code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
renderer = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(renderer) importer = vtk.vtk3DSImporter() importer.SetFileName(filename) importer.ComputeNormalsOn() importer.SetRenderWindow(renWin) importer.Update() actors = renderer.GetActors() # vtkActorCollection acts = [] for i in range(actors.GetNumberOfItems()): a = actors.GetItemAsObject(i) acts.append(a) del renWin return Assembly(acts)
def load3DS(filename)
Load ``3DS`` file format from file. Return an ``Assembly(vtkAssembly)`` object.
2.848562
2.463313
1.156395
if not os.path.exists(filename): colors.printc("~noentry Error in loadOFF: Cannot find", filename, c=1) return None f = open(filename, "r") lines = f.readlines() f.close() vertices = [] faces = [] NumberOfVertices = None i = -1 for text in lines: if len(text) == 0: continue if text == '\n': continue if "#" in text: continue if "OFF" in text: continue ts = text.split() n = len(ts) if not NumberOfVertices and n > 1: NumberOfVertices, NumberOfFaces = int(ts[0]), int(ts[1]) continue i += 1 if i < NumberOfVertices and n == 3: x, y, z = float(ts[0]), float(ts[1]), float(ts[2]) vertices.append([x, y, z]) ids = [] if NumberOfVertices <= i < (NumberOfVertices + NumberOfFaces + 1) and n > 2: ids += [int(x) for x in ts[1:]] faces.append(ids) return Actor(buildPolyData(vertices, faces), c, alpha, wire, bc)
def loadOFF(filename, c="gold", alpha=1, wire=False, bc=None)
Read OFF file format.
2.957467
2.933756
1.008082
if not os.path.exists(filename): colors.printc("~noentry Error in loadDolfin: Cannot find", filename, c=1) return None import xml.etree.ElementTree as et if filename.endswith(".gz"): import gzip inF = gzip.open(filename, "rb") outF = open("/tmp/filename.xml", "wb") outF.write(inF.read()) outF.close() inF.close() tree = et.parse("/tmp/filename.xml") else: tree = et.parse(filename) coords, connectivity = [], [] for mesh in tree.getroot(): for elem in mesh: for e in elem.findall("vertex"): x = float(e.get("x")) y = float(e.get("y")) ez = e.get("z") if ez is None: coords.append([x, y]) else: z = float(ez) coords.append([x, y, z]) tets = elem.findall("tetrahedron") if not len(tets): tris = elem.findall("triangle") for e in tris: v0 = int(e.get("v0")) v1 = int(e.get("v1")) v2 = int(e.get("v2")) connectivity.append([v0, v1, v2]) else: for e in tets: v0 = int(e.get("v0")) v1 = int(e.get("v1")) v2 = int(e.get("v2")) v3 = int(e.get("v3")) connectivity.append([v0, v1, v2, v3]) poly = buildPolyData(coords, connectivity) return Actor(poly, c, alpha, True, bc)
def loadDolfin(filename, c="gold", alpha=0.5, wire=None, bc=None)
Reads a `Fenics/Dolfin` file format. Return an ``Actor(vtkActor)`` object.
2.226673
2.128745
1.046003
if not os.path.exists(filename): colors.printc("~noentry Error in loadNeutral: Cannot find", filename, c=1) return None coords, connectivity = convertNeutral2Xml(filename) poly = buildPolyData(coords, connectivity, indexOffset=0) return Actor(poly, c, alpha, wire, bc)
def loadNeutral(filename, c="gold", alpha=1, wire=False, bc=None)
Reads a `Neutral` tetrahedral file format. Return an ``Actor(vtkActor)`` object.
9.745509
8.186733
1.190403
if not os.path.exists(filename): colors.printc("~noentry Error in loadGmesh: Cannot find", filename, c=1) return None f = open(filename, "r") lines = f.readlines() f.close() nnodes = 0 index_nodes = 0 for i, line in enumerate(lines): if "$Nodes" in line: index_nodes = i + 1 nnodes = int(lines[index_nodes]) break node_coords = [] for i in range(index_nodes + 1, index_nodes + 1 + nnodes): cn = lines[i].split() node_coords.append([float(cn[1]), float(cn[2]), float(cn[3])]) nelements = 0 index_elements = 0 for i, line in enumerate(lines): if "$Elements" in line: index_elements = i + 1 nelements = int(lines[index_elements]) break elements = [] for i in range(index_elements + 1, index_elements + 1 + nelements): ele = lines[i].split() elements.append([int(ele[-3]), int(ele[-2]), int(ele[-1])]) poly = buildPolyData(node_coords, elements, indexOffset=1) return Actor(poly, c, alpha, wire, bc)
def loadGmesh(filename, c="gold", alpha=1, wire=False, bc=None)
Reads a `gmesh` file format. Return an ``Actor(vtkActor)`` object.
2.283282
2.199426
1.038126
if not os.path.exists(filename): colors.printc("~noentry Error in loadPCD: Cannot find file", filename, c=1) return None f = open(filename, "r") lines = f.readlines() f.close() start = False pts = [] N, expN = 0, 0 for text in lines: if start: if N >= expN: break l = text.split() pts.append([float(l[0]), float(l[1]), float(l[2])]) N += 1 if not start and "POINTS" in text: expN = int(text.split()[1]) if not start and "DATA ascii" in text: start = True if expN != N: colors.printc("~!? Mismatch in pcd file", expN, len(pts), c="red") src = vtk.vtkPointSource() src.SetNumberOfPoints(len(pts)) src.Update() poly = src.GetOutput() for i, p in enumerate(pts): poly.GetPoints().SetPoint(i, p) if not poly: colors.printc("~noentry Unable to load", filename, c="red") return False actor = Actor(poly, colors.getColor(c), alpha) actor.GetProperty().SetPointSize(4) return actor
def loadPCD(filename, c="gold", alpha=1)
Return ``vtkActor`` from `Point Cloud` file format. Return an ``Actor(vtkActor)`` object.
3.126018
2.943649
1.061953
if not os.path.isfile(filename): colors.printc("~noentry File not found:", filename, c=1) return None if ".tif" in filename.lower(): reader = vtk.vtkTIFFReader() elif ".slc" in filename.lower(): reader = vtk.vtkSLCReader() if not reader.CanReadFile(filename): colors.printc("~prohibited Sorry bad slc file " + filename, c=1) exit(1) elif ".vti" in filename.lower(): reader = vtk.vtkXMLImageDataReader() elif ".mhd" in filename.lower(): reader = vtk.vtkMetaImageReader() reader.SetFileName(filename) reader.Update() image = reader.GetOutput() if len(spacing) == 3: image.SetSpacing(spacing[0], spacing[1], spacing[2]) return image
def loadImageData(filename, spacing=())
Read and return a ``vtkImageData`` object from file.
2.753974
2.642035
1.042368
fl = filename.lower() if ".png" in fl: picr = vtk.vtkPNGReader() elif ".jpg" in fl or ".jpeg" in fl: picr = vtk.vtkJPEGReader() elif ".bmp" in fl: picr = vtk.vtkBMPReader() picr.Allow8BitBMPOff() else: colors.printc("~times File must end with png, bmp or jp(e)g", c=1) exit(1) picr.SetFileName(filename) picr.Update() vactor = ImageActor() # vtk.vtkImageActor() vactor.SetInputData(picr.GetOutput()) if alpha is None: alpha = 1 vactor.SetOpacity(alpha) return vactor
def load2Dimage(filename, alpha=1)
Read a JPEG/PNG/BMP image from file. Return an ``ImageActor(vtkImageActor)`` object. .. hint:: |rotateImage| |rotateImage.py|_
3.54095
3.323297
1.065493
obj = objct if isinstance(obj, Actor): obj = objct.polydata(True) elif isinstance(obj, vtk.vtkActor): obj = objct.GetMapper().GetInput() fr = fileoutput.lower() if ".vtk" in fr: w = vtk.vtkPolyDataWriter() elif ".ply" in fr: w = vtk.vtkPLYWriter() elif ".stl" in fr: w = vtk.vtkSTLWriter() elif ".vtp" in fr: w = vtk.vtkXMLPolyDataWriter() elif ".vtm" in fr: g = vtk.vtkMultiBlockDataGroupFilter() for ob in objct: g.AddInputData(ob) g.Update() mb = g.GetOutputDataObject(0) wri = vtk.vtkXMLMultiBlockDataWriter() wri.SetInputData(mb) wri.SetFileName(fileoutput) wri.Write() return mb elif ".xyz" in fr: w = vtk.vtkSimplePointsWriter() elif ".byu" in fr or fr.endswith(".g"): w = vtk.vtkBYUWriter() elif ".obj" in fr: w = vtk.vtkOBJExporter() w.SetFilePrefix(fileoutput.replace(".obj", "")) colors.printc("~target Please use write(vp.window)", c=3) w.SetInputData(obj) w.Update() colors.printc("~save Saved file: " + fileoutput, c="g") return objct elif ".tif" in fr: w = vtk.vtkTIFFWriter() w.SetFileDimensionality(len(obj.GetDimensions())) elif ".vti" in fr: w = vtk.vtkXMLImageDataWriter() elif ".png" in fr: w = vtk.vtkPNGWriter() elif ".jpg" in fr: w = vtk.vtkJPEGWriter() elif ".bmp" in fr: w = vtk.vtkBMPWriter() else: colors.printc("~noentry Unknown format", fileoutput, "file not saved.", c="r") return objct try: if not ".tif" in fr and not ".vti" in fr: if binary and not ".tif" in fr and not ".vti" in fr: w.SetFileTypeToBinary() else: w.SetFileTypeToASCII() w.SetInputData(obj) w.SetFileName(fileoutput) w.Write() colors.printc("~save Saved file: " + fileoutput, c="g") except Exception as e: colors.printc("~noentry Error saving: " + fileoutput, "\n", e, c="r") return objct
def write(objct, fileoutput, binary=True)
Write 3D object to file. Possile extensions are: - vtk, vti, ply, obj, stl, byu, vtp, xyz, tif, png, bmp.
2.580325
2.541479
1.015285
f = open(infile, "r") lines = f.readlines() f.close() ncoords = int(lines[0]) fdolf_coords = [] for i in range(1, ncoords + 1): x, y, z = lines[i].split() fdolf_coords.append([float(x), float(y), float(z)]) ntets = int(lines[ncoords + 1]) idolf_tets = [] for i in range(ncoords + 2, ncoords + ntets + 2): text = lines[i].split() v0, v1, v2, v3 = text[1], text[2], text[3], text[4] idolf_tets.append([int(v0) - 1, int(v1) - 1, int(v2) - 1, int(v3) - 1]) if outfile: # write dolfin xml outF = open(outfile, "w") outF.write('<?xml version="1.0" encoding="UTF-8"?>\n') outF.write('<dolfin xmlns:dolfin="http://www.fenicsproject.org">\n') outF.write(' <mesh celltype="tetrahedron" dim="3">\n') outF.write(' <vertices size="' + str(ncoords) + '">\n') for i in range(ncoords): x, y, z = fdolf_coords[i] outF.write(' <vertex index="'+str(i) + '" x="'+str(x)+'" y="'+str(y)+'" z="'+str(z)+'"/>\n') outF.write(' </vertices>\n') outF.write(' <cells size="' + str(ntets) + '">\n') for i in range(ntets): v0, v1, v2, v3 = idolf_tets[i] outF.write(' <tetrahedron index="'+str(i) + '" v0="'+str(v0)+'" v1="'+str(v1)+'" v2="'+str(v2)+'" v3="'+str(v3)+'"/>\n') outF.write(' </cells>\n') outF.write(" </mesh>\n") outF.write("</dolfin>\n") outF.close() return fdolf_coords, idolf_tets
def convertNeutral2Xml(infile, outfile=None)
Convert Neutral file format to Dolfin XML.
1.651643
1.604429
1.029427
if not settings.plotter_instance.window: colors.printc('~bomb screenshot(): Rendering window is not present, skip.', c=1) return w2if = vtk.vtkWindowToImageFilter() w2if.ShouldRerenderOff() w2if.SetInput(settings.plotter_instance.window) w2if.ReadFrontBufferOff() # read from the back buffer w2if.Update() pngwriter = vtk.vtkPNGWriter() pngwriter.SetFileName(filename) pngwriter.SetInputConnection(w2if.GetOutputPort()) pngwriter.Write()
def screenshot(filename="screenshot.png")
Save a screenshot of the current rendering window.
4.691407
4.270018
1.098686
fr = "/tmp/vpvid/" + str(len(self.frames)) + ".png" screenshot(fr) self.frames.append(fr)
def addFrame(self)
Add frame to current video.
10.35079
8.629126
1.199518
fr = self.frames[-1] n = int(self.fps * pause) for i in range(n): fr2 = "/tmp/vpvid/" + str(len(self.frames)) + ".png" self.frames.append(fr2) os.system("cp -f %s %s" % (fr, fr2))
def pause(self, pause=0)
Insert a `pause`, in seconds.
4.676514
4.395671
1.063891
if self.duration: _fps = len(self.frames) / float(self.duration) colors.printc("Recalculated video FPS to", round(_fps, 3), c="yellow") else: _fps = int(_fps) self.name = self.name.split('.')[0]+'.mp4' out = os.system("ffmpeg -loglevel panic -y -r " + str(_fps) + " -i /tmp/vpvid/%01d.png "+self.name) if out: colors.printc("ffmpeg returning error", c=1) colors.printc("~save Video saved as", self.name, c="green") return
def close(self)
Render the video and write to file.
5.927529
5.469843
1.083674
if s is None: return self.states[self._status] if isinstance(s, str): s = self.states.index(s) self._status = s self.textproperty.SetLineOffset(self.offset) self.actor.SetInput(self.spacer + self.states[s] + self.spacer) s = s % len(self.colors) # to avoid mismatch self.textproperty.SetColor(colors.getColor(self.colors[s])) bcc = numpy.array(colors.getColor(self.bcolors[s])) self.textproperty.SetBackgroundColor(bcc) if self.showframe: self.textproperty.FrameOn() self.textproperty.SetFrameWidth(self.framewidth) self.textproperty.SetFrameColor(numpy.sqrt(bcc))
def status(self, s=None)
Set/Get the status of the button.
4.233172
4.322971
0.979227
self._status = (self._status + 1) % len(self.states) self.status(self._status)
def switch(self)
Change/cycle button status to the next defined status in states list.
