code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
if self._registry_key:
return self._registry_key.number_of_values
return 0 | def number_of_values(self) | int: number of values within the key. | 6.208014 | 4.960492 | 1.251492 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
if not self._registry_key:
return None
return self._registry_key.offset | def offset(self) | int: offset of the key within the Windows Registry file or None. | 6.953155 | 4.350715 | 1.598164 |
if not self._registry:
return
try:
self._registry_key = self._registry.GetKeyByPath(self._key_path)
except RuntimeError:
pass
if not self._registry_key:
return
for sub_registry_key in self._registry_key.GetSubkeys():
self.AddSubkey(sub_registry_key)
if self._key_path == 'HKEY_LOCAL_MACHINE\\System':
sub_registry_key = VirtualWinRegistryKey(
'CurrentControlSet', registry=self._registry)
self.AddSubkey(sub_registry_key)
self._registry = None | def _GetKeyFromRegistry(self) | Determines the key from the Windows Registry. | 2.952046 | 2.904042 | 1.01653 |
# This is an optimized way to combine the path segments into a single path
# and combine multiple successive path separators to one.
# Split all the path segments based on the path (segment) separator.
path_segments = [
segment.split(definitions.KEY_PATH_SEPARATOR)
for segment in path_segments]
# Flatten the sublists into one list.
path_segments = [
element for sublist in path_segments for element in sublist]
# Remove empty path segments.
path_segments = filter(None, path_segments)
return definitions.KEY_PATH_SEPARATOR.join(path_segments) | def _JoinKeyPath(self, path_segments) | Joins the path segments into key path.
Args:
path_segments (list[str]): Windows Registry key path segments.
Returns:
str: key path. | 4.28977 | 4.293951 | 0.999026 |
name = registry_key.name.upper()
if name in self._subkeys:
raise KeyError(
'Subkey: {0:s} already exists.'.format(registry_key.name))
self._subkeys[name] = registry_key
key_path = self._JoinKeyPath([self._key_path, registry_key.name])
registry_key._key_path = key_path | def AddSubkey(self, registry_key) | Adds a subkey.
Args:
registry_key (WinRegistryKey): Windows Registry subkey.
Raises:
KeyError: if the subkey already exists. | 3.016269 | 3.062953 | 0.984759 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
subkeys = list(self._subkeys.values())
if index < 0 or index >= len(subkeys):
raise IndexError('Index out of bounds.')
return subkeys[index] | def GetSubkeyByIndex(self, index) | Retrieves a subkey by index.
Args:
index (int): index of the subkey.
Returns:
WinRegistryKey: Windows Registry subkey or None if not found.
Raises:
IndexError: if the index is out of bounds. | 4.283079 | 4.01524 | 1.066706 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
return self._subkeys.get(name.upper(), None) | def GetSubkeyByName(self, name) | Retrieves a subkey by name.
Args:
name (str): name of the subkey.
Returns:
WinRegistryKey: Windows Registry subkey or None if not found. | 7.510651 | 8.257252 | 0.909582 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
subkey = self
for path_segment in key_paths.SplitKeyPath(key_path):
subkey = subkey.GetSubkeyByName(path_segment)
if not subkey:
break
return subkey | def GetSubkeyByPath(self, key_path) | Retrieves a subkey by path.
Args:
key_path (str): path of the subkey.
Returns:
WinRegistryKey: Windows Registry subkey or None if not found. | 4.21911 | 4.186928 | 1.007686 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
return iter(self._subkeys.values()) | def GetSubkeys(self) | Retrieves all subkeys within the key.
Returns:
generator[WinRegistryKey]: Windows Registry subkey generator. | 11.354643 | 10.213557 | 1.111723 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
if not self._registry_key:
return None
return self._registry_key.GetValueByName(name) | def GetValueByName(self, name) | Retrieves a value by name.
Args:
name (str): name of the value or an empty string for the default value.
Returns:
WinRegistryValue: Windows Registry value or None if not found. | 4.630648 | 4.833452 | 0.958042 |
if not self._registry_key and self._registry:
self._GetKeyFromRegistry()
if self._registry_key:
return self._registry_key.GetValues()
return iter([]) | def GetValues(self) | Retrieves all values within the key.
Returns:
generator[WinRegistryValue]: Windows Registry value generator. | 6.755425 | 5.68084 | 1.189159 |
payload_class_str = self._payload["class"]
payload_class = self.safe_str_to_class(payload_class_str)
payload_class.resq = self.resq
args = self._payload.get("args")
metadata = dict(args=args)
if self.enqueue_timestamp:
metadata["enqueue_timestamp"] = self.enqueue_timestamp
before_perform = getattr(payload_class, "before_perform", None)
metadata["failed"] = False
metadata["perform_timestamp"] = time.time()
check_after = True
try:
if before_perform:
payload_class.before_perform(metadata)
return payload_class.perform(*args)
except Exception as e:
metadata["failed"] = True
metadata["exception"] = e
if not self.retry(payload_class, args):
metadata["retried"] = False
raise
else:
metadata["retried"] = True
logging.exception("Retry scheduled after error in %s", self._payload)
finally:
after_perform = getattr(payload_class, "after_perform", None)
if after_perform:
payload_class.after_perform(metadata)
delattr(payload_class,'resq') | def perform(self) | This method converts payload into args and calls the ``perform``
method on the payload class.
Before calling ``perform``, a ``before_perform`` class method
is called, if it exists. It takes a dictionary as an argument;
currently the only things stored on the dictionary are the
args passed into ``perform`` and a timestamp of when the job
was enqueued.
Similarly, an ``after_perform`` class method is called after
``perform`` is finished. The metadata dictionary contains the
same data, plus a timestamp of when the job was performed, a
``failed`` boolean value, and if it did fail, a ``retried``
boolean value. This method is called after retry, and is
called regardless of whether an exception is ultimately thrown
by the perform method. | 3.57103 | 2.920266 | 1.222844 |
fail = failure.create(exception, self._queue, self._payload,
self._worker)
fail.save(self.resq)
return fail | def fail(self, exception) | This method provides a way to fail a job and will use whatever
failure backend you've provided. The default is the ``RedisBackend``. | 24.901924 | 18.239759 | 1.365255 |
retry_every = getattr(payload_class, 'retry_every', None)
retry_timeout = getattr(payload_class, 'retry_timeout', 0)
if retry_every:
now = ResQ._current_time()
first_attempt = self._payload.get("first_attempt", now)
retry_until = first_attempt + timedelta(seconds=retry_timeout)
retry_at = now + timedelta(seconds=retry_every)
if retry_at < retry_until:
self.resq.enqueue_at(retry_at, payload_class, *args,
**{'first_attempt':first_attempt})
return True
return False | def retry(self, payload_class, args) | This method provides a way to retry a job after a failure.
If the jobclass defined by the payload containes a ``retry_every`` attribute then pyres
will attempt to retry the job until successful or until timeout defined by ``retry_timeout`` on the payload class. | 3.331301 | 2.944157 | 1.131496 |
if isinstance(queues, string_types):
queues = [queues]
queue, payload = res.pop(queues, timeout=timeout)
if payload:
return cls(queue, payload, res, worker) | def reserve(cls, queues, res, worker=None, timeout=10) | Reserve a job on one of the queues. This marks this job so
that other workers will not pick it up. | 5.259002 | 4.952698 | 1.061846 |
mod = __import__(name)
components = name.split('.')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod | def my_import(name) | Helper function for walking import calls when searching for classes by
string names. | 1.686846 | 2.036741 | 0.828208 |
lst = s.split(".")
klass = lst[-1]
mod_list = lst[:-1]
module = ".".join(mod_list)
# ruby compatibility kludge: resque sends just a class name and
# not a module name so if I use resque to queue a ruby class
# called "Worker" then pyres will throw a "ValueError: Empty
# module name" exception. To avoid that, if there's no module in
# the json then we'll use the classname as a module name.
if not module:
module = klass
mod = my_import(module)
if hasattr(mod, klass):
return getattr(mod, klass)
else:
raise ImportError('') | def safe_str_to_class(s) | Helper function to map string class names to module classes. | 8.592941 | 8.609467 | 0.998081 |
lst = s.split(".")
klass = lst[-1]
mod_list = lst[:-1]
module = ".".join(mod_list)
try:
mod = __import__(module)
if hasattr(mod, klass):
return getattr(mod, klass)
else:
return None
except ImportError:
return None | def str_to_class(s) | Alternate helper function to map string class names to module classes. | 2.490106 | 2.447507 | 1.017405 |
queue = getattr(klass,'queue', None)
if queue:
class_name = '%s.%s' % (klass.__module__, klass.__name__)
self.enqueue_from_string(class_name, queue, *args)
else:
logger.warning("unable to enqueue job with class %s" % str(klass)) | def enqueue(self, klass, *args) | Enqueue a job into a specific queue. Make sure the class you are
passing has **queue** attribute and a **perform** method on it. | 3.421487 | 3.064738 | 1.116405 |
pending = 0
for q in self.queues():
pending += self.size(q)
return {
'pending' : pending,
'processed' : Stat('processed',self).get(),
'queues' : len(self.queues()),
'workers' : len(self.workers()),
#'working' : len(self.working()),
'failed' : Stat('failed',self).get(),
'servers' : ['%s:%s' % (self.host, self.port)]
} | def info(self) | Returns a dictionary of the current status of the pending jobs,
processed, no. of queues, no. of workers, no. of failed jobs. | 4.125624 | 3.273299 | 1.260387 |
setproctitle('pyres_manager: Waiting on children to shutdown.')
for minion in self._workers.values():
minion.terminate()
minion.join() | def _shutdown_minions(self) | send the SIGNINT signal to each worker in the pool. | 10.362395 | 7.936402 | 1.305679 |
body = dedent().format(exception=self._exception,
traceback=self._traceback,
queue=self._queue,
payload=self._payload,
worker=self._worker)
return MIMEText(body) | def create_message(self) | Returns a message body to send in this email. Should be from email.mime.* | 9.024909 | 7.749551 | 1.164572 |
self._setproctitle("Starting")
logger.info("starting")
self.startup()
while True:
if self._shutdown:
logger.info('shutdown scheduled')
break
self.register_worker()
job = self.reserve(interval)
if job:
self.fork_worker(job)
else:
if interval == 0:
break
#procline @paused ? "Paused" : "Waiting for #{@queues.join(',')}"
self._setproctitle("Waiting")
#time.sleep(interval)
self.unregister_worker() | def work(self, interval=5) | Invoked by ``run`` method. ``work`` listens on a list of queues and sleeps
for ``interval`` time.
``interval`` -- Number of seconds the worker will wait until processing the next job. Default is "5".
Whenever a worker finds a job on the queue it first calls ``reserve`` on
that job to make sure another worker won't run it, then *forks* itself to
work on that job. | 9.081614 | 8.426468 | 1.077749 |
logger.debug('picked up job')
logger.debug('job details: %s' % job)
self.before_fork(job)
self.child = os.fork()
if self.child:
self._setproctitle("Forked %s at %s" %
(self.child,
datetime.datetime.now()))
logger.info('Forked %s at %s' % (self.child,
datetime.datetime.now()))
try:
start = datetime.datetime.now()
# waits for the result or times out
while True:
pid, status = os.waitpid(self.child, os.WNOHANG)
if pid != 0:
if os.WIFEXITED(status) and os.WEXITSTATUS(status) == 0:
break
if os.WIFSTOPPED(status):
logger.warning("Process stopped by signal %d" % os.WSTOPSIG(status))
else:
if os.WIFSIGNALED(status):
raise CrashError("Unexpected exit by signal %d" % os.WTERMSIG(status))
raise CrashError("Unexpected exit status %d" % os.WEXITSTATUS(status))
time.sleep(0.5)
now = datetime.datetime.now()
if self.timeout and ((now - start).seconds > self.timeout):
os.kill(self.child, signal.SIGKILL)
os.waitpid(-1, os.WNOHANG)
raise TimeoutError("Timed out after %d seconds" % self.timeout)
except OSError as ose:
import errno
if ose.errno != errno.EINTR:
raise ose
except JobError:
self._handle_job_exception(job)
finally:
# If the child process' job called os._exit manually we need to
# finish the clean up here.
if self.job():
self.done_working(job)
logger.debug('done waiting')
else:
self._setproctitle("Processing %s since %s" %
(job,
datetime.datetime.now()))
logger.info('Processing %s since %s' %
(job, datetime.datetime.now()))
self.after_fork(job)
# re-seed the Python PRNG after forking, otherwise
# all job process will share the same sequence of
# random numbers
random.seed()
self.process(job)
os._exit(0)
self.child = None | def fork_worker(self, job) | Invoked by ``work`` method. ``fork_worker`` does the actual forking to create the child
process that will process the job. It's also responsible for monitoring the child process
and handling hangs and crashes.
Finally, the ``process`` method actually processes the job by eventually calling the Job
instance's ``perform`` method. | 3.091402 | 3.091745 | 0.999889 |
cmd = "ps -A -o pid,command | grep pyres_worker | grep -v grep"
output = commands.getoutput(cmd)
if output:
return map(lambda l: l.strip().split(' ')[0], output.split("\n"))
else:
return [] | def worker_pids(cls) | Returns an array of all pids (as strings) of the workers on
this machine. Used when pruning dead workers. | 3.810805 | 3.509505 | 1.085853 |
if not resq:
resq = ResQ()
data = {
'failed_at' : datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S'),
'payload' : self._payload,
'exception' : self._exception.__class__.__name__,
'error' : self._parse_message(self._exception),
'backtrace' : self._parse_traceback(self._traceback),
'queue' : self._queue
}
if self._worker:
data['worker'] = self._worker
data = ResQ.encode(data)
resq.redis.rpush('resque:failed', data) | def save(self, resq=None) | Saves the failed Job into a "failed" Redis queue preserving all its original enqueud info. | 3.329597 | 2.981561 | 1.116729 |
# Convert to CSR or BSR if necessary
if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
try:
A = csr_matrix(A)
print('Implicit conversion of A to CSR in pyamg.blackbox.make_csr')
except BaseException:
raise TypeError('Argument A must have type csr_matrix or\
bsr_matrix, or be convertible to csr_matrix')
if A.shape[0] != A.shape[1]:
raise TypeError('Argument A must be a square')
A = A.asfptype()
return A | def make_csr(A) | Convert A to CSR, if A is not a CSR or BSR matrix already.
Parameters
----------
A : array, matrix, sparse matrix
(n x n) matrix to convert to CSR
Returns
-------
A : csr_matrix, bsr_matrix
If A is csr_matrix or bsr_matrix, then do nothing and return A.
Else, convert A to CSR if possible and return.
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.blackbox import make_csr
>>> A = poisson((40,40),format='csc')
>>> Acsr = make_csr(A)
Implicit conversion of A to CSR in pyamg.blackbox.make_csr | 3.558001 | 3.418993 | 1.040658 |
# Ensure acceptable format of A
A = make_csr(A)
config = {}
# Detect symmetry
if ishermitian(A, fast_check=True):
config['symmetry'] = 'hermitian'
if verb:
print(" Detected a Hermitian matrix")
else:
config['symmetry'] = 'nonsymmetric'
if verb:
print(" Detected a non-Hermitian matrix")
# Symmetry dependent parameters
if config['symmetry'] == 'hermitian':
config['smooth'] = ('energy', {'krylov': 'cg', 'maxiter': 3,
'degree': 2, 'weighting': 'local'})
config['presmoother'] = ('block_gauss_seidel',
{'sweep': 'symmetric', 'iterations': 1})
config['postsmoother'] = ('block_gauss_seidel',
{'sweep': 'symmetric', 'iterations': 1})
else:
config['smooth'] = ('energy', {'krylov': 'gmres', 'maxiter': 3,
'degree': 2, 'weighting': 'local'})
config['presmoother'] = ('gauss_seidel_nr',
{'sweep': 'symmetric', 'iterations': 2})
config['postsmoother'] = ('gauss_seidel_nr',
{'sweep': 'symmetric', 'iterations': 2})
# Determine near null-space modes B
if B is None:
# B is the constant for each variable in a node
if isspmatrix_bsr(A) and A.blocksize[0] > 1:
bsize = A.blocksize[0]
config['B'] = np.kron(np.ones((int(A.shape[0] / bsize), 1),
dtype=A.dtype), np.eye(bsize))
else:
config['B'] = np.ones((A.shape[0], 1), dtype=A.dtype)
elif (isinstance(B, type(np.zeros((1,)))) or
isinstance(B, type(sp.mat(np.zeros((1,)))))):
if len(B.shape) == 1:
B = B.reshape(-1, 1)
if (B.shape[0] != A.shape[0]) or (B.shape[1] == 0):
raise TypeError('Invalid dimensions of B, B.shape[0] must equal \
A.shape[0]')
else:
config['B'] = np.array(B, dtype=A.dtype)
else:
raise TypeError('Invalid B')
if config['symmetry'] == 'hermitian':
config['BH'] = None
else:
config['BH'] = config['B'].copy()
# Set non-symmetry related parameters
config['strength'] = ('evolution', {'k': 2, 'proj_type': 'l2',
'epsilon': 3.0})
config['max_levels'] = 15
config['max_coarse'] = 500
config['coarse_solver'] = 'pinv'
config['aggregate'] = 'standard'
config['keep'] = False
return config | def solver_configuration(A, B=None, verb=True) | Generate a dictionary of SA parameters for an arbitray matrix A.
