code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
# build structures n = len(mir) orien = [None] * (n + 2) orien[n] = 0 # arbitrary orientations orien[n + 1] = 0 succ = [[None for direc in range(4)] for i in range(n + 2)] L = [(mir[i][0], mir[i][1], i) for i in range(n)] L.append((0, -1, n)) # enter L.append((0, cols, n + 1)) # exit last_r, last_i = None, None for (r, c, i) in sorted(L): # sweep by row if last_r == r: succ[i][LEFT] = last_i succ[last_i][RIGHT] = i last_r, last_i = r, i last_c = None for (r, c, i) in sorted(L, key=lambda rci: (rci[1], rci[0])): if last_c == c: # sweep by column succ[i][UP] = last_i succ[last_i][DOWN] = i last_c, last_i = c, i if solve(succ, orien, n, RIGHT): # exploration return orien[:n] else: return None
def laser_mirrors(rows, cols, mir)
Orienting mirrors to allow reachability by laser beam :param int rows: :param int cols: rows and cols are the dimension of the grid :param mir: list of mirror coordinates, except mir[0]= laser entrance, mir[-1]= laser exit. :complexity: :math:`O(2^n)`
3.324342
3.292652
1.009624
assert orien[i] is not None j = succ[i][direc] if j is None: # basic case return False if j == len(orien) - 1: return True if orien[j] is None: # try both orientations for x in [0, 1]: orien[j] = x if solve(succ, orien, j, reflex[direc][x]): return True orien[j] = None return False else: return solve(succ, orien, j, reflex[direc][orien[j]])
def solve(succ, orien, i, direc)
Can a laser leaving mirror i in direction direc reach exit ? :param i: mirror index :param direc: direction leaving mirror i :param orient: orient[i]=orientation of mirror i :param succ: succ[i][direc]=succ mirror reached when leaving i in direction direc
2.814427
3.113912
0.903824
assert len(L) >= 2 L.sort() valmin, argmin = min((L[i] - L[i - 1], i) for i in range(1, len(L))) return L[argmin - 1], L[argmin]
def closest_values(L)
Closest values :param L: list of values :returns: two values from L with minimal distance :modifies: the order of L :complexity: O(n log n), for n=len(L)
3.085531
3.17859
0.970723
header = Cell(None, None, 0, None) # building the cell structure col = [] for j in range(size_universe): col.append(Cell(header, None, 0, None)) for i in range(len(sets)): row = None for j in sets[i]: col[j].S += 1 # one more entry in this column row = Cell(row, col[j], i, col[j]) sol = [] if solve(header, sol): return sol else: return None
def dancing_links(size_universe, sets)
Exact set cover by the dancing links algorithm :param size_universe: universe = {0, 1, ..., size_universe - 1} :param sets: list of sets :returns: list of set indices partitioning the universe, or None :complexity: huge
5.371777
5.296935
1.014129
# -- n is the number of variables n = max(abs(clause[p]) for p in (0, 1) for clause in formula) graph = [[] for node in range(2 * n)] for x, y in formula: # x or y graph[_vertex(-x)].append(_vertex(y)) # -x => y graph[_vertex(-y)].append(_vertex(x)) # -y => x sccp = tarjan(graph) comp_id = [None] * (2 * n) # for each node the ID of its component assignment = [None] * (2 * n) for component in sccp: rep = min(component) # representative of the component for vtx in component: comp_id[vtx] = rep if assignment[vtx] is None: assignment[vtx] = True assignment[vtx ^ 1] = False # complementary literal for i in range(n): if comp_id[2 * i] == comp_id[2 * i + 1]: return None # insatisfiable formula return assignment[::2]
def two_sat(formula)
Solving a 2-SAT boolean formula :param formula: list of clauses, a clause is pair of literals over X1,...,Xn for some n. a literal is an integer, for example -1 = not X1, 3 = X3 :returns: table with boolean assignment satisfying the formula or None :complexity: linear
4.596848
4.406732
1.043142
# snip} assert L # majorité n'est pas définie sur ensemble vide # snip{ count = {} for word in L: if word in count: count[word] += 1 else: count[word] = 1 valmin, argmin = min((-count[word], word) for word in count) return argmin
def majority(L)
Majority :param L: list of elements :returns: element that appears most in L, tie breaking with smallest element :complexity: :math:`O(nk)` in average, where n = len(L) and k = max(w for w in L) :math:`O(n^2k)` in worst case due to the use of a dictionary
6.683589
7.317562
0.913363
global N, N2, N4 if len(G) == 16: # for a 16 x 16 sudoku grid N, N2, N4 = 4, 16, 256 e = 4 * N4 universe = e + 1 S = [[rc(a), rv(a), cv(a), bv(a)] for a in range(N4 * N2)] A = [e] for r in range(N2): for c in range(N2): if G[r][c] != 0: a = assignation(r, c, G[r][c] - 1) A += S[a] sol = dancing_links(universe, S + [A]) if sol: for a in sol: if a < len(S): G[row(a)][col(a)] = val(a) + 1 return True else: return False
def sudoku(G)
Solving Sudoku :param G: integer matrix with 0 at empty cells :returns bool: True if grid could be solved :modifies: G will contain the solution :complexity: huge, but linear for usual published 9x9 grids
4.577556
4.592597
0.996725
rows = len(P) cols = len(P[0]) t = [0] * cols best = None for i in range(rows): for j in range(cols): if P[i][j] == black: t[j] += 1 else: t[j] = 0 (area, left, height, right) = rectangles_from_histogram(t) alt = (area, left, i, right, i-height) if best is None or alt > best: best = alt return best
def rectangles_from_grid(P, black=1)
Largest area rectangle in a binary matrix :param P: matrix :param black: search for rectangles filled with value black :returns: area, left, top, right, bottom of optimal rectangle consisting of all (i,j) with left <= j < right and top <= i <= bottom :complexity: linear
2.957201
2.715526
1.088998
INF = float('inf') n = len(graph) # compute distances dist = [[INF] * n] prec = [[None] * n] dist[0][start] = 0 for ell in range(1, n + 1): dist.append([INF] * n) prec.append([None] * n) for node in range(n): for neighbor in graph[node]: alt = dist[ell - 1][node] + weight[node][neighbor] if alt < dist[ell][neighbor]: dist[ell][neighbor] = alt prec[ell][neighbor] = node # -- find the optimal value valmin = INF argmin = None for node in range(n): valmax = -INF argmax = None for k in range(n): alt = (dist[n][node] - dist[k][node]) / float(n - k) # do not divide by float(n-k) => cycle of minimal total weight if alt >= valmax: # with >= we get simple cycles valmax = alt argmax = k if argmax is not None and valmax < valmin: valmin = valmax argmin = (node, argmax) # -- extract cycle if valmin == INF: # -- there is no cycle return None C = [] node, k = argmin for l in range(n, k, -1): C.append(node) node = prec[l][node] return C[::-1], valmin
def min_mean_cycle(graph, weight, start=0)
Minimum mean cycle by Karp :param graph: directed graph in listlist or listdict format :param weight: in matrix format or same listdict graph :param int start: vertex that should be contained in cycle :returns: cycle as vertex list, average arc weights or None if there is no cycle from start :complexity: `O(|V|*|E|)`
3.31807
3.293611
1.007426
V = range(len(weight)) for k in V: for u in V: for v in V: weight[u][v] = min(weight[u][v], weight[u][k] + weight[k][v]) for v in V: if weight[v][v] < 0: # negative cycle found return True return False
def floyd_warshall(weight)
All pairs shortest paths by Floyd-Warshall :param weight: edge weight matrix :modifies: weight matrix to contain distances in graph :returns: True if there are negative cycles :complexity: :math:`O(|V|^3)`
2.432654
2.465919
0.98651
n = len(graph) dist = [float('inf')] * n prec = [None] * n dist[source] = 0 for nb_iterations in range(n): changed = False for node in range(n): for neighbor in graph[node]: alt = dist[node] + weight[node][neighbor] if alt < dist[neighbor]: dist[neighbor] = alt prec[neighbor] = node changed = True if not changed: # fixed point return dist, prec, False return dist, prec, True
