:
method = 'put'
resource = self.RESOURCE.format(
account_id=self.account.id,
tailored_audience_id=self.tailored_audience_id,
id=self.id)
else:
method = 'post'
resource = self.RESOURCE_COLLECTION.format(
account_id=self.account.id,
tailored_audience_id=self.tailored_audience_id)
response = Request(
self.account.client, method,
resource, params=self.to_params()).perform()
return self.from_response(response.body['data']) | def save(self) | Saves or updates the current tailored audience permission. | 2.725255 | 2.293547 | 1.188227 |
resource = self.RESOURCE.format(
account_id=self.account.id,
tailored_audience_id=self.tailored_audience_id,
id=self.id)
response = Request(self.account.client, 'delete', resource).perform()
return self.from_response(response.body['data']) | def delete(self) | Deletes the current tailored audience permission. | 4.249181 | 3.154251 | 1.347128 |
resource = klass.RESOURCE_CONVERSATIONS.format(account_id=account.id)
request = Request(
account.client, klass.METHOD,
resource, headers=klass.HEADERS, body=params)
return Cursor(klass, request, init_with=[account]) | def __get(klass, account, client, params) | Helper function to get the conversation data
Returns a Cursor instance | 7.771532 | 6.645175 | 1.1695 |
body = {
"conversation_type": self.conversation_type,
"audience_definition": self.audience_definition,
"targeting_inputs": self.targeting_inputs
}
return self.__get(account=self.account, client=self.account.client, params=json.dumps(body)) | def conversations(self) | Get the conversation topics for an input targeting criteria | 5.898088 | 4.945632 | 1.192586 |
body = {
"audience_definition": self.audience_definition,
"targeting_inputs": self.targeting_inputs
}
resource = self.RESOURCE_DEMOGRAPHICS.format(account_id=self.account.id)
response = Request(
self.account.client, self.METHOD,
resource, headers=self.HEADERS, body=json.dumps(body)).perform()
return response.body['data'] | def demographics(self) | Get the demographic breakdown for an input targeting criteria | 5.328178 | 4.732966 | 1.125759 |
shell.ShellCommand.setupEnvironment(self, cmd)
env = {}
for k, v in self.build.getProperties().properties.items():
env[str(k)] = str(v[0])
if cmd.args['env'] is None:
cmd.args['env'] = {}
cmd.args['env'].update(env) | def setupEnvironment(self, cmd) | Turn all build properties into environment variables | 3.543849 | 3.074055 | 1.152825 |
stdio = log.getText()
total = passed = skipped = fails = warnings = errors = 0
hastests = False
# Plone? That has lines starting "Ran" and "Total". Total is missing if there is only a single layer.
# For this reason, we total ourselves which lets us work even if someone runes 2 batches of plone tests
# from a single target
# Example::
# Ran 24 tests with 0 failures and 0 errors in 0.009 seconds
if not hastests:
outputs = re.findall(
"Ran (?P<count>[\d]+) tests with (?P<fail>[\d]+) failures and (?P<error>[\d]+) errors",
stdio)
for output in outputs:
total += int(output[0])
fails += int(output[1])
errors += int(output[2])
hastests = True
# Twisted
# Example::
# FAILED (errors=5, successes=11)
# PASSED (successes=16)
if not hastests:
for line in stdio.split("\n"):
if line.startswith("FAILED (") or line.startswith("PASSED ("):
hastests = True
line = line[8:][:-1]
stats = line.split(", ")
data = {}
for stat in stats:
k, v = stat.split("=")
data[k] = int(v)
if "successes" not in data:
total = 0
for number in re.findall(
"Ran (?P<count>[\d]+) tests in ", stdio):
total += int(number)
data["successes"] = total - sum(data.values())
# This matches Nose and Django output
# Example::
# Ran 424 tests in 152.927s
# FAILED (failures=1)
# FAILED (errors=3)
if not hastests:
fails += len(re.findall('FAIL:', stdio))
errors += len(
re.findall(
'======================================================================\nERROR:',
stdio))
for number in re.findall("Ran (?P<count>[\d]+)", stdio):
total += int(number)
hastests = True
# We work out passed at the end because most test runners dont tell us
# and we can't distinguish between different test systems easily so we
# might double count.
passed = total - (skipped + fails + errors + warnings)
# Update the step statistics with out shiny new totals
if hastests:
self.setStatistic('total', total)
self.setStatistic('fails', fails)
self.setStatistic('errors', errors)
self.setStatistic('warnings', warnings)
self.setStatistic('skipped', skipped)
self.setStatistic('passed', passed) | def updateStats(self, log) | Parse test results out of common test harnesses.
Currently supported are:
* Plone
* Nose
* Trial
* Something mitchell wrote in Java | 4.747205 | 4.622036 | 1.027081 |
res = yield self.assertAllowed(request)
if res:
defer.returnValue(res)
request.setHeader('Content-Type', 'application/json')
if self._in_progress:
defer.returnValue(json.dumps({'success': False, 'errors': ['reconfig already in progress']}))
self._in_progress = True
cfg = json.loads(request.content.read())
if cfg != self._cfg:
try:
err = yield self.saveCfg(cfg)
except Exception as e: # noqa
err = [repr(e)]
if err is not None:
self._in_progress = False
yield self.saveCfg(self._cfg)
defer.returnValue(json.dumps({'success': False, 'errors': err}))
yield self.ep.master.reconfig()
defer.returnValue(json.dumps({'success': True})) | def saveConfig(self, request) | I save the config, and run check_config, potencially returning errors | 3.331594 | 3.265591 | 1.020212 |
height, width = map_in.shape
map_part = (2.0/11.0)*map_in
# notice how [-1/sqrt(3), -1/sqrt(3), -1/sqrt(3)] * [-1/sqrt(3), -1/sqrt(3), -1/sqrt(3)]^T
# equals [[1/3, 1/3, 1/3], [1/3, 1/3, 1/3], [1/3, 1/3, 1/3]]
# multiply that by (3/11) and we have the 2d kernel from the example above
# therefore the kernel is seperable
w = -1.0/numpy.sqrt(3.0)
kernel = [w, w, w]
def _anti_alias_step(original):
# cf. comments above fo the factor
# this also makes a copy which might actually be superfluous
result = original * (3.0/11.0)
# we need to handle boundary conditions by hand, unfortunately
# there might be a better way but this works (circular boundary)
# notice how we'll need to add 2 to width and height later
# because of this
result = numpy.append(result, [result[0,:]], 0)
result = numpy.append(result, numpy.transpose([result[:,0]]), 1)
result = numpy.insert(result, [0], [result[-2,:]],0)
result = numpy.insert(result, [0], numpy.transpose([result[:,-2]]), 1)
