code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
repo = require_repo(directory) plugins = get_value(repo, 'plugins') if not plugins or not isinstance(plugins, dict): return None return plugins.keys()
def list_plugins(directory=None)
Gets a list of the installed themes.
5.305757
5.151694
1.029905
repo = require_repo(directory) plugins = get_value(repo, 'plugins', expect_type=dict) if plugin in plugins: return False plugins[plugin] = {} set_value(repo, 'plugins', plugins) return True
def add_plugin(plugin, directory=None)
Adds the specified plugin. This returns False if it was already added.
4.097364
3.544657
1.155927
repo = require_repo(directory) plugins = get_value(repo, 'plugins') return plugins.get(plugin) if isinstance(plugins, dict) else None
def get_plugin_settings(plugin, directory=None)
Gets the settings for the specified plugin.
5.781232
5.266206
1.097798
directory = directory or '.' host = host or '127.0.0.1' port = port or 5000 # TODO: admin interface # TODO: use cache_only to keep from modifying output directly out_directory = build(directory) # Serve generated site os.chdir(out_directory) Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer((host, port), Handler) print ' * Serving on http://%s:%s/' % (host, port) httpd.serve_forever()
def preview(directory=None, host=None, port=None, watch=True)
Runs a local server to preview the working directory of a repository.
4.183256
4.144821
1.009273
if directory and not os.path.isdir(directory): raise ValueError('Directory not found: ' + repr(directory)) repo = repo_path(directory) if not os.path.isdir(repo): raise RepositoryNotFoundError(directory) return repo
def require_repo(directory=None)
Checks for a presentation repository and raises an exception if not found.
3.262365
2.807144
1.162165
repo = repo_path(directory) if os.path.isdir(repo): raise RepositoryAlreadyExistsError(directory, repo) # Initialize repository with default template shutil.copytree(default_template_path, repo) message = '"Default presentation content."' subprocess.call(['git', 'init', '-q', repo]) subprocess.call(['git', 'add', '.'], cwd=repo) subprocess.call(['git', 'commit', '-q', '-m', message], cwd=repo) return repo
def init(directory=None)
Initializes a Gitpress presentation repository at the specified directory.
4.059739
3.583848
1.132788
# Defaults if includes is None: includes = [] if excludes is None: excludes = [] # Transform glob patterns to regular expressions includes_pattern = r'|'.join([fnmatch.translate(x) for x in includes]) or r'$.' excludes_pattern = r'|'.join([fnmatch.translate(x) for x in excludes]) or r'$.' includes_re = re.compile(includes_pattern) excludes_re = re.compile(excludes_pattern) def included(root, name): full_path = os.path.join(root, name) # Explicitly included files takes priority if includes_re.match(full_path): return True # Ignore special and excluded files return (not specials_re.match(name) and not excludes_re.match(full_path)) # Get a filtered list of paths to be built for root, dirs, files in os.walk(path): dirs[:] = [d for d in dirs if included(root, d)] files = [f for f in files if included(root, f)] for f in files: yield os.path.relpath(os.path.join(root, f), path)
def iterate_presentation_files(path=None, excludes=None, includes=None)
Iterates the repository presentation files relative to 'path', not including themes. Note that 'includes' take priority.
2.320955
2.30233
1.00809
try: with open(path, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) except IOError as ex: if ex != errno.ENOENT: raise return {}
def read_config_file(path)
Returns the configuration from the specified file.
2.759351
2.701632
1.021365
return write_config_file(os.path.join(repo_directory, config_file), config)
def write_config(repo_directory, config)
Writes the specified configuration to the presentation repository.
3.62955
4.567416
0.794662
contents = json.dumps(config, indent=4, separators=(',', ': ')) + '\n' try: with open(path, 'w') as f: f.write(contents) return True except IOError as ex: if ex != errno.ENOENT: raise return False
def write_config_file(path, config)
Writes the specified configuration to the specified file.
2.584683
2.549666
1.013734
config = read_config(repo_directory) value = config.get(key) if expect_type and value is not None and not isinstance(value, expect_type): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(expect_type), repr(type(value)))) return value
def get_value(repo_directory, key, expect_type=None)
Gets the value of the specified key in the config file.
