code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
if is_str(codelist): codelist = codelist.split(',') elif isinstance(codelist, list): pass else: return RET_ERROR, "code list must be like ['HK.00001', 'HK.00700'] or 'HK.00001,HK.00700'" result = [] for code in codelist: ret, data = self.get_history_kline(code, start, end, ktype, autype) if ret != RET_OK: return RET_ERROR, 'get history kline error: {}, {},{},{},{}'.format(data, code, start, end, ktype) result.append(data) return 0, result
def get_multiple_history_kline(self, codelist, start=None, end=None, ktype=KLType.K_DAY, autype=AuType.QFQ)
获取多只股票的本地历史k线数据 :param codelist: 股票代码列表,list或str。例如:['HK.00700', 'HK.00001'],'HK.00700,HK.00001' :param start: 起始时间,例如'2017-06-20' :param end: 结束时间, 例如'2017-07-20',start与end组合关系参见 get_history_kline_ :param ktype: k线类型,参见KLType :param autype: 复权类型,参见AuType :return: 成功时返回(RET_OK, [data]),data是DataFrame数据, 数据列格式如下 ================= =========== ============================================================================== 参数 类型 说明 ================= =========== ============================================================================== code str 股票代码 time_key str k线时间 open float 开盘价 close float 收盘价 high float 最高价 low float 最低价 pe_ratio float 市盈率(该字段为比例字段,默认不展示%) turnover_rate float 换手率 volume int 成交量 turnover float 成交额 change_rate float 涨跌幅 last_close float 昨收价 ================= =========== ============================================================================== 失败时返回(RET_ERROR, data),其中data是错误描述字符串
2.43101
2.264702
1.073435
return self._get_history_kline_impl(GetHistoryKlineQuery, code, start=start, end=end, ktype=ktype, autype=autype, fields=fields)
def get_history_kline(self, code, start=None, end=None, ktype=KLType.K_DAY, autype=AuType.QFQ, fields=[KL_FIELD.ALL])
得到本地历史k线,需先参照帮助文档下载k线 :param code: 股票代码 :param start: 开始时间,例如'2017-06-20' :param end: 结束时间,例如'2017-06-30' start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :param ktype: k线类型, 参见 KLType 定义 :param autype: 复权类型, 参见 AuType 定义 :param fields: 需返回的字段列表,参见 KL_FIELD 定义 KL_FIELD.ALL KL_FIELD.OPEN .... :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ================= =========== ============================================================================== 参数 类型 说明 ================= =========== ============================================================================== code str 股票代码 time_key str k线时间 open float 开盘价 close float 收盘价 high float 最高价 low float 最低价 pe_ratio float 市盈率(该字段为比例字段,默认不展示%) turnover_rate float 换手率 volume int 成交量 turnover float 成交额 change_rate float 涨跌幅 last_close float 昨收价 ================= =========== ============================================================================== :example: .. code:: python from futuquant import * quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111) print(quote_ctx.get_history_kline('HK.00700', start='2017-06-20', end='2017-06-22')) quote_ctx.close()
3.467582
3.738527
0.927526
code_list = unique_and_normalize_list(code_list) for code in code_list: if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of param in code_list is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( ExrightQuery.pack_req, ExrightQuery.unpack_rsp) kargs = { "stock_list": code_list, "conn_id": self.get_sync_conn_id() } ret_code, msg, exr_record = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'ex_div_date', 'split_ratio', 'per_cash_div', 'per_share_div_ratio', 'per_share_trans_ratio', 'allotment_ratio', 'allotment_price', 'stk_spo_ratio', 'stk_spo_price', 'forward_adj_factorA', 'forward_adj_factorB', 'backward_adj_factorA', 'backward_adj_factorB' ] exr_frame_table = pd.DataFrame(exr_record, columns=col_list) return RET_OK, exr_frame_table
def get_autype_list(self, code_list)
获取给定股票列表的复权因子 :param code_list: 股票列表,例如['HK.00700'] :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ================================================================================= 参数 类型 说明 ===================== =========== ================================================================================= code str 股票代码 ex_div_date str 除权除息日 split_ratio float 拆合股比例(该字段为比例字段,默认不展示%),例如,对于5股合1股为1/5,对于1股拆5股为5/1 per_cash_div float 每股派现 per_share_div_ratio float 每股送股比例(该字段为比例字段,默认不展示%) per_share_trans_ratio float 每股转增股比例(该字段为比例字段,默认不展示%) allotment_ratio float 每股配股比例(该字段为比例字段,默认不展示%) allotment_price float 配股价 stk_spo_ratio float 增发比例(该字段为比例字段,默认不展示%) stk_spo_price float 增发价格 forward_adj_factorA float 前复权因子A forward_adj_factorB float 前复权因子B backward_adj_factorA float 后复权因子A backward_adj_factorB float 后复权因子B ===================== =========== =================================================================================
4.026952
2.479525
1.624082
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of param in code is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( RtDataQuery.pack_req, RtDataQuery.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, msg, rt_data_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg for x in rt_data_list: x['code'] = code col_list = [ 'code', 'time', 'is_blank', 'opened_mins', 'cur_price', 'last_close', 'avg_price', 'volume', 'turnover' ] rt_data_table = pd.DataFrame(rt_data_list, columns=col_list) return RET_OK, rt_data_table
def get_rt_data(self, code)
获取指定股票的分时数据 :param code: 股票代码,例如,HK.00700,US.APPL :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ========================================================================== 参数 类型 说明 ===================== =========== ========================================================================== code str 股票代码 time str 时间(yyyy-MM-dd HH:mm:ss)(美股默认是美东时间,港股A股默认是北京时间) is_blank bool 数据状态;正常数据为False,伪造数据为True opened_mins int 零点到当前多少分钟 cur_price float 当前价格 last_close float 昨天收盘的价格 avg_price float 平均价格 volume float 成交量 turnover float 成交金额 ===================== =========== ==========================================================================
3.550553
2.756841
1.287906
param_table = {'market': market, 'plate_class': plate_class} for x in param_table: param = param_table[x] if param is None or is_str(market) is False: error_str = ERROR_STR_PREFIX + "the type of market param is wrong" return RET_ERROR, error_str if market not in MKT_MAP: error_str = ERROR_STR_PREFIX + "the value of market param is wrong " return RET_ERROR, error_str if plate_class not in PLATE_CLASS_MAP: error_str = ERROR_STR_PREFIX + "the class of plate is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( SubplateQuery.pack_req, SubplateQuery.unpack_rsp) kargs = { 'market': market, 'plate_class': plate_class, 'conn_id': self.get_sync_conn_id() } ret_code, msg, subplate_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = ['code', 'plate_name', 'plate_id'] subplate_frame_table = pd.DataFrame(subplate_list, columns=col_list) return RET_OK, subplate_frame_table
def get_plate_list(self, market, plate_class)
获取板块集合下的子板块列表 :param market: 市场标识,注意这里不区分沪,深,输入沪或者深都会返回沪深市场的子板块(这个是和客户端保持一致的)参见Market :param plate_class: 板块分类,参见Plate :return: ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 plate_name str 板块名字 plate_id str 板块id ===================== =========== ==============================================================
2.942764
2.667144
1.103339
if plate_code is None or is_str(plate_code) is False: error_str = ERROR_STR_PREFIX + "the type of code is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( PlateStockQuery.pack_req, PlateStockQuery.unpack_rsp) kargs = { "plate_code": plate_code, "conn_id": self.get_sync_conn_id() } ret_code, msg, plate_stock_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'lot_size', 'stock_name', 'stock_owner', 'stock_child_type', 'stock_type', 'list_time', 'stock_id', ] plate_stock_table = pd.DataFrame(plate_stock_list, columns=col_list) return RET_OK, plate_stock_table
def get_plate_stock(self, plate_code)
获取特定板块下的股票列表 :param plate_code: 板块代码, string, 例如,”SH.BK0001”,”SH.BK0002”,先利用获取子版块列表函数获取子版块代码 :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 lot_size int 每手股数 stock_name str 股票名称 stock_owner str 所属正股的代码 stock_child_type str 股票子类型,参见WrtType stock_type str 股票类型,参见SecurityType list_time str 上市时间(美股默认是美东时间,港股A股默认是北京时间) stock_id int 股票id ===================== =========== ==============================================================
3.478951
2.615363
1.330198
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of param in code is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( BrokerQueueQuery.pack_req, BrokerQueueQuery.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, ret_msg, content = query_processor(**kargs) if ret_code != RET_OK: return ret_code, ret_msg, ret_msg (_, bid_list, ask_list) = content col_bid_list = [ 'code', 'bid_broker_id', 'bid_broker_name', 'bid_broker_pos' ] col_ask_list = [ 'code', 'ask_broker_id', 'ask_broker_name', 'ask_broker_pos' ] bid_frame_table = pd.DataFrame(bid_list, columns=col_bid_list) ask_frame_table = pd.DataFrame(ask_list, columns=col_ask_list) return RET_OK, bid_frame_table, ask_frame_table
def get_broker_queue(self, code)