# with a seperable kernel we can convolve the rows first ...
for y in range(height+2):
result[y,1:-1] = numpy.convolve(result[y,:], kernel, 'valid')
# ... and then the columns
for x in range(width+2):
result[1:-1,x] = numpy.convolve(result[:,x], kernel, 'valid')
# throw away invalid values at the boundary
result = result[1:-1,1:-1]
result += map_part
return result
current = map_in
for i in range(steps):
current = _anti_alias_step(current)
return current | def anti_alias(map_in, steps) | Execute the anti_alias operation steps times on the given map | 4.185747 | 4.180669 | 1.001215 |
'''Count how many neighbours of a coordinate are set to one.
This uses the same principles as anti_alias, compare comments there.'''
height, width = mask.shape
f = 2.0*radius+1.0
w = -1.0/numpy.sqrt(f)
kernel = [w]*radius + [w] + [w]*radius
result = mask * f
for y in range(height):
result[y,:] = numpy.convolve(result[y,:], kernel, 'same')
for x in range(width):
result[:,x] = numpy.convolve(result[:, x], kernel, 'same')
return result - mask | def count_neighbours(mask, radius=1) | Count how many neighbours of a coordinate are set to one.
This uses the same principles as anti_alias, compare comments there. | 5.941465 | 3.422616 | 1.735943 |
min_dist = None
nearest_hp_i = None
for i, hp in enumerate(hot_points):
dist = distance_f(p, hp)
if min_dist is None or dist < min_dist:
min_dist = dist
nearest_hp_i = i
return nearest_hp_i | def index_of_nearest(p, hot_points, distance_f=distance) | Given a point and a set of hot points it found the hot point
nearest to the given point. An arbitrary distance function can
be specified
:return the index of the nearest hot points, or None if the list of hot
points is empty | 1.760897 | 1.965635 | 0.895841 |
try:
data, thresholds = val
except ValueError:
raise ValueError("Pass an iterable: (data, thresholds)")
else:
if data.shape[0] != self.height:
raise Exception("Setting data with wrong height")
if data.shape[1] != self.width:
raise Exception("Setting data with wrong width")
self.layers['precipitation'] = LayerWithThresholds(data, thresholds) | def precipitation(self, val) | Precipitation is a value in [-1,1] | 4.672082 | 4.912724 | 0.951017 |
rng = numpy.random.RandomState(seed) # create our own random generator
base = rng.randint(0, 4096)
curve_gamma = world.gamma_curve
curve_bonus = world.curve_offset
height = world.height
width = world.width
border = width / 4
precipitations = numpy.zeros((height, width), dtype=float)
octaves = 6
freq = 64.0 * octaves
n_scale = 1024 / float(height) #This is a variable I am adding. It exists
#so that worlds sharing a common seed but
#different sizes will have similar patterns
for y in range(height):#TODO: numpy
for x in range(width):
n = snoise2((x * n_scale) / freq, (y * n_scale) / freq, octaves, base=base)
# Added to allow noise pattern to wrap around right and left.
if x < border:
n = (snoise2( (x * n_scale) / freq, (y * n_scale) / freq, octaves,
base=base) * x / border) + (
snoise2(( (x * n_scale) + width) / freq, (y * n_scale) / freq, octaves,
base=base) * (border - x) / border)
precipitations[y, x] = n
#find ranges
min_precip = precipitations.min()
max_precip = precipitations.max()
min_temp = world.layers['temperature'].min()
max_temp = world.layers['temperature'].max()
precip_delta = (max_precip - min_precip)
temp_delta = (max_temp - min_temp)
#normalize temperature and precipitation arrays
t = (world.layers['temperature'].data - min_temp) / temp_delta
p = (precipitations - min_precip) / precip_delta
#modify precipitation based on temperature
#--------------------------------------------------------------------------------
#
# Ok, some explanation here because why the formula is doing this may be a
# little confusing. We are going to generate a modified gamma curve based on
# normalized temperature and multiply our precipitation amounts by it.
#
# numpy.power(t,curve_gamma) generates a standard gamma curve. However
# we probably don't want to be multiplying precipitation by 0 at the far
# side of the curve. To avoid this we multiply the curve by (1 - curve_bonus)
# and then add back curve_bonus. Thus, if we have a curve bonus of .2 then
# the range of our modified gamma curve goes from 0-1 to 0-.8 after we
# multiply and then to .2-1 after we add back the curve_bonus.
#
# Because we renormalize there is not much point to offsetting the opposite end
# of the curve so it is less than or more than 1. We are trying to avoid
# setting the start of the curve to 0 because f(t) * p would equal 0 when t equals
# 0. However f(t) * p does not automatically equal 1 when t equals 1 and if we
# raise or lower the value for f(t) at 1 it would have negligible impact after
# renormalizing.
#
#--------------------------------------------------------------------------------
curve = (numpy.power(t, curve_gamma) * (1-curve_bonus)) + curve_bonus
precipitations = numpy.multiply(p, curve)
#Renormalize precipitation because the precipitation
#changes will probably not fully extend from -1 to 1.