2.666036
2.663738
1.000863
if value is None: raise ValueError('Argument "value" must not be None.') # Read values and do nothing if not making any changes config = read_config(repo_directory) old = config.get(key) if old == value: return old # Check schema if strict and old is not None and not isinstance(old, type(value)): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(type(value)), repr(type(old)))) # Set new value and save results config[key] = value write_config(repo_directory, config) return old
def set_value(repo_directory, key, value, strict=True)
Sets the value of a particular key in the config file. This has no effect when setting to the same value.
3.484492
3.449072
1.010269
content_directory = content_directory or '.' out_directory = os.path.abspath(out_directory or default_out_directory) repo = require_repo(content_directory) # Prevent user mistakes if out_directory == '.': raise ValueError('Output directory must be different than the source directory: ' + repr(out_directory)) if os.path.basename(os.path.relpath(out_directory, content_directory)) == '..': raise ValueError('Output directory must not contain the source directory: ' + repr(out_directory)) # TODO: read config # TODO: use virtualenv # TODO: init and run plugins # TODO: process with active theme # Collect and copy static files files = presentation_files(repo) remove_directory(out_directory) copy_files(files, out_directory, repo) return out_directory
def build(content_directory=None, out_directory=None)
Builds the site from its content and presentation repository.
4.681705
4.493319
1.041926
if argv is None: argv = sys.argv[1:] usage = '\n\n\n'.join(__doc__.split('\n\n\n')[1:]) version = 'Gitpress ' + __version__ # Parse options args = docopt(usage, argv=argv, version=version) # Execute command try: return execute(args) except RepositoryNotFoundError as ex: error('No Gitpress repository found at', ex.directory)
def main(argv=None)
The entry point of the application.
4.721552
4.641898
1.01716
def info(*message): if not args['-q']: print ' '.join(map(str, message)) if args['init']: try: repo = init(args['<directory>']) info('Initialized Gitpress repository in', repo) except RepositoryAlreadyExistsError as ex: info('Gitpress repository already exists in', ex.repo) return 0 if args['preview']: directory, address = resolve(args['<directory>'], args['<address>']) host, port = split_address(address) if address and not host and not port: error('Invalid address', repr(address)) return preview(directory, host=host, port=port) if args['build']: require_repo(args['<directory>']) info('Building site', os.path.abspath(args['<directory>'] or '.')) try: out_directory = build(args['<directory>'], args['--out']) except NotADirectoryError as ex: error(ex) info('Site built in', os.path.abspath(out_directory)) return 0 if args['themes']: theme = args['<theme>'] if args['use']: try: switched = use_theme(theme) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 except ThemeNotFoundError as ex: error('Theme %s is not currently installed.' % repr(theme)) return 1 info('Switched to theme %s' if switched else 'Already using %s' % repr(theme)) elif args['install']: # TODO: implement raise NotImplementedError() elif args['uninstall']: # TODO: implement raise NotImplementedError() else: themes = list_themes() if themes: info('Installed themes:') info(' ' + '\n '.join(themes)) else: info('No themes installed.') return 0 if args['plugins']: plugin = args['<plugin>'] if args['add']: try: added = add_plugin(plugin) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 info(('Added plugin %s' if added else 'Plugin %s has already been added.') % repr(plugin)) elif args['remove']: settings = get_plugin_settings(plugin) if not args['-f'] and settings and isinstance(settings, dict): warning = 'Plugin %s contains settings. Remove?' % repr(plugin) if not yes_or_no(warning): return 0 try: removed = remove_plugin(plugin) except ConfigSchemaError as ex: error('Error: Could not modify config:', ex) info(('Removed plugin %s' if removed else 'Plugin %s has already been removed.') % repr(plugin)) else: plugins = list_plugins() info('Installed plugins:\n ' + '\n '.join(plugins) if plugins else 'No plugins installed.') return 0 return 1
def execute(args)
Executes the command indicated by the specified parsed arguments.