获取股票的经纪队列 :param code: 股票代码 :return: (ret, bid_frame_table, ask_frame_table)或(ret, err_message) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 后面两项为错误字符串 bid_frame_table 经纪买盘数据 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 bid_broker_id int 经纪买盘id bid_broker_name str 经纪买盘名称 bid_broker_pos int 经纪档位 ===================== =========== ============================================================== ask_frame_table 经纪卖盘数据 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 ask_broker_id int 经纪卖盘id ask_broker_name str 经纪卖盘名称 ask_broker_pos int 经纪档位 ===================== =========== ==============================================================
2.866831
2.317961
1.23679
return self._subscribe_impl(code_list, subtype_list, is_first_push)
def subscribe(self, code_list, subtype_list, is_first_push=True)
订阅注册需要的实时信息,指定股票和订阅的数据类型即可 注意:len(code_list) * 订阅的K线类型的数量 <= 100 :param code_list: 需要订阅的股票代码列表 :param subtype_list: 需要订阅的数据类型列表,参见SubType :param is_first_push: 订阅成功后是否马上推送一次数据 :return: (ret, err_message) ret == RET_OK err_message为None ret != RET_OK err_message为错误描述字符串 :example: .. code:: python from futuquant import * quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111) print(quote_ctx.subscribe(['HK.00700'], [SubType.QUOTE)]) quote_ctx.close()
3.263302
6.653006
0.4905
ret, msg, code_list, subtype_list = self._check_subscribe_param(code_list, subtype_list) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor(SubscriptionQuery.pack_unsubscribe_req, SubscriptionQuery.unpack_unsubscribe_rsp) kargs = { 'code_list': code_list, 'subtype_list': subtype_list, "conn_id": self.get_sync_conn_id() } for subtype in subtype_list: if subtype not in self._ctx_subscribe: continue code_set = self._ctx_subscribe[subtype] for code in code_list: if code not in code_set: continue code_set.remove(code) ret_code, msg, _ = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg ret_code, msg, unpush_req_str = SubscriptionQuery.pack_unpush_req(code_list, subtype_list, self.get_async_conn_id()) if ret_code != RET_OK: return RET_ERROR, msg ret_code, msg = self._send_async_req(unpush_req_str) if ret_code != RET_OK: return RET_ERROR, msg return RET_OK, None
def unsubscribe(self, code_list, subtype_list)
取消订阅 :param code_list: 取消订阅的股票代码列表 :param subtype_list: 取消订阅的类型,参见SubType :return: (ret, err_message) ret == RET_OK err_message为None ret != RET_OK err_message为错误描述字符串
2.439428
2.396402
1.017955
is_all_conn = bool(is_all_conn) query_processor = self._get_sync_query_processor( SubscriptionQuery.pack_subscription_query_req, SubscriptionQuery.unpack_subscription_query_rsp) kargs = { "is_all_conn": is_all_conn, "conn_id": self.get_sync_conn_id() } ret_code, msg, sub_table = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg ret_dict = {} ret_dict['total_used'] = sub_table['total_used'] ret_dict['remain'] = sub_table['remain'] ret_dict['own_used'] = 0 ret_dict['sub_list'] = {} for conn_sub in sub_table['conn_sub_list']: is_own_conn = conn_sub['is_own_conn'] if is_own_conn: ret_dict['own_used'] = conn_sub['used'] if not is_all_conn and not is_own_conn: continue for sub_info in conn_sub['sub_list']: subtype = sub_info['subtype'] if subtype not in ret_dict['sub_list']: ret_dict['sub_list'][subtype] = [] code_list = ret_dict['sub_list'][subtype] for code in sub_info['code_list']: if code not in code_list: code_list.append(code) return RET_OK, ret_dict
def query_subscription(self, is_all_conn=True)
查询已订阅的实时信息 :param is_all_conn: 是否返回所有连接的订阅状态,不传或者传False只返回当前连接数据 :return: (ret, data) ret != RET_OK 返回错误字符串 ret == RET_OK 返回 定阅信息的字典数据 ,格式如下: { 'total_used': 4, # 所有连接已使用的定阅额度 'own_used': 0, # 当前连接已使用的定阅额度 'remain': 496, # 剩余的定阅额度 'sub_list': # 每种定阅类型对应的股票列表 { 'BROKER': ['HK.00700', 'HK.02318'], 'RT_DATA': ['HK.00700', 'HK.02318'] } }
2.505586
2.212219
1.132612
code_list = unique_and_normalize_list(code_list) if not code_list: error_str = ERROR_STR_PREFIX + "the type of code_list param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( StockQuoteQuery.pack_req, StockQuoteQuery.unpack_rsp, ) kargs = { "stock_list": code_list, "conn_id": self.get_sync_conn_id() } ret_code, msg, quote_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'data_date', 'data_time', 'last_price', 'open_price', 'high_price', 'low_price', 'prev_close_price', 'volume', 'turnover', 'turnover_rate', 'amplitude', 'suspension', 'listing_date', 'price_spread', 'dark_status', 'strike_price', 'contract_size', 'open_interest', 'implied_volatility', 'premium', 'delta', 'gamma', 'vega', 'theta', 'rho' ] quote_frame_table = pd.DataFrame(quote_list, columns=col_list) return RET_OK, quote_frame_table
def get_stock_quote(self, code_list)
获取订阅股票报价的实时数据,有订阅要求限制。 对于异步推送,参见StockQuoteHandlerBase :param code_list: 股票代码列表,必须确保code_list中的股票均订阅成功后才能够执行 :return: (ret, data) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 data_date str 日期 data_time str 时间(美股默认是美东时间,港股A股默认是北京时间) last_price float 最新价格 open_price float 今日开盘价 high_price float 最高价格 low_price float 最低价格 prev_close_price float 昨收盘价格 volume int 成交数量 turnover float 成交金额 turnover_rate float 换手率 amplitude int 振幅 suspension bool 是否停牌(True表示停牌) listing_date str 上市日期 (yyyy-MM-dd) price_spread float 当前价差,亦即摆盘数据的买档或卖档的相邻档位的报价差 dark_status str 暗盘交易状态,见DarkStatus strike_price float 行权价 contract_size int 每份合约数 open_interest int 未平仓合约数 implied_volatility float 隐含波动率 premium float 溢价 delta float 希腊值 Delta gamma float 希腊值 Gamma vega float 希腊值 Vega theta float 希腊值 Theta rho float 希腊值 Rho ===================== =========== ==============================================================
3.180295
2.170569
1.46519
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str if num is None or isinstance(num, int) is False: error_str = ERROR_STR_PREFIX + "the type of num param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( TickerQuery.pack_req, TickerQuery.unpack_rsp, ) kargs = { "code": code, "num": num, "conn_id": self.get_sync_conn_id() } ret_code, msg, ticker_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'time', 'price', 'volume', 'turnover', "ticker_direction", 'sequence', 'type' ] ticker_frame_table = pd.DataFrame(ticker_list, columns=col_list) return RET_OK, ticker_frame_table
def get_rt_ticker(self, code, num=500)
获取指定股票的实时逐笔。取最近num个逐笔 :param code: 股票代码 :param num: 最近ticker个数(有最大个数限制,最近1000个) :return: (ret, data) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== stock_code str 股票代码 sequence int 逐笔序号 time str 成交时间(美股默认是美东时间,港股A股默认是北京时间) price float 成交价格 volume int 成交数量(股数) turnover float 成交金额 ticker_direction str 逐笔方向 type str 逐笔类型,参见TickerType ===================== =========== ==============================================================
2.852355
2.43496
1.171418
param_table = {'code': code, 'ktype': ktype} for x in param_table: param = param_table[x] if param is None or is_str(param) is False: error_str = ERROR_STR_PREFIX + "the type of %s param is wrong" % x return RET_ERROR, error_str if num is None or isinstance(num, int) is False: error_str = ERROR_STR_PREFIX + "the type of num param is wrong" return RET_ERROR, error_str if autype is not None and is_str(autype) is False: error_str = ERROR_STR_PREFIX + "the type of autype param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( CurKlineQuery.pack_req, CurKlineQuery.unpack_rsp, ) kargs = { "code": code, "num": num, "ktype": ktype, "autype": autype, "conn_id": self.get_sync_conn_id() } ret_code, msg, kline_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'time_key', 'open', 'close', 'high', 'low', 'volume', 'turnover', 'pe_ratio', 'turnover_rate', 'last_close' ] kline_frame_table = pd.DataFrame(kline_list, columns=col_list) return RET_OK, kline_frame_table
def get_cur_kline(self, code, num, ktype=SubType.K_DAY, autype=AuType.QFQ)
实时获取指定股票最近num个K线数据,最多1000根 :param code: 股票代码 :param num: k线数据个数 :param ktype: k线类型,参见KLType :param autype: 复权类型,参见AuType :return: (ret, data) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 股票代码 time_key str 时间(美股默认是美东时间,港股A股默认是北京时间) open float 开盘价 close float 收盘价 high float 最高价 low float 最低价 volume int 成交量 turnover float 成交额 pe_ratio float 市盈率(该字段为比例字段,默认不展示%) turnover_rate float 换手率 last_close float 昨收价 ===================== =========== ==============================================================
2.288502
2.133649
1.072577
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( OrderBookQuery.pack_req, OrderBookQuery.unpack_rsp, ) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, msg, orderbook = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg return RET_OK, orderbook
def get_order_book(self, code)
获取实时摆盘数据 :param code: 股票代码 :return: (ret, data) ret == RET_OK 返回字典,数据格式如下 ret != RET_OK 返回错误字符串 {‘code’: 股票代码 ‘Ask’:[ (ask_price1, ask_volume1,order_num), (ask_price2, ask_volume2, order_num),…] ‘Bid’: [ (bid_price1, bid_volume1, order_num), (bid_price2, bid_volume2, order_num),…] } 'Ask':卖盘, 'Bid'买盘。每个元组的含义是(委托价格,委托数量,委托订单数)
3.343067
3.444634
0.970514
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( StockReferenceList.pack_req, StockReferenceList.unpack_rsp, ) kargs = { "code": code, 'ref_type': reference_type, "conn_id": self.get_sync_conn_id() } ret_code, msg, data_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'lot_size', 'stock_type', 'stock_name', 'list_time', 'wrt_valid', 'wrt_type', 'wrt_code' ] pd_frame = pd.DataFrame(data_list, columns=col_list) return RET_OK, pd_frame