def bellman_ford(graph, weight, source=0)
Single source shortest paths by Bellman-Ford :param graph: directed graph in listlist or listdict format :param weight: can be negative. in matrix format or same listdict graph :returns: distance table, precedence table, bool :explanation: bool is True if a negative circuit is reachable from the source, circuits can have length 2. :complexity: `O(|V|*|E|)`
2.306648
2.328285
0.990707
val = 0 pos10 = 1000 beg = 0 for pos in range(3, -1, -1): for digit in range(9,-1,-1): r = roman[pos][digit] if s.startswith(r, beg): # footnote 1 beg += len(r) val += digit * pos10 break pos10 //= 10 return val
def roman2int(s)
Decode roman number :param s: string representing a roman number between 1 and 9999 :returns: the decoded roman number :complexity: linear (if that makes sense for constant bounded input size)
4.314249
4.65358
0.927082
s = '' pos10 = 1000 for pos in range(3, -1, -1): digit = val // pos10 s += roman[pos][digit] val %= pos10 pos10 //= 10 return s
def int2roman(val)
Code roman number :param val: integer between 1 and 9999 :returns: the corresponding roman number :complexity: linear (if that makes sense for constant bounded input size)
3.084187
3.68873
0.836111
n = len(graph) assert all(weight[u][v] >= 0 for u in range(n) for v in graph[u]) prec = [None] * n black = [False] * n dist = [float('inf')] * n dist[source] = 0 heap = [(0, source)] while heap: dist_node, node = heappop(heap) # Closest node from source if not black[node]: black[node] = True if node == target: break for neighbor in graph[node]: dist_neighbor = dist_node + weight[node][neighbor] if dist_neighbor < dist[neighbor]: dist[neighbor] = dist_neighbor prec[neighbor] = node heappush(heap, (dist_neighbor, neighbor)) return dist, prec
def dijkstra(graph, weight, source=0, target=None)
single source shortest paths by Dijkstra :param graph: directed graph in listlist or listdict format :param weight: in matrix format or same listdict graph :assumes: weights are non-negative :param source: source vertex :type source: int :param target: if given, stops once distance to target found :type target: int :returns: distance table, precedence table :complexity: `O(|V| + |E|log|V|)`
1.959839
2.034641
0.963236
n = len(graph) assert all(weight[u][v] >= 0 for u in range(n) for v in graph[u]) prec = [None] * n dist = [float('inf')] * n dist[source] = 0 heap = OurHeap([(dist[node], node) for node in range(n)]) while heap: dist_node, node = heap.pop() # Closest node from source if node == target: break for neighbor in graph[node]: old = dist[neighbor] new = dist_node + weight[node][neighbor] if new < old: dist[neighbor] = new prec[neighbor] = node heap.update((old, neighbor), (new, neighbor)) return dist, prec
def dijkstra_update_heap(graph, weight, source=0, target=None)
single source shortest paths by Dijkstra with a heap implementing item updates :param graph: adjacency list or adjacency dictionary of a directed graph :param weight: matrix or adjacency dictionary :assumes: weights are non-negatif and weights are infinite for non edges :param source: source vertex :type source: int :param target: if given, stops once distance to target found :type target: int :returns: distance table, precedence table :complexity: `O(|V| + |E|log|V|)`
2.529709
2.522342
1.002921
assert set.isdisjoint({'$', '^', '#'}, s) # Forbidden letters if s == "": return (0, 1) t = "^#" + "#".join(s) + "#$" c = 1 d = 1 p = [0] * len(t) for i in range(2, len(t) - 1): # -- reflect index i with respect to c mirror = 2 * c - i # = c - (i-c) p[i] = max(0, min(d - i, p[mirror])) # -- grow palindrome centered in i while t[i + 1 + p[i]] == t[i - 1 - p[i]]: p[i] += 1 # -- adjust center if necessary if i + p[i] > d: c = i d = i + p[i] (k, i) = max((p[i], i) for i in range(1, len(t) - 1)) return ((i - k) // 2, (i + k) // 2)
def manacher(s)
Longest palindrome in a string by Manacher :param s: string :requires: s is not empty :returns: i,j such that s[i:j] is the longest palindrome in s :complexity: O(len(s))
4.119489
3.755533
1.096912
to_visit = deque() dist = [float('inf')] * len(graph) prec = [None] * len(graph) dist[start] = 0 to_visit.appendleft(start) while to_visit: # an empty queue is considered False node = to_visit.pop() for neighbor in graph[node]: if dist[neighbor] == float('inf'): dist[neighbor] = dist[node] + 1 prec[neighbor] = node to_visit.appendleft(neighbor) return dist, prec
def bfs(graph, start=0)
Shortest path in unweighted graph by BFS :param graph: directed graph in listlist or listdict format :param int start: source vertex :returns: distance table, precedence table :complexity: `O(|V|+|E|)`
2.071559
2.111598
0.981039
if T is None: T = Trie_Node() if i == len(w): T.isWord = True else: T.s[w[i]] = add(T.s[w[i]], w, i + 1) return T
def add(T, w, i=0)
:param T: trie :param string w: word to be added to T :returns: new trie consisting of w added into T :complexity: O(len(w))
2.953323
2.454844
1.203059
T = None for w in S: T = add(T, w) return T
def Trie(S)
:param S: set of words :returns: trie containing all words from S :complexity: linear in total word sizes from S
5.006452
5.215498
0.959918
assert T is not None dist = 0 while True: # Try increasing distances u = search(T, dist, w) if u is not None: return u dist += 1
def spell_check(T, w)
Spellchecker :param T: trie encoding the dictionary :param w: given word :returns: a closest word from the dictionary :complexity: linear if distance was constant
7.611362
8.660924
0.878816
if i == len(w): if T is not None and T.isWord and dist == 0: return "" else: return None if T is None: return None f = search(T.s[w[i]], dist, w, i + 1) # matching if f is not None: return w[i] + f if dist == 0: return None for c in ascii_letters: f = search(T.s[c], dist - 1, w, i) # insertion if f is not None: return c + f f = search(T.s[c], dist - 1, w, i + 1) # substitution if f is not None: return c + f return search(T, dist - 1, w, i + 1)
def search(T, dist, w, i=0)
Searches for w[i:] in trie T with distance at most dist
2.519835
2.457038
1.025558
with open(filename, 'r') as f: while True: line = f.readline() # ignore leading comments if line[0] != '#': break nb_nodes, nb_edges = tuple(map(int, line.split())) graph = [[] for u in range(nb_nodes)] if weighted: weight = [[default_weight] * nb_nodes for v in range(nb_nodes)] for v in range(nb_nodes): weight[v][v] = 0 for _ in range(nb_edges): u, v, w = readtab(f, int) graph[u].append(v) weight[u][v] = w if not directed: graph[v].append(u) weight[v][u] = w return graph, weight else: for _ in range(nb_edges): # si le fichier contient des poids, ils seront ignorés u, v = readtab(f, int)[:2] graph[u].append(v) if not directed: graph[v].append(u) return graph
def read_graph(filename, directed=False, weighted=False, default_weight=None)
Read a graph from a text file :param filename: plain text file. All numbers are separated by space. Starts with a line containing n (#vertices) and m (#edges). Then m lines follow, for each edge. Vertices are numbered from 0 to n-1. Line for unweighted edge u,v contains two integers u, v. Line for weighted edge u,v contains three integers u, v, w[u,v]. :param directed: true for a directed graph, false for undirected :param weighted: true for an edge weighted graph :returns: graph in listlist format, possibly followed by weight matrix :complexity: O(n + m) for unweighted graph, :math:`O(n^2)` for weighted graph
2.365549
2.333696
1.013649