min_precip = precipitations.min()
max_precip = precipitations.max()
precip_delta = (max_precip - min_precip)
precipitations = (((precipitations - min_precip) / precip_delta) * 2) - 1
return precipitations | def _calculate(seed, world) | Precipitation is a value in [-1,1] | 5.009169 | 4.961231 | 1.009662 |
def from_dimensions(cls, width, height, channels, filename=None,
grayscale=False, channel_bitdepth=8,
has_alpha=False, palette=None):
assert 1 <= channels <= 4, "PNG only supports 1 to 4 channels per pixel. Error writing %s." % filename
dimensions = (height, width, channels)
if channels == 1:
dimensions = (height, width) # keep the array 2-dimensional when possible
_array = numpy.zeros(dimensions, dtype=PNGWriter.get_dtype(channel_bitdepth))
return cls(_array, filename,
grayscale=grayscale, channel_bitdepth=channel_bitdepth,
has_alpha=has_alpha, palette=palette, channels=channels) | Creates an empty image according to width, height and channels.
Channels must be 1 (grayscale/palette), 2 (LA), 3 (RGB) or 4 (RGBA).
The image will be filled with black, transparent pixels. | null | null | null |
|
def from_array(cls, array, filename=None, channels=3, scale_to_range=False,
grayscale=False, channel_bitdepth=8,
has_alpha=False, palette=None):
if scale_to_range:
amax = array.max()
amin = array.min()
_array = (2**channel_bitdepth - 1) * (array - amin) / (amax - amin)
else:
_array = array
_array = numpy.rint(_array).astype(dtype=PNGWriter.get_dtype(channel_bitdepth)) # proper rounding
return cls(_array, filename, channels=channels,
grayscale=grayscale, channel_bitdepth=channel_bitdepth,
has_alpha=has_alpha, palette=palette) | Creates an image by using a provided array. The array may be ready to
be written or still need fine-tuning via set_pixel().
The array should not have more than 3 dimensions or the output might be
unexpected. | null | null | null |
|
def set_pixel(self, x, y, color):
try: # these checks are for convenience, not for safety
if len(color) < self.channels: # color is a a tuple (length >= 1)
if len(color) == 1:
if self.channels == 2:
color = [color[0], 255]
elif self.channels == 3:
color = [color[0], color[0], color[0]]
elif self.channels == 4:
color = [color[0], color[0], color[0], 255]
elif len(color) == 2:
if self.channels == 3:
color = [color[0], color[1], 0]
elif self.channels == 4:
color = [color[0], color[1], 0, 255]
elif len(color) == 3:
if self.channels == 4:
color = [color[0], color[1], color[2], 255]
except TypeError: # color is not an iterable
if self.channels > 1:
if self.channels == 2:
color = [color, 255]
elif self.channels == 3:
color = [color, color, color]
else: # only values 1..4 are allowed
color = [color, color, color, 255]
self.array[y, x] = color | Color may be: value, tuple, list etc.
If the image is set to contain more color-channels than len(color), the
remaining channels will be filled automatically.
Example (channels = 4, i.e. RGBA output):
color = 17 -> color = [17,17,17,255]
color = (17, 99) -> color = [17,99,0,255]
Passing in shorthand color-tuples for larger images on a regular basis
might result in a very noticeable performance penalty. | null | null | null |
|
color_step = 1.5
if sea_level is None:
sea_level = -1
if elevation < sea_level/2:
elevation /= sea_level
return 0.0, 0.0, 0.75 + 0.5 * elevation
elif elevation < sea_level:
elevation /= sea_level
return 0.0, 2 * (elevation - 0.5), 1.0
else:
elevation -= sea_level
if elevation < 1.0 * color_step:
return (0.0, 0.5 +
0.5 * elevation / color_step, 0.0)
elif elevation < 1.5 * color_step:
return 2 * (elevation - 1.0 * color_step) / color_step, 1.0, 0.0
elif elevation < 2.0 * color_step:
return 1.0, 1.0 - (elevation - 1.5 * color_step) / color_step, 0
elif elevation < 3.0 * color_step:
return (1.0 - 0.5 * (elevation - 2.0 *
color_step) / color_step,
0.5 - 0.25 * (elevation - 2.0 *
color_step) / color_step, 0)
elif elevation < 5.0 * color_step:
return (0.5 - 0.125 * (elevation - 3.0 *
color_step) / (2 * color_step),
0.25 + 0.125 * (elevation - 3.0 *
color_step) / (2 * color_step),
0.375 * (elevation - 3.0 *
color_step) / (2 * color_step))
elif elevation < 8.0 * color_step:
return (0.375 + 0.625 * (elevation - 5.0 *
color_step) / (3 * color_step),
0.375 + 0.625 * (elevation - 5.0 *
color_step) / (3 * color_step),
0.375 + 0.625 * (elevation - 5.0 *
color_step) / (3 * color_step))
else:
elevation -= 8.0 * color_step
while elevation > 2.0 * color_step:
elevation -= 2.0 * color_step
return 1, 1 - elevation / 4.0, 1 | def _elevation_color(elevation, sea_level=1.0) | Calculate color based on elevation
:param elevation:
:return: | 1.694641 | 1.694759 | 0.999931 |
''' Do some *args magic to return a tuple, which has the sums of all tuples in *args '''
# Adapted from an answer here: http://stackoverflow.com/questions/14180866/sum-each-value-in-a-list-of-tuples
added = [sum(x) for x in zip(*args)]
return numpy.clip(added, 0, 255) | def add_colors(*args) | Do some *args magic to return a tuple, which has the sums of all tuples in *args | 6.862995 | 3.92443 | 1.748788 |
''' Average the values of two colors together '''
r = int((c1[0] + c2[0])/2)
g = int((c1[1] + c2[1])/2)
b = int((c1[2] + c2[2])/2)
return (r, g, b) | def average_colors(c1, c2) | Average the values of two colors together | 1.992058 | 2.040415 | 0.9763 |
''' Convert raw elevation into normalized values between 0 and 255,
and return a numpy array of these values '''
e = world.layers['elevation'].data
ocean = world.layers['ocean'].data
mask = numpy.ma.array(e, mask=ocean) # only land
min_elev_land = mask.min()
max_elev_land = mask.max()
elev_delta_land = max_elev_land - min_elev_land
mask = numpy.ma.array(e, mask=numpy.logical_not(ocean)) # only ocean
min_elev_sea = mask.min()
max_elev_sea = mask.max()
elev_delta_sea = max_elev_sea - min_elev_sea
c = numpy.empty(e.shape, dtype=numpy.float)
c[numpy.invert(ocean)] = (e[numpy.invert(ocean)] - min_elev_land) * 127 / elev_delta_land + 128
c[ocean] = (e[ocean] - min_elev_sea) * 127 / elev_delta_sea
c = numpy.rint(c).astype(dtype=numpy.int32) # proper rounding
return c | def get_normalized_elevation_array(world) | Convert raw elevation into normalized values between 0 and 255,
and return a numpy array of these values | 2.544116 | 2.261184 | 1.125126 |
''' This is the "business logic" for determining the base biome color in satellite view.