def get_referencestock_list(self, code, reference_type)
获取证券的关联数据 :param code: 证券id,str,例如HK.00700 :param reference_type: 要获得的相关数据,参见SecurityReferenceType。例如WARRANT,表示获取正股相关的涡轮 :return: (ret, data) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 返回错误字符串 ================= =========== ============================================================================== 参数 类型 说明 ================= =========== ============================================================================== code str 证券代码 lot_size int 每手数量 stock_type str 证券类型,参见SecurityType stock_name str 证券名字 list_time str 上市时间(美股默认是美东时间,港股A股默认是北京时间) wrt_valid bool 是否是涡轮,如果为True,下面wrt开头的字段有效 wrt_type str 涡轮类型,参见WrtType wrt_code str 所属正股 ================= =========== ==============================================================================
3.707133
2.643709
1.402247
if is_str(code_list): code_list = code_list.split(',') elif isinstance(code_list, list): pass else: return RET_ERROR, "code list must be like ['HK.00001', 'HK.00700'] or 'HK.00001,HK.00700'" code_list = unique_and_normalize_list(code_list) for code in code_list: if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of param in code_list is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( OwnerPlateQuery.pack_req, OwnerPlateQuery.unpack_rsp) kargs = { "code_list": code_list, "conn_id": self.get_sync_conn_id() } ret_code, msg, owner_plate_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'plate_code', 'plate_name', 'plate_type' ] owner_plate_table = pd.DataFrame(owner_plate_list, columns=col_list) return RET_OK, owner_plate_table
def get_owner_plate(self, code_list)
获取单支或多支股票的所属板块信息列表 :param code_list: 股票代码列表,仅支持正股、指数。list或str。例如:['HK.00700', 'HK.00001']或者'HK.00700,HK.00001'。 :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== code str 证券代码 plate_code str 板块代码 plate_name str 板块名字 plate_type str 板块类型(行业板块或概念板块),futuquant.common.constant.Plate ===================== =========== ==============================================================
2.86773
2.436142
1.17716
holder_type = STOCK_HOLDER_CLASS_MAP[holder_type] if code is None or is_str(code) is False: msg = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, msg if holder_type < 1 or holder_type > len(STOCK_HOLDER_CLASS_MAP): msg = ERROR_STR_PREFIX + "the type {0} is wrong, total number of types is {1}".format(holder_type, len(STOCK_HOLDER_CLASS_MAP)) return RET_ERROR, msg ret_code, msg, start, end = normalize_start_end_date(start, end, delta_days=365) if ret_code != RET_OK: return ret_code, msg query_processor = self._get_sync_query_processor( HoldingChangeList.pack_req, HoldingChangeList.unpack_rsp) kargs = { "code": code, "holder_type": holder_type, "conn_id": self.get_sync_conn_id(), "start_date": start, "end_date": end } ret_code, msg, owner_plate_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'holder_name', 'holding_qty', 'holding_ratio', 'change_qty', 'change_ratio', 'time' ] holding_change_list = pd.DataFrame(owner_plate_list, columns=col_list) return RET_OK, holding_change_list
def get_holding_change_list(self, code, holder_type, start=None, end=None)
获取大股东持股变动列表,只提供美股数据 :param code: 股票代码. 例如:'US.AAPL' :param holder_type: 持有者类别,StockHolder_ :param start: 开始时间. 例如:'2016-10-01' :param end: 结束时间,例如:'2017-10-01'。 start与end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前365天 str None end为start往后365天 None None end为当前日期,start为end往前365天 ========== ========== ======================================== :return: (ret, data) ret == RET_OK 返回pd dataframe数据,data.DataFrame数据, 数据列格式如下 ret != RET_OK 返回错误字符串 ===================== =========== ============================================================== 参数 类型 说明 ===================== =========== ============================================================== holder_name str 高管名称 holding_qty float 持股数 holding_ratio float 持股比例(该字段为比例字段,默认不展示%) change_qty float 变动数 change_ratio float 变动比例(该字段为比例字段,默认不展示%) time str 发布时间(美股的时间默认是美东) ===================== =========== ==============================================================
2.944136
2.666822
1.103987
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str ret_code, msg, start, end = normalize_start_end_date(start, end, delta_days=29, default_time_end='00:00:00', prefer_end_now=False) if ret_code != RET_OK: return ret_code, msg query_processor = self._get_sync_query_processor( OptionChain.pack_req, OptionChain.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id(), "start_date": start, "end_date": end, "option_cond_type": option_cond_type, "option_type": option_type } ret_code, msg, option_chain_list = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg col_list = [ 'code', 'name', 'lot_size', 'stock_type', 'option_type', 'stock_owner', 'strike_time', 'strike_price', 'suspension', 'stock_id' ] option_chain = pd.DataFrame(option_chain_list, columns=col_list) option_chain.sort_values(by=["strike_time", "strike_price"], axis=0, ascending=True, inplace=True) option_chain.index = range(len(option_chain)) return RET_OK, option_chain
def get_option_chain(self, code, start=None, end=None, option_type=OptionType.ALL, option_cond_type=OptionCondType.ALL)
通过标的股查询期权 :param code: 股票代码,例如:'HK.02318' :param start: 开始日期,该日期指到期日,例如'2017-08-01' :param end: 结束日期(包括这一天),该日期指到期日,例如'2017-08-30'。 注意,时间范围最多30天 start和end的组合如下: ========== ========== ======================================== start类型 end类型 说明 ========== ========== ======================================== str str start和end分别为指定的日期 None str start为end往前30天 str None end为start往后30天 None None start为当前日期,end往后30天 ========== ========== ======================================== :param option_type: 期权类型,默认全部,全部/看涨/看跌,futuquant.common.constant.OptionType :param option_cond_type: 默认全部,全部/价内/价外,futuquant.common.constant.OptionCondType :return: (ret, data) ret == RET_OK 返回pd dataframe数据,数据列格式如下 ret != RET_OK 返回错误字符串 ================== =========== ============================================================== 参数 类型 说明 ================== =========== ============================================================== code str 股票代码 name str 名字 lot_size int 每手数量 stock_type str 股票类型,参见SecurityType option_type str 期权类型,Qot_Common.OptionType stock_owner str 标的股 strike_time str 行权日(美股默认是美东时间,港股A股默认是北京时间) strike_price float 行权价 suspension bool 是否停牌(True表示停牌) stock_id int 股票id ================== =========== ==============================================================
2.959546
2.369012
1.249274
if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( OrderDetail.pack_req, OrderDetail.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, msg, order_detail = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg return RET_OK, order_detail
def get_order_detail(self, code)
查询A股Level 2权限下提供的委托明细 :param code: 股票代码,例如:'HK.02318' :return: (ret, data) ret == RET_OK data为1个dict,包含以下数据 ret != RET_OK data为错误字符串 {‘code’: 股票代码 ‘Ask’:[ order_num, [order_volume1, order_volume2] ] ‘Bid’: [ order_num, [order_volume1, order_volume2] ] } 'Ask':卖盘, 'Bid'买盘。order_num指委托订单数量,order_volume是每笔委托的委托量,当前最多返回前50笔委托的委托数量。即order_num有可能多于后面的order_volume
3.40765
3.323558
1.025302
''' 订阅多只股票的行情数据 :return: ''' logger = Logs().getNewLogger('allStockQoutation', QoutationAsynPush.dir) markets= [Market.HK,Market.US,Market.SH,Market.SZ] #,Market.HK_FUTURE,Market.US_OPTION stockTypes = [SecurityType.STOCK,SecurityType.WARRANT,SecurityType.IDX,SecurityType.BOND,SecurityType.ETF] for stockType in stockTypes: for market in markets: ret_code_stock_basicinfo ,ret_data_stock_basicinfo = self.quote_ctx.get_stock_basicinfo(market,stockType) codes = ret_data_stock_basicinfo['code'].tolist() codes_len = len(codes) code_sub = 0 code_sub_succ = 0 for code in codes: ret_code = self.aStockQoutation(code) code_sub += 1 if ret_code is RET_OK: code_sub_succ += 1 logger.info('市场 = %s,股票类型 = %s, 股票总数 = %d, 已发起订阅 = %d,订阅成功 = %d' % (market, stockType, codes_len, code_sub,code_sub_succ)) # 记录 logger.info('end-------->市场 = %s,股票类型 = %s, 股票总数 = %d, 已发起订阅 = %d,订阅成功 = %d' % ( market, stockType, codes_len, code_sub,code_sub_succ)) # 记录 time.sleep(5) self.quote_ctx.stop() self.quote_ctx.close()
def allStockQoutation(self)
订阅多只股票的行情数据 :return:
3.27142
3.14146
1.041369
''' 订阅一只股票的实时行情数据,接收推送 :param code: 股票代码 :return: ''' #设置监听-->订阅-->调用接口 # 分时 self.quote_ctx.set_handler(RTDataTest()) self.quote_ctx.subscribe(code, SubType.RT_DATA) ret_code_rt_data, ret_data_rt_data = self.quote_ctx.get_rt_data(code) # 逐笔 self.quote_ctx.set_handler(TickerTest()) self.quote_ctx.subscribe(code, SubType.TICKER) ret_code_rt_ticker, ret_data_rt_ticker = self.quote_ctx.get_rt_ticker(code) # 报价 self.quote_ctx.set_handler(StockQuoteTest()) self.quote_ctx.subscribe(code, SubType.QUOTE) ret_code_stock_quote, ret_data_stock_quote = self.quote_ctx.get_stock_quote([code]) # 实时K线 self.quote_ctx.set_handler(CurKlineTest()) kTypes = [SubType.K_1M, SubType.K_5M, SubType.K_15M, SubType.K_30M, SubType.K_60M, SubType.K_DAY, SubType.K_WEEK, SubType.K_MON] auTypes = [AuType.NONE, AuType.QFQ, AuType.HFQ] num = 10 ret_code_cur_kline = RET_OK for kType in kTypes: self.quote_ctx.subscribe(code, kType) for auType in auTypes: ret_code_cur_kline_temp, ret_data_cur_kline = self.quote_ctx.get_cur_kline(code, num, kType, auType) if ret_code_cur_kline_temp is RET_ERROR: ret_code_cur_kline = RET_ERROR # 摆盘 self.quote_ctx.set_handler(OrderBookTest()) self.quote_ctx.subscribe(code, SubType.ORDER_BOOK) ret_code_order_book, ret_data_order_book = self.quote_ctx.get_order_book(code) # 经纪队列 self.quote_ctx.set_handler(BrokerTest()) self.quote_ctx.subscribe(code, SubType.BROKER) ret_code_broker_queue, bid_frame_table, ask_frame_table = self.quote_ctx.get_broker_queue(code) return ret_code_rt_data+ret_code_rt_ticker+ret_code_stock_quote+ret_code_cur_kline+ret_code_order_book+ret_code_broker_queue