with open(dotfile, 'w') as f: if directed: f.write("digraph G{\n") else: f.write("graph G{\n") if comment: f.write('label="%s";\n' % comment) V = range(len(graph)) # -- vertices for u in V: if node_mark and u in node_mark: f.write('%d [style=filled, color="lightgrey", ' % u) else: f.write('%d [' % u) if node_label: f.write('label="%u [%s]"];\n' % (u, node_label[u])) else: f.write('shape=circle, label="%u"];\n' % u) # -- edges if isinstance(arc_mark, list): arc_mark = set((u, arc_mark[u]) for u in V) for u in V: for v in graph[u]: if not directed and u > v: continue # don't show twice the edge if arc_label and arc_label[u][v] == None: continue # suppress arcs with no label if directed: arc = "%d -> %d " % (u, v) else: arc = "%d -- %d " % (u, v) if arc_mark and ( (v,u) in arc_mark or (not directed and (u,v) in arc_mark) ): pen = 'color="red"' else: pen = "" if arc_label: tag = 'label="%s"' % arc_label[u][v] else: tag = "" if tag and pen: sep = ", " else: sep = "" f.write(arc + "[" + tag + sep + pen + "];\n") f.write("}")
def write_graph(dotfile, graph, directed=False, node_label=None, arc_label=None, comment="", node_mark=set(), arc_mark=set())
Writes a graph to a file in the DOT format :param dotfile: the filename. :param graph: directed graph in listlist or listdict format :param directed: true if graph is directed, false if undirected :param weight: in matrix format or same listdict graph or None :param node_label: vertex label table or None :param arc_label: arc label matrix or None :param comment: comment string for the dot file or None :param node_mark: set of nodes to be shown in gray :param arc_marc: set of arcs to be shown in red :complexity: `O(|V| + |E|)`
2.496696
2.546763
0.980341
n = len(prec) graph = [[prec[u]] for u in range(n)] # add predecessors graph[root] = [] for u in range(n): # add successors if u != root: graph[prec[u]].append(u) return graph
def tree_prec_to_adj(prec, root=0)
Transforms a tree given as predecessor table into adjacency list form :param prec: predecessor table representing a tree, prec[u] == v iff u is successor of v, except for the root where prec[root] == root :param root: root vertex of the tree :returns: undirected graph in listlist representation :complexity: linear
3.926877
3.43189
1.144231
prec = [None] * len(graph) prec[root] = root # mark to visit root only once to_visit = [root] while to_visit: # DFS node = to_visit.pop() for neighbor in graph[node]: if prec[neighbor] is None: prec[neighbor] = node to_visit.append(neighbor) prec[root] = None # put the standard mark for root return prec
def tree_adj_to_prec(graph, root=0)
Transforms a tree given as adjacency list into predecessor table form. if graph is not a tree: will return a DFS spanning tree :param graph: directed graph in listlist or listdict format :returns: tree in predecessor table representation :complexity: linear
3.732276
4.047039
0.922224
for u in range(len(graph)): for v in graph[u]: if u not in graph[v]: if type(graph[v]) is list: graph[v].append(u) if capac: capac[v][u] = 0 else: assert type(graph[v]) is dict graph[v][u] = 0
def add_reverse_arcs(graph, capac=None)
Utility function for flow algorithms that need for every arc (u,v), the existence of an (v,u) arc, by default with zero capacity. graph can be in adjacency list, possibly with capacity matrix capac. or graph can be in adjacency dictionary, then capac parameter is ignored. :param capac: arc capacity matrix :param graph: in listlist representation, or in listdict representation, in this case capac is ignored :complexity: linear :returns: nothing, but graph is modified
2.368279
2.495054
0.949189
graph = [[] for _ in range(len(weight))] for u in range(len(graph)): for v in range(len(graph)): if weight[u][v] != None: graph[u].append(v) return graph
def matrix_to_listlist(weight)
transforms a squared weight matrix in a adjacency table of type listlist encoding the directed graph corresponding to the entries of the matrix different from None :param weight: squared weight matrix, weight[u][v] != None iff arc (u,v) exists :complexity: linear :returns: the unweighted directed graph in the listlist representation, listlist[u] contains all v for which arc (u,v) exists.
2.225829
2.177643
1.022128
if weight: return [{v:weight[u][v] for v in graph[u]} for u in range(len(graph))] else: return [{v:None for v in graph[u]} for u in range(len(graph))]
def listlist_and_matrix_to_listdict(graph, weight=None)
Transforms the weighted adjacency list representation of a graph of type listlist + optional weight matrix into the listdict representation :param graph: in listlist representation :param weight: optional weight matrix :returns: graph in listdict representation :complexity: linear
2.338096
2.651943
0.881654
V = range(len(sparse)) graph = [[] for _ in V] weight = [[None for v in V] for u in V] for u in V: for v in sparse[u]: graph[u].append(v) weight[u][v] = sparse[u][v] return graph, weight
def listdict_to_listlist_and_matrix(sparse)
Transforms the adjacency list representation of a graph of type listdict into the listlist + weight matrix representation :param sparse: graph in listdict representation :returns: couple with listlist representation, and weight matrix :complexity: linear
2.725251
2.69184
1.012412
n = len(dictgraph) # vertices node_to_name = [name for name in dictgraph] # bijection indices <-> names node_to_name.sort() # to make it more readable name_to_node = {} for i in range(n): name_to_node[node_to_name[i]] = i sparse = [{} for _ in range(n)] # build sparse graph for u in dictgraph: for v in dictgraph[u]: sparse[name_to_node[u]][name_to_node[v]] = dictgraph[u][v] return sparse, name_to_node, node_to_name
def dictdict_to_listdict(dictgraph)
Transforms a dict-dict graph representation into a adjacency dictionary representation (list-dict) :param dictgraph: dictionary mapping vertices to dictionary such that dictgraph[u][v] is weight of arc (u,v) :complexity: linear :returns: tuple with graph (listdict), name_to_node (dict), node_to_name (list)
3.033109
2.735046
1.108979
L = [] while v is not None: L.append(v) v = prec[v] assert v not in L # prevent infinite loops for a bad formed table prec return L[::-1]
def extract_path(prec, v)
extracts a path in form of vertex list from source to vertex v given a precedence table prec leading to the source :param prec: precedence table of a tree :param v: vertex on the tree :returns: path from root to v, in form of a list :complexity: linear
8.644954
8.796906
0.982727
V = range(len(graph)) arc_label = [{v:"" for v in graph[u]} for u in V] for u in V: for v in graph[u]: if flow[u][v] >= 0: arc_label[u][v] = "%s/%s" % (flow[u][v], capac[u][v]) else: arc_label[u][v] = None # do not show negative flow arcs return arc_label
def make_flow_labels(graph, flow, capac)
Generate arc labels for a flow in a graph with capacities. :param graph: adjacency list or adjacency dictionary :param flow: flow matrix or adjacency dictionary :param capac: capacity matrix or adjacency dictionary :returns: listdic graph representation, with the arc label strings
2.85742
2.778512
1.0284
n = len(graph) match = max_bipartite_matching(graph) # maximum matching part = [None] * n # partition into chains nb_chains = 0 for v in range(n - 1, -1, -1): # in inverse topological order if part[v] is None: # start of chain u = v while u is not None: # follow the chain part[u] = nb_chains # mark u = match[u] nb_chains += 1 return part
def dilworth(graph)
Decompose a DAG into a minimum number of chains by Dilworth :param graph: directed graph in listlist or listdict format :assumes: graph is acyclic :returns: table giving for each vertex the number of its chains :complexity: same as matching
4.238423
4.051129
1.046233
h = [] for a in freq: heappush(h, (freq[a], a)) while len(h) > 1: (fl, l) = heappop(h) (fr, r) = heappop(h) heappush(h, (fl + fr, [l, r])) code = {} extract(code, h[0][1]) return code