Parameters
----------
A : array, matrix, csr_matrix, bsr_matrix
(n x n) matrix to invert, CSR or BSR format preferred for efficiency
B : None, array
Near null-space modes used to construct the smoothed aggregation solver
If None, the constant vector is used
If (n x m) array, then B is passed to smoothed_aggregation_solver
verb : bool
If True, print verbose output during runtime
Returns
-------
config : dict
A dictionary of solver configuration parameters that one uses to
generate a smoothed aggregation solver
Notes
-----
The config dictionary contains the following parameter entries: symmetry,
smooth, presmoother, postsmoother, B, strength, max_levels, max_coarse,
coarse_solver, aggregate, keep. See smoothed_aggregtion_solver for each
parameter's description.
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg import solver_configuration
>>> A = poisson((40,40),format='csr')
>>> solver_config = solver_configuration(A,verb=False) | 2.821602 | 2.520133 | 1.119624 |
# Convert A to acceptable format
A = make_csr(A)
# Generate smoothed aggregation solver
try:
return \
smoothed_aggregation_solver(A,
B=config['B'],
BH=config['BH'],
smooth=config['smooth'],
strength=config['strength'],
max_levels=config['max_levels'],
max_coarse=config['max_coarse'],
coarse_solver=config['coarse_solver'],
symmetry=config['symmetry'],
aggregate=config['aggregate'],
presmoother=config['presmoother'],
postsmoother=config['postsmoother'],
keep=config['keep'])
except BaseException:
raise TypeError('Failed generating smoothed_aggregation_solver') | def solver(A, config) | Generate an SA solver given matrix A and a configuration.
Parameters
----------
A : array, matrix, csr_matrix, bsr_matrix
Matrix to invert, CSR or BSR format preferred for efficiency
config : dict
A dictionary of solver configuration parameters that is used to
generate a smoothed aggregation solver
Returns
-------
ml : smoothed_aggregation_solver
smoothed aggregation hierarchy
Notes
-----
config must contain the following parameter entries for
smoothed_aggregation_solver: symmetry, smooth, presmoother, postsmoother,
B, strength, max_levels, max_coarse, coarse_solver, aggregate, keep
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg import solver_configuration,solver
>>> A = poisson((40,40),format='csr')
>>> config = solver_configuration(A,verb=False)
>>> ml = solver(A,config) | 3.71285 | 2.625505 | 1.414147 |
with open(fname, 'r') as inf:
fdata = inf.readlines()
comments = {}
for f in ch.functions:
lineno = f['line_number'] - 1 # zero based indexing
# set starting position
lineptr = lineno - 1
if f['template']:
lineptr -= 1
start = lineptr
# find the top of the comment block
while fdata[lineptr].startswith('//') or\
fdata[lineptr].startswith('/*') or\
fdata[lineptr].startswith(' *'):
lineptr -= 1
lineptr += 1
comment = fdata[lineptr:(start + 1)]
comment = [c[3:].rstrip() for c in comment]
comments[f['name']] = '\n'.join(comment).strip()
return comments | def find_comments(fname, ch) | Find the comments for a function.
fname: filename
ch: CppHeaderParser parse tree
The function must look like
/*
* comments
* comments
*/
template<class I, ...>
void somefunc(...){
-or-
/*
* comments
* comments
*/
void somefunc(...){
-or-
with // style comments
Then, take off the first three spaces | 3.810029 | 3.921546 | 0.971563 |
indent = ' '
# temlpate and function name
if func['template']:
fdef = func['template'] + '\n'
else:
fdef = ''
newcall = func['returns'] + ' _' + func['name'] + '('
fdef += newcall + '\n'
# function parameters
# for each parameter
# if it's an array
# - replace with py::array_t
# - skip the next _size argument
# - save in a list of arrays
# else replicate
i = 0
arraylist = []
needsize = False
while i < len(func['parameters']):
p = func['parameters'][i]
i += 1
# check if pointer/array
if p['pointer'] or p['array']:
paramtype = p['raw_type']
const = ''
if p['constant']:
const = 'const '
param = 'py::array_t<{}> &'.format(paramtype) + ' ' + p['name']
arraylist.append((const, paramtype, p['name']))
needsize = True
elif '_size' not in p['name'] and needsize:
# not a size, but needed one
raise ValueError(
'Expecting a _size parameter for {}'.format(
p['name']))
elif '_size' in p['name']:
# just size, skip it
needsize = False
continue
else:
# if not a pointer, just copy it
param = p['type'] + ' ' + p['name']
fdef += '{:>25},\n'.format(param) # set width to 25
fdef = fdef.strip()[:-1] # trim comma and newline
fdef += '\n' + ' ' * len(newcall) + ')'
fdef += '\n{\n'
# make a list of python objects
for a in arraylist:
if 'const' in a[0]:
unchecked = '.unchecked();\n'
else:
unchecked = '.mutable_unchecked();\n'
fdef += indent
fdef += "auto py_" + a[2] + ' = ' + a[2] + unchecked
# make a list of pointers to the arrays
for a in arraylist:
if 'const' in a[0]:
data = '.data();\n'
else:
data = '.mutable_data();\n'
fdef += indent
fdef += a[0] + a[1] + ' *_' + a[2] + ' = py_' + a[2] + data
# get the template signature
if len(arraylist) > 0:
fdef += '\n'
if func['template']:
template = func['template']
template = template.replace('template', '').replace(
'class ', '') # template <class T> ----> <T>
else:
template = ''
newcall = ' return ' + func['name'] + template + '('
fdef += newcall + '\n'
# function parameters
for p in func['parameters']:
if '_size' in p['name']:
fdef = fdef.strip()
name, s = p['name'].split('_size')
if s == '':
s = '0'
fdef += " {}.shape({})".format(name, s)
else:
if p['pointer'] or p['array']:
name = '_' + p['name']
else:
name = p['name']
fdef += '{:>25}'.format(name)
fdef += ',\n'
fdef = fdef.strip()[:-1]
fdef += '\n' + ' ' * len(newcall) + ');\n}'
return fdef | def build_function(func) | Build a function from a templated function. The function must look like
template<class I, class T, ...>
void func(const p[], p_size, ...)
rules:
- a pointer or array p is followed by int p_size
- all arrays are templated
- non arrays are basic types: int, double, complex, etc
- all functions are straight up c++ | 3.465949 | 3.443664 | 1.006471 |
headerfilename = os.path.splitext(headerfile)[0]
indent = ' '
plugin = ''
# plugin += '#define NC py::arg().noconvert()\n'
# plugin += '#define YC py::arg()\n'
plugin += 'PYBIND11_MODULE({}, m) {{\n'.format(headerfilename)
plugin += indent + 'm.doc() = R"pbdoc(\n'
plugin += indent + 'Pybind11 bindings for {}\n\n'.format(headerfile)
plugin += indent + 'Methods\n'
plugin += indent + '-------\n'
for f in ch.functions:
for func in inst:
if f['name'] in func['functions']:
plugin += indent + f['name'] + '\n'
plugin += indent + ')pbdoc";\n\n'
plugin += indent + 'py::options options;\n'
plugin += indent + 'options.disable_function_signatures();\n\n'
unbound = []
bound = []
for f in ch.functions:
# for each function:
# - find the entry in the instantiation list
# - note any array parameters to the function
# - for each type, instantiate
found = False
for func in inst:
if f['name'] in func['functions']:
found = True
types = func['types']
if not found:
# print('Could not find {}'.format(f['name']))
unbound.append(f['name'])
continue
else:
bound.append(f['name'])
# find all parameter names and mark if array
argnames = []
for p in f['parameters']:
array = False
if p['pointer'] or p['array']:
array = True
# skip "_size" parameters
if '_size' in p['name']:
continue
else:
argnames.append((p['name'], array))
ntypes = len(types)
for i, t in enumerate(types):
# add the function call with each template
instname = f['name']
# check the remaps
for remap in remaps:
if f['name'] in remap:
instname = remap[f['name']]
if t is not None:
# templated function
typestr = '<' + ', '.join(t) + '>'
else:
# not a templated function
typestr = ''
plugin += indent + \
'm.def("{}", &_{}{},\n'.format(instname, f['name'], typestr)
# name the arguments
pyargnames = []
for p, array in argnames:
convert = ''
if array:
convert = '.noconvert()'
pyargnames.append('py::arg("{}"){}'.format(p, convert))
argstring = indent + ', '.join(pyargnames)
plugin += indent + argstring
# add the docstring to the last
if i == ntypes - 1:
plugin += ',\nR"pbdoc(\n{})pbdoc");\n'.format(
comments[f['name']])
else:
plugin += ');\n'
plugin += '\n'
plugin += '}\n'
# plugin += '#undef NC\n'
# plugin += '#undef YC\n'
return plugin, bound, unbound | def build_plugin(headerfile, ch, comments, inst, remaps) | Take a header file (headerfile) and a parse tree (ch)
and build the pybind11 plugin
headerfile: somefile.h
ch: parse tree from CppHeaderParser
comments: a dictionary of comments
inst: files to instantiate
remaps: list of remaps | 3.859527 | 3.869522 | 0.997417 |
nnz = max(min(int(m*n*density), m*n), 0)
row = np.random.randint(low=0, high=m-1, size=nnz)
col = np.random.randint(low=0, high=n-1, size=nnz)
data = np.ones(nnz, dtype=float)
# duplicate (i,j) entries will be summed together
return sp.sparse.csr_matrix((data, (row, col)), shape=(m, n)) | def _rand_sparse(m, n, density, format='csr') | Construct base function for sprand, sprandn. | 2.618152 | 2.68174 | 0.976289 |
m, n = int(m), int(n)
# get sparsity pattern
A = _rand_sparse(m, n, density, format='csr')
# replace data with random values
A.data = sp.rand(A.nnz)
return A.asformat(format) | def sprand(m, n, density, format='csr') | Return a random sparse matrix.
Parameters
----------
m, n : int
shape of the result
density : float
target a matrix with nnz(A) = m*n*density, 0<=density<=1
format : string
sparse matrix format to return, e.g. 'csr', 'coo', etc.
Return
------
A : sparse matrix
m x n sparse matrix
Examples
--------
>>> from pyamg.gallery import sprand
>>> A = sprand(5,5,3/5.0) | 3.948091 | 5.553779 | 0.710884 |
if len(grid) == 2:
return q12d(grid, spacing=spacing, E=E, nu=nu, format=format)
else:
raise NotImplemented('no support for grid=%s' % str(grid)) | def linear_elasticity(grid, spacing=None, E=1e5, nu=0.3, format=None) | Linear elasticity problem discretizes with Q1 finite elements on a regular rectangular grid.
Parameters
----------
grid : tuple
length 2 tuple of grid sizes, e.g. (10, 10)
spacing : tuple
length 2 tuple of grid spacings, e.g. (1.0, 0.1)
E : float
Young's modulus
nu : float
Poisson's ratio
format : string
Format of the returned sparse matrix (eg. 'csr', 'bsr', etc.)
Returns
-------
A : csr_matrix
FE Q1 stiffness matrix
B : array
rigid body modes
See Also
--------
linear_elasticity_p1
Notes
-----
- only 2d for now
Examples
--------
>>> from pyamg.gallery import linear_elasticity
>>> A, B = linear_elasticity((4, 4))
References
----------
.. [1] J. Alberty, C. Carstensen, S. A. Funken, and R. KloseDOI
"Matlab implementation of the finite element method in elasticity"
Computing, Volume 69, Issue 3 (November 2002) Pages: 239 - 263
http://www.math.hu-berlin.de/~cc/ | 4.144897 | 4.972847 | 0.833506 |
X, Y = tuple(grid)
if X < 1 or Y < 1:
raise ValueError('invalid grid shape')
if dirichlet_boundary:
X += 1
Y += 1
pts = np.mgrid[0:X+1, 0:Y+1]
pts = np.hstack((pts[0].T.reshape(-1, 1) - X / 2.0,
pts[1].T.reshape(-1, 1) - Y / 2.0))
if spacing is None:
DX, DY = 1, 1
else:
DX, DY = tuple(spacing)
pts *= [DX, DY]
# compute local stiffness matrix
lame = E * nu / ((1 + nu) * (1 - 2*nu)) # Lame's first parameter
mu = E / (2 + 2*nu) # shear modulus
vertices = np.array([[0, 0], [DX, 0], [DX, DY], [0, DY]])
K = q12d_local(vertices, lame, mu)
nodes = np.arange((X+1)*(Y+1)).reshape(X+1, Y+1)
LL = nodes[:-1, :-1]
Id = (2*LL).repeat(K.size).reshape(-1, 8, 8)
J = Id.copy()
Id += np.tile([0, 1, 2, 3, 2*X + 4, 2*X + 5, 2*X + 2, 2*X + 3], (8, 1))
J += np.tile([0, 1, 2, 3, 2*X + 4, 2*X + 5, 2*X + 2, 2*X + 3], (8, 1)).T
V = np.tile(K, (X*Y, 1))
Id = np.ravel(Id)
J = np.ravel(J)
V = np.ravel(V)
# sum duplicates
A = coo_matrix((V, (Id, J)), shape=(pts.size, pts.size)).tocsr()
A = A.tobsr(blocksize=(2, 2))
del Id, J, V, LL, nodes
B = np.zeros((2 * (X+1)*(Y+1), 3))
B[0::2, 0] = 1
B[1::2, 1] = 1
B[0::2, 2] = -pts[:, 1]
B[1::2, 2] = pts[:, 0]
if dirichlet_boundary:
mask = np.zeros((X+1, Y+1), dtype='bool')
mask[1:-1, 1:-1] = True
mask = np.ravel(mask)
data = np.zeros(((X-1)*(Y-1), 2, 2))
data[:, 0, 0] = 1
data[:, 1, 1] = 1
indices = np.arange((X-1)*(Y-1))
indptr = np.concatenate((np.array([0]), np.cumsum(mask)))
P = bsr_matrix((data, indices, indptr),
shape=(2*(X+1)*(Y+1), 2*(X-1)*(Y-1)))
Pt = P.T
A = P.T * A * P
B = Pt * B
return A.asformat(format), B | def q12d(grid, spacing=None, E=1e5, nu=0.3, dirichlet_boundary=True,
format=None) | Q1 elements in 2 dimensions.
See Also
--------
linear_elasticity | 2.525306 | 2.61023 | 0.967465 |
M = lame + 2*mu # P-wave modulus
R_11 = np.matrix([[2, -2, -1, 1],
[-2, 2, 1, -1],
[-1, 1, 2, -2],
[1, -1, -2, 2]]) / 6.0
R_12 = np.matrix([[1, 1, -1, -1],
[-1, -1, 1, 1],
[-1, -1, 1, 1],
[1, 1, -1, -1]]) / 4.0
R_22 = np.matrix([[2, 1, -1, -2],
[1, 2, -2, -1],
[-1, -2, 2, 1],
[-2, -1, 1, 2]]) / 6.0
F = inv(np.vstack((vertices[1] - vertices[0], vertices[3] - vertices[0])))
K = np.zeros((8, 8)) # stiffness matrix
E = F.T * np.matrix([[M, 0], [0, mu]]) * F
K[0::2, 0::2] = E[0, 0] * R_11 + E[0, 1] * R_12 +\
E[1, 0] * R_12.T + E[1, 1] * R_22
E = F.T * np.matrix([[mu, 0], [0, M]]) * F
K[1::2, 1::2] = E[0, 0] * R_11 + E[0, 1] * R_12 +\
E[1, 0] * R_12.T + E[1, 1] * R_22
E = F.T * np.matrix([[0, mu], [lame, 0]]) * F
K[1::2, 0::2] = E[0, 0] * R_11 + E[0, 1] * R_12 +\
E[1, 0] * R_12.T + E[1, 1] * R_22
K[0::2, 1::2] = K[1::2, 0::2].T
K /= det(F)
return K | def q12d_local(vertices, lame, mu) | Local stiffness matrix for two dimensional elasticity on a square element.
