code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
# if target file doesn't exist, we must generate it
if not os.path.isfile(filename):
return False
# if we can interact with git, we can regenerate it, so we may as well
try:
import git
except ImportError:
return True
else:
try:
git.Repo().tags
except (TypeError, git.GitError):
return True
else:
return False | def reuse_dist_file(filename) | Returns `True` if a distribution file can be reused
Otherwise it should be regenerated | 5.189032 | 5.187344 | 1.000325 |
# if not in git clone, it doesn't matter
if not in_git_clone():
return 'GitPython'
# otherwise, call out to get the git version
try:
gitv = subprocess.check_output('git --version', shell=True)
except (OSError, IOError, subprocess.CalledProcessError):
# no git installation, most likely
git_version = '0.0.0'
else:
if isinstance(gitv, bytes):
gitv = gitv.decode('utf-8')
git_version = gitv.strip().split()[2]
# if git>=2.15, we need GitPython>=2.1.8
if LooseVersion(git_version) >= '2.15':
return 'GitPython>=2.1.8'
return 'GitPython' | def get_gitpython_version() | Determine the required version of GitPython
Because of target systems running very, very old versions of setuptools,
we only specify the actual version we need when we need it. | 3.157759 | 3.159362 | 0.999493 |
# don't force requirements if just asking for help
if {'--help', '--help-commands'}.intersection(sys.argv):
return list()
# otherwise collect all requirements for all known commands
reqlist = []
for cmd, dependencies in SETUP_REQUIRES.items():
if cmd in sys.argv:
reqlist.extend(dependencies)
return reqlist | def get_setup_requires() | Return the list of packages required for this setup.py run | 5.757967 | 5.756772 | 1.000208 |
scripts = []
for (dirname, _, filenames) in os.walk(scripts_dir):
scripts.extend([os.path.join(dirname, fn) for fn in filenames])
return scripts | def get_scripts(scripts_dir='bin') | Get relative file paths for all files under the ``scripts_dir`` | 2.286194 | 2.286692 | 0.999782 |
result = []
for part in years.split(','):
if '-' in part:
a, b = part.split('-')
a, b = int(a), int(b)
result.extend(range(a, b + 1))
else:
a = int(part)
result.append(a)
return result | def _parse_years(years) | Parse string of ints include ranges into a `list` of `int`
Source: https://stackoverflow.com/a/6405228/1307974 | 1.898205 | 1.713871 | 1.107554 |
def sub(x):
return x[1] - x[0]
ranges = []
for k, iterable in groupby(enumerate(sorted(years)), sub):
rng = list(iterable)
if len(rng) == 1:
s = str(rng[0][1])
else:
s = "{}-{}".format(rng[0][1], rng[-1][1])
ranges.append(s)
return ", ".join(ranges) | def _format_years(years) | Format a list of ints into a string including ranges
Source: https://stackoverflow.com/a/9471386/1307974 | 2.923335 | 2.542873 | 1.149619 |
with open(path, "r") as fobj:
text = fobj.read().rstrip()
match = COPYRIGHT_REGEX.search(text)
x = match.start("years")
y = match.end("years")
if text[y-1] == " ": # don't strip trailing whitespace
y -= 1
yearstr = match.group("years")
years = set(_parse_years(yearstr)) | {year}
with open(path, "w") as fobj:
print(text[:x] + _format_years(years) + text[y:], file=fobj) | def update_copyright(path, year) | Update a file's copyright statement to include the given year | 3.376858 | 3.500925 | 0.964562 |
# parse args and kwargs
if not spectrograms:
raise ValueError("Must give at least one Spectrogram")
bins = kwargs.pop('bins', None)
low = kwargs.pop('low', None)
high = kwargs.pop('high', None)
nbins = kwargs.pop('nbins', 500)
log = kwargs.pop('log', False)
norm = kwargs.pop('norm', False)
density = kwargs.pop('density', False)
if norm and density:
raise ValueError("Cannot give both norm=True and density=True, "
"please pick one")
# get data and bins
spectrogram = spectrograms[0]
data = numpy.vstack(s.value for s in spectrograms)
if bins is None:
if low is None and log:
low = numpy.log10(data.min() / 2)
elif low is None:
low = data.min()/2
elif log:
low = numpy.log10(low)
if high is None and log:
high = numpy.log10(data.max() * 2)
elif high is None:
high = data.max() * 2
elif log:
high = numpy.log10(high)
if log:
bins = numpy.logspace(low, high, num=nbins+1)
else:
bins = numpy.linspace(low, high, num=nbins+1)
nbins = bins.size-1
bins = bins * spectrogram.unit
# loop over frequencies
out = numpy.zeros((data.shape[1], nbins))
for i in range(data.shape[1]):
out[i, :], bins = numpy.histogram(data[:, i], bins,
density=density)
if norm and out[i, :].sum(): # normalise
out[i, :] /= out[i, :].sum()
# return SpectralVariance
name = '%s variance' % spectrogram.name
new = cls(out, bins, epoch=spectrogram.epoch, name=name,
channel=spectrogram.channel, f0=spectrogram.f0,
df=spectrogram.df)
return new | def from_spectrogram(cls, *spectrograms, **kwargs) | Calculate a new `SpectralVariance` from a
:class:`~gwpy.spectrogram.Spectrogram`
Parameters
----------
spectrogram : `~gwpy.spectrogram.Spectrogram`
input `Spectrogram` data
bins : `~numpy.ndarray`, optional
array of histogram bin edges, including the rightmost edge
low : `float`, optional
left edge of lowest amplitude bin, only read
if ``bins`` is not given
high : `float`, optional
right edge of highest amplitude bin, only read
if ``bins`` is not given
nbins : `int`, optional
number of bins to generate, only read if ``bins`` is not
given, default: `500`
log : `bool`, optional
calculate amplitude bins over a logarithmic scale, only
read if ``bins`` is not given, default: `False`
norm : `bool`, optional
normalise bin counts to a unit sum, default: `False`
density : `bool`, optional
normalise bin counts to a unit integral, default: `False`
Returns
-------
specvar : `SpectralVariance`
2D-array of spectral frequency-amplitude counts
See Also
--------
:func:`numpy.histogram`
for details on specifying bins and weights | 2.404007 | 2.172431 | 1.106598 |
rows, columns = self.shape
out = numpy.zeros(rows)
# Loop over frequencies
for i in range(rows):
# Calculate cumulative sum for array
cumsumvals = numpy.cumsum(self.value[i, :])
# Find value nearest requested percentile
abs_cumsumvals_minus_percentile = numpy.abs(cumsumvals -
percentile)
minindex = abs_cumsumvals_minus_percentile.argmin()
val = self.bins[minindex]
out[i] = val
name = '%s %s%% percentile' % (self.name, percentile)
return FrequencySeries(out, epoch=self.epoch, channel=self.channel,
frequencies=self.bins[:-1], name=name) | def percentile(self, percentile) | Calculate a given spectral percentile for this `SpectralVariance`
Parameters
----------
percentile : `float`
percentile (0 - 100) of the bins to compute
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
the given percentile `FrequencySeries` calculated from this
`SpectralVaraicence` | 4.532392 | 3.993667 | 1.134895 |
if self.type is not None:
return io_nds2.Nds2ChannelType.find(self.type).value | def ndstype(self) | NDS type integer for this channel.
This property is mapped to the `Channel.type` string. | 17.677505 | 13.372629 | 1.321917 |
if self.type not in [None, 'raw', 'reduced', 'online']:
return '%s,%s' % (self.name, self.type)
return self.name | def ndsname(self) | Name of this channel as stored in the NDS database | 6.269231 | 6.091815 | 1.029124 |
channellist = ChannelList.query(name, use_kerberos=use_kerberos,
debug=debug)
if not channellist:
raise ValueError("No channels found matching '%s'" % name)
if len(channellist) > 1:
raise ValueError("%d channels found matching '%s', please refine "
"search, or use `ChannelList.query` to return "
"all results" % (len(channellist), name))
return channellist[0] | def query(cls, name, use_kerberos=None, debug=False) | Query the LIGO Channel Information System for the `Channel`
matching the given name
Parameters
----------
name : `str`
name of channel
use_kerberos : `bool`, optional
use an existing Kerberos ticket as the authentication credential,
default behaviour will check for credentials and request username
and password if none are found (`None`)
debug : `bool`, optional
print verbose HTTP connection status for debugging,
default: `False`
Returns
-------
c : `Channel`
a new `Channel` containing all of the attributes set from
its entry in the CIS | 3.111103 | 3.245557 | 0.958573 |
return ChannelList.query_nds2([name], host=host, port=port,
connection=connection, type=type,
unique=True)[0] | def query_nds2(cls, name, host=None, port=None, connection=None,
type=None) | Query an NDS server for channel information
Parameters
----------
name : `str`
name of requested channel
host : `str`, optional
name of NDS2 server.