def huffman(freq)
Huffman code :param freq: dictionary with frequencies for each item :returns: dictionary with binary code string for each item :complexity: O(n log n)
2.603627
2.805361
0.92809
if isinstance(tree, list): l, r = tree prefix.append('0') extract(code, l, prefix) prefix.pop() prefix.append('1') extract(code, r, prefix) prefix.pop() else: code[tree] = ''.join(prefix)
def extract(code, tree, prefix=[])
Extract Huffman code from a Huffman tree :param tree: a node of the tree :param prefix: a list with the 01 characters encoding the path from the root to the node `tree` :complexity: O(n)
2.247418
2.692705
0.834632
n = len(tab) pivot = None # find pivot for i in range(n - 1): if tab[i] < tab[i + 1]: pivot = i if pivot is None: # tab is already the last perm. return False for i in range(pivot + 1, n): # find the element to swap if tab[i] > tab[pivot]: swap = i tab[swap], tab[pivot] = tab[pivot], tab[swap] i = pivot + 1 j = n - 1 # invert suffix while i < j: tab[i], tab[j] = tab[j], tab[i] i += 1 j -= 1 return True
def next_permutation(tab)
find the next permutation of tab in the lexicographical order :param tab: table with n elements from an ordered set :modifies: table to next permutation :returns: False if permutation is already lexicographical maximal :complexity: O(n)
2.402094
2.49367
0.963277
E = [(low, -1) for (low, high) in S] E += [(high, +1) for (low, high) in S] nb_open = 0 last = None retval = [] for x, _dir in sorted(E): if _dir == -1: if nb_open == 0: last = x nb_open += 1 else: nb_open -= 1 if nb_open == 0: retval.append((last, x)) return retval
def intervals_union(S)
Union of intervals :param S: list of pairs (low, high) defining intervals [low, high) :returns: ordered list of disjoint intervals with the same union as S :complexity: O(n log n)
2.937036
3.238546
0.9069
# -- assume w.l.o.g. that v is not higher than u in the tree if self.level[u] > self.level[v]: u, v = v, u # -- put v at the same level as u depth = len(self.anc) for k in range(depth-1, -1, -1): if self.level[u] <= self.level[v] - (1 << k): v = self.anc[k][v] assert self.level[u] == self.level[v] if u == v: return u # -- climb until the lowest common ancestor for k in range(depth-1, -1, -1): if self.anc[k][u] != self.anc[k][v]: u = self.anc[k][u] v = self.anc[k][v] assert self.anc[0][u] == self.anc[0][v] return self.anc[0][u]
def query(self, u, v)
:returns: the lowest common ancestor of u and v :complexity: O(log n)
2.807122
2.668321
1.052018
lu = self.last[u] lv = self.last[v] if lu > lv: lu, lv = lv, lu return self.rmq.range_min(lu, lv + 1)[1]
def query(self, u, v)
:returns: the lowest common ancestor of u and v :complexity: O(log n)
5.090863
5.660057
0.899437
assert a >= 0 and b >= 0 and q >= 1 p = 0 # only for documentation p2 = 1 # 2 ** p ap2 = a % q # a ** (2 ** p) result = 1 while b > 0: if p2 & b > 0: # b's binary decomposition contains 2 ** p b -= p2 result = (result * ap2) % q p += 1 p2 *= 2 ap2 = (ap2 * ap2) % q return result
def fast_exponentiation2(a, b, q)
Compute (a pow b) % q :param int a b: non negative :param int q: positive :complexity: O(log b)
4.311985
4.522902
0.953367
assert a >= 0 and b >= 0 and q >= 1 result = 1 while b: if b % 2 == 1: result = (result * a) % q a = (a * a) % q b >>= 1 return result
def fast_exponentiation(a, b, q)
Compute (a pow b) % q, alternative shorter implementation :param int a b: non negative :param int q: positive :complexity: O(log b)
1.796124
2.094866
0.857393
visit[u] = True if u == target: return val for v in graph[u]: cuv = capacity[u][v] if not visit[v] and cuv > flow[u][v]: # reachable arc res = min(val, cuv - flow[u][v]) delta = _augment(graph, capacity, flow, res, v, target, visit) if delta > 0: flow[u][v] += delta # augment flow flow[v][u] -= delta return delta return 0
def _augment(graph, capacity, flow, val, u, target, visit)
Find an augmenting path from u to target with value at most val
2.660559
2.550047
1.043337
add_reverse_arcs(graph, capacity) n = len(graph) flow = [[0] * n for _ in range(n)] INF = float('inf') while _augment(graph, capacity, flow, INF, s, t, [False] * n) > 0: pass # work already done in _augment return (flow, sum(flow[s]))
def ford_fulkerson(graph, capacity, s, t)
Maximum flow by Ford-Fulkerson :param graph: directed graph in listlist or listdict format :param capacity: in matrix format or same listdict graph :param int s: source vertex :param int t: target vertex :returns: flow matrix, flow value :complexity: `O(|V|*|E|*max_capacity)`
5.046917
5.502668
0.917176
dist, i, j = 0, 0, 0 # dist = |{x[i], ..., x[j-1]}| occ = {xi: 0 for xi in x} # number of occurrences in x[i:j] while j < len(x): while dist == k: # move start of interval occ[x[i]] -= 1 # update counters if occ[x[i]] == 0: dist -= 1 i += 1 while j < len(x) and (dist < k or occ[x[j]]): if occ[x[j]] == 0: # update counters dist += 1 occ[x[j]] += 1 j += 1 # move end of interval if dist == k: yield (i, j)
def windows_k_distinct(x, k)
Find all largest windows containing exactly k distinct elements :param x: list or string :param k: positive integer :yields: largest intervals [i, j) with len(set(x[i:j])) == k :complexity: `O(|x|)`
3.239561
3.068288
1.05582
if b == 0: return (1, 0) else: u, v = bezout(b, a % b) return (v, u - (a // b) * v)
def bezout(a, b)
Bezout coefficients for a and b :param a,b: non-negative integers :complexity: O(log a + log b)
2.372169
2.652587
0.894285
prod = 1 for i in range(k): prod = (prod * (n - i)) // (i + 1) return prod
def binom(n, k)
Binomial coefficients for :math:`n \choose k` :param n,k: non-negative integers :complexity: O(k)
2.571579
3.503433
0.734017
prod = 1 for i in range(k): prod = (prod * (n - i) * inv(i + 1, p)) % p return prod
def binom_modulo(n, k, p)
Binomial coefficients for :math:`n \choose k`, modulo p :param n,k: non-negative integers :complexity: O(k)
2.834732
3.50485
0.808802
n = len(bigraph) # same domain for U and V match = [None] * n for u in range(n): augment(u, bigraph, [False] * n, match) return match
def max_bipartite_matching(bigraph)
Bipartie maximum matching :param bigraph: adjacency list, index = vertex in U, value = neighbor list in V :assumption: U = V = {0, 1, 2, ..., n - 1} for n = len(bigraph) :returns: matching list, match[v] == u iff (u, v) in matching :complexity: `O(|V|*|E|)`
7.715509
7.183265
1.074095
nU = len(bigraph) # the following line works only in Python version ≥ 2.5 # nV = max(max(adjlist, default=-1) for adjlist in bigraph) + 1 nV = 0 for adjlist in bigraph: for v in adjlist: if v + 1 > nV: nV = v + 1 match = [None] * nV for u in range(nU): augment(u, bigraph, [False] * nV, match) return match
def max_bipartite_matching2(bigraph)
Bipartie maximum matching :param bigraph: adjacency list, index = vertex in U, value = neighbor list in V :comment: U and V can have different cardinalities :returns: matching list, match[v] == u iff (u, v) in matching :complexity: `O(|V|*|E|)`
3.991101
4.062602
0.9824
freq = {} # freq[p] = total weight of words having prefix p for word, weight in dic: prefix = "" for x in word: prefix += x if prefix in freq: freq[prefix] += weight else: freq[prefix] = weight # prop[s] = prefix to display for s prop = {} for prefix in freq: code = code_word(prefix) if code not in prop or freq[prop[code]] < freq[prefix]: prop[code] = prefix return prop
def predictive_text(dic)
Predictive text for mobile phones :param dic: associates weights to words from [a-z]* :returns: a dictionary associating to words from [2-9]* a corresponding word from the dictionary with highest weight :complexity: linear in total word length
4.809137
4.8561
0.990329