Parameters
----------
lame : Float
Lame's first parameter
mu : Float
shear modulus
See Also
--------
linear_elasticity
Notes
-----
Vertices should be listed in counter-clockwise order::
[3]----[2]
| |
| |
[0]----[1]
Degrees of freedom are enumerated as follows::
[x=6,y=7]----[x=4,y=5]
| |
| |
[x=0,y=1]----[x=2,y=3] | 1.733591 | 1.790577 | 0.968175 |
assert(vertices.shape == (3, 2))
A = np.vstack((np.ones((1, 3)), vertices.T))
PhiGrad = inv(A)[:, 1:] # gradients of basis functions
R = np.zeros((3, 6))
R[[[0], [2]], [0, 2, 4]] = PhiGrad.T
R[[[2], [1]], [1, 3, 5]] = PhiGrad.T
C = mu*np.array([[2, 0, 0], [0, 2, 0], [0, 0, 1]]) +\
lame*np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]])
K = det(A)/2.0*np.dot(np.dot(R.T, C), R)
return K | def p12d_local(vertices, lame, mu) | Local stiffness matrix for P1 elements in 2d. | 2.9587 | 2.919102 | 1.013565 |
if E2V is None:
mesh_type = 'vertex'
map_type_to_key = {'vertex': 1, 'tri': 5, 'quad': 9, 'tet': 10, 'hex': 12}
if mesh_type not in map_type_to_key:
raise ValueError('unknown mesh_type=%s' % mesh_type)
key = map_type_to_key[mesh_type]
if mesh_type == 'vertex':
uidx = np.arange(0, Verts.shape[0]).reshape((Verts.shape[0], 1))
E2V = {key: uidx}
else:
E2V = {key: E2V}
if cdata is not None:
cdata = {key: cdata}
if cvdata is not None:
cvdata = {key: cvdata}
write_vtu(Verts=Verts, Cells=E2V, pdata=pdata, pvdata=pvdata,
cdata=cdata, cvdata=cvdata, fname=fname) | def write_basic_mesh(Verts, E2V=None, mesh_type='tri',
pdata=None, pvdata=None,
cdata=None, cvdata=None, fname='output.vtk') | Write mesh file for basic types of elements.
Parameters
----------
fname : {string}
file to be written, e.g. 'mymesh.vtu'
Verts : {array}
coordinate array (N x D)
E2V : {array}
element index array (Nel x Nelnodes)
mesh_type : {string}
type of elements: tri, quad, tet, hex (all 3d)
pdata : {array}
scalar data on vertices (N x Nfields)
pvdata : {array}
vector data on vertices (3*Nfields x N)
cdata : {array}
scalar data on cells (Nfields x Nel)
cvdata : {array}
vector data on cells (3*Nfields x Nel)
Returns
-------
writes a .vtu file for use in Paraview
Notes
-----
The difference between write_basic_mesh and write_vtu is that write_vtu is
more general and requires dictionaries of cell information.
write_basic_mesh calls write_vtu
Examples
--------
>>> import numpy as np
>>> from pyamg.vis import write_basic_mesh
>>> Verts = np.array([[0.0,0.0],
... [1.0,0.0],
... [2.0,0.0],
... [0.0,1.0],
... [1.0,1.0],
... [2.0,1.0],
... [0.0,2.0],
... [1.0,2.0],
... [2.0,2.0],
... [0.0,3.0],
... [1.0,3.0],
... [2.0,3.0]])
>>> E2V = np.array([[0,4,3],
... [0,1,4],
... [1,5,4],
... [1,2,5],
... [3,7,6],
... [3,4,7],
... [4,8,7],
... [4,5,8],
... [6,10,9],
... [6,7,10],
... [7,11,10],
... [7,8,11]])
>>> pdata=np.ones((12,2))
>>> pvdata=np.ones((12*3,2))
>>> cdata=np.ones((12,2))
>>> cvdata=np.ones((3*12,2))
>>> write_basic_mesh(Verts, E2V=E2V, mesh_type='tri',pdata=pdata,
pvdata=pvdata, cdata=cdata, cvdata=cvdata,
fname='test.vtu')
See Also
--------
write_vtu | 2.172957 | 2.298222 | 0.945495 |
for key in d:
elm.setAttribute(key, d[key]) | def set_attributes(d, elm) | Set attributes from dictionary of values. | 3.85175 | 3.696877 | 1.041893 |
if not (isspmatrix_csr(AggOp) or isspmatrix_csc(AggOp)):
raise TypeError('AggOp must be a CSR or CSC matrix')
else:
AggOp = AggOp.tocsc()
ndof = max(x.shape)
nPDEs = int(ndof/AggOp.shape[0])
def aggregate_wise_inner_product(z, AggOp, nPDEs, ndof):
z = np.ravel(z)*np.ravel(z)
innerp = np.zeros((1, AggOp.shape[1]), dtype=z.dtype)
for j in range(nPDEs):
innerp += z[slice(j, ndof, nPDEs)].reshape(1, -1) * AggOp
return innerp.reshape(-1, 1)
def get_aggregate_weights(AggOp, A, z, nPDEs, ndof):
rho = approximate_spectral_radius(A)
zAz = np.dot(z.reshape(1, -1), A*z.reshape(-1, 1))
card = nPDEs*(AggOp.indptr[1:]-AggOp.indptr[:-1])
weights = (np.ravel(card)*zAz)/(A.shape[0]*rho)
return weights.reshape(-1, 1)
# Run test 1, which finds where x is small relative to its energy
weights = Ca*get_aggregate_weights(AggOp, A, x, nPDEs, ndof)
mask1 = aggregate_wise_inner_product(x, AggOp, nPDEs, ndof) <= weights
# Run test 2, which finds where x is already approximated
# accurately by the existing T
projected_x = x - T*(T.T*x)
mask2 = aggregate_wise_inner_product(projected_x,
AggOp, nPDEs, ndof) <= weights
# Combine masks and zero out corresponding aggregates in x
mask = np.ravel(mask1 + mask2).nonzero()[0]
if mask.shape[0] > 0:
mask = nPDEs*AggOp[:, mask].indices
for j in range(nPDEs):
x[mask+j] = 0.0 | def eliminate_local_candidates(x, AggOp, A, T, Ca=1.0, **kwargs) | Eliminate canidates locally.
Helper function that determines where to eliminate candidates locally
on a per aggregate basis.
Parameters
---------
x : array
n x 1 vector of new candidate
AggOp : CSR or CSC sparse matrix
Aggregation operator for the level that x was generated for
A : sparse matrix
Operator for the level that x was generated for
T : sparse matrix
Tentative prolongation operator for the level that x was generated for
Ca : scalar
Constant threshold parameter to decide when to drop candidates
Returns
-------
Nothing, x is modified in place | 3.776643 | 3.797379 | 0.994539 |
grid = tuple(grid)
N = len(grid) # grid dimension
if N < 1 or min(grid) < 1:
raise ValueError('invalid grid shape: %s' % str(grid))
# create N-dimension Laplacian stencil
if type == 'FD':
stencil = np.zeros((3,) * N, dtype=dtype)
for i in range(N):
stencil[(1,)*i + (0,) + (1,)*(N-i-1)] = -1
stencil[(1,)*i + (2,) + (1,)*(N-i-1)] = -1
stencil[(1,)*N] = 2*N
if type == 'FE':
stencil = -np.ones((3,) * N, dtype=dtype)
stencil[(1,)*N] = 3**N - 1
return stencil_grid(stencil, grid, format=format) | def poisson(grid, spacing=None, dtype=float, format=None, type='FD') | Return a sparse matrix for the N-dimensional Poisson problem.
The matrix represents a finite Difference approximation to the
Poisson problem on a regular n-dimensional grid with unit grid
spacing and Dirichlet boundary conditions.
Parameters
----------
grid : tuple of integers
grid dimensions e.g. (100,100)
Notes
-----
The matrix is symmetric and positive definite (SPD).
Examples
--------
>>> from pyamg.gallery import poisson
>>> # 4 nodes in one dimension
>>> poisson( (4,) ).todense()
matrix([[ 2., -1., 0., 0.],
[-1., 2., -1., 0.],
[ 0., -1., 2., -1.],
[ 0., 0., -1., 2.]])
>>> # rectangular two dimensional grid
>>> poisson( (2,3) ).todense()
matrix([[ 4., -1., 0., -1., 0., 0.],
[-1., 4., -1., 0., -1., 0.],
[ 0., -1., 4., 0., 0., -1.],
[-1., 0., 0., 4., -1., 0.],
[ 0., -1., 0., -1., 4., -1.],
[ 0., 0., -1., 0., -1., 4.]]) | 2.959188 | 3.090037 | 0.957655 |
# TODO check dimensions of x
# TODO speedup complex case
x = np.ravel(x)
if pnorm == '2':
return np.sqrt(np.inner(x.conj(), x).real)
elif pnorm == 'inf':
return np.max(np.abs(x))
else:
raise ValueError('Only the 2-norm and infinity-norm are supported') | def norm(x, pnorm='2') | 2-norm of a vector.
Parameters
----------
x : array_like
Vector of complex or real values
pnorm : string
'2' calculates the 2-norm
'inf' calculates the infinity-norm
Returns
-------
n : float
2-norm of a vector
Notes
-----
- currently 1+ order of magnitude faster than scipy.linalg.norm(x), which
calls sqrt(numpy.sum(real((conjugate(x)*x)),axis=0)) resulting in an
extra copy
- only handles the 2-norm and infinity-norm for vectors
See Also
--------
scipy.linalg.norm : scipy general matrix or vector norm | 3.896376 | 4.114705 | 0.946939 |
if sparse.isspmatrix_csr(A) or sparse.isspmatrix_csc(A):
# avoid copying index and ptr arrays
abs_A = A.__class__((np.abs(A.data), A.indices, A.indptr),
shape=A.shape)
return (abs_A * np.ones((A.shape[1]), dtype=A.dtype)).max()
elif sparse.isspmatrix(A):
return (abs(A) * np.ones((A.shape[1]), dtype=A.dtype)).max()
else:
return np.dot(np.abs(A), np.ones((A.shape[1],),
dtype=A.dtype)).max() | def infinity_norm(A) | Infinity norm of a matrix (maximum absolute row sum).
Parameters
----------
A : csr_matrix, csc_matrix, sparse, or numpy matrix
Sparse or dense matrix
Returns
-------
n : float
Infinity norm of the matrix
Notes
-----
- This serves as an upper bound on spectral radius.
- csr and csc avoid a deep copy
- dense calls scipy.linalg.norm
See Also
--------
scipy.linalg.norm : dense matrix norms
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import spdiags
>>> from pyamg.util.linalg import infinity_norm
>>> n=10
>>> e = np.ones((n,1)).ravel()
>>> data = [ -1*e, 2*e, -1*e ]
>>> A = spdiags(data,[-1,0,1],n,n)
>>> print infinity_norm(A)
4.0 | 2.706429 | 3.04825 | 0.887863 |
return norm(np.ravel(b) - A*np.ravel(x)) | def residual_norm(A, x, b) | Compute ||b - A*x||. | 6.743385 | 4.900672 | 1.376012 |
from scipy.linalg import get_blas_funcs
fn = get_blas_funcs(['axpy'], [x, y])[0]
fn(x, y, a) | def axpy(x, y, a=1.0) | Quick level-1 call to BLAS y = a*x+y.
Parameters
----------
x : array_like
nx1 real or complex vector
y : array_like
nx1 real or complex vector
a : float
real or complex scalar
Returns
-------
y : array_like
Input variable y is rewritten
Notes
-----
The call to get_blas_funcs automatically determines the prefix for the blas
call. | 4.295396 | 3.531342 | 1.216364 |
r
[evect, ev, H, V, breakdown_flag] =\
_approximate_eigenvalues(A, tol, maxiter, symmetric)
return np.max([norm(x) for x in ev])/min([norm(x) for x in ev]) | def condest(A, tol=0.1, maxiter=25, symmetric=False) | r"""Estimates the condition number of A.
Parameters
----------
A : {dense or sparse matrix}
e.g. array, matrix, csr_matrix, ...
tol : {float}
Approximation tolerance, currently not used
maxiter: {int}
Max number of Arnoldi/Lanczos iterations
symmetric : {bool}
If symmetric use the far more efficient Lanczos algorithm,
Else use Arnoldi
Returns
-------
Estimate of cond(A) with \|lambda_max\| / \|lambda_min\|
through the use of Arnoldi or Lanczos iterations, depending on
the symmetric flag
Notes
-----
The condition number measures how large of a change in the
the problems solution is caused by a change in problem's input.
Large condition numbers indicate that small perturbations
and numerical errors are magnified greatly when solving the system.
Examples
--------
>>> import numpy as np
>>> from pyamg.util.linalg import condest
>>> c = condest(np.array([[1.,0.],[0.,2.]]))
>>> print c
2.0 | 11.84176 | 21.166513 | 0.559457 |
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix')
if sparse.isspmatrix(A):
A = A.todense()
# 2-Norm Condition Number
from scipy.linalg import svd
U, Sigma, Vh = svd(A)
return np.max(Sigma)/min(Sigma) | def cond(A) | Return condition number of A.
Parameters
----------
A : {dense or sparse matrix}
e.g. array, matrix, csr_matrix, ...
Returns
-------
2-norm condition number through use of the SVD
Use for small to moderate sized dense matrices.
For large sparse matrices, use condest.
Notes
-----
The condition number measures how large of a change in
the problems solution is caused by a change in problem's input.
Large condition numbers indicate that small perturbations
and numerical errors are magnified greatly when solving the system.
Examples
--------
>>> import numpy as np
>>> from pyamg.util.linalg import condest
>>> c = condest(np.array([[1.0,0.],[0.,2.0]]))
>>> print c
2.0 | 4.024737 | 4.148873 | 0.97008 |
r
# convert to matrix type
if not sparse.isspmatrix(A):
A = np.asmatrix(A)
if fast_check:
x = sp.rand(A.shape[0], 1)
y = sp.rand(A.shape[0], 1)
if A.dtype == complex:
x = x + 1.0j*sp.rand(A.shape[0], 1)
y = y + 1.0j*sp.rand(A.shape[0], 1)
xAy = np.dot((A*x).conjugate().T, y)
xAty = np.dot(x.conjugate().T, A*y)
diff = float(np.abs(xAy - xAty) / np.sqrt(np.abs(xAy*xAty)))
else:
# compute the difference, A - A.H
if sparse.isspmatrix(A):
diff = np.ravel((A - A.H).data)
else:
diff = np.ravel(A - A.H)
if np.max(diff.shape) == 0:
diff = 0
else:
diff = np.max(np.abs(diff))
if diff < tol:
diff = 0
return True
else:
if verbose:
print(diff)
return False
return diff | def ishermitian(A, fast_check=True, tol=1e-6, verbose=False) | r"""Return True if A is Hermitian to within tol.
Parameters
----------
A : {dense or sparse matrix}
e.g. array, matrix, csr_matrix, ...
fast_check : {bool}
If True, use the heuristic < Ax, y> = < x, Ay>
for random vectors x and y to check for conjugate symmetry.
If False, compute A - A.H.
tol : {float}
Symmetry tolerance
verbose: {bool}
prints
max( \|A - A.H\| ) if nonhermitian and fast_check=False
abs( <Ax, y> - <x, Ay> ) if nonhermitian and fast_check=False
Returns
-------
True if hermitian
False if nonhermitian
Notes
-----
This function applies a simple test of conjugate symmetry
Examples
--------
>>> import numpy as np
>>> from pyamg.util.linalg import ishermitian
>>> ishermitian(np.array([[1,2],[1,1]]))
False
>>> from pyamg.gallery import poisson
>>> ishermitian(poisson((10,10)))
True | 2.690752 | 2.734439 | 0.984024 |
n = a.shape[0]
m = a.shape[1]
if m == 1:
# Pseudo-inverse of 1 x 1 matrices is trivial
zero_entries = (a == 0.0).nonzero()[0]
a[zero_entries] = 1.0
a[:] = 1.0/a
a[zero_entries] = 0.0
del zero_entries
else:
# The block size is greater than 1
# Create necessary arrays and function pointers for calculating pinv
gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
(np.ones((1,), dtype=a.dtype)))
RHS = np.eye(m, dtype=a.dtype)
lwork = _compute_lwork(gelss_lwork, m, m, m)
# Choose tolerance for which singular values are zero in *gelss below
if cond is None:
t = a.dtype.char
eps = np.finfo(np.float).eps
feps = np.finfo(np.single).eps
geps = np.finfo(np.longfloat).eps
_array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2}
cond = {0: feps*1e3, 1: eps*1e6, 2: geps*1e6}[_array_precision[t]]
# Invert each block of a
for kk in range(n):
gelssoutput = gelss(a[kk], RHS, cond=cond, lwork=lwork,
overwrite_a=True, overwrite_b=False)
a[kk] = gelssoutput[1] | def pinv_array(a, cond=None) | Calculate the Moore-Penrose pseudo inverse of each block of the three dimensional array a.
Parameters
----------
a : {dense array}
Is of size (n, m, m)
cond : {float}
Used by gelss to filter numerically zeros singular values.
If None, a suitable value is chosen for you.
Returns
-------
Nothing, a is modified in place so that a[k] holds the pseudoinverse
of that block.