2.691783
2.716704
0.990827
if argv is None: argv = sys.argv[1:] argv.insert(0, 'preview') return main(argv)
def gpp(argv=None)
Shortcut function for running the previewing command.
3.874627
2.658748
1.457312
repo = require_repo(directory) path = os.path.join(repo, themes_dir) return os.listdir(path) if os.path.isdir(path) else None
def list_themes(directory=None)
Gets a list of the installed themes.
4.6133
4.283348
1.077031
repo = require_repo(directory) if theme not in list_themes(directory): raise ThemeNotFoundError(theme) old_theme = set_value(repo, 'theme', theme) return old_theme != theme
def use_theme(theme, directory=None)
Switches to the specified theme. This returns False if switching to the already active theme.
6.198123
5.568025
1.113164
if value.value: _assert_is_type('fill_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'fill_opacity must be between 0 and 1')
def fill_opacity(value)
ValueRef : int or float, opacity of the fill (0 to 1)
3.691695
3.429751
1.076374
if value.value: _assert_is_type('stroke_width.value', value.value, int) if value.value < 0: raise ValueError('stroke width cannot be negative')
def stroke_width(value)
ValueRef : int, width of the stroke in pixels
5.167988
4.787665
1.079438
if value.value: _assert_is_type('stroke_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'stroke_opacity must be between 0 and 1')
def stroke_opacity(value)
ValueRef : number, opacity of the stroke (0 to 1)
3.712029
3.400649
1.091565
if value.value: _assert_is_type('size.value', value.value, int) if value.value < 0: raise ValueError('size cannot be negative')
def size(value)
ValueRef : number, area of the mark in pixels This is the total area of a symbol. For example, a value of 500 and a ``shape`` of ``'circle'`` would result in circles with an area of 500 square pixels. Only used if ``type`` is ``'symbol'``.
5.666907
6.045386
0.937394
if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_shapes: raise ValueError(value.value + ' is not a valid shape')
def shape(value)
ValueRef : string, type of symbol to use Possible values are ``'circle'`` (default), ``'square'``, ``'cross'``, ``'diamond'``, ``'triangle-up'``, and ``'triangle-down'``. Only used if ``type`` is ``'symbol'``.
6.191257
6.724831
0.920656
if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_methods: raise ValueError(value.value + ' is not a valid method')
def interpolate(value)
ValueRef : string, line interpolation method to use Possible values for ``area`` types are `'linear'`, ``'step-before'``, ``'step-after'``, ``'basis'``, ``'basis-open'``, ``'cardinal'``, ``'cardinal-open'``, ``'monotone'``. ``line`` types have all values for ``area`` as well as ``'basis-closed'``, ``'bundle'``, and ``'cardinal-closed'``. Only used if ``type`` is ``'area'`` or ``'line'``.
9.401546
9.168451
1.025424
if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_align: raise ValueError(value.value + ' is not a valid alignment')
def align(value)
ValueRef : string, horizontal alignment of mark Possible values are ``'left'``, ``'right'``, and ``'center'``. Only used if ``type`` is ``'image'`` or ``'text'``.
8.06291
8.081691
0.997676
if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_baseline: raise ValueError(value.value + ' is not a valid baseline')
def baseline(value)
ValueRef : string, vertical alignment of mark Possible values are ``'top'``, ``'middle'``, and ``'bottom'``. Only used if ``type`` is ``'image'`` or ``'text'``.
7.792835
7.802797
0.998723
valid_transforms = frozenset([ 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud' ]) if value not in valid_transforms: raise ValueError('Transform type must be' ' one of {0}'.format(str(valid_transforms)))
def type(value)
string: property name in which to store the computed transform value. The valid transform types are as follows: 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud'
7.034925
1.939279
3.627599
'''Data type check for automatic import''' if iter_idx: return Data.from_mult_iters(idx=iter_idx, **data) if pd: if isinstance(data, (pd.Series, pd.DataFrame)): return Data.from_pandas(data, grouped=grouped, columns=columns, key_on=key_on) if isinstance(data, (list, tuple, dict)): return Data.from_iter(data) else: raise ValueError('This data type is not supported by Vincent.')