port : `int`, optional
port number for NDS2 connection
connection : `nds2.connection`
open connection to use for query
type : `str`, `int`
NDS2 channel type with which to restrict query
Returns
-------
channel : `Channel`
channel with metadata retrieved from NDS2 server
Raises
------
ValueError
if multiple channels are found for a given name
Notes
-----
.. warning::
A `host` is required if an open `connection` is not given | 5.230217 | 7.931287 | 0.659441 |
# extract metadata
name = nds2channel.name
sample_rate = nds2channel.sample_rate
unit = nds2channel.signal_units
if not unit:
unit = None
ctype = nds2channel.channel_type_to_string(nds2channel.channel_type)
# get dtype
dtype = { # pylint: disable: no-member
nds2channel.DATA_TYPE_INT16: numpy.int16,
nds2channel.DATA_TYPE_INT32: numpy.int32,
nds2channel.DATA_TYPE_INT64: numpy.int64,
nds2channel.DATA_TYPE_FLOAT32: numpy.float32,
nds2channel.DATA_TYPE_FLOAT64: numpy.float64,
nds2channel.DATA_TYPE_COMPLEX32: numpy.complex64,
}.get(nds2channel.data_type)
return cls(name, sample_rate=sample_rate, unit=unit, dtype=dtype,
type=ctype) | def from_nds2(cls, nds2channel) | Generate a new channel using an existing nds2.channel object | 2.221241 | 2.242755 | 0.990407 |
match = cls.MATCH.search(name)
if match is None or (strict and (
match.start() != 0 or match.end() != len(name))):
raise ValueError("Cannot parse channel name according to LIGO "
"channel-naming convention T990033")
return match.groupdict() | def parse_channel_name(cls, name, strict=True) | Decompose a channel name string into its components
Parameters
----------
name : `str`
name to parse
strict : `bool`, optional
require exact matching of format, with no surrounding text,
default `True`
Returns
-------
match : `dict`
`dict` of channel name components with the following keys:
- `'ifo'`: the letter-number interferometer prefix
- `'system'`: the top-level system name
- `'subsystem'`: the second-level sub-system name
- `'signal'`: the remaining underscore-delimited signal name
- `'trend'`: the trend type
- `'ndstype'`: the NDS2 channel suffix
Any optional keys that aren't found will return a value of `None`
Raises
------
ValueError
if the name cannot be parsed with at least an IFO and SYSTEM
Examples
--------
>>> Channel.parse_channel_name('L1:LSC-DARM_IN1_DQ')
{'ifo': 'L1',
'ndstype': None,
'signal': 'IN1_DQ',
'subsystem': 'DARM',
'system': 'LSC',
'trend': None}
>>> Channel.parse_channel_name(
'H1:ISI-BS_ST1_SENSCOR_GND_STS_X_BLRMS_100M_300M.rms,m-trend')
{'ifo': 'H1',
'ndstype': 'm-trend',
'signal': 'ST1_SENSCOR_GND_STS_X_BLRMS_100M_300M',
'subsystem': 'BS',
'system': 'ISI',
'trend': 'rms'} | 6.822338 | 8.991736 | 0.758734 |
return datafind.find_frametype(
self, gpstime=gpstime, frametype_match=frametype_match,
host=host, port=port, return_all=return_all,
allow_tape=allow_tape) | def find_frametype(self, gpstime=None, frametype_match=None,
host=None, port=None, return_all=False,
allow_tape=True) | Find the containing frametype(s) for this `Channel`
Parameters
----------
gpstime : `int`
a reference GPS time at which to search for frame files
frametype_match : `str`
a regular expression string to use to down-select from the
list of all available frametypes
host : `str`
the name of the datafind server to use for frame file discovery
port : `int`
the port of the datafind server on the given host
return_all: `bool`, default: `False`
return all matched frame types, otherwise only the first match is
returned
allow_tape : `bool`, default: `True`
include frame files on (slow) magnetic tape in the search
Returns
-------
frametype : `str`, `list`
the first matching frametype containing the this channel
(`return_all=False`, or a `list` of all matches | 2.003092 | 2.908418 | 0.688722 |
new = type(self)(str(self))
new._init_from_channel(self)
return new | def copy(self) | Returns a copy of this channel | 8.794706 | 6.890396 | 1.276372 |
new = cls()
for namestr in names:
for name in cls._split_names(namestr):
new.append(Channel(name))
return new | def from_names(cls, *names) | Create a new `ChannelList` from a list of names
The list of names can include comma-separated sets of names,
in which case the return will be a flattened list of all parsed
channel names. | 5.40339 | 4.236933 | 1.275307 |
out = []
namestr = QUOTE_REGEX.sub('', namestr)
while True:
namestr = namestr.strip('\' \n')
if ',' not in namestr:
break
for nds2type in io_nds2.Nds2ChannelType.names() + ['']:
if nds2type and ',%s' % nds2type in namestr:
try:
channel, ctype, namestr = namestr.split(',', 2)
except ValueError:
channel, ctype = namestr.split(',')
namestr = ''
out.append('%s,%s' % (channel, ctype))
break
elif nds2type == '' and ',' in namestr:
channel, namestr = namestr.split(',', 1)
out.append(channel)
break
if namestr:
out.append(namestr)
return out | def _split_names(namestr) | Split a comma-separated list of channel names. | 3.755205 | 3.513886 | 1.068676 |
for i, chan in enumerate(self):
if name == chan.name:
return i
raise ValueError(name) | def find(self, name) | Find the `Channel` with a specific name in this `ChannelList`.
Parameters
----------
name : `str`
name of the `Channel` to find
Returns
-------
index : `int`
the position of the first `Channel` in this `ChannelList`
whose `~Channel.name` matches the search key.
Raises
------
ValueError
if no matching `Channel` is found. | 5.030659 | 4.271799 | 1.177644 |
# format name regex
if isinstance(name, Pattern):
flags = name.flags
name = name.pattern
else:
flags = 0
if exact_match:
name = name if name.startswith(r'\A') else r"\A%s" % name
name = name if name.endswith(r'\Z') else r"%s\Z" % name
name_regexp = re.compile(name, flags=flags)
matched = list(self)
if name is not None:
matched = [entry for entry in matched if
name_regexp.search(entry.name) is not None]
if sample_rate is not None:
sample_rate = (sample_rate.value if
isinstance(sample_rate, units.Quantity) else
float(sample_rate))
matched = [entry for entry in matched if entry.sample_rate and
entry.sample_rate.value == sample_rate]
if sample_range is not None:
matched = [entry for entry in matched if
sample_range[0] <= entry.sample_rate.value <=
sample_range[1]]
for attr, val in others.items():
if val is not None:
matched = [entry for entry in matched if
(hasattr(entry, attr) and
getattr(entry, attr) == val)]
return self.__class__(matched) | def sieve(self, name=None, sample_rate=None, sample_range=None,
exact_match=False, **others) | Find all `Channels <Channel>` in this list matching the
specified criteria.
Parameters
----------
name : `str`, or regular expression
any part of the channel name against which to match
(or full name if `exact_match=False` is given)
sample_rate : `float`
rate (number of samples per second) to match exactly
sample_range : 2-`tuple`
`[low, high]` closed interval or rates to match within
exact_match : `bool`
return channels matching `name` exactly, default: `False`
Returns
-------
new : `ChannelList`
a new `ChannelList` containing the matching channels | 2.212012 | 2.252137 | 0.982184 |
from .io import cis
return cis.query(name, use_kerberos=use_kerberos, debug=debug) | def query(cls, name, use_kerberos=None, debug=False) | Query the LIGO Channel Information System a `ChannelList`.
Parameters
----------
name : `str`
name of channel, or part of it.
use_kerberos : `bool`, optional
use an existing Kerberos ticket as the authentication credential,
default behaviour will check for credentials and request username
and password if none are found (`None`)
debug : `bool`, optional
print verbose HTTP connection status for debugging,
default: `False`
Returns
-------
channels : `ChannelList`
a new list containing all `Channels <Channel>` found. | 5.364487 | 7.306065 | 0.734251 |
ndschannels = io_nds2.find_channels(names, host=host, port=port,
connection=connection, type=type,
unique=unique)
return cls(map(Channel.from_nds2, ndschannels)) | def query_nds2(cls, names, host=None, port=None, connection=None,
type=io_nds2.Nds2ChannelType.any(), unique=False) | Query an NDS server for channel information
Parameters
----------
name : `str`
name of requested channel
host : `str`, optional
name of NDS2 server.
port : `int`, optional
port number for NDS2 connection
connection : `nds2.connection`
open connection to use for query
type : `str`, `int`
NDS2 channel type with which to restrict query
unique : `bool`, optional
require a unique query result for each name given, default `False`
Returns
-------
channellist : `ChannelList`
list of `Channels <Channel>` with metadata retrieved from
NDS2 server
Raises
------
ValueError
if multiple channels are found for a given name and `unique=True`
is given
Notes
-----
.. warning::
A `host` is required if an open `connection` is not given | 2.866861 | 4.805436 | 0.596587 |
start = int(to_gps(start))
end = int(ceil(to_gps(end)))
chans = io_nds2.find_channels(channels, connection=connection,
unique=True, epoch=(start, end),
type=ctype)
availability = io_nds2.get_availability(chans, start, end,
connection=connection)
return type(availability)(zip(channels, availability.values())) | def query_nds2_availability(cls, channels, start, end, ctype=126,
connection=None, host=None, port=None) | Query for when data are available for these channels in NDS2
Parameters
----------
channels : `list`
list of `Channel` or `str` for which to search
start : `int`
GPS start time of search, or any acceptable input to
:meth:`~gwpy.time.to_gps`
end : `int`
GPS end time of search, or any acceptable input to
:meth:`~gwpy.time.to_gps`
connection : `nds2.connection`, optional
open connection to an NDS(2) server, if not given, one will be
created based on ``host`` and ``port`` keywords
host : `str`, optional
name of NDS server host
port : `int`, optional
port number for NDS connection
Returns
-------
segdict : `~gwpy.segments.SegmentListDict`
dict of ``(name, SegmentList)`` pairs | 5.085903 | 5.891138 | 0.863314 |
from sqlalchemy.engine import create_engine
from sqlalchemy.exc import ProgrammingError
# connect if needed
if engine is None:
conn_kw = {}
for key in ('db', 'host', 'user', 'passwd'):
try:
conn_kw[key] = kwargs.pop(key)
except KeyError:
pass
engine = create_engine(get_connection_str(**conn_kw))
try:
return GravitySpyTable(fetch(engine, tablename, **kwargs))
except ProgrammingError as exc:
if 'relation "%s" does not exist' % tablename in str(exc):
msg = exc.args[0]
msg = msg.replace(
'does not exist',
'does not exist, the following tablenames are '
'acceptable:\n %s\n' % '\n '.join(engine.table_names()))
exc.args = (msg,)
raise | def get_gravityspy_triggers(tablename, engine=None, **kwargs) | Fetch data into an `GravitySpyTable`
Parameters
----------
table : `str`,
The name of table you are attempting to receive triggers
from.
selection
other filters you would like to supply
underlying reader method for the given format
.. note::
For now it will attempt to automatically connect you
to a specific DB. In the future, this may be an input
argument.