4.898286
3.158512
1.550821
# Get vectors (references) u_vec, u0_vec = u.vector(), u_old.vector() v0_vec, a0_vec = v_old.vector(), a_old.vector() # use update functions using vector arguments a_vec = update_a(u_vec, u0_vec, v0_vec, a0_vec, ufl=False) v_vec = update_v(a_vec, u0_vec, v0_vec, a0_vec, ufl=False) # Update (u_old <- u) v_old.vector()[:], a_old.vector()[:] = v_vec, a_vec u_old.vector()[:] = u.vector()
def update_fields(u, u_old, v_old, a_old)
Update fields at the end of each time step.
3.454438
3.350798
1.03093
dv = TrialFunction(V) v_ = TestFunction(V) a_proj = inner(dv, v_)*dx b_proj = inner(v, v_)*dx solver = LocalSolver(a_proj, b_proj) solver.factorize() if u is None: u = Function(V) solver.solve_local_rhs(u) return u else: solver.solve_local_rhs(u) return
def local_project(v, V, u=None)
Element-wise projection using LocalSolver
2.85362
2.539484
1.123701
if len(pos) == 2: pos = (pos[0], pos[1], 0) actor = Points([pos], r, c, alpha) return actor
def Point(pos=(0, 0, 0), r=12, c="red", alpha=1)
Create a simple point actor.
3.172791
2.719393
1.166728
def _colorPoints(plist, cols, r, alpha): n = len(plist) if n > len(cols): colors.printc("~times Error: mismatch in colorPoints()", n, len(cols), c=1) exit() if n != len(cols): colors.printc("~lightning Warning: mismatch in colorPoints()", n, len(cols)) src = vtk.vtkPointSource() src.SetNumberOfPoints(n) src.Update() vgf = vtk.vtkVertexGlyphFilter() vgf.SetInputData(src.GetOutput()) vgf.Update() pd = vgf.GetOutput() ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("pointsRGB") for i in range(len(plist)): c = np.array(colors.getColor(cols[i])) * 255 ucols.InsertNextTuple3(c[0], c[1], c[2]) pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) pd.GetPointData().SetScalars(ucols) actor = Actor(pd, c, alpha) actor.mapper.ScalarVisibilityOn() actor.GetProperty().SetInterpolationToFlat() actor.GetProperty().SetPointSize(r) settings.collectable_actors.append(actor) return actor n = len(plist) if n == 0: return None elif n == 3: # assume plist is in the format [all_x, all_y, all_z] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = list(zip(plist[0], plist[1], plist[2])) elif n == 2: # assume plist is in the format [all_x, all_y, 0] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = list(zip(plist[0], plist[1], [0] * len(plist[0]))) if utils.isSequence(c) and len(c) > 3: actor = _colorPoints(plist, c, r, alpha) settings.collectable_actors.append(actor) return actor ################ n = len(plist) # refresh sourcePoints = vtk.vtkPoints() sourceVertices = vtk.vtkCellArray() is3d = len(plist[0]) > 2 if is3d: # its faster for pt in plist: aid = sourcePoints.InsertNextPoint(pt) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) else: for pt in plist: aid = sourcePoints.InsertNextPoint(pt[0], pt[1], 0) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) pd = vtk.vtkPolyData() pd.SetPoints(sourcePoints) pd.SetVerts(sourceVertices) if n == 1: # passing just one point pd.GetPoints().SetPoint(0, [0, 0, 0]) else: pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) actor = Actor(pd, c, alpha) actor.GetProperty().SetPointSize(r) if n == 1: actor.SetPosition(plist[0]) settings.collectable_actors.append(actor) return actor
def Points(plist, r=5, c="gray", alpha=1)
Build a point ``Actor`` for a list of points. :param float r: point radius. :param c: color name, number, or list of [R,G,B] colors of same length as plist. :type c: int, str, list :param float alpha: transparency in range [0,1]. .. hint:: |lorenz| |lorenz.py|_
2.431367
2.395094
1.015145
cmap = None # user passing a color map to map orientationArray sizes if c in list(colors._mapscales.keys()): cmap = c c = None # user is passing an array of point colors if utils.isSequence(c) and len(c) > 3: ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("glyphRGB") for col in c: cl = colors.getColor(col) ucols.InsertNextTuple3(cl[0]*255, cl[1]*255, cl[2]*255) actor.polydata().GetPointData().SetScalars(ucols) c = None if isinstance(glyphObj, Actor): glyphObj = glyphObj.clean().polydata() gly = vtk.vtkGlyph3D() gly.SetInputData(actor.polydata()) gly.SetSourceData(glyphObj) gly.SetColorModeToColorByScalar() if orientationArray != "": gly.OrientOn() gly.SetScaleFactor(1) if scaleByVectorSize: gly.SetScaleModeToScaleByVector() else: gly.SetScaleModeToDataScalingOff() if orientationArray == "normals" or orientationArray == "Normals": gly.SetVectorModeToUseNormal() elif isinstance(orientationArray, vtk.vtkAbstractArray): actor.GetMapper().GetInput().GetPointData().AddArray(orientationArray) actor.GetMapper().GetInput().GetPointData().SetActiveVectors("glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") gly.SetVectorModeToUseVector() elif utils.isSequence(orientationArray): # passing a list actor.addPointVectors(orientationArray, "glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") else: # passing a name gly.SetInputArrayToProcess(0, 0, 0, 0, orientationArray) gly.SetVectorModeToUseVector() if cmap: gly.SetColorModeToColorByVector () else: gly.SetColorModeToColorByScalar () gly.Update() pd = gly.GetOutput() actor = Actor(pd, c, alpha) if cmap: lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(512) lut.Build() for i in range(512): r, g, b = colors.colorMap(i, cmap, 0, 512) lut.SetTableValue(i, r, g, b, 1) actor.mapper.SetLookupTable(lut) actor.mapper.ScalarVisibilityOn() actor.mapper.SetScalarModeToUsePointData() rng = pd.GetPointData().GetScalars().GetRange() actor.mapper.SetScalarRange(rng[0], rng[1]) actor.GetProperty().SetInterpolationToFlat() settings.collectable_actors.append(actor) return actor
def Glyph(actor, glyphObj, orientationArray="", scaleByVectorSize=False, c=None, alpha=1)
At each vertex of a mesh, another mesh - a `'glyph'` - is shown with various orientation options and coloring. Color can be specfied as a colormap which maps the size of the orientation vectors in `orientationArray`. :param orientationArray: list of vectors, ``vtkAbstractArray`` or the name of an already existing points array. :type orientationArray: list, str, vtkAbstractArray :param bool scaleByVectorSize: glyph mesh is scaled by the size of the vectors. .. hint:: |glyphs| |glyphs.py|_ |glyphs_arrow| |glyphs_arrow.py|_
2.508747
2.50449
1.001699
# detect if user is passing a 2D ist of points as p0=xlist, p1=ylist: if len(p0) > 3: if not utils.isSequence(p0[0]) and not utils.isSequence(p1[0]) and len(p0)==len(p1): # assume input is 2D xlist, ylist p0 = list(zip(p0, p1)) p1 = None # detect if user is passing a list of points: if utils.isSequence(p0[0]): ppoints = vtk.vtkPoints() # Generate the polyline dim = len((p0[0])) if dim == 2: for i, p in enumerate(p0): ppoints.InsertPoint(i, p[0], p[1], 0) else: ppoints.SetData(numpy_to_vtk(p0, deep=True)) lines = vtk.vtkCellArray() # Create the polyline. lines.InsertNextCell(len(p0)) for i in range(len(p0)): lines.InsertCellPoint(i) poly = vtk.vtkPolyData() poly.SetPoints(ppoints) poly.SetLines(lines) else: # or just 2 points to link lineSource = vtk.vtkLineSource() lineSource.SetPoint1(p0) lineSource.SetPoint2(p1) lineSource.Update() poly = lineSource.GetOutput() actor = Actor(poly, c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) actor.base = np.array(p0) actor.top = np.array(p1) settings.collectable_actors.append(actor) return actor
def Line(p0, p1=None, lw=1, c="r", alpha=1, dotted=False)
Build the line segment between points `p0` and `p1`. If `p0` is a list of points returns the line connecting them. A 2D set of coords can also be passed as p0=[x..], p1=[y..]. :param lw: line width. :param c: color name, number, or list of [R,G,B] colors. :type c: int, str, list :param float alpha: transparency in range [0,1]. :param bool dotted: draw a dotted line
2.689538
2.673389
1.00604
if endPoints is not None: startPoints = list(zip(startPoints, endPoints)) polylns = vtk.vtkAppendPolyData() for twopts in startPoints: lineSource = vtk.vtkLineSource() lineSource.SetPoint1(twopts[0]) if scale != 1: vers = (np.array(twopts[1]) - twopts[0]) * scale pt2 = np.array(twopts[0]) + vers else: pt2 = twopts[1] lineSource.SetPoint2(pt2) polylns.AddInputConnection(lineSource.GetOutputPort()) polylns.Update() actor = Actor(polylns.GetOutput(), c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) settings.collectable_actors.append(actor) return actor
def Lines(startPoints, endPoints=None, scale=1, lw=1, c=None, alpha=1, dotted=False)
Build the line segments between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. :param float scale: apply a rescaling factor to the length |lines| .. hint:: |fitspheres2.py|_
2.68668
2.814734
0.954506
ppoints = vtk.vtkPoints() # Generate the polyline ppoints.SetData(numpy_to_vtk(points, deep=True)) lines = vtk.vtkCellArray() lines.InsertNextCell(len(points)) for i in range(len(points)): lines.InsertCellPoint(i) polyln = vtk.vtkPolyData() polyln.SetPoints(ppoints) polyln.SetLines(lines) tuf = vtk.vtkTubeFilter() tuf.CappingOn() tuf.SetNumberOfSides(res) tuf.SetInputData(polyln) if utils.isSequence(r): arr = numpy_to_vtk(np.ascontiguousarray(r), deep=True) arr.SetName("TubeRadius") polyln.GetPointData().AddArray(arr) polyln.GetPointData().SetActiveScalars("TubeRadius") tuf.SetVaryRadiusToVaryRadiusByAbsoluteScalar() else: tuf.SetRadius(r) usingColScals = False if utils.isSequence(c) and len(c) != 3: usingColScals = True cc = vtk.vtkUnsignedCharArray() cc.SetName("TubeColors") cc.SetNumberOfComponents(3) cc.SetNumberOfTuples(len(c)) for i, ic in enumerate(c): r, g, b = colors.getColor(ic) cc.InsertTuple3(i, int(255 * r), int(255 * g), int(255 * b)) polyln.GetPointData().AddArray(cc) c = None tuf.Update() polytu = tuf.GetOutput() actor = Actor(polytu, c=c, alpha=alpha, computeNormals=0) actor.phong() if usingColScals: actor.mapper.SetScalarModeToUsePointFieldData() actor.mapper.ScalarVisibilityOn() actor.mapper.SelectColorArray("TubeColors") actor.mapper.Modified() actor.base = np.array(points[0]) actor.top = np.array(points[-1]) settings.collectable_actors.append(actor) return actor
def Tube(points, r=1, c="r", alpha=1, res=12)
Build a tube along the line defined by a set of points. :param r: constant radius or list of radii. :type r: float, list :param c: constant color or list of colors for each point. :type c: float, list .. hint:: |ribbon| |ribbon.py|_ |tube| |tube.py|_
2.359808
2.454078
0.961586
if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() ppoints1 = vtk.vtkPoints() # Generate the polyline1 ppoints1.SetData(numpy_to_vtk(line1, deep=True)) lines1 = vtk.vtkCellArray() lines1.InsertNextCell(len(line1)) for i in range(len(line1)): lines1.InsertCellPoint(i) poly1 = vtk.vtkPolyData() poly1.SetPoints(ppoints1) poly1.SetLines(lines1) ppoints2 = vtk.vtkPoints() # Generate the polyline2 ppoints2.SetData(numpy_to_vtk(line2, deep=True)) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(len(line2)) for i in range(len(line2)): lines2.InsertCellPoint(i) poly2 = vtk.vtkPolyData() poly2.SetPoints(ppoints2) poly2.SetLines(lines2) # build the lines lines1 = vtk.vtkCellArray() lines1.InsertNextCell(poly1.GetNumberOfPoints()) for i in range(poly1.GetNumberOfPoints()): lines1.InsertCellPoint(i) polygon1 = vtk.vtkPolyData() polygon1.SetPoints(ppoints1) polygon1.SetLines(lines1) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(poly2.GetNumberOfPoints()) for i in range(poly2.GetNumberOfPoints()): lines2.InsertCellPoint(i) polygon2 = vtk.vtkPolyData() polygon2.SetPoints(ppoints2) polygon2.SetLines(lines2) mergedPolyData = vtk.vtkAppendPolyData() mergedPolyData.AddInputData(polygon1) mergedPolyData.AddInputData(polygon2) mergedPolyData.Update() rsf = vtk.vtkRuledSurfaceFilter() rsf.CloseSurfaceOff() rsf.SetRuledModeToResample() rsf.SetResolution(res[0], res[1]) rsf.SetInputData(mergedPolyData.GetOutput()) rsf.Update() actor = Actor(rsf.GetOutput(), c=c, alpha=alpha) settings.collectable_actors.append(actor) return actor
def Ribbon(line1, line2, c="m", alpha=1, res=(200, 5))
Connect two lines to generate the surface inbetween. .. hint:: |ribbon| |ribbon.py|_
1.620631
1.63069
0.993831
if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() sm1, sm2 = np.array(line1[-1]), np.array(line2[-1]) v = (sm1-sm2)/3*tipWidth p1 = sm1+v p2 = sm2-v pm1 = (sm1+sm2)/2 pm2 = (np.array(line1[-2])+np.array(line2[-2]))/2 pm12 = pm1-pm2 tip = pm12/np.linalg.norm(pm12)*np.linalg.norm(v)*3*tipSize/tipWidth + pm1 line1.append(p1) line1.append(tip) line2.append(p2) line2.append(tip) resm = max(100, len(line1)) actor = Ribbon(line1, line2, alpha=alpha, c=c, res=(resm, 1)).phong() settings.collectable_actors.pop() settings.collectable_actors.append(actor) return actor
def FlatArrow(line1, line2, c="m", alpha=1, tipSize=1, tipWidth=1)
Build a 2D arrow in 3D space by joining two close lines. .. hint:: |flatarrow| |flatarrow.py|_
3.375246
3.487056
0.967936
axis = np.array(endPoint) - np.array(startPoint) length = np.linalg.norm(axis) if length: axis = axis / length theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) arr = vtk.vtkArrowSource() arr.SetShaftResolution(res) arr.SetTipResolution(res) if s: sz = 0.02 arr.SetTipRadius(sz) arr.SetShaftRadius(sz / 1.75) arr.SetTipLength(sz * 15) arr.Update() t = vtk.vtkTransform() t.RotateZ(phi * 57.3) t.RotateY(theta * 57.3) t.RotateY(-90) # put it along Z if s: sz = 800.0 * s t.Scale(length, sz, sz) else: t.Scale(length, length, length) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(arr.GetOutput()) tf.SetTransform(t) tf.Update() actor = Actor(tf.GetOutput(), c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(startPoint) actor.DragableOff() actor.PickableOff() actor.base = np.array(startPoint) actor.top = np.array(endPoint) settings.collectable_actors.append(actor) return actor
def Arrow(startPoint, endPoint, s=None, c="r", alpha=1, res=12)
Build a 3D arrow from `startPoint` to `endPoint` of section size `s`, expressed as the fraction of the window size. .. note:: If ``s=None`` the arrow is scaled proportionally to its length, otherwise it represents the fraction of the window size. |OrientedArrow|
2.513486
2.572157
0.97719
startPoints = np.array(startPoints) if endPoints is None: strt = startPoints[:,0] endPoints = startPoints[:,1] startPoints = strt arr = vtk.vtkArrowSource() arr.SetShaftResolution(res) arr.SetTipResolution(res) if s: sz = 0.02 * s arr.SetTipRadius(sz*2) arr.SetShaftRadius(sz) arr.SetTipLength(sz * 10) arr.Update() pts = Points(startPoints) orients = (endPoints - startPoints) * scale arrg = Glyph(pts, arr.GetOutput(), orientationArray=orients, scaleByVectorSize=True, c=c, alpha=alpha) settings.collectable_actors.append(arrg) return arrg
def Arrows(startPoints, endPoints=None, s=None, scale=1, c="r", alpha=1, res=12)
Build arrows between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. Color can be specfied as a colormap which maps the size of the arrows. :param float s: fix aspect-ratio of the arrow and scale its cross section :param float scale: apply a rescaling factor to the length :param c: color or array of colors :param str cmap: color arrows by size using this color map :param float alpha: set transparency :param int res: set arrow resolution .. hint:: |glyphs_arrow| |glyphs_arrow.py|_
3.773953
4.206166
0.897243
ps = vtk.vtkRegularPolygonSource() ps.SetNumberOfSides(nsides) ps.SetRadius(r) ps.SetNormal(-np.array(normal)) ps.Update() tf = vtk.vtkTriangleFilter() tf.SetInputConnection(ps.GetOutputPort()) tf.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(tf.GetOutputPort()) if followcam: actor = vtk.vtkFollower() if isinstance(followcam, vtk.vtkCamera): actor.SetCamera(followcam) else: actor.SetCamera(settings.plotter_instance.camera) else: actor = Actor() actor.SetMapper(mapper) actor.GetProperty().SetColor(colors.getColor(c)) actor.GetProperty().SetOpacity(alpha) actor.GetProperty().SetLineWidth(lw) actor.GetProperty().SetInterpolationToFlat() if bc: # defines a specific color for the backface backProp = vtk.vtkProperty() backProp.SetDiffuseColor(colors.getColor(bc)) backProp.SetOpacity(alpha) actor.SetBackfaceProperty(backProp) actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Polygon(pos=(0, 0, 0), normal=(0, 0, 1), nsides=6, r=1, c="coral", bc="darkgreen", lw=1, alpha=1, followcam=False)
Build a 2D polygon of `nsides` of radius `r` oriented as `normal`. :param followcam: if `True` the text will auto-orient itself to the active camera. A ``vtkCamera`` object can also be passed. :type followcam: bool, vtkCamera |Polygon|
2.232606
2.27221
0.98257
p1 = np.array(p1) p2 = np.array(p2) pos = (p1 + p2) / 2 length = abs(p2[0] - p1[0]) height = abs(p2[1] - p1[1]) return Plane(pos, [0, 0, -1], length, height, c, bc, alpha, texture)
def Rectangle(p1=(0, 0, 0), p2=(2, 1, 0), c="k", bc="dg", lw=1, alpha=1, texture=None)
Build a rectangle in the xy plane identified by two corner points.