def aStockQoutation(self,code)
订阅一只股票的实时行情数据,接收推送 :param code: 股票代码 :return:
2.107579
2.014681
1.04611
bar = tiny_bar symbol = bar.symbol price = bar.open up, down = self.track(symbol) now = datetime.datetime.now() work_time = now.replace(hour=9, minute=30, second=0) if now == work_time: self.before_minute_price = price return if self.before_minute_price == 0: self.before_minute_price = price return if self.before_minute_price < up and price > up: self.do_trade(symbol, price, "buy") elif self.before_minute_price > down and price < down: self.do_trade(symbol, price, "sell") self.before_minute_price = price
def on_bar_min1(self, tiny_bar)
每一分钟触发一次回调
2.836279
2.804505
1.01133
quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111) now = datetime.datetime.now() end_str = now.strftime('%Y-%m-%d') start = now - datetime.timedelta(days=365) start_str = start.strftime('%Y-%m-%d') _, temp = quote_ctx.get_history_kline(symbol, start=start_str, end=end_str) #print(temp) high = temp['high'].values low = temp['low'].values open = temp['open'].values ''' y_amplitude = [] for i in range(len(high)): temp = high[i] - low[i] y_amplitude.append(temp) ''' y_amplitude = high - low print(y_amplitude) y_a_r = y_amplitude[-1] / open[-2] if y_a_r > 0.05: up_ = open[-1] + 0.5 * y_amplitude[-1] down_ = open[-1] - 0.5 * y_amplitude[-1] else: up_ = open[-1] + 2 / 3 * y_amplitude[-1] down_ = open[-1] - 2 / 3 * y_amplitude[-1] #print(up_, down_) return up_, down_
def track(self, symbol)
确定上下轨
2.489028
2.390671
1.041142
with self._mgr_lock: with self._lock: self._use_count += 1 if self._thread is None: self._create_all() self._thread = threading.Thread(target=self._thread_func) self._thread.setDaemon(SysConfig.get_all_thread_daemon()) self._thread.start()
def start(self)
Should be called from main thread :return:
4.679489
4.811219
0.97262
obj = cls() for field in obj.DESCRIPTOR.fields: if not field.label == field.LABEL_REQUIRED: continue if not field.has_default_value: continue if not field.name in adict: raise ConvertException('Field "%s" missing from descriptor dictionary.' % field.name) field_names = set([field.name for field in obj.DESCRIPTOR.fields]) if strict: for key in adict.keys(): if key not in field_names: raise ConvertException( 'Key "%s" can not be mapped to field in %s class.' % (key, type(obj))) for field in obj.DESCRIPTOR.fields: if not field.name in adict: continue msg_type = field.message_type if field.label == FD.LABEL_REPEATED: if field.type == FD.TYPE_MESSAGE: for sub_dict in adict[field.name]: item = getattr(obj, field.name).add() item.CopyFrom(dict2pb(msg_type._concrete_class, sub_dict)) else: # fix python3 map用法变更 list(map(getattr(obj, field.name).append, adict[field.name])) else: if field.type == FD.TYPE_MESSAGE: value = dict2pb(msg_type._concrete_class, adict[field.name]) getattr(obj, field.name).CopyFrom(value) elif field.type in [FD.TYPE_UINT64, FD.TYPE_INT64, FD.TYPE_SINT64]: setattr(obj, field.name, int(adict[field.name])) else: setattr(obj, field.name, adict[field.name]) return obj
def dict2pb(cls, adict, strict=False)
Takes a class representing the ProtoBuf Message and fills it with data from the dict.
2.280597
2.252966
1.012264
adict = {} if not obj.IsInitialized(): return None for field in obj.DESCRIPTOR.fields: if not getattr(obj, field.name): continue if not field.label == FD.LABEL_REPEATED: if not field.type == FD.TYPE_MESSAGE: adict[field.name] = getattr(obj, field.name) else: value = pb2dict(getattr(obj, field.name)) if value: adict[field.name] = value else: if field.type == FD.TYPE_MESSAGE: adict[field.name] = \ [pb2dict(v) for v in getattr(obj, field.name)] else: adict[field.name] = [v for v in getattr(obj, field.name)] return adict
def pb2dict(obj)
Takes a ProtoBuf Message obj and convertes it to a dict.
1.775545
1.688292
1.051681
return dict2pb(cls, simplejson.loads(json), strict)
def json2pb(cls, json, strict=False)
Takes a class representing the Protobuf Message and fills it with data from the json string.
8.744045
12.213
0.715962
'''pre handler push return: ret_error or ret_ok ''' set_flag = False for protoc in self._pre_handler_table: if isinstance(handler, self._pre_handler_table[protoc]["type"]): self._pre_handler_table[protoc]["obj"] = handler return RET_OK if set_flag is False: return RET_ERROR
def set_pre_handler(self, handler)
pre handler push return: ret_error or ret_ok
6.844096
4.327336
1.581596
set_flag = False for protoc in self._handler_table: if isinstance(handler, self._handler_table[protoc]["type"]): self._handler_table[protoc]["obj"] = handler return RET_OK if set_flag is False: return RET_ERROR
def set_handler(self, handler)
set the callback processing object to be used by the receiving thread after receiving the data.User should set their own callback object setting in order to achieve event driven. :param handler:the object in callback handler base :return: ret_error or ret_ok
5.864461
5.071631
1.156326
if self.cb_check_recv is not None and not self.cb_check_recv() and ProtoId.is_proto_id_push(proto_id): return handler = self._default_handler pre_handler = None if proto_id in self._handler_table: handler = self._handler_table[proto_id]['obj'] if proto_id in self._pre_handler_table: pre_handler = self._pre_handler_table[proto_id]['obj'] if pre_handler is not None: pre_handler.on_recv_rsp(rsp_pb) handler.on_recv_rsp(rsp_pb)
def recv_func(self, rsp_pb, proto_id)
receive response callback function
2.836078
2.802464
1.011995
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None raw_acc_list = rsp_pb.s2c.accList acc_list = [{ 'acc_id': record.accID, 'trd_env': TRADE.REV_TRD_ENV_MAP[record.trdEnv] if record.trdEnv in TRADE.REV_TRD_ENV_MAP else "", 'trdMarket_list': [(TRADE.REV_TRD_MKT_MAP[trdMkt] if trdMkt in TRADE.REV_TRD_MKT_MAP else TrdMarket.NONE) for trdMkt in record.trdMarketAuthList] } for record in raw_acc_list] return RET_OK, "", acc_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
3.6114
3.581545
1.008336
from futuquant.common.pb.Trd_UnlockTrade_pb2 import Request req = Request() req.c2s.unlock = is_unlock req.c2s.pwdMD5 = password_md5 return pack_pb_req(req, ProtoId.Trd_UnlockTrade, conn_id)
def pack_req(cls, is_unlock, password_md5, conn_id)
Convert from user request for trading days to PLS request
3.484351
3.48436
0.999997
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None if rsp_pb.HasField('retMsg'): return RET_OK, rsp_pb.retMsg, None return RET_OK, "", None
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
4.002852
3.767695
1.062414
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None return RET_OK, "", None
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
5.64997
5.395726
1.047119
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None raw_funds = rsp_pb.s2c.funds accinfo_list = [{ 'power': raw_funds.power, 'total_assets': raw_funds.totalAssets, 'cash': raw_funds.cash, 'market_val': raw_funds.marketVal, 'frozen_cash': raw_funds.frozenCash, 'avl_withdrawal_cash': raw_funds.avlWithdrawalCash, }] return RET_OK, "", accinfo_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
3.210912
3.193005
1.005608
from futuquant.common.pb.Trd_GetPositionList_pb2 import Request req = Request() req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env] req.c2s.header.accID = acc_id req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt] if code: req.c2s.filterConditions.codeList.append(code) if pl_ratio_min is not None: req.c2s.filterPLRatioMin = float(pl_ratio_min) / 100.0 if pl_ratio_max is not None: req.c2s.filterPLRatioMax = float(pl_ratio_max) / 100.0 return pack_pb_req(req, ProtoId.Trd_GetPositionList, conn_id)
def pack_req(cls, code, pl_ratio_min, pl_ratio_max, trd_env, acc_id, trd_mkt, conn_id)
Convert from user request for trading days to PLS request
2.087986
2.193773
0.951779
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None raw_position_list = rsp_pb.s2c.positionList position_list = [{ "code": merge_trd_mkt_stock_str(rsp_pb.s2c.header.trdMarket, position.code), "stock_name": position.name, "qty": position.qty, "can_sell_qty": position.canSellQty, "cost_price": position.costPrice if position.HasField('costPrice') else 0, "cost_price_valid": 1 if position.HasField('costPrice') else 0, "market_val": position.val, "nominal_price": position.price, "pl_ratio": 100 * position.plRatio if position.HasField('plRatio') else 0, "pl_ratio_valid": 1 if position.HasField('plRatio') else 0, "pl_val": position.plVal if position.HasField('plVal') else 0, "pl_val_valid": 1 if position.HasField('plVal') else 0, "today_buy_qty": position.td_buyQty if position.HasField('td_buyQty') else 0, "today_buy_val": position.td_buyVal if position.HasField('td_buyVal') else 0, "today_pl_val": position.td_plVal if position.HasField('td_plVal') else 0, "today_sell_qty": position.td_sellQty if position.HasField('td_sellQty') else 0, "today_sell_val": position.td_sellVal if position.HasField('td_sellVal') else 0, "position_side": TRADE.REV_POSITION_SIDE_MAP[position.positionSide] if position.positionSide in TRADE.REV_POSITION_SIDE_MAP else PositionSide.NONE, } for position in raw_position_list] return RET_OK, "", position_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