def data_type(data, grouped=False, columns=None, key_on='idx', iter_idx=None)
Data type check for automatic import
4.62525
3.946024
1.172129
self.data['table'] = Data.keypairs( self.raw_data, columns=[self.data_key, column]) domain = [Data.serialize(self.raw_data[column].min()), Data.serialize(self.raw_data[column].quantile(0.95))] scale = Scale(name='color', type='quantize', domain=domain, range=brews[brew]) self.scales['color'] = scale
def rebind(self, column=None, brew='GnBu')
Bind a new column to the data map Parameters ---------- column: str, default None Pandas DataFrame column name brew: str, default None Color brewer abbreviation. See colors.py
5.925237
6.173779
0.959742
if len(value) != 2: raise ValueError('viewport must have 2 dimensions') for v in value: _assert_is_type('viewport dimension', v, int) if v < 0: raise ValueError('viewport dimensions cannot be negative')
def viewport(value)
2-element list of ints : Dimensions of the viewport The viewport is a bounding box containing the visualization. If the dimensions of the visualization are larger than the viewport, then the visualization will be scrollable. If undefined, then the full visualization is shown.
3.679985
4.034875
0.912044
if isinstance(value, dict): required_keys = ['top', 'left', 'right', 'bottom'] for key in required_keys: if key not in value: error = ('Padding must have keys "{0}".' .format('", "'.join(required_keys))) raise ValueError(error) _assert_is_type('padding: {0}'.format(key), value[key], int) if value[key] < 0: raise ValueError('Padding cannot be negative.') elif isinstance(value, int): if value < 0: raise ValueError('Padding cannot be negative.') else: if value not in ("auto", "strict"): raise ValueError('Padding can only be auto or strict.')
def padding(value)
int or dict : Padding around visualization The padding defines the distance between the edge of the visualization canvas to the visualization box. It does not count as part of the visualization width/height. Values cannot be negative. If a dict, padding must have all keys ``''top'``, ``'left'``, ``'right'``, and ``'bottom'`` with int values.
2.619602
2.507776
1.044592
for i, entry in enumerate(value): _assert_is_type('data[{0}]'.format(i), entry, Data)
def data(value)
list or KeyedList of ``Data`` : Data definitions This defines the data being visualized. See the :class:`Data` class for details.
8.582577
9.572338
0.896602
for i, entry in enumerate(value): _assert_is_type('scales[{0}]'.format(i), entry, Scale)
def scales(value)
list or KeyedList of ``Scale`` : Scale definitions Scales map the data from the domain of the data to some visualization space (such as an x-axis). See the :class:`Scale` class for details.
7.340902
8.663894
0.847298
for i, entry in enumerate(value): _assert_is_type('axes[{0}]'.format(i), entry, Axis)
def axes(value)
list or KeyedList of ``Axis`` : Axis definitions Axes define the locations of the data being mapped by the scales. See the :class:`Axis` class for details.
7.187729
8.182513
0.878426
for i, entry in enumerate(value): _assert_is_type('marks[{0}]'.format(i), entry, Mark)
def marks(value)
list or KeyedList of ``Mark`` : Mark definitions Marks are the visual objects (such as lines, bars, etc.) that represent the data in the visualization space. See the :class:`Mark` class for details.
7.105653
8.001483
0.888042
for i, entry in enumerate(value): _assert_is_type('legends[{0}]'.format(i), entry, Legend)
def legends(value)
list or KeyedList of ``Legends`` : Legend definitions Legends visualize scales, and take one or more scales as their input. They can be customized via a LegendProperty object.
