code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if self._resolved_time is None or self.source_clock_overflow_period is None:
self._resolved_time = decimal.Decimal(source_clock_sample)
self._prev_source_sample = source_clock_sample
self._prev_target_sample = target_clock_sample
else:
# Time between updates in the target clock domain
tgt_delta = target_clock_sample - self._prev_target_sample
self._prev_target_sample = target_clock_sample
assert tgt_delta >= 0
# Time between updates in the source clock domain
src_delta = source_clock_sample - self._prev_source_sample
self._prev_source_sample = source_clock_sample
# Using the target clock we can resolve the integer ambiguity (number of overflows)
full_cycles = int(round((tgt_delta - src_delta) / float(self.source_clock_overflow_period), 0))
# Updating the source clock now; in two steps, in order to avoid error accumulation in floats
self._resolved_time += decimal.Decimal(full_cycles * self.source_clock_overflow_period)
self._resolved_time += decimal.Decimal(src_delta)
return self._resolved_time | def update(self, source_clock_sample, target_clock_sample) | Args:
source_clock_sample: Sample of the source clock, in seconds
target_clock_sample: Sample of the target clock, in seconds
Returns: Resolved absolute source clock value | 3.338574 | 3.33796 | 1.000184 |
pi = float(self._source_time_resolver.update(source_clock_sample, target_clock_sample))
qi = target_clock_sample
# Initialization
if self._p is None:
self._p = pi
self._q = qi
# Sync error - refer to the reference implementation of the algorithm
self._estimated_delay = abs((pi - self._p) - (qi - self._q))
# Resynchronization (discarding known state)
if self._estimated_delay > self.max_phase_error_to_resync:
self._source_time_resolver.reset()
self._resync_count += 1
self._p = pi = float(self._source_time_resolver.update(source_clock_sample, target_clock_sample))
self._q = qi
# Offset options
assert pi >= self._p
offset = self._p - self._q - self.max_rate_error * (pi - self._p) - self.fixed_delay
new_offset = pi - qi - self.fixed_delay
# Updating p/q if the new offset is lower by magnitude
if new_offset >= offset:
offset = new_offset
self._p = pi
self._q = qi
ti = pi - offset
return ti | def update(self, source_clock_sample, target_clock_sample) | Args:
source_clock_sample: E.g. value received from the source system, in seconds
target_clock_sample: E.g. target time sampled when the data arrived to the local system, in seconds
Returns: Event timestamp converted to the target time domain. | 4.881685 | 4.905222 | 0.995202 |
if not isinstance(obj, CompoundValue) and hasattr(obj, 'transfer'):
if hasattr(obj, 'message'):
payload = obj.message
header = 'Message'
elif hasattr(obj, 'request'):
payload = obj.request
header = 'Request'
elif hasattr(obj, 'response'):
payload = obj.response
header = 'Response'
else:
raise ValueError('Cannot generate YAML representation for %r' % type(obj))
prefix = '### %s from %s to %s ts_mono=%.6f ts_real=%.6f\n' % \
(header,
obj.transfer.source_node_id or 'Anon',
obj.transfer.dest_node_id or 'All',
obj.transfer.ts_monotonic, obj.transfer.ts_real)
return prefix + _to_yaml_impl(payload)
else:
return _to_yaml_impl(obj) | def to_yaml(obj) | This function returns correct YAML representation of a UAVCAN structure (message, request, or response), or
a DSDL entity (array or primitive), or a UAVCAN transfer, with comments for human benefit.
Args:
obj: Object to convert.
Returns: Unicode string containing YAML representation of the object. | 3.599547 | 3.12235 | 1.152833 |
# Extracting constants
uavcan_type = uavcan.get_uavcan_data_type(struct)
if uavcan.is_request(struct):
consts = uavcan_type.request_constants
fields = uavcan_type.request_fields
elif uavcan.is_response(struct):
consts = uavcan_type.response_constants
fields = uavcan_type.response_fields
else:
consts = uavcan_type.constants
fields = uavcan_type.fields
assert len(fields) > 0
# noinspection PyShadowingNames
def format_output(name, value, remove_common_prefix):
if remove_common_prefix:
num_seps = len(field_name.split('_'))
parts = name.split('_')[num_seps:]
name = '_'.join(parts)
return ('%s (%r)' % (name, value)) if keep_literal else name
# noinspection PyShadowingNames
def match_one_prefix(prefix, value):
matches = []
for cname, cval in [(x.name, x.value) for x in consts if x.name.lower().startswith(prefix.lower())]:
if cval == value:
matches.append(cname)
# Making sure we found exactly one match, otherwise it's not a correct result
if len(matches) == 1:
return matches[0]
# noinspection PyShadowingNames
def match_value(value):
# Trying direct match
match = match_one_prefix(field_name + '_', value)
if match:
return format_output(match, value, True)
# Trying direct match without the terminal letter if it is 's' (plural). This works for 'flags'.
# TODO: this is sketchy.
if field_name[-1] == 's':
match = match_one_prefix(field_name[:-1] + '_', value)
if match:
return format_output(match, value, True)
# Trying match without prefix, only if there's just one field
if len(fields) == 1:
match = match_one_prefix('', value)
if match:
return format_output(match, value, False)
# Trying single value first
value = getattr(struct, field_name)
match = match_value(value)
if match:
return match
# Trying bit masks
def extract_powers_of_2(x):
i = 1
while i <= x:
if i & x:
yield i
i <<= 1
matches = []
for pow2 in extract_powers_of_2(value):
match = match_value(pow2)
if match:
matches.append(match)
else:
matches = []
break # If at least one couldn't be matched, we're on a wrong track, stop
if len(matches) > 0:
return ' | '.join(matches)
# No match could be found, returning the value as is
return value | def value_to_constant_name(struct, field_name, keep_literal=False) | This function accepts a UAVCAN struct (message, request, or response), and a field name; and returns
the name of constant or bit mask that match the value. If no match could be established, the literal
value will be returned as is.
Args:
struct: UAVCAN struct to work with
field_name: Name of the field to work with
keep_literal: Whether to include the input integer value in the output string
Returns: Name of the constant or flags if match could be detected, otherwise integer as is. | 2.87944 | 2.736615 | 1.05219 |
windows_com_port = device_name.replace('\\', '').replace('.', '').lower().startswith('com')
unix_tty = device_name.startswith('/dev/')
if windows_com_port or unix_tty:
return SLCAN(device_name, **kwargs)
elif SocketCAN is not None:
return SocketCAN(device_name, **kwargs)
else:
raise DriverError('Unrecognized device name: %r' % device_name) | def make_driver(device_name, **kwargs) | Creates an instance of CAN driver.
The right driver class will be selected automatically based on the device_name.
:param device_name: This parameter is used to select driver class. E.g. "/dev/ttyACM0", "COM9", "can0".
:param kwargs: Passed directly to the constructor. | 4.651406 | 4.39569 | 1.058174 |
global DATATYPES, TYPENAMES
paths = list(paths)
# Try to prepend the built-in DSDL files
# TODO: why do we need try/except here?
# noinspection PyBroadException
try:
if not args.get("exclude_dist", None):
dsdl_path = pkg_resources.resource_filename(__name__, "dsdl_files") # @UndefinedVariable
paths = [os.path.join(dsdl_path, "uavcan")] + paths
custom_path = os.path.join(os.path.expanduser("~"), "uavcan_vendor_specific_types")
if os.path.isdir(custom_path):
paths += [f for f in [os.path.join(custom_path, f) for f in os.listdir(custom_path)]
if os.path.isdir(f)]
except Exception:
pass
root_namespace = Namespace()
dtypes = dsdl.parse_namespaces(paths)
for dtype in dtypes:
namespace, _, typename = dtype.full_name.rpartition(".")
root_namespace._path(namespace).__dict__[typename] = dtype
TYPENAMES[dtype.full_name] = dtype
if dtype.default_dtid:
DATATYPES[(dtype.default_dtid, dtype.kind)] = dtype
# Add the base CRC to each data type capable of being transmitted
dtype.base_crc = dsdl.crc16_from_bytes(struct.pack("<Q", dtype.get_data_type_signature()))
logger.debug("DSDL Load {: >30} DTID: {: >4} base_crc:{: >8}"
.format(typename, dtype.default_dtid, hex(dtype.base_crc)))
def create_instance_closure(closure_type, _mode=None):
# noinspection PyShadowingNames
def create_instance(*args, **kwargs):
if _mode:
assert '_mode' not in kwargs, 'Mode cannot be supplied to service type instantiation helper'
kwargs['_mode'] = _mode
return transport.CompoundValue(closure_type, *args, **kwargs)
return create_instance
dtype._instantiate = create_instance_closure(dtype)
if dtype.kind == dtype.KIND_SERVICE:
dtype.Request = create_instance_closure(dtype, _mode='request')
dtype.Response = create_instance_closure(dtype, _mode='response')
namespace = root_namespace._path("uavcan")
for top_namespace in namespace._namespaces():
MODULE.__dict__[str(top_namespace)] = namespace.__dict__[top_namespace]
MODULE.__dict__["thirdparty"] = Namespace()
for ext_namespace in root_namespace._namespaces():
if str(ext_namespace) != "uavcan":
# noinspection PyUnresolvedReferences
MODULE.thirdparty.__dict__[str(ext_namespace)] = root_namespace.__dict__[ext_namespace] | def load_dsdl(*paths, **args) | Loads the DSDL files under the given directory/directories, and creates
types for each of them in the current module's namespace.
If the exclude_dist argument is not present, or False, the DSDL
definitions installed with this package will be loaded first.
Also adds entries for all datatype (ID, kind)s to the DATATYPES
dictionary, which maps datatype (ID, kind)s to their respective type
classes. | 4.040499 | 3.824323 | 1.056527 |
attr, _, subpath = attrpath.partition(".")
if attr not in self.__dict__:
self.__dict__[attr] = Namespace()
self.__namespaces.add(attr)
if subpath:
return self.__dict__[attr]._path(subpath)
else:
return self.__dict__[attr] | def _path(self, attrpath) | Returns the namespace object at the given .-separated path,
creating any namespaces in the path that don't already exist. | 3.37566 | 2.826932 | 1.194107 |
can = driver.make_driver(can_device_name, **kwargs)
return Node(can, **kwargs) | def make_node(can_device_name, **kwargs) | Constructs a node instance with specified CAN device.
:param can_device_name: CAN device name, e.g. "/dev/ttyACM0", "COM9", "can0".
:param kwargs: These arguments will be supplied to the CAN driver factory and to the node constructor. | 5.194514 | 5.703785 | 0.910713 |
priority = 1
event = self._scheduler.enter(timeout_seconds, priority, callback, ())
return self._make_sched_handle(lambda: event) | def defer(self, timeout_seconds, callback) | This method allows to invoke the callback with specified arguments once the specified amount of time.
:returns: EventHandle object. Call .remove() on it to cancel the event. | 10.028252 | 11.65363 | 0.860526 |
priority = 0
def caller(scheduled_deadline):
# Event MUST be re-registered first in order to ensure that it can be cancelled from the callback
scheduled_deadline += period_seconds
event_holder[0] = self._scheduler.enterabs(scheduled_deadline, priority, caller, (scheduled_deadline,))
callback()
first_deadline = self._scheduler.timefunc() + period_seconds
event_holder = [self._scheduler.enterabs(first_deadline, priority, caller, (first_deadline,))]
return self._make_sched_handle(lambda: event_holder[0]) | def periodic(self, period_seconds, callback) | This method allows to invoke the callback periodically, with specified time intervals.
Note that the scheduler features zero phase drift.
:returns: EventHandle object. Call .remove() on it to cancel the event. | 5.463672 | 5.934519 | 0.92066 |
return self._handler_dispatcher.add_handler(uavcan_type, handler, **kwargs) | def add_handler(self, uavcan_type, handler, **kwargs) | Adds a handler for the specified data type.
:param uavcan_type: DSDL data type. Only transfers of this type will be accepted for this handler.
:param handler: The handler. This must be either a callable or a class.
:param **kwargs: Extra arguments for the handler.
:return: A remover object that can be used to unregister the handler as follows:
x = node.add_handler(...)