Notes
-----
By using lapack wrappers, this can be much faster for large n, than
directly calling pinv2
Examples
--------
>>> import numpy as np
>>> from pyamg.util.linalg import pinv_array
>>> a = np.array([[[1.,2.],[1.,1.]], [[1.,1.],[3.,3.]]])
>>> ac = a.copy()
>>> # each block of a is inverted in-place
>>> pinv_array(a) | 3.890322 | 3.669614 | 1.060145 |
# Amalgamate for the supernode case
if sparse.isspmatrix_bsr(A):
sn = int(A.shape[0] / A.blocksize[0])
u = np.ones((A.data.shape[0],))
A = sparse.csr_matrix((u, A.indices, A.indptr), shape=(sn, sn))
if not sparse.isspmatrix_csr(A):
warn("Implicit conversion of A to csr", sparse.SparseEfficiencyWarning)
A = sparse.csr_matrix(A)
dim = V.shape[1]
# Create two arrays for differencing the different coordinates such
# that C(i,j) = distance(point_i, point_j)
cols = A.indices
rows = np.repeat(np.arange(A.shape[0]), A.indptr[1:] - A.indptr[0:-1])
# Insert difference for each coordinate into C
C = (V[rows, 0] - V[cols, 0])**2
for d in range(1, dim):
C += (V[rows, d] - V[cols, d])**2
C = np.sqrt(C)
C[C < 1e-6] = 1e-6
C = sparse.csr_matrix((C, A.indices.copy(), A.indptr.copy()),
shape=A.shape)
# Apply drop tolerance
if relative_drop is True:
if theta != np.inf:
amg_core.apply_distance_filter(C.shape[0], theta, C.indptr,
C.indices, C.data)
else:
amg_core.apply_absolute_distance_filter(C.shape[0], theta, C.indptr,
C.indices, C.data)
C.eliminate_zeros()
C = C + sparse.eye(C.shape[0], C.shape[1], format='csr')
# Standardized strength values require small values be weak and large
# values be strong. So, we invert the distances.
C.data = 1.0 / C.data
# Scale C by the largest magnitude entry in each row
C = scale_rows_by_largest_entry(C)
return C | def distance_strength_of_connection(A, V, theta=2.0, relative_drop=True) | Distance based strength-of-connection.
Parameters
----------
A : csr_matrix or bsr_matrix
Square, sparse matrix in CSR or BSR format
V : array
Coordinates of the vertices of the graph of A
relative_drop : bool
If false, then a connection must be within a distance of theta
from a point to be strongly connected.
If true, then the closest connection is always strong, and other points
must be within theta times the smallest distance to be strong
Returns
-------
C : csr_matrix
C(i,j) = distance(point_i, point_j)
Strength of connection matrix where strength values are
distances, i.e. the smaller the value, the stronger the connection.
Sparsity pattern of C is copied from A.
Notes
-----
- theta is a drop tolerance that is applied row-wise
- If a BSR matrix given, then the return matrix is still CSR. The strength
is given between super nodes based on the BSR block size.
Examples
--------
>>> from pyamg.gallery import load_example
>>> from pyamg.strength import distance_strength_of_connection
>>> data = load_example('airfoil')
>>> A = data['A'].tocsr()
>>> S = distance_strength_of_connection(data['A'], data['vertices']) | 3.650932 | 3.344354 | 1.09167 |
if sparse.isspmatrix_bsr(A):
blocksize = A.blocksize[0]
else:
blocksize = 1
if not sparse.isspmatrix_csr(A):
warn("Implicit conversion of A to csr", sparse.SparseEfficiencyWarning)
A = sparse.csr_matrix(A)
if (theta < 0 or theta > 1):
raise ValueError('expected theta in [0,1]')
Sp = np.empty_like(A.indptr)
Sj = np.empty_like(A.indices)
Sx = np.empty_like(A.data)
if norm == 'abs':
amg_core.classical_strength_of_connection_abs(
A.shape[0], theta, A.indptr, A.indices, A.data, Sp, Sj, Sx)
elif norm == 'min':
amg_core.classical_strength_of_connection_min(
A.shape[0], theta, A.indptr, A.indices, A.data, Sp, Sj, Sx)
else:
raise ValueError('Unknown norm')
S = sparse.csr_matrix((Sx, Sj, Sp), shape=A.shape)
if blocksize > 1:
S = amalgamate(S, blocksize)
# Strength represents "distance", so take the magnitude
S.data = np.abs(S.data)
# Scale S by the largest magnitude entry in each row
S = scale_rows_by_largest_entry(S)
return S | def classical_strength_of_connection(A, theta=0.0, norm='abs') | Classical Strength Measure.
Return a strength of connection matrix using the classical AMG measure
An off-diagonal entry A[i,j] is a strong connection iff::
A[i,j] >= theta * max(|A[i,k]|), where k != i (norm='abs')
-A[i,j] >= theta * max(-A[i,k]), where k != i (norm='min')
Parameters
----------
A : csr_matrix or bsr_matrix
Square, sparse matrix in CSR or BSR format
theta : float
Threshold parameter in [0,1].
norm: 'string'
'abs' : to use the absolute value,
'min' : to use the negative value (see above)
Returns
-------
S : csr_matrix
Matrix graph defining strong connections. S[i,j]=1 if vertex i
is strongly influenced by vertex j.
See Also
--------
symmetric_strength_of_connection : symmetric measure used in SA
evolution_strength_of_connection : relaxation based strength measure
Notes
-----
- A symmetric A does not necessarily yield a symmetric strength matrix S
- Calls C++ function classical_strength_of_connection
- The version as implemented is designed form M-matrices. Trottenberg et
al. use max A[i,k] over all negative entries, which is the same. A
positive edge weight never indicates a strong connection.
- See [2000BrHeMc]_ and [2001bTrOoSc]_
References
----------
.. [2000BrHeMc] Briggs, W. L., Henson, V. E., McCormick, S. F., "A multigrid
tutorial", Second edition. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. xii+193 pp.
.. [2001bTrOoSc] Trottenberg, U., Oosterlee, C. W., Schuller, A., "Multigrid",
Academic Press, Inc., San Diego, CA, 2001. xvi+631 pp.
Examples
--------
>>> import numpy as np
>>> from pyamg.gallery import stencil_grid
>>> from pyamg.strength import classical_strength_of_connection
>>> n=3
>>> stencil = np.array([[-1.0,-1.0,-1.0],
... [-1.0, 8.0,-1.0],
... [-1.0,-1.0,-1.0]])
>>> A = stencil_grid(stencil, (n,n), format='csr')
>>> S = classical_strength_of_connection(A, 0.0) | 2.548198 | 2.698991 | 0.94413 |
return evolution_strength_of_connection(A, B, epsilon, k, proj_type,
block_flag, symmetrize_measure) | def ode_strength_of_connection(A, B=None, epsilon=4.0, k=2, proj_type="l2",
block_flag=False, symmetrize_measure=True) | (deprecated) Use evolution_strength_of_connection instead. | 2.506876 | 1.976577 | 1.268292 |
# random n x R block in column ordering
n = A.shape[0]
x = np.random.rand(n * R) - 0.5
x = np.reshape(x, (n, R), order='F')
# for i in range(R):
# x[:,i] = x[:,i] - np.mean(x[:,i])
b = np.zeros((n, 1))
for r in range(0, R):
jacobi(A, x[:, r], b, iterations=k, omega=alpha)
# x[:,r] = x[:,r]/norm(x[:,r])
return x | def relaxation_vectors(A, R, k, alpha) | Generate test vectors by relaxing on Ax=0 for some random vectors x.
Parameters
----------
A : csr_matrix
Sparse NxN matrix
alpha : scalar
Weight for Jacobi
R : integer
Number of random vectors
k : integer
Number of relaxation passes
Returns
-------
x : array
Dense array N x k array of relaxation vectors | 3.5903 | 3.551799 | 1.01084 |
if not sparse.isspmatrix_csr(A):
A = sparse.csr_matrix(A)
if alpha < 0:
raise ValueError('expected alpha>0')
if R <= 0 or not isinstance(R, int):
raise ValueError('expected integer R>0')
if k <= 0 or not isinstance(k, int):
raise ValueError('expected integer k>0')
if epsilon < 1:
raise ValueError('expected epsilon>1.0')
def distance(x):
(rows, cols) = A.nonzero()
return 1 - np.sum(x[rows] * x[cols], axis=1)**2 / \
(np.sum(x[rows]**2, axis=1) * np.sum(x[cols]**2, axis=1))
return distance_measure_common(A, distance, alpha, R, k, epsilon) | def affinity_distance(A, alpha=0.5, R=5, k=20, epsilon=4.0) | Affinity Distance Strength Measure.
Parameters
----------
A : csr_matrix
Sparse NxN matrix
alpha : scalar
Weight for Jacobi
R : integer
Number of random vectors
k : integer
Number of relaxation passes
epsilon : scalar
Drop tolerance
Returns
-------
C : csr_matrix
Sparse matrix of strength values
References
----------
.. [LiBr] Oren E. Livne and Achi Brandt, "Lean Algebraic Multigrid
(LAMG): Fast Graph Laplacian Linear Solver"
Notes
-----
No unit testing yet.
Does not handle BSR matrices yet.
See [LiBr]_ for more details. | 2.368034 | 2.405611 | 0.98438 |
if not sparse.isspmatrix_csr(A):
A = sparse.csr_matrix(A)
if alpha < 0:
raise ValueError('expected alpha>0')
if R <= 0 or not isinstance(R, int):
raise ValueError('expected integer R>0')
if k <= 0 or not isinstance(k, int):
raise ValueError('expected integer k>0')
if epsilon < 1:
raise ValueError('expected epsilon>1.0')
if p < 1:
raise ValueError('expected p>1 or equal to numpy.inf')
def distance(x):
(rows, cols) = A.nonzero()
if p != np.inf:
avg = np.sum(np.abs(x[rows] - x[cols])**p, axis=1) / R
return (avg)**(1.0 / p)
else:
return np.abs(x[rows] - x[cols]).max(axis=1)
return distance_measure_common(A, distance, alpha, R, k, epsilon) | def algebraic_distance(A, alpha=0.5, R=5, k=20, epsilon=2.0, p=2) | Algebraic Distance Strength Measure.
Parameters
----------
A : csr_matrix
Sparse NxN matrix
alpha : scalar
Weight for Jacobi
R : integer
Number of random vectors
k : integer
Number of relaxation passes
epsilon : scalar
Drop tolerance
p : scalar or inf
p-norm of the measure
Returns
-------
C : csr_matrix
Sparse matrix of strength values
References
----------
.. [SaSaSc] Ilya Safro, Peter Sanders, and Christian Schulz,
"Advanced Coarsening Schemes for Graph Partitioning"
Notes
-----
No unit testing yet.
Does not handle BSR matrices yet.
See [SaSaSc]_ for more details. | 2.662921 | 2.676695 | 0.994854 |
# create test vectors
x = relaxation_vectors(A, R, k, alpha)
# apply distance measure function to vectors
d = func(x)
# drop distances to self
(rows, cols) = A.nonzero()
weak = np.where(rows == cols)[0]
d[weak] = 0
C = sparse.csr_matrix((d, (rows, cols)), shape=A.shape)
C.eliminate_zeros()
# remove weak connections
# removes entry e from a row if e > theta * min of all entries in the row
amg_core.apply_distance_filter(C.shape[0], epsilon, C.indptr,
C.indices, C.data)
C.eliminate_zeros()
# Standardized strength values require small values be weak and large
# values be strong. So, we invert the distances.
C.data = 1.0 / C.data
# Put an identity on the diagonal
C = C + sparse.eye(C.shape[0], C.shape[1], format='csr')
# Scale C by the largest magnitude entry in each row
C = scale_rows_by_largest_entry(C)
return C | def distance_measure_common(A, func, alpha, R, k, epsilon) | Create strength of connection matrixfrom a function applied to relaxation vectors. | 6.012361 | 5.574771 | 1.078495 |
RowsPerBlock = U.blocksize[0]
ColsPerBlock = U.blocksize[1]
num_block_rows = int(U.shape[0]/RowsPerBlock)
UB = np.ravel(U*B)
# Apply constraints, noting that we need the conjugate of B
# for use as Bi.H in local projection
pyamg.amg_core.satisfy_constraints_helper(RowsPerBlock, ColsPerBlock,
num_block_rows, B.shape[1],
np.conjugate(np.ravel(B)),
UB, np.ravel(BtBinv),
U.indptr, U.indices,
np.ravel(U.data))
return U | def Satisfy_Constraints(U, B, BtBinv) | U is the prolongator update. Project out components of U such that U*B = 0.
Parameters
----------
U : bsr_matrix
m x n sparse bsr matrix
Update to the prolongator
B : array
n x k array of the coarse grid near nullspace vectors
BtBinv : array
Local inv(B_i.H*B_i) matrices for each supernode, i
B_i is B restricted to the sparsity pattern of supernode i in U
Returns
-------
Updated U, so that U*B = 0.
Update is computed by orthogonally (in 2-norm) projecting
out the components of span(B) in U in a row-wise fashion.
See Also
--------
The principal calling routine,
pyamg.aggregation.smooth.energy_prolongation_smoother | 4.774827 | 4.82776 | 0.989036 |
weight = omega/approximate_spectral_radius(S)
P = T
for i in range(degree):
P = P - weight*(S*P)
return P | def richardson_prolongation_smoother(S, T, omega=4.0/3.0, degree=1) | Richardson prolongation smoother.
Parameters
----------
S : csr_matrix, bsr_matrix
Sparse NxN matrix used for smoothing. Typically, A or the
"filtered matrix" obtained from A by lumping weak connections
onto the diagonal of A.
T : csr_matrix, bsr_matrix
Tentative prolongator
omega : scalar
Damping parameter
Returns
-------
P : csr_matrix, bsr_matrix
Smoothed (final) prolongator defined by P = (I - omega/rho(S) S) * T
where rho(S) is an approximation to the spectral radius of S.
Notes
-----
Results using Richardson prolongation smoother are not precisely
reproducible due to a random initial guess used for the spectral radius
approximation. For precise reproducibility, set numpy.random.seed(..) to
the same value before each test.
Examples
--------
>>> from pyamg.aggregation import richardson_prolongation_smoother
>>> from pyamg.gallery import poisson
>>> from scipy.sparse import coo_matrix
>>> import numpy as np
>>> data = np.ones((6,))
>>> row = np.arange(0,6)
>>> col = np.kron([0,1],np.ones((3,)))
>>> T = coo_matrix((data,(row,col)),shape=(6,2)).tocsr()
>>> T.todense()
matrix([[ 1., 0.],
[ 1., 0.],
[ 1., 0.],
[ 0., 1.],
[ 0., 1.],
[ 0., 1.]])
>>> A = poisson((6,),format='csr')
>>> P = richardson_prolongation_smoother(A,T)
>>> P.todense()
matrix([[ 0.64930164, 0. ],
[ 1. , 0. ],
[ 0.64930164, 0.35069836],
[ 0.35069836, 0.64930164],
[ 0. , 1. ],
[ 0. , 0.64930164]]) | 7.645287 | 13.589252 | 0.562598 |
if not hasattr(A, 'rho_D_inv'):
D_inv = get_diagonal(A, inv=True)
D_inv_A = scale_rows(A, D_inv, copy=True)
A.rho_D_inv = approximate_spectral_radius(D_inv_A)
return A.rho_D_inv | def rho_D_inv_A(A) | Return the (approx.) spectral radius of D^-1 * A.
Parameters
----------
A : sparse-matrix
Returns
-------
approximate spectral radius of diag(A)^{-1} A
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.relaxation.smoothing import rho_D_inv_A
>>> from scipy.sparse import csr_matrix
>>> import numpy as np
>>> A = csr_matrix(np.array([[1.0,0,0],[0,2.0,0],[0,0,3.0]]))
>>> print rho_D_inv_A(A)
1.0 | 3.541804 | 4.331345 | 0.817715 |
if not hasattr(A, 'rho_block_D_inv'):
from scipy.sparse.linalg import LinearOperator
blocksize = Dinv.shape[1]
if Dinv.shape[1] != Dinv.shape[2]:
raise ValueError('Dinv has incorrect dimensions')
elif Dinv.shape[0] != int(A.shape[0]/blocksize):
raise ValueError('Dinv and A have incompatible dimensions')
Dinv = sp.sparse.bsr_matrix((Dinv,
sp.arange(Dinv.shape[0]),
sp.arange(Dinv.shape[0]+1)),
shape=A.shape)
# Don't explicitly form Dinv*A
def matvec(x):
return Dinv*(A*x)
D_inv_A = LinearOperator(A.shape, matvec, dtype=A.dtype)
A.rho_block_D_inv = approximate_spectral_radius(D_inv_A)
return A.rho_block_D_inv | def rho_block_D_inv_A(A, Dinv) | Return the (approx.) spectral radius of block D^-1 * A.