2.307099
2.291486
1.006814
from futuquant.common.pb.Trd_GetOrderList_pb2 import Request req = Request() req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env] req.c2s.header.accID = acc_id req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt] if code: req.c2s.filterConditions.codeList.append(code) if order_id: req.c2s.filterConditions.idList.append(int(order_id)) if start: req.c2s.filterConditions.beginTime = start if end: req.c2s.filterConditions.endTime = end if len(status_filter_list): for order_status in status_filter_list: req.c2s.filterStatusList.append(ORDER_STATUS_MAP[order_status]) return pack_pb_req(req, ProtoId.Trd_GetOrderList, conn_id)
def pack_req(cls, order_id, status_filter_list, code, start, end, trd_env, acc_id, trd_mkt, conn_id)
Convert from user request for trading days to PLS request
2.029709
2.117067
0.958737
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None raw_order_list = rsp_pb.s2c.orderList order_list = [OrderListQuery.parse_order(rsp_pb, order) for order in raw_order_list] return RET_OK, "", order_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
4.02063
4.043612
0.994316
from futuquant.common.pb.Trd_PlaceOrder_pb2 import Request req = Request() serial_no = get_unique_id32() req.c2s.packetID.serialNo = serial_no req.c2s.packetID.connID = conn_id req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env] req.c2s.header.accID = acc_id req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt] req.c2s.trdSide = TRD_SIDE_MAP[trd_side] req.c2s.orderType = ORDER_TYPE_MAP[order_type] req.c2s.code = code req.c2s.qty = qty req.c2s.price = price req.c2s.adjustPrice = adjust_limit != 0 req.c2s.adjustSideAndLimit = adjust_limit proto_qot_mkt = MKT_MAP.get(sec_mkt_str, Qot_Common_pb2.QotMarket_Unknown) proto_trd_sec_mkt = QOT_MARKET_TO_TRD_SEC_MARKET_MAP.get(proto_qot_mkt, Trd_Common_pb2.TrdSecMarket_Unknown) req.c2s.secMarket = proto_trd_sec_mkt return pack_pb_req(req, ProtoId.Trd_PlaceOrder, conn_id, serial_no)
def pack_req(cls, trd_side, order_type, price, qty, code, adjust_limit, trd_env, sec_mkt_str, acc_id, trd_mkt, conn_id)
Convert from user request for place order to PLS request
2.419263
2.49448
0.969847
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None order_id = str(rsp_pb.s2c.orderID) return RET_OK, "", order_id
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
4.826351
4.851107
0.994897
from futuquant.common.pb.Trd_ModifyOrder_pb2 import Request req = Request() serial_no = get_unique_id32() req.c2s.packetID.serialNo = serial_no req.c2s.packetID.connID = conn_id req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env] req.c2s.header.accID = acc_id req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt] req.c2s.orderID = int(order_id) req.c2s.modifyOrderOp = MODIFY_ORDER_OP_MAP[modify_order_op] req.c2s.forAll = False if modify_order_op == ModifyOrderOp.NORMAL: req.c2s.qty = qty req.c2s.price = price req.c2s.adjustPrice = adjust_limit != 0 req.c2s.adjustSideAndLimit = adjust_limit return pack_pb_req(req, ProtoId.Trd_ModifyOrder, conn_id, serial_no)
def pack_req(cls, modify_order_op, order_id, price, qty, adjust_limit, trd_env, acc_id, trd_mkt, conn_id)
Convert from user request for place order to PLS request
2.592449
2.715654
0.954632
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None order_id = str(rsp_pb.s2c.orderID) modify_order_list = [{ 'trd_env': TRADE.REV_TRD_ENV_MAP[rsp_pb.s2c.header.trdEnv], 'order_id': order_id }] return RET_OK, "", modify_order_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
5.044299
5.076322
0.993692
from futuquant.common.pb.Trd_GetOrderFillList_pb2 import Request req = Request() req.c2s.header.trdEnv = TRD_ENV_MAP[trd_env] req.c2s.header.accID = acc_id req.c2s.header.trdMarket = TRD_MKT_MAP[trd_mkt] if code: req.c2s.filterConditions.codeList.append(code) return pack_pb_req(req, ProtoId.Trd_GetOrderFillList, conn_id)
def pack_req(cls, code, trd_env, acc_id, trd_mkt, conn_id)
Convert from user request for place order to PLS request
2.510081
2.561817
0.979805
if rsp_pb.retType != RET_OK: return RET_ERROR, rsp_pb.retMsg, None raw_deal_list = rsp_pb.s2c.orderFillList deal_list = [DealListQuery.parse_deal(rsp_pb, deal) for deal in raw_deal_list] return RET_OK, "", deal_list
def unpack_rsp(cls, rsp_pb)
Convert from PLS response to user response
5.204016
5.091423
1.022114
ret_code, content = self.parse_rsp_pb(rsp_pb) return ret_code, content
def on_recv_rsp(self, rsp_pb)
在收到实摆盘数据推送后会回调到该函数,使用者需要在派生类中覆盖此方法 注意该回调是在独立子线程中 :param rsp_pb: 派生类中不需要直接处理该参数 :return: 参见get_order_book的返回值
5.116454
5.881272
0.869957
ret_code, content = self.parse_rsp_pb(rsp_pb) if ret_code != RET_OK: return ret_code, content else: col_list = [ 'code', 'time', 'price', 'volume', 'turnover', "ticker_direction", 'sequence', 'type', 'push_data_type', ] ticker_frame_table = pd.DataFrame(content, columns=col_list) return RET_OK, ticker_frame_table
def on_recv_rsp(self, rsp_pb)
在收到实时逐笔数据推送后会回调到该函数,使用者需要在派生类中覆盖此方法 注意该回调是在独立子线程中 :param rsp_pb: 派生类中不需要直接处理该参数 :return: 参见get_rt_ticker的返回值
4.819226
4.115706
1.170935
ret_code, content = self.parse_rsp_pb(rsp_pb) if ret_code != RET_OK: return ret_code, content, None else: stock_code, bid_content, ask_content = content bid_list = [ 'code', 'bid_broker_id', 'bid_broker_name', 'bid_broker_pos' ] ask_list = [ 'code', 'ask_broker_id', 'ask_broker_name', 'ask_broker_pos' ] bid_frame_table = pd.DataFrame(bid_content, columns=bid_list) ask_frame_table = pd.DataFrame(ask_content, columns=ask_list) return RET_OK, stock_code, [bid_frame_table, ask_frame_table]
def on_recv_rsp(self, rsp_pb)
在收到实时经纪数据推送后会回调到该函数,使用者需要在派生类中覆盖此方法 注意该回调是在独立子线程中 :param rsp_pb: 派生类中不需要直接处理该参数 :return: 成功时返回(RET_OK, stock_code, [bid_frame_table, ask_frame_table]), 相关frame table含义见 get_broker_queue_ 的返回值说明 失败时返回(RET_ERROR, ERR_MSG, None)
2.511085
1.942123
1.292959
ret_code, msg, conn_info_map = InitConnect.unpack_rsp(rsp_pb) if self._notify_obj is not None: self._notify_obj.on_async_init_connect(ret_code, msg, conn_info_map) return ret_code, msg
def on_recv_rsp(self, rsp_pb)
receive response callback function
5.186047
5.244874
0.988784
ret_code, msg, data = OrderDetail.unpack_rsp(rsp_pb) if ret_code != RET_OK: return ret_code, msg else: return RET_OK, data
def on_recv_rsp(self, rsp_pb)
receive response callback function
4.515915
4.390602
1.028541
# TinyQuoteData data = tiny_quote str_log = "on_quote_changed symbol=%s open=%s high=%s close=%s low=%s" % (data.symbol, data.openPrice, data.highPrice, data.lastPrice, data.lowPrice) self.log(str_log)
def on_quote_changed(self, tiny_quote)
报价、摆盘实时数据变化时,会触发该回调
4.181411
3.672106
1.138696
return self._quant_frame.buy(price, volume, symbol, order_type, adjust_limit, acc_id)
def buy(self, price, volume, symbol, order_type=ft.OrderType.NORMAL, adjust_limit=0, acc_id=0)
买入 :param price: 报价,浮点数 精度0.001 :param volume: 数量(股) :param symbol: 股票 eg: 'HK.00700' :param order_type: 订单类型 :param adjust_limit: 当非0时,会自动调整报价,以符合价位表要求, 但不会超过指定的幅度, 为0时不调整报价 :param acc_id: int, 交易账户id, 为0时取第1个可交易账户 :return: (ret, data) ret == 0 , data = order_id ret != 0 , data = 错误字符串
4.049726
5.678869
0.713122
if type(self._quant_frame) is not int: return True self._quant_frame = quant_frame self._event_engine = event_engine init_ret = self.__loadSetting(global_setting) # 注册事件 self._event_engine.register(EVENT_BEFORE_TRADING, self.__event_before_trading) self._event_engine.register(EVENT_AFTER_TRADING, self.__event_after_trading) self._event_engine.register(EVENT_QUOTE_CHANGE, self.__event_quote_change) self._event_engine.register(EVENT_CUR_KLINE_BAR, self.__event_cur_kline_bar) self.log("init_strate '%s' ret = %s" % (self.name, init_ret)) # 对外通知初始化事件 self.on_init_strate() return init_ret
def init_strate(self, global_setting, quant_frame, event_engine)
TinyQuantFrame 初始化策略的接口
2.866311
2.827935
1.01357
# 添加必要的股票,以便能得到相应的股票行情数据 self.symbol_pools.append(self.symbol_ref) if self.cta_call["enable"]: self.symbol_pools.append(self.cta_call["symbol"]) if self.cta_put["enable"]: self.symbol_pools.append(self.cta_put["symbol"]) # call put 的持仓量以及持仓天数 self.cta_call['pos'] = 0 self.cta_call['days'] = 0 self.cta_put['pos'] = 0 self.cta_put['days'] = 0 # call put 一天只操作一次,记录当天是否已经操作过 self.cta_call['done'] = False self.cta_put['done'] = False # 记录当天操作的订单id self.cta_call['order_id'] = '' self.cta_put['order_id'] = '' # 检查参数: 下单的滑点 / 下单的数量 if self.trade_price_idx < 1 or self.trade_price_idx > 5: raise Exception("conifg trade_price_idx error!") if self.trade_qty < 0: raise Exception("conifg trade_qty error!")