# Remove the handler like this:
x.remove()
# Or like this:
if x.try_remove():
print('The handler has been removed successfully')
else:
print('There is no such handler') | 3.749048 | 4.978752 | 0.753009 |
if timeout != 0:
deadline = (time.monotonic() + timeout) if timeout is not None else sys.float_info.max
def execute_once():
next_event_at = self._poll_scheduler_and_get_next_deadline()
if next_event_at is None:
next_event_at = sys.float_info.max
read_timeout = min(next_event_at, deadline) - time.monotonic()
read_timeout = max(read_timeout, 0)
read_timeout = min(read_timeout, 1)
frame = self._can_driver.receive(read_timeout)
if frame:
self._recv_frame(frame)
execute_once()
while time.monotonic() < deadline:
execute_once()
else:
while True:
frame = self._can_driver.receive(0)
if frame:
self._recv_frame(frame)
else:
break
self._poll_scheduler_and_get_next_deadline() | def spin(self, timeout=None) | Runs background processes until timeout expires.
Note that all processing is implemented in one thread.
:param timeout: The method will return once this amount of time expires.
If None, the method will never return.
If zero, the method will handle only those events that are ready, then return immediately. | 2.79848 | 2.847117 | 0.982917 |
'''Feed ASCII string or bytes to the signature function'''
try:
if isinstance(data_bytes, basestring): # Python 2.7 compatibility
data_bytes = map(ord, data_bytes)
except NameError:
if isinstance(data_bytes, str): # This branch will be taken on Python 3
data_bytes = map(ord, data_bytes)
for b in data_bytes:
self._crc ^= (b << 56) & Signature.MASK64
for _ in range(8):
if self._crc & (1 << 63):
self._crc = ((self._crc << 1) & Signature.MASK64) ^ Signature.POLY
else:
self._crc <<= 1 | def add(self, data_bytes) | Feed ASCII string or bytes to the signature function | 3.540259 | 2.955063 | 1.198032 |
# noinspection PyShadowingNames
def walk():
import fnmatch
from functools import partial
def on_walk_error(directory, ex):
raise DsdlException('OS error in [%s]: %s' % (directory, str(ex)))
for source_dir in source_dirs:
walker = os.walk(source_dir, onerror=partial(on_walk_error, source_dir), followlinks=True)
for root, _dirnames, filenames in walker:
for filename in fnmatch.filter(filenames, '*.uavcan'):
filename = os.path.join(root, filename)
yield filename
all_default_dtid = {} # (kind, dtid) : filename
# noinspection PyShadowingNames
def ensure_unique_dtid(t, filename):
if t.default_dtid is None:
return
key = t.kind, t.default_dtid
if key in all_default_dtid:
first = pretty_filename(all_default_dtid[key])
second = pretty_filename(filename)
error('Default data type ID collision: [%s] [%s]', first, second)
all_default_dtid[key] = filename
parser = Parser(source_dirs + (search_dirs or []))
output_types = []
for filename in walk():
t = parser.parse(filename)
ensure_unique_dtid(t, filename)
output_types.append(t)
return output_types | def parse_namespaces(source_dirs, search_dirs=None) | Use only this function to parse DSDL definitions.
This function takes a list of root namespace directories (containing DSDL definition files to parse) and an
optional list of search directories (containing DSDL definition files that can be referenced from the types
that are going to be parsed).
Returns the list of parsed type definitions, where type of each element is CompoundType.
Args:
source_dirs: List of root namespace directories to parse.
search_dirs: List of root namespace directories with referenced types (optional). This list is
automatically extended with source_dirs.
Example:
>>> import uavcan
>>> a = uavcan.dsdl.parse_namespaces(['../dsdl/uavcan'])
>>> len(a)
77
>>> a[0]
uavcan.Timestamp
>>> a[0].fields
[truncated uint48 husec]
>>> a[0].constants
[saturated uint48 UNKNOWN = 0, saturated uint48 USEC_PER_LSB = 100] | 3.305669 | 3.171792 | 1.042209 |
cast_mode = 'saturated' if self.cast_mode == PrimitiveType.CAST_MODE_SATURATED else 'truncated'
primary_type = {
PrimitiveType.KIND_BOOLEAN: 'bool',
PrimitiveType.KIND_UNSIGNED_INT: 'uint' + str(self.bitlen),
PrimitiveType.KIND_SIGNED_INT: 'int' + str(self.bitlen),
PrimitiveType.KIND_FLOAT: 'float' + str(self.bitlen)
}[self.kind]
return cast_mode + ' ' + primary_type | def get_normalized_definition(self) | Please refer to the specification for details about normalized definitions. | 3.341041 | 3.092815 | 1.080259 |
low, high = self.value_range
if not low <= value <= high:
error('Value [%s] is out of range %s', value, self.value_range) | def validate_value_range(self, value) | Args:
value: Throws DsdlException if this value cannot be represented by this type. | 4.374103 | 4.591408 | 0.952671 |
typedef = self.value_type.get_normalized_definition()
return ('%s[<=%d]' if self.mode == ArrayType.MODE_DYNAMIC else '%s[%d]') % (typedef, self.max_size) | def get_normalized_definition(self) | Please refer to the specification for details about normalized definitions. | 9.578068 | 8.70352 | 1.100482 |
payload_max_bitlen = self.max_size * self.value_type.get_max_bitlen()
return {
self.MODE_DYNAMIC: payload_max_bitlen + self.max_size.bit_length(),
self.MODE_STATIC: payload_max_bitlen
}[self.mode] | def get_max_bitlen(self) | Returns total maximum bit length of the array, including length field if applicable. | 3.852377 | 3.489232 | 1.104076 |
txt = StringIO()
txt.write(self.full_name + '\n')
def adjoin(attrs):
return txt.write('\n'.join(x.get_normalized_definition() for x in attrs) + '\n')
if self.kind == CompoundType.KIND_SERVICE:
if self.request_union:
txt.write('\n@union\n')
adjoin(self.request_fields)
txt.write('\n---\n')
if self.response_union:
txt.write('\n@union\n')
adjoin(self.response_fields)
elif self.kind == CompoundType.KIND_MESSAGE:
if self.union:
txt.write('\n@union\n')
adjoin(self.fields)
else:
error('Compound type of unknown kind [%s]', self.kind)
return txt.getvalue().strip().replace('\n\n\n', '\n').replace('\n\n', '\n') | def get_dsdl_signature_source_definition(self) | Returns normalized DSDL definition text.
Please refer to the specification for details about normalized DSDL definitions. | 3.278012 | 3.092102 | 1.060124 |
if self._data_type_signature is None:
sig = Signature(self.get_dsdl_signature())
fields = self.request_fields + self.response_fields if self.kind == CompoundType.KIND_SERVICE else self.fields
for field in fields:
field_sig = field.type.get_data_type_signature()
if field_sig is not None:
sig_value = sig.get_value()
sig.add(bytes_from_crc64(field_sig))
sig.add(bytes_from_crc64(sig_value))
self._data_type_signature = sig.get_value()
return self._data_type_signature | def get_data_type_signature(self) | Computes data type signature of this type. The data type signature is
guaranteed to match only if all nested data structures are compatible.
Please refer to the specification for details about signatures. | 3.63905 | 3.431532 | 1.060474 |
self._handle.remove()
self._node_monitor_event_handle.remove()
self._allocation_table.close() | def close(self) | Stops the instance and closes the allocation table storage. | 14.933288 | 9.574369 | 1.559715 |
'''Returns a nice human readable path to 'filename'.'''
try:
a = os.path.abspath(filename)
r = os.path.relpath(filename)
except ValueError:
# Catch relpath exception. Happens, because it can not produce relative path
# if wroking directory is on different drive.
a = r = filename
return a if '..' in r else r | def pretty_filename(filename) | Returns a nice human readable path to 'filename'. | 8.605169 | 7.210204 | 1.193471 |
# Check if event is of type event_pb2.Event proto.
if not isinstance(event, event_pb2.Event):
raise TypeError("expected an event_pb2.Event proto, "
" but got %s" % type(event))
return self._write_serialized_event(event.SerializeToString()) | def write_event(self, event) | Appends event to the file. | 3.888622 | 3.771599 | 1.031028 |
if self._num_outstanding_events == 0 or self._recordio_writer is None:
return
self._recordio_writer.flush()
if self._logger is not None:
self._logger.info('wrote %d %s to disk', self._num_outstanding_events,
'event' if self._num_outstanding_events == 1 else 'events')
self._num_outstanding_events = 0 | def flush(self) | Flushes the event file to disk. | 2.798269 | 2.634749 | 1.062063 |
self.flush()
if self._recordio_writer is not None:
self._recordio_writer.close()
self._recordio_writer = None | def close(self) | Flushes the pending events and closes the writer after it is done. | 3.899686 | 3.083695 | 1.264615 |
if self._closed:
self._worker = _EventLoggerThread(self._event_queue, self._ev_writer,
self._flush_secs, self._sentinel_event)
self._worker.start()
self._closed = False | def reopen(self) | Reopens the EventFileWriter.
Can be called after `close()` to add more events in the same directory.
The events will go into a new events file.
Does nothing if the `EventFileWriter` was not closed. | 8.048051 | 6.410844 | 1.255381 |
if not self._closed:
self.add_event(self._sentinel_event)
self.flush()
self._worker.join()
self._ev_writer.close()
self._closed = True | def close(self) | Flushes the event file to disk and close the file.
Call this method when you do not need the summary writer anymore. | 5.802923 | 4.713627 | 1.231095 |
header = struct.pack('Q', len(event_str))
header += struct.pack('I', masked_crc32c(header))
footer = struct.pack('I', masked_crc32c(event_str))
self._writer.write(header + event_str + footer) | def write_record(self, event_str) | Writes a serialized event to file. | 3.243515 | 3.029092 | 1.070788 |
if self._writer is not None:
self.flush()
self._writer.close()
self._writer = None | def close(self) | Closes the record writer. | 3.440955 | 2.724323 | 1.26305 |
if isinstance(summary, bytes):
summ = summary_pb2.Summary()
summ.ParseFromString(summary)
summary = summ
# We strip metadata from values with tags that we have seen before in order
# to save space - we just store the metadata on the first value with a
# specific tag.
for value in summary.value:
if not value.metadata:
continue
if value.tag in self._seen_summary_tags:
# This tag has been encountered before. Strip the metadata.
value.ClearField("metadata")
continue
# We encounter a value with a tag we have not encountered previously. And
# it has metadata. Remember to strip metadata from future values with this
# tag string.
self._seen_summary_tags.add(value.tag)
event = event_pb2.Event(summary=summary)
self._add_event(event, global_step) | def add_summary(self, summary, global_step=None) | Adds a `Summary` protocol buffer to the event file.
This method wraps the provided summary in an `Event` protocol buffer and adds it
to the event file.
Parameters
----------
summary : A `Summary` protocol buffer
Optionally serialized as a string.
global_step: Number
Optional global step value to record with the summary. | 4.284337 | 4.346186 | 0.985769 |
event = event_pb2.Event(graph_def=graph.SerializeToString())
self._add_event(event, None) | def add_graph(self, graph) | Adds a `Graph` protocol buffer to the event file. | 5.892663 | 4.112292 | 1.432939 |
if self._default_bins is None:
v = 1E-12
buckets = []
neg_buckets = []
while v < 1E20:
buckets.append(v)
neg_buckets.append(-v)
v *= 1.1
self._default_bins = neg_buckets[::-1] + [0] + buckets
return self._default_bins | def _get_default_bins(self) | Ported from the C++ function InitDefaultBucketsInner() in the following file.
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/lib/histogram/histogram.cc
See the following tutorial for more details on how TensorFlow initialize bin distribution.
https://www.tensorflow.org/programmers_guide/tensorboard_histograms | 3.028434 | 2.6545 | 1.140868 |
if tag not in self._scalar_dict.keys():
self._scalar_dict[tag] = []
self._scalar_dict[tag].append([timestamp, global_step, float(scalar_value)]) | def _append_to_scalar_dict(self, tag, scalar_value, global_step, timestamp) | Adds a list [timestamp, step, value] to the value of `self._scalar_dict[tag]`.