Returns
-------
table : `GravitySpyTable` | 3.196382 | 3.16039 | 1.011388 |
if (not user) or (not passwd):
user = os.getenv('GRAVITYSPY_DATABASE_USER', None)
passwd = os.getenv('GRAVITYSPY_DATABASE_PASSWD', None)
if (not user) or (not passwd):
raise ValueError('Remember to either pass '
'or export GRAVITYSPY_DATABASE_USER '
'and export GRAVITYSPY_DATABASE_PASSWD in order '
'to access the Gravity Spy Data: '
'https://secrets.ligo.org/secrets/144/'
' description is username and secret is password.')
return 'postgresql://{0}:{1}@{2}:5432/{3}'.format(user, passwd, host, db) | def get_connection_str(db='gravityspy',
host='gravityspy.ciera.northwestern.edu',
user=None,
passwd=None) | Create string to pass to create_engine
Parameters
----------
db : `str`, default: ``gravityspy``
The name of the SQL database your connecting to.
host : `str`, default: ``gravityspy.ciera.northwestern.edu``
The name of the server the database you are connecting to
lives on.
user : `str`, default: `None`
Your username for authentication to this database.
passwd : `str`, default: `None`
Your password for authentication to this database.
.. note::
`user` and `passwd` should be given together, otherwise they will be
ignored and values will be resolved from the
``GRAVITYSPY_DATABASE_USER`` and ``GRAVITYSPY_DATABASE_PASSWD``
environment variables.
Returns
-------
conn_string : `str`
A SQLAlchemy engine compliant connection string | 3.770517 | 4.128802 | 0.913223 |
import pytz
dt = dt or datetime.datetime.now()
offset = pytz.timezone(get_timezone(ifo)).utcoffset(dt)
return offset.days * 86400 + offset.seconds + offset.microseconds * 1e-6 | def get_timezone_offset(ifo, dt=None) | Return the offset in seconds between UTC and the given interferometer
Parameters
----------
ifo : `str`
prefix of interferometer, e.g. ``'X1'``
dt : `datetime.datetime`, optional
the time at which to calculate the offset, defaults to now
Returns
-------
offset : `int`
the offset in seconds between the timezone of the interferometer
and UTC | 2.310876 | 2.870042 | 0.805172 |
# parse keywords
if kwargs is None:
kwargs = dict()
samp = series.sample_rate
fftlength = kwargs.pop('fftlength', None) or series.duration
overlap = kwargs.pop('overlap', None)
window = kwargs.pop('window', None)
# parse function library and name
if func is None:
method = library = None
else:
method = func.__name__
library = _fft_library(func)
# fftlength -> nfft
nfft = seconds_to_samples(fftlength, samp)
# overlap -> noverlap
noverlap = _normalize_overlap(overlap, window, nfft, samp, method=method)
# create window
window = _normalize_window(window, nfft, library, series.dtype)
if window is not None: # allow FFT methods to use their own defaults
kwargs['window'] = window
# create FFT plan for LAL
if library == 'lal' and kwargs.get('plan', None) is None:
from ._lal import generate_fft_plan
kwargs['plan'] = generate_fft_plan(nfft, dtype=series.dtype)
kwargs.update({
'nfft': nfft,
'noverlap': noverlap,
})
return kwargs | def normalize_fft_params(series, kwargs=None, func=None) | Normalize a set of FFT parameters for processing
This method reads the ``fftlength`` and ``overlap`` keyword arguments
(presumed to be values in seconds), works out sensible defaults,
then updates ``kwargs`` in place to include ``nfft`` and ``noverlap``
as values in sample counts.
If a ``window`` is given, the ``noverlap`` parameter will be set to the
recommended overlap for that window type, if ``overlap`` is not given.
If a ``window`` is given as a `str`, it will be converted to a
`numpy.ndarray` containing the correct window (of the correct length).
Parameters
----------
series : `gwpy.timeseries.TimeSeries`
the data that will be processed using an FFT-based method
kwargs : `dict`
the dict of keyword arguments passed by the user
func : `callable`, optional
the FFT method that will be called
Examples
--------
>>> from numpy.random import normal
>>> from gwpy.timeseries import TimeSeries
>>> normalize_fft_params(TimeSeries(normal(size=1024), sample_rate=256))
{'nfft': 1024, 'noverlap': 0}
>>> normalize_fft_params(TimeSeries(normal(size=1024), sample_rate=256),
... {'window': 'hann'})
{'window': array([ 0.00000000e+00, 9.41235870e-06, ...,
3.76490804e-05, 9.41235870e-06]), 'noverlap': 0, 'nfft': 1024} | 3.956865 | 4.028536 | 0.982209 |
if method == 'bartlett':
return 0
if overlap is None and isinstance(window, string_types):
return recommended_overlap(window, nfft)
if overlap is None:
return 0
return seconds_to_samples(overlap, samp) | def _normalize_overlap(overlap, window, nfft, samp, method='welch') | Normalise an overlap in physical units to a number of samples
Parameters
----------
overlap : `float`, `Quantity`, `None`
the overlap in some physical unit (seconds)
window : `str`
the name of the window function that will be used, only used
if `overlap=None` is given
nfft : `int`
the number of samples that will be used in the fast Fourier
transform
samp : `Quantity`
the sampling rate (Hz) of the data that will be transformed
method : `str`
the name of the averaging method, default: `'welch'`, only
used to return `0` for `'bartlett'` averaging
Returns
-------
noverlap : `int`
the number of samples to be be used for the overlap | 5.085263 | 5.281792 | 0.962791 |
if library == '_lal' and isinstance(window, numpy.ndarray):
from ._lal import window_from_array
return window_from_array(window)
if library == '_lal':
from ._lal import generate_window
return generate_window(nfft, window=window, dtype=dtype)
if isinstance(window, string_types):
window = canonical_name(window)
if isinstance(window, string_types + (tuple,)):
return get_window(window, nfft)
return None | def _normalize_window(window, nfft, library, dtype) | Normalise a window specification for a PSD calculation
Parameters
----------
window : `str`, `numpy.ndarray`, `None`
the input window specification
nfft : `int`
the length of the Fourier transform, in samples
library : `str`
the name of the library that provides the PSD routine
dtype : `type`
the required type of the window array, only used if
`library='lal'` is given
Returns
-------
window : `numpy.ndarray`, `lal.REAL8Window`
a numpy-, or `LAL`-format window array | 3.45319 | 3.806815 | 0.907107 |
@wraps(func)
def wrapped_func(series, method_func, *args, **kwargs):
if isinstance(series, tuple):
data = series[0]
else:
data = series
# normalise FFT parmeters for all libraries
normalize_fft_params(data, kwargs=kwargs, func=method_func)
return func(series, method_func, *args, **kwargs)
return wrapped_func | def set_fft_params(func) | Decorate a method to automatically convert quantities to samples | 4.592635 | 4.694556 | 0.97829 |
# decorator has translated the arguments for us, so just call psdn()
return _psdn(timeseries, method_func, *args, **kwargs) | def psd(timeseries, method_func, *args, **kwargs) | Generate a PSD using a method function
All arguments are presumed to be given in physical units
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`, `tuple`
the data to process, or a 2-tuple of series to correlate
method_func : `callable`
the function that will be called to perform the signal processing
*args, **kwargs
other arguments to pass to ``method_func`` when calling | 12.612483 | 21.379608 | 0.589931 |
# unpack tuple of timeseries for cross spectrum
try:
timeseries, other = timeseries
# or just calculate PSD
except ValueError:
return method_func(timeseries, kwargs.pop('nfft'), *args, **kwargs)
else:
return method_func(timeseries, other, kwargs.pop('nfft'),
*args, **kwargs) | def _psdn(timeseries, method_func, *args, **kwargs) | Generate a PSD using a method function with FFT arguments in samples
All arguments are presumed to be in sample counts, not physical units
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`, `tuple`
the data to process, or a 2-tuple of series to correlate
method_func : `callable`
the function that will be called to perform the signal processing
*args, **kwargs
other arguments to pass to ``method_func`` when calling | 5.296835 | 5.763454 | 0.919038 |
# unpack CSD TimeSeries pair, or single timeseries
try:
timeseries, other = timeseries
except ValueError:
timeseries = timeseries
other = None
from ...spectrogram import Spectrogram
nproc = kwargs.pop('nproc', 1)
# get params
epoch = timeseries.t0.value
nstride = seconds_to_samples(stride, timeseries.sample_rate)
kwargs['fftlength'] = kwargs.pop('fftlength', stride) or stride
normalize_fft_params(timeseries, kwargs=kwargs, func=method_func)
nfft = kwargs['nfft']
noverlap = kwargs['noverlap']
# sanity check parameters
if nstride > timeseries.size:
raise ValueError("stride cannot be greater than the duration of "
"this TimeSeries")
if nfft > nstride:
raise ValueError("fftlength cannot be greater than stride")
if noverlap >= nfft:
raise ValueError("overlap must be less than fftlength")
# set up single process Spectrogram method
def _psd(series):
psd_ = _psdn(series, method_func, *args, **kwargs)