7.386427
7.934309
0.930948
keys = self.axes.get_keys() if keys: for key in keys: if key == 'x': self.axes[key].title = x elif key == 'y': self.axes[key].title = y else: self.axes.extend([Axis(type='x', title=x), Axis(type='y', title=y)]) return self
def axis_titles(self, x=None, y=None)
Apply axis titles to the figure. This is a convenience method for manually modifying the "Axes" mark. Parameters ---------- x: string, default 'null' X-axis title y: string, default 'null' Y-axis title Example ------- >>>vis.axis_titles(y="Data 1", x="Data 2")
2.938781
3.798805
0.773607
if not getattr(axis, 'properties'): axis.properties = AxisProperties() for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: setattr(axis.properties, prop, PropertySet())
def _set_axis_properties(self, axis)
Set AxisProperties and PropertySets
4.816238
3.728718
1.291661
for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: prop_set = getattr(axis.properties, prop) if color and prop in ['title', 'labels']: prop_set.fill = ValueRef(value=color) elif color and prop in ['axis', 'major_ticks', 'minor_ticks', 'ticks']: prop_set.stroke = ValueRef(value=color)
def _set_all_axis_color(self, axis, color)
Set axis ticks, title, labels to given color
3.446602
3.277671
1.05154
if self.axes: axis = [a for a in self.axes if a.scale == axis][0] self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: axis.properties.title.font_size = ValueRef(value=title_size) if label_angle: axis.properties.labels.angle = ValueRef(value=label_angle) if label_align: axis.properties.labels.align = ValueRef(value=label_align) if title_offset: axis.properties.title.dy = ValueRef(value=title_offset) else: raise ValueError('This Visualization has no axes!')
def _axis_properties(self, axis, title_size, title_offset, label_angle, label_align, color)
Assign axis properties
2.655332
2.596656
1.022597
if self.axes: for axis in self.axes: self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: ref = ValueRef(value=title_size) axis.properties.title.font_size = ref else: raise ValueError('This Visualization has no axes!') return self
def common_axis_properties(self, color=None, title_size=None)
Set common axis properties such as color Parameters ---------- color: str, default None Hex color str, etc
4.884216
5.870546
0.831987
self._axis_properties('x', title_size, title_offset, label_angle, label_align, color) return self
def x_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None)
Change x-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color
2.551095
4.358789
0.585276
self._axis_properties('y', title_size, title_offset, label_angle, label_align, color) return self
def y_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None)
Change y-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color
2.531944
4.292426
0.589863
self.legends.append(Legend(title=title, fill=scale, offset=0, properties=LegendProperties())) if text_color: color_props = PropertySet(fill=ValueRef(value=text_color)) self.legends[0].properties.labels = color_props self.legends[0].properties.title = color_props return self
def legend(self, title=None, scale='color', text_color=None)
Convience method for adding a legend to the figure. Important: This defaults to the color scale that is generated with Line, Area, Stacked Line, etc charts. For bar charts, the scale ref is usually 'y'. Parameters ---------- title: string, default None Legend Title scale: string, default 'color' Scale reference for legend text_color: str, default None Title and label color
4.888274
5.362185
0.91162
if brew: self.scales['color'].range = brews[brew] elif range_: self.scales['color'].range = range_ return self
def colors(self, brew=None, range_=None)
Convenience method for adding color brewer scales to charts with a color scale, such as stacked or grouped bars. See the colors here: http://colorbrewer2.org/ Or here: http://bl.ocks.org/mbostock/5577023 This assumes that a 'color' scale exists on your chart. Parameters ---------- brew: string, default None Color brewer scheme (BuGn, YlOrRd, etc) range: list, default None List of colors. Ex: ['#ac4142', '#d28445', '#f4bf75']
4.286402
4.656455
0.920529
super(self.__class__, self).validate() required_attribs = ('data', 'scales', 'axes', 'marks') for elem in required_attribs: attr = getattr(self, elem) if attr: # Validate each element of the sets of data, etc for entry in attr: entry.validate() names = [a.name for a in attr] if len(names) != len(set(names)): raise ValidationError(elem + ' has duplicate names') elif require_all: raise ValidationError( elem + ' must be defined for valid visualization')
def validate(self, require_all=True, scale='colors')
Validate the visualization contents. Parameters ---------- require_all : boolean, default True If True (default), then all fields ``data``, ``scales``, ``axes``, and ``marks`` must be defined. The user is allowed to disable this if the intent is to define the elements client-side. If the contents of the visualization are not valid Vega, then a :class:`ValidationError` is raised.
4.64601
3.93832
1.179693
vis_id = str(uuid4()).replace("-", "") html = % (vis_id, self.to_json(pretty_print=False), vis_id) return html
def _repr_html_(self)
Build the HTML representation for IPython.