2.141936
2.060194
1.039677
ps = vtk.vtkDiskSource() ps.SetInnerRadius(r1) ps.SetOuterRadius(r2) ps.SetRadialResolution(res) if not resphi: resphi = 6 * res ps.SetCircumferentialResolution(resphi) ps.Update() axis = np.array(normal) / np.linalg.norm(normal) theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(ps.GetOutput()) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(pd) actor = Actor() # vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(colors.getColor(c)) actor.GetProperty().SetOpacity(alpha) actor.GetProperty().SetLineWidth(lw) actor.GetProperty().SetInterpolationToFlat() if bc: # defines a specific color for the backface backProp = vtk.vtkProperty() backProp.SetDiffuseColor(colors.getColor(bc)) backProp.SetOpacity(alpha) actor.SetBackfaceProperty(backProp) actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Disc( pos=(0, 0, 0), normal=(0, 0, 1), r1=0.5, r2=1, c="coral", bc="darkgreen", lw=1, alpha=1, res=12, resphi=None, )
Build a 2D disc of internal radius `r1` and outer radius `r2`, oriented perpendicular to `normal`. |Disk|
2.234048
2.248658
0.993503
ss = vtk.vtkSphereSource() ss.SetRadius(r) ss.SetThetaResolution(2 * res) ss.SetPhiResolution(res) ss.Update() pd = ss.GetOutput() actor = Actor(pd, c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Sphere(pos=(0, 0, 0), r=1, c="r", alpha=1, res=24)
Build a sphere at position `pos` of radius `r`. |Sphere|
2.8249
3.126638
0.903495
cisseq = False if utils.isSequence(c): cisseq = True if cisseq: if len(centers) > len(c): colors.printc("~times Mismatch in Spheres() colors", len(centers), len(c), c=1) exit() if len(centers) != len(c): colors.printc("~lightningWarning: mismatch in Spheres() colors", len(centers), len(c)) risseq = False if utils.isSequence(r): risseq = True if risseq: if len(centers) > len(r): colors.printc("times Mismatch in Spheres() radius", len(centers), len(r), c=1) exit() if len(centers) != len(r): colors.printc("~lightning Warning: mismatch in Spheres() radius", len(centers), len(r)) if cisseq and risseq: colors.printc("~noentry Limitation: c and r cannot be both sequences.", c=1) exit() src = vtk.vtkSphereSource() if not risseq: src.SetRadius(r) src.SetPhiResolution(res) src.SetThetaResolution(2 * res) src.Update() psrc = vtk.vtkPointSource() psrc.SetNumberOfPoints(len(centers)) psrc.Update() pd = psrc.GetOutput() vpts = pd.GetPoints() glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(src.GetOutputPort()) if cisseq: glyph.SetColorModeToColorByScalar() ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("colors") for i, p in enumerate(centers): vpts.SetPoint(i, p) cx, cy, cz = colors.getColor(c[i]) ucols.InsertNextTuple3(cx * 255, cy * 255, cz * 255) pd.GetPointData().SetScalars(ucols) glyph.ScalingOff() elif risseq: glyph.SetScaleModeToScaleByScalar() urads = vtk.vtkFloatArray() urads.SetName("scales") for i, p in enumerate(centers): vpts.SetPoint(i, p) urads.InsertNextValue(r[i]) pd.GetPointData().SetScalars(urads) else: for i, p in enumerate(centers): vpts.SetPoint(i, p) glyph.SetInputData(pd) glyph.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(glyph.GetOutput()) actor = Actor() actor.SetMapper(mapper) actor.GetProperty().SetInterpolationToPhong() actor.GetProperty().SetOpacity(alpha) if cisseq: mapper.ScalarVisibilityOn() else: mapper.ScalarVisibilityOff() actor.GetProperty().SetColor(colors.getColor(c)) settings.collectable_actors.append(actor) return actor
def Spheres(centers, r=1, c="r", alpha=1, res=8)
Build a (possibly large) set of spheres at `centers` of radius `r`. Either `c` or `r` can be a list of RGB colors or radii. .. hint:: |manyspheres| |manyspheres.py|_
2.261144
2.228167
1.0148
import os tss = vtk.vtkTexturedSphereSource() tss.SetRadius(r) tss.SetThetaResolution(72) tss.SetPhiResolution(36) earthMapper = vtk.vtkPolyDataMapper() earthMapper.SetInputConnection(tss.GetOutputPort()) earthActor = Actor(c="w") earthActor.SetMapper(earthMapper) atext = vtk.vtkTexture() pnmReader = vtk.vtkPNMReader() cdir = os.path.dirname(__file__) if cdir == "": cdir = "." fn = settings.textures_path + "earth.ppm" pnmReader.SetFileName(fn) atext.SetInputConnection(pnmReader.GetOutputPort()) atext.InterpolateOn() earthActor.SetTexture(atext) if not lw: earthActor.SetPosition(pos) return earthActor es = vtk.vtkEarthSource() es.SetRadius(r / 0.995) earth2Mapper = vtk.vtkPolyDataMapper() earth2Mapper.SetInputConnection(es.GetOutputPort()) earth2Actor = Actor() # vtk.vtkActor() earth2Actor.SetMapper(earth2Mapper) earth2Mapper.ScalarVisibilityOff() earth2Actor.GetProperty().SetLineWidth(lw) ass = Assembly([earthActor, earth2Actor]) ass.SetPosition(pos) settings.collectable_actors.append(ass) return ass
def Earth(pos=(0, 0, 0), r=1, lw=1)
Build a textured actor representing the Earth. .. hint:: |geodesic| |geodesic.py|_
2.683356
2.676399
1.002599
elliSource = vtk.vtkSphereSource() elliSource.SetThetaResolution(res) elliSource.SetPhiResolution(res) elliSource.Update() l1 = np.linalg.norm(axis1) l2 = np.linalg.norm(axis2) l3 = np.linalg.norm(axis3) axis1 = np.array(axis1) / l1 axis2 = np.array(axis2) / l2 axis3 = np.array(axis3) / l3 angle = np.arcsin(np.dot(axis1, axis2)) theta = np.arccos(axis3[2]) phi = np.arctan2(axis3[1], axis3[0]) t = vtk.vtkTransform() t.PostMultiply() t.Scale(l1, l2, l3) t.RotateX(angle * 57.3) t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(elliSource.GetOutput()) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c=c, alpha=alpha) actor.GetProperty().BackfaceCullingOn() actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(pos) actor.base = -np.array(axis1) / 2 + pos actor.top = np.array(axis1) / 2 + pos settings.collectable_actors.append(actor) return actor
def Ellipsoid(pos=(0, 0, 0), axis1=(1, 0, 0), axis2=(0, 2, 0), axis3=(0, 0, 3), c="c", alpha=1, res=24)
Build a 3D ellipsoid centered at position `pos`. .. note:: `axis1` and `axis2` are only used to define sizes and one azimuth angle. |projectsphere|
1.960287
2.004439
0.977973
ps = vtk.vtkPlaneSource() ps.SetResolution(resx, resy) ps.Update() poly0 = ps.GetOutput() t0 = vtk.vtkTransform() t0.Scale(sx, sy, 1) tf0 = vtk.vtkTransformPolyDataFilter() tf0.SetInputData(poly0) tf0.SetTransform(t0) tf0.Update() poly = tf0.GetOutput() axis = np.array(normal) / np.linalg.norm(normal) theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(poly) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c=c, bc=bc, alpha=alpha) actor.GetProperty().SetRepresentationToWireframe() actor.GetProperty().SetLineWidth(lw) actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Grid( pos=(0, 0, 0), normal=(0, 0, 1), sx=1, sy=1, c="g", bc="darkgreen", lw=1, alpha=1, resx=10, resy=10, )
Return a grid plane. .. hint:: |brownian2D| |brownian2D.py|_
1.998805
2.048587
0.9757
if sy is None: sy = sx ps = vtk.vtkPlaneSource() ps.SetResolution(1, 1) tri = vtk.vtkTriangleFilter() tri.SetInputConnection(ps.GetOutputPort()) tri.Update() poly = tri.GetOutput() axis = np.array(normal) / np.linalg.norm(normal) theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.Scale(sx, sy, 1) t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(poly) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c=c, bc=bc, alpha=alpha, texture=texture) actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Plane(pos=(0, 0, 0), normal=(0, 0, 1), sx=1, sy=None, c="g", bc="darkgreen", alpha=1, texture=None)
Draw a plane of size `sx` and `sy` oriented perpendicular to vector `normal` and so that it passes through point `pos`. |Plane|
2.036326
2.100487
0.969454
src = vtk.vtkCubeSource() src.SetXLength(length) src.SetYLength(width) src.SetZLength(height) src.Update() poly = src.GetOutput() axis = np.array(normal) / np.linalg.norm(normal) theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(poly) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c, alpha, texture=texture) actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Box(pos=(0, 0, 0), length=1, width=2, height=3, normal=(0, 0, 1), c="g", alpha=1, texture=None)
Build a box of dimensions `x=length, y=width and z=height` oriented along vector `normal`. .. hint:: |aspring| |aspring.py|_
2.110721
2.26507
0.931857
return Box(pos, side, side, side, normal, c, alpha, texture)
def Cube(pos=(0, 0, 0), side=1, normal=(0, 0, 1), c="g", alpha=1, texture=None)
Build a cube of size `side` oriented along vector `normal`. .. hint:: |colorcubes| |colorcubes.py|_
3.710321
7.531728
0.492625
diff = endPoint - np.array(startPoint) length = np.linalg.norm(diff) if not length: return None if not r: r = length / 20 trange = np.linspace(0, length, num=50 * coils) om = 6.283 * (coils - 0.5) / length if not r2: r2 = r pts = [] for t in trange: f = (length - t) / length rd = r * f + r2 * (1 - f) pts.append([rd * np.cos(om * t), rd * np.sin(om * t), t]) pts = [[0, 0, 0]] + pts + [[0, 0, length]] diff = diff / length theta = np.arccos(diff[2]) phi = np.arctan2(diff[1], diff[0]) sp = Line(pts).polydata(False) t = vtk.vtkTransform() t.RotateZ(phi * 57.3) t.RotateY(theta * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(sp) tf.SetTransform(t) tf.Update() tuf = vtk.vtkTubeFilter() tuf.SetNumberOfSides(12) tuf.CappingOn() tuf.SetInputData(tf.GetOutput()) if not thickness: thickness = r / 10 tuf.SetRadius(thickness) tuf.Update() poly = tuf.GetOutput() actor = Actor(poly, c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(startPoint) actor.base = np.array(startPoint) actor.top = np.array(endPoint) settings.collectable_actors.append(actor) return actor
def Spring( startPoint=(0, 0, 0), endPoint=(1, 0, 0), coils=20, r=0.1, r2=None, thickness=None, c="grey", alpha=1, )
Build a spring of specified nr of `coils` between `startPoint` and `endPoint`. :param int coils: number of coils :param float r: radius at start point :param float r2: radius at end point :param float thickness: thickness of the coil section .. hint:: |aspring| |aspring.py|_
2.591514
2.686839
0.964522
if utils.isSequence(pos[0]): # assume user is passing pos=[base, top] base = np.array(pos[0]) top = np.array(pos[1]) pos = (base + top) / 2 height = np.linalg.norm(top - base) axis = top - base axis = utils.versor(axis) else: axis = utils.versor(axis) base = pos - axis * height / 2 top = pos + axis * height / 2 cyl = vtk.vtkCylinderSource() cyl.SetResolution(res) cyl.SetRadius(r) cyl.SetHeight(height) cyl.Update() theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateX(90) # put it along Z t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(cyl.GetOutput()) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(pos) actor.base = base + pos actor.top = top + pos settings.collectable_actors.append(actor) return actor
def Cylinder(pos=(0, 0, 0), r=1, height=1, axis=(0, 0, 1), c="teal", alpha=1, res=24)
Build a cylinder of specified height and radius `r`, centered at `pos`. If `pos` is a list of 2 Points, e.g. `pos=[v1,v2]`, build a cylinder with base centered at `v1` and top at `v2`. |Cylinder|
2.426431
2.417355
1.003755
con = vtk.vtkConeSource() con.SetResolution(res) con.SetRadius(r) con.SetHeight(height) con.SetDirection(axis) con.Update() actor = Actor(con.GetOutput(), c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(pos) v = utils.versor(axis) * height / 2 actor.base = pos - v actor.top = pos + v settings.collectable_actors.append(actor) return actor
def Cone(pos=(0, 0, 0), r=1, height=3, axis=(0, 0, 1), c="dg", alpha=1, res=48)
Build a cone of specified radius `r` and `height`, centered at `pos`. |Cone|
3.120995
3.313662
0.941857
return Cone(pos, s, height, axis, c, alpha, 4)
def Pyramid(pos=(0, 0, 0), s=1, height=1, axis=(0, 0, 1), c="dg", alpha=1)
Build a pyramid of specified base size `s` and `height`, centered at `pos`.