del psd_.epoch # fixes Segmentation fault (no idea why it faults)
return psd_
# define chunks
tschunks = _chunk_timeseries(timeseries, nstride, noverlap)
if other is not None:
otherchunks = _chunk_timeseries(other, nstride, noverlap)
tschunks = zip(tschunks, otherchunks)
# calculate PSDs
psds = mp_utils.multiprocess_with_queues(nproc, _psd, tschunks)
# recombobulate PSDs into a spectrogram
return Spectrogram.from_spectra(*psds, epoch=epoch, dt=stride) | def average_spectrogram(timeseries, method_func, stride, *args, **kwargs) | Generate an average spectrogram using a method function
Each time bin of the resulting spectrogram is a PSD generated using
the method_func | 5.196319 | 5.235093 | 0.992593 |
from ...spectrogram import Spectrogram
# get params
sampling = timeseries.sample_rate.to('Hz').value
nproc = kwargs.pop('nproc', 1)
nfft = kwargs.pop('nfft')
noverlap = kwargs.pop('noverlap')
nstride = nfft - noverlap
# sanity check parameters
if noverlap >= nfft:
raise ValueError("overlap must be less than fftlength")
# set up single process Spectrogram method
def _psd(series):
return method_func(series, nfft=nfft, **kwargs)[1]
# define chunks
chunks = []
x = 0
while x + nfft <= timeseries.size:
y = min(timeseries.size, x + nfft)
chunks.append((x, y))
x += nstride
tschunks = (timeseries.value[i:j] for i, j in chunks)
# calculate PSDs with multiprocessing
psds = mp_utils.multiprocess_with_queues(nproc, _psd, tschunks)
# convert PSDs to array with spacing for averages
numtimes = 1 + int((timeseries.size - nstride) / nstride)
numfreqs = int(nfft / 2 + 1)
data = numpy.zeros((numtimes, numfreqs), dtype=timeseries.dtype)
data[:len(psds)] = psds
# create output spectrogram
unit = fft_utils.scale_timeseries_unit(
timeseries.unit, scaling=kwargs.get('scaling', 'density'))
out = Spectrogram(numpy.empty((numtimes, numfreqs),
dtype=timeseries.dtype),
copy=False, dt=nstride * timeseries.dt, t0=timeseries.t0,
f0=0, df=sampling/nfft, unit=unit,
name=timeseries.name, channel=timeseries.channel)
# normalize over-dense grid
density = nfft // nstride
weights = get_window('triangle', density)
for i in range(numtimes):
# get indices of overlapping columns
x = max(0, i+1-density)
y = min(i+1, numtimes-density+1)
if x == 0:
wgt = weights[-y:]
elif y == numtimes - density + 1:
wgt = weights[:y-x]
else:
wgt = weights
# calculate weighted average
out.value[i, :] = numpy.average(data[x:y], axis=0, weights=wgt)
return out | def spectrogram(timeseries, method_func, **kwargs) | Generate a spectrogram using a method function
Each time bin of the resulting spectrogram is a PSD estimate using
a single FFT | 4.183105 | 4.227568 | 0.989482 |
re_name_def = re.compile(r'^\s*%\s+(?P<colname>\w+)')
self.names = []
for line in lines:
if not line: # ignore empty lines in header (windows)
continue
if not line.startswith('%'): # end of header lines
break
match = re_name_def.search(line)
if match:
self.names.append(match.group('colname'))
if not self.names:
raise core.InconsistentTableError(
'No column names found in Omega header')
self.cols = [] # pylint: disable=attribute-defined-outside-init
for name in self.names:
col = core.Column(name=name)
self.cols.append(col) | def get_cols(self, lines) | Initialize Column objects from a multi-line ASCII header
Parameters
----------
lines : `list`
List of table lines | 3.333544 | 3.301822 | 1.009608 |
if self.args.norm:
return 'Normalized to {}'.format(self.args.norm)
if len(self.units) == 1 and self.usetex:
return r'ASD $\left({0}\right)$'.format(
self.units[0].to_string('latex').strip('$'))
elif len(self.units) == 1:
return 'ASD ({0})'.format(self.units[0].to_string('generic'))
return super(Spectrogram, self).get_color_label() | def get_color_label(self) | Text for colorbar label | 4.609358 | 4.168011 | 1.105889 |
fftlength = float(self.args.secpfft)
overlap = fftlength * self.args.overlap
stride = fftlength - overlap
nfft = self.duration / stride # number of FFTs
ffps = int(nfft / (self.width * 0.8)) # FFTs per second
if ffps > 3:
return max(2 * fftlength, ffps * stride + fftlength - 1)
return None | def get_stride(self) | Calculate the stride for the spectrogram
This method returns the stride as a `float`, or `None` to indicate
selected usage of `TimeSeries.spectrogram2`. | 8.457479 | 8.691771 | 0.973044 |
args = self.args
fftlength = float(args.secpfft)
overlap = fftlength * args.overlap
self.log(2, "Calculating spectrogram secpfft: %s, overlap: %s" %
(fftlength, overlap))
stride = self.get_stride()
if stride:
specgram = self.timeseries[0].spectrogram(
stride, fftlength=fftlength, overlap=overlap,
window=args.window)
nfft = stride * (stride // (fftlength - overlap))
self.log(3, 'Spectrogram calc, stride: %s, fftlength: %s, '
'overlap: %sf, #fft: %d' % (stride, fftlength,
overlap, nfft))
else:
specgram = self.timeseries[0].spectrogram2(
fftlength=fftlength, overlap=overlap, window=args.window)
nfft = specgram.shape[0]
self.log(3, 'HR-Spectrogram calc, fftlength: %s, overlap: %s, '
'#fft: %d' % (fftlength, overlap, nfft))
return specgram ** (1/2.) | def get_spectrogram(self) | Calculate the spectrogram to be plotted
This exists as a separate method to allow subclasses to override
this and not the entire `get_plot` method, e.g. `Coherencegram`.
This method should not apply the normalisation from `args.norm`. | 3.833516 | 3.671339 | 1.044174 |
args = self.args
# constant input causes unhelpful (weird) error messages
# translate them to English
inmin = self.timeseries[0].min().value
if inmin == self.timeseries[0].max().value:
if not self.got_error:
self.log(0, 'ERROR: Input has constant values [{:g}]. '
'Spectrogram-like products cannot process '
'them.'.format(inmin))
self.got_error = True
else:
# create 'raw' spectrogram
specgram = self.get_spectrogram()
# there may be data that can't be processed
if specgram is not None: # <-DMM: why is this here?
# apply normalisation
if args.norm:
specgram = specgram.ratio(args.norm)
self.result = specgram
# -- update plot defaults
if not args.ymin:
args.ymin = 1/args.secpfft if args.yscale == 'log' else 0
norm = 'log' if args.color_scale == 'log' else None
# vmin/vmax set in scale_axes_from_data()
return specgram.plot(figsize=self.figsize, dpi=self.dpi,
norm=norm, cmap=args.cmap) | def make_plot(self) | Generate the plot from time series and arguments | 9.551649 | 9.230311 | 1.034813 |
if len(self.units) == 1:
return r'ASD $\left({0}\right)$'.format(
self.units[0].to_string('latex').strip('$'))
return 'ASD' | def get_ylabel(self) | Text for y-axis label | 5.87254 | 5.668336 | 1.036025 |
args = self.args
fftlength = float(args.secpfft)
overlap = args.overlap
self.log(2, "Calculating spectrum secpfft: {0}, overlap: {1}".format(
fftlength, overlap))
overlap *= fftlength
# create plot
plot = Plot(figsize=self.figsize, dpi=self.dpi)
ax = plot.gca()
# handle user specified plot labels
if self.args.legend:
nlegargs = len(self.args.legend[0])
else:
nlegargs = 0
if nlegargs > 0 and nlegargs != self.n_datasets:
warnings.warn('The number of legends specified must match '
'the number of time series'
' (channels * start times). '
'There are {:d} series and {:d} legends'.format(
len(self.timeseries), len(self.args.legend)))
nlegargs = 0 # don't use themm
for i in range(0, self.n_datasets):
series = self.timeseries[i]
if nlegargs:
label = self.args.legend[0][i]
else:
label = series.channel.name
if len(self.start_list) > 1:
label += ', {0}'.format(series.epoch.gps)
asd = series.asd(fftlength=fftlength, overlap=overlap)
self.spectra.append(asd)
if self.usetex:
label = label_to_latex(label)
ax.plot(asd, label=label)
if args.xscale == 'log' and not args.xmin:
args.xmin = 1/fftlength
return plot | def make_plot(self) | Generate the plot from time series and arguments | 4.933257 | 4.807483 | 1.026162 |
# get tight limits for X-axis
if self.args.xmin is None:
self.args.xmin = min(fs.xspan[0] for fs in self.spectra)
if self.args.xmax is None:
self.args.xmax = max(fs.xspan[1] for fs in self.spectra)
# autoscale view for Y-axis
cropped = [fs.crop(self.args.xmin, self.args.xmax) for
fs in self.spectra]
ymin = min(fs.value.min() for fs in cropped)
ymax = max(fs.value.max() for fs in cropped)
self.plot.gca().yaxis.set_data_interval(ymin, ymax, ignore=True)
self.plot.gca().autoscale_view(scalex=False) | def scale_axes_from_data(self) | Restrict data limits for Y-axis based on what you can see | 3.13328 | 2.982123 | 1.050687 |
# if reading a cache, read it now and sieve
if io_cache.is_cache(source):
from .cache import preformat_cache
source = preformat_cache(source, *args[1:],
start=kwargs.get('start'),
end=kwargs.get('end'))
# get join arguments
pad = kwargs.pop('pad', None)
gap = kwargs.pop('gap', 'raise' if pad is None else 'pad')
joiner = _join_factory(cls, gap, pad)
# read
return io_read_multi(joiner, cls, source, *args, **kwargs) | def read(cls, source, *args, **kwargs) | Read data from a source into a `gwpy.timeseries` object.