answ = 0 pairs = {} for j in range(len(S)): for i in range(j): px, py = S[i] qx, qy = S[j] center = (px + qx, py + qy) dist = (px - qx) ** 2 + (py - qy) ** 2 sign = (center, dist) if sign in pairs: answ += len(pairs[sign]) pairs[sign].append((i, j)) else: pairs[sign] = [(i, j)] return answ
def rectangles_from_points(S)
How many rectangles can be formed from a set of points :param S: list of points, as coordinate pairs :returns: the number of rectangles :complexity: :math:`O(n^2)`
2.497782
2.605762
0.958561
n = len(graph) time = 0 num = [None] * n low = [n] * n father = [None] * n # father[v] = None if root else father of v critical_childs = [0] * n # c_c[u] = #childs v s.t. low[v] >= num[u] times_seen = [-1] * n for start in range(n): if times_seen[start] == -1: # init DFS path times_seen[start] = 0 to_visit = [start] while to_visit: node = to_visit[-1] if times_seen[node] == 0: # start processing num[node] = time time += 1 low[node] = float('inf') children = graph[node] if times_seen[node] == len(children): # end processing to_visit.pop() up = father[node] # propagate low to father if up is not None: low[up] = min(low[up], low[node]) if low[node] >= num[up]: critical_childs[up] += 1 else: child = children[times_seen[node]] # next arrow times_seen[node] += 1 if times_seen[child] == -1: # not visited yet father[child] = node # link arrow times_seen[child] = 0 to_visit.append(child) # (below) back arrow elif num[child] < num[node] and father[node] != child: low[node] = min(low[node], num[child]) cut_edges = [] cut_nodes = [] # extract solution for node in range(n): if father[node] is None: # characteristics if critical_childs[node] >= 2: cut_nodes.append(node) else: # internal nodes if critical_childs[node] >= 1: cut_nodes.append(node) if low[node] >= num[node]: cut_edges.append((father[node], node)) return cut_nodes, cut_edges
def cut_nodes_edges(graph)
Bi-connected components :param graph: undirected graph. in listlist format. Cannot be in listdict format. :returns: a tuple with the list of cut-nodes and the list of cut-edges :complexity: `O(|V|+|E|)`
3.300678
3.300629
1.000015
N = len(graph) assert N <= 5000 recursionlimit = getrecursionlimit() setrecursionlimit(max(recursionlimit, N + 42)) edges = set((i, j) for i in range(N) for j in graph[i] if i <= j) nodes = set() NOT = -2 # not visited yet; -1 would be buggy `marked[v] != prof - 1` FIN = -3 # already visited marked = [NOT] * N # if >= 0, it means depth within the DFS def DFS(n, prof=0): if marked[n] == FIN: return # only when there are several connected components if marked[n] != NOT: return marked[n] marked[n] = prof m = float('inf') count = 0 # useful only for prof == 0 for v in graph[n]: if marked[v] != FIN and marked[v] != prof - 1: count += 1 r = DFS(v, prof+1) if r <= prof: edges.discard(tuple(sorted((n, v)))) if prof and r >= prof: # only if we are not at root nodes.add(n) m = min(m, r) # root is an articulation point iff it has more than 2 childs if prof == 0 and count >= 2: nodes.add(n) marked[n] = FIN return m for r in range(N): DFS(r) # we can count connected components by nb += DFS(r) setrecursionlimit(recursionlimit) return nodes, edges
def cut_nodes_edges2(graph)
Bi-connected components, alternative recursive implementation :param graph: undirected graph. in listlist format. Cannot be in listdict format. :assumes: graph has about 5000 vertices at most, otherwise memory limit is reached :returns: a tuple with the list of cut-nodes and the list of cut-edges :complexity: `O(|V|+|E|)` in average, `O(|V|+|E|^2)` in worst case due to use of dictionary
5.276485
5.225827
1.009694
A = 0 for i in range(len(p)): A += p[i - 1][0] * p[i][1] - p[i][0] * p[i - 1][1] return A / 2.
def area(p)
Area of a polygone :param p: list of the points taken in any orientation, p[0] can differ from p[-1] :returns: area :complexity: linear
1.937161
2.004974
0.966177
n = len(polygon) order = list(range(n)) order.sort(key=lambda i: polygon[i]) # lexicographic order rank_to_y = list(set(p[1] for p in polygon)) rank_to_y.sort() y_to_rank = {y: rank for rank, y in enumerate(rank_to_y)} S = RangeMinQuery([0] * len(rank_to_y)) # sweep structure last_y = None for i in order: x, y = polygon[i] rank = y_to_rank[y] # -- type of point right_x = max(polygon[i - 1][0], polygon[(i + 1) % n][0]) left = x < right_x below_y = min(polygon[i - 1][1], polygon[(i + 1) % n][1]) high = y > below_y if left: # y does not need to be in S yet if S[rank]: return False # two horizontal segments intersect S[rank] = -1 # add y to S else: S[rank] = 0 # remove y from S if high: lo = y_to_rank[below_y] # check S between [lo + 1, rank - 1] if (below_y != last_y or last_y == y or rank - lo >= 2 and S.range_min(lo + 1, rank)): return False # horiz. & vert. segments intersect last_y = y # remember for next iteration return True
def is_simple(polygon)
Test if a rectilinear polygon is is_simple :param polygon: list of points as (x,y) pairs along the closed polygon :returns: True if the segements do not intersect :complexity: O(n log n) for n=len(polygon)
4.173465
4.219836
0.989011
shuffle(S) assert len(S) >= 2 p = S[0] q = S[1] d = dist(p, q) while d > 0: r = improve(S, d) if r: d, p, q = r else: break return p, q
def closest_points(S)
Closest pair of points :param S: list of points :requires: size of S at least 2 :modifies: changes the order in S :returns: pair of points p,q from S with minimum Euclidean distance :complexity: expected linear time
3.126878
3.142718
0.99496
n = len(x) p = [None] * n h = [None] b = [float('-inf')] # - infinity for i in range(n): if x[i] > b[-1]: p[i] = h[-1] h.append(i) b.append(x[i]) else: # -- binary search: b[k - 1] < x[i] <= b[k] k = bisect_left(b, x[i]) h[k] = i b[k] = x[i] p[i] = h[k - 1] # extract solution q = h[-1] s = [] while q is not None: s.append(x[q]) q = p[q] return s[::-1]
def longest_increasing_subsequence(x)
Longest increasing subsequence :param x: sequence :returns: longest strictly increasing subsequence y :complexity: `O(|x|*log(|y|))`
2.641481
2.689547
0.982129
seen[node] = True for neighbor in graph[node]: if not seen[neighbor]: dfs_recursive(graph, neighbor, seen)
def dfs_recursive(graph, node, seen)
DFS, detect connected component, recursive implementation :param graph: directed graph in listlist or listdict format :param int node: to start graph exploration :param boolean-table seen: will be set true for the connected component containing node. :complexity: `O(|V|+|E|)`
1.927156
3.227336
0.597135
seen[start] = True to_visit = [start] while to_visit: node = to_visit.pop() for neighbor in graph[node]: if not seen[neighbor]: seen[neighbor] = True to_visit.append(neighbor)
def dfs_iterative(graph, start, seen)
DFS, detect connected component, iterative implementation :param graph: directed graph in listlist or listdict format :param int node: to start graph exploration :param boolean-table seen: will be set true for the connected component containing node. :complexity: `O(|V|+|E|)`
1.738724
2.347103
0.740796
to_visit = [start] prec = [None] * len(graph) while to_visit: # an empty queue equals False node = to_visit.pop() for neighbor in graph[node]: if prec[neighbor] is None: prec[neighbor] = node to_visit.append(neighbor) return prec
def dfs_tree(graph, start=0)
DFS, build DFS tree in unweighted graph :param graph: directed graph in listlist or listdict format :param int start: source vertex :returns: precedence table :complexity: `O(|V|+|E|)`
3.213079
3.30424
0.972411
height = len(grid) width = len(grid[0]) grid[i][j] = mark # mark path for ni, nj in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= ni < height and 0 <= nj < width: if grid[ni][nj] == free: dfs_grid(grid, ni, nj)
def dfs_grid_recursive(grid, i, j, mark='X', free='.')