4.886455
5.352684
0.912898
rs = vtk.vtkParametricTorus() rs.SetRingRadius(r) rs.SetCrossSectionRadius(thickness) pfs = vtk.vtkParametricFunctionSource() pfs.SetParametricFunction(rs) pfs.SetUResolution(res * 3) pfs.SetVResolution(res) pfs.Update() nax = np.linalg.norm(axis) if nax: axis = np.array(axis) / nax theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(pfs.GetOutput()) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Torus(pos=(0, 0, 0), r=1, thickness=0.1, axis=(0, 0, 1), c="khaki", alpha=1, res=30)
Build a torus of specified outer radius `r` internal radius `thickness`, centered at `pos`. .. hint:: |gas| |gas.py|_
2.340227
2.510956
0.932006
quadric = vtk.vtkQuadric() quadric.SetCoefficients(1, 1, 0, 0, 0, 0, 0, 0, height / 4, 0) # F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 # + a3*x*y + a4*y*z + a5*x*z # + a6*x + a7*y + a8*z +a9 sample = vtk.vtkSampleFunction() sample.SetSampleDimensions(res, res, res) sample.SetImplicitFunction(quadric) contours = vtk.vtkContourFilter() contours.SetInputConnection(sample.GetOutputPort()) contours.GenerateValues(1, 0.01, 0.01) contours.Update() axis = np.array(axis) / np.linalg.norm(axis) theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.PostMultiply() t.RotateY(theta * 57.3) t.RotateZ(phi * 57.3) t.Scale(r, r, r) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(contours.GetOutput()) tf.SetTransform(t) tf.Update() pd = tf.GetOutput() actor = Actor(pd, c, alpha).flipNormals() actor.GetProperty().SetInterpolationToPhong() actor.mapper.ScalarVisibilityOff() actor.SetPosition(pos) settings.collectable_actors.append(actor) return actor
def Paraboloid(pos=(0, 0, 0), r=1, height=1, axis=(0, 0, 1), c="cyan", alpha=1, res=50)
Build a paraboloid of specified height and radius `r`, centered at `pos`. .. note:: Full volumetric expression is: :math:`F(x,y,z)=a_0x^2+a_1y^2+a_2z^2+a_3xy+a_4yz+a_5xz+ a_6x+a_7y+a_8z+a_9` |paraboloid|
2.203453
2.166626
1.016997
try: #def _Latex(formula, pos, normal, c, s, bg, alpha, res, usetex, fromweb): def build_img_web(formula, tfile): import requests if c == 'k': ct = 'Black' else: ct = 'White' wsite = 'http://latex.codecogs.com/png.latex' try: r = requests.get(wsite+'?\dpi{100} \huge \color{'+ct+'} ' + formula) f = open(tfile, 'wb') f.write(r.content) f.close() except requests.exceptions.ConnectionError: colors.printc('Latex error. Web site unavailable?', wsite, c=1) return None def build_img_plt(formula, tfile): import matplotlib.pyplot as plt plt.rc('text', usetex=usetex) formula1 = '$'+formula+'$' plt.axis('off') col = colors.getColor(c) if bg: bx = dict(boxstyle="square", ec=col, fc=colors.getColor(bg)) else: bx = None plt.text(0.5, 0.5, formula1, size=res, color=col, alpha=alpha, ha="center", va="center", bbox=bx) plt.savefig('_lateximg.png', format='png', transparent=True, bbox_inches='tight', pad_inches=0) plt.close() if fromweb: build_img_web(formula, '_lateximg.png') else: build_img_plt(formula, '_lateximg.png') from vtkplotter.actors import ImageActor picr = vtk.vtkPNGReader() picr.SetFileName('_lateximg.png') picr.Update() vactor = ImageActor() vactor.SetInputData(picr.GetOutput()) vactor.alpha(alpha) b = vactor.GetBounds() xm, ym = (b[1]+b[0])/200*s, (b[3]+b[2])/200*s vactor.SetOrigin(-xm, -ym, 0) nax = np.linalg.norm(normal) if nax: normal = np.array(normal) / nax theta = np.arccos(normal[2]) phi = np.arctan2(normal[1], normal[0]) vactor.SetScale(0.25/res*s, 0.25/res*s, 0.25/res*s) vactor.RotateZ(phi * 57.3) vactor.RotateY(theta * 57.3) vactor.SetPosition(pos) try: import os os.unlink('_lateximg.png') except FileNotFoundError: pass return vactor except: colors.printc('Error in Latex()\n', formula, c=1) colors.printc(' latex or dvipng not installed?', c=1) colors.printc(' Try: usetex=False' , c=1) colors.printc(' Try: sudo apt install dvipng' , c=1) return None
def Latex( formula, pos=(0, 0, 0), normal=(0, 0, 1), c='k', s=1, bg=None, alpha=1, res=30, usetex=False, fromweb=False, )
Render Latex formulas. :param str formula: latex text string :param list pos: position coordinates in space :param list normal: normal to the plane of the image :param c: face color :param bg: background color box :param int res: dpi resolution :param bool usetex: use latex compiler of matplotlib :param fromweb: retrieve the latex image from online server (codecogs) .. hint:: |latex| |latex.py|_
3.002076
3.070008
0.977873
#recursion, return a list if input is list of colors: if _isSequence(rgb) and len(rgb) > 3: seqcol = [] for sc in rgb: seqcol.append(getColor(sc)) return seqcol if str(rgb).isdigit(): rgb = int(rgb) if hsv: c = hsv2rgb(hsv) else: c = rgb if _isSequence(c): if c[0] <= 1 and c[1] <= 1 and c[2] <= 1: return c # already rgb else: if len(c) == 3: return list(np.array(c) / 255.0) # RGB else: return (c[0] / 255.0, c[1] / 255.0, c[2] / 255.0, c[3]) # RGBA elif isinstance(c, str): # is string c = c.replace(",", " ").replace("/", " ").replace("alpha=", "") c = c.replace("grey", "gray") c = c.split()[0] # ignore possible opacity float inside string if 0 < len(c) < 3: # single/double letter color if c.lower() in color_nicks.keys(): c = color_nicks[c.lower()] else: print("Unknow color nickname:", c) print("Available abbreviations:", color_nicks) return (0.5, 0.5, 0.5) if c.lower() in colors.keys(): # matplotlib name color c = colors[c.lower()] else: # vtk name color namedColors = vtk.vtkNamedColors() rgba = [0, 0, 0, 0] namedColors.GetColor(c, rgba) return list(np.array(rgba[0:3]) / 255.0) if "#" in c: # hex to rgb h = c.lstrip("#") rgb255 = list(int(h[i : i + 2], 16) for i in (0, 2, 4)) rgbh = np.array(rgb255) / 255.0 if np.sum(rgbh) > 3: print("Error in getColor(): Wrong hex color", c) return (0.5, 0.5, 0.5) return tuple(rgbh) elif isinstance(c, int): # color number if c >= 0: return colors1[c % 10] else: return colors2[-c % 10] elif isinstance(c, float): if c >= 0: return colors1[int(c) % 10] else: return colors2[int(-c) % 10] #print("Unknown color:", c) return (0.5, 0.5, 0.5)
def getColor(rgb=None, hsv=None)
Convert a color or list of colors to (r,g,b) format from many input formats. :param bool hsv: if set to `True`, rgb is assumed as (hue, saturation, value). Example: - RGB = (255, 255, 255), corresponds to white - rgb = (1,1,1) is white - hex = #FFFF00 is yellow - string = 'white' - string = 'w' is white nickname - string = 'dr' is darkred - int = 7 picks color nr. 7 in a predefined color list - int = -7 picks color nr. 7 in a different predefined list .. hint:: |colorcubes| |colorcubes.py|_
2.705515
2.725967
0.992498
c = np.array(getColor(c)) # reformat to rgb mdist = 99.0 kclosest = "" for key in colors.keys(): ci = np.array(getColor(key)) d = np.linalg.norm(c - ci) if d < mdist: mdist = d kclosest = str(key) return kclosest
def getColorName(c)
Find the name of a color. .. hint:: |colorpalette| |colorpalette.py|_
3.936952
4.409743
0.892785
if not _mapscales: print("-------------------------------------------------------------------") print("WARNING : cannot import matplotlib.cm (colormaps will show up gray).") print("Try e.g.: sudo apt-get install python3-matplotlib") print(" or : pip install matplotlib") print(" or : build your own map (see example in basic/mesh_custom.py).") return (0.5, 0.5, 0.5) if isinstance(name, matplotlib.colors.LinearSegmentedColormap): mp = name else: if name in _mapscales.keys(): mp = _mapscales[name] else: print("Error in colorMap():", name, "\navaliable maps =", sorted(_mapscales.keys())) exit(0) if _isSequence(value): values = np.array(value) if vmin is None: vmin = np.min(values) if vmax is None: vmax = np.max(values) values = np.clip(values, vmin, vmax) values -= vmin values /= vmax - vmin cols = [] mp = _mapscales[name] for v in values: cols.append(mp(v)[0:3]) return np.array(cols) else: value -= vmin value /= vmax - vmin if value > 0.999: value = 0.999 elif value < 0: value = 0 return mp(value)[0:3]
def colorMap(value, name="jet", vmin=None, vmax=None)
Map a real value in range [vmin, vmax] to a (r,g,b) color scale. :param value: scalar value to transform into a color :type value: float, list :param name: color map name :type name: str, matplotlib.colors.LinearSegmentedColormap :return: (r,g,b) color, or a list of (r,g,b) colors. .. note:: Available color maps: |colormaps| .. tip:: Can also use directly a matplotlib color map: :Example: .. code-block:: python from vtkplotter import colorMap import matplotlib.cm as cm print( colorMap(0.2, cm.flag, 0, 1) ) (1.0, 0.809016994374948, 0.6173258487801733)
3.347607
3.303293
1.013415
if hsv: color1 = rgb2hsv(color1) color2 = rgb2hsv(color2) c1 = np.array(getColor(color1)) c2 = np.array(getColor(color2)) cols = [] for f in np.linspace(0, 1, N - 1, endpoint=True): c = c1 * (1 - f) + c2 * f if hsv: c = np.array(hsv2rgb(c)) cols.append(c) return cols
def makePalette(color1, color2, N, hsv=True)
Generate N colors starting from `color1` to `color2` by linear interpolation HSV in or RGB spaces. :param int N: number of output colors. :param color1: first rgb color. :param color2: second rgb color. :param bool hsv: if `False`, interpolation is calculated in RGB space. .. hint:: Example: |colorpalette.py|_
2.008097
2.385837
0.841674
ctf = vtk.vtkColorTransferFunction() ctf.SetColorSpaceToDiverging() for sc in sclist: scalar, col = sc r, g, b = getColor(col) ctf.AddRGBPoint(scalar, r, g, b) if N is None: N = len(sclist) lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(N) lut.Build() for i in range(N): rgb = list(ctf.GetColor(float(i) / N)) + [1] lut.SetTableValue(i, rgb) return lut
def makeLUTfromCTF(sclist, N=None)
Use a Color Transfer Function to generate colors in a vtk lookup table. See `here <http://www.vtk.org/doc/nightly/html/classvtkColorTransferFunction.html>`_. :param list sclist: a list in the form ``[(scalar1, [r,g,b]), (scalar2, 'blue'), ...]``. :return: the lookup table object ``vtkLookupTable``. This can be fed into ``colorMap``.
2.041434
2.007012
1.017151
# range check if temperature < 1000: temperature = 1000 elif temperature > 40000: temperature = 40000 tmp_internal = temperature / 100.0 # red if tmp_internal <= 66: red = 255 else: tmp_red = 329.698727446 * np.power(tmp_internal - 60, -0.1332047592) if tmp_red < 0: red = 0 elif tmp_red > 255: red = 255 else: red = tmp_red # green if tmp_internal <= 66: tmp_green = 99.4708025861 * np.log(tmp_internal) - 161.1195681661 if tmp_green < 0: green = 0 elif tmp_green > 255: green = 255 else: green = tmp_green else: tmp_green = 288.1221695283 * np.power(tmp_internal - 60, -0.0755148492) if tmp_green < 0: green = 0 elif tmp_green > 255: green = 255 else: green = tmp_green # blue if tmp_internal >= 66: blue = 255 elif tmp_internal <= 19: blue = 0 else: tmp_blue = 138.5177312231 * np.log(tmp_internal - 10) - 305.0447927307 if tmp_blue < 0: blue = 0 elif tmp_blue > 255: blue = 255 else: blue = tmp_blue return [red / 255, green / 255, blue / 255]
def kelvin2rgb(temperature)
Converts from Kelvin temperature to an RGB color. Algorithm credits: |tannerhelland|_
1.268965
1.271431
0.99806
gf = vtk.vtkGeometryFilter() gf.SetInputData(obj) gf.Update() return gf.GetOutput()
def geometry(obj)
Apply ``vtkGeometryFilter``.