This method is just the internal worker for `TimeSeries.read`, and
`TimeSeriesDict.read`, and isn't meant to be called directly. | 7.040054 | 7.161863 | 0.982992 |
if issubclass(cls, dict):
def _join(data):
out = cls()
data = list(data)
while data:
tsd = data.pop(0)
out.append(tsd, gap=gap, pad=pad)
del tsd
return out
else:
from .. import TimeSeriesBaseList
def _join(arrays):
list_ = TimeSeriesBaseList(*arrays)
return list_.join(pad=pad, gap=gap)
return _join | def _join_factory(cls, gap, pad) | Build a joiner for the given cls, and the given padding options | 4.494005 | 4.503016 | 0.997999 |
# find group
if isinstance(source, h5py.File):
source, ifo = _find_table_group(source, ifo=ifo)
# -- by this point 'source' is guaranteed to be an h5py.Group
# parse default columns
if columns is None:
columns = list(_get_columns(source))
readcols = set(columns)
# parse selections
selection = parse_column_filters(selection or [])
if selection:
readcols.update(list(zip(*selection))[0])
# set up meta dict
meta = {'ifo': ifo}
meta.update(source.attrs)
if extended_metadata:
meta.update(_get_extended_metadata(source))
if loudest:
loudidx = source['loudest'][:]
# map data to columns
data = []
for name in readcols:
# convert hdf5 dataset into Column
try:
arr = source[name][:]
except KeyError:
if name in GET_COLUMN:
arr = GET_COLUMN[name](source)
else:
raise
if loudest:
arr = arr[loudidx]
data.append(Table.Column(arr, name=name))
# read, applying selection filters, and column filters
return filter_table(Table(data, meta=meta), selection)[columns] | def table_from_file(source, ifo=None, columns=None, selection=None,
loudest=False, extended_metadata=True) | Read a `Table` from a PyCBC live HDF5 file
Parameters
----------
source : `str`, `h5py.File`, `h5py.Group`
the file path of open `h5py` object from which to read the data
ifo : `str`, optional
the interferometer prefix (e.g. ``'G1'``) to read; this is required
if reading from a file path or `h5py.File` and the containing file
stores data for multiple interferometers
columns : `list` or `str`, optional
the list of column names to read, defaults to all in group
loudest : `bool`, optional
read only those events marked as 'loudest',
default: `False` (read all)
extended_metadata : `bool`, optional
record non-column datasets found in the H5 group (e.g. ``'psd'``)
in the ``meta`` dict, default: `True`
Returns
-------
table : `~gwpy.table.EventTable` | 4.292508 | 4.349437 | 0.986911 |
exclude = ('background',)
if ifo is None:
try:
ifo, = [key for key in h5file if key not in exclude]
except ValueError as exc:
exc.args = ("PyCBC live HDF5 file contains dataset groups "
"for multiple interferometers, please specify "
"the prefix of the relevant interferometer via "
"the `ifo` keyword argument, e.g: `ifo=G1`",)
raise
try:
return h5file[ifo], ifo
except KeyError as exc:
exc.args = ("No group for ifo %r in PyCBC live HDF5 file" % ifo,)
raise | def _find_table_group(h5file, ifo=None) | Find the right `h5py.Group` within the given `h5py.File` | 4.938243 | 4.845187 | 1.019206 |
columns = set()
for name in sorted(h5group):
if (not isinstance(h5group[name], h5py.Dataset) or
name == 'template_boundaries'):
continue
if name.endswith('_template') and name[:-9] in columns:
continue
columns.add(name)
return columns - META_COLUMNS | def _get_columns(h5group) | Find valid column names from a PyCBC HDF5 Group
Returns a `set` of names. | 4.334207 | 4.621003 | 0.937936 |
meta = dict()
# get PSD
try:
psd = h5group['psd']
except KeyError:
pass
else:
from gwpy.frequencyseries import FrequencySeries
meta['psd'] = FrequencySeries(
psd[:], f0=0, df=psd.attrs['delta_f'], name='pycbc_live')
# get everything else
for key in META_COLUMNS - {'psd'}:
try:
value = h5group[key][:]
except KeyError:
pass
else:
meta[key] = value
return meta | def _get_extended_metadata(h5group) | Extract the extended metadata for a PyCBC table in HDF5
This method packs non-table-column datasets in the given h5group into
a metadata `dict`
Returns
-------
meta : `dict`
the metadata dict | 4.121046 | 4.357939 | 0.945641 |
return type(files)([f for f in files if not empty_hdf5_file(f, ifo=ifo)]) | def filter_empty_files(files, ifo=None) | Remove empty PyCBC-HDF5 files from a list
Parameters
----------
files : `list`
A list of file paths to test.
ifo : `str`, optional
prefix for the interferometer of interest (e.g. ``'L1'``),
include this for a more robust test of 'emptiness'
Returns
-------
nonempty : `list`
the subset of the input ``files`` that are considered not empty
See also
--------
empty_hdf5_file
for details of the 'emptiness' test | 5.786528 | 7.676573 | 0.753791 |
# the decorator opens the HDF5 file for us, so h5f is guaranteed to
# be an h5py.Group object
h5f = h5f.file
if list(h5f) == []:
return True
if ifo is not None and (ifo not in h5f or list(h5f[ifo]) == ['psd']):
return True
return False | def empty_hdf5_file(h5f, ifo=None) | Determine whether PyCBC-HDF5 file is empty
A file is considered empty if it contains no groups at the base level,
or if the ``ifo`` group contains only the ``psd`` dataset.
Parameters
----------
h5f : `str`
path of the pycbc_live file to test
ifo : `str`, optional
prefix for the interferometer of interest (e.g. ``'L1'``),
include this for a more robust test of 'emptiness'
Returns
-------
empty : `bool`
`True` if the file looks to have no content, otherwise `False` | 5.417045 | 5.665971 | 0.956066 |
if identify_hdf5(origin, filepath, fileobj, *args, **kwargs) and (
filepath is not None and PYCBC_FILENAME.match(basename(filepath))):
return True
return False | def identify_pycbc_live(origin, filepath, fileobj, *args, **kwargs) | Identify a PyCBC Live file as an HDF5 with the correct name | 5.259977 | 4.641081 | 1.133352 |
def get_new_snr(h5group, q=6., n=2.): # pylint: disable=invalid-name
newsnr = h5group['snr'][:].copy()
rchisq = h5group['chisq'][:]
idx = numpy.where(rchisq > 1.)[0]
newsnr[idx] *= _new_snr_scale(rchisq[idx], q=q, n=n)
return newsnr | Calculate the 'new SNR' column for this PyCBC HDF5 table group | null | null | null |
|
mass1 = h5group['mass1'][:]
mass2 = h5group['mass2'][:]
return (mass1 * mass2) ** (3/5.) / (mass1 + mass2) ** (1/5.) | def get_mchirp(h5group) | Calculate the chipr mass column for this PyCBC HDF5 table group | 3.079647 | 2.983162 | 1.032343 |
if not isinstance(item, tuple):
item = (item,)
return item[:ndim] + (None,) * (ndim - len(item)) | def format_nd_slice(item, ndim) | Preformat a getitem argument as an N-tuple | 2.740594 | 2.706557 | 1.012576 |
slice_ = as_slice(slice_)
# attribute names
index = '{}index'.format
origin = '{}0'.format
delta = 'd{}'.format
# if array has an index set already, use it
if hasattr(old, '_{}index'.format(oldaxis)):
setattr(new, index(newaxis), getattr(old, index(oldaxis))[slice_])
# otherwise if using a slice, use origin and delta properties
elif isinstance(slice_, slice) or not numpy.sum(slice_):
if isinstance(slice_, slice):
offset = slice_.start or 0
step = slice_.step or 1
else: # empty ndarray slice (so just set attributes)
offset = 0
step = 1
dx = getattr(old, delta(oldaxis))
x0 = getattr(old, origin(oldaxis))
# set new.x0 / new.y0
setattr(new, origin(newaxis), x0 + offset * dx)
# set new.dx / new.dy
setattr(new, delta(newaxis), dx * step)
# otherwise slice with an index array
else:
setattr(new, index(newaxis), getattr(old, index(oldaxis))[slice_])
return new | def slice_axis_attributes(old, oldaxis, new, newaxis, slice_) | Set axis metadata for ``new`` by slicing an axis of ``old``
This is primarily for internal use in slice functions (__getitem__)
Parameters
----------
old : `Array`
array being sliced
oldaxis : ``'x'`` or ``'y'``
the axis to slice
new : `Array`
product of slice
newaxis : ``'x'`` or ``'y'``
the target axis
slice_ : `slice`, `numpy.ndarray`
the slice to apply to old (or an index array)
See Also
--------
Series.__getitem__
Array2D.__getitem__ | 3.828182 | 4.261489 | 0.89832 |
try:
slice_ = as_slice(slice_)
except TypeError:
return False
if isinstance(slice_, numpy.ndarray) and numpy.all(slice_):
return True
if isinstance(slice_, slice) and slice_ in (
slice(None, None, None), slice(0, None, 1)
):
return True | def null_slice(slice_) | Returns True if a slice will have no affect | 3.131219 | 2.991912 | 1.046561 |
if isinstance(slice_, (Integral, numpy.integer, type(None))):
return slice(0, None, 1)
if isinstance(slice_, (slice, numpy.ndarray)):
return slice_
if isinstance(slice_, (list, tuple)):
return tuple(map(as_slice, slice_))
raise TypeError("Cannot format {!r} as slice".format(slice_)) | def as_slice(slice_) | Convert an object to a slice, if possible | 3.145234 | 3.069124 | 1.024798 |
url = '%s/?q=%s' % (CIS_API_URL, name)
more = True
out = ChannelList()
while more:
reply = _get(url, use_kerberos=use_kerberos, debug=debug)
try:
out.extend(map(parse_json, reply[u'results']))
except KeyError:
pass
except TypeError: # reply is a list
out.extend(map(parse_json, reply))
break
more = 'next' in reply and reply['next'] is not None
if more:
url = reply['next']
else:
break
out.sort(key=lambda c: c.name)
return out | def query(name, use_kerberos=None, debug=False) | Query the Channel Information System for details on the given
channel name
Parameters
----------
name : `~gwpy.detector.Channel`, or `str`
Name of the channel of interest
Returns
-------
channel : `~gwpy.detector.Channel`
Channel with all details as acquired from the CIS | 3.639685 | 3.743507 | 0.972266 |
from ligo.org import request
# perform query
try:
response = request(url, debug=debug, use_kerberos=use_kerberos)
except HTTPError:
raise ValueError("Channel not found at URL %s "
"Information System. Please double check the "
"name and try again." % url)
if isinstance(response, bytes):
response = response.decode('utf-8')
return json.loads(response) | def _get(url, use_kerberos=None, debug=False) | Perform a GET query against the CIS | 6.245858 | 6.224207 | 1.003478 |
sample_rate = data['datarate']
unit = data['units']
dtype = CIS_DATA_TYPE[data['datatype']]
model = data['source']
url = data['displayurl']
return Channel(data['name'], sample_rate=sample_rate, unit=unit,
dtype=dtype, model=model, url=url) | def parse_json(data) | Parse the input data dict into a `Channel`.