Parameters
----------
A : sparse-matrix
size NxN
Dinv : array
Inverse of diagonal blocks of A
size (N/blocksize, blocksize, blocksize)
Returns
-------
approximate spectral radius of (Dinv A)
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.relaxation.smoothing import rho_block_D_inv_A
>>> from pyamg.util.utils import get_block_diag
>>> A = poisson((10,10), format='csr')
>>> Dinv = get_block_diag(A, blocksize=4, inv_flag=True) | 2.921152 | 2.928001 | 0.997661 |
desired_matrix = name + format
M = getattr(lvl, name)
if format == 'bsr':
desired_matrix += str(blocksize[0])+str(blocksize[1])
if hasattr(lvl, desired_matrix):
# if lvl already contains lvl.name+format
pass
elif M.format == format and format != 'bsr':
# is base_matrix already in the correct format?
setattr(lvl, desired_matrix, M)
elif M.format == format and format == 'bsr':
# convert to bsr with the right blocksize
# tobsr() will not do anything extra if this is uneeded
setattr(lvl, desired_matrix, M.tobsr(blocksize=blocksize))
else:
# convert
newM = getattr(M, 'to' + format)()
setattr(lvl, desired_matrix, newM)
return getattr(lvl, desired_matrix) | def matrix_asformat(lvl, name, format, blocksize=None) | Set a matrix to a specific format.
This routine looks for the matrix "name" in the specified format as a
member of the level instance, lvl. For example, if name='A', format='bsr'
and blocksize=(4,4), and if lvl.Absr44 exists with the correct blocksize,
then lvl.Absr is returned. If the matrix doesn't already exist, lvl.name
is converted to the desired format, and made a member of lvl.
Only create such persistent copies of a matrix for routines such as
presmoothing and postsmoothing, where the matrix conversion is done every
cycle.
Calling this function can _dramatically_ increase your memory costs.
Be careful with it's usage. | 4.264899 | 4.222281 | 1.010094 |
nx, ny = int(nx), int(ny)
if nx < 2 or ny < 2:
raise ValueError('minimum mesh dimension is 2: %s' % ((nx, ny),))
Vert1 = np.tile(np.arange(0, nx-1), ny - 1) +\
np.repeat(np.arange(0, nx * (ny - 1), nx), nx - 1)
Vert3 = np.tile(np.arange(0, nx-1), ny - 1) +\
np.repeat(np.arange(0, nx * (ny - 1), nx), nx - 1) + nx
Vert2 = Vert3 + 1
Vert4 = Vert1 + 1
Verttmp = np.meshgrid(np.arange(0, nx, dtype='float'),
np.arange(0, ny, dtype='float'))
Verttmp = (Verttmp[0].ravel(), Verttmp[1].ravel())
Vert = np.vstack(Verttmp).transpose()
Vert[:, 0] = (1.0 / (nx - 1)) * Vert[:, 0]
Vert[:, 1] = (1.0 / (ny - 1)) * Vert[:, 1]
E2V1 = np.vstack((Vert1, Vert2, Vert3)).transpose()
E2V2 = np.vstack((Vert1, Vert4, Vert2)).transpose()
E2V = np.vstack((E2V1, E2V2))
return Vert, E2V | def regular_triangle_mesh(nx, ny) | Construct a regular triangular mesh in the unit square.
Parameters
----------
nx : int
Number of nodes in the x-direction
ny : int
Number of nodes in the y-direction
Returns
-------
Vert : array
nx*ny x 2 vertex list
E2V : array
Nex x 3 element list
Examples
--------
>>> from pyamg.gallery import regular_triangle_mesh
>>> E2V,Vert = regular_triangle_mesh(3, 2) | 2.138209 | 2.184828 | 0.978663 |
check_input(Verts, splitting)
N = Verts.shape[0]
Ndof = int(len(splitting) / N)
E2V = np.arange(0, N, dtype=int)
# adjust name in case of multiple variables
a = fname.split('.')
if len(a) < 2:
fname1 = a[0]
fname2 = '.vtu'
elif len(a) >= 2:
fname1 = "".join(a[:-1])
fname2 = a[-1]
else:
raise ValueError('problem with fname')
new_fname = fname
for d in range(0, Ndof):
# for each variables, write a file or open a figure
if Ndof > 1:
new_fname = fname1 + '_%d.' % (d+1) + fname2
cdata = splitting[(d*N):((d+1)*N)]
if output == 'vtk':
write_basic_mesh(Verts=Verts, E2V=E2V, mesh_type='vertex',
cdata=cdata, fname=new_fname)
elif output == 'matplotlib':
from pylab import figure, show, plot, xlabel, ylabel, title, axis
cdataF = np.where(cdata == 0)[0]
cdataC = np.where(cdata == 1)[0]
xC = Verts[cdataC, 0]
yC = Verts[cdataC, 1]
xF = Verts[cdataF, 0]
yF = Verts[cdataF, 1]
figure()
plot(xC, yC, 'r.', xF, yF, 'b.', clip_on=True)
title('C/F splitting (red=coarse, blue=fine)')
xlabel('x')
ylabel('y')
axis('off')
show()
else:
raise ValueError('problem with outputtype') | def vis_splitting(Verts, splitting, output='vtk', fname='output.vtu') | Coarse grid visualization for C/F splittings.
Parameters
----------
Verts : {array}
coordinate array (N x D)
splitting : {array}
coarse(1)/fine(0) flags
fname : {string, file object}
file to be written, e.g. 'output.vtu'
output : {string}
'vtk' or 'matplotlib'
Returns
-------
- Displays in screen or writes data to .vtu file for use in paraview
(xml 0.1 format)
Notes
-----
D :
dimension of coordinate space
N :
# of vertices in the mesh represented in Verts
Ndof :
# of dof (= ldof * N)
- simply color different points with different colors. This works
best with classical AMG.
- writes a file (or opens a window) for each dof
- for Ndof>1, they are assumed orderd [...dof1..., ...dof2..., etc]
Examples
--------
>>> import numpy as np
>>> from pyamg.vis.vis_coarse import vis_splitting
>>> Verts = np.array([[0.0,0.0],
... [1.0,0.0],
... [0.0,1.0],
... [1.0,1.0]])
>>> splitting = np.array([0,1,0,1,1,0,1,0]) # two variables
>>> vis_splitting(Verts,splitting,output='vtk',fname='output.vtu')
>>> from pyamg.classical import RS
>>> from pyamg.vis.vis_coarse import vis_splitting
>>> from pyamg.gallery import load_example
>>> data = load_example('unit_square')
>>> A = data['A'].tocsr()
>>> V = data['vertices']
>>> E2V = data['elements']
>>> splitting = RS(A)
>>> vis_splitting(Verts=V,splitting=splitting,output='vtk',
fname='output.vtu') | 3.201116 | 2.960748 | 1.081185 |
if Verts is not None:
if not np.issubdtype(Verts.dtype, np.floating):
raise ValueError('Verts should be of type float')
if E2V is not None:
if not np.issubdtype(E2V.dtype, np.integer):
raise ValueError('E2V should be of type integer')
if E2V.min() != 0:
warnings.warn('element indices begin at %d' % E2V.min())
if Agg is not None:
if Agg.shape[1] > Agg.shape[0]:
raise ValueError('Agg should be of size Npts x Nagg')
if A is not None:
if Agg is not None:
if (A.shape[0] != A.shape[1]) or (A.shape[0] != Agg.shape[0]):
raise ValueError('expected square matrix A\
and compatible with Agg')
else:
raise ValueError('problem with check_input')
if splitting is not None:
splitting = splitting.ravel()
if Verts is not None:
if (len(splitting) % Verts.shape[0]) != 0:
raise ValueError('splitting must be a multiple of N')
else:
raise ValueError('problem with check_input')
if mesh_type is not None:
valid_mesh_types = ('vertex', 'tri', 'quad', 'tet', 'hex')
if mesh_type not in valid_mesh_types:
raise ValueError('mesh_type should be %s' %
' or '.join(valid_mesh_types)) | def check_input(Verts=None, E2V=None, Agg=None, A=None, splitting=None,
mesh_type=None) | Check input for local functions. | 2.24921 | 2.255279 | 0.997309 |
if not isspmatrix_csr(S):
raise TypeError('expected csr_matrix')
S = remove_diagonal(S)
T = S.T.tocsr() # transpose S for efficient column access
splitting = np.empty(S.shape[0], dtype='intc')
influence = np.zeros((S.shape[0],), dtype='intc')
amg_core.rs_cf_splitting(S.shape[0],
S.indptr, S.indices,
T.indptr, T.indices,
influence,
splitting)
if second_pass:
amg_core.rs_cf_splitting_pass2(S.shape[0], S.indptr,
S.indices, splitting)
return splitting | def RS(S, second_pass=False) | Compute a C/F splitting using Ruge-Stuben coarsening
Parameters
----------
S : csr_matrix
Strength of connection matrix indicating the strength between nodes i
and j (S_ij)
second_pass : bool, default False
Perform second pass of classical AMG coarsening. Can be important for
classical AMG interpolation. Typically not done in parallel (e.g. Hypre).
Returns
-------
splitting : ndarray
Array of length of S of ones (coarse) and zeros (fine)
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import RS
>>> S = poisson((7,), format='csr') # 1D mesh with 7 vertices
>>> splitting = RS(S)
See Also
--------
amg_core.rs_cf_splitting
References
----------
.. [1] Ruge JW, Stuben K. "Algebraic multigrid (AMG)"
In Multigrid Methods, McCormick SF (ed.),
Frontiers in Applied Mathematics, vol. 3.
SIAM: Philadelphia, PA, 1987; 73-130. | 3.688604 | 3.248005 | 1.135652 |
S = remove_diagonal(S)
weights, G, S, T = preprocess(S)
return MIS(G, weights) | def PMIS(S) | C/F splitting using the Parallel Modified Independent Set method.
Parameters
----------
S : csr_matrix
Strength of connection matrix indicating the strength between nodes i
and j (S_ij)
Returns
-------
splitting : ndarray
Array of length of S of ones (coarse) and zeros (fine)
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import PMIS
>>> S = poisson((7,), format='csr') # 1D mesh with 7 vertices
>>> splitting = PMIS(S)
See Also
--------
MIS
References
----------
.. [6] Hans De Sterck, Ulrike M Yang, and Jeffrey J Heys
"Reducing complexity in parallel algebraic multigrid preconditioners"
SIAM Journal on Matrix Analysis and Applications 2006; 27:1019-1039. | 14.150414 | 16.440048 | 0.860728 |
S = remove_diagonal(S)
weights, G, S, T = preprocess(S, coloring_method=method)
return MIS(G, weights) | def PMISc(S, method='JP') | C/F splitting using Parallel Modified Independent Set (in color).
PMIS-c, or PMIS in color, improves PMIS by perturbing the initial
random weights with weights determined by a vertex coloring.
Parameters
----------
S : csr_matrix
Strength of connection matrix indicating the strength between nodes i
and j (S_ij)
method : string
Algorithm used to compute the initial vertex coloring:
* 'MIS' - Maximal Independent Set
* 'JP' - Jones-Plassmann (parallel)
* 'LDF' - Largest-Degree-First (parallel)
Returns
-------
splitting : array
Array of length of S of ones (coarse) and zeros (fine)
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import PMISc
>>> S = poisson((7,), format='csr') # 1D mesh with 7 vertices
>>> splitting = PMISc(S)
See Also
--------
MIS
References
----------
.. [7] David M. Alber and Luke N. Olson
"Parallel coarse-grid selection"
Numerical Linear Algebra with Applications 2007; 14:611-643. | 14.563068 | 16.4884 | 0.883231 |
if not isspmatrix_csr(S):
raise TypeError('expected csr_matrix')
S = remove_diagonal(S)
colorid = 0
if color:
colorid = 1
T = S.T.tocsr() # transpose S for efficient column access
splitting = np.empty(S.shape[0], dtype='intc')
amg_core.cljp_naive_splitting(S.shape[0],
S.indptr, S.indices,
T.indptr, T.indices,
splitting,
colorid)
return splitting | def CLJP(S, color=False) | Compute a C/F splitting using the parallel CLJP algorithm.
Parameters
----------
S : csr_matrix
Strength of connection matrix indicating the strength between nodes i
and j (S_ij)
color : bool
use the CLJP coloring approach
Returns
-------
splitting : array
Array of length of S of ones (coarse) and zeros (fine)
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical.split import CLJP
>>> S = poisson((7,), format='csr') # 1D mesh with 7 vertices
>>> splitting = CLJP(S)
See Also
--------
MIS, PMIS, CLJPc
References
----------
.. [8] David M. Alber and Luke N. Olson
"Parallel coarse-grid selection"
Numerical Linear Algebra with Applications 2007; 14:611-643. | 4.421044 | 4.415728 | 1.001204 |
if not isspmatrix_csr(G):
raise TypeError('expected csr_matrix')
G = remove_diagonal(G)
mis = np.empty(G.shape[0], dtype='intc')
mis[:] = -1
fn = amg_core.maximal_independent_set_parallel
if maxiter is None:
fn(G.shape[0], G.indptr, G.indices, -1, 1, 0, mis, weights, -1)
else:
if maxiter < 0:
raise ValueError('maxiter must be >= 0')
fn(G.shape[0], G.indptr, G.indices, -1, 1, 0, mis, weights, maxiter)
return mis | def MIS(G, weights, maxiter=None) | Compute a maximal independent set of a graph in parallel.
Parameters
----------
G : csr_matrix
Matrix graph, G[i,j] != 0 indicates an edge
weights : ndarray
Array of weights for each vertex in the graph G
maxiter : int
Maximum number of iterations (default: None)
Returns
-------
mis : array
Array of length of G of zeros/ones indicating the independent set
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import MIS
>>> import numpy as np
>>> G = poisson((7,), format='csr') # 1D mesh with 7 vertices
>>> w = np.ones((G.shape[0],1)).ravel()
>>> mis = MIS(G,w)
See Also
--------
fn = amg_core.maximal_independent_set_parallel | 2.850228 | 2.886451 | 0.987451 |
if not isspmatrix_csr(S):
raise TypeError('expected csr_matrix')
if S.shape[0] != S.shape[1]:
raise ValueError('expected square matrix, shape=%s' % (S.shape,))
N = S.shape[0]
S = csr_matrix((np.ones(S.nnz, dtype='int8'), S.indices, S.indptr),
shape=(N, N))
T = S.T.tocsr() # transpose S for efficient column access
G = S + T # form graph (must be symmetric)
G.data[:] = 1
weights = np.ravel(T.sum(axis=1)) # initial weights
# weights -= T.diagonal() # discount self loops
if coloring_method is None:
weights = weights + sp.rand(len(weights))
else:
coloring = vertex_coloring(G, coloring_method)
num_colors = coloring.max() + 1
weights = weights + (sp.rand(len(weights)) + coloring)/num_colors
return (weights, G, S, T) | def preprocess(S, coloring_method=None) | Preprocess splitting functions.
Parameters
----------
S : csr_matrix
Strength of connection matrix
method : string
Algorithm used to compute the vertex coloring:
* 'MIS' - Maximal Independent Set
* 'JP' - Jones-Plassmann (parallel)
* 'LDF' - Largest-Degree-First (parallel)
Returns
-------
weights: ndarray
Weights from a graph coloring of G
S : csr_matrix
Strength matrix with ones
T : csr_matrix
transpose of S
G : csr_matrix
union of S and T
Notes
-----
Performs the following operations:
- Checks input strength of connection matrix S
- Replaces S.data with ones
- Creates T = S.T in CSR format
- Creates G = S union T in CSR format
- Creates random weights
- Augments weights with graph coloring (if use_color == True) | 3.693399 | 3.633974 | 1.016353 |
if name not in example_names:
raise ValueError('no example with name (%s)' % name)
else:
return loadmat(os.path.join(example_dir, name + '.mat'),
struct_as_record=True) | def load_example(name) | Load an example problem by name.
Parameters
----------
name : string (e.g. 'airfoil')
Name of the example to load
Notes
-----
Each example is stored in a dictionary with the following keys:
- 'A' : sparse matrix
- 'B' : near-nullspace candidates
- 'vertices' : dense array of nodal coordinates
- 'elements' : dense array of element indices
Current example names are:%s
Examples
--------
>>> from pyamg.gallery import load_example
>>> ex = load_example('knot') | 3.823026 | 5.098467 | 0.749838 |
n = A.shape[0] # problem size
numax = nu
z = np.zeros((n,))
e = deepcopy(B[:, 0])
e[Cindex] = 0.0
enorm = norm(e)
rhok = 1
it = 0
while True:
if method == 'habituated':
gauss_seidel(A, e, z, iterations=1)
e[Cindex] = 0.0
elif method == 'concurrent':
gauss_seidel_indexed(A, e, z, indices=Findex, iterations=1)
else:
raise NotImplementedError('method not recognized: need habituated '
'or concurrent')
enorm_old = enorm
enorm = norm(e)
rhok_old = rhok
rhok = enorm / enorm_old
it += 1
# criteria 1 -- fast convergence
if rhok < 0.1 * thetacr:
break
# criteria 2 -- at least nu iters, small relative change in CF (<0.1)
elif ((abs(rhok - rhok_old) / rhok) < 0.1) and (it >= nu):
break
return rhok, e | def _CRsweep(A, B, Findex, Cindex, nu, thetacr, method) | Perform CR sweeps on a target vector.