This includes generating some "noise" at each spot in a pixel's rgb value, potentially
modifying the noise based on elevation, and finally incorporating this with the base biome color.
The basic rules regarding noise generation are:
- Oceans have no noise added
- land tiles start with noise somewhere inside (-NOISE_RANGE, NOISE_RANGE) for each rgb value
- land tiles with high elevations further modify the noise by set amounts (to drain some of the
color and make the map look more like mountains)
The biome's base color may be interpolated with a predefined mountain brown color if the elevation is high enough.
Finally, the noise plus the biome color are added and returned.
rng refers to an instance of a random number generator used to draw the random samples needed by this function.
'''
v = world.biome_at((x, y)).name()
biome_color = _biome_satellite_colors[v]
# Default is no noise - will be overwritten if this tile is land
noise = (0, 0, 0)
if world.is_land((x, y)):
## Generate some random noise to apply to this pixel
# There is noise for each element of the rgb value
# This noise will be further modified by the height of this tile
noise = rng.randint(-NOISE_RANGE, NOISE_RANGE, size=3) # draw three random numbers at once
####### Case 1 - elevation is very high ########
if elev > HIGH_MOUNTAIN_ELEV:
# Modify the noise to make the area slightly brighter to simulate snow-topped mountains.
noise = add_colors(noise, HIGH_MOUNTAIN_NOISE_MODIFIER)
# Average the biome's color with the MOUNTAIN_COLOR to tint the terrain
biome_color = average_colors(biome_color, MOUNTAIN_COLOR)
####### Case 2 - elevation is high ########
elif elev > MOUNTAIN_ELEV:
# Modify the noise to make this tile slightly darker, especially draining the green
noise = add_colors(noise, MOUNTAIN_NOISE_MODIFIER)
# Average the biome's color with the MOUNTAIN_COLOR to tint the terrain
biome_color = average_colors(biome_color, MOUNTAIN_COLOR)
####### Case 3 - elevation is somewhat high ########
elif elev > HIGH_HILL_ELEV:
noise = add_colors(noise, HIGH_HILL_NOISE_MODIFIER)
####### Case 4 - elevation is a little bit high ########
elif elev > HILL_ELEV:
noise = add_colors(noise, HILL_NOISE_MODIFIER)
# There is also a minor base modifier to the pixel's rgb value based on height
modification_amount = int(elev / BASE_ELEVATION_INTENSITY_MODIFIER)
base_elevation_modifier = (modification_amount, modification_amount, modification_amount)
this_tile_color = add_colors(biome_color, noise, base_elevation_modifier)
return this_tile_color | def get_biome_color_based_on_elevation(world, elev, x, y, rng) | This is the "business logic" for determining the base biome color in satellite view.
This includes generating some "noise" at each spot in a pixel's rgb value, potentially
modifying the noise based on elevation, and finally incorporating this with the base biome color.
The basic rules regarding noise generation are:
- Oceans have no noise added
- land tiles start with noise somewhere inside (-NOISE_RANGE, NOISE_RANGE) for each rgb value
- land tiles with high elevations further modify the noise by set amounts (to drain some of the
color and make the map look more like mountains)
The biome's base color may be interpolated with a predefined mountain brown color if the elevation is high enough.
Finally, the noise plus the biome color are added and returned.