Parameters
----------
data : `dict`
input data from CIS json query
Returns
-------
c : `Channel`
a `Channel` built from the data | 5.815801 | 5.078989 | 1.145071 |
units = self.units
if len(units) == 1 and str(units[0]) == '': # dimensionless
return ''
if len(units) == 1 and self.usetex:
return units[0].to_string('latex')
elif len(units) == 1:
return units[0].to_string()
elif len(units) > 1:
return 'Multiple units'
return super(TimeSeries, self).get_ylabel() | def get_ylabel(self) | Text for y-axis label, check if channel defines it | 3.566445 | 3.369139 | 1.058563 |
plot = Plot(figsize=self.figsize, dpi=self.dpi)
ax = plot.gca(xscale='auto-gps')
# handle user specified plot labels
if self.args.legend:
nlegargs = len(self.args.legend[0])
else:
nlegargs = 0
if nlegargs > 0 and nlegargs != self.n_datasets:
warnings.warn('The number of legends specified must match '
'the number of time series'
' (channels * start times). '
'There are {:d} series and {:d} legends'.format(
len(self.timeseries), len(self.args.legend)))
nlegargs = 0 # don't use them
for i in range(0, self.n_datasets):
series = self.timeseries[i]
if nlegargs:
label = self.args.legend[0][i]
else:
label = series.channel.name
if self.usetex:
label = label_to_latex(label)
ax.plot(series, label=label)
return plot | def make_plot(self) | Generate the plot from time series and arguments | 4.467722 | 4.309464 | 1.036723 |
# get tight limits for X-axis
if self.args.xmin is None:
self.args.xmin = min(ts.xspan[0] for ts in self.timeseries)
if self.args.xmax is None:
self.args.xmax = max(ts.xspan[1] for ts in self.timeseries)
# autoscale view for Y-axis
cropped = [ts.crop(self.args.xmin, self.args.xmax) for
ts in self.timeseries]
ymin = min(ts.value.min() for ts in cropped)
ymax = max(ts.value.max() for ts in cropped)
self.plot.gca().yaxis.set_data_interval(ymin, ymax, ignore=True)
self.plot.gca().autoscale_view(scalex=False) | def scale_axes_from_data(self) | Restrict data limits for Y-axis based on what you can see | 3.099314 | 2.943221 | 1.053035 |
from ...utils.lal import (find_typed_function, to_lal_type_str)
# generate key for caching plan
laltype = to_lal_type_str(dtype)
key = (length, bool(forward), laltype)
# find existing plan
try:
return LAL_FFTPLANS[key]
# or create one
except KeyError:
create = find_typed_function(dtype, 'Create', 'FFTPlan')
if level is None:
level = LAL_FFTPLAN_LEVEL
LAL_FFTPLANS[key] = create(length, int(bool(forward)), level)
return LAL_FFTPLANS[key] | def generate_fft_plan(length, level=None, dtype='float64', forward=True) | Build a `REAL8FFTPlan` for a fast Fourier transform.
Parameters
----------
length : `int`
number of samples to plan for in each FFT.
level : `int`, optional
amount of work to do when planning the FFT, default set by
`LAL_FFTPLAN_LEVEL` module variable.
dtype : :class:`numpy.dtype`, `type`, `str`, optional
numeric type of data to plan for
forward : bool, optional, default: `True`
whether to create a forward or reverse FFT plan
Returns
-------
plan : `REAL8FFTPlan` or similar
FFT plan of the relevant data type | 4.383822 | 4.052071 | 1.081872 |
from ...utils.lal import (find_typed_function, to_lal_type_str)
if window is None:
window = ('kaiser', 24)
# generate key for caching window
laltype = to_lal_type_str(dtype)
key = (length, str(window), laltype)
# find existing window
try:
return LAL_WINDOWS[key]
# or create one
except KeyError:
# parse window as name and arguments, e.g. ('kaiser', 24)
if isinstance(window, (list, tuple)):
window, beta = window
else:
beta = 0
window = canonical_name(window)
# create window
create = find_typed_function(dtype, 'CreateNamed', 'Window')
LAL_WINDOWS[key] = create(window, beta, length)
return LAL_WINDOWS[key] | def generate_window(length, window=None, dtype='float64') | Generate a time-domain window for use in a LAL FFT
Parameters
----------
length : `int`
length of window in samples.
window : `str`, `tuple`
name of window to generate, default: ``('kaiser', 24)``. Give
`str` for simple windows, or tuple of ``(name, *args)`` for
complicated windows
dtype : :class:`numpy.dtype`
numeric type of window, default `numpy.dtype(numpy.float64)`
Returns
-------
`window` : `REAL8Window` or similar
time-domain window to use for FFT | 4.955379 | 4.629022 | 1.070502 |
from ...utils.lal import (find_typed_function)
dtype = array.dtype
# create sequence
seq = find_typed_function(dtype, 'Create', 'Sequence')(array.size)
seq.data = array
# create window from sequence
return find_typed_function(dtype, 'Create', 'WindowFromSequence')(seq) | def window_from_array(array) | Convert a `numpy.ndarray` into a LAL `Window` object | 7.332073 | 6.357369 | 1.153319 |
import lal
from ...utils.lal import find_typed_function
# default to 50% overlap
if noverlap is None:
noverlap = int(segmentlength // 2)
stride = segmentlength - noverlap
# get window
if window is None:
window = generate_window(segmentlength, dtype=timeseries.dtype)
# get FFT plan
if plan is None:
plan = generate_fft_plan(segmentlength, dtype=timeseries.dtype)
method = method.lower()
# check data length
size = timeseries.size
numsegs = 1 + int((size - segmentlength) / stride)
if method == 'median-mean' and numsegs % 2:
numsegs -= 1
if not numsegs:
raise ValueError("Cannot calculate median-mean spectrum with "
"this small a TimeSeries.")
required = int((numsegs - 1) * stride + segmentlength)
if size != required:
warnings.warn("Data array is the wrong size for the correct number "
"of averages given the input parameters. The trailing "
"%d samples will not be used in this calculation."
% (size - required))
timeseries = timeseries[:required]
# generate output spectrum
create = find_typed_function(timeseries.dtype, 'Create', 'FrequencySeries')
lalfs = create(timeseries.name, lal.LIGOTimeGPS(timeseries.epoch.gps), 0,
1 / segmentlength, lal.StrainUnit,
int(segmentlength // 2 + 1))
# find LAL method (e.g. median-mean -> lal.REAL8AverageSpectrumMedianMean)
methodname = ''.join(map(str.title, re.split('[-_]', method)))
spec_func = find_typed_function(timeseries.dtype, '',
'AverageSpectrum{}'.format(methodname))
# calculate spectrum
spec_func(lalfs, timeseries.to_lal(), segmentlength, stride, window, plan)
# format and return
spec = FrequencySeries.from_lal(lalfs)
spec.name = timeseries.name
spec.channel = timeseries.channel
spec.override_unit(scale_timeseries_unit(
timeseries.unit, scaling='density'))
return spec | def _lal_spectrum(timeseries, segmentlength, noverlap=None, method='welch',
window=None, plan=None) | Generate a PSD `FrequencySeries` using |lal|_
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
method : `str`
average PSD method
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `lal.REAL8Window`, optional
window to apply to timeseries prior to FFT
plan : `lal.REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries` | 4.700131 | 4.37315 | 1.07477 |
return _lal_spectrum(timeseries, segmentlength, noverlap=noverlap,
method='welch', window=window, plan=plan) | def welch(timeseries, segmentlength, noverlap=None, window=None, plan=None) | Calculate an PSD of this `TimeSeries` using Welch's method
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `tuple`, `str`, optional
window parameters to apply to timeseries prior to FFT
plan : `REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries`
See also
--------
lal.REAL8AverageSpectrumWelch | 4.01445 | 5.897809 | 0.680668 |
# pylint: disable=unused-argument
return _lal_spectrum(timeseries, segmentlength, noverlap=0,
method='welch', window=window, plan=plan) | def bartlett(timeseries, segmentlength, noverlap=None, window=None, plan=None) | Calculate an PSD of this `TimeSeries` using Bartlett's method
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `tuple`, `str`, optional
window parameters to apply to timeseries prior to FFT
plan : `REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries`
See also
--------
lal.REAL8AverageSpectrumWelch | 5.554236 | 9.257452 | 0.599975 |
return _lal_spectrum(timeseries, segmentlength, noverlap=noverlap,
method='median', window=window, plan=plan) | def median(timeseries, segmentlength, noverlap=None, window=None, plan=None) | Calculate a PSD of this `TimeSeries` using a median average method
The median average is similar to Welch's method, using a median average
rather than mean.
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `tuple`, `str`, optional
window parameters to apply to timeseries prior to FFT
plan : `REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries`
See also
--------
lal.REAL8AverageSpectrumMedian | 4.615837 | 6.524323 | 0.707481 |
return _lal_spectrum(timeseries, segmentlength, noverlap=noverlap,
method='median-mean', window=window, plan=plan) | def median_mean(timeseries, segmentlength, noverlap=None,
window=None, plan=None) | Calculate a PSD of this `TimeSeries` using a median-mean average method
The median-mean average method divides overlapping segments into "even"
and "odd" segments, and computes the bin-by-bin median of the "even"
segments and the "odd" segments, and then takes the bin-by-bin average
of these two median averages.
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `tuple`, `str`, optional
window parameters to apply to timeseries prior to FFT
plan : `REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries`
See also
--------
lal.REAL8AverageSpectrumMedianMean | 4.247206 | 5.773282 | 0.735666 |
if isinstance(source, FILE_LIKE):
source = source.name
if isinstance(source, CacheEntry):
source = source.path
# read cache file
if (isinstance(source, string_types) and
source.endswith(('.lcf', '.cache'))):
return lalframe.FrStreamCacheOpen(lal.CacheImport(source))
# read glue cache object
if isinstance(source, list) and is_cache(source):
cache = lal.Cache()
for entry in file_list(source):
cache = lal.CacheMerge(cache, lal.CacheGlob(*os.path.split(entry)))
return lalframe.FrStreamCacheOpen(cache)
# read lal cache object
if isinstance(source, lal.Cache):
return lalframe.FrStreamCacheOpen(source)
# read single file
if isinstance(source, string_types):
return lalframe.FrStreamOpen(*map(str, os.path.split(source)))
raise ValueError("Don't know how to open data source of type %r"
% type(source)) | def open_data_source(source) | Open a GWF file source into a `lalframe.XLALFrStream` object
Parameters
----------
source : `str`, `file`, `list`
Data source to read.
Returns
-------
stream : `lalframe.FrStream`
An open `FrStream`.