2.904174
2.449619
1.185562
from scipy.interpolate import splprep, splev Nout = len(points) * res # Number of points on the spline points = np.array(points) minx, miny, minz = np.min(points, axis=0) maxx, maxy, maxz = np.max(points, axis=0) maxb = max(maxx - minx, maxy - miny, maxz - minz) smooth *= maxb / 2 # must be in absolute units x, y, z = points[:, 0], points[:, 1], points[:, 2] tckp, _ = splprep([x, y, z], task=0, s=smooth, k=degree) # find the knots # evaluate spLine, including interpolated points: xnew, ynew, znew = splev(np.linspace(0, 1, Nout), tckp) ppoints = vtk.vtkPoints() # Generate the polyline for the spline profileData = vtk.vtkPolyData() ppoints.SetData(numpy_to_vtk(list(zip(xnew, ynew, znew)), deep=True)) lines = vtk.vtkCellArray() # Create the polyline lines.InsertNextCell(Nout) for i in range(Nout): lines.InsertCellPoint(i) profileData.SetPoints(ppoints) profileData.SetLines(lines) actline = Actor(profileData, c=c, alpha=alpha) actline.GetProperty().SetLineWidth(s) if nodes: actnodes = vs.Points(points, r=5, c=c, alpha=alpha) ass = Assembly([actline, actnodes]) return ass else: return actline
def spline(points, smooth=0.5, degree=2, s=2, c="b", alpha=1.0, nodes=False, res=20)
Return an ``Actor`` for a spline so that it does not necessarly pass exactly throught all points. :param float smooth: smoothing factor. 0 = interpolate points exactly. 1 = average point positions. :param int degree: degree of the spline (1<degree<5) :param bool nodes: if `True`, show also the input points. .. hint:: |tutorial_spline| |tutorial.py|_
2.838392
2.925744
0.970144
c = vc.getColor(c) # allow different codings array_x = vtk.vtkFloatArray() array_y = vtk.vtkFloatArray() array_x.SetNumberOfTuples(len(points)) array_y.SetNumberOfTuples(len(points)) for i, p in enumerate(points): array_x.InsertValue(i, p[0]) array_y.InsertValue(i, p[1]) field = vtk.vtkFieldData() field.AddArray(array_x) field.AddArray(array_y) data = vtk.vtkDataObject() data.SetFieldData(field) plot = vtk.vtkXYPlotActor() plot.AddDataObjectInput(data) plot.SetDataObjectXComponent(0, 0) plot.SetDataObjectYComponent(0, 1) plot.SetXValuesToValue() plot.SetXTitle(title) plot.SetYTitle("") plot.ExchangeAxesOff() plot.PlotPointsOn() if not lines: plot.PlotLinesOff() plot.GetProperty().SetPointSize(5) plot.GetProperty().SetLineWidth(2) plot.SetNumberOfXLabels(3) # not working plot.GetProperty().SetColor(0, 0, 0) plot.GetProperty().SetOpacity(0.7) plot.SetPlotColor(0, c[0], c[1], c[2]) tprop = plot.GetAxisLabelTextProperty() tprop.SetColor(0, 0, 0) tprop.SetOpacity(0.7) tprop.SetFontFamily(0) tprop.BoldOff() tprop.ItalicOff() tprop.ShadowOff() tprop.SetFontSize(3) # not working plot.SetAxisTitleTextProperty(tprop) plot.SetAxisLabelTextProperty(tprop) plot.SetTitleTextProperty(tprop) if corner == 1: plot.GetPositionCoordinate().SetValue(0.0, 0.8, 0) if corner == 2: plot.GetPositionCoordinate().SetValue(0.7, 0.8, 0) if corner == 3: plot.GetPositionCoordinate().SetValue(0.0, 0.0, 0) if corner == 4: plot.GetPositionCoordinate().SetValue(0.7, 0.0, 0) plot.GetPosition2Coordinate().SetValue(0.3, 0.2, 0) return plot
def xyplot(points, title="", c="b", corner=1, lines=False)
Return a ``vtkXYPlotActor`` that is a plot of `x` versus `y`, where `points` is a list of `(x,y)` points. :param int corner: assign position: - 1, topleft, - 2, topright, - 3, bottomleft, - 4, bottomright. .. hint:: Example: |fitspheres1.py|_
2.057113
2.056604
1.000247
fs, edges = np.histogram(values, bins=bins, range=vrange) pts = [] for i in range(len(fs)): pts.append([(edges[i] + edges[i + 1]) / 2, fs[i]]) return xyplot(pts, title, c, corner, lines)
def histogram(values, bins=10, vrange=None, title="", c="g", corner=1, lines=True)
Build a 2D histogram from a list of values in n bins. Use *vrange* to restrict the range of the histogram. Use *corner* to assign its position: - 1, topleft, - 2, topright, - 3, bottomleft, - 4, bottomright. .. hint:: Example: |fitplanes.py|_
2.780334
3.575773
0.777548
xmin, xmax = np.min(xvalues), np.max(xvalues) ymin, ymax = np.min(yvalues), np.max(yvalues) dx, dy = xmax - xmin, ymax - ymin if xmax - xmin < ymax - ymin: n = bins m = np.rint(dy / dx * n / 1.2 + 0.5).astype(int) else: m = bins n = np.rint(dx / dy * m * 1.2 + 0.5).astype(int) src = vtk.vtkPointSource() src.SetNumberOfPoints(len(xvalues)) src.Update() pointsPolydata = src.GetOutput() values = list(zip(xvalues, yvalues)) zs = [[0.0]] * len(values) values = np.append(values, zs, axis=1) pointsPolydata.GetPoints().SetData(numpy_to_vtk(values, deep=True)) cloud = Actor(pointsPolydata) c1 = vc.getColor(c) c2 = np.array(c1) * 0.7 r = 0.47 / n * 1.2 * dx hexs, binmax = [], 0 for i in range(n + 3): for j in range(m + 2): cyl = vtk.vtkCylinderSource() cyl.SetResolution(6) cyl.CappingOn() cyl.SetRadius(0.5) cyl.SetHeight(0.1) cyl.Update() t = vtk.vtkTransform() if not i % 2: p = (i / 1.33, j / 1.12, 0) c = c1 else: p = (i / 1.33, j / 1.12 + 0.443, 0) c = c2 q = (p[0] / n * 1.2 * dx + xmin, p[1] / m * dy + ymin, 0) ids = cloud.closestPoint(q, radius=r, returnIds=True) ne = len(ids) if fill: t.Translate(p[0], p[1], ne / 2) t.Scale(1, 1, ne * 5) else: t.Translate(p[0], p[1], ne) t.RotateX(90) # put it along Z tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(cyl.GetOutput()) tf.SetTransform(t) tf.Update() h = Actor(tf.GetOutput(), c=c, alpha=alpha) h.PickableOff() hexs.append(h) if ne > binmax: binmax = ne asse = Assembly(hexs) asse.SetScale(1 / n * 1.2 * dx, 1 / m * dy, norm / binmax * (dx + dy) / 4) asse.SetPosition(xmin, ymin, 0) return asse
def histogram2D(xvalues, yvalues, bins=12, norm=1, c="g", alpha=1, fill=False)
Build a 2D hexagonal histogram from a list of x and y values. :param bool bins: nr of bins for the smaller range in x or y. :param float norm: sets a scaling factor for the z axis. :param bool fill: draw solid hexagons. .. hint:: |histo2D| |histo2D.py|_
2.663569
2.673003
0.996471
pd = vtk.vtkPolyData() vpts = vtk.vtkPoints() vpts.SetData(numpy_to_vtk(plist, deep=True)) pd.SetPoints(vpts) delny = vtk.vtkDelaunay2D() delny.SetInputData(pd) if tol: delny.SetTolerance(tol) if mode=='fit': delny.SetProjectionPlaneMode(vtk.VTK_BEST_FITTING_PLANE) delny.Update() return Actor(delny.GetOutput())
def delaunay2D(plist, mode='xy', tol=None)
Create a mesh from points in the XY plane. If `mode='fit'` then the filter computes a best fitting plane and projects the points onto it. .. hint:: |delaunay2d| |delaunay2d.py|_
2.603735
2.412486
1.079275
deln = vtk.vtkDelaunay3D() deln.SetInputData(dataset) deln.SetAlpha(alpha) if tol: deln.SetTolerance(tol) deln.SetBoundingTriangulation(boundary) deln.Update() return deln.GetOutput()
def delaunay3D(dataset, alpha=0, tol=None, boundary=True)
Create 3D Delaunay triangulation of input points.
2.306903
2.285061
1.009559
maskPts = vtk.vtkMaskPoints() maskPts.SetOnRatio(ratio) maskPts.RandomModeOff() actor = actor.computeNormals() src = actor.polydata() maskPts.SetInputData(src) arrow = vtk.vtkLineSource() arrow.SetPoint1(0, 0, 0) arrow.SetPoint2(0.75, 0, 0) glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(arrow.GetOutputPort()) glyph.SetInputConnection(maskPts.GetOutputPort()) glyph.SetVectorModeToUseNormal() b = src.GetBounds() sc = max([b[1] - b[0], b[3] - b[2], b[5] - b[4]]) / 20.0 glyph.SetScaleFactor(sc) glyph.OrientOn() glyph.Update() glyphActor = Actor(glyph.GetOutput(), c=vc.getColor(c), alpha=alpha) glyphActor.mapper.SetScalarModeToUsePointFieldData() glyphActor.PickableOff() prop = vtk.vtkProperty() prop.DeepCopy(actor.GetProperty()) glyphActor.SetProperty(prop) return glyphActor
def normalLines(actor, ratio=1, c=(0.6, 0.6, 0.6), alpha=0.8)
Build an ``vtkActor`` made of the normals at vertices shown as lines.
2.470643
2.434517
1.014839
conn = vtk.vtkConnectivityFilter() conn.SetExtractionModeToLargestRegion() conn.ScalarConnectivityOff() poly = actor.GetMapper().GetInput() conn.SetInputData(poly) conn.Update() epoly = conn.GetOutput() eact = Actor(epoly) pr = vtk.vtkProperty() pr.DeepCopy(actor.GetProperty()) eact.SetProperty(pr) return eact
def extractLargestRegion(actor)
Keep only the largest connected part of a mesh and discard all the smaller pieces. .. hint:: |largestregion.py|_
3.423074
3.348107
1.022391
lmt = vtk.vtkLandmarkTransform() ss = source.polydata().GetPoints() st = target.polydata().GetPoints() if source.N() != target.N(): vc.printc('~times Error in alignLandmarks(): Source and Target with != nr of points!', source.N(), target.N(), c=1) exit() lmt.SetSourceLandmarks(ss) lmt.SetTargetLandmarks(st) if rigid: lmt.SetModeToRigidBody() lmt.Update() tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(source.polydata()) tf.SetTransform(lmt) tf.Update() actor = Actor(tf.GetOutput()) actor.info["transform"] = lmt pr = vtk.vtkProperty() pr.DeepCopy(source.GetProperty()) actor.SetProperty(pr) return actor
def alignLandmarks(source, target, rigid=False)
Find best matching of source points towards target in the mean least square sense, in one single step.