This allows users to store scalars in memory and dump them to a json file later. | 2.126711 | 1.775644 | 1.197713 |
if isinstance(value, (tuple, list, dict)):
if isinstance(value, (tuple, list)):
if len(value) != 2:
raise ValueError('expected two elements in value, while received %d'
% len(value))
value = {value[0]: value[1]}
self._add_scalars(tag, value, global_step)
else:
self._file_writer.add_summary(scalar_summary(tag, value), global_step)
self._append_to_scalar_dict(self.get_logdir() + '/' + tag,
value, global_step, time.time()) | def add_scalar(self, tag, value, global_step=None) | Adds scalar data to the event file.
Parameters
----------
tag : str
Name for the scalar plot.
value : float, tuple, list, or dict
If value is a float, the corresponding curve would have no name attached in the
plot.
If value is a tuple or list, it must have two elements with the first one
representing the name of the value and the second one as the float value. The
name of the value will be attached to the corresponding curve in the plot. This
is useful when users want to draw multiple curves in the same plot. It internally
calls `_add_scalars`.
If value is a dict, it's a mapping from strs to float values, with strs
representing the names of the float values. This is convenient when users want
to log a collection of float values with different names for visualizing them in
the same plot without repeatedly calling `add_scalar` for each value. It internally
calls `_add_scalars`.
global_step : int
Global step value to record.
Examples
--------
>>> import numpy as np
>>> from mxboard import SummaryWriter
>>> xs = np.arange(start=0, stop=2 * np.pi, step=0.01)
>>> y_sin = np.sin(xs)
>>> y_cos = np.cos(xs)
>>> y_exp_sin = np.exp(y_sin)
>>> y_exp_cos = np.exp(y_cos)
>>> y_sin2 = y_sin * y_sin
>>> with SummaryWriter(logdir='./logs') as sw:
>>> for x, y1, y2, y3, y4, y5 in zip(xs, y_sin, y_cos, y_exp_sin, y_exp_cos, y_sin2):
>>> sw.add_scalar('curves', {'sin': y1, 'cos': y2}, x * 100)
>>> sw.add_scalar('curves', ('exp(sin)', y3), x * 100)
>>> sw.add_scalar('curves', ['exp(cos)', y4], x * 100)
>>> sw.add_scalar('curves', y5, x * 100) | 3.700557 | 3.549107 | 1.042673 |
timestamp = time.time()
fw_logdir = self._file_writer.get_logdir()
for scalar_name, scalar_value in scalar_dict.items():
fw_tag = fw_logdir + '/' + tag + '/' + scalar_name
if fw_tag in self._all_writers.keys():
fw = self._all_writers[fw_tag]
else:
fw = FileWriter(logdir=fw_tag, max_queue=self._max_queue,
flush_secs=self._flush_secs, filename_suffix=self._filename_suffix,
verbose=self._verbose)
self._all_writers[fw_tag] = fw
fw.add_summary(scalar_summary(tag, scalar_value), global_step)
self._append_to_scalar_dict(fw_tag, scalar_value, global_step, timestamp) | def _add_scalars(self, tag, scalar_dict, global_step=None) | Adds multiple scalars to summary. This enables drawing multiple curves in one plot.
Parameters
----------
tag : str
Name for the plot.
scalar_dict : dict
Values to be saved.
global_step : int
Global step value to record. | 2.38797 | 2.473337 | 0.965485 |
if os.path.exists(path) and os.path.isfile(path):
logging.warning('%s already exists and will be overwritten by scalar dict', path)
with open(path, "w") as f:
json.dump(self._scalar_dict, f) | def export_scalars(self, path) | Exports to the given path an ASCII file containing all the scalars written
so far by this instance, with the following format:
{writer_id : [[timestamp, step, value], ...], ...} | 3.301036 | 3.369184 | 0.979773 |
if bins == 'default':
bins = self._get_default_bins()
self._file_writer.add_summary(histogram_summary(tag, values, bins), global_step) | def add_histogram(self, tag, values, global_step=None, bins='default') | Add histogram data to the event file.
Note: This function internally calls `asnumpy()` if `values` is an MXNet NDArray.
Since `asnumpy()` is a blocking function call, this function would block the main
thread till it returns. It may consequently affect the performance of async execution
of the MXNet engine.
Parameters
----------
tag : str
Name for the `values`.
values : MXNet `NDArray` or `numpy.ndarray`
Values for building histogram.
global_step : int
Global step value to record.
bins : int or sequence of scalars or str
If `bins` is an int, it defines the number equal-width bins in the range
`(values.min(), values.max())`.
If `bins` is a sequence, it defines the bin edges, including the rightmost edge,
allowing for non-uniform bin width.
If `bins` is a str equal to 'default', it will use the bin distribution
defined in TensorFlow for building histogram.
Ref: https://www.tensorflow.org/programmers_guide/tensorboard_histograms
The rest of supported strings for `bins` are 'auto', 'fd', 'doane', 'scott',
'rice', 'sturges', and 'sqrt'. etc. See the documentation of `numpy.histogram`
for detailed definitions of those strings.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html | 3.098844 | 4.673509 | 0.663066 |
self._file_writer.add_summary(image_summary(tag, image), global_step) | def add_image(self, tag, image, global_step=None) | Add image data to the event file.
This function supports input as a 2D, 3D, or 4D image.
If the input image is 2D, a channel axis is prepended as the first dimension
and image will be replicated three times and concatenated along the channel axis.
If the input image is 3D, it will be replicated three times and concatenated along
the channel axis. If the input image is 4D, which is a batch images, all the
images will be spliced as a sprite image for display.
Note: This function requires the ``pillow`` package.
Note: This function internally calls `asnumpy()` for MXNet `NDArray` inputs.
Since `asnumpy()` is a blocking function call, this function would block the main
thread till it returns. It may consequently affect the performance of async execution
of the MXNet engine.
Parameters
----------
tag : str
Name for the `image`.
image : MXNet `NDArray` or `numpy.ndarray`
Image is one of the following formats: (H, W), (C, H, W), (N, C, H, W).
If the input is a batch of images, a grid of images is made by stitching them
together.
If data type is float, values must be in range [0, 1], and then they are
rescaled to range [0, 255]. Note that this does not change the values of the
input `image`. A copy of the input `image` is created instead.
If data type is 'uint8`, values are unchanged.
global_step : int
Global step value to record. | 4.51201 | 7.896509 | 0.571393 |
self._file_writer.add_summary(audio_summary(tag, audio, sample_rate=sample_rate),
global_step) | def add_audio(self, tag, audio, sample_rate=44100, global_step=None) | Add audio data to the event file.
Note: This function internally calls `asnumpy()` for MXNet `NDArray` inputs.
Since `asnumpy()` is a blocking function call, this function would block the main
thread till it returns. It may consequently affect the performance of async execution
of the MXNet engine.
Parameters
----------
tag : str
Name for the `audio`.
audio : MXNet `NDArray` or `numpy.ndarray`
Audio data squeezable to a 1D tensor. The values of the tensor are in the range
`[-1, 1]`.
sample_rate : int
Sample rate in Hz.
global_step : int
Global step value to record. | 3.734565 | 5.866628 | 0.636578 |
self._file_writer.add_summary(text_summary(tag, text), global_step)
if tag not in self._text_tags:
self._text_tags.append(tag)
extension_dir = self.get_logdir() + '/plugins/tensorboard_text/'
if not os.path.exists(extension_dir):
os.makedirs(extension_dir)
with open(extension_dir + 'tensors.json', 'w') as fp:
json.dump(self._text_tags, fp) | def add_text(self, tag, text, global_step=None) | Add text data to the event file.
Parameters
----------
tag : str
Name for the `text`.
text : str
Text to be saved to the event file.
global_step : int
Global step value to record. | 2.814092 | 3.054695 | 0.921235 |
embedding_shape = embedding.shape
if len(embedding_shape) != 2:
raise ValueError('expected 2D NDArray as embedding data, while received an array with'
' ndim=%d' % len(embedding_shape))
data_dir = _get_embedding_dir(tag, global_step)
save_path = os.path.join(self.get_logdir(), data_dir)
try:
os.makedirs(save_path)
except OSError:
logging.warning('embedding dir %s exists, files under this dir will be overwritten',
save_path)
if labels is not None:
if (embedding_shape[0] != len(labels) and
(not _is_2D_matrix(labels) or len(labels) != embedding_shape[0] + 1)):
raise ValueError('expected equal values of embedding first dim and length of '
'labels or embedding first dim + 1 for 2d labels '
', while received %d and %d for each'
% (embedding_shape[0], len(labels)))
if self._logger is not None:
self._logger.info('saved embedding labels to %s', save_path)
_make_metadata_tsv(labels, save_path)
if images is not None:
img_labels_shape = images.shape
if embedding_shape[0] != img_labels_shape[0]:
raise ValueError('expected equal first dim size of embedding and images,'
' while received %d and %d for each' % (embedding_shape[0],
img_labels_shape[0]))
if self._logger is not None:
self._logger.info('saved embedding images to %s', save_path)
_make_sprite_image(images, save_path)
if self._logger is not None:
self._logger.info('saved embedding data to %s', save_path)
_save_embedding_tsv(embedding, save_path)
_add_embedding_config(self.get_logdir(), data_dir, labels is not None,
images.shape if images is not None else None) | def add_embedding(self, tag, embedding, labels=None, images=None, global_step=None) | Adds embedding projector data to the event file. It will also create a config file
used by the embedding projector in TensorBoard. The folder containing the embedding
data is named using the formula:
If global_step is not None, the folder name is `tag + '_' + str(global_step).zfill(6)`;
else, the folder name is `tag`.
For example, tag = 'mnist', global_step = 12, the folder's name is 'mnist_000012';
when global_step = None, the folder's name is 'mnist'.
See the following reference for the meanings of labels and images.
Ref: https://www.tensorflow.org/versions/r1.2/get_started/embedding_viz
Note: This function internally calls `asnumpy()` for MXNet `NDArray` inputs.
Since `asnumpy()` is a blocking function call, this function would block the main
thread till it returns. It may consequently affect the performance of async execution
of the MXNet engine.
Parameters
----------
tag : str
Name for the `embedding`.
embedding : MXNet `NDArray` or `numpy.ndarray`
A matrix whose each row is the feature vector of a data point.
labels : MXNet `NDArray` or `numpy.ndarray` or a list of elements convertible to str.
Labels corresponding to the data points in the `embedding`. If the labels are 2D
the first row is considered the column names.
images : MXNet `NDArray` or `numpy.ndarray`
Images of format NCHW corresponding to the data points in the `embedding`.
global_step : int
Global step value to record. If not set, default to zero. | 2.808191 | 2.854127 | 0.983905 |
if num_thresholds < 2:
raise ValueError('num_thresholds must be >= 2')
labels = _make_numpy_array(labels)
predictions = _make_numpy_array(predictions)
self._file_writer.add_summary(pr_curve_summary(tag, labels, predictions,
num_thresholds, weights), global_step) | def add_pr_curve(self, tag, labels, predictions, num_thresholds,
global_step=None, weights=None) | Adds precision-recall curve.
Note: This function internally calls `asnumpy()` for MXNet `NDArray` inputs.
Since `asnumpy()` is a blocking function call, this function would block the main
thread till it returns. It may consequently affect the performance of async execution
of the MXNet engine.
Parameters
----------
tag : str
A tag attached to the summary. Used by TensorBoard for organization.
labels : MXNet `NDArray` or `numpy.ndarray`.
The ground truth values. A tensor of 0/1 values with arbitrary shape.
predictions : MXNet `NDArray` or `numpy.ndarray`.
A float32 tensor whose values are in the range `[0, 1]`. Dimensions must match
those of `labels`.
num_thresholds : int
Number of thresholds, evenly distributed in `[0, 1]`, to compute PR metrics for.
Should be `>= 2`. This value should be a constant integer value, not a tensor
that stores an integer.
The thresholds for computing the pr curves are calculated in the following way:
`width = 1.0 / (num_thresholds - 1),
thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0]`.
global_step : int
Global step value to record.
weights : MXNet `NDArray` or `numpy.ndarray`.