Raises
------
ValueError
If the input format cannot be identified. | 4.343031 | 3.872535 | 1.121496 |
epoch = lal.LIGOTimeGPS(stream.epoch.gpsSeconds,
stream.epoch.gpsNanoSeconds)
# loop over each file in the stream cache and query its duration
nfile = stream.cache.length
duration = 0
for dummy_i in range(nfile):
for dummy_j in range(lalframe.FrFileQueryNFrame(stream.file)):
duration += lalframe.FrFileQueryDt(stream.file, 0)
lalframe.FrStreamNext(stream)
# rewind stream and return
lalframe.FrStreamSeek(stream, epoch)
return duration | def get_stream_duration(stream) | Find the duration of time stored in a frame stream
Parameters
----------
stream : `lal.FrStream`
stream of data to search
Returns
-------
duration : `float`
the duration (seconds) of the data for this channel | 7.303968 | 7.234735 | 1.00957 |
# scaled must be provided to provide a consistent API with frameCPP
if scaled is not None:
warnings.warn(
"the `scaled` keyword argument is not supported by lalframe, "
"if you require ADC scaling, please install "
"python-ldas-tools-framecpp",
)
stream = open_data_source(source)
# parse times and restrict to available data
epoch = lal.LIGOTimeGPS(stream.epoch.gpsSeconds,
stream.epoch.gpsNanoSeconds)
streamdur = get_stream_duration(stream)
if start is None:
start = epoch
else:
start = max(epoch, lalutils.to_lal_ligotimegps(start))
if end is None:
offset = float(start - epoch)
duration = streamdur - offset
else:
end = min(epoch + streamdur, lalutils.to_lal_ligotimegps(end))
duration = float(end - start)
# read data
out = series_class.DictClass()
for name in channels:
out[name] = series_class.from_lal(
_read_channel(stream, str(name), start=start, duration=duration),
copy=False)
lalframe.FrStreamSeek(stream, epoch)
return out | def read(source, channels, start=None, end=None, series_class=TimeSeries,
scaled=None) | Read data from one or more GWF files using the LALFrame API | 6.445489 | 6.311217 | 1.021275 |
if not start:
start = list(tsdict.values())[0].xspan[0]
if not end:
end = list(tsdict.values())[0].xspan[1]
duration = end - start
# get ifos list
detectors = 0
for series in tsdict.values():
try:
idx = list(lalutils.LAL_DETECTORS.keys()).index(series.channel.ifo)
detectors |= 1 << 2*idx
except (KeyError, AttributeError):
continue
# create new frame
frame = lalframe.FrameNew(start, duration, name, run, 0, detectors)
for series in tsdict.values():
# convert to LAL
lalseries = series.to_lal()
# find adder
add_ = lalutils.find_typed_function(
series.dtype, 'FrameAdd', 'TimeSeriesProcData', module=lalframe)
# add time series to frame
add_(frame, lalseries)
# write frame
lalframe.FrameWrite(frame, outfile) | def write(tsdict, outfile, start=None, end=None,
name='gwpy', run=0) | Write data to a GWF file using the LALFrame API | 5.103479 | 4.824402 | 1.057847 |
from ligo.lw.lsctables import (SegmentTable, SegmentDefTable,
SegmentSumTable)
from ligo.lw.ligolw import PartialLIGOLWContentHandler
def _filter(name, attrs):
return reduce(
operator.or_,
[table_.CheckProperties(name, attrs) for
table_ in (SegmentTable, SegmentDefTable, SegmentSumTable)])
return build_content_handler(PartialLIGOLWContentHandler, _filter) | def segment_content_handler() | Build a `~xml.sax.handlers.ContentHandler` to read segment XML tables | 9.586926 | 10.05608 | 0.953346 |
xmldoc = read_ligolw(source, contenthandler=segment_content_handler())
# parse tables
with patch_ligotimegps(type(xmldoc.childNodes[0]).__module__):
out = DataQualityDict.from_ligolw_tables(
*xmldoc.childNodes,
names=names,
**kwargs
)
# coalesce
if coalesce:
for flag in out:
out[flag].coalesce()
return out | def read_ligolw_dict(source, names=None, coalesce=False, **kwargs) | Read segments for the given flag from the LIGO_LW XML file.
Parameters
----------
source : `file`, `str`, :class:`~ligo.lw.ligolw.Document`, `list`
one (or more) open files or file paths, or LIGO_LW `Document` objects
names : `list`, `None`, optional
list of names to read or `None` to read all into a single
`DataQualityFlag`.
coalesce : `bool`, optional
if `True`, coalesce all parsed `DataQualityFlag` objects before
returning, default: `False`
**kwargs
other keywords are passed to :meth:`DataQualityDict.from_ligolw_tables`
Returns
-------
flagdict : `DataQualityDict`
a new `DataQualityDict` of `DataQualityFlag` entries with ``active``
and ``known`` segments seeded from the XML tables in the given
file ``fp``. | 9.817524 | 7.654399 | 1.282599 |
name = [name] if name is not None else None
return list(read_ligolw_dict(source, names=name, **kwargs).values())[0] | def read_ligolw_flag(source, name=None, **kwargs) | Read a single `DataQualityFlag` from a LIGO_LW XML file | 4.590827 | 4.705293 | 0.975673 |
if isinstance(flags, DataQualityFlag):
flags = DataQualityDict({flags.name: flags})
return write_tables(
target,
flags.to_ligolw_tables(ilwdchar_compat=ilwdchar_compat,
**attrs or dict()),
**kwargs
) | def write_ligolw(flags, target, attrs=None, ilwdchar_compat=None, **kwargs) | Write this `DataQualityFlag` to the given LIGO_LW Document
Parameters
----------
flags : `DataQualityFlag`, `DataQualityDict`
`gwpy.segments` object to write
target : `str`, `file`, :class:`~ligo.lw.ligolw.Document`
the file or document to write into
attrs : `dict`, optional
extra attributes to write into segment tables
**kwargs
keyword arguments to use when writing
See also
--------
gwpy.io.ligolw.write_ligolw_tables
for details of acceptable keyword arguments | 6.341293 | 4.225077 | 1.500871 |
# set units
if scaling == 'density':
baseunit = units.Hertz
elif scaling == 'spectrum':
baseunit = units.dimensionless_unscaled
else:
raise ValueError("Unknown scaling: %r" % scaling)
if tsunit:
specunit = tsunit ** 2 / baseunit
else:
specunit = baseunit ** -1
return specunit | def scale_timeseries_unit(tsunit, scaling='density') | Scale the unit of a `TimeSeries` to match that of a `FrequencySeries`
Parameters
----------
tsunit : `~astropy.units.UnitBase`
input unit from `TimeSeries`
scaling : `str`
type of frequency series, either 'density' for a PSD, or
'spectrum' for a power spectrum.
Returns
-------
unit : `~astropy.units.Unit`
unit to be applied to the resulting `FrequencySeries`. | 3.955378 | 3.975545 | 0.994927 |
try:
path = os.path.abspath(cachefile.name)
except AttributeError:
path = None
for line in cachefile:
try:
yield _CacheEntry.parse(line, gpstype=LIGOTimeGPS)
except ValueError:
# virgo FFL format (seemingly) supports nested FFL files
parts = line.split()
if len(parts) == 3 and os.path.abspath(parts[0]) != path:
with open(parts[0], 'r') as cache2:
for entry in _iter_cache(cache2):
yield entry
else:
raise | def _iter_cache(cachefile, gpstype=LIGOTimeGPS) | Internal method that yields a `_CacheEntry` for each line in the file
This method supports reading LAL- and (nested) FFL-format cache files. | 4.345787 | 3.360662 | 1.293134 |
# open file
if not isinstance(cachefile, FILE_LIKE):
with open(file_path(cachefile), 'r') as fobj:
return read_cache(fobj, coltype=coltype, sort=sort,
segment=segment)
# read file
cache = [x.path for x in _iter_cache(cachefile, gpstype=coltype)]
# sieve and sort
if segment:
cache = sieve(cache, segment=segment)
if sort:
cache.sort(key=sort)
# read simple paths
return cache | def read_cache(cachefile, coltype=LIGOTimeGPS, sort=None, segment=None) | Read a LAL- or FFL-format cache file as a list of file paths
Parameters
----------
cachefile : `str`, `file`
Input file or file path to read.
coltype : `LIGOTimeGPS`, `int`, optional
Type for GPS times.
sort : `callable`, optional
A callable key function by which to sort the output list of file paths
segment : `gwpy.segments.Segment`, optional
A GPS `[start, stop)` interval, if given only files overlapping this
interval will be returned.
Returns
-------
paths : `list` of `str`
A list of file paths as read from the cache file. | 4.768357 | 4.574959 | 1.042273 |
# open file
if isinstance(fobj, string_types):
with open(fobj, 'w') as fobj2:
return write_cache(cache, fobj2, format=format)
if format is None:
formatter = str
elif format.lower() == "lal":
formatter = _format_entry_lal
elif format.lower() == "ffl":
formatter = _format_entry_ffl
else:
raise ValueError("Unrecognised cache format {!r}".format(format))
# write file
for line in map(formatter, cache):
try:
print(line, file=fobj)
except TypeError: # bytes-mode
fobj.write("{}\n".format(line).encode("utf-8")) | def write_cache(cache, fobj, format=None) | Write a `list` of cache entries to a file
Parameters
----------
cache : `list` of `str`
The list of file paths to write
fobj : `file`, `str`
The open file object, or file path to write to.
format : `str`, optional
The format to write to, one of
- `None` : format each entry using `str`
- ``'lal'`` : write a LAL-format cache
- ``'ffl'`` : write an FFL-format cache | 3.175042 | 2.687367 | 1.181469 |
if isinstance(cache, string_types + FILE_LIKE):
try:
return bool(len(read_cache(cache)))
except (TypeError, ValueError, UnicodeDecodeError, ImportError):
# failed to parse cache
return False
if HAS_CACHE and isinstance(cache, Cache):
return True
if (isinstance(cache, (list, tuple)) and cache and
all(map(is_cache_entry, cache))):
return True
return False | def is_cache(cache) | Returns `True` if ``cache`` is a readable cache file or object
Parameters
----------
cache : `str`, `file`, `list`
Object to detect as cache
Returns
-------
iscache : `bool`
`True` if the input object is a cache, or a file in LAL cache format,
otherwise `False` | 4.645636 | 4.888706 | 0.950279 |
if HAS_CACHEENTRY and isinstance(path, CacheEntry):
return True
try:
file_segment(path)
except (ValueError, TypeError, AttributeError):
return False
return True | def is_cache_entry(path) | Returns `True` if ``path`` can be represented as a cache entry
In practice this just tests whether the input is |LIGO-T050017|_ compliant.
Parameters
----------
path : `str`, :class:`lal.utils.CacheEntry`
The input to test
Returns
-------
isentry : `bool`
`True` if ``path`` is an instance of `CacheEntry`, or can be parsed
using |LIGO-T050017|_. | 6.222993 | 7.643209 | 0.814186 |
from ..segments import Segment
name = Path(filename).name
try:
obs, desc, start, dur = name.split('-')
except ValueError as exc:
exc.args = ('Failed to parse {!r} as LIGO-T050017-compatible '
'filename'.format(name),)
raise
start = float(start)
dur = dur.rsplit('.', 1)[0]
while True: # recursively remove extension components
try:
dur = float(dur)
except ValueError:
if '.' not in dur:
raise
dur = dur.rsplit('.', 1)[0]
else:
break
return obs, desc, Segment(start, start+dur) | def filename_metadata(filename) | Return metadata parsed from a filename following LIGO-T050017
This method is lenient with regards to integers in the GPS start time of
the file, as opposed to `gwdatafind.utils.filename_metadata`, which is
strict.