3.844069
3.837896
1.001608
if isinstance(source, Actor): source = source.polydata() if isinstance(target, Actor): target = target.polydata() icp = vtk.vtkIterativeClosestPointTransform() icp.SetSource(source) icp.SetTarget(target) icp.SetMaximumNumberOfIterations(iters) if rigid: icp.GetLandmarkTransform().SetModeToRigidBody() icp.StartByMatchingCentroidsOn() icp.Update() icpTransformFilter = vtk.vtkTransformPolyDataFilter() icpTransformFilter.SetInputData(source) icpTransformFilter.SetTransform(icp) icpTransformFilter.Update() poly = icpTransformFilter.GetOutput() actor = Actor(poly) # actor.info['transform'] = icp.GetLandmarkTransform() # not working! # do it manually... sourcePoints = vtk.vtkPoints() targetPoints = vtk.vtkPoints() for i in range(10): p1 = [0, 0, 0] source.GetPoints().GetPoint(i, p1) sourcePoints.InsertNextPoint(p1) p2 = [0, 0, 0] poly.GetPoints().GetPoint(i, p2) targetPoints.InsertNextPoint(p2) # Setup the transform landmarkTransform = vtk.vtkLandmarkTransform() landmarkTransform.SetSourceLandmarks(sourcePoints) landmarkTransform.SetTargetLandmarks(targetPoints) if rigid: landmarkTransform.SetModeToRigidBody() actor.info["transform"] = landmarkTransform return actor
def alignICP(source, target, iters=100, rigid=False)
Return a copy of source actor which is aligned to target actor through the `Iterative Closest Point` algorithm. The core of the algorithm is to match each vertex in one surface with the closest surface point on the other, then apply the transformation that modify one surface to best match the other (in the least-square sense). .. hint:: |align1| |align1.py|_ |align2| |align2.py|_
2.041583
2.032527
1.004455
group = vtk.vtkMultiBlockDataGroupFilter() for source in sources: if sources[0].N() != source.N(): vc.printc("~times Procrustes error in align():", c=1) vc.printc(" sources have different nr of points", c=1) exit(0) group.AddInputData(source.polydata()) procrustes = vtk.vtkProcrustesAlignmentFilter() procrustes.StartFromCentroidOn() procrustes.SetInputConnection(group.GetOutputPort()) if rigid: procrustes.GetLandmarkTransform().SetModeToRigidBody() procrustes.Update() acts = [] for i, s in enumerate(sources): poly = procrustes.GetOutput().GetBlock(i) actor = Actor(poly) actor.SetProperty(s.GetProperty()) acts.append(actor) assem = Assembly(acts) assem.info["transform"] = procrustes.GetLandmarkTransform() return assem
def alignProcrustes(sources, rigid=False)
Return an ``Assembly`` of aligned source actors with the `Procrustes` algorithm. The output ``Assembly`` is normalized in size. `Procrustes` algorithm takes N set of points and aligns them in a least-squares sense to their mutual mean. The algorithm is iterated until convergence, as the mean must be recomputed after each alignment. :param bool rigid: if `True` scaling is disabled. .. hint:: |align3| |align3.py|_
3.899233
3.925994
0.993184
data = np.array(points) datamean = data.mean(axis=0) uu, dd, vv = np.linalg.svd(data - datamean) vv = vv[0] / np.linalg.norm(vv[0]) # vv contains the first principal component, i.e. the direction # vector of the best fit line in the least squares sense. xyz_min = points.min(axis=0) xyz_max = points.max(axis=0) a = np.linalg.norm(xyz_min - datamean) b = np.linalg.norm(xyz_max - datamean) p1 = datamean - a * vv p2 = datamean + b * vv l = vs.Line(p1, p2, c=c, lw=lw, alpha=1) l.info["slope"] = vv l.info["center"] = datamean l.info["variances"] = dd return l
def fitLine(points, c="orange", lw=1)
Fits a line through points. Extra info is stored in ``actor.info['slope']``, ``actor.info['center']``, ``actor.info['variances']``. .. hint:: |fitline| |fitline.py|_
2.639031
2.510887
1.051035
data = np.array(points) datamean = data.mean(axis=0) res = np.linalg.svd(data - datamean) dd, vv = res[1], res[2] xyz_min = points.min(axis=0) xyz_max = points.max(axis=0) s = np.linalg.norm(xyz_max - xyz_min) n = np.cross(vv[0], vv[1]) pla = vs.Plane(datamean, n, s, s, c, bc) pla.info["normal"] = n pla.info["center"] = datamean pla.info["variance"] = dd[2] return pla
def fitPlane(points, c="g", bc="darkgreen")
Fits a plane to a set of points. Extra info is stored in ``actor.info['normal']``, ``actor.info['center']``, ``actor.info['variance']``. .. hint:: Example: |fitplanes.py|_
3.018726
2.838097
1.063645
coords = np.array(coords) n = len(coords) A = np.zeros((n, 4)) A[:, :-1] = coords * 2 A[:, 3] = 1 f = np.zeros((n, 1)) x = coords[:, 0] y = coords[:, 1] z = coords[:, 2] f[:, 0] = x * x + y * y + z * z C, residue, rank, sv = np.linalg.lstsq(A, f) # solve AC=f if rank < 4: return None t = (C[0] * C[0]) + (C[1] * C[1]) + (C[2] * C[2]) + C[3] radius = np.sqrt(t)[0] center = np.array([C[0][0], C[1][0], C[2][0]]) if len(residue): residue = np.sqrt(residue[0]) / n else: residue = 0 s = vs.Sphere(center, radius, c="r", alpha=1).wire(1) s.info["radius"] = radius s.info["center"] = center s.info["residue"] = residue return s
def fitSphere(coords)
Fits a sphere to a set of points. Extra info is stored in ``actor.info['radius']``, ``actor.info['center']``, ``actor.info['residue']``. .. hint:: Example: |fitspheres1.py|_ |fitspheres2| |fitspheres2.py|_
2.633111
2.682091
0.981738
try: from scipy.stats import f except ImportError: vc.printc("~times Error in Ellipsoid(): scipy not installed. Skip.", c=1) return None if isinstance(points, vtk.vtkActor): points = points.coordinates() if len(points) == 0: return None P = np.array(points, ndmin=2, dtype=float) cov = np.cov(P, rowvar=0) # covariance matrix U, s, R = np.linalg.svd(cov) # singular value decomposition p, n = s.size, P.shape[0] fppf = f.ppf(pvalue, p, n-p)*(n-1)*p*(n+1)/n/(n-p) # f % point function ua, ub, uc = np.sqrt(s*fppf)*2 # semi-axes (largest first) center = np.mean(P, axis=0) # centroid of the hyperellipsoid sphericity = ( ((ua-ub)/(ua+ub))**2 + ((ua-uc)/(ua+uc))**2 + ((ub-uc)/(ub+uc))**2)/3. * 4. elliSource = vtk.vtkSphereSource() elliSource.SetThetaResolution(48) elliSource.SetPhiResolution(48) matri = vtk.vtkMatrix4x4() matri.DeepCopy((R[0][0] * ua, R[1][0] * ub, R[2][0] * uc, center[0], R[0][1] * ua, R[1][1] * ub, R[2][1] * uc, center[1], R[0][2] * ua, R[1][2] * ub, R[2][2] * uc, center[2], 0, 0, 0, 1)) vtra = vtk.vtkTransform() vtra.SetMatrix(matri) ftra = vtk.vtkTransformFilter() ftra.SetTransform(vtra) ftra.SetInputConnection(elliSource.GetOutputPort()) ftra.Update() actor_elli = Actor(ftra.GetOutput(), "c", 0.5) actor_elli.GetProperty().BackfaceCullingOn() actor_elli.GetProperty().SetInterpolationToPhong() if pcaAxes: axs = [] for ax in ([1, 0, 0], [0, 1, 0], [0, 0, 1]): l = vtk.vtkLineSource() l.SetPoint1([0, 0, 0]) l.SetPoint2(ax) l.Update() t = vtk.vtkTransformFilter() t.SetTransform(vtra) t.SetInputData(l.GetOutput()) t.Update() axs.append(Actor(t.GetOutput(), "c", 0.5).lineWidth(3)) finact = Assembly([actor_elli] + axs) else: finact = actor_elli finact.info["sphericity"] = sphericity finact.info["va"] = ua finact.info["vb"] = ub finact.info["vc"] = uc return finact
def pcaEllipsoid(points, pvalue=0.95, pcaAxes=False)
Show the oriented PCA ellipsoid that contains fraction `pvalue` of points. :param float pvalue: ellypsoid will contain the specified fraction of points. :param bool pcaAxes: if `True`, show the 3 PCA semi axes. Extra info is stored in ``actor.info['sphericity']``, ``actor.info['va']``, ``actor.info['vb']``, ``actor.info['vc']`` (sphericity is equal to 0 for a perfect sphere). .. hint:: |pca| |pca.py|_ |cell_main| |cell_main.py|_
2.761795
2.654107
1.040574
from scipy.spatial import KDTree coords4d = [] for a in actors: # build the list of 4d coordinates coords3d = a.coordinates() n = len(coords3d) pttimes = [[a.time()]] * n coords4d += np.append(coords3d, pttimes, axis=1).tolist() avedt = float(actors[-1].time() - actors[0].time()) / len(actors) print("Average time separation between actors dt =", round(avedt, 3)) coords4d = np.array(coords4d) newcoords4d = [] kd = KDTree(coords4d, leafsize=neighbours) suggest = "" pb = vio.ProgressBar(0, len(coords4d)) for i in pb.range(): mypt = coords4d[i] # dr = np.sqrt(3*dx**2+dt**2) # iclosest = kd.query_ball_Point(mypt, r=dr) # dists, iclosest = kd.query(mypt, k=None, distance_upper_bound=dr) dists, iclosest = kd.query(mypt, k=neighbours) closest = coords4d[iclosest] nc = len(closest) if nc >= neighbours and nc > 5: m = np.linalg.lstsq(closest, [1.0] * nc)[0] # needs python3 vers = m / np.linalg.norm(m) hpcenter = np.mean(closest, axis=0) # hyperplane center dist = np.dot(mypt - hpcenter, vers) projpt = mypt - dist * vers newcoords4d.append(projpt) if not i % 1000: # work out some stats v = np.std(closest, axis=0) vx = round((v[0] + v[1] + v[2]) / 3, 3) suggest = "data suggest dt=" + str(vx) pb.print(suggest) newcoords4d = np.array(newcoords4d) ctimes = newcoords4d[:, 3] ccoords3d = np.delete(newcoords4d, 3, axis=1) # get rid of time act = vs.Points(ccoords3d) act.pointColors(ctimes, cmap="jet") # use a colormap to associate a color to time return act
def smoothMLS3D(actors, neighbours=10)
A time sequence of actors is being smoothed in 4D using a `MLS (Moving Least Squares)` variant. The time associated to an actor must be specified in advance with ``actor.time()`` method. Data itself can suggest a meaningful time separation based on the spatial distribution of points. :param int neighbours: fixed nr. of neighbours in space-time to take into account in the fit. .. hint:: |moving_least_squares3D| |moving_least_squares3D.py|_
4.235018
4.182946
1.012449
coords = actor.coordinates() ncoords = len(coords) Ncp = int(ncoords * f / 100) nshow = int(ncoords / decimate) if showNPlanes: ndiv = int(nshow / showNPlanes * decimate) if Ncp < 5: vc.printc("~target Please choose a fraction higher than " + str(f), c=1) Ncp = 5 print("smoothMLS: Searching #neighbours, #pt:", Ncp, ncoords) poly = actor.GetMapper().GetInput() vpts = poly.GetPoints() locator = vtk.vtkPointLocator() locator.SetDataSet(poly) locator.BuildLocator() vtklist = vtk.vtkIdList() variances, newsurf, acts = [], [], [] pb = vio.ProgressBar(0, ncoords) for i, p in enumerate(coords): pb.print("smoothing...") if i % decimate: continue locator.FindClosestNPoints(Ncp, p, vtklist) points = [] for j in range(vtklist.GetNumberOfIds()): trgp = [0, 0, 0] vpts.GetPoint(vtklist.GetId(j), trgp) points.append(trgp) if len(points) < 5: continue points = np.array(points) pointsmean = points.mean(axis=0) # plane center uu, dd, vv = np.linalg.svd(points - pointsmean) a, b, c = np.cross(vv[0], vv[1]) # normal d, e, f = pointsmean # plane center x, y, z = p t = a * d - a * x + b * e - b * y + c * f - c * z # /(a*a+b*b+c*c) newp = [x + t * a, y + t * b, z + t * c] variances.append(dd[2]) newsurf.append(newp) if recursive: vpts.SetPoint(i, newp) if showNPlanes and not i % ndiv: plane = fitPlane(points).alpha(0.3) # fitting plane iapts = vs.Points(points) # blue points acts += [plane, iapts] if decimate == 1 and not recursive: for i in range(ncoords): vpts.SetPoint(i, newsurf[i]) actor.info["variances"] = np.array(variances) if showNPlanes: apts = vs.Points(newsurf, c="r 0.6", r=2) ass = Assembly([apts] + acts) return ass # NB: a demo actor is returned return actor
def smoothMLS2D(actor, f=0.2, decimate=1, recursive=0, showNPlanes=0)
Smooth actor or points with a `Moving Least Squares` variant. The list ``actor.info['variances']`` contains the residue calculated for each point. Input actor's polydata is modified. :param f: smoothing factor - typical range is [0,2]. :param decimate: decimation factor (an integer number). :param recursive: move points while algorithm proceedes. :param showNPlanes: build an actor showing the fitting plane for N random points. .. hint:: |mesh_smoothers| |mesh_smoothers.py|_ |moving_least_squares2D| |moving_least_squares2D.py|_ |recosurface| |recosurface.py|_
4.558927
4.392135
1.037975
coords = actor.coordinates() ncoords = len(coords) Ncp = int(ncoords * f / 10) nshow = int(ncoords) if showNLines: ndiv = int(nshow / showNLines) if Ncp < 3: vc.printc("~target Please choose a fraction higher than " + str(f), c=1) Ncp = 3 poly = actor.GetMapper().GetInput() vpts = poly.GetPoints() locator = vtk.vtkPointLocator() locator.SetDataSet(poly) locator.BuildLocator() vtklist = vtk.vtkIdList() variances, newline, acts = [], [], [] for i, p in enumerate(coords): locator.FindClosestNPoints(Ncp, p, vtklist) points = [] for j in range(vtklist.GetNumberOfIds()): trgp = [0, 0, 0] vpts.GetPoint(vtklist.GetId(j), trgp) points.append(trgp) if len(points) < 2: continue points = np.array(points) pointsmean = points.mean(axis=0) # plane center uu, dd, vv = np.linalg.svd(points - pointsmean) newp = np.dot(p - pointsmean, vv[0]) * vv[0] + pointsmean variances.append(dd[1] + dd[2]) newline.append(newp) if showNLines and not i % ndiv: fline = fitLine(points, lw=4) # fitting plane iapts = vs.Points(points) # blue points acts += [fline, iapts] for i in range(ncoords): vpts.SetPoint(i, newline[i]) if showNLines: apts = vs.Points(newline, c="r 0.6", r=2) ass = Assembly([apts] + acts) return ass # NB: a demo actor is returned actor.info["variances"] = np.array(variances) return actor
def smoothMLS1D(actor, f=0.2, showNLines=0)
Smooth actor or points with a `Moving Least Squares` variant. The list ``actor.info['variances']`` contain the residue calculated for each point. Input actor's polydata is modified. :param float f: smoothing factor - typical range is [0,2]. :param int showNLines: build an actor showing the fitting line for N random points. .. hint:: |moving_least_squares1D| |moving_least_squares1D.py|_ |skeletonize| |skeletonize.py|_
4.696812
4.538127
1.034967
bf = vtk.vtkBooleanOperationPolyDataFilter() poly1 = actor1.computeNormals().polydata() poly2 = actor2.computeNormals().polydata() if operation.lower() == "plus" or operation.lower() == "+": bf.SetOperationToUnion() elif operation.lower() == "intersect": bf.SetOperationToIntersection() elif operation.lower() == "minus" or operation.lower() == "-": bf.SetOperationToDifference() bf.ReorientDifferenceCellsOn() bf.SetInputData(0, poly1) bf.SetInputData(1, poly2) bf.Update() actor = Actor(bf.GetOutput(), c, alpha, wire, bc, texture) return actor
def booleanOperation(actor1, operation, actor2, c=None, alpha=1, wire=False, bc=None, texture=None)
Volumetric union, intersection and subtraction of surfaces. :param str operation: allowed operations: ``'plus'``, ``'intersect'``, ``'minus'``. .. hint:: |boolean| |boolean.py|_
2.339229
2.437074
0.959851
bf = vtk.vtkIntersectionPolyDataFilter() poly1 = actor1.GetMapper().GetInput() poly2 = actor2.GetMapper().GetInput() bf.SetInputData(0, poly1) bf.SetInputData(1, poly2) bf.Update() actor = Actor(bf.GetOutput(), "k", 1) actor.GetProperty().SetLineWidth(lw) return actor
def surfaceIntersection(actor1, actor2, tol=1e-06, lw=3)
Intersect 2 surfaces and return a line actor. .. hint:: |surfIntersect.py|_
2.876925
3.209591
0.896352
src = vtk.vtkProgrammableSource() def readPoints(): output = src.GetPolyDataOutput() points = vtk.vtkPoints() for p in pts: x, y, z = p points.InsertNextPoint(x, y, z) output.SetPoints(points) cells = vtk.vtkCellArray() cells.InsertNextCell(len(pts)) for i in range(len(pts)): cells.InsertCellPoint(i) output.SetVerts(cells) src.SetExecuteMethod(readPoints) src.Update() probeFilter = vtk.vtkProbeFilter() probeFilter.SetSourceData(img) probeFilter.SetInputConnection(src.GetOutputPort()) probeFilter.Update() pact = Actor(probeFilter.GetOutput(), c=None) # ScalarVisibilityOn pact.mapper.SetScalarRange(img.GetScalarRange()) return pact
def probePoints(img, pts)
Takes a ``vtkImageData`` and probes its scalars at the specified points in space.