DFS on a grid, mark connected component, iterative version :param grid: matrix, 4-neighborhood :param i,j: cell in this matrix, start of DFS exploration :param free: symbol for walkable cells :param mark: symbol to overwrite visited vertices :complexity: linear
2.037915
2.089715
0.975212
height = len(grid) width = len(grid[0]) to_visit = [(i, j)] grid[i][j] = mark while to_visit: i1, j1 = to_visit.pop() for i2, j2 in [(i1 + 1, j1), (i1, j1 + 1), (i1 - 1, j1), (i1, j1 - 1)]: if (0 <= i2 < height and 0 <= j2 < width and grid[i2][j2] == free): grid[i2][j2] = mark # mark path to_visit.append((i2, j2))
def dfs_grid(grid, i, j, mark='X', free='.')
DFS on a grid, mark connected component, iterative version :param grid: matrix, 4-neighborhood :param i,j: cell in this matrix, start of DFS exploration :param free: symbol for walkable cells :param mark: symbol to overwrite visited vertices :complexity: linear
1.640324
1.66959
0.982471
n = len(graph) prec = [None] * n # ancestor marks for visited vertices for u in range(n): if prec[u] is None: # unvisited vertex S = [u] # start new DFS prec[u] = u # mark root (not necessary for this algorithm) while S: u = S.pop() for v in graph[u]: # for all neighbors if v != prec[u]: # except arcs to father in DFS tree if prec[v] is not None: cycle = [v, u] # cycle found, (u,v) back edge while u != prec[v] and u != prec[u]: # directed u = prec[u] # climb up the tree cycle.append(u) return cycle else: prec[v] = u # v is new vertex in tree S.append(v) return None
def find_cycle(graph)
find a cycle in an undirected graph :param graph: undirected graph in listlist or listdict format :returns: list of vertices in a cycle or None :complexity: `O(|V|+|E|)`
4.766705
4.673367
1.019972
if isinstance(expr, tuple): (left, op, right) = expr lval = arithm_expr_eval(cell, left) rval = arithm_expr_eval(cell, right) if op == '+': return lval + rval if op == '-': return lval - rval if op == '*': return lval * rval if op == '/': return lval // rval elif isinstance(expr, int): return expr else: cell[expr] = arithm_expr_eval(cell, cell[expr]) return cell[expr]
def arithm_expr_eval(cell, expr)
Evaluates a given expression :param expr: expression :param cell: dictionary variable name -> expression :returns: numerical value of expression :complexity: linear
1.535183
1.686752
0.910141
vals = [] ops = [] for tok in line + [';']: if tok in priority: # tok is an operator while (tok != '(' and ops and priority[ops[-1]] >= priority[tok]): right = vals.pop() left = vals.pop() vals.append((left, ops.pop(), right)) if tok == ')': ops.pop() # this is the corresponding '(' else: ops.append(tok) elif tok.isdigit(): # tok is an integer vals.append(int(tok)) else: # tok is an identifier vals.append(tok) return vals.pop()
def arithm_expr_parse(line)
Constructs an arithmetic expression tree :param line: list of token strings containing the expression :returns: expression tree :complexity: linear
3.238914
3.163956
1.023691
sum = 0 while i > 0: sum += self.s[i] i -= (i & -i) return sum
def prefixSum(self, i)
:param int i: non negative :returns: t[1] + ... + t[i]
2.810672
2.9662
0.947567
return self.prefixSum(b) - self.prefixSum(a-1)
def intervalSum(self, a, b)
:param int a b: with 1 <= a <= b :returns: t[a] + ... + t[b]
5.546747
4.140946
1.339488
assert i > 0 while i < len(self.s): self.s[i] += val i += (i & -i)
def add(self, i, val)
:param int i: positive :modifies: adds val to t[i]
3.515872
3.356416
1.047508
self.add(a, +val) self.add(b + 1, -val)
def intervalAdd(self, a, b, val)
Variant, adds val to t[a], to t[a + 1] ... and to t[b] :param int a b: with 1 <= a <= b
6.574204
7.103208
0.925526
visitU[u] = True for v in bigraph[u]: if not visitV[v]: visitV[v] = True assert matchV[v] is not None # otherwise match is not maximum _alternate(matchV[v], bigraph, visitU, visitV, matchV)
def _alternate(u, bigraph, visitU, visitV, matchV)
extend alternating tree from free vertex u. visitU, visitV marks all vertices covered by the tree.