Internal function called by CR. Performs habituated or concurrent
relaxation sweeps on target vector. Stops when either (i) very fast
convergence, CF < 0.1*thetacr, are observed, or at least a given number
of sweeps have been performed and the relative change in CF < 0.1.
Parameters
----------
A : csr_matrix
B : array like
Target near null space mode
Findex : array like
List of F indices in current splitting
Cindex : array like
List of C indices in current splitting
nu : int
minimum number of relaxation sweeps to do
thetacr
Desired convergence factor
Returns
-------
rho : float
Convergence factor of last iteration
e : array like
Smoothed error vector | 4.720831 | 3.781673 | 1.248345 |
if not isspmatrix(A):
raise TypeError('expecting sparse matrix A')
if A.dtype == complex:
raise NotImplementedError('complex A not implemented')
n = A.shape[0]
it = 0
x = np.ones((n, 1)).ravel()
# 1.
B = A.multiply(A).tocsc() # power(A,2) inconsistent in numpy, scipy.sparse
d = B.diagonal().ravel()
# 2.
beta = B * x
betabar = (1.0/n) * np.dot(x, beta)
stdev = rowsum_stdev(x, beta)
# 3
while stdev > tol and it < maxiter:
for i in range(0, n):
# solve equation x_i, keeping x_j's fixed
# see equation (12)
c2 = (n-1)*d[i]
c1 = (n-2)*(beta[i] - d[i]*x[i])
c0 = -d[i]*x[i]*x[i] + 2*beta[i]*x[i] - n*betabar
if (-c0 < 1e-14):
print('warning: A nearly un-binormalizable...')
return A
else:
# see equation (12)
xnew = (2*c0)/(-c1 - np.sqrt(c1*c1 - 4*c0*c2))
dx = xnew - x[i]
# here we assume input matrix is symmetric since we grab a row of B
# instead of a column
ii = B.indptr[i]
iii = B.indptr[i+1]
dot_Bcol = np.dot(x[B.indices[ii:iii]], B.data[ii:iii])
betabar = betabar + (1.0/n)*dx*(dot_Bcol + beta[i] + d[i]*dx)
beta[B.indices[ii:iii]] += dx*B.data[ii:iii]
x[i] = xnew
stdev = rowsum_stdev(x, beta)
it += 1
# rescale for unit 2-norm
d = np.sqrt(x)
D = spdiags(d.ravel(), [0], n, n)
C = D * A * D
C = C.tocsr()
beta = C.multiply(C).sum(axis=1)
scale = np.sqrt((1.0/n) * np.sum(beta))
return (1/scale)*C | def binormalize(A, tol=1e-5, maxiter=10) | Binormalize matrix A. Attempt to create unit l_1 norm rows.
Parameters
----------
A : csr_matrix
sparse matrix (n x n)
tol : float
tolerance
x : array
guess at the diagonal
maxiter : int
maximum number of iterations to try
Returns
-------
C : csr_matrix
diagonally scaled A, C=DAD
Notes
-----
- Goal: Scale A so that l_1 norm of the rows are equal to 1:
- B = DAD
- want row sum of B = 1
- easily done with tol=0 if B=DA, but this is not symmetric
- algorithm is O(N log (1.0/tol))
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import binormalize
>>> A = poisson((10,),format='csr')
>>> C = binormalize(A)
References
----------
.. [1] Livne, Golub, "Scaling by Binormalization"
Tech Report SCCM-03-12, SCCM, Stanford, 2003
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679 | 4.095068 | 4.218492 | 0.970742 |
r
n = x.size
betabar = (1.0/n) * np.dot(x, beta)
stdev = np.sqrt((1.0/n) *
np.sum(np.power(np.multiply(x, beta) - betabar, 2)))
return stdev/betabar | def rowsum_stdev(x, beta) | r"""Compute row sum standard deviation.
Compute for approximation x, the std dev of the row sums
s(x) = ( 1/n \sum_k (x_k beta_k - betabar)^2 )^(1/2)
with betabar = 1/n dot(beta,x)
Parameters
----------
x : array
beta : array
Returns
-------
s(x)/betabar : float
Notes
-----
equation (7) in Livne/Golub | 4.006404 | 3.424191 | 1.170029 |
if a >= b or a <= 0:
raise ValueError('invalid interval [%s,%s]' % (a, b))
# Chebyshev roots for the interval [-1,1]
std_roots = np.cos(np.pi * (np.arange(degree) + 0.5) / degree)
# Chebyshev roots for the interval [a,b]
scaled_roots = 0.5 * (b-a) * (1 + std_roots) + a
# Compute monic polynomial coefficients of polynomial with scaled roots
scaled_poly = np.poly(scaled_roots)
# Scale coefficients to enforce C(0) = 1.0
scaled_poly /= np.polyval(scaled_poly, 0)
return scaled_poly | def chebyshev_polynomial_coefficients(a, b, degree) | Chebyshev polynomial coefficients for the interval [a,b].
Parameters
----------
a,b : float
The left and right endpoints of the interval.
degree : int
Degree of desired Chebyshev polynomial
Returns
-------
Coefficients of the Chebyshev polynomial C(t) with minimum
magnitude on the interval [a,b] such that C(0) = 1.0.
The coefficients are returned in descending order.
Notes
-----
a,b typically represent the interval of the spectrum for some matrix
that you wish to damp with a Chebyshev smoother.
Examples
--------
>>> from pyamg.relaxation.chebyshev import chebyshev_polynomial_coefficients
>>> print chebyshev_polynomial_coefficients(1.0,2.0, 3)
[-0.32323232 1.45454545 -2.12121212 1. ] | 3.70764 | 4.238808 | 0.874689 |
# std_roots = np.cos(np.pi * (np.arange(degree) + 0.5)/ degree)
# print std_roots
roots = rho/2.0 * \
(1.0 - np.cos(2*np.pi*(np.arange(degree, dtype='float64') + 1)/(2.0*degree+1.0)))
# print roots
roots = 1.0/roots
# S_coeffs = list(-np.poly(roots)[1:][::-1])
S = np.poly(roots)[::-1] # monomial coefficients of S error propagator
SSA_max = rho/((2.0*degree+1.0)**2) # upper bound spectral radius of S^2A
S_hat = np.polymul(S, S) # monomial coefficients of \hat{S} propagator
S_hat = np.hstack(((-1.0/SSA_max)*S_hat, [1]))
# coeff for combined error propagator \hat{S}S
coeffs = np.polymul(S_hat, S)
coeffs = -coeffs[:-1] # coeff for smoother
return (coeffs, roots) | def mls_polynomial_coefficients(rho, degree) | Determine the coefficients for a MLS polynomial smoother.
Parameters
----------
rho : float
Spectral radius of the matrix in question
degree : int
Degree of polynomial coefficients to generate
Returns
-------
Tuple of arrays (coeffs,roots) containing the
coefficients for the (symmetric) polynomial smoother and
the roots of polynomial prolongation smoother.
The coefficients of the polynomial are in descending order
References
----------
.. [1] Parallel multigrid smoothing: polynomial versus Gauss--Seidel
M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro
J. Comp. Phys., 188 (2003), pp. 593--610
Examples
--------
>>> from pyamg.relaxation.chebyshev import mls_polynomial_coefficients
>>> mls = mls_polynomial_coefficients(2.0, 2)
>>> print mls[0] # coefficients
[ 6.4 -48. 144. -220. 180. -75.8 14.5]
>>> print mls[1] # roots
[ 1.4472136 0.5527864] | 5.72869 | 6.253689 | 0.91605 |
levels = [multilevel_solver.level()]
# convert A to csr
if not isspmatrix_csr(A):
try:
A = csr_matrix(A)
warn("Implicit conversion of A to CSR",
SparseEfficiencyWarning)
except BaseException:
raise TypeError('Argument A must have type csr_matrix, \
or be convertible to csr_matrix')
# preprocess A
A = A.asfptype()
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix')
levels[-1].A = A
while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
extend_hierarchy(levels, strength, CF, keep)
ml = multilevel_solver(levels, **kwargs)
change_smoothers(ml, presmoother, postsmoother)
return ml | def ruge_stuben_solver(A,
strength=('classical', {'theta': 0.25}),
CF='RS',
presmoother=('gauss_seidel', {'sweep': 'symmetric'}),
postsmoother=('gauss_seidel', {'sweep': 'symmetric'}),
max_levels=10, max_coarse=10, keep=False, **kwargs) | Create a multilevel solver using Classical AMG (Ruge-Stuben AMG).
Parameters
----------
A : csr_matrix
Square matrix in CSR format
strength : ['symmetric', 'classical', 'evolution', 'distance', 'algebraic_distance','affinity', 'energy_based', None]
Method used to determine the strength of connection between unknowns
of the linear system. Method-specific parameters may be passed in
using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
strength=None, all nonzero entries of the matrix are considered strong.
CF : string
Method used for coarse grid selection (C/F splitting)
Supported methods are RS, PMIS, PMISc, CLJP, CLJPc, and CR.
presmoother : string or dict
Method used for presmoothing at each level. Method-specific parameters
may be passed in using a tuple, e.g.
presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
postsmoother : string or dict
Postsmoothing method with the same usage as presmoother
max_levels: integer
Maximum number of levels to be used in the multilevel solver.
max_coarse: integer
Maximum number of variables permitted on the coarse grid.
keep: bool
Flag to indicate keeping extra operators in the hierarchy for
diagnostics. For example, if True, then strength of connection (C) and
tentative prolongation (T) are kept.
Returns
-------
ml : multilevel_solver
Multigrid hierarchy of matrices and prolongation operators
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg import ruge_stuben_solver
>>> A = poisson((10,),format='csr')
>>> ml = ruge_stuben_solver(A,max_coarse=3)
Notes
-----
"coarse_solver" is an optional argument and is the solver used at the
coarsest grid. The default is a pseudo-inverse. Most simply,
coarse_solver can be one of ['splu', 'lu', 'cholesky, 'pinv',
'gauss_seidel', ... ]. Additionally, coarse_solver may be a tuple
(fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable
function, and args is a dictionary of arguments to be passed to fn.
See [2001TrOoSc]_ for additional details.
References
----------
.. [2001TrOoSc] Trottenberg, U., Oosterlee, C. W., and Schuller, A.,
"Multigrid" San Diego: Academic Press, 2001. Appendix A
See Also
--------
aggregation.smoothed_aggregation_solver, multilevel_solver,
aggregation.rootnode_solver | 3.739098 | 4.024446 | 0.929096 |
def unpack_arg(v):
if isinstance(v, tuple):
return v[0], v[1]
else:
return v, {}
A = levels[-1].A
# Compute the strength-of-connection matrix C, where larger
# C[i,j] denote stronger couplings between i and j.
fn, kwargs = unpack_arg(strength)
if fn == 'symmetric':
C = symmetric_strength_of_connection(A, **kwargs)
elif fn == 'classical':
C = classical_strength_of_connection(A, **kwargs)
elif fn == 'distance':
C = distance_strength_of_connection(A, **kwargs)
elif (fn == 'ode') or (fn == 'evolution'):
C = evolution_strength_of_connection(A, **kwargs)
elif fn == 'energy_based':
C = energy_based_strength_of_connection(A, **kwargs)
elif fn == 'algebraic_distance':
C = algebraic_distance(A, **kwargs)
elif fn == 'affinity':
C = affinity_distance(A, **kwargs)
elif fn is None:
C = A
else:
raise ValueError('unrecognized strength of connection method: %s' %
str(fn))
# Generate the C/F splitting
fn, kwargs = unpack_arg(CF)
if fn == 'RS':
splitting = split.RS(C, **kwargs)
elif fn == 'PMIS':
splitting = split.PMIS(C, **kwargs)
elif fn == 'PMISc':
splitting = split.PMISc(C, **kwargs)
elif fn == 'CLJP':
splitting = split.CLJP(C, **kwargs)
elif fn == 'CLJPc':
splitting = split.CLJPc(C, **kwargs)
elif fn == 'CR':
splitting = CR(C, **kwargs)
else:
raise ValueError('unknown C/F splitting method (%s)' % CF)
# Generate the interpolation matrix that maps from the coarse-grid to the
# fine-grid
P = direct_interpolation(A, C, splitting)
# Generate the restriction matrix that maps from the fine-grid to the
# coarse-grid
R = P.T.tocsr()
# Store relevant information for this level
if keep:
levels[-1].C = C # strength of connection matrix
levels[-1].splitting = splitting # C/F splitting
levels[-1].P = P # prolongation operator
levels[-1].R = R # restriction operator
levels.append(multilevel_solver.level())
# Form next level through Galerkin product
A = R * A * P
levels[-1].A = A | def extend_hierarchy(levels, strength, CF, keep) | Extend the multigrid hierarchy. | 3.22032 | 3.156437 | 1.020239 |
A = poisson((100, 100), format='csr') # 2D FD Poisson problem
B = None # no near-null spaces guesses for SA
b = sp.rand(A.shape[0], 1) # a random right-hand side
# use AMG based on Smoothed Aggregation (SA) and display info
mls = smoothed_aggregation_solver(A, B=B)
print(mls)
# Solve Ax=b with no acceleration ('standalone' solver)
standalone_residuals = []
x = mls.solve(b, tol=1e-10, accel=None, residuals=standalone_residuals)
# Solve Ax=b with Conjugate Gradient (AMG as a preconditioner to CG)
accelerated_residuals = []
x = mls.solve(b, tol=1e-10, accel='cg', residuals=accelerated_residuals)
del x
# Compute relative residuals
standalone_residuals = \
np.array(standalone_residuals) / standalone_residuals[0]
accelerated_residuals = \
np.array(accelerated_residuals) / accelerated_residuals[0]
# Compute (geometric) convergence factors
factor1 = standalone_residuals[-1]**(1.0/len(standalone_residuals))
factor2 = accelerated_residuals[-1]**(1.0/len(accelerated_residuals))
print(" MG convergence factor: %g" % (factor1))
print("MG with CG acceleration convergence factor: %g" % (factor2))
# Plot convergence history
try:
import matplotlib.pyplot as plt
plt.figure()
plt.title('Convergence History')
plt.xlabel('Iteration')
plt.ylabel('Relative Residual')
plt.semilogy(standalone_residuals, label='Standalone',
linestyle='-', marker='o')
plt.semilogy(accelerated_residuals, label='Accelerated',
linestyle='-', marker='s')
plt.legend()
plt.show()
except ImportError:
print("\n\nNote: pylab not available on your system.") | def demo() | Outline basic demo. | 3.599984 | 3.535178 | 1.018332 |
dirname = os.path.dirname(filename)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname) | def ensure_dirs(filename) | Make sure the directories exist for `filename`. | 1.761134 | 1.912103 | 0.921045 |
if not isspmatrix_csr(C):
raise TypeError('expected csr_matrix')
if C.shape[0] != C.shape[1]:
raise ValueError('expected square matrix')
index_type = C.indptr.dtype
num_rows = C.shape[0]
Tj = np.empty(num_rows, dtype=index_type) # stores the aggregate #s
Cpts = np.empty(num_rows, dtype=index_type) # stores the Cpts
fn = amg_core.standard_aggregation
num_aggregates = fn(num_rows, C.indptr, C.indices, Tj, Cpts)
Cpts = Cpts[:num_aggregates]
if num_aggregates == 0:
# return all zero matrix and no Cpts
return csr_matrix((num_rows, 1), dtype='int8'),\
np.array([], dtype=index_type)
else:
shape = (num_rows, num_aggregates)
if Tj.min() == -1:
# some nodes not aggregated
mask = Tj != -1
row = np.arange(num_rows, dtype=index_type)[mask]
col = Tj[mask]
data = np.ones(len(col), dtype='int8')
return coo_matrix((data, (row, col)), shape=shape).tocsr(), Cpts
else:
# all nodes aggregated
Tp = np.arange(num_rows+1, dtype=index_type)
Tx = np.ones(len(Tj), dtype='int8')
return csr_matrix((Tx, Tj, Tp), shape=shape), Cpts | def standard_aggregation(C) | Compute the sparsity pattern of the tentative prolongator.
Parameters
----------
C : csr_matrix
strength of connection matrix
Returns
-------
AggOp : csr_matrix
aggregation operator which determines the sparsity pattern
of the tentative prolongator
Cpts : array
array of Cpts, i.e., Cpts[i] = root node of aggregate i
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from pyamg.gallery import poisson
>>> from pyamg.aggregation.aggregate import standard_aggregation
>>> A = poisson((4,), format='csr') # 1D mesh with 4 vertices
>>> A.todense()
matrix([[ 2., -1., 0., 0.],
[-1., 2., -1., 0.],
[ 0., -1., 2., -1.],
[ 0., 0., -1., 2.]])