2.552973
2.482833
1.02825
line = vtk.vtkLineSource() line.SetResolution(res) line.SetPoint1(p1) line.SetPoint2(p2) probeFilter = vtk.vtkProbeFilter() probeFilter.SetSourceData(img) probeFilter.SetInputConnection(line.GetOutputPort()) probeFilter.Update() lact = Actor(probeFilter.GetOutput(), c=None) # ScalarVisibilityOn lact.mapper.SetScalarRange(img.GetScalarRange()) return lact
def probeLine(img, p1, p2, res=100)
Takes a ``vtkImageData`` and probes its scalars along a line defined by 2 points `p1` and `p2`. .. hint:: |probeLine| |probeLine.py|_
2.886573
2.93953
0.981985
plane = vtk.vtkPlane() plane.SetOrigin(origin) plane.SetNormal(normal) planeCut = vtk.vtkCutter() planeCut.SetInputData(img) planeCut.SetCutFunction(plane) planeCut.Update() cutActor = Actor(planeCut.GetOutput(), c=None) # ScalarVisibilityOn cutActor.mapper.SetScalarRange(img.GetPointData().GetScalars().GetRange()) return cutActor
def probePlane(img, origin=(0, 0, 0), normal=(1, 0, 0))
Takes a ``vtkImageData`` and probes its scalars on a plane. .. hint:: |probePlane| |probePlane.py|_
2.742788
3.110353
0.881825
op = operation.lower() if op in ["median"]: mf = vtk.vtkImageMedian3D() mf.SetInputData(image1) mf.Update() return mf.GetOutput() elif op in ["mag"]: mf = vtk.vtkImageMagnitude() mf.SetInputData(image1) mf.Update() return mf.GetOutput() elif op in ["dot", "dotproduct"]: mf = vtk.vtkImageDotProduct() mf.SetInput1Data(image1) mf.SetInput2Data(image2) mf.Update() return mf.GetOutput() elif op in ["grad", "gradient"]: mf = vtk.vtkImageGradient() mf.SetDimensionality(3) mf.SetInputData(image1) mf.Update() return mf.GetOutput() elif op in ["div", "divergence"]: mf = vtk.vtkImageDivergence() mf.SetInputData(image1) mf.Update() return mf.GetOutput() elif op in ["laplacian"]: mf = vtk.vtkImageLaplacian() mf.SetDimensionality(3) mf.SetInputData(image1) mf.Update() return mf.GetOutput() mat = vtk.vtkImageMathematics() mat.SetInput1Data(image1) K = None if image2: if isinstance(image2, vtk.vtkImageData): mat.SetInput2Data(image2) else: # assume image2 is a constant value K = image2 mat.SetConstantK(K) mat.SetConstantC(K) if op in ["+", "add", "plus"]: if K: mat.SetOperationToAddConstant() else: mat.SetOperationToAdd() elif op in ["-", "subtract", "minus"]: if K: mat.SetConstantC(-K) mat.SetOperationToAddConstant() else: mat.SetOperationToSubtract() elif op in ["*", "multiply", "times"]: if K: mat.SetOperationToMultiplyByK() else: mat.SetOperationToMultiply() elif op in ["/", "divide"]: if K: mat.SetConstantK(1.0 / K) mat.SetOperationToMultiplyByK() else: mat.SetOperationToDivide() elif op in ["1/x", "invert"]: mat.SetOperationToInvert() elif op in ["sin"]: mat.SetOperationToSin() elif op in ["cos"]: mat.SetOperationToCos() elif op in ["exp"]: mat.SetOperationToExp() elif op in ["log"]: mat.SetOperationToLog() elif op in ["abs"]: mat.SetOperationToAbsoluteValue() elif op in ["**2", "square"]: mat.SetOperationToSquare() elif op in ["sqrt", "sqr"]: mat.SetOperationToSquareRoot() elif op in ["min"]: mat.SetOperationToMin() elif op in ["max"]: mat.SetOperationToMax() elif op in ["atan"]: mat.SetOperationToATAN() elif op in ["atan2"]: mat.SetOperationToATAN2() else: vc.printc("~times Error in imageOperation: unknown operation", operation, c=1) exit() mat.Update() return mat.GetOutput()
def imageOperation(image1, operation, image2=None)
Perform operations with ``vtkImageData`` objects. `image2` can be a constant value. Possible operations are: ``+``, ``-``, ``/``, ``1/x``, ``sin``, ``cos``, ``exp``, ``log``, ``abs``, ``**2``, ``sqrt``, ``min``, ``max``, ``atan``, ``atan2``, ``median``, ``mag``, ``dot``, ``gradient``, ``divergence``, ``laplacian``. .. hint:: |imageOperations| |imageOperations.py|_
1.85964
1.686001
1.102989
if isinstance(points, vtk.vtkActor): points = points.coordinates() N = len(points) if N < 50: print("recoSurface: Use at least 50 points.") return None points = np.array(points) ptsSource = vtk.vtkPointSource() ptsSource.SetNumberOfPoints(N) ptsSource.Update() vpts = ptsSource.GetOutput().GetPoints() for i, p in enumerate(points): vpts.SetPoint(i, p) polyData = ptsSource.GetOutput() distance = vtk.vtkSignedDistance() f = 0.1 x0, x1, y0, y1, z0, z1 = polyData.GetBounds() distance.SetBounds(x0-(x1-x0)*f, x1+(x1-x0)*f, y0-(y1-y0)*f, y1+(y1-y0)*f, z0-(z1-z0)*f, z1+(z1-z0)*f) if polyData.GetPointData().GetNormals(): distance.SetInputData(polyData) else: normals = vtk.vtkPCANormalEstimation() normals.SetInputData(polyData) normals.SetSampleSize(int(N / 50)) normals.SetNormalOrientationToGraphTraversal() distance.SetInputConnection(normals.GetOutputPort()) print("Recalculating normals for", N, "Points, sample size=", int(N / 50)) b = polyData.GetBounds() diagsize = np.sqrt((b[1] - b[0]) ** 2 + (b[3] - b[2]) ** 2 + (b[5] - b[4]) ** 2) radius = diagsize / bins * 5 distance.SetRadius(radius) distance.SetDimensions(bins, bins, bins) distance.Update() print("Calculating mesh from points with R =", radius) surface = vtk.vtkExtractSurface() surface.SetRadius(radius * 0.99) surface.HoleFillingOn() surface.ComputeNormalsOff() surface.ComputeGradientsOff() surface.SetInputConnection(distance.GetOutputPort()) surface.Update() return Actor(surface.GetOutput(), "gold", 1, 0, "tomato")
def recoSurface(points, bins=256)
Surface reconstruction from a scattered cloud of points. :param int bins: number of voxels in x, y and z. .. hint:: |recosurface| |recosurface.py|_
2.852012
2.866945
0.994791
if isinstance(points, vtk.vtkActor): poly = points.GetMapper().GetInput() else: src = vtk.vtkPointSource() src.SetNumberOfPoints(len(points)) src.Update() vpts = src.GetOutput().GetPoints() for i, p in enumerate(points): vpts.SetPoint(i, p) poly = src.GetOutput() cluster = vtk.vtkEuclideanClusterExtraction() cluster.SetInputData(poly) cluster.SetExtractionModeToAllClusters() cluster.SetRadius(radius) cluster.ColorClustersOn() cluster.Update() idsarr = cluster.GetOutput().GetPointData().GetArray("ClusterId") Nc = cluster.GetNumberOfExtractedClusters() sets = [[] for i in range(Nc)] for i, p in enumerate(points): sets[idsarr.GetValue(i)].append(p) acts = [] for i, aset in enumerate(sets): acts.append(vs.Points(aset, c=i)) actor = Assembly(acts) actor.info["clusters"] = sets print("Nr. of extracted clusters", Nc) if Nc > 10: print("First ten:") for i in range(Nc): if i > 9: print("...") break print("Cluster #" + str(i) + ", N =", len(sets[i])) print("Access individual clusters through attribute: actor.cluster") return actor
def cluster(points, radius)
Clustering of points in space. `radius` is the radius of local search. Individual subsets can be accessed through ``actor.clusters``. .. hint:: |clustering| |clustering.py|_
3.374085
3.263726
1.033814
isactor = False if isinstance(points, vtk.vtkActor): isactor = True poly = points.GetMapper().GetInput() else: src = vtk.vtkPointSource() src.SetNumberOfPoints(len(points)) src.Update() vpts = src.GetOutput().GetPoints() for i, p in enumerate(points): vpts.SetPoint(i, p) poly = src.GetOutput() removal = vtk.vtkRadiusOutlierRemoval() removal.SetInputData(poly) removal.SetRadius(radius) removal.SetNumberOfNeighbors(5) removal.GenerateOutliersOff() removal.Update() rpoly = removal.GetOutput() print("# of removed outlier points: ", removal.GetNumberOfPointsRemoved(), '/', poly.GetNumberOfPoints()) outpts = [] for i in range(rpoly.GetNumberOfPoints()): outpts.append(list(rpoly.GetPoint(i))) outpts = np.array(outpts) if not isactor: return outpts actor = vs.Points(outpts) return actor
def removeOutliers(points, radius)
Remove outliers from a cloud of points within the specified `radius` search. .. hint:: |clustering| |clustering.py|_
2.666253
2.747932
0.970276
ns = len(sourcePts) ptsou = vtk.vtkPoints() ptsou.SetNumberOfPoints(ns) for i in range(ns): ptsou.SetPoint(i, sourcePts[i]) nt = len(sourcePts) if ns != nt: vc.printc("~times thinPlateSpline Error: #source != #target points", ns, nt, c=1) exit() pttar = vtk.vtkPoints() pttar.SetNumberOfPoints(nt) for i in range(ns): pttar.SetPoint(i, targetPts[i]) transform = vtk.vtkThinPlateSplineTransform() transform.SetBasisToR() if userFunctions[0]: transform.SetBasisFunction(userFunctions[0]) transform.SetBasisDerivative(userFunctions[1]) transform.SetSigma(1) transform.SetSourceLandmarks(ptsou) transform.SetTargetLandmarks(pttar) tfa = transformFilter(actor.polydata(), transform) tfa.info["transform"] = transform return tfa
def thinPlateSpline(actor, sourcePts, targetPts, userFunctions=(None, None))
`Thin Plate Spline` transformations describe a nonlinear warp transform defined by a set of source and target landmarks. Any point on the mesh close to a source landmark will be moved to a place close to the corresponding target landmark. The points in between are interpolated smoothly using Bookstein's Thin Plate Spline algorithm. Transformation object is saved in ``actor.info['transform']``. :param userFunctions: You must supply both the function and its derivative with respect to r. .. hint:: |thinplate| |thinplate.py|_ |thinplate_grid| |thinplate_grid.py|_ |thinplate_morphing| |thinplate_morphing.py|_ |interpolateField| |interpolateField.py|_
3.503775
3.22291
1.087147
tf = vtk.vtkTransformPolyDataFilter() tf.SetTransform(transformation) prop = None if isinstance(actor, vtk.vtkPolyData): tf.SetInputData(actor) else: tf.SetInputData(actor.polydata()) prop = vtk.vtkProperty() prop.DeepCopy(actor.GetProperty()) tf.Update() tfa = Actor(tf.GetOutput()) if prop: tfa.SetProperty(prop) return tfa
def transformFilter(actor, transformation)
Transform a ``vtkActor`` and return a new object.
2.738102
2.691306
1.017388
mesh = actor.GetMapper().GetInput() qf = vtk.vtkMeshQuality() qf.SetInputData(mesh) qf.SetTriangleQualityMeasure(measure) qf.SaveCellQualityOn() qf.Update() pd = vtk.vtkPolyData() pd.ShallowCopy(qf.GetOutput()) qactor = Actor(pd, c=None, alpha=1) qactor.mapper.SetScalarRange(pd.GetScalarRange()) return qactor
def meshQuality(actor, measure=6)
Calculate functions of quality of the elements of a triangular mesh. See class `vtkMeshQuality <https://vtk.org/doc/nightly/html/classvtkMeshQuality.html>`_ for explaination. :param int measure: type of estimator - EDGE_RATIO, 0 - ASPECT_RATIO, 1 - RADIUS_RATIO, 2 - ASPECT_FROBENIUS, 3 - MED_ASPECT_FROBENIUS, 4 - MAX_ASPECT_FROBENIUS, 5 - MIN_ANGLE, 6 - COLLAPSE_RATIO, 7 - MAX_ANGLE, 8 - CONDITION, 9 - SCALED_JACOBIAN, 10 - SHEAR, 11 - RELATIVE_SIZE_SQUARED, 12 - SHAPE, 13 - SHAPE_AND_SIZE, 14 - DISTORTION, 15 - MAX_EDGE_RATIO, 16 - SKEW, 17 - TAPER, 18 - VOLUME, 19 - STRETCH, 20 - DIAGONAL, 21 - DIMENSION, 22 - ODDY, 23 - SHEAR_AND_SIZE, 24 - JACOBIAN, 25 - WARPAGE, 26 - ASPECT_GAMMA, 27 - AREA, 28 - ASPECT_BETA, 29 .. hint:: |meshquality| |meshquality.py|_
3.369062
3.816262
0.882817
# https://vtk.org/doc/nightly/html/classvtkConnectedPointsFilter.html cpf = vtk.vtkConnectedPointsFilter() cpf.SetInputData(actor.polydata()) cpf.SetRadius(radius) if mode == 0: # Extract all regions pass elif mode == 1: # Extract point seeded regions cpf.SetExtractionModeToPointSeededRegions() for s in seeds: cpf.AddSeed(s) elif mode == 2: # Test largest region cpf.SetExtractionModeToLargestRegion() elif mode == 3: # Test specified regions cpf.SetExtractionModeToSpecifiedRegions() for r in regions: cpf.AddSpecifiedRegion(r) elif mode == 4: # Extract all regions with scalar connectivity cpf.SetExtractionModeToLargestRegion() cpf.ScalarConnectivityOn() cpf.SetScalarRange(vrange[0], vrange[1]) elif mode == 5: # Extract point seeded regions cpf.SetExtractionModeToLargestRegion() cpf.ScalarConnectivityOn() cpf.SetScalarRange(vrange[0], vrange[1]) cpf.AlignedNormalsOn() cpf.SetNormalAngle(angle) cpf.Update() return Actor(cpf.GetOutput())
def connectedPoints(actor, radius, mode=0, regions=(), vrange=(0,1), seeds=(), angle=0)
Extracts and/or segments points from a point cloud based on geometric distance measures (e.g., proximity, normal alignments, etc.) and optional measures such as scalar range. The default operation is to segment the points into "connected" regions where the connection is determined by an appropriate distance measure. Each region is given a region id. Optionally, the filter can output the largest connected region of points; a particular region (via id specification); those regions that are seeded using a list of input point ids; or the region of points closest to a specified position. The key parameter of this filter is the radius defining a sphere around each point which defines a local neighborhood: any other points in the local neighborhood are assumed connected to the point. Note that the radius is defined in absolute terms. Other parameters are used to further qualify what it means to be a neighboring point. For example, scalar range and/or point normals can be used to further constrain the neighborhood. Also the extraction mode defines how the filter operates. By default, all regions are extracted but it is possible to extract particular regions; the region closest to a seed point; seeded regions; or the largest region found while processing. By default, all regions are extracted. On output, all points are labeled with a region number. However note that the number of input and output points may not be the same: if not extracting all regions then the output size may be less than the input size. :param float radius: radius variable specifying a local sphere used to define local point neighborhood :param int mode: - 0, Extract all regions - 1, Extract point seeded regions - 2, Extract largest region - 3, Test specified regions - 4, Extract all regions with scalar connectivity - 5, Extract point seeded regions :param list regions: a list of non-negative regions id to extract :param list vrange: scalar range to use to extract points based on scalar connectivity :param list seeds: a list of non-negative point seed ids :param list angle: points are connected if the angle between their normals is within this angle threshold (expressed in degrees).