3.090788
3.256078
0.949237
V = range(len(bigraph)) matchV = max_bipartite_matching(bigraph) matchU = [None for u in V] for v in V: # -- build the mapping from U to V if matchV[v] is not None: matchU[matchV[v]] = v visitU = [False for u in V] # -- build max alternating forest visitV = [False for v in V] for u in V: if matchU[u] is None: # -- starting with free vertices in U _alternate(u, bigraph, visitU, visitV, matchV) inverse = [not b for b in visitU] return (inverse, visitV)
def bipartite_vertex_cover(bigraph)
Bipartite minimum vertex cover by Koenig's theorem :param bigraph: adjacency list, index = vertex in U, value = neighbor list in V :assumption: U = V = {0, 1, 2, ..., n - 1} for n = len(bigraph) :returns: boolean table for U, boolean table for V :comment: selected vertices form a minimum vertex cover, i.e. every edge is adjacent to at least one selected vertex and number of selected vertices is minimum :complexity: `O(|V|*|E|)`
4.811944
4.777521
1.007205
if R == []: return 0 X = [] Y = [] for j in range(len(R)): (x1, y1, x2, y2) = R[j] assert x1 <= x2 and y1 <= y2 X.append(x1) X.append(x2) Y.append((y1, +1, j)) # generate events Y.append((y2, -1, j)) X.sort() Y.sort() X2i = {X[i]: i for i in range(len(X))} L = [X[i + 1] - X[i] for i in range(len(X) - 1)] C = Cover_query(L) area = 0 last = 0 for (y, delta, j) in Y: area += (y - last) * C.cover() last = y (x1, y1, x2, y2) = R[j] i = X2i[x1] k = X2i[x2] C.change(i, k, delta) return area
def union_rectangles(R)
Area of union of rectangles :param R: list of rectangles defined by (x1, y1, x2, y2) where (x1, y1) is top left corner and (x2, y2) bottom right corner :returns: area :complexity: :math:`O(n^2)`
2.827785
2.843084
0.994619
self._change(1, 0, self.N, i, k, delta)
def change(self, i, k, delta)
when delta = +1, adds an interval [i, k], when delta = -1, removes it :complexity: O(log L)
8.652453
8.289505
1.043784
formula = [] for line in open(filename, 'r'): line = line.strip() if line[0] == "#": continue lit = line.split(":-") if len(lit) == 1: posvar = lit[0] negvars = [] else: assert len(lit) == 2 posvar = lit[0].strip() if posvar == '': posvar = None negvars = lit[1].split(',') for i in range(len(negvars)): negvars[i] = negvars[i].strip() formula.append((posvar, negvars)) return formula
def read(filename)
reads a Horn SAT formula from a text file :file format: # comment A # clause with unique positive literal :- A # clause with unique negative literal A :- B, C, D # clause where A is positive and B,C,D negative # variables are strings without spaces
2.337332
2.094463
1.115958
# --- construct data structures CLAUSES = range(len(formula)) score = [0 for c in CLAUSES] # number of negative vars that are not yet in solution posvar_in_clause = [None for c in CLAUSES] # the unique positive variable of a clause (if any) clauses_with_negvar = defaultdict(set) # all clauses where a variable appears negatively for c in CLAUSES: posvar, negvars = formula[c] score[c] = len(set(negvars)) # do not count twice repeated negative variables posvar_in_clause[c] = posvar for v in negvars: clauses_with_negvar[v].add(c) pool = [set() for s in range(max(score) + 1)] # create the pool for c in CLAUSES: pool[score[c]].add(c) # pool[s] = set of clauses with score s # --- solve Horn SAT formula solution = set() # contains all variables set to True while pool[0]: curr = pool[0].pop() # arbitrary zero score clause v = posvar_in_clause[curr] if v == None: # formula is not satisfiable return None if v in solution or curr in clauses_with_negvar[v]: continue # clause is already satisfied solution.add(v) for c in clauses_with_negvar[v]: # update score pool[score[c]].remove(c) score[c] -= 1 pool[score[c]].add(c) # change c to lower score in pool return solution
def horn_sat(formula)
Solving a HORN Sat formula :param formula: list of couple(posvar, negvars). negvars is a list of the negative variables and can be empty. posvar is the positive variable and can be None. Variables can be any hashable objects, as integers or strings for example. :returns: None if formula is not satisfiable, else a minimal set of variables that have to be set to true in order to satisfy the formula. :complexity: linear
4.123975
3.851963
1.070616
assert source != target add_reverse_arcs(graph, capacity) Q = deque() total = 0 n = len(graph) flow = [[0] * n for u in range(n)] # flow initially empty while True: # repeat while we can increase Q.appendleft(source) lev = [None] * n # build levels, None = inaccessible lev[source] = 0 # by BFS while Q: u = Q.pop() for v in graph[u]: if lev[v] is None and capacity[u][v] > flow[u][v]: lev[v] = lev[u] + 1 Q.appendleft(v) if lev[target] is None: # stop if sink is not reachable return flow, total up_bound = sum(capacity[source][v] for v in graph[source]) - total total += _dinic_step(graph, capacity, lev, flow, source, target, up_bound)
def dinic(graph, capacity, source, target)
Maximum flow by Dinic :param graph: directed graph in listlist or listdict format :param capacity: in matrix format or same listdict graph :param int source: vertex :param int target: vertex :returns: skew symmetric flow matrix, flow value :complexity: :math:`O(|V|^2 |E|)`
4.284496
4.309346
0.994234
if limit <= 0: return 0 if u == target: return limit val = 0 for v in graph[u]: residual = capacity[u][v] - flow[u][v] if lev[v] == lev[u] + 1 and residual > 0: z = min(limit, residual) aug = _dinic_step(graph, capacity, lev, flow, v, target, z) flow[u][v] += aug flow[v][u] -= aug val += aug limit -= aug if val == 0: lev[u] = None # remove unreachable node return val
def _dinic_step(graph, capacity, lev, flow, u, target, limit)
tenter de pousser le plus de flot de u à target, sans dépasser limit
2.816087
2.878124
0.978445
assert x not in self.rank i = len(self.heap) self.heap.append(x) # add a new leaf self.rank[x] = i self.up(i)
def push(self, x)
Insert new element x in the heap. Assumption: x is not already in the heap
4.966285
4.447943
1.116535
root = self.heap[1] del self.rank[root] x = self.heap.pop() # remove last leaf if self: # if heap is not empty self.heap[1] = x # put last leaf to root self.rank[x] = 1 self.down(1) # maintain heap order return root
def pop(self)
Remove and return smallest element
5.026011
5.011926
1.00281
x = self.heap[i] while i > 1 and x < self.heap[i // 2]: self.heap[i] = self.heap[i // 2] self.rank[self.heap[i // 2]] = i i //= 2 self.heap[i] = x # insertion index found self.rank[x] = i
def up(self, i)
The value of heap[i] has decreased. Maintain heap invariant.
2.713619
2.351341
1.154073
x = self.heap[i] n = len(self.heap) while True: left = 2 * i # climb down the tree right = left + 1 if (right < n and self.heap[right] < x and self.heap[right] < self.heap[left]): self.heap[i] = self.heap[right] self.rank[self.heap[right]] = i # go back up right child i = right elif left < n and self.heap[left] < x: self.heap[i] = self.heap[left] self.rank[self.heap[left]] = i # go back up left child i = left else: self.heap[i] = x # insertion index found self.rank[x] = i return
def down(self, i)
the value of heap[i] has increased. Maintain heap invariant.