Parameters
----------
filename : `str`
the path name of a file
Returns
-------
obs : `str`
the observatory metadata
tag : `str`
the file tag
segment : `gwpy.segments.Segment`
the GPS ``[float, float)`` interval for this file
Notes
-----
`LIGO-T050017 <https://dcc.ligo.org/LIGO-T050017>`__ declares a
file naming convention that includes documenting the GPS start integer
and integer duration of a file, see that document for more details.
Examples
--------
>>> from gwpy.io.cache import filename_metadata
>>> filename_metadata("A-B-0-1.txt")
('A', 'B', Segment(0, 1))
>>> filename_metadata("A-B-0.456-1.345.txt")
("A", "B", Segment(0.456, 1.801)) | 5.272496 | 3.83671 | 1.374223 |
from ..segments import Segment
try: # CacheEntry
return Segment(filename.segment)
except AttributeError: # file path (str)
return filename_metadata(filename)[2] | def file_segment(filename) | Return the data segment for a filename following T050017
Parameters
---------
filename : `str`, :class:`~lal.utils.CacheEntry`
the path name of a file
Returns
-------
segment : `~gwpy.segments.Segment`
the ``[start, stop)`` GPS segment covered by the given file
Notes
-----
|LIGO-T050017|_ declares a filenaming convention that includes
documenting the GPS start integer and integer duration of a file,
see that document for more details. | 20.600485 | 12.98062 | 1.587019 |
from ..segments import SegmentList
out = SegmentList()
for cache in caches:
out.extend(file_segment(e) for e in cache)
return out.coalesce() | def cache_segments(*caches) | Returns the segments of data covered by entries in the cache(s).
Parameters
----------
*caches : `list`
One or more lists of file paths
(`str` or :class:`~lal.utils.CacheEntry`).
Returns
-------
segments : `~gwpy.segments.SegmentList`
A list of segments for when data should be available | 7.603915 | 10.777946 | 0.705507 |
return list(OrderedDict.fromkeys(e for c in caches for e in c)) | def flatten(*caches) | Flatten a nested list of cache entries
Parameters
----------
*caches : `list`
One or more lists of file paths
(`str` or :class:`~lal.utils.CacheEntry`).
Returns
-------
flat : `list`
A flat `list` containing the unique set of entries across
each input. | 6.699638 | 15.519653 | 0.431687 |
flat = flatten(*caches)
for segment in cache_segments(flat):
yield sieve(flat, segment=segment) | def find_contiguous(*caches) | Separate one or more cache entry lists into time-contiguous sub-lists
Parameters
----------
*caches : `list`
One or more lists of file paths
(`str` or :class:`~lal.utils.CacheEntry`).
Returns
-------
caches : `iter` of `list`
an interable yielding each contiguous cache | 11.335654 | 22.0786 | 0.513423 |
return type(cache)(e for e in cache if segment.intersects(file_segment(e))) | def sieve(cache, segment=None) | Filter the cache to find those entries that overlap ``segment``
Parameters
----------
cache : `list`
Input list of file paths
segment : `~gwpy.segments.Segment`
The ``[start, stop)`` interval to match against. | 15.303133 | 15.00766 | 1.019688 |
group = parser.add_argument_group('Q-transform options')
group.add_argument('--plot', nargs='+', type=float, default=[.5],
help='One or more times to plot')
group.add_argument('--frange', nargs=2, type=float,
help='Frequency range to plot')
group.add_argument('--qrange', nargs=2, type=float,
help='Search Q range')
group.add_argument('--nowhiten', action='store_true',
help='do not whiten input before transform') | def arg_qxform(cls, parser) | Add an `~argparse.ArgumentGroup` for Q-transform options | 4.508719 | 3.971705 | 1.13521 |
gps = args.gps
search = args.search
# ensure we have enough data for filter settling
max_plot = max(args.plot)
search = max(search, max_plot * 2 + 8)
args.search = search
self.log(3, "Search window: {0:.0f} sec, max plot window {1:.0f}".
format(search, max_plot))
# make sure we don't create too big interpolations
xpix = 1200.
if args.geometry:
m = re.match('(\\d+)x(\\d+)', args.geometry)
if m:
xpix = float(m.group(1))
# save output x for individual tres calulation
args.nx = xpix
self.args.tres = search / xpix / 2
self.log(3, 'Max time resolution (tres) set to {:.4f}'.format(
self.args.tres))
args.start = [[int(gps - search/2)]]
if args.epoch is None:
args.epoch = args.gps
args.duration = search
args.chan = [[args.chan]]
if args.color_scale is None:
args.color_scale = 'linear'
args.overlap = 0 # so that FFTMixin._finalize_arguments doesn't fail
xmin = args.xmin
xmax = args.xmax
super(Qtransform, self)._finalize_arguments(args)
# unset defaults from `TimeDomainProduct`
args.xmin = xmin
args.xmax = xmax | def _finalize_arguments(self, args) | Derive standard args from our weird ones
:type args: Namespace with command line arguments | 7.836951 | 7.820472 | 1.002107 |
def fformat(x): # float format
if isinstance(x, (list, tuple)):
return '[{0}]'.format(', '.join(map(fformat, x)))
if isinstance(x, Quantity):
x = x.value
elif isinstance(x, str):
warnings.warn('WARNING: fformat called with a' +
' string. This has ' +
'been depricated and may disappear ' +
'in a future release.')
x = float(x)
return '{0:.2f}'.format(x)
bits = [('Q', fformat(self.result.q))]
bits.append(('tres', '{:.3g}'.format(self.qxfrm_args['tres'])))
if self.qxfrm_args.get('qrange'):
bits.append(('q-range', fformat(self.qxfrm_args['qrange'])))
if self.qxfrm_args['whiten']:
bits.append(('whitened',))
bits.extend([
('f-range', fformat(self.result.yspan)),
('e-range', '[{:.3g}, {:.3g}]'.format(self.result.min(),
self.result.max())),
])
return ', '.join([': '.join(bit) for bit in bits]) | def get_title(self) | Default title for plot | 4.156477 | 4.034821 | 1.030152 |
args = self.args
asd = self.timeseries[0].asd().value
if (asd.min() == 0):
self.log(0, 'Input data has a zero in ASD. '
'Q-transform not possible.')
self.got_error = True
qtrans = None
else:
gps = self.qxfrm_args['gps']
outseg = Segment(gps, gps).protract(args.plot[self.plot_num])
# This section tries to optimize the amount of data that is
# processed and the time resolution needed to create a good
# image. NB:For each time span specified
# NB: the timeseries h enough data for the longest plot
inseg = outseg.protract(4) & self.timeseries[0].span
proc_ts = self.timeseries[0].crop(*inseg)
# time resolution is calculated to provide about 4 times
# the number of output pixels for interpolation
tres = float(outseg.end - outseg.start) / 4 / self.args.nx
self.qxfrm_args['tres'] = tres
self.qxfrm_args['search'] = int(len(proc_ts) * proc_ts.dt.value)
self.log(3, 'Q-transform arguments:')
self.log(3, '{0:>15s} = {1}'.format('outseg', outseg))
for key in sorted(self.qxfrm_args):
self.log(3, '{0:>15s} = {1}'.format(key, self.qxfrm_args[key]))
qtrans = proc_ts.q_transform(outseg=outseg, **self.qxfrm_args)
if args.ymin is None: # set before Spectrogram.make_plot
args.ymin = qtrans.yspan[0]
return qtrans | def get_spectrogram(self) | Worked on a single timesharing and generates a single Q-transform
spectrogram | 7.415803 | 7.048828 | 1.052062 |
from lal import LIGOTimeGPS
try:
return LIGOTimeGPS(s, ns)
except TypeError:
return LIGOTimeGPS(int(s), int(ns)) | def _ligotimegps(s, ns=0) | Catch TypeError and cast `s` and `ns` to `int` | 3.160939 | 2.38328 | 1.326297 |
module = import_module(module)
orig = module.LIGOTimeGPS
module.LIGOTimeGPS = _ligotimegps
try:
yield
finally:
module.LIGOTimeGPS = orig | def patch_ligotimegps(module="ligo.lw.lsctables") | Context manager to on-the-fly patch LIGOTimeGPS to accept all int types | 2.420704 | 2.314279 | 1.045986 |
from ligo.lw.ligolw import PartialLIGOLWContentHandler
from ligo.lw.table import Table
if issubclass(element, Table):
def _element_filter(name, attrs):
return element.CheckProperties(name, attrs)
else:
def _element_filter(name, _):
return name == element.tagName
return build_content_handler(PartialLIGOLWContentHandler, _element_filter) | def get_partial_contenthandler(element) | Build a `PartialLIGOLWContentHandler` to read only this element
Parameters
----------
element : `type`, subclass of :class:`~ligo.lw.ligolw.Element`
the element class to be read,
Returns
-------
contenthandler : `type`
a subclass of :class:`~ligo.lw.ligolw.PartialLIGOLWContentHandler`
to read only the given `element` | 6.65189 | 4.243205 | 1.567657 |
from ligo.lw.ligolw import FilteringLIGOLWContentHandler
from ligo.lw.table import Table
if issubclass(element, Table):
def _element_filter(name, attrs):
return ~element.CheckProperties(name, attrs)
else:
def _element_filter(name, _):
# pylint: disable=unused-argument
return name != element.tagName
return build_content_handler(FilteringLIGOLWContentHandler,
_element_filter) | def get_filtering_contenthandler(element) | Build a `FilteringLIGOLWContentHandler` to exclude this element
Parameters
----------
element : `type`, subclass of :class:`~ligo.lw.ligolw.Element`
the element to exclude (and its children)
Returns
-------
contenthandler : `type`
a subclass of
:class:`~ligo.lw.ligolw.FilteringLIGOLWContentHandler` to
exclude an element and its children | 7.143211 | 4.791013 | 1.49096 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.