2.634255
2.151192
1.224556
actor.addIDs() pd = actor.polydata() cf = vtk.vtkConnectivityFilter() cf.SetInputData(pd) cf.SetExtractionModeToAllRegions() cf.ColorRegionsOn() cf.Update() cpd = cf.GetOutput() a = Actor(cpd) alist = [] for t in range(max(a.scalars("RegionId")) - 1): if t == maxdepth: break suba = a.clone().threshold("RegionId", t - 0.1, t + 0.1) area = suba.area() alist.append([suba, area]) alist.sort(key=lambda x: x[1]) alist.reverse() blist = [] for i, l in enumerate(alist): l[0].color(i + 1) l[0].mapper.ScalarVisibilityOff() blist.append(l[0]) return blist
def splitByConnectivity(actor, maxdepth=100)
Split a mesh by connectivity and order the pieces by increasing area. :param int maxdepth: only consider this number of mesh parts. .. hint:: |splitmesh| |splitmesh.py|_
3.372714
3.404362
0.990704
poly = actor.polydata(True) pointSampler = vtk.vtkPolyDataPointSampler() if not distance: distance = actor.diagonalSize() / 100.0 pointSampler.SetDistance(distance) # pointSampler.GenerateVertexPointsOff() # pointSampler.GenerateEdgePointsOff() # pointSampler.GenerateVerticesOn() # pointSampler.GenerateInteriorPointsOn() pointSampler.SetInputData(poly) pointSampler.Update() uactor = Actor(pointSampler.GetOutput()) prop = vtk.vtkProperty() prop.DeepCopy(actor.GetProperty()) uactor.SetProperty(prop) return uactor
def pointSampler(actor, distance=None)
Algorithm to generate points the specified distance apart.
3.41063
3.456565
0.986711
dijkstra = vtk.vtkDijkstraGraphGeodesicPath() if vu.isSequence(start): cc = actor.coordinates() pa = vs.Points(cc) start = pa.closestPoint(start, returnIds=True) end = pa.closestPoint(end, returnIds=True) dijkstra.SetInputData(pa.polydata()) else: dijkstra.SetInputData(actor.polydata()) dijkstra.SetStartVertex(start) dijkstra.SetEndVertex(end) dijkstra.Update() weights = vtk.vtkDoubleArray() dijkstra.GetCumulativeWeights(weights) length = weights.GetMaxId() + 1 arr = np.zeros(length) for i in range(length): arr[i] = weights.GetTuple(i)[0] dactor = Actor(dijkstra.GetOutput()) prop = vtk.vtkProperty() prop.DeepCopy(actor.GetProperty()) prop.SetLineWidth(3) prop.SetOpacity(1) dactor.SetProperty(prop) dactor.info["CumulativeWeights"] = arr return dactor
def geodesic(actor, start, end)
Dijkstra algorithm to compute the graph geodesic. Takes as input a polygonal mesh and performs a single source shortest path calculation. :param start: start vertex index or close point `[x,y,z]` :type start: int, list :param end: end vertex index or close point `[x,y,z]` :type start: int, list .. hint:: |geodesic| |geodesic.py|_
3.423521
3.398068
1.00749
if vu.isSequence(actor_or_list): actor = vs.Points(actor_or_list) else: actor = actor_or_list apoly = actor.clean().polydata() triangleFilter = vtk.vtkTriangleFilter() triangleFilter.SetInputData(apoly) triangleFilter.Update() poly = triangleFilter.GetOutput() delaunay = vtk.vtkDelaunay3D() # Create the convex hull of the pointcloud if alphaConstant: delaunay.SetAlpha(alphaConstant) delaunay.SetInputData(poly) delaunay.Update() surfaceFilter = vtk.vtkDataSetSurfaceFilter() surfaceFilter.SetInputConnection(delaunay.GetOutputPort()) surfaceFilter.Update() chuact = Actor(surfaceFilter.GetOutput()) return chuact
def convexHull(actor_or_list, alphaConstant=0)
Create a 3D Delaunay triangulation of input points. :param actor_or_list: can be either an ``Actor`` or a list of 3D points. :param float alphaConstant: For a non-zero alpha value, only verts, edges, faces, or tetra contained within the circumsphere (of radius alpha) will be output. Otherwise, only tetrahedra will be output. .. hint:: |convexHull| |convexHull.py|_
2.89204
2.930881
0.986748
# https://vtk.org/Wiki/VTK/Examples/Cxx/PolyData/PolyDataToImageData pd = actor.polydata() whiteImage = vtk.vtkImageData() bounds = pd.GetBounds() whiteImage.SetSpacing(spacing) # compute dimensions dim = [0, 0, 0] for i in [0, 1, 2]: dim[i] = int(np.ceil((bounds[i * 2 + 1] - bounds[i * 2]) / spacing[i])) whiteImage.SetDimensions(dim) whiteImage.SetExtent(0, dim[0] - 1, 0, dim[1] - 1, 0, dim[2] - 1) origin = [0, 0, 0] origin[0] = bounds[0] + spacing[0] / 2 origin[1] = bounds[2] + spacing[1] / 2 origin[2] = bounds[4] + spacing[2] / 2 whiteImage.SetOrigin(origin) whiteImage.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, 1) # fill the image with foreground voxels: inval = 255 count = whiteImage.GetNumberOfPoints() for i in range(count): whiteImage.GetPointData().GetScalars().SetTuple1(i, inval) # polygonal data --> image stencil: pol2stenc = vtk.vtkPolyDataToImageStencil() pol2stenc.SetInputData(pd) pol2stenc.SetOutputOrigin(origin) pol2stenc.SetOutputSpacing(spacing) pol2stenc.SetOutputWholeExtent(whiteImage.GetExtent()) pol2stenc.Update() # cut the corresponding white image and set the background: outval = 0 imgstenc = vtk.vtkImageStencil() imgstenc.SetInputData(whiteImage) imgstenc.SetStencilConnection(pol2stenc.GetOutputPort()) imgstenc.ReverseStencilOff() imgstenc.SetBackgroundValue(outval) imgstenc.Update() return imgstenc.GetOutput()
def actor2ImageData(actor, spacing=(1, 1, 1))
Convert a mesh it into volume representation as ``vtkImageData`` where the foreground (exterior) voxels are 1 and the background (interior) voxels are 0. Internally the ``vtkPolyDataToImageStencil`` class is used. .. hint:: |mesh2volume| |mesh2volume.py|_
2.048874
2.022106
1.013238
dist = vtk.vtkSignedDistance() dist.SetInputData(actor.polydata(True)) dist.SetRadius(maxradius) dist.SetBounds(bounds) dist.SetDimensions(dims) dist.Update() return Volume(dist.GetOutput())
def signedDistance(actor, maxradius=0.5, bounds=(0, 1, 0, 1, 0, 1), dims=(10, 10, 10))
``vtkSignedDistance`` filter. :param float maxradius: how far out to propagate distance calculation :param list bounds: volume bounds.
2.725326
3.245981
0.8396
fe = vtk.vtkExtractSurface() fe.SetInputData(image) fe.SetRadius(radius) fe.Update() return Actor(fe.GetOutput())
def extractSurface(image, radius=0.5)
``vtkExtractSurface`` filter. Input is a ``vtkImageData``. Generate zero-crossing isosurface from truncated signed distance volume.
4.012754
3.843775
1.043962
poly = actor.polydata() psf = vtk.vtkProjectSphereFilter() psf.SetInputData(poly) psf.Update() a = Actor(psf.GetOutput()) return a
def projectSphereFilter(actor)
Project a spherical-like object onto a plane. .. hint:: |projectsphere| |projectsphere.py|_
4.000448
4.233358
0.944982
output = actor.polydata() # Create a probe volume probe = vtk.vtkImageData() probe.SetDimensions(dims) if bounds is None: bounds = output.GetBounds() probe.SetOrigin(bounds[0],bounds[2],bounds[4]) probe.SetSpacing((bounds[1]-bounds[0])/(dims[0]-1), (bounds[3]-bounds[2])/(dims[1]-1), (bounds[5]-bounds[4])/(dims[2]-1)) if radius is None: radius = min(bounds[1]-bounds[0], bounds[3]-bounds[2], bounds[5]-bounds[4])/3 locator = vtk.vtkPointLocator() locator.SetDataSet(output) locator.BuildLocator() if kernel == 'shepard': kern = vtk.vtkShepardKernel() kern.SetPowerParameter(2) kern.SetRadius(radius) elif kernel == 'gaussian': kern = vtk.vtkGaussianKernel() kern.SetRadius(radius) elif kernel == 'voronoi': kern = vtk.vtkVoronoiKernel() elif kernel == 'linear': kern = vtk.vtkLinearKernel() kern.SetRadius(radius) else: print('Error in interpolateToImageData, available kernels are:') print(' [shepard, gaussian, voronoi, linear]') exit() interpolator = vtk.vtkPointInterpolator() interpolator.SetInputData(probe) interpolator.SetSourceData(output) interpolator.SetKernel(kern) interpolator.SetLocator(locator) if nullValue is not None: interpolator.SetNullValue(nullValue) else: interpolator.SetNullPointsStrategyToClosestPoint() interpolator.Update() return interpolator.GetOutput()
def interpolateToImageData(actor, kernel='shepard', radius=None, bounds=None, nullValue=None, dims=(20,20,20))
Generate a voxel dataset (vtkImageData) by interpolating a scalar which is only known on a scattered set of points or mesh. Available interpolation kernels are: shepard, gaussian, voronoi, linear. :param str kernel: interpolation kernel type [shepard] :param float radius: radius of the local search :param list bounds: bounding box of the output vtkImageData object :param list dims: dimensions of the output vtkImageData object :param float nullValue: value to be assigned to invalid points
1.917264
1.963309
0.976547
if six.PY2: argspec = inspect.getargspec(func) args = argspec.args[1:] # ignore 'self' defaults = argspec.defaults or [] # Split args into two lists depending on whether they have default value no_default = args[:len(args) - len(defaults)] with_default = args[len(args) - len(defaults):] # Join the two lists and combine it with default values args = [(arg,) for arg in no_default] + zip(with_default, defaults) # Add possible *args and **kwargs and prepend them with '*' or '**' varargs = [('*' + argspec.varargs,)] if argspec.varargs else [] kwargs = [('**' + argspec.keywords,)] if argspec.keywords else [] return args + varargs + kwargs sig = inspect.signature(func) args = [] for arg_name, param in sig.parameters.items(): name = arg_name # Ignore 'self' if name == 'self': continue if param.kind == inspect.Parameter.VAR_POSITIONAL: name = '*' + name elif param.kind == inspect.Parameter.VAR_KEYWORD: name = '**' + name if param.default != inspect.Parameter.empty: args.append((name, param.default)) else: args.append((name,)) return args
def get_func_full_args(func)
Return a list of (argument name, default value) tuples. If the argument does not have a default value, omit it in the tuple. Arguments such as *args and **kwargs are also included.
2.325894
2.331761
0.997484
if six.PY2: return inspect.getargspec(func)[1] is not None return any( p for p in inspect.signature(func).parameters.values() if p.kind == p.VAR_POSITIONAL )
def func_accepts_var_args(func)
Return True if function 'func' accepts positional arguments *args.
3.189917
2.833006
1.125983
if self._with_discovery: # Start the server to listen to new devices self.upnp.server.set_spawn(2) self.upnp.server.start() if self._with_subscribers: # Start the server to listen to events self.registry.server.set_spawn(2) self.registry.server.start()
def start(self)
Start the server(s) necessary to receive information from devices.
5.483813
4.43391
1.236789
try: if timeout: gevent.sleep(timeout) else: while True: gevent.sleep(1000) except (KeyboardInterrupt, SystemExit, Exception): pass
def wait(self, timeout=None)
Wait for events.
3.415841
3.352159
1.018997
log.info("Discovering devices") with gevent.Timeout(seconds, StopBroadcasting) as timeout: try: try: while True: self.upnp.broadcast() gevent.sleep(1) except Exception as e: raise StopBroadcasting(e) except StopBroadcasting: return
def discover(self, seconds=2)
Discover devices in the environment. @param seconds: Number of seconds to broadcast requests. @type seconds: int
4.622562
4.440219
1.041066
if force_update or self._state is None: return int(self.basicevent.GetBinaryState()['BinaryState']) return self._state
def get_state(self, force_update=False)
Returns 0 if off and 1 if on.
7.670384
5.329496
1.439232
def _decorator(func): if isinstance(signal, (list, tuple)): for s in signal: s.connect(func, **kwargs) else: signal.connect(func, **kwargs) return func return _decorator
def receiver(signal, **kwargs)
A decorator for connecting receivers to signals. Used by passing in the signal (or list of signals) and keyword arguments to connect:: @receiver(post_save, sender=MyModel) def signal_receiver(sender, **kwargs): ... @receiver([post_save, post_delete], sender=MyModel) def signals_receiver(sender, **kwargs): ...
2.177118
2.185701
0.996073