>>> standard_aggregation(A)[0].todense() # two aggregates
matrix([[1, 0],
[1, 0],
[0, 1],
[0, 1]], dtype=int8)
>>> A = csr_matrix([[1,0,0],[0,1,1],[0,1,1]])
>>> A.todense() # first vertex is isolated
matrix([[1, 0, 0],
[0, 1, 1],
[0, 1, 1]])
>>> standard_aggregation(A)[0].todense() # one aggregate
matrix([[0],
[1],
[1]], dtype=int8)
See Also
--------
amg_core.standard_aggregation | 2.897086 | 2.796749 | 1.035876 |
if not isspmatrix_csr(C):
raise TypeError('expected csr_matrix')
if C.shape[0] != C.shape[1]:
raise ValueError('expected square matrix')
index_type = C.indptr.dtype
num_rows = C.shape[0]
Tj = np.empty(num_rows, dtype=index_type) # stores the aggregate #s
Cpts = np.empty(num_rows, dtype=index_type) # stores the Cpts
fn = amg_core.naive_aggregation
num_aggregates = fn(num_rows, C.indptr, C.indices, Tj, Cpts)
Cpts = Cpts[:num_aggregates]
Tj = Tj - 1
if num_aggregates == 0:
# all zero matrix
return csr_matrix((num_rows, 1), dtype='int8'), Cpts
else:
shape = (num_rows, num_aggregates)
# all nodes aggregated
Tp = np.arange(num_rows+1, dtype=index_type)
Tx = np.ones(len(Tj), dtype='int8')
return csr_matrix((Tx, Tj, Tp), shape=shape), Cpts | def naive_aggregation(C) | Compute the sparsity pattern of the tentative prolongator.
Parameters
----------
C : csr_matrix
strength of connection matrix
Returns
-------
AggOp : csr_matrix
aggregation operator which determines the sparsity pattern
of the tentative prolongator
Cpts : array
array of Cpts, i.e., Cpts[i] = root node of aggregate i
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from pyamg.gallery import poisson
>>> from pyamg.aggregation.aggregate import naive_aggregation
>>> A = poisson((4,), format='csr') # 1D mesh with 4 vertices
>>> A.todense()
matrix([[ 2., -1., 0., 0.],
[-1., 2., -1., 0.],
[ 0., -1., 2., -1.],
[ 0., 0., -1., 2.]])
>>> naive_aggregation(A)[0].todense() # two aggregates
matrix([[1, 0],
[1, 0],
[0, 1],
[0, 1]], dtype=int8)
>>> A = csr_matrix([[1,0,0],[0,1,1],[0,1,1]])
>>> A.todense() # first vertex is isolated
matrix([[1, 0, 0],
[0, 1, 1],
[0, 1, 1]])
>>> naive_aggregation(A)[0].todense() # two aggregates
matrix([[1, 0],
[0, 1],
[0, 1]], dtype=int8)
See Also
--------
amg_core.naive_aggregation
Notes
-----
Differs from standard aggregation. Each dof is considered. If it has been
aggregated, skip over. Otherwise, put dof and any unaggregated neighbors
in an aggregate. Results in possibly much higher complexities than
standard aggregation. | 3.230784 | 2.956922 | 1.092617 |
if ratio <= 0 or ratio > 1:
raise ValueError('ratio must be > 0.0 and <= 1.0')
if not (isspmatrix_csr(C) or isspmatrix_csc(C)):
raise TypeError('expected csr_matrix or csc_matrix')
if distance == 'unit':
data = np.ones_like(C.data).astype(float)
elif distance == 'abs':
data = abs(C.data)
elif distance == 'inv':
data = 1.0/abs(C.data)
elif distance is 'same':
data = C.data
elif distance is 'min':
data = C.data - C.data.min()
else:
raise ValueError('unrecognized value distance=%s' % distance)
if C.dtype == complex:
data = np.real(data)
assert(data.min() >= 0)
G = C.__class__((data, C.indices, C.indptr), shape=C.shape)
num_seeds = int(min(max(ratio * G.shape[0], 1), G.shape[0]))
distances, clusters, seeds = lloyd_cluster(G, num_seeds, maxiter=maxiter)
row = (clusters >= 0).nonzero()[0]
col = clusters[row]
data = np.ones(len(row), dtype='int8')
AggOp = coo_matrix((data, (row, col)),
shape=(G.shape[0], num_seeds)).tocsr()
return AggOp, seeds | def lloyd_aggregation(C, ratio=0.03, distance='unit', maxiter=10) | Aggregate nodes using Lloyd Clustering.
Parameters
----------
C : csr_matrix
strength of connection matrix
ratio : scalar
Fraction of the nodes which will be seeds.
distance : ['unit','abs','inv',None]
Distance assigned to each edge of the graph G used in Lloyd clustering
For each nonzero value C[i,j]:
======= ===========================
'unit' G[i,j] = 1
'abs' G[i,j] = abs(C[i,j])
'inv' G[i,j] = 1.0/abs(C[i,j])
'same' G[i,j] = C[i,j]
'sub' G[i,j] = C[i,j] - min(C)
======= ===========================
maxiter : int
Maximum number of iterations to perform
Returns
-------
AggOp : csr_matrix
aggregation operator which determines the sparsity pattern
of the tentative prolongator
seeds : array
array of Cpts, i.e., Cpts[i] = root node of aggregate i
See Also
--------
amg_core.standard_aggregation
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from pyamg.gallery import poisson
>>> from pyamg.aggregation.aggregate import lloyd_aggregation
>>> A = poisson((4,), format='csr') # 1D mesh with 4 vertices
>>> A.todense()
matrix([[ 2., -1., 0., 0.],
[-1., 2., -1., 0.],
[ 0., -1., 2., -1.],
[ 0., 0., -1., 2.]])
>>> lloyd_aggregation(A)[0].todense() # one aggregate
matrix([[1],
[1],
[1],
[1]], dtype=int8)
>>> # more seeding for two aggregates
>>> Agg = lloyd_aggregation(A,ratio=0.5)[0].todense() | 2.678319 | 2.572109 | 1.041293 |
blocksize = A.blocksize[0]
BlockIndx = int(i/blocksize)
rowstart = A.indptr[BlockIndx]
rowend = A.indptr[BlockIndx+1]
localRowIndx = i % blocksize
# Get z
indys = A.data[rowstart:rowend, localRowIndx, :].nonzero()
z = A.data[rowstart:rowend, localRowIndx, :][indys[0], indys[1]]
colindx = np.zeros((1, z.__len__()), dtype=np.int32)
counter = 0
for j in range(rowstart, rowend):
coloffset = blocksize*A.indices[j]
indys = A.data[j, localRowIndx, :].nonzero()[0]
increment = indys.shape[0]
colindx[0, counter:(counter+increment)] = coloffset + indys
counter += increment
return np.mat(z).T, colindx[0, :] | def BSR_Get_Row(A, i) | Return row i in BSR matrix A.
Only nonzero entries are returned
Parameters
----------
A : bsr_matrix
Input matrix
i : int
Row number
Returns
-------
z : array
Actual nonzero values for row i colindx Array of column indices for the
nonzeros of row i
Examples
--------
>>> from numpy import array
>>> from scipy.sparse import bsr_matrix
>>> from pyamg.util.BSR_utils import BSR_Get_Row
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> B = bsr_matrix( (data,indices,indptr), shape=(6,6) )
>>> Brow = BSR_Get_Row(B,2)
>>> print Brow[1]
[4 5] | 3.251575 | 3.892223 | 0.835403 |
blocksize = A.blocksize[0]
BlockIndx = int(i/blocksize)
rowstart = A.indptr[BlockIndx]
rowend = A.indptr[BlockIndx+1]
localRowIndx = i % blocksize
# for j in range(rowstart, rowend):
# indys = A.data[j,localRowIndx,:].nonzero()[0]
# increment = indys.shape[0]
# A.data[j,localRowIndx,indys] = x
indys = A.data[rowstart:rowend, localRowIndx, :].nonzero()
A.data[rowstart:rowend, localRowIndx, :][indys[0], indys[1]] = x | def BSR_Row_WriteScalar(A, i, x) | Write a scalar at each nonzero location in row i of BSR matrix A.
Parameters
----------
A : bsr_matrix
Input matrix
i : int
Row number
x : float
Scalar to overwrite nonzeros of row i in A
Returns
-------
A : bsr_matrix
All nonzeros in row i of A have been overwritten with x.
If x is a vector, the first length(x) nonzeros in row i
of A have been overwritten with entries from x
Examples
--------
>>> from numpy import array
>>> from scipy.sparse import bsr_matrix
>>> from pyamg.util.BSR_utils import BSR_Row_WriteScalar
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> B = bsr_matrix( (data,indices,indptr), shape=(6,6) )
>>> BSR_Row_WriteScalar(B,5,22) | 2.90578 | 3.550706 | 0.818367 |
blocksize = A.blocksize[0]
BlockIndx = int(i/blocksize)
rowstart = A.indptr[BlockIndx]
rowend = A.indptr[BlockIndx+1]
localRowIndx = i % blocksize
# like matlab slicing:
x = x.__array__().reshape((max(x.shape),))
# counter = 0
# for j in range(rowstart, rowend):
# indys = A.data[j,localRowIndx,:].nonzero()[0]
# increment = min(indys.shape[0], blocksize)
# A.data[j,localRowIndx,indys] = x[counter:(counter+increment), 0]
# counter += increment
indys = A.data[rowstart:rowend, localRowIndx, :].nonzero()
A.data[rowstart:rowend, localRowIndx, :][indys[0], indys[1]] = x | def BSR_Row_WriteVect(A, i, x) | Overwrite the nonzeros in row i of BSR matrix A with the vector x.
length(x) and nnz(A[i,:]) must be equivalent
Parameters
----------
A : bsr_matrix
Matrix assumed to be in BSR format
i : int
Row number
x : array
Array of values to overwrite nonzeros in row i of A
Returns
-------
A : bsr_matrix
The nonzeros in row i of A have been
overwritten with entries from x. x must be same
length as nonzeros of row i. This is guaranteed
when this routine is used with vectors derived form
Get_BSR_Row
Examples
--------
>>> from numpy import array
>>> from scipy.sparse import bsr_matrix
>>> from pyamg.util.BSR_utils import BSR_Row_WriteVect
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> B = bsr_matrix( (data,indices,indptr), shape=(6,6) )
>>> BSR_Row_WriteVect(B,5,array([11,22,33,44,55,66])) | 3.249366 | 4.017578 | 0.808787 |
if not isspmatrix_csr(A):
raise TypeError('expected csr_matrix for A')
if not isspmatrix_csr(C):
raise TypeError('expected csr_matrix for C')
# Interpolation weights are computed based on entries in A, but subject to
# the sparsity pattern of C. So, copy the entries of A into the
# sparsity pattern of C.
C = C.copy()
C.data[:] = 1.0
C = C.multiply(A)
Pp = np.empty_like(A.indptr)
amg_core.rs_direct_interpolation_pass1(A.shape[0],
C.indptr, C.indices, splitting, Pp)
nnz = Pp[-1]
Pj = np.empty(nnz, dtype=Pp.dtype)
Px = np.empty(nnz, dtype=A.dtype)
amg_core.rs_direct_interpolation_pass2(A.shape[0],
A.indptr, A.indices, A.data,
C.indptr, C.indices, C.data,
splitting,
Pp, Pj, Px)
return csr_matrix((Px, Pj, Pp)) | def direct_interpolation(A, C, splitting) | Create prolongator using direct interpolation.
Parameters
----------
A : csr_matrix
NxN matrix in CSR format
C : csr_matrix
Strength-of-Connection matrix
Must have zero diagonal
splitting : array
C/F splitting stored in an array of length N
Returns
-------
P : csr_matrix
Prolongator using direct interpolation
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.classical import direct_interpolation
>>> import numpy as np
>>> A = poisson((5,),format='csr')
>>> splitting = np.array([1,0,1,0,1], dtype='intc')
>>> P = direct_interpolation(A, A, splitting)
>>> print P.todense()
[[ 1. 0. 0. ]
[ 0.5 0.5 0. ]
[ 0. 1. 0. ]
[ 0. 0.5 0.5]
[ 0. 0. 1. ]] | 3.247758 | 3.591913 | 0.904186 |
for j in range(k):
Qloc = Q[j]
v[j:j+2] = np.dot(Qloc, v[j:j+2]) | def apply_givens(Q, v, k) | Apply the first k Givens rotations in Q to v.
Parameters
----------
Q : list
list of consecutive 2x2 Givens rotations
v : array
vector to apply the rotations to
k : int
number of rotations to apply.
Returns
-------
v is changed in place
Notes
-----
This routine is specialized for GMRES. It assumes that the first Givens
rotation is for dofs 0 and 1, the second Givens rotation is for
dofs 1 and 2, and so on. | 3.891933 | 4.021652 | 0.967745 |
eps = float(epsilon) # for brevity
theta = float(theta)
C = np.cos(theta)
S = np.sin(theta)
CS = C*S
CC = C**2
SS = S**2
if(type == 'FE'):
a = (-1*eps - 1)*CC + (-1*eps - 1)*SS + (3*eps - 3)*CS
b = (2*eps - 4)*CC + (-4*eps + 2)*SS
c = (-1*eps - 1)*CC + (-1*eps - 1)*SS + (-3*eps + 3)*CS
d = (-4*eps + 2)*CC + (2*eps - 4)*SS
e = (8*eps + 8)*CC + (8*eps + 8)*SS
stencil = np.array([[a, b, c],
[d, e, d],
[c, b, a]]) / 6.0
elif type == 'FD':
a = 0.5*(eps - 1)*CS
b = -(eps*SS + CC)
c = -a
d = -(eps*CC + SS)
e = 2.0*(eps + 1)
stencil = np.array([[a, b, c],
[d, e, d],
[c, b, a]])
return stencil | def diffusion_stencil_2d(epsilon=1.0, theta=0.0, type='FE') | Rotated Anisotropic diffusion in 2d of the form.
-div Q A Q^T grad u
Q = [cos(theta) -sin(theta)]
[sin(theta) cos(theta)]
A = [1 0 ]
[0 eps ]
Parameters
----------
epsilon : float, optional
Anisotropic diffusion coefficient: -div A grad u,
where A = [1 0; 0 epsilon]. The default is isotropic, epsilon=1.0
theta : float, optional
Rotation angle `theta` in radians defines -div Q A Q^T grad,
where Q = [cos(`theta`) -sin(`theta`); sin(`theta`) cos(`theta`)].
type : {'FE','FD'}
Specifies the discretization as Q1 finite element (FE) or 2nd order
finite difference (FD)
The default is `theta` = 0.0
Returns
-------
stencil : numpy array
A 3x3 diffusion stencil
See Also
--------
stencil_grid, poisson
Notes
-----
Not all combinations are supported.
Examples
--------
>>> import scipy as sp
>>> from pyamg.gallery.diffusion import diffusion_stencil_2d
>>> sten = diffusion_stencil_2d(epsilon=0.0001,theta=sp.pi/6,type='FD')
>>> print sten
[[-0.2164847 -0.750025 0.2164847]
[-0.250075 2.0002 -0.250075 ]
[ 0.2164847 -0.750025 -0.2164847]] | 2.480978 | 2.671026 | 0.928848 |
from sympy import symbols, Matrix
cpsi, spsi = symbols('cpsi, spsi')
cth, sth = symbols('cth, sth')
cphi, sphi = symbols('cphi, sphi')
Rpsi = Matrix([[cpsi, spsi, 0], [-spsi, cpsi, 0], [0, 0, 1]])
Rth = Matrix([[1, 0, 0], [0, cth, sth], [0, -sth, cth]])
Rphi = Matrix([[cphi, sphi, 0], [-sphi, cphi, 0], [0, 0, 1]])
Q = Rpsi * Rth * Rphi
epsy, epsz = symbols('epsy, epsz')
A = Matrix([[1, 0, 0], [0, epsy, 0], [0, 0, epsz]])
D = Q * A * Q.T
for i in range(3):
for j in range(3):
print('D[%d, %d] = %s' % (i, j, D[i, j])) | def _symbolic_rotation_helper() | Use SymPy to generate the 3D rotation matrix and products for diffusion_stencil_3d. | 1.936584 | 1.855794 | 1.043534 |
from sympy import symbols, Matrix
D11, D12, D13, D21, D22, D23, D31, D32, D33 =\
symbols('D11, D12, D13, D21, D22, D23, D31, D32, D33')
D = Matrix([[D11, D12, D13], [D21, D22, D23], [D31, D32, D33]])
grad = Matrix([['dx', 'dy', 'dz']]).T
div = grad.T
a = div * D * grad
print(a[0]) | def _symbolic_product_helper() | Use SymPy to generate the 3D products for diffusion_stencil_3d. | 2.217844 | 2.030291 | 1.092378 |
if formats is None:
pass
elif formats == ['csr']:
if sparse.isspmatrix_csr(A):
pass
elif sparse.isspmatrix_bsr(A):
A = A.tocsr()
else:
warn('implicit conversion to CSR', sparse.SparseEfficiencyWarning)
A = sparse.csr_matrix(A)
else:
if sparse.isspmatrix(A) and A.format in formats:
pass
else:
A = sparse.csr_matrix(A).asformat(formats[0])
if not isinstance(x, np.ndarray):
raise ValueError('expected numpy array for argument x')
if not isinstance(b, np.ndarray):
raise ValueError('expected numpy array for argument b')
M, N = A.shape
if M != N:
raise ValueError('expected square matrix')
if x.shape not in [(M,), (M, 1)]:
raise ValueError('x has invalid dimensions')
if b.shape not in [(M,), (M, 1)]:
raise ValueError('b has invalid dimensions')
if A.dtype != x.dtype or A.dtype != b.dtype:
raise TypeError('arguments A, x, and b must have the same dtype')
if not x.flags.carray:
raise ValueError('x must be contiguous in memory')
x = np.ravel(x)
b = np.ravel(b)
return A, x, b | def make_system(A, x, b, formats=None) | Return A,x,b suitable for relaxation or raise an exception.