rng refers to an instance of a random number generator used to draw the random samples needed by this function. | 6.033388 | 2.763002 | 2.183635 |
e = world.layers['elevation'].data
c = numpy.empty(e.shape, dtype=numpy.float)
has_ocean = not (sea_level is None or world.layers['ocean'].data is None or not world.layers['ocean'].data.any()) # or 'not any ocean'
mask_land = numpy.ma.array(e, mask=world.layers['ocean'].data if has_ocean else False) # only land
min_elev_land = mask_land.min()
max_elev_land = mask_land.max()
elev_delta_land = (max_elev_land - min_elev_land) / 11.0
if has_ocean:
land = numpy.logical_not(world.layers['ocean'].data)
mask_ocean = numpy.ma.array(e, mask=land) # only ocean
min_elev_sea = mask_ocean.min()
max_elev_sea = mask_ocean.max()
elev_delta_sea = max_elev_sea - min_elev_sea
c[world.layers['ocean'].data] = ((e[world.layers['ocean'].data] - min_elev_sea) / elev_delta_sea)
c[land] = ((e[land] - min_elev_land) / elev_delta_land) + 1
else:
c = ((e - min_elev_land) / elev_delta_land) + 1
for y in range(world.height):
for x in range(world.width):
r, g, b = elevation_color(c[y, x], sea_level)
target.set_pixel(x, y, (int(r * 255), int(g * 255),
int(b * 255), 255)) | def draw_simple_elevation(world, sea_level, target) | This function can be used on a generic canvas (either an image to save
on disk or a canvas part of a GUI) | 2.347248 | 2.358481 | 0.995237 |
# iterate through each cell
for x in range(world.width - 1):
for y in range(world.height - 1):
# search around cell for a direction
path = self.find_quick_path([x, y], world)
if path:
tx, ty = path
flow_dir = [tx - x, ty - y]
key = 0
for direction in DIR_NEIGHBORS_CENTER:
if direction == flow_dir:
water_path[y, x] = key
key += 1 | def find_water_flow(self, world, water_path) | Find the flow direction for each cell in heightmap | 4.690854 | 4.416118 | 1.062212 |
river_source_list = []
# Using the wind and rainfall data, create river 'seeds' by
# flowing rainfall along paths until a 'flow' threshold is reached
# and we have a beginning of a river... trickle->stream->river->sea
# step one: Using flow direction, follow the path for each cell
# adding the previous cell's flow to the current cell's flow.
# step two: We loop through the water flow map looking for cells
# above the water flow threshold. These are our river sources and
# we mark them as rivers. While looking, the cells with no
# out-going flow, above water flow threshold and are still
# above sea level are marked as 'sources'.
for y in range(0, world.height - 1):
for x in range(0, world.width - 1):
rain_fall = world.layers['precipitation'].data[y, x]
water_flow[y, x] = rain_fall
if water_path[y, x] == 0:
continue # ignore cells without flow direction
cx, cy = x, y # begin with starting location
neighbour_seed_found = False
# follow flow path to where it may lead
while not neighbour_seed_found:
# have we found a seed?
if world.is_mountain((cx, cy)) and water_flow[cy, cx] >= RIVER_TH:
# try not to create seeds around other seeds
for seed in river_source_list:
sx, sy = seed
if in_circle(9, cx, cy, sx, sy):
neighbour_seed_found = True
if neighbour_seed_found:
break # we do not want seeds for neighbors
river_source_list.append([cx, cy]) # river seed
break
# no path means dead end...
if water_path[cy, cx] == 0:
break # break out of loop
# follow path, add water flow from previous cell
dx, dy = DIR_NEIGHBORS_CENTER[water_path[cy, cx]]
nx, ny = cx + dx, cy + dy # calculate next cell
water_flow[ny, nx] += rain_fall
cx, cy = nx, ny # set current cell to next cell
return river_source_list | def river_sources(world, water_flow, water_path) | Find places on map where sources of river can be found | 6.415879 | 6.407528 | 1.001303 |
current_location = source
path = [source]
# start the flow
while True:
x, y = current_location
# is there a river nearby, flow into it
for dx, dy in DIR_NEIGHBORS:
ax, ay = x + dx, y + dy
if self.wrap:
ax, ay = overflow(ax, world.width), overflow(ay,
world.height)
for river in river_list:
if [ax, ay] in river:
merge = False
for rx, ry in river:
if [ax, ay] == [rx, ry]:
merge = True
path.append([rx, ry])
elif merge:
path.append([rx, ry])
return path # skip the rest, return path
# found a sea?
if world.is_ocean((x, y)):
break
# find our immediate lowest elevation and flow there
quick_section = self.find_quick_path(current_location, world)
if quick_section:
path.append(quick_section)
current_location = quick_section
continue # stop here and enter back into loop
is_wrapped, lower_elevation = self.findLowerElevation(
current_location, world)
if lower_elevation and not is_wrapped:
lower_path = worldengine.astar.PathFinder().find(
world.layers['elevation'].data, current_location, lower_elevation)
if lower_path:
path += lower_path
current_location = path[-1]
else:
break
elif lower_elevation and is_wrapped:
# TODO: make this more natural
max_radius = 40
cx, cy = current_location
lx, ly = lower_elevation
if x < 0 or y < 0 or x > world.width or y > world.height:
raise Exception(
"BUG: fix me... we shouldn't be here: %s %s" % (
current_location, lower_elevation))
if not in_circle(max_radius, cx, cy, lx, cy):
# are we wrapping on x axis?
if cx - lx < 0:
lx = 0 # move to left edge
nx = world.width - 1 # next step is wrapped around
else:
lx = world.width - 1 # move to right edge
nx = 0 # next step is wrapped around
ly = ny = int((cy + ly) / 2) # move halfway
elif not in_circle(max_radius, cx, cy, cx, ly):
# are we wrapping on y axis?
if cy - ly < 0:
ly = 0 # move to top edge
ny = world.height - 1 # next step is wrapped around
else:
ly = world.height - 1 # move to bottom edge
ny = 0 # next step is wrapped around
lx = nx = int((cx + lx) / 2) # move halfway
else:
raise Exception(
"BUG: fix me... we are not in circle: %s %s" % (
current_location, lower_elevation))
# find our way to the edge
edge_path = worldengine.astar.PathFinder().find(
world.layers['elevation'].data, [cx, cy], [lx, ly])
if not edge_path:
# can't find another other path, make it a lake
lake_list.append(current_location)
break
path += edge_path # add our newly found path
path.append([nx, ny]) # finally add our overflow to other side
current_location = path[-1]
# find our way to lowest position original found
lower_path = worldengine.astar.PathFinder().find(
world.layers['elevation'].data, current_location, lower_elevation)
path += lower_path
current_location = path[-1]
else: # can't find any other path, make it a lake
lake_list.append(current_location)
break # end of river
if not world.contains(current_location):
print("Why are we here:", current_location)
return path | def river_flow(self, source, world, river_list, lake_list) | simulate fluid dynamics by using starting point and flowing to the
lowest available point | 3.399722 | 3.394985 | 1.001395 |
'''Validate that for each point in river is equal to or lower than the
last'''
celevation = 1.0
for r in river:
rx, ry = r
relevation = world.layers['elevation'].data[ry, rx]
if relevation <= celevation:
celevation = relevation
elif relevation > celevation:
world.layers['elevation'].data[ry, rx] = celevation
return river | def cleanUpFlow(self, river, world) | Validate that for each point in river is equal to or lower than the
last | 6.894082 | 4.00628 | 1.720819 |
'''Try to find a lower elevation with in a range of an increasing
circle's radius and try to find the best path and return it'''
x, y = source
currentRadius = 1
maxRadius = 40
lowestElevation = world.layers['elevation'].data[y, x]
destination = []
notFound = True
isWrapped = False
wrapped = []
while notFound and currentRadius <= maxRadius:
for cx in range(-currentRadius, currentRadius + 1):
for cy in range(-currentRadius, currentRadius + 1):