Optional float32 tensor. Individual counts are multiplied by this value.
This tensor must be either the same shape as or broadcastable to the `labels`
tensor. | 2.319356 | 3.061311 | 0.757635 |
for i in n:
if len(i) != len(n[0]):
return False
return True | def _rectangular(n) | Checks to see if a 2D list is a valid 2D matrix | 3.772285 | 2.420287 | 1.558611 |
return ((isinstance(matrix[0], list) and _rectangular(matrix) and
not isinstance(matrix[0][0], list)) or
(not isinstance(matrix, list) and matrix.shape == 2)) | def _is_2D_matrix(matrix) | Checks to see if a ndarray is 2D or a list of lists is 2D | 4.763127 | 4.292598 | 1.109614 |
if not isinstance(image, NDArray):
raise TypeError('MXNet NDArray expected, received {}'.format(str(type(image))))
image = _prepare_image(image, nrow=nrow, padding=padding, square_image=square_image)
if Image is None:
raise ImportError('saving image failed because PIL is not found')
im = Image.fromarray(image.asnumpy())
im.save(filename) | def _save_image(image, filename, nrow=8, padding=2, square_image=True) | Saves a given Tensor into an image file. If the input tensor contains multiple images,
a grid of images will be saved.
Parameters
----------
image : `NDArray`
Input image(s) in the format of HW, CHW, or NCHW.
filename : str
Filename of the saved image(s).
nrow : int
Number of images displayed in each row of the grid. The Final grid size is
(batch_size / `nrow`, `nrow`) when square_image is False; otherwise, (`nrow`, `nrow`).
padding : int
Padding value for each image in the grid.
square_image : bool
If True, force the image grid to be strictly square. | 3.334473 | 3.675867 | 0.907126 |
if isinstance(img, np.ndarray):
img = nd.array(img, dtype=img.dtype, ctx=current_context())
if not isinstance(img, NDArray):
raise TypeError('expected MXNet NDArray or numpy.ndarray, '
'while received type {}'.format(str(type(img))))
assert img.ndim == 2 or img.ndim == 3 or img.ndim == 4
if img.dtype == np.uint8:
return make_image_grid(
img, nrow=nrow, padding=padding, square_image=square_image).transpose((1, 2, 0))
elif img.dtype == np.float32 or img.dtype == np.float64:
min_val = img.min().asscalar()
max_val = img.max().asscalar()
if min_val < 0.0:
raise ValueError('expected non-negative min value from img, '
'while received {}'.format(min_val))
if max_val > 1.0:
raise ValueError('expected max value from img not greater than 1, '
'while received {}'.format(max_val))
img = make_image_grid(img, nrow=nrow, padding=padding, square_image=square_image) * 255.0
return img.astype(np.uint8).transpose((1, 2, 0))
else:
raise ValueError('expected input image dtype is one of uint8, float32, '
'and float64, received dtype {}'.format(str(img.dtype))) | def _prepare_image(img, nrow=8, padding=2, square_image=False) | Given an image of format HW, CHW, or NCHW, returns a image of format HWC.
If the input is a batch of images, a grid of images is made by stitching them together.
If data type is float, values must be in the range [0, 1], and then they are rescaled to
range [0, 255]. If data type is 'uint8`, values are unchanged. | 2.167143 | 2.179743 | 0.994219 |
if isinstance(metadata, NDArray):
metadata = metadata.asnumpy()
elif isinstance(metadata, list):
metadata = np.array(metadata)
elif not isinstance(metadata, np.ndarray):
raise TypeError('expected NDArray or np.ndarray or 1D/2D list, while received '
'type {}'.format(str(type(metadata))))
if len(metadata.shape) > 2:
raise TypeError('expected a 1D/2D NDArray, np.ndarray or list, while received '
'shape {}'.format(str(metadata.shape)))
if len(metadata.shape) == 1:
metadata = metadata.reshape(-1, 1)
with open(os.path.join(save_path, 'metadata.tsv'), 'w') as f:
for row in metadata:
f.write('\t'.join([str(x) for x in row]) + '\n') | def _make_metadata_tsv(metadata, save_path) | Given an `NDArray` or a `numpy.ndarray` or a list as metadata e.g. labels, save the
flattened array into the file metadata.tsv under the path provided by the user. The
labels can be 1D or 2D with multiple labels per data point.
Made to satisfy the requirement in the following link:
https://www.tensorflow.org/programmers_guide/embedding#metadata | 2.18149 | 2.022094 | 1.078827 |
if isinstance(images, np.ndarray):
images = nd.array(images, dtype=images.dtype, ctx=current_context())
elif not isinstance(images, (NDArray, np.ndarray)):
raise TypeError('images must be an MXNet NDArray or numpy.ndarray,'
' while received type {}'.format(str(type(images))))
assert isinstance(images, NDArray)
shape = images.shape
nrow = int(np.ceil(np.sqrt(shape[0])))
_save_image(
images, os.path.join(save_path, 'sprite.png'), nrow=nrow, padding=0, square_image=True) | def _make_sprite_image(images, save_path) | Given an NDArray as a batch images, make a sprite image out of it following the rule
defined in
https://www.tensorflow.org/programmers_guide/embedding
and save it in sprite.png under the path provided by the user. | 3.436628 | 3.246198 | 1.058663 |
with open(os.path.join(file_path, 'projector_config.pbtxt'), 'a') as f:
s = 'embeddings {\n'
s += 'tensor_name: "{}"\n'.format(data_dir)
s += 'tensor_path: "{}"\n'.format(os.path.join(data_dir, 'tensors.tsv'))
if has_metadata:
s += 'metadata_path: "{}"\n'.format(os.path.join(data_dir, 'metadata.tsv'))
if label_img_shape is not None:
if len(label_img_shape) != 4:
logging.warning('expected 4D sprite image in the format NCHW, while received image'
' ndim=%d, skipping saving sprite'
' image info', len(label_img_shape))
else:
s += 'sprite {\n'
s += 'image_path: "{}"\n'.format(os.path.join(data_dir, 'sprite.png'))
s += 'single_image_dim: {}\n'.format(label_img_shape[3])
s += 'single_image_dim: {}\n'.format(label_img_shape[2])
s += '}\n'
s += '}\n'
f.write(s) | def _add_embedding_config(file_path, data_dir, has_metadata=False, label_img_shape=None) | Creates a config file used by the embedding projector.
Adapted from the TensorFlow function `visualize_embeddings()` at
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/tensorboard/plugins/projector/__init__.py | 2.403511 | 2.275091 | 1.056446 |
if isinstance(data, np.ndarray):
data_list = data.tolist()
elif isinstance(data, NDArray):
data_list = data.asnumpy().tolist()
else:
raise TypeError('expected NDArray of np.ndarray, while received type {}'.format(
str(type(data))))
with open(os.path.join(file_path, 'tensors.tsv'), 'w') as f:
for x in data_list:
x = [str(i) for i in x]
f.write('\t'.join(x) + '\n') | def _save_embedding_tsv(data, file_path) | Given a 2D `NDarray` or a `numpy.ndarray` as embeding,
save it in tensors.tsv under the path provided by the user. | 2.527216 | 2.103978 | 1.201161 |
# In the past, the first argument to summary ops was a tag, which allowed
# arbitrary characters. Now we are changing the first argument to be the node
# name. This has a number of advantages (users of summary ops now can
# take advantage of the tf name scope system) but risks breaking existing
# usage, because a much smaller set of characters are allowed in node names.
# This function replaces all illegal characters with _s, and logs a warning.
# It also strips leading slashes from the name.
if name is not None:
new_name = _INVALID_TAG_CHARACTERS.sub('_', name)
new_name = new_name.lstrip('/') # Remove leading slashes
if new_name != name:
logging.warning('Summary name %s is illegal; using %s instead.', name, new_name)
name = new_name
return name | def _clean_tag(name) | Cleans a tag. Removes illegal characters for instance.
Adapted from the TensorFlow function `clean_tag()` at
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/summary_op_util.py
Parameters
----------
name : str
The original tag name to be processed.
Returns
-------
The cleaned tag name. | 6.506063 | 6.482557 | 1.003626 |
tag = _clean_tag(tag)
scalar = _make_numpy_array(scalar)
assert(scalar.squeeze().ndim == 0), 'scalar should be 0D'
scalar = float(scalar)
return Summary(value=[Summary.Value(tag=tag, simple_value=scalar)]) | def scalar_summary(tag, scalar) | Outputs a `Summary` protocol buffer containing a single scalar value.
The generated Summary has a Tensor.proto containing the input Tensor.
Adapted from the TensorFlow function `scalar()` at
https://github.com/tensorflow/tensorflow/blob/r1.6/tensorflow/python/summary/summary.py
Parameters
----------
tag : str
A name for the generated summary. Will also serve as the series name in TensorBoard.
scalar : int, MXNet `NDArray`, or `numpy.ndarray`
A scalar value or an ndarray of shape (1,).
Returns
-------
A `Summary` protobuf of the `scalar` value.
Raises
------
ValueError: If the scalar has the wrong shape or type. | 3.452307 | 4.608978 | 0.74904 |
tag = _clean_tag(tag)
values = _make_numpy_array(values)
hist = _make_histogram(values.astype(float), bins)
return Summary(value=[Summary.Value(tag=tag, histo=hist)]) | def histogram_summary(tag, values, bins) | Outputs a `Summary` protocol buffer with a histogram.
Adding a histogram summary makes it possible to visualize the data's distribution in
TensorBoard. See detailed explanation of the TensorBoard histogram dashboard at
https://www.tensorflow.org/get_started/tensorboard_histograms
This op reports an `InvalidArgument` error if any value is not finite.
Adapted from the TensorFlow function `histogram()` at
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/summary/summary.py
Parameters
----------
tag : str
A name for the summary of the histogram. Will also serve as a series name in
TensorBoard.
values : MXNet `NDArray` or `numpy.ndarray`
Values for building the histogram.
Returns
-------
A `Summary` protobuf of the histogram. | 3.477409 | 4.649336 | 0.747937 |
values = values.reshape(-1)
counts, limits = np.histogram(values, bins=bins)
limits = limits[1:]
sum_sq = values.dot(values)
return HistogramProto(min=values.min(),
max=values.max(),
num=len(values),
sum=values.sum(),
sum_squares=sum_sq,
bucket_limit=limits,
bucket=counts) | def _make_histogram(values, bins) | Converts values into a histogram proto using logic from
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/lib/histogram/histogram.cc | 2.92291 | 2.467951 | 1.184347 |
tag = _clean_tag(tag)
image = _prepare_image(image)
image = _make_image(image)
return Summary(value=[Summary.Value(tag=tag, image=image)]) | def image_summary(tag, image) | Outputs a `Summary` protocol buffer with image(s).
Parameters
----------
tag : str
A name for the generated summary. Will also serve as a series name in TensorBoard.
image : MXNet `NDArray` or `numpy.ndarray`
Image data that is one of the following layout: (H, W), (C, H, W), (N, C, H, W).
The pixel values of the image are assumed to be normalized in the range [0, 1].
The image will be rescaled to the range [0, 255] and cast to `np.uint8` before creating
the image protobuf.
Returns
-------
A `Summary` protobuf of the image. | 3.538652 | 4.650449 | 0.760927 |
assert isinstance(tensor, NDArray)
if Image is None:
raise ImportError('need to install PIL for visualizing images')
height, width, channel = tensor.shape
tensor = _make_numpy_array(tensor)
image = Image.fromarray(tensor)
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return Summary.Image(height=height, width=width, colorspace=channel,
encoded_image_string=image_string) | def _make_image(tensor) | Converts an NDArray type image to Image protobuf | 2.740776 | 2.393902 | 1.144899 |
audio = audio.squeeze()
if audio.ndim != 1:
raise ValueError('input audio must be squeezable to 1D, input audio squeezed '
'shape is {}'.format(audio.shape))
audio = _make_numpy_array(audio)
tensor_list = [int(32767.0 * x) for x in audio]
fio = io.BytesIO()
wave_writer = wave.open(fio, 'wb')
wave_writer.setnchannels(1)
wave_writer.setsampwidth(2)
wave_writer.setframerate(sample_rate)
tensor_enc = b''
for v in tensor_list: # pylint: disable=invalid-name
tensor_enc += struct.pack('<h', v)
wave_writer.writeframes(tensor_enc)
wave_writer.close()
audio_string = fio.getvalue()
fio.close()
audio = Summary.Audio(sample_rate=sample_rate,
num_channels=1,
length_frames=len(tensor_list),
encoded_audio_string=audio_string,
content_type='audio/wav')
return Summary(value=[Summary.Value(tag=tag, audio=audio)]) | def audio_summary(tag, audio, sample_rate=44100) | Outputs a `Summary` protocol buffer with audio data.