Parameters
----------
A : sparse-matrix
n x n system
x : array
n-vector, initial guess
b : array
n-vector, right-hand side
formats: {'csr', 'csc', 'bsr', 'lil', 'dok',...}
desired sparse matrix format
default is no change to A's format
Returns
-------
(A,x,b), where A is in the desired sparse-matrix format
and x and b are "raveled", i.e. (n,) vectors.
Notes
-----
Does some rudimentary error checking on the system,
such as checking for compatible dimensions and checking
for compatible type, i.e. float or complex.
Examples
--------
>>> from pyamg.relaxation.relaxation import make_system
>>> from pyamg.gallery import poisson
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> (A,x,b) = make_system(A,x,b,formats=['csc'])
>>> print str(x.shape)
(100,)
>>> print str(b.shape)
(100,)
>>> print A.format
csc | 2.170778 | 2.313719 | 0.93822 |
A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
x_old = np.empty_like(x)
for i in range(iterations):
x_old[:] = x
gauss_seidel(A, x, b, iterations=1, sweep=sweep)
x *= omega
x_old *= (1-omega)
x += x_old | def sor(A, x, b, omega, iterations=1, sweep='forward') | Perform SOR iteration on the linear system Ax=b.
Parameters
----------
A : csr_matrix, bsr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
omega : scalar
Damping parameter
iterations : int
Number of iterations to perform
sweep : {'forward','backward','symmetric'}
Direction of sweep
Returns
-------
Nothing, x will be modified in place.
Notes
-----
When omega=1.0, SOR is equivalent to Gauss-Seidel.
Examples
--------
>>> # Use SOR as stand-along solver
>>> from pyamg.relaxation.relaxation import sor
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x0 = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> sor(A, x0, b, 1.33, iterations=10)
>>> print norm(b-A*x0)
3.03888724811
>>> #
>>> # Use SOR as the multigrid smoother
>>> from pyamg import smoothed_aggregation_solver
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('sor', {'sweep':'symmetric', 'omega' : 1.33}),
... postsmoother=('sor', {'sweep':'symmetric', 'omega' : 1.33}))
>>> x0 = np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 3.584352 | 4.579064 | 0.782769 |
A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
if sparse.isspmatrix_csr(A):
blocksize = 1
else:
R, C = A.blocksize
if R != C:
raise ValueError('BSR blocks must be square')
blocksize = R
if sweep == 'forward':
row_start, row_stop, row_step = 0, int(len(x)/blocksize), 1
elif sweep == 'backward':
row_start, row_stop, row_step = int(len(x)/blocksize)-1, -1, -1
elif sweep == 'symmetric':
for iter in range(iterations):
gauss_seidel(A, x, b, iterations=1, sweep='forward')
gauss_seidel(A, x, b, iterations=1, sweep='backward')
return
else:
raise ValueError("valid sweep directions are 'forward',\
'backward', and 'symmetric'")
if sparse.isspmatrix_csr(A):
for iter in range(iterations):
amg_core.gauss_seidel(A.indptr, A.indices, A.data, x, b,
row_start, row_stop, row_step)
else:
for iter in range(iterations):
amg_core.bsr_gauss_seidel(A.indptr, A.indices, np.ravel(A.data),
x, b, row_start, row_stop, row_step, R) | def gauss_seidel(A, x, b, iterations=1, sweep='forward') | Perform Gauss-Seidel iteration on the linear system Ax=b.
Parameters
----------
A : csr_matrix, bsr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
iterations : int
Number of iterations to perform
sweep : {'forward','backward','symmetric'}
Direction of sweep
Returns
-------
Nothing, x will be modified in place.
Examples
--------
>>> # Use Gauss-Seidel as a Stand-Alone Solver
>>> from pyamg.relaxation.relaxation import gauss_seidel
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x0 = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> gauss_seidel(A, x0, b, iterations=10)
>>> print norm(b-A*x0)
4.00733716236
>>> #
>>> # Use Gauss-Seidel as the Multigrid Smoother
>>> from pyamg import smoothed_aggregation_solver
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('gauss_seidel', {'sweep':'symmetric'}),
... postsmoother=('gauss_seidel', {'sweep':'symmetric'}))
>>> x0=np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 2.311157 | 2.457472 | 0.940461 |
A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
sweep = slice(None)
(row_start, row_stop, row_step) = sweep.indices(A.shape[0])
if (row_stop - row_start) * row_step <= 0: # no work to do
return
temp = np.empty_like(x)
# Create uniform type, convert possibly complex scalars to length 1 arrays
[omega] = type_prep(A.dtype, [omega])
if sparse.isspmatrix_csr(A):
for iter in range(iterations):
amg_core.jacobi(A.indptr, A.indices, A.data, x, b, temp,
row_start, row_stop, row_step, omega)
else:
R, C = A.blocksize
if R != C:
raise ValueError('BSR blocks must be square')
row_start = int(row_start / R)
row_stop = int(row_stop / R)
for iter in range(iterations):
amg_core.bsr_jacobi(A.indptr, A.indices, np.ravel(A.data),
x, b, temp, row_start, row_stop,
row_step, R, omega) | def jacobi(A, x, b, iterations=1, omega=1.0) | Perform Jacobi iteration on the linear system Ax=b.
Parameters
----------
A : csr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
iterations : int
Number of iterations to perform
omega : scalar
Damping parameter
Returns
-------
Nothing, x will be modified in place.
Examples
--------
>>> # Use Jacobi as a Stand-Alone Solver
>>> from pyamg.relaxation.relaxation.relaxation import jacobi
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x0 = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> jacobi(A, x0, b, iterations=10, omega=1.0)
>>> print norm(b-A*x0)
5.83475132751
>>> #
>>> # Use Jacobi as the Multigrid Smoother
>>> from pyamg import smoothed_aggregation_solver
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('jacobi', {'omega': 4.0/3.0, 'iterations' : 2}),
... postsmoother=('jacobi', {'omega': 4.0/3.0, 'iterations' : 2}))
>>> x0=np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 3.797892 | 4.101868 | 0.925893 |
A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
A = A.tobsr(blocksize=(blocksize, blocksize))
if Dinv is None:
Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
elif Dinv.shape[0] != int(A.shape[0]/blocksize):
raise ValueError('Dinv and A have incompatible dimensions')
elif (Dinv.shape[1] != blocksize) or (Dinv.shape[2] != blocksize):
raise ValueError('Dinv and blocksize are incompatible')
sweep = slice(None)
(row_start, row_stop, row_step) = sweep.indices(int(A.shape[0]/blocksize))
if (row_stop - row_start) * row_step <= 0: # no work to do
return
temp = np.empty_like(x)
# Create uniform type, convert possibly complex scalars to length 1 arrays
[omega] = type_prep(A.dtype, [omega])
for iter in range(iterations):
amg_core.block_jacobi(A.indptr, A.indices, np.ravel(A.data),
x, b, np.ravel(Dinv), temp,
row_start, row_stop, row_step,
omega, blocksize) | def block_jacobi(A, x, b, Dinv=None, blocksize=1, iterations=1, omega=1.0) | Perform block Jacobi iteration on the linear system Ax=b.
Parameters
----------
A : csr_matrix or bsr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
Dinv : array
Array holding block diagonal inverses of A
size (N/blocksize, blocksize, blocksize)
blocksize : int
Desired dimension of blocks
iterations : int
Number of iterations to perform
omega : scalar
Damping parameter
Returns
-------
Nothing, x will be modified in place.
Examples
--------
>>> # Use block Jacobi as a Stand-Alone Solver
>>> from pyamg.relaxation.relaxation import block_jacobi
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x0 = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> block_jacobi(A, x0, b, blocksize=4, iterations=10, omega=1.0)
>>> print norm(b-A*x0)
4.66474230129
>>> #
>>> # Use block Jacobi as the Multigrid Smoother
>>> from pyamg import smoothed_aggregation_solver
>>> opts = {'omega': 4.0/3.0, 'iterations' : 2, 'blocksize' : 4}
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('block_jacobi', opts),
... postsmoother=('block_jacobi', opts))
>>> x0=np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 3.711512 | 3.911048 | 0.948981 |
A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
A = A.tobsr(blocksize=(blocksize, blocksize))
if Dinv is None:
Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
elif Dinv.shape[0] != int(A.shape[0]/blocksize):
raise ValueError('Dinv and A have incompatible dimensions')
elif (Dinv.shape[1] != blocksize) or (Dinv.shape[2] != blocksize):
raise ValueError('Dinv and blocksize are incompatible')
if sweep == 'forward':
row_start, row_stop, row_step = 0, int(len(x)/blocksize), 1
elif sweep == 'backward':
row_start, row_stop, row_step = int(len(x)/blocksize)-1, -1, -1
elif sweep == 'symmetric':
for iter in range(iterations):
block_gauss_seidel(A, x, b, iterations=1, sweep='forward',
blocksize=blocksize, Dinv=Dinv)
block_gauss_seidel(A, x, b, iterations=1, sweep='backward',
blocksize=blocksize, Dinv=Dinv)
return
else:
raise ValueError("valid sweep directions are 'forward',\
'backward', and 'symmetric'")
for iter in range(iterations):
amg_core.block_gauss_seidel(A.indptr, A.indices, np.ravel(A.data),
x, b, np.ravel(Dinv),
row_start, row_stop, row_step, blocksize) | def block_gauss_seidel(A, x, b, iterations=1, sweep='forward', blocksize=1,
Dinv=None) | Perform block Gauss-Seidel iteration on the linear system Ax=b.
Parameters
----------
A : csr_matrix, bsr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
iterations : int
Number of iterations to perform
sweep : {'forward','backward','symmetric'}
Direction of sweep
Dinv : array
Array holding block diagonal inverses of A
size (N/blocksize, blocksize, blocksize)
blocksize : int
Desired dimension of blocks
Returns
-------
Nothing, x will be modified in place.
Examples
--------
>>> # Use Gauss-Seidel as a Stand-Alone Solver
>>> from pyamg.relaxation.relaxation import block_gauss_seidel
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> A = poisson((10,10), format='csr')
>>> x0 = np.zeros((A.shape[0],1))
>>> b = np.ones((A.shape[0],1))
>>> block_gauss_seidel(A, x0, b, iterations=10, blocksize=4,
sweep='symmetric')
>>> print norm(b-A*x0)
0.958333817624
>>> #
>>> # Use Gauss-Seidel as the Multigrid Smoother
>>> from pyamg import smoothed_aggregation_solver
>>> opts = {'sweep':'symmetric', 'blocksize' : 4}
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('block_gauss_seidel', opts),
... postsmoother=('block_gauss_seidel', opts))
>>> x0=np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 2.138325 | 2.187023 | 0.977733 |
A, x, b = make_system(A, x, b, formats=None)
for i in range(iterations):
from pyamg.util.linalg import norm
if norm(x) == 0:
residual = b
else:
residual = (b - A*x)
h = coefficients[0]*residual
for c in coefficients[1:]:
h = c*residual + A*h
x += h | def polynomial(A, x, b, coefficients, iterations=1) | Apply a polynomial smoother to the system Ax=b.
Parameters
----------
A : sparse matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
coefficients : array_like
Coefficients of the polynomial. See Notes section for details.
iterations : int
Number of iterations to perform
Returns
-------
Nothing, x will be modified in place.
Notes
-----
The smoother has the form x[:] = x + p(A) (b - A*x) where p(A) is a
polynomial in A whose scalar coefficients are specified (in descending
order) by argument 'coefficients'.
- Richardson iteration p(A) = c_0:
polynomial_smoother(A, x, b, [c_0])
- Linear smoother p(A) = c_1*A + c_0:
polynomial_smoother(A, x, b, [c_1, c_0])
- Quadratic smoother p(A) = c_2*A^2 + c_1*A + c_0:
polynomial_smoother(A, x, b, [c_2, c_1, c_0])
Here, Horner's Rule is applied to avoid computing A^k directly.
For efficience, the method detects the case x = 0 one matrix-vector
product is avoided (since (b - A*x) is b).
Examples
--------
>>> # The polynomial smoother is not currently used directly
>>> # in PyAMG. It is only used by the chebyshev smoothing option,
>>> # which automatically calculates the correct coefficients.
>>> from pyamg.gallery import poisson
>>> from pyamg.util.linalg import norm
>>> import numpy as np
>>> from pyamg.aggregation import smoothed_aggregation_solver
>>> A = poisson((10,10), format='csr')
>>> b = np.ones((A.shape[0],1))
>>> sa = smoothed_aggregation_solver(A, B=np.ones((A.shape[0],1)),
... coarse_solver='pinv2', max_coarse=50,
... presmoother=('chebyshev', {'degree':3, 'iterations':1}),
... postsmoother=('chebyshev', {'degree':3, 'iterations':1}))
>>> x0=np.zeros((A.shape[0],1))
>>> residuals=[]
>>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) | 4.601454 | 5.544214 | 0.829956 |
A, x, b = make_system(A, x, b, formats=['csr'])
indices = np.asarray(indices, dtype='intc')
# if indices.min() < 0:
# raise ValueError('row index (%d) is invalid' % indices.min())
# if indices.max() >= A.shape[0]
# raise ValueError('row index (%d) is invalid' % indices.max())
if sweep == 'forward':
row_start, row_stop, row_step = 0, len(indices), 1
elif sweep == 'backward':
row_start, row_stop, row_step = len(indices)-1, -1, -1
elif sweep == 'symmetric':
for iter in range(iterations):
gauss_seidel_indexed(A, x, b, indices, iterations=1,
sweep='forward')
gauss_seidel_indexed(A, x, b, indices, iterations=1,
sweep='backward')
return
else:
raise ValueError("valid sweep directions are 'forward',\
'backward', and 'symmetric'")
for iter in range(iterations):
amg_core.gauss_seidel_indexed(A.indptr, A.indices, A.data,
x, b, indices,
row_start, row_stop, row_step) | def gauss_seidel_indexed(A, x, b, indices, iterations=1, sweep='forward') | Perform indexed Gauss-Seidel iteration on the linear system Ax=b.
In indexed Gauss-Seidel, the sequence in which unknowns are relaxed is
specified explicitly. In contrast, the standard Gauss-Seidel method
always performs complete sweeps of all variables in increasing or
decreasing order. The indexed method may be used to implement
specialized smoothers, like F-smoothing in Classical AMG.
Parameters
----------
A : csr_matrix
Sparse NxN matrix
x : ndarray
Approximate solution (length N)
b : ndarray
Right-hand side (length N)
indices : ndarray
Row indices to relax.
iterations : int
Number of iterations to perform
sweep : {'forward','backward','symmetric'}
Direction of sweep
Returns
-------
Nothing, x will be modified in place.
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.relaxation.relaxation import gauss_seidel_indexed
>>> import numpy as np
>>> A = poisson((4,), format='csr')
>>> x = np.array([0.0, 0.0, 0.0, 0.0])
>>> b = np.array([0.0, 1.0, 2.0, 3.0])
>>> gauss_seidel_indexed(A, x, b, [0,1,2,3]) # relax all rows in order
>>> gauss_seidel_indexed(A, x, b, [0,1]) # relax first two rows
>>> gauss_seidel_indexed(A, x, b, [2,0]) # relax row 2, then row 0
>>> gauss_seidel_indexed(A, x, b, [2,3], sweep='backward') # 3, then 2
>>> gauss_seidel_indexed(A, x, b, [2,0,2]) # relax row 2, 0, 2 | 2.209481 | 2.356014 | 0.937804 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.