def on_init_strate(self)
策略加载完配置
4.005172
3.959468
1.011543
# 读取用户现有帐户持仓信息, 数量不超过config中指定的交易数量 'trade_qty' for cta in [self.cta_call, self.cta_put]: pos = self.get_tiny_position(cta['symbol']) if pos is not None: valid_pos = pos.position - pos.frozen valid_pos = valid_pos if valid_pos > 0 else 0 valid_pos = self.trade_qty if valid_pos > self.trade_qty else valid_pos cta['pos'] = valid_pos self.log("on_start")
def on_start(self)
策略启动入口
6.416731
6.189519
1.036709
# TinyQuoteData if tiny_quote.symbol != self.symbol_ref: return # 减少计算频率,每x秒一次 dt_now = time.time() if dt_now - self._last_dt_process < 2: return self._last_dt_process = dt_now # 执行策略 self._process_cta(self.cta_call) self._process_cta(self.cta_put)
def on_quote_changed(self, tiny_quote)
报价、摆盘实时数据变化时,会触发该回调
6.475973
6.063475
1.06803
if self.cta_call['pos'] > 0: self.cta_call['days'] += 1 if self.cta_put['pos'] > 0: self.cta_put['days'] += 1 self.cta_call['done'] = False self.cta_put['done'] = False
def on_before_trading(self, date_time)
开盘的时候检查,如果有持仓,就把持有天数 + 1
3.21601
2.829041
1.136785
self._update_cta_pos(self.cta_call) self._update_cta_pos(self.cta_put)
def on_after_trading(self, date_time)
收盘的时候更新持仓信息
6.682808
5.693149
1.173833
if n < 2: result = np_array else: result = talib.EMA(np_array, n) if array: return result return result[-1]
def ema(self, np_array, n, array=False)
移动均线
2.8284
2.466107
1.146909
self.__is_acc_sub_push = False self.__last_acc_list = [] ret, msg = RET_OK, '' # auto unlock trade if self._ctx_unlock is not None: password, password_md5 = self._ctx_unlock ret, data = self.unlock_trade(password, password_md5) logger.debug('auto unlock trade ret={},data={}'.format(ret, data)) if ret != RET_OK: msg = data # 定阅交易帐号推送 if ret == RET_OK: self.__check_acc_sub_push() return ret, msg
def on_api_socket_reconnected(self)
for API socket reconnected
6.489609
6.310537
1.028377
query_processor = self._get_sync_query_processor( GetAccountList.pack_req, GetAccountList.unpack_rsp) kargs = { 'user_id': self.get_login_user_id(), 'conn_id': self.get_sync_conn_id() } ret_code, msg, acc_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg # 记录当前市场的帐号列表 self.__last_acc_list = [] for record in acc_list: trdMkt_list = record["trdMarket_list"] if self.__trd_mkt in trdMkt_list: self.__last_acc_list.append({ "trd_env": record["trd_env"], "acc_id": record["acc_id"]}) col_list = ["acc_id", "trd_env"] acc_table = pd.DataFrame(copy(self.__last_acc_list), columns=col_list) return RET_OK, acc_table
def get_acc_list(self)
:return: (ret, data)
3.769234
3.617306
1.042
# 仅支持真实交易的市场可以解锁,模拟交易不需要解锁 md5_val = '' if is_unlock: ret = TRADE.check_mkt_envtype(self.__trd_mkt, TrdEnv.REAL) if not ret: return RET_OK, Err.NoNeedUnlock.text if password is None and password_md5 is None: return RET_ERROR, make_msg(Err.ParamErr, password=password, password_md5=password_md5) md5_val = str(password_md5) if password_md5 else md5_transform(str(password)) # 解锁要求先拉一次帐户列表, 目前仅真实环境需要解锁 ret, msg, acc_id = self._check_acc_id(TrdEnv.REAL, 0) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( UnlockTrade.pack_req, UnlockTrade.unpack_rsp) kargs = { 'is_unlock': is_unlock, 'password_md5': md5_val, 'conn_id': self.get_sync_conn_id() } ret_code, msg, _ = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg # reconnected to auto unlock if RET_OK == ret_code: self._ctx_unlock = (password, password_md5) if is_unlock else None # 定阅交易帐号推送 if is_unlock and ret_code == RET_OK: self.__check_acc_sub_push() if msg is not None and len(msg) > 0: return RET_OK, msg return RET_OK, None
def unlock_trade(self, password=None, password_md5=None, is_unlock=True)
交易解锁,安全考虑,所有的交易api,需成功解锁后才可操作 :param password: 明文密码字符串 (二选一) :param password_md5: 密码的md5字符串(二选一) :param is_unlock: 解锁 = True, 锁定 = False :return:(ret, data) ret == RET_OK时, data为None,如果之前已经解锁过了,data为提示字符串,指示出已经解锁 ret != RET_OK时, data为错误字符串
5.255801
5.168529
1.016885
kargs = { 'acc_id_list': acc_id_list, 'conn_id': self.get_async_conn_id(), } ret_code, msg, push_req_str = SubAccPush.pack_req(**kargs) if ret_code == RET_OK: self._send_async_req(push_req_str) return RET_OK, None
def _async_sub_acc_push(self, acc_id_list)
异步连接指定要接收送的acc id :param acc_id: :return:
4.853071
4.409248
1.100657
ret, msg = self._check_trd_env(trd_env) if ret != RET_OK: return ret, msg ret, msg, acc_id = self._check_acc_id_and_acc_index(trd_env, acc_id, acc_index) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( AccInfoQuery.pack_req, AccInfoQuery.unpack_rsp) kargs = { 'acc_id': int(acc_id), 'trd_env': trd_env, 'trd_market': self.__trd_mkt, 'conn_id': self.get_sync_conn_id() } ret_code, msg, accinfo_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg col_list = [ 'power', 'total_assets', 'cash', 'market_val', 'frozen_cash', 'avl_withdrawal_cash' ] accinfo_frame_table = pd.DataFrame(accinfo_list, columns=col_list) return RET_OK, accinfo_frame_table
def accinfo_query(self, trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
:param trd_env: :param acc_id: :param acc_index: :return:
2.927935
2.942591
0.995019
stock_str = str(code) split_loc = stock_str.find(".") '''do not use the built-in split function in python. The built-in function cannot handle some stock strings correctly. for instance, US..DJI, where the dot . itself is a part of original code''' if 0 <= split_loc < len( stock_str) - 1 and stock_str[0:split_loc] in MKT_MAP: market_str = stock_str[0:split_loc] partial_stock_str = stock_str[split_loc + 1:] return RET_OK, (market_str, partial_stock_str) else: error_str = ERROR_STR_PREFIX + "format of %s is wrong. (US.AAPL, HK.00700, SZ.000001)" % stock_str return RET_ERROR, error_str
def _split_stock_code(self, code)
do not use the built-in split function in python. The built-in function cannot handle some stock strings correctly. for instance, US..DJI, where the dot . itself is a part of original code
5.214606
2.82579
1.845362
ret, msg = self._check_trd_env(trd_env) if ret != RET_OK: return ret, msg ret, msg, acc_id = self._check_acc_id_and_acc_index(trd_env, acc_id, acc_index) if ret != RET_OK: return ret, msg ret, msg, stock_code = self._check_stock_code(code) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( PositionListQuery.pack_req, PositionListQuery.unpack_rsp) kargs = { 'code': str(stock_code), 'pl_ratio_min': pl_ratio_min, 'pl_ratio_max': pl_ratio_max, 'trd_mkt': self.__trd_mkt, 'trd_env': trd_env, 'acc_id': acc_id, 'conn_id': self.get_sync_conn_id() } ret_code, msg, position_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg col_list = [ "code", "stock_name", "qty", "can_sell_qty", "cost_price", "cost_price_valid", "market_val", "nominal_price", "pl_ratio", "pl_ratio_valid", "pl_val", "pl_val_valid", "today_buy_qty", "today_buy_val", "today_pl_val", "today_sell_qty", "today_sell_val", "position_side" ] position_list_table = pd.DataFrame(position_list, columns=col_list) return RET_OK, position_list_table
def position_list_query(self, code='', pl_ratio_min=None, pl_ratio_max=None, trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
for querying the position list
2.290987
2.308026
0.992618
# ret, msg = self._check_trd_env(trd_env) # if ret != RET_OK: # return ret, msg ret, msg, acc_id = self._check_acc_id_and_acc_index(trd_env, acc_id, acc_index) if ret != RET_OK: return ret, msg ret, content = self._split_stock_code(code) if ret != RET_OK: return ret, content market_str, stock_code = content query_processor = self._get_sync_query_processor( PlaceOrder.pack_req, PlaceOrder.unpack_rsp) # the keys of kargs should be corresponding to the actual function arguments kargs = { 'trd_side': trd_side, 'order_type': order_type, 'price': float(price), 'qty': float(qty), 'code': stock_code, 'adjust_limit': float(adjust_limit), 'trd_mkt': self.__trd_mkt, 'sec_mkt_str': market_str, 'trd_env': trd_env, 'acc_id': acc_id, 'conn_id': self.get_sync_conn_id() } ret_code, msg, order_id = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg order_item = {'trd_env': trd_env, 'order_id': order_id} # 保持跟v2.0兼容, 增加必要的订单字段 for x in range(3): ret_code, ret_data = self._order_list_query_impl(order_id=order_id,status_filter_list=[], code="", start="", end="", trd_env=trd_env, acc_id=acc_id) if ret_code == RET_OK and len(ret_data) > 0: order_item = ret_data[0] order_item['trd_env'] = trd_env break col_list = [ "code", "stock_name", "trd_side", "order_type", "order_status", "order_id", "qty", "price", "create_time", "updated_time", "dealt_qty", "dealt_avg_price", "last_err_msg" ] order_list = [order_item] order_table = pd.DataFrame(order_list, columns=col_list) return RET_OK, order_table
def place_order(self, price, qty, code, trd_side, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
place order use set_handle(HKTradeOrderHandlerBase) to recv order push !