Parameters
----------
tag : str
A name for the generated summary. Will also serve as a series name in TensorBoard.
audio : MXNet `NDArray` or `numpy.ndarray`
Audio data that can be squeezed into 1D array. The values are in the range [-1, 1].
sample_rate : int
Sampling frequency. 44,100Hz is a common sampling frequency.
Returns
-------
A `Summary` protobuf of the audio data. | 2.516223 | 2.492583 | 1.009484 |
plugin_data = [SummaryMetadata.PluginData(plugin_name='text')]
smd = SummaryMetadata(plugin_data=plugin_data)
tensor = TensorProto(dtype='DT_STRING',
string_val=[text.encode(encoding='utf_8')],
tensor_shape=TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]))
return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) | def text_summary(tag, text) | Outputs a `Summary` protocol buffer with audio data.
Parameters
----------
tag : str
A name for the generated summary. Will also serve as a series name in TensorBoard.
text : str
Text data.
Returns
-------
A `Summary` protobuf of the audio data. | 3.350461 | 3.182843 | 1.052663 |
# num_thresholds > 127 results in failure of creating protobuf,
# probably a bug of protobuf
if num_thresholds > 127:
logging.warning('num_thresholds>127 would result in failure of creating pr_curve protobuf,'
' clipping it at 127')
num_thresholds = 127
labels = _make_numpy_array(labels)
predictions = _make_numpy_array(predictions)
if weights is not None:
weights = _make_numpy_array(weights)
data = _compute_curve(labels, predictions, num_thresholds=num_thresholds, weights=weights)
pr_curve_plugin_data = PrCurvePluginData(version=0,
num_thresholds=num_thresholds).SerializeToString()
plugin_data = [SummaryMetadata.PluginData(plugin_name='pr_curves',
content=pr_curve_plugin_data)]
smd = SummaryMetadata(plugin_data=plugin_data)
tensor = TensorProto(dtype='DT_FLOAT',
float_val=data.reshape(-1).tolist(),
tensor_shape=TensorShapeProto(
dim=[TensorShapeProto.Dim(size=data.shape[0]),
TensorShapeProto.Dim(size=data.shape[1])]))
return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) | def pr_curve_summary(tag, labels, predictions, num_thresholds, weights=None) | Outputs a precision-recall curve `Summary` protocol buffer.
Parameters
----------
tag : str
A tag attached to the summary. Used by TensorBoard for organization.
labels : MXNet `NDArray` or `numpy.ndarray`.
The ground truth values. A tensor of 0/1 values with arbitrary shape.
predictions : MXNet `NDArray` or `numpy.ndarray`.
A float32 tensor whose values are in the range `[0, 1]`. Dimensions must
match those of `labels`.
num_thresholds : int
Number of thresholds, evenly distributed in `[0, 1]`, to compute PR metrics for.
Should be `>= 2`. This value should be a constant integer value, not a tensor
that stores an integer.
The thresholds for computing the pr curves are calculated in the following way:
`width = 1.0 / (num_thresholds - 1),
thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0]`.
weights : MXNet `NDArray` or `numpy.ndarray`.
Optional float32 tensor. Individual counts are multiplied by this value.
This tensor must be either the same shape as or broadcastable to the `labels` tensor.
Returns
-------
A `Summary` protobuf of the pr_curve. | 2.974266 | 3.127773 | 0.950921 |
if weights is None:
weights = 1.0
# Compute bins of true positives and false positives.
bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1)))
float_labels = labels.astype(np.float)
histogram_range = (0, num_thresholds - 1)
tp_buckets, _ = np.histogram(
bucket_indices,
bins=num_thresholds,
range=histogram_range,
weights=float_labels * weights)
fp_buckets, _ = np.histogram(
bucket_indices,
bins=num_thresholds,
range=histogram_range,
weights=(1.0 - float_labels) * weights)
# Obtain the reverse cumulative sum.
tp = np.cumsum(tp_buckets[::-1])[::-1]
fp = np.cumsum(fp_buckets[::-1])[::-1]
tn = fp[0] - fp
fn = tp[0] - tp
precision = tp / np.maximum(_MINIMUM_COUNT, tp + fp)
recall = tp / np.maximum(_MINIMUM_COUNT, tp + fn)
return np.stack((tp, fp, tn, fn, precision, recall)) | def _compute_curve(labels, predictions, num_thresholds, weights=None) | This function is another implementation of functions in
https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py | 2.256516 | 2.253552 | 1.001315 |
if not isinstance(sym, Symbol):
raise TypeError('sym must be an `mxnet.symbol.Symbol`,'
' received type {}'.format(str(type(sym))))
conf = json.loads(sym.tojson())
nodes = conf['nodes']
data2op = {} # key: data id, value: list of ops to whom data is an input
for i, node in enumerate(nodes):
if node['op'] != 'null': # node is an operator
input_list = node['inputs']
for idx in input_list:
if idx[0] == 0: # do not include 'data' node in the op scope
continue
if idx[0] in data2op:
# nodes[idx[0]] is a data as an input to op nodes[i]
data2op[idx[0]].append(i)
else:
data2op[idx[0]] = [i]
# In the following, we group data with operators they belong to
# by attaching them with operator names as scope names.
# The parameters with the operator name as the prefix will be
# assigned with the scope name of that operator. For example,
# a convolution op has name 'conv', while its weight and bias
# have name 'conv_weight' and 'conv_bias'. In the end, the operator
# has scope name 'conv' prepended to its name, i.e. 'conv/conv'.
# The parameters are named 'conv/conv_weight' and 'conv/conv_bias'.
node_defs = []
for i, node in enumerate(nodes):
node_name = node['name']
op_name = node['op']
kwargs = {'op': op_name, 'name': node_name}
if op_name != 'null': # node is an operator
inputs = []
input_list = node['inputs']
for idx in input_list:
input_node = nodes[idx[0]]
input_node_name = input_node['name']
if input_node['op'] != 'null':
inputs.append(_scoped_name(input_node_name, input_node_name))
elif idx[0] in data2op and len(data2op[idx[0]]) == 1 and data2op[idx[0]][0] == i:
# the data is only as an input to nodes[i], no else
inputs.append(_scoped_name(node_name, input_node_name))
else: # the data node has no scope name, e.g. 'data' as the input node
inputs.append(input_node_name)
kwargs['input'] = inputs
kwargs['name'] = _scoped_name(node_name, node_name)
elif i in data2op and len(data2op[i]) == 1:
# node is a data node belonging to one op, find out which operator this node belongs to
op_node_name = nodes[data2op[i][0]]['name']
kwargs['name'] = _scoped_name(op_node_name, node_name)
if 'attrs' in node:
# TensorBoard would escape quotation marks, replace it with space
attr = json.dumps(node['attrs'], sort_keys=True).replace("\"", ' ')
attr = {'param': AttrValue(s=attr.encode(encoding='utf-8'))}
kwargs['attr'] = attr
node_def = NodeDef(**kwargs)
node_defs.append(node_def)
return node_defs | def _get_nodes_from_symbol(sym) | Given a symbol and shapes, return a list of `NodeDef`s for visualizing the
the graph in TensorBoard. | 3.214533 | 3.12561 | 1.02845 |
mask = {}
indices = range(data.shape[0])
lags = lags or [0]
criteria = criteria or {'framewise_displacement': ('>', 0.5),
'std_dvars': ('>', 1.5)}
for metric, (criterion, threshold) in criteria.items():
if criterion == '<':
mask[metric] = set(np.where(data[metric] < threshold)[0])
elif criterion == '>':
mask[metric] = set(np.where(data[metric] > threshold)[0])
mask = reduce((lambda x, y: x | y), mask.values())
for lag in lags:
mask = set([m + lag for m in mask]) | mask
mask = mask.intersection(indices)
if minimum_contiguous is not None:
post_final = data.shape[0] + 1
epoch_length = np.diff(sorted(mask |
set([-1, post_final]))) - 1
epoch_end = sorted(mask | set([post_final]))
for end, length in zip(epoch_end, epoch_length):
if length < minimum_contiguous:
mask = mask | set(range(end - length, end))
mask = mask.intersection(indices)
if output == 'mask':
spikes = np.zeros(data.shape[0])
spikes[list(mask)] = 1
spikes = pd.DataFrame(data=spikes, columns=[header_prefix])
else:
spikes = np.zeros((max(indices)+1, len(mask)))
for i, m in enumerate(sorted(mask)):
spikes[m, i] = 1
header = ['{:s}{:02d}'.format(header_prefix, vol)
for vol in range(len(mask))]
spikes = pd.DataFrame(data=spikes, columns=header)
if concatenate:
return pd.concat((data, spikes), axis=1)
else:
return spikes | def spike_regressors(data, criteria=None, header_prefix='motion_outlier',
lags=None, minimum_contiguous=None, concatenate=True,
output='spikes') | Add spike regressors to a confound/nuisance matrix.
Parameters
----------
data: pandas DataFrame object
A tabulation of observations from which spike regressors should be
estimated.
criteria: dict{str: ('>' or '<', float)}
Criteria for generating a spike regressor. If, for a given frame, the
value of the variable corresponding to the key exceeds the threshold
indicated by the value, then a spike regressor is created for that
frame. By default, the strategy from Power 2014 is implemented: any
frames with FD greater than 0.5 or standardised DV greater than 1.5
are flagged for censoring.
header_prefix: str
The prefix used to indicate spike regressors in the output data table.
lags: list(int)
A list indicating the frames to be censored relative to each flag.
For instance, [0] censors the flagged frame, while [0, 1] censors
both the flagged frame and the following frame.
minimum_contiguous: int or None
The minimum number of contiguous frames that must be unflagged for
spike regression. If any series of contiguous unflagged frames is
shorter than the specified minimum, then all of those frames will
additionally have spike regressors implemented.
concatenate: bool
Indicates whether the returned object should include only spikes
(if false) or all input time series and spikes (if true, default).
output: str
Indicates whether the output should be formatted as spike regressors
('spikes', a separate column for each outlier) or as a temporal mask
('mask', a single output column indicating the locations of outliers).
Returns
-------
data: pandas DataFrame object
The input DataFrame with a column for each spike regressor.
References
----------
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014)
Methods to detect, characterize, and remove motion artifact in resting
state fMRI. NeuroImage. | 2.74229 | 2.676166 | 1.024709 |
variables_deriv = OrderedDict()
data_deriv = OrderedDict()
if 0 in order:
data_deriv[0] = data[variables]
variables_deriv[0] = variables
order = set(order) - set([0])
for o in order:
variables_deriv[o] = ['{}_derivative{}'.format(v, o)
for v in variables]
data_deriv[o] = np.tile(np.nan, data[variables].shape)
data_deriv[o][o:, :] = np.diff(data[variables], n=o, axis=0)
variables_deriv = reduce((lambda x, y: x + y), variables_deriv.values())
data_deriv = pd.DataFrame(columns=variables_deriv,
data=np.concatenate([*data_deriv.values()],
axis=1))
return (variables_deriv, data_deriv) | def temporal_derivatives(order, variables, data) | Compute temporal derivative terms by the method of backwards differences.
Parameters
----------
order: range or list(int)
A list of temporal derivative terms to include. For instance, [1, 2]
indicates that the first and second derivative terms should be added.
To retain the original terms, 0 *must* be included in the list.
variables: list(str)
List of variables for which temporal derivative terms should be
computed.
data: pandas DataFrame object
Table of values of all observations of all variables.