2.526685
2.389108
1.057585
i = self.rank[old] # change value at index i del self.rank[old] self.heap[i] = new self.rank[new] = i if old < new: # maintain heap order self.down(i) else: self.up(i)
def update(self, old, new)
Replace an element in the heap
4.724
4.253144
1.110708
uf = UnionFind(len(graph)) edges = [] for u in range(len(graph)): for v in graph[u]: edges.append((weight[u][v], u, v)) edges.sort() mst = [] for w, u, v in edges: if uf.union(u, v): mst.append((u, v)) return mst
def kruskal(graph, weight)
Minimum spanning tree by Kruskal :param graph: undirected graph in listlist or listdict format :param weight: in matrix format or same listdict graph :returns: list of edges of the tree :complexity: ``O(|E|log|E|)``
1.858301
2.147258
0.86543
if self.up[x] == x: return x else: self.up[x] = self.find(self.up[x]) return self.up[x]
def find(self, x)
:returns: identifier of part containing x :complexity: O(inverse_ackerman(n))
2.309671
2.378569
0.971034
repr_x = self.find(x) repr_y = self.find(y) if repr_x == repr_y: # already in the same component return False if self.rank[repr_x] == self.rank[repr_y]: self.rank[repr_x] += 1 self.up[repr_y] = repr_x elif self.rank[repr_x] > self.rank[repr_y]: self.up[repr_y] = repr_x else: self.up[repr_x] = repr_y return True
def union(self, x, y)
Merges part that contain x and part containing y :returns: False if x, y are already in same part :complexity: O(inverse_ackerman(n))
1.888129
1.986948
0.950266
self.prec = anchor.prec # point to neighbors self.succ = anchor self.succ.prec = self # make neighbors point to item self.prec.succ = self
def insert(self, anchor)
insert list item before anchor
10.312098
9.932246
1.038244
if not self.items: # was list empty ? self.items = item # then this is the new head item.insert(self.items)
def append(self, item)
add item to the end of the item list
13.069942
12.483626
1.046967
DoubleLinkedListItem.remove(self) # remove from double linked list if self.succ is self: # list was a singleton self.theclass.items = None # class is empty elif self.theclass.items is self: # oups we removed the head self.theclass.items = self.succ
def remove(self)
remove item from its class
10.895876
9.001258
1.210484
has_split = [] # remember which classes split for i in pivot: if 0 <= i < len(self.items): # ignore if outside of domain x = self.items[i] c = x.theclass # c = class of x if not c.split: # possibly create new split class c.split = PartitionClass(c) if self.classes is c: self.classes = c.split # always make self.classes point to the first class has_split.append(c) x.remove() # remove from its class x.theclass = c.split c.split.append(x) # append to the split class for c in has_split: # clean information about split classes c.split = None if not c.items: # delete class if it became empty c.remove() del c
def refine(self, pivot)
Split every class C in the partition into C intersection pivot and C setminus pivot complexity: linear in size of pivot
6.14483
5.841888
1.051857
return [[x.val for x in theclass.items] for theclass in self.classes]
def tolist(self)
produce a list representation of the partition
13.084668
10.987804
1.190836
return [x.val for theclass in self.classes for x in theclass.items]
def order(self)
Produce a flatten list of the partition, ordered by classes
18.233137
10.259227
1.777243
P = [True] * n answ = [2] for i in range(3, n, 2): if P[i]: answ.append(i) for j in range(2 * i, n, i): P[j] = False return answ
def eratosthene(n)
Prime numbers by sieve of Eratosthene :param n: positive integer :assumes: n > 2 :returns: list of prime numbers <n :complexity: O(n loglog n)
2.652076
2.308539
1.148811
primes = [] factor = [0] * n for x in range(2, n): if not factor[x]: # no factor found factor[x] = x # meaning x is prime primes.append(x) for p in primes: # loop over all non primes of the form p * x if p > factor[x] or p * x >= n: break factor[p * x] = p return primes, factor
def gries_misra(n)
Prime numbers by the sieve of Gries-Misra Computes both the list of all prime numbers less than n, and a table mapping every integer 2 ≤ x < n to its smallest prime factor :param n: positive integer :returns: list of prime numbers, and list of prime factors :complexity: O(n)
4.260213
4.118789
1.034336
n = len(graph) A = [0] * n # A[v] = min residual cap. on path source->v augm_path = [None] * n # None = node was not visited yet Q = deque() # BFS Q.append(source) augm_path[source] = source A[source] = float('inf') while Q: u = Q.popleft() for v in graph[u]: cuv = capacity[u][v] residual = cuv - flow[u][v] if residual > 0 and augm_path[v] is None: augm_path[v] = u # store predecessor A[v] = min(A[u], residual) if v == target: break else: Q.append(v) return (augm_path, A[target])
def _augment(graph, capacity, flow, source, target)
find a shortest augmenting path
3.080327
2.977833
1.034419
add_reverse_arcs(graph, capacity) V = range(len(graph)) flow = [[0 for v in V] for u in V] while True: augm_path, delta = _augment(graph, capacity, flow, source, target) if delta == 0: break v = target # go back to source while v != source: u = augm_path[v] # augment flow flow[u][v] += delta flow[v][u] -= delta v = u return (flow, sum(flow[source]))
def edmonds_karp(graph, capacity, source, target)
Maximum flow by Edmonds-Karp :param graph: directed graph in listlist or listdict format :param capacity: in matrix format or same listdict graph :param int source: vertex :param int target: vertex :returns: flow matrix, flow value :complexity: :math:`O(|V|*|E|^2)`
4.018068
4.19777
0.957191
n = len(x) m = len(b) assert len(A) == m and len(A[0]) == n S = [] # put linear system in a single matrix S for i in range(m): S.append(A[i][:] + [b[i]]) S.append(list(range(n))) # indices in x k = diagonalize(S, n, m) if k < m: for i in range(k, m): if not is_zero(S[i][n]): return GJ_ZERO_SOLUTIONS for j in range(k): x[S[m][j]] = S[j][n] if k < n: for j in range(k, n): x[S[m][j]] = 0 return GJ_SEVERAL_SOLUTIONS return GJ_SINGLE_SOLUTION
def gauss_jordan(A, x, b)
Linear equation system Ax=b by Gauss-Jordan :param A: n by m matrix :param x: table of size n :param b: table of size m :modifies: x will contain solution if any :returns int: 0 if no solution, 1 if solution unique, 2 otherwise :complexity: :math:`O(n^2m)`
3.651442
3.579134
1.020203
for d in range(k): if s[i + d] != t[j + d]: return False return True
def matches(s, t, i, j, k)
tests if s[i:i + k] equals t[j:j + k]
2.574063
2.321618
1.108737
hash_s = 0 hash_t = 0 len_s = len(s) len_t = len(t) last_pos = pow(DOMAIN, len_t - 1) % PRIME if len_s < len_t: return -1 for i in range(len_t): # preprocessing hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME hash_t = (DOMAIN * hash_t + ord(t[i])) % PRIME for i in range(len_s - len_t + 1): if hash_s == hash_t: # check character by character if matches(s, t, i, 0, len_t): return i if i < len_s - len_t: hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + len_t]), last_pos) return -1
def rabin_karp_matching(s, t)
Find a substring by Rabin-Karp :param s: the haystack string :param t: the needle string :returns: index i such that s[i: i + len(t)] == t, or -1 :complexity: O(len(s) + len(t)) in expected time, and O(len(s) * len(t)) in worst case
2.345708
2.590363
0.905552
last_pos = pow(DOMAIN, k - 1) % PRIME pos = {} assert k > 0 if len(s) < k or len(t) < k: return None hash_t = 0 for j in range(k): # store hashing values hash_t = (DOMAIN * hash_t + ord(t[j])) % PRIME for j in range(len(t) - k + 1): if hash_t in pos: pos[hash_t].append(j) else: pos[hash_t] = [j] if j < len(t) - k: hash_t = roll_hash(hash_t, ord(t[j]), ord(t[j + k]), last_pos) hash_s = 0 for i in range(k): # preprocessing hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME for i in range(len(s) - k + 1): if hash_s in pos: # is this signature in s? for j in pos[hash_s]: if matches(s, t, i, j, k): return (i, j) if i < len(s) - k: hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + k]), last_pos) return None
def rabin_karp_factor(s, t, k)
Find a common factor by Rabin-Karp :param string s: haystack :param string t: needle :param int k: factor length :returns: (i, j) such that s[i:i + k] == t[j:j + k] or None. In case of tie, lexicographical minimum (i, j) is returned :complexity: O(len(s) + len(t)) in expected time, and O(len(s) + len(t) * k) in worst case
2.489112
2.599501
0.957535
best = (float('-inf'), 0, 0, 0) S = [] H2 = H + [float('-inf')] # extra element to empty the queue for right in range(len(H2)): x = H2[right] left = right while len(S) > 0 and S[-1][1] >= x: left, height = S.pop() # first element is area of candidate rect = (height * (right - left), left, height, right) if rect > best: best = rect S.append((left, x)) return best
def rectangles_from_histogram(H)
Largest Rectangular Area in a Histogram :param H: histogram table :returns: area, left, height, right, rect. is [0, height] * [left, right) :complexity: linear
4.74811
4.675136
1.015609