3.004401
2.990206
1.004747
ret, msg = self._check_trd_env(trd_env) if ret != RET_OK: return ret, msg ret, msg, acc_id = self._check_acc_id_and_acc_index(trd_env, acc_id, acc_index) if ret != RET_OK: return ret, msg ret, msg, stock_code = self._check_stock_code(code) if ret != RET_OK: return ret, msg query_processor = self._get_sync_query_processor( DealListQuery.pack_req, DealListQuery.unpack_rsp) kargs = { 'code': stock_code, 'trd_mkt': self.__trd_mkt, 'trd_env': trd_env, 'acc_id': acc_id, 'conn_id': self.get_sync_conn_id() } ret_code, msg, deal_list = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg col_list = [ "code", "stock_name", "deal_id", "order_id", "qty", "price", "trd_side", "create_time", "counter_broker_id", "counter_broker_name" ] deal_list_table = pd.DataFrame(deal_list, columns=col_list) return RET_OK, deal_list_table
def deal_list_query(self, code="", trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
for querying deal list
2.450918
2.462568
0.995269
ret, msg = self._check_trd_env(trd_env) if ret != RET_OK: return ret, msg ret, msg, acc_id = self._check_acc_id_and_acc_index(trd_env, acc_id, acc_index) if ret != RET_OK: return ret, msg ret, content = self._split_stock_code(code) if ret != RET_OK: return ret, content market_str, stock_code = content query_processor = self._get_sync_query_processor( AccTradingInfoQuery.pack_req, AccTradingInfoQuery.unpack_rsp) kargs = { 'order_type': order_type, 'code': str(stock_code), 'price': price, 'order_id': order_id, 'adjust_limit': adjust_limit, 'trd_mkt': self.__trd_mkt, 'sec_mkt_str': market_str, 'trd_env': trd_env, 'acc_id': acc_id, 'conn_id': self.get_sync_conn_id() } ret_code, msg, data = query_processor(**kargs) if ret_code != RET_OK: return RET_ERROR, msg col_list = ['max_cash_buy', 'max_cash_and_margin_buy', 'max_position_sell', 'max_sell_short', 'max_buy_back'] acctradinginfo_table = pd.DataFrame(data, columns=col_list) return RET_OK, acctradinginfo_table
def acctradinginfo_query(self, order_type, code, price, order_id=None, adjust_limit=0, trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
查询账户下最大可买卖数量 :param order_type: 订单类型,参见OrderType :param code: 证券代码,例如'HK.00700' :param price: 报价,3位精度 :param order_id: 订单号。如果是新下单,则可以传None。如果是改单则要传单号。 :param adjust_limit: 调整方向和调整幅度百分比限制,正数代表向上调整,负数代表向下调整,具体值代表调整幅度限制,如:0.015代表向上调整且幅度不超过1.5%;-0.01代表向下调整且幅度不超过1%。默认0表示不调整 :param trd_env: 交易环境,参见TrdEnv :param acc_id: 业务账号,默认0表示第1个 :param acc_index: int,交易业务子账户ID列表所对应的下标,默认0,表示第1个业务ID :return: (ret, data) ret == RET_OK, data为pd.DataFrame,数据列如下 ret != RET_OK, data为错误信息 ======================= =========== ====================================================================================== 参数 类型 说明 ======================= =========== ====================================================================================== max_cash_buy float 不使用融资,仅自己的现金最大可买整手股数 max_cash_and_margin_buy float 使用融资,自己的现金 + 融资资金总共的最大可买整手股数 max_position_sell float 不使用融券(卖空),仅自己的持仓最大可卖整手股数 max_sell_short float 使用融券(卖空),最大可卖空整手股数,不包括多仓 max_buy_back float 卖空后,需要买回的最大整手股数。因为卖空后,必须先买回已卖空的股数,还掉股票,才能再继续买多。 ======================= =========== ======================================================================================
2.79876
2.353986
1.188945
return super(OpenHKCCTradeContext, self).order_list_query(order_id, status_filter_list, code, start, end, trd_env, acc_id, acc_index)
def order_list_query(self, order_id="", status_filter_list=[], code='', start='', end='', trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
:param order_id: :param status_filter_list: :param code: :param start: :param end: :param trd_env: :param acc_id: :return: 返回值见基类及接口文档,但order_type仅有OrderType.NORMAL, order_status没有OrderStatus.DISABLED
2.905732
3.462579
0.839181
return super(OpenHKCCTradeContext, self).modify_order(modify_order_op=modify_order_op, order_id=order_id, qty=qty, price=price, adjust_limit=adjust_limit, trd_env=trd_env, acc_id=acc_id, acc_index=acc_index)
def modify_order(self, modify_order_op, order_id, qty, price, adjust_limit=0, trd_env=TrdEnv.REAL, acc_id=0, acc_index=0)
详细说明见基类接口说明,但有以下不同:不支持改单。 可撤单。删除订单是本地操作。 :param modify_order_op: :param order_id: :param qty: :param price: :param adjust_limit: :param trd_env: :param acc_id: :return:
2.064162
2.334654
0.884141
# TinyQuoteData data = tiny_quote symbol = data.symbol str_dt = data.datetime.strftime("%Y%m%d %H:%M:%S") # 得到日k数据的ArrayManager(vnpy)对象 am = self.get_kl_day_am(data.symbol) array_high = am.high array_low = am.low array_open = am.open array_close = am.close array_vol = am.volume n = 5 ma_high = self.sma(array_high, n) ma_low = self.sma(array_low, n) ma_open = self.sma(array_open, n) ma_close = self.sma(array_close, n) ma_vol = self.sma(array_vol, n) str_log = "on_quote_changed symbol=%s dt=%s sma(%s) open=%s high=%s close=%s low=%s vol=%s" % ( symbol, str_dt, n, ma_open, ma_high, ma_close, ma_low, ma_vol) self.log(str_log)
def on_quote_changed(self, tiny_quote)
报价、摆盘实时数据变化时,会触发该回调
2.785714
2.656111
1.048794
bar = tiny_bar symbol = bar.symbol str_dt = bar.datetime.strftime("%Y%m%d %H:%M:%S") # 得到分k数据的ArrayManager(vnpy)对象 am = self.get_kl_min1_am(symbol) array_high = am.high array_low = am.low array_open = am.open array_close = am.close array_vol = am.volume n = 5 ma_high = self.ema(array_high, n) ma_low = self.ema(array_low, n) ma_open = self.ema(array_open, n) ma_close = self.ema(array_close, n) ma_vol = self.ema(array_vol, n) str_log = "on_bar_min1 symbol=%s dt=%s ema(%s) open=%s high=%s close=%s low=%s vol=%s" % ( symbol, str_dt, n, ma_open, ma_high, ma_close, ma_low, ma_vol) self.log(str_log)
def on_bar_min1(self, tiny_bar)
每一分钟触发一次回调
2.608114
2.570297
1.014713
bar = tiny_bar symbol = bar.symbol str_dt = bar.datetime.strftime("%Y%m%d %H:%M:%S") str_log = "on_bar_day symbol=%s dt=%s open=%s high=%s close=%s low=%s vol=%s" % ( symbol, str_dt, bar.open, bar.high, bar.close, bar.low, bar.volume) self.log(str_log)
def on_bar_day(self, tiny_bar)
收盘时会触发一次日k回调
2.389414
2.284781
1.045795
if n < 2: result = np_array else: result = talib.SMA(np_array, n) if array: return result return result[-1]
def sma(self, np_array, n, array=False)
简单均线
2.491733
2.392501
1.041476
data = tiny_quote symbol = data.symbol price = data.open #print(price) now = datetime.datetime.now() work_time = now.replace(hour=15, minute=55, second=0) if now >= work_time: ma_20 = self.get_sma(20, symbol) ma_60 = self.get_sma(60, symbol) if ma_20 >= ma_60 and self.flag==0: #金叉买入 self.do_trade(symbol, price, "buy") self.flag = 1 elif ma_20 < ma_60 and self.flag==1: #死叉卖出 self.do_trade(symbol, price, "sell") self.flag = 0
def on_bar_min1(self, tiny_quote)
每一分钟触发一次回调
2.733975
2.70877
1.009305
while self.__active == True: try: event = self.__queue.get(block = True, timeout = 1) # 获取事件的阻塞时间设为1秒 self.__process(event) except Empty: pass
def __run(self)
引擎运行
4.397663
3.868042
1.136922
# 检查是否存在对该事件进行监听的处理函数 if event.type_ in self.__handlers: # 若存在,则按顺序将事件传递给处理函数执行 [handler(event) for handler in self.__handlers[event.type_]] # 以上语句为Python列表解析方式的写法,对应的常规循环写法为: #for handler in self.__handlers[event.type_]: #handler(event) # 调用通用处理函数进行处理 if self.__generalHandlers: [handler(event) for handler in self.__generalHandlers]
def __process(self, event)
处理事件
5.535668
5.195815
1.065409
# 将引擎设为启动 self.__active = True # 启动事件处理线程 self.__thread.start() # 启动计时器,计时器事件间隔默认设定为1秒 if timer: self.__timer.start(1000)
def start(self, timer=True)
引擎启动 timer:是否要启动计时器
5.633195
5.089653
1.106793
# 将引擎设为停止 self.__active = False # 停止计时器 self.__timer.stop() # 等待事件处理线程退出 self.__thread.join()
def stop(self)
停止引擎
7.656974
6.145598
1.245928
# 尝试获取该事件类型对应的处理函数列表,若无defaultDict会自动创建新的list handlerList = self.__handlers[type_] # 若要注册的处理器不在该事件的处理器列表中,则注册该事件 if handler not in handlerList: handlerList.append(handler)
def register(self, type_, handler)
注册事件处理函数监听
7.107449
6.588154
1.078823
# 尝试获取该事件类型对应的处理函数列表,若无则忽略该次注销请求 handlerList = self.__handlers[type_] # 如果该函数存在于列表中,则移除 if handler in handlerList: handlerList.remove(handler) # 如果函数列表为空,则从引擎中移除该事件类型 if not handlerList: del self.__handlers[type_]
def unregister(self, type_, handler)
注销事件处理函数监听
5.147274
4.696007
1.096096
if handler not in self.__generalHandlers: self.__generalHandlers.append(handler)
def registerGeneralHandler(self, handler)
注册通用事件处理函数监听
3.553724
3.506304
1.013524
if handler in self.__generalHandlers: self.__generalHandlers.remove(handler)