rx, ry = x + cx, y + cy
# are we within bounds?
if not self.wrap and not world.contains((rx, ry)):
continue
# are we within a circle?
if not in_circle(currentRadius, x, y, rx, ry):
continue
rx, ry = overflow(rx, world.width), overflow(ry,
world.height)
# if utilities.outOfBounds([x+cx, y+cy], self.size):
# print "Fixed:",x ,y, rx, ry
elevation = world.layers['elevation'].data[ry, rx]
# have we found a lower elevation?
if elevation < lowestElevation:
lowestElevation = elevation
destination = [rx, ry]
notFound = False
if not world.contains((x + cx, y + cy)):
wrapped.append(destination)
currentRadius += 1
if destination in wrapped:
isWrapped = True
# print "Wrapped lower elevation found:", rx, ry, "!"
return isWrapped, destination | def findLowerElevation(self, source, world) | Try to find a lower elevation with in a range of an increasing
circle's radius and try to find the best path and return it | 5.088179 | 4.027184 | 1.263458 |
# erosion around river, create river valley
for r in river:
rx, ry = r
radius = 2
for x in range(rx - radius, rx + radius):
for y in range(ry - radius, ry + radius):
if not self.wrap and not world.contains(
(x, y)): # ignore edges of map
continue
x, y = overflow(x, world.width), overflow(y, world.height)
curve = 1.0
if [x, y] == [0, 0]: # ignore center
continue
if [x, y] in river: # ignore river itself
continue
if world.layers['elevation'].data[y, x] <= world.layers['elevation'].data[ry, rx]:
# ignore areas lower than river itself
continue
if not in_circle(radius, rx, ry, x,
y): # ignore things outside a circle
continue
adx, ady = math.fabs(rx - x), math.fabs(ry - y)
if adx == 1 or ady == 1:
curve = 0.2
elif adx == 2 or ady == 2:
curve = 0.05
diff = world.layers['elevation'].data[ry, rx] - world.layers['elevation'].data[y, x]
newElevation = world.layers['elevation'].data[y, x] + (
diff * curve)
if newElevation <= world.layers['elevation'].data[ry, rx]:
print('newElevation is <= than river, fix me...')
newElevation = world.layers['elevation'].data[r, x]
world.layers['elevation'].data[y, x] = newElevation
return | def river_erosion(self, river, world) | Simulate erosion in heightmap based on river path.
* current location must be equal to or less than previous location
* riverbed is carved out by % of volume/flow
* sides of river are also eroded to slope into riverbed. | 3.372776 | 3.340351 | 1.009707 |
isSeed = True
px, py = (0, 0)
for x, y in river:
if isSeed:
rivermap[y, x] = water_flow[y, x]
isSeed = False
else:
rivermap[y, x] = precipitations[y, x] + rivermap[py, px]
px, py = x, y | def rivermap_update(self, river, water_flow, rivermap, precipitations) | Update the rivermap with the rainfall that is to become
the waterflow | 3.163618 | 3.417901 | 0.925603 |
elevation, plates = generate_plates_simulation(seed, width, height,
num_plates=num_plates)
world = World(world_name, Size(width, height), seed,
GenerationParameters(num_plates, -1.0, "plates"))
world.elevation = (numpy.array(elevation).reshape(height, width), None)
world.plates = numpy.array(plates, dtype=numpy.uint16).reshape(height, width)
# Generate images
filename = '%s/plates_%s.png' % (output_dir, world_name)
draw_simple_elevation_on_file(world, filename, None)
print("+ plates image generated in '%s'" % filename)
geo.center_land(world)
filename = '%s/centered_plates_%s.png' % (output_dir, world_name)
draw_simple_elevation_on_file(world, filename, None)
print("+ centered plates image generated in '%s'" % filename) | def generate_plates(seed, world_name, output_dir, width, height,
num_plates=10) | Eventually this method should be invoked when generation is called at
asked to stop at step "plates", it should not be a different operation
:param seed:
:param world_name:
:param output_dir:
:param width:
:param height:
:param num_plates:
:return: | 3.393499 | 3.583491 | 0.946981 |
for y in range(world.height):
for x in range(world.width):
if world.is_land((x, y)) and (world.layers['river_map'].data[y, x] > 0.0):
for dx in range(factor):
for dy in range(factor):
target.set_pixel(x * factor + dx, y * factor + dy, (0, 0, 128, 255))
if world.is_land((x, y)) and (world.layers['lake_map'].data[y, x] != 0):
for dx in range(factor):
for dy in range(factor):
target.set_pixel(x * factor + dx, y * factor + dy, (0, 100, 128, 255)) | def draw_rivers_on_image(world, target, factor=1) | Draw only the rivers, it expect the background to be in place | 1.976769 | 1.951846 | 1.012769 |
y_sums = world.layers['elevation'].data.sum(1) # 1 == sum along x-axis
y_with_min_sum = y_sums.argmin()
if get_verbose():
print("geo.center_land: height complete")
x_sums = world.layers['elevation'].data.sum(0) # 0 == sum along y-axis
x_with_min_sum = x_sums.argmin()
if get_verbose():
print("geo.center_land: width complete")
latshift = 0
world.layers['elevation'].data = numpy.roll(numpy.roll(world.layers['elevation'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1)
world.layers['plates'].data = numpy.roll(numpy.roll(world.layers['plates'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1)
if get_verbose():
print("geo.center_land: width complete") | def center_land(world) | Translate the map horizontally and vertically to put as much ocean as
possible at the borders. It operates on elevation and plates map | 2.60859 | 2.43926 | 1.069419 |
ocean_border = int(min(30, max(world.width / 5, world.height / 5)))
def place_ocean(x, y, i):
world.layers['elevation'].data[y, x] = \
(world.layers['elevation'].data[y, x] * i) / ocean_border
for x in range(world.width):
for i in range(ocean_border):
place_ocean(x, i, i)
place_ocean(x, world.height - i - 1, i)