Returns
-------
variables_deriv: list
A list of variables to include in the final data frame after adding
the specified derivative terms.
data_deriv: pandas DataFrame object
Table of values of all observations of all variables, including any
specified derivative terms. | 2.682291 | 2.585475 | 1.037446 |
variables_exp = OrderedDict()
data_exp = OrderedDict()
if 1 in order:
data_exp[1] = data[variables]
variables_exp[1] = variables
order = set(order) - set([1])
for o in order:
variables_exp[o] = ['{}_power{}'.format(v, o) for v in variables]
data_exp[o] = data[variables]**o
variables_exp = reduce((lambda x, y: x + y), variables_exp.values())
data_exp = pd.DataFrame(columns=variables_exp,
data=np.concatenate([*data_exp.values()], axis=1))
return (variables_exp, data_exp) | def exponential_terms(order, variables, data) | Compute exponential expansions.
Parameters
----------
order: range or list(int)
A list of exponential terms to include. For instance, [1, 2]
indicates that the first and second exponential terms should be added.
To retain the original terms, 1 *must* be included in the list.
variables: list(str)
List of variables for which exponential terms should be computed.
data: pandas DataFrame object
Table of values of all observations of all variables.
Returns
-------
variables_exp: list
A list of variables to include in the final data frame after adding
the specified exponential terms.
data_exp: pandas DataFrame object
Table of values of all observations of all variables, including any
specified exponential terms. | 2.787845 | 2.694917 | 1.034482 |
order = order.split('-')
order = [int(o) for o in order]
if len(order) > 1:
order = range(order[0], (order[-1] + 1))
return order | def _order_as_range(order) | Convert a hyphenated string representing order for derivative or
exponential terms into a range object that can be passed as input to the
appropriate expansion function. | 2.567503 | 2.677654 | 0.958863 |
if re.search(r'\^\^[0-9]+$', expr):
order = re.compile(r'\^\^([0-9]+)$').findall(expr)
order = range(1, int(*order) + 1)
variables, data = exponential_terms(order, variables, data)
elif re.search(r'\^[0-9]+[\-]?[0-9]*$', expr):
order = re.compile(r'\^([0-9]+[\-]?[0-9]*)').findall(expr)
order = _order_as_range(*order)
variables, data = exponential_terms(order, variables, data)
return variables, data | def _check_and_expand_exponential(expr, variables, data) | Check if the current operation specifies exponential expansion. ^^6
specifies all powers up to the 6th, ^5-6 the 5th and 6th powers, ^6 the
6th only. | 2.887493 | 2.860055 | 1.009593 |
if re.search(r'^dd[0-9]+', expr):
order = re.compile(r'^dd([0-9]+)').findall(expr)
order = range(0, int(*order) + 1)
(variables, data) = temporal_derivatives(order, variables, data)
elif re.search(r'^d[0-9]+[\-]?[0-9]*', expr):
order = re.compile(r'^d([0-9]+[\-]?[0-9]*)').findall(expr)
order = _order_as_range(*order)
(variables, data) = temporal_derivatives(order, variables, data)
return variables, data | def _check_and_expand_derivative(expr, variables, data) | Check if the current operation specifies a temporal derivative. dd6x
specifies all derivatives up to the 6th, d5-6x the 5th and 6th, d6x the
6th only. | 3.034133 | 2.704741 | 1.121783 |
grouping_depth = 0
for i, char in enumerate(expression):
if char == '(':
if grouping_depth == 0:
formula_delimiter = i + 1
grouping_depth += 1
elif char == ')':
grouping_depth -= 1
if grouping_depth == 0:
expr = expression[formula_delimiter:i].strip()
return parse_formula(expr, parent_data)
return variables, data | def _check_and_expand_subformula(expression, parent_data, variables, data) | Check if the current operation contains a suboperation, and parse it
where appropriate. | 2.815257 | 2.767668 | 1.017195 |
variables = None
data = None
variables, data = _check_and_expand_subformula(expression,
parent_data,
variables,
data)
variables, data = _check_and_expand_exponential(expression,
variables,
data)
variables, data = _check_and_expand_derivative(expression,
variables,
data)
if variables is None:
expr = expression.strip()
variables = [expr]
data = parent_data[expr]
return variables, data | def parse_expression(expression, parent_data) | Parse an expression in a model formula.
Parameters
----------
expression: str
Formula expression: either a single variable or a variable group
paired with an operation (exponentiation or differentiation).
parent_data: pandas DataFrame
The source data for the model expansion.
Returns
-------
variables: list
A list of variables in the provided formula expression.
data: pandas DataFrame
A tabulation of all terms in the provided formula expression. | 3.104138 | 2.849263 | 1.089453 |
wm = 'white_matter'
gsr = 'global_signal'
rps = 'trans_x + trans_y + trans_z + rot_x + rot_y + rot_z'
fd = 'framewise_displacement'
acc = _get_matches_from_data('a_comp_cor_[0-9]+', variables)
tcc = _get_matches_from_data('t_comp_cor_[0-9]+', variables)
dv = _get_matches_from_data('^std_dvars$', variables)
dvall = _get_matches_from_data('.*dvars', variables)
nss = _get_matches_from_data('non_steady_state_outlier[0-9]+',
variables)
spikes = _get_matches_from_data('motion_outlier[0-9]+', variables)
model_formula = re.sub('wm', wm, model_formula)
model_formula = re.sub('gsr', gsr, model_formula)
model_formula = re.sub('rps', rps, model_formula)
model_formula = re.sub('fd', fd, model_formula)
model_formula = re.sub('acc', acc, model_formula)
model_formula = re.sub('tcc', tcc, model_formula)
model_formula = re.sub('dv', dv, model_formula)
model_formula = re.sub('dvall', dvall, model_formula)
model_formula = re.sub('nss', nss, model_formula)
model_formula = re.sub('spikes', spikes, model_formula)
formula_variables = _get_variables_from_formula(model_formula)
others = ' + '.join(set(variables) - set(formula_variables))
model_formula = re.sub('others', others, model_formula)
return model_formula | def _expand_shorthand(model_formula, variables) | Expand shorthand terms in the model formula. | 2.400448 | 2.388506 | 1.005 |
matches = ['_power[0-9]+', '_derivative[0-9]+']
var = OrderedDict((c, deque()) for c in parent_data.columns)
for c in data.columns:
col = c
for m in matches:
col = re.sub(m, '', col)
if col == c:
var[col].appendleft(c)
else:
var[col].append(c)
unscrambled = reduce((lambda x, y: x + y), var.values())
return data[[*unscrambled]] | def _unscramble_regressor_columns(parent_data, data) | Reorder the columns of a confound matrix such that the columns are in
the same order as the input data with any expansion columns inserted
immediately after the originals. | 3.94802 | 3.860067 | 1.022785 |
variables = {}
data = {}
expr_delimiter = 0
grouping_depth = 0
model_formula = _expand_shorthand(model_formula, parent_data.columns)
for i, char in enumerate(model_formula):
if char == '(':
grouping_depth += 1
elif char == ')':
grouping_depth -= 1
elif grouping_depth == 0 and char == '+':
expression = model_formula[expr_delimiter:i].strip()
variables[expression] = None
data[expression] = None
expr_delimiter = i + 1
expression = model_formula[expr_delimiter:].strip()
variables[expression] = None
data[expression] = None
for expression in list(variables):
if expression[0] == '(' and expression[-1] == ')':
(variables[expression],
data[expression]) = parse_formula(expression[1:-1],
parent_data)
else:
(variables[expression],
data[expression]) = parse_expression(expression,
parent_data)
variables = list(set(reduce((lambda x, y: x + y), variables.values())))
data = pd.concat((data.values()), axis=1)
if unscramble:
data = _unscramble_regressor_columns(parent_data, data)
return variables, data | def parse_formula(model_formula, parent_data, unscramble=False) | Recursively parse a model formula by breaking it into additive atoms
and tracking grouping symbol depth.
Parameters
----------
model_formula: str
Expression for the model formula, e.g.
'(a + b)^^2 + dd1(c + (d + e)^3) + f'
Note that any expressions to be expanded *must* be in parentheses,
even if they include only a single variable (e.g., (x)^2, not x^2).
parent_data: pandas DataFrame
A tabulation of all values usable in the model formula. Each additive
term in `model_formula` should correspond either to a variable in this
data frame or to instructions for operating on a variable (for
instance, computing temporal derivatives or exponential terms).
Temporal derivative options:
* d6(variable) for the 6th temporal derivative
* dd6(variable) for all temporal derivatives up to the 6th
* d4-6(variable) for the 4th through 6th temporal derivatives
* 0 must be included in the temporal derivative range for the original
term to be returned when temporal derivatives are computed.
Exponential options:
* (variable)^6 for the 6th power
* (variable)^^6 for all powers up to the 6th
* (variable)^4-6 for the 4th through 6th powers
* 1 must be included in the powers range for the original term to be
returned when exponential terms are computed.
Temporal derivatives and exponential terms are computed for all terms
in the grouping symbols that they adjoin.
Returns
-------
variables: list(str)
A list of variables included in the model parsed from the provided
formula.
data: pandas DataFrame
All values in the complete model. | 2.510636 | 2.557268 | 0.981765 |
import nibabel as nb
import os
# Load the input image
in_nii = nb.load(in_file)
# Load the mask image
mask_nii = nb.load(mask_file)
# Set all non-mask voxels in the input file to zero.
data = in_nii.get_data()
data[mask_nii.get_data() == 0] = 0
# Save the new masked image.
new_nii = nb.Nifti1Image(data, in_nii.affine, in_nii.header)
new_nii.to_filename(new_name)
return os.path.abspath(new_name) | def mask(in_file, mask_file, new_name) | Apply a binary mask to an image.
Parameters
----------
in_file : str
Path to a NIfTI file to mask
mask_file : str
Path to a binary mask
new_name : str
Path/filename for the masked output image.
Returns
-------
str
Absolute path of the masked output image.
Notes
-----
in_file and mask_file must be in the same
image space and have the same dimensions. | 1.915724 | 1.988675 | 0.963317 |
import os
import numpy as np
import nibabel as nb
from nipype.utils.filemanip import fname_presuffix
if out_path is None:
out_path = fname_presuffix(in_file, suffix='_cfm', newpath=os.getcwd())
else:
out_path = os.path.abspath(out_path)
if not global_mask and not lesion_mask:
NIWORKFLOWS_LOG.warning(
'No lesion mask was provided and global_mask not requested, '
'therefore the original mask will not be modified.')
# Load the input image
in_img = nb.load(in_file)
# If we want a global mask, create one based on the input image.
data = np.ones(in_img.shape, dtype=np.uint8) if global_mask else in_img.get_data()
if set(np.unique(data)) - {0, 1}:
raise ValueError("`global_mask` must be true if `in_file` is not a binary mask")
# If a lesion mask was provided, combine it with the secondary mask.
if lesion_mask is not None:
# Reorient the lesion mask and get the data.
lm_img = nb.as_closest_canonical(nb.load(lesion_mask))
# Subtract lesion mask from secondary mask, set negatives to 0
data = np.fmax(data - lm_img.get_data(), 0)
# Cost function mask will be created from subtraction
# Otherwise, CFM will be created from global mask
cfm_img = nb.Nifti1Image(data, in_img.affine, in_img.header)
# Save the cost function mask.
cfm_img.set_data_dtype(np.uint8)
cfm_img.to_filename(out_path)
return out_path | def create_cfm(in_file, lesion_mask=None, global_mask=True, out_path=None) | Create a mask to constrain registration.
Parameters
----------
in_file : str
Path to an existing image (usually a mask).
If global_mask = True, this is used as a size/dimension reference.
out_path : str
Path/filename for the new cost function mask.
lesion_mask : str, optional
Path to an existing binary lesion mask.
global_mask : bool
Create a whole-image mask (True) or limit to reference mask (False)
A whole image-mask is 1 everywhere
Returns
-------
str
Absolute path of the new cost function mask.