def unregisterGeneralHandler(self, handler)
注销通用事件处理函数监听
3.458196
3.369162
1.026426
while self.__timerActive: # 创建计时器事件 event = Event(type_=EVENT_TIMER) # 向队列中存入计时器事件 self.put(event) # 等待 sleep(self.__timerSleep)
def __runTimer(self)
运行在计时器线程中的循环函数
6.767612
6.083864
1.112387
# 将引擎设为停止 self.__active = False # 停止计时器 self.__timerActive = False self.__timer.join() # 等待事件处理线程退出 self.__thread.join()
def stop(self)
停止引擎
7.843931
6.528083
1.201567
stock_code_list = ["US.AAPL", "HK.00700"] # subscribe "QUOTE" ret_status, ret_data = quote_ctx.subscribe(stock_code_list, ft.SubType.QUOTE) if ret_status != ft.RET_OK: print("%s %s: %s" % (stock_code_list, "QUOTE", ret_data)) exit() ret_status, ret_data = quote_ctx.query_subscription() if ret_status != ft.RET_OK: print(ret_status) exit() print(ret_data) ret_status, ret_data = quote_ctx.get_stock_quote(stock_code_list) if ret_status != ft.RET_OK: print(ret_data) exit() quote_table = ret_data print("QUOTE_TABLE") print(quote_table)
def _example_stock_quote(quote_ctx)
获取批量报价,输出 股票名称,时间,当前价,开盘价,最高价,最低价,昨天收盘价,成交量,成交额,换手率,振幅,股票状态
2.633357
2.547395
1.033745
# subscribe Kline stock_code_list = ["US.AAPL", "HK.00700"] sub_type_list = [ft.SubType.K_1M, ft.SubType.K_5M, ft.SubType.K_15M, ft.SubType.K_30M, ft.SubType.K_60M, ft.SubType.K_DAY, ft.SubType.K_WEEK, ft.SubType.K_MON] ret_status, ret_data = quote_ctx.subscribe(stock_code_list, sub_type_list) if ret_status != ft.RET_OK: print(ret_data) exit() ret_status, ret_data = quote_ctx.query_subscription() if ret_status == ft.RET_ERROR: print(ret_data) exit() print(ret_data) for code in stock_code_list: for ktype in [ft.SubType.K_DAY, ft.SubType.K_1M, ft.SubType.K_5M]: ret_code, ret_data = quote_ctx.get_cur_kline(code, 5, ktype) if ret_code == ft.RET_ERROR: print(code, ktype, ret_data) exit() kline_table = ret_data print("%s KLINE %s" % (code, ktype)) print(kline_table) print("\n\n")
def _example_cur_kline(quote_ctx)
获取当前K线,输出 股票代码,时间,开盘价,收盘价,最高价,最低价,成交量,成交额
2.10855
2.074856
1.016239
stock_code_list = ["HK.00700", "US.AAPL"] # subscribe "TICKER" ret_status, ret_data = quote_ctx.subscribe(stock_code_list, ft.SubType.TICKER) if ret_status != ft.RET_OK: print(ret_data) exit() for stk_code in stock_code_list: ret_status, ret_data = quote_ctx.get_rt_ticker(stk_code, 3) if ret_status != ft.RET_OK: print(stk_code, ret_data) exit() print("%s TICKER" % stk_code) print(ret_data) print("\n\n")
def _example_rt_ticker(quote_ctx)
获取逐笔,输出 股票代码,时间,价格,成交量,成交金额,暂时没什么意义的序列号
2.667921
2.550959
1.04585
stock_code_list = ["US.AAPL", "HK.00700"] # subscribe "ORDER_BOOK" ret_status, ret_data = quote_ctx.subscribe(stock_code_list, ft.SubType.ORDER_BOOK) if ret_status != ft.RET_OK: print(ret_data) exit() for stk_code in stock_code_list: ret_status, ret_data = quote_ctx.get_order_book(stk_code) if ret_status != ft.RET_OK: print(stk_code, ret_data) exit() print("%s ORDER_BOOK" % stk_code) print(ret_data) print("\n\n")
def _example_order_book(quote_ctx)
获取摆盘数据,输出 买价,买量,买盘经纪个数,卖价,卖量,卖盘经纪个数
2.693496
2.625995
1.025705
ret_status, ret_data = quote_ctx.get_trading_days("US", None, None) if ret_status != ft.RET_OK: print(ret_data) exit() print("TRADING DAYS") for x in ret_data: print(x)
def _example_get_trade_days(quote_ctx)
获取交易日列表,输出 交易日列表
4.342785
4.206146
1.032486
ret_status, ret_data = quote_ctx.get_stock_basicinfo(ft.Market.HK, ft.SecurityType.STOCK) if ret_status != ft.RET_OK: print(ret_data) exit() print("stock_basic") print(ret_data)
def _example_stock_basic(quote_ctx)
获取股票信息,输出 股票代码,股票名,每手数量,股票类型,子类型所属正股
3.540186
3.330098
1.063088
ret_status, ret_data = quote_ctx.get_market_snapshot(["US.AAPL", "HK.00700"]) if ret_status != ft.RET_OK: print(ret_data) exit() print("market_snapshot") print(ret_data)
def _example_get_market_snapshot(quote_ctx)
获取市场快照,输出 股票代码,更新时间,按盘价,开盘价,最高价,最低价,昨天收盘价,成交量,成交额,换手率, 停牌状态,上市日期,流通市值,总市值,是否涡轮,换股比例,窝轮类型,行使价格,格式化窝轮到期时间, 格式化窝轮最后到期时间,窝轮对应的正股,窝轮回收价,窝轮街货量,窝轮发行量,窝轮街货占比,窝轮对冲值,窝轮引伸波幅, 窝轮溢价
3.814023
3.766618
1.012585
stock_code_list = ["US.AAPL", "HK.00700"] ret_status, ret_data = quote_ctx.subscribe(stock_code_list, ft.SubType.RT_DATA) if ret_status != ft.RET_OK: print(ret_data) exit() for stk_code in stock_code_list: ret_status, ret_data = quote_ctx.get_rt_data(stk_code) if ret_status != ft.RET_OK: print(stk_code, ret_data) exit() print("%s RT_DATA" % stk_code) print(ret_data) print("\n\n")
def _example_rt_data(quote_ctx)
获取分时数据,输出 时间,数据状态,开盘多少分钟,目前价,昨收价,平均价,成交量,成交额
2.487564
2.451915
1.014539
ret_status, ret_data = quote_ctx.get_plate_list(ft.Market.SZ, ft.Plate.ALL) if ret_status != ft.RET_OK: print(ret_data) exit() print("plate_subplate") print(ret_data)
def _example_plate_subplate(quote_ctx)
获取板块集合下的子板块列表,输出 市场,板块分类,板块代码,名称,ID
4.327622
3.911717
1.106323
ret_status, ret_data = quote_ctx.get_plate_stock("SH.BK0531") if ret_status != ft.RET_OK: print(ret_data) exit() print("plate_stock") print(ret_data)
def _example_plate_stock(quote_ctx)
获取板块下的股票列表,输出 市场,股票每手,股票名称,所属市场,子类型,股票类型
4.630606
4.69921
0.985401
stock_code_list = ["HK.00700"] for stk_code in stock_code_list: ret_status, ret_data = quote_ctx.subscribe(stk_code, ft.SubType.BROKER) if ret_status != ft.RET_OK: print(ret_data) exit() for stk_code in stock_code_list: ret_status, bid_data, ask_data = quote_ctx.get_broker_queue(stk_code) if ret_status != ft.RET_OK: print(bid_data) exit() print("%s BROKER" % stk_code) print(ask_data) print("\n\n") print(bid_data) print("\n\n")
def _example_broker_queue(quote_ctx)
获取经纪队列,输出 买盘卖盘的经纪ID,经纪名称,经纪档位
2.713614
2.564039
1.058335
self._socket_lock.acquire() self._force_close_session() self._socket_lock.release()
def close_socket(self)
close socket
6.205824
5.462142
1.136152
self._socket_lock.acquire() try: ret = self._is_socket_ok(timeout_select) finally: self._socket_lock.release() return ret
def is_sock_ok(self, timeout_select)
check if socket is OK
2.554516
2.313234
1.104305
req_proto_id = 0 try: is_socket_lock = False ret, msg = self._create_session(is_create_socket) if ret != RET_OK: return ret, msg, None self._socket_lock.acquire() if not self.s: self._socket_lock.release() return RET_ERROR, "socket is closed" is_socket_lock = True head_len = get_message_head_len() req_head_dict = parse_head(req_str[:head_len]) req_proto_id = req_head_dict['proto_id'] req_serial_no = req_head_dict['serial_no'] s_cnt = self.s.send(req_str) is_rsp_body = False left_buf = b'' rsp_body = b'' head_dict = [] while not is_rsp_body: if len(left_buf) < head_len: recv_buf = self.s.recv(5 * 1024 * 1024) if recv_buf == b'': raise Exception("_SyncNetworkQueryCtx : head recv error, remote server close") left_buf += recv_buf head_dict = parse_head(left_buf[:head_len]) rsp_body = left_buf[head_len:] while head_dict['body_len'] > len(rsp_body): try: recv_buf = self.s.recv(5 * 1024 * 1024) rsp_body += recv_buf if recv_buf == b'': raise Exception("_SyncNetworkQueryCtx : body recv error, remote server close") except Exception as e: traceback.print_exc() err = sys.exc_info()[1] error_str = ERROR_STR_PREFIX + str( err) + ' when receiving after sending %s bytes.' % s_cnt + "" self._force_close_session() return RET_ERROR, error_str, None if head_dict["proto_id"] == req_proto_id and head_dict["serial_no"] == req_serial_no: is_rsp_body = True else: left_buf = rsp_body[head_dict['body_len']:] logger.debug("recv dirty response: req protoID={} serial={}, recv protoID={} serial={} conn_id={}".format( req_proto_id, req_serial_no, head_dict["proto_id"], head_dict["serial_no"], self._conn_id)) ret_decrypt, msg_decrypt, rsp_body = decrypt_rsp_body(rsp_body, head_dict, self._conn_id) if ret_decrypt != RET_OK: return ret_decrypt, msg_decrypt, None rsp_pb = binary2pb(rsp_body, head_dict['proto_id'], head_dict['proto_fmt_type']) if rsp_pb is None: return RET_ERROR, "parse error", None self._close_session() except Exception as e: traceback.print_exc() err = sys.exc_info()[1] str_proto = ' when req proto:{} conn_id:{}, host:{} port:{}'.format(req_proto_id, self._conn_id, self.__host, self.__port) error_str = ERROR_STR_PREFIX + str(err) + str_proto logger.error(error_str) return RET_ERROR, error_str, None finally: if is_socket_lock: self._socket_lock.release() return RET_OK, "", rsp_pb
def network_query(self, req_str, is_create_socket=True)
the function sends req_str to FUTU client and try to get response from the client. :param req_str :return: rsp_str
2.74155
2.747017
0.99801