for y in range(world.height):
for i in range(ocean_border):
place_ocean(i, y, i)
place_ocean(world.width - i - 1, y, i) | def place_oceans_at_map_borders(world) | Lower the elevation near the border of the map | 2.206613 | 2.152577 | 1.025103 |
e = world.layers['elevation'].data
ocean = fill_ocean(e, ocean_level)
hl = find_threshold_f(e, 0.10) # the highest 10% of all (!) land are declared hills
ml = find_threshold_f(e, 0.03) # the highest 3% are declared mountains
e_th = [('sea', ocean_level),
('plain', hl),
('hill', ml),
('mountain', None)]
harmonize_ocean(ocean, e, ocean_level)
world.ocean = ocean
world.elevation = (e, e_th)
world.sea_depth = sea_depth(world, ocean_level) | def initialize_ocean_and_thresholds(world, ocean_level=1.0) | Calculate the ocean, the sea depth and the elevation thresholds
:param world: a world having elevation but not thresholds
:param ocean_level: the elevation representing the ocean level
:return: nothing, the world will be changed | 5.900518 | 5.7262 | 1.030442 |
shallow_sea = ocean_level * 0.85
midpoint = shallow_sea / 2.0
ocean_points = numpy.logical_and(elevation < shallow_sea, ocean)
shallow_ocean = numpy.logical_and(elevation < midpoint, ocean_points)
elevation[shallow_ocean] = midpoint - ((midpoint - elevation[shallow_ocean]) / 5.0)
deep_ocean = numpy.logical_and(elevation > midpoint, ocean_points)
elevation[deep_ocean] = midpoint + ((elevation[deep_ocean] - midpoint) / 5.0) | def harmonize_ocean(ocean, elevation, ocean_level) | The goal of this function is to make the ocean floor less noisy.
The underwater erosion should cause the ocean floor to be more uniform | 2.69279 | 2.677057 | 1.005877 |
config = Configuration()
config.root = root
config.version_scheme = version_scheme
config.local_scheme = local_scheme
config.write_to = write_to
config.write_to_template = write_to_template
config.relative_to = relative_to
config.tag_regex = tag_regex
config.fallback_version = fallback_version
config.parse = parse
config.git_describe_command = git_describe_command
parsed_version = _do_parse(config)
if parsed_version:
version_string = format_version(
parsed_version, version_scheme=version_scheme, local_scheme=local_scheme
)
dump_version(
root=root,
version=version_string,
write_to=write_to,
template=write_to_template,
)
return version_string | def get_version(
root=".",
version_scheme="guess-next-dev",
local_scheme="node-and-date",
write_to=None,
write_to_template=None,
relative_to=None,
tag_regex=None,
fallback_version=None,
parse=None,
git_describe_command=None,
) | If supplied, relative_to should be a file from which root may
be resolved. Typically called by a script or module that is not
in the root of the repository to direct setuptools_scm to the
root of the repository by supplying ``__file__``. | 1.763474 | 1.832955 | 0.962093 |
if IS_WINDOWS or PY2:
env_dict.update((key, str(value)) for (key, value) in env_dict.items())
return env_dict | def _always_strings(env_dict) | On Windows and Python 2, environment dictionaries must be strings
and not unicode. | 4.234577 | 3.285635 | 1.288815 |
stat = os.stat(path)
info = get_file_info(path)
# rewrite st_ino, st_dev, and st_nlink based on file info
return nt.stat_result(
(stat.st_mode,) +
(info.file_index, info.volume_serial_number, info.number_of_links) +
stat[4:]
) | def compat_stat(path) | Generate stat as found on Python 3.2 and later. | 4.425584 | 4.194473 | 1.055099 |
realpath = os.path.normcase(os.path.realpath(path))
seen = set()
res = []
for dirpath, dirnames, filenames in os.walk(realpath, followlinks=True):
# dirpath with symlinks resolved
realdirpath = os.path.normcase(os.path.realpath(dirpath))
def _link_not_in_scm(n):
fn = os.path.join(realdirpath, os.path.normcase(n))
return os.path.islink(fn) and fn not in scm_files
if realdirpath not in scm_dirs:
# directory not in scm, don't walk it's content
dirnames[:] = []
continue
if (
os.path.islink(dirpath)
and not os.path.relpath(realdirpath, realpath).startswith(os.pardir)
):
# a symlink to a directory not outside path:
# we keep it in the result and don't walk its content
res.append(os.path.join(path, os.path.relpath(dirpath, path)))
dirnames[:] = []
continue
if realdirpath in seen:
# symlink loop protection
dirnames[:] = []
continue
dirnames[:] = [dn for dn in dirnames if not _link_not_in_scm(dn)]
for filename in filenames:
if _link_not_in_scm(filename):
continue
# dirpath + filename with symlinks preserved
fullfilename = os.path.join(dirpath, filename)
if os.path.normcase(os.path.realpath(fullfilename)) in scm_files:
res.append(os.path.join(path, os.path.relpath(fullfilename, path)))
seen.add(realdirpath)
return res | def scm_find_files(path, scm_files, scm_dirs) | setuptools compatible file finder that follows symlinks
- path: the root directory from which to search
- scm_files: set of scm controlled files and symlinks
(including symlinks to directories)
- scm_dirs: set of scm controlled directories
(including directories containing no scm controlled files)
scm_files and scm_dirs must be absolute with symlinks resolved (realpath),
with normalized case (normcase)
Spec here: http://setuptools.readthedocs.io/en/latest/setuptools.html#\
adding-support-for-revision-control-systems | 2.427303 | 2.444831 | 0.99283 |
if not config:
config = Configuration(root=root)
if not has_command("git"):
return
wd = GitWorkdir.from_potential_worktree(config.absolute_root)
if wd is None:
return
if pre_parse:
pre_parse(wd)
if config.git_describe_command:
describe_command = config.git_describe_command
out, unused_err, ret = wd.do_ex(describe_command)
if ret:
# If 'git git_describe_command' failed, try to get the information otherwise.
rev_node = wd.node()
dirty = wd.is_dirty()
if rev_node is None:
return meta("0.0", distance=0, dirty=dirty, config=config)
return meta(
"0.0",
distance=wd.count_all_nodes(),
node="g" + rev_node,
dirty=dirty,
branch=wd.get_branch(),
config=config,
)
else:
tag, number, node, dirty = _git_parse_describe(out)
branch = wd.get_branch()
if number:
return meta(
tag,
config=config,
distance=number,
node=node,
dirty=dirty,
branch=branch,
)
else:
return meta(tag, config=config, node=node, dirty=dirty, branch=branch) | def parse(
root, describe_command=DEFAULT_DESCRIBE, pre_parse=warn_on_shallow, config=None
) | :param pre_parse: experimental pre_parse action, may change at any time | 4.161372 | 4.081491 | 1.019572 |
trace("tag", tag)
if not config:
config = Configuration()
tagdict = _parse_version_tag(tag, config)
if not isinstance(tagdict, dict) or not tagdict.get("version", None):
warnings.warn("tag %r no version found" % (tag,))
return None
version = tagdict["version"]
trace("version pre parse", version)
if tagdict.get("suffix", ""):
warnings.warn(
"tag %r will be stripped of its suffix '%s'" % (tag, tagdict["suffix"])
)
if VERSION_CLASS is not None:
version = pkg_parse_version(version)
trace("version", repr(version))
return version | def tag_to_version(tag, config=None) | take a tag that might be prefixed with a keyword and return only the version part
:param config: optional configuration object | 4.313521 | 4.499693 | 0.958626 |
result = []
for tag in tags:
tag = tag_to_version(tag, config=config)
if tag:
result.append(tag)
return result | def tags_to_versions(tags, config=None) | take tags that might be prefixed with a keyword and return only the version part
:param tags: an iterable of tags
:param config: optional configuration object | 2.603448 | 2.911329 | 0.894247 |
engine = self.engine
connection = engine.connect()
db_session = scoped_session(
sessionmaker(autocommit=False, autoflush=True, bind=engine))
yield db_session
db_session.close()
connection.close() | def session(self) | Creates a context with an open SQLAlchemy session. | 2.699302 | 2.287442 | 1.180052 |
''' on platforms that do not support symbolic links,
lstat is an alias for stat()
so we return a tuple of both
'''
lst = os.lstat(path)
st = os.stat(path)
permission = octal_permissions(lst.st_mode), octal_permissions(st.st_mode)
return permission | def get_path_permission(path) | on platforms that do not support symbolic links,
lstat is an alias for stat()
so we return a tuple of both | 6.772614 | 3.123693 | 2.168143 |
for i in range(max_retries):
try:
shutil.rmtree(path)
return
except OSError as e:
if logger:
info('Unable to remove path: %s' % path)
info('Retrying after %d seconds' % i)
time.sleep(i)
# Final attempt, pass any Exceptions up to caller.
shutil.rmtree(path) | def _robust_rmtree(path, logger=None, max_retries=5) | Try to delete paths robustly .
Retries several times (with increasing delays) if an OSError
occurs. If the final attempt fails, the Exception is propagated
to the caller. Taken from https://github.com/hashdist/hashdist/pull/116 | 3.695206 | 3.501391 | 1.055354 |
from geonode.settings import INSTALLED_APPS, OGC_SERVER
# only start if using Geoserver backend
_backend = os.environ.get('BACKEND', OGC_SERVER['default']['BACKEND'])
if (_backend == 'geonode.qgis_server'
or 'geonode.geoserver' not in INSTALLED_APPS):
return
download_dir = path('downloaded')
if not download_dir.exists():
download_dir.makedirs()
geoserver_dir = path('geoserver')
geoserver_bin = download_dir / \
os.path.basename(dev_config['GEOSERVER_URL'])
jetty_runner = download_dir / \
os.path.basename(dev_config['JETTY_RUNNER_URL'])
grab(
options.get('geoserver', dev_config['GEOSERVER_URL']), geoserver_bin,
"geoserver binary")
grab(
options.get('jetty', dev_config['JETTY_RUNNER_URL']), jetty_runner,
"jetty runner")
if not geoserver_dir.exists():
geoserver_dir.makedirs()
webapp_dir = geoserver_dir / 'geoserver'
if not webapp_dir:
webapp_dir.makedirs()
print 'extracting geoserver'
z = zipfile.ZipFile(geoserver_bin, "r")
z.extractall(webapp_dir)
_install_data_dir() | def setup_geoserver(options) | Prepare a testing instance of GeoServer. | 3.39761 | 3.356467 | 1.012258 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.