Notes
-----
in_file and lesion_mask must be in the same
image space and have the same dimensions | 3.012302 | 2.869976 | 1.049591 |
# If user-defined settings exist...
if isdefined(self.inputs.settings):
# Note this in the log and return those settings.
NIWORKFLOWS_LOG.info('User-defined settings, overriding defaults')
return self.inputs.settings
# Define a prefix for output files based on the modality of the moving image.
filestart = '{}-mni_registration_{}_'.format(
self.inputs.moving.lower(), self.inputs.flavor)
# Get a list of settings files that match the flavor.
filenames = [i for i in pkgr.resource_listdir('niworkflows', 'data')
if i.startswith(filestart) and i.endswith('.json')]
# Return the settings files.
return [pkgr.resource_filename('niworkflows.data', f)
for f in sorted(filenames)] | def _get_settings(self) | Return any settings defined by the user, as well as any pre-defined
settings files that exist for the image modalities to be registered. | 6.934263 | 6.146121 | 1.128234 |
r
s = "\n".join(source)
if s.find("$") == -1:
return
# This searches for "$blah$" inside a pair of curly braces --
# don't change these, since they're probably coming from a nested
# math environment. So for each match, we replace it with a temporary
# string, and later on we substitute the original back.
global _data
_data = {}
def repl(matchobj):
global _data
s = matchobj.group(0)
t = "___XXX_REPL_%d___" % len(_data)
_data[t] = s
return t
s = re.sub(r"({[^{}$]*\$[^{}$]*\$[^{}]*})", repl, s)
# matches $...$
dollars = re.compile(r"(?<!\$)(?<!\\)\$([^\$]+?)\$")
# regular expression for \$
slashdollar = re.compile(r"\\\$")
s = dollars.sub(r":math:`\1`", s)
s = slashdollar.sub(r"$", s)
# change the original {...} things in:
for r in _data:
s = s.replace(r, _data[r])
# now save results in "source"
source[:] = [s] | def dollars_to_math(source) | r"""
Replace dollar signs with backticks.
More precisely, do a regular expression search. Replace a plain
dollar sign ($) by a backtick (`). Replace an escaped dollar sign
(\$) by a dollar sign ($). Don't change a dollar sign preceded or
followed by a backtick (`$ or $`), because of strings like
"``$HOME``". Don't make any changes on lines starting with
spaces, because those are indented and hence part of a block of
code or examples.
This also doesn't replaces dollar signs enclosed in curly braces,
to avoid nested math environments, such as ::
$f(n) = 0 \text{ if $n$ is prime}$
Thus the above line would get changed to
`f(n) = 0 \text{ if $n$ is prime}` | 5.486075 | 5.605058 | 0.978772 |
self._fixed_image = self.inputs.after
self._moving_image = self.inputs.before
self._contour = self.inputs.wm_seg if isdefined(self.inputs.wm_seg) else None
NIWORKFLOWS_LOG.info(
'Report - setting before (%s) and after (%s) images',
self._fixed_image, self._moving_image)
return super(SimpleBeforeAfterRPT, self)._post_run_hook(runtime) | def _post_run_hook(self, runtime) | there is not inner interface to run | 6.514266 | 6.304049 | 1.033346 |
data_dir = data_dir or ''
default_dirs = [Path(d).expanduser().resolve()
for d in os.getenv('CRN_SHARED_DATA', '').split(os.pathsep)
if d.strip()]
default_dirs += [Path(d).expanduser().resolve()
for d in os.getenv('CRN_DATA', '').split(os.pathsep)
if d.strip()]
default_dirs += [NIWORKFLOWS_CACHE_DIR]
return [Path(d).expanduser()
for d in data_dir.split(os.pathsep) if d.strip()] or default_dirs | def _get_data_path(data_dir=None) | Get data storage directory
data_dir: str
Path of the data directory. Used to force data storage in
a specified location.
:returns:
a list of paths where the dataset could be stored,
ordered by priority | 3.111761 | 3.351086 | 0.928583 |
dataset_folder = dataset_name if not dataset_prefix \
else '%s%s' % (dataset_prefix, dataset_name)
default_paths = default_paths or ''
paths = [p / dataset_folder for p in _get_data_path(data_dir)]
all_paths = [Path(p) / dataset_folder
for p in default_paths.split(os.pathsep)] + paths
# Check if the dataset folder exists somewhere and is not empty
for path in all_paths:
if path.is_dir() and list(path.iterdir()):
if verbose > 1:
NIWORKFLOWS_LOG.info(
'Dataset "%s" already cached in %s', dataset_name, path)
return path, True
for path in paths:
if verbose > 0:
NIWORKFLOWS_LOG.info(
'Dataset "%s" not cached, downloading to %s', dataset_name, path)
path.mkdir(parents=True, exist_ok=True)
return path, False | def _get_dataset(dataset_name, dataset_prefix=None,
data_dir=None, default_paths=None,
verbose=1) | Create if necessary and returns data directory of given dataset.
data_dir: str
Path of the data directory. Used to force data storage in
a specified location.
default_paths: list(str)
Default system paths in which the dataset may already have been installed
by a third party software. They will be checked first.
verbose: int
verbosity level (0 means no message).
:returns: the path of the given dataset directory.
:rtype: str
.. note::
This function retrieves the datasets directory (or data directory) using
the following priority :
1. defaults system paths
2. the keyword argument data_dir
3. the global environment variable CRN_SHARED_DATA
4. the user environment variable CRN_DATA
5. ~/.cache/stanford-crn in the user home folder | 2.975024 | 3.267021 | 0.910623 |
path = os.readlink(link)
if op.isabs(path):
return path
return op.join(op.dirname(link), path) | def readlinkabs(link) | Return an absolute path for the destination
of a symlink | 2.582408 | 2.809552 | 0.919153 |
with Path(path).open('rb') as fhandle:
md5sum = hashlib.md5()
while True:
data = fhandle.read(8192)
if not data:
break
md5sum.update(data)
return md5sum.hexdigest() | def _md5_sum_file(path) | Calculates the MD5 sum of a file. | 1.808751 | 1.785344 | 1.013111 |
try:
if total_size is None:
total_size = response.info().get('Content-Length').strip()
total_size = int(total_size) + initial_size
except Exception as exc:
if verbose > 2:
NIWORKFLOWS_LOG.warn('Total size of chunk could not be determined')
if verbose > 3:
NIWORKFLOWS_LOG.warn("Full stack trace: %s", str(exc))
total_size = None
bytes_so_far = initial_size
t_0 = time_last_display = time.time()
while True:
chunk = response.read(chunk_size)
bytes_so_far += len(chunk)
time_last_read = time.time()
if (report_hook and
# Refresh report every half second or when download is
# finished.
(time_last_read > time_last_display + 0.5 or not chunk)):
_chunk_report_(bytes_so_far,
total_size, initial_size, t_0)
time_last_display = time_last_read
if chunk:
local_file.write(chunk)
else:
break
return | def _chunk_read_(response, local_file, chunk_size=8192, report_hook=None,
initial_size=0, total_size=None, verbose=1) | Download a file chunk by chunk and show advancement
:param urllib.response.addinfourl response: response to the download
request in order to get file size
:param str local_file: hard disk file where data should be written
:param int chunk_size: size of downloaded chunks. Default: 8192
:param bool report_hook: whether or not to show downloading advancement
:param int initial_size: if resuming, indicate the initial size of the file
:param int total_size: Expected final size of download (None means it
is unknown).
:param int verbose: verbosity level (0 means no message).
:returns: the downloaded file path.
:rtype: string | 3.005439 | 3.110784 | 0.966136 |
if not total_size:
sys.stderr.write("\rDownloaded {0:d} of ? bytes.".format(bytes_so_far))
else:
# Estimate remaining download time
total_percent = float(bytes_so_far) / total_size
current_download_size = bytes_so_far - initial_size
bytes_remaining = total_size - bytes_so_far
delta_t = time.time() - t_0
download_rate = current_download_size / max(1e-8, float(delta_t))
# Minimum rate of 0.01 bytes/s, to avoid dividing by zero.
time_remaining = bytes_remaining / max(0.01, download_rate)
# Trailing whitespace is to erase extra char when message length
# varies
sys.stderr.write(
"\rDownloaded {0:d} of {1:d} bytes ({2:.1f}%, {3!s} remaining)".format(
bytes_so_far, total_size, total_percent * 100, _format_time(time_remaining))) | def _chunk_report_(bytes_so_far, total_size, initial_size, t_0) | Show downloading percentage.
:param int bytes_so_far: number of downloaded bytes
:param int total_size: total size of the file (may be 0/None, depending
on download method).
:param int t_0: the time in seconds (as returned by time.time()) at which
the download was resumed / started.
:param int initial_size: if resuming, indicate the initial size of the
file. If not resuming, set to zero. | 3.329981 | 3.32917 | 1.000244 |
# Read aseg data
bmask = aseg.copy()
bmask[bmask > 0] = 1
bmask = bmask.astype(np.uint8)
# Morphological operations
selem = sim.ball(ball_size)
newmask = sim.binary_closing(bmask, selem)
newmask = binary_fill_holes(newmask.astype(np.uint8), selem).astype(np.uint8)
return newmask.astype(np.uint8) | def refine_aseg(aseg, ball_size=4) | First step to reconcile ANTs' and FreeSurfer's brain masks.
Here, the ``aseg.mgz`` mask from FreeSurfer is refined in two
steps, using binary morphological operations:
1. With a binary closing operation the sulci are included
into the mask. This results in a smoother brain mask
that does not exclude deep, wide sulci.
2. Fill any holes (typically, there could be a hole next to
the pineal gland and the corpora quadrigemina if the great
cerebral brain is segmented out). | 2.815914 | 3.11144 | 0.90502 |
selem = sim.ball(bw)
if ants_segs is None:
ants_segs = np.zeros_like(aseg, dtype=np.uint8)
aseg[aseg == 42] = 3 # Collapse both hemispheres
gm = anat.copy()
gm[aseg != 3] = 0
refined = refine_aseg(aseg)
newrefmask = sim.binary_dilation(refined, selem) - refined
indices = np.argwhere(newrefmask > 0)
for pixel in indices:
# When ATROPOS identified the pixel as GM, set and carry on
if ants_segs[tuple(pixel)] == 2:
refined[tuple(pixel)] = 1
continue
window = gm[
pixel[0] - ww:pixel[0] + ww,
pixel[1] - ww:pixel[1] + ww,
pixel[2] - ww:pixel[2] + ww
]
if np.any(window > 0):
mu = window[window > 0].mean()
sigma = max(window[window > 0].std(), 1.e-5)
zstat = abs(anat[tuple(pixel)] - mu) / sigma
refined[tuple(pixel)] = int(zstat < zval)
refined = sim.binary_opening(refined, selem)
return refined | def grow_mask(anat, aseg, ants_segs=None, ww=7, zval=2.0, bw=4) | Grow mask including pixels that have a high likelihood.
GM tissue parameters are sampled in image patches of ``ww`` size.
This is inspired on mindboggle's solution to the problem:
https://github.com/nipy/mindboggle/blob/master/mindboggle/guts/segment.py#L1660 | 3.529007 | 3.544843 | 0.995533 |
import nibabel as nb
import numpy as np
import os
fn = os.path.basename(in_file)
if not target_subject.startswith('fs'):
return in_file
cortex = nb.freesurfer.read_label(os.path.join(
subjects_dir, target_subject, 'label', '{}.cortex.label'.format(fn[:2])))
func = nb.load(in_file)
medial = np.delete(np.arange(len(func.darrays[0].data)), cortex)
for darray in func.darrays:
darray.data[medial] = np.nan
out_file = os.path.join(newpath or os.getcwd(), fn)
func.to_filename(out_file)
return out_file | def medial_wall_to_nan(in_file, subjects_dir, target_subject, newpath=None) | Convert values on medial wall to NaNs | 2.432442 | 2.371516 | 1.025691 |
if self._is_at_section():
return
# If several signatures present, take the last one
while True:
summary = self._doc.read_to_next_empty_line()
summary_str = " ".join([s.strip() for s in summary]).strip()
if re.compile('^([\w., ]+=)?\s*[\w\.]+\(.*\)$').match(summary_str):
self['Signature'] = summary_str
if not self._is_at_section():
continue
break
if summary is not None:
self['Summary'] = summary
if not self._is_at_section():
self['Extended Summary'] = self._read_to_next_section() | def _parse_summary(self) | Grab signature (if given) and summary | 5.290898 | 4.821434 | 1.09737 |
''' generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid '''
self._anat_file = self.inputs.in_files[0]
outputs = self.aggregate_outputs(runtime=runtime)
self._mask_file = outputs.tissue_class_map
# We are skipping the CSF class because with combination with others
# it only shows the skullstriping mask
self._seg_files = outputs.tissue_class_files[1:]
self._masked = False
NIWORKFLOWS_LOG.info('Generating report for FAST (in_files %s, '
'segmentation %s, individual tissue classes %s).',
self.inputs.in_files,
outputs.tissue_class_map,
outputs.tissue_class_files)
return super(FASTRPT, self)._post_run_hook(runtime) | def _post_run_hook(self, runtime) | generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid | 10.092503 | 5.730394 | 1.761223 |
''' generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid '''
outputs = self.aggregate_outputs(runtime=runtime)
self._anat_file = os.path.join(outputs.subjects_dir,
outputs.subject_id,
'mri', 'brain.mgz')
self._contour = os.path.join(outputs.subjects_dir,
outputs.subject_id,
'mri', 'ribbon.mgz')
self._masked = False
NIWORKFLOWS_LOG.info('Generating report for ReconAll (subject %s)',
outputs.subject_id)
return super(ReconAllRPT, self)._post_run_hook(runtime) | def _post_run_hook(self, runtime) | generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid | 7.364975 | 3.642952 | 2.021705 |
''' generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid '''
outputs = self.aggregate_outputs(runtime=runtime)
self._melodic_dir = outputs.out_dir
NIWORKFLOWS_LOG.info('Generating report for MELODIC')
return super(MELODICRPT, self)._post_run_hook(runtime) | def _post_run_hook(self, runtime) | generates a report showing nine slices, three per axis, of an
arbitrary volume of `in_files`, with the resulting segmentation
overlaid | 17.795265 | 5.13713 | 3.464048 |
try:
base = app.config.github_project_url
if not base:
raise AttributeError
if not base.endswith('/'):
base += '/'
except AttributeError as err:
raise ValueError('github_project_url configuration value is not set (%s)' % str(err))
ref = base + type + '/' + slug + '/'
set_classes(options)
prefix = "#"
if type == 'pull':
prefix = "PR " + prefix
node = nodes.reference(rawtext, prefix + utils.unescape(slug), refuri=ref,
**options)
return node | def make_link_node(rawtext, app, type, slug, options) | Create a link to a github resource.
:param rawtext: Text being replaced with link node.
:param app: Sphinx application context
:param type: Link type (issues, changeset, etc.)
:param slug: ID of the thing to link to
:param options: Options dictionary passed to role func. | 4.080116 | 3.781775 | 1.078889 |
try:
issue_num = int(text)
if issue_num <= 0:
raise ValueError
except ValueError:
msg = inliner.reporter.error(
'GitHub issue number must be a number greater than or equal to 1; '
'"%s" is invalid.' % text, line=lineno)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
app = inliner.document.settings.env.app
#app.info('issue %r' % text)
if 'pull' in name.lower():
category = 'pull'
elif 'issue' in name.lower():
category = 'issues'
else:
msg = inliner.reporter.error(
'GitHub roles include "ghpull" and "ghissue", '
'"%s" is invalid.' % name, line=lineno)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
node = make_link_node(rawtext, app, category, str(issue_num), options)
return [node], [] | def ghissue_role(name, rawtext, text, lineno, inliner, options={}, content=[]) | Link to a GitHub issue.
Returns 2 part tuple containing list of nodes to insert into the
document and a list of system messages. Both are allowed to be
empty.
:param name: The role name used in the document.
:param rawtext: The entire markup snippet, with role.
:param text: The text marked with the role.
:param lineno: The line number where rawtext appears in the input.
:param inliner: The inliner instance that called us.
:param options: Directive options for customization.
:param content: The directive content for customization. | 2.26643 | 2.255896 | 1.00467 |
app = inliner.document.settings.env.app
#app.info('user link %r' % text)
ref = 'https://www.github.com/' + text
node = nodes.reference(rawtext, text, refuri=ref, **options)
return [node], [] | def ghuser_role(name, rawtext, text, lineno, inliner, options={}, content=[]) | Link to a GitHub user.
Returns 2 part tuple containing list of nodes to insert into the
document and a list of system messages. Both are allowed to be
empty.
:param name: The role name used in the document.
:param rawtext: The entire markup snippet, with role.
:param text: The text marked with the role.
:param lineno: The line number where rawtext appears in the input.
:param inliner: The inliner instance that called us.
:param options: Directive options for customization.
:param content: The directive content for customization. | 3.34164 | 3.798531 | 0.879719 |
app = inliner.document.settings.env.app
#app.info('user link %r' % text)
try:
base = app.config.github_project_url
if not base:
raise AttributeError
if not base.endswith('/'):
base += '/'
except AttributeError as err:
raise ValueError('github_project_url configuration value is not set (%s)' % str(err))
ref = base + text
node = nodes.reference(rawtext, text[:6], refuri=ref, **options)
return [node], [] | def ghcommit_role(name, rawtext, text, lineno, inliner, options={}, content=[]) | Link to a GitHub commit.
Returns 2 part tuple containing list of nodes to insert into the
document and a list of system messages. Both are allowed to be
empty.
:param name: The role name used in the document.
:param rawtext: The entire markup snippet, with role.
:param text: The text marked with the role.
:param lineno: The line number where rawtext appears in the input.
:param inliner: The inliner instance that called us.
:param options: Directive options for customization.
:param content: The directive content for customization. | 3.804386 | 4.149671 | 0.916792 |
app.info('Initializing GitHub plugin')
app.add_role('ghissue', ghissue_role)
app.add_role('ghpull', ghissue_role)
app.add_role('ghuser', ghuser_role)
app.add_role('ghcommit', ghcommit_role)
app.add_config_value('github_project_url', None, 'env')
return | def setup(app) | Install the plugin.
:param app: Sphinx application context. | 2.650626 | 2.782974 | 0.952444 |
''' Set package_name
>>> docwriter = ApiDocWriter('sphinx')
>>> import sphinx
>>> docwriter.root_path == sphinx.__path__[0]
True
>>> docwriter.package_name = 'docutils'
>>> import docutils
>>> docwriter.root_path == docutils.__path__[0]
True
'''
# It's also possible to imagine caching the module parsing here
self._package_name = package_name
root_module = self._import(package_name)
self.root_path = root_module.__path__[-1]
self.written_modules = None | def set_package_name(self, package_name) | Set package_name
>>> docwriter = ApiDocWriter('sphinx')
>>> import sphinx
>>> docwriter.root_path == sphinx.__path__[0]
True
>>> docwriter.package_name = 'docutils'
>>> import docutils
>>> docwriter.root_path == docutils.__path__[0]
True | 5.231213 | 3.012271 | 1.736634 |
''' Import namespace package '''
mod = __import__(name)
components = name.split('.')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod | def _import(self, name) | Import namespace package | 2.934889 | 3.007656 | 0.975806 |
''' Return module sequence discovered from ``self.package_name``
Parameters
----------
None
Returns
-------
mods : sequence
Sequence of module names within ``self.package_name``
Examples
--------
>>> dw = ApiDocWriter('sphinx')
>>> mods = dw.discover_modules()
>>> 'sphinx.util' in mods
True
>>> dw.package_skip_patterns.append('\.util$')
>>> 'sphinx.util' in dw.discover_modules()
False
>>>
'''
modules = [self.package_name]
# raw directory parsing
for dirpath, dirnames, filenames in os.walk(self.root_path):
# Check directory names for packages
root_uri = self._path2uri(os.path.join(self.root_path,
dirpath))
# Normally, we'd only iterate over dirnames, but since
# dipy does not import a whole bunch of modules we'll
# include those here as well (the *.py filenames).
filenames = [f[:-3] for f in filenames if
f.endswith('.py') and not f.startswith('__init__')]
for filename in filenames:
package_uri = '/'.join((dirpath, filename))
for subpkg_name in dirnames + filenames:
package_uri = '.'.join((root_uri, subpkg_name))
package_path = self._uri2path(package_uri)
if (package_path and
self._survives_exclude(package_uri, 'package')):
modules.append(package_uri)
return sorted(modules) | def discover_modules(self) | Return module sequence discovered from ``self.package_name``
Parameters
----------
None
Returns
-------
mods : sequence
Sequence of module names within ``self.package_name``
Examples
--------
>>> dw = ApiDocWriter('sphinx')
>>> mods = dw.discover_modules()
>>> 'sphinx.util' in mods
True
>>> dw.package_skip_patterns.append('\.util$')
>>> 'sphinx.util' in dw.discover_modules()
False
>>> | 5.03092 | 3.18964 | 1.577269 |
if isinstance(bids_dir, BIDSLayout):
layout = bids_dir
else:
layout = BIDSLayout(str(bids_dir), validate=bids_validate)
all_participants = set(layout.get_subjects())
# Error: bids_dir does not contain subjects
if not all_participants:
raise BIDSError(
'Could not find participants. Please make sure the BIDS data '
'structure is present and correct. Datasets can be validated online '
'using the BIDS Validator (http://bids-standard.github.io/bids-validator/).\n'
'If you are using Docker for Mac or Docker for Windows, you '
'may need to adjust your "File sharing" preferences.', bids_dir)
# No --participant-label was set, return all
if not participant_label:
return sorted(all_participants)
if isinstance(participant_label, str):
participant_label = [participant_label]
# Drop sub- prefixes
participant_label = [sub[4:] if sub.startswith('sub-') else sub for sub in participant_label]
# Remove duplicates
participant_label = sorted(set(participant_label))
# Remove labels not found
found_label = sorted(set(participant_label) & all_participants)
if not found_label:
raise BIDSError('Could not find participants [{}]'.format(
', '.join(participant_label)), bids_dir)
# Warn if some IDs were not found
notfound_label = sorted(set(participant_label) - all_participants)
if notfound_label:
exc = BIDSError('Some participants were not found: {}'.format(
', '.join(notfound_label)), bids_dir)
if strict:
raise exc
warnings.warn(exc.msg, BIDSWarning)
return found_label | def collect_participants(bids_dir, participant_label=None, strict=False,
bids_validate=True) | List the participants under the BIDS root and checks that participants
designated with the participant_label argument exist in that folder.
Returns the list of participants to be finally processed.
Requesting all subjects in a BIDS directory root:
>>> collect_participants(str(datadir / 'ds114'), bids_validate=False)
['01', '02', '03', '04', '05', '06', '07', '08', '09', '10']
Requesting two subjects, given their IDs:
>>> collect_participants(str(datadir / 'ds114'), participant_label=['02', '04'],
... bids_validate=False)
['02', '04']
Requesting two subjects, given their IDs (works with 'sub-' prefixes):
>>> collect_participants(str(datadir / 'ds114'), participant_label=['sub-02', 'sub-04'],
... bids_validate=False)
['02', '04']
Requesting two subjects, but one does not exist:
>>> collect_participants(str(datadir / 'ds114'), participant_label=['02', '14'],
... bids_validate=False)
['02']
>>> collect_participants(
... str(datadir / 'ds114'), participant_label=['02', '14'],
... strict=True, bids_validate=False) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
fmriprep.utils.bids.BIDSError:
... | 2.872303 | 2.726972 | 1.053294 |
return _init_layout(in_file, bids_dir, validate).get_metadata(
str(in_file)) | def get_metadata_for_nifti(in_file, bids_dir=None, validate=True) | Fetch metadata for a given nifti file
>>> metadata = get_metadata_for_nifti(
... datadir / 'ds054' / 'sub-100185' / 'fmap' / 'sub-100185_phasediff.nii.gz',
... validate=False)
>>> metadata['Manufacturer']
'SIEMENS'
>>> | 8.314244 | 12.616259 | 0.65901 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.