8.325017
7.41633
1.122525
from IPython.core.display import display, HTML display(HTML(self._repr_html_()))
def display(self)
Display the visualization inline in the IPython notebook. This is deprecated, use the following instead:: from IPython.display import display display(viz)
4.395799
3.73355
1.177378
super(self.__class__, self).validate(*args) if not self.name: raise ValidationError('name is required for Data')
def validate(self, *args)
Validate contents of class
5.462384
5.112624
1.068411
if isinstance(obj, str_types): return obj elif hasattr(obj, 'timetuple'): return int(time.mktime(obj.timetuple())) * 1000 elif hasattr(obj, 'item'): return obj.item() elif hasattr(obj, '__float__'): if isinstance(obj, int): return int(obj) else: return float(obj) elif hasattr(obj, '__int__'): return int(obj) else: raise LoadError('cannot serialize index of type ' + type(obj).__name__)
def serialize(obj)
Convert an object into a JSON-serializable value This is used by the ``from_pandas`` and ``from_numpy`` functions to convert data to JSON-serializable types when loading.
2.759774
2.818319
0.979227
# Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: # The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iteritems(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iteritems()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data
def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs)
Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor.
3.233727
3.127881
1.03384
if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data
def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs)
Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`.
3.328766
3.271502
1.017504
if not name: name = 'table' lengths = [len(v) for v in kwargs.values()] if len(set(lengths)) != 1: raise ValueError('Iterables must all be same length') if not idx: raise ValueError('Must provide iter name index reference') index = kwargs.pop(idx) vega_vals = [] for k, v in sorted(kwargs.items()): for idx, val in zip(index, v): value = {} value['idx'] = idx value['col'] = k value['val'] = val vega_vals.append(value) return cls(name, values=vega_vals)
def from_mult_iters(cls, name=None, idx=None, **kwargs)
Load values from multiple iters Parameters ---------- name : string, default None Name of the data set. If None (default), the name will be set to ``'table'``. idx: string, default None Iterable to use for the data index **kwargs : dict of iterables The ``values`` field will contain dictionaries with keys for each of the iterables provided. For example, d = Data.from_iters(idx='x', x=[0, 1, 5], y=(10, 20, 30)) would result in ``d`` having a ``values`` field with [{'idx': 0, 'col': 'y', 'val': 10}, {'idx': 1, 'col': 'y', 'val': 20} If the iterables are not the same length, then ValueError is raised.
3.644909
3.049782
1.195138
if not name: name = 'table' if isinstance(data, (list, tuple)): data = {x: y for x, y in enumerate(data)} values = [{'idx': k, 'col': 'data', 'val': v} for k, v in sorted(data.items())] return cls(name, values=values)
def from_iter(cls, data, name=None)
Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``.
3.996249
3.870817
1.032405
if not name: name = 'table' cls.raw_data = data # Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] # Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] # Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] # Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] # NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values)
def keypairs(cls, data, columns=None, use_index=False, name=None)
This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values
2.374697
2.351368
1.009921
'''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values
def _numpy_to_values(data)
Convert a NumPy array to values attribute
2.689877
2.631855
1.022046
# TODO: support writing to separate file return super(self.__class__, self).to_json(validate=validate, pretty_print=pretty_print)
def to_json(self, validate=False, pretty_print=True, data_path=None)
Convert data to JSON Parameters ---------- data_path : string If not None, then data is written to a separate file at the specified path. Note that the ``url`` attribute if the data must be set independently for the data to load correctly. Returns ------- string Valid Vega JSON.
6.386598
7.143742
0.894013
try: from IPython.core.display import display, HTML except ImportError: print("IPython Notebook could not be loaded.") # Thanks to @jakevdp: # https://github.com/jakevdp/mpld3/blob/master/mpld3/_display.py#L85 load_lib = lib_urls = [ "'//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min.js'", ("'//cdnjs.cloudflare.com/ajax/libs/d3-geo-projection/0.2.9/" "d3.geo.projection.min.js'"), "'//wrobstory.github.io/d3-cloud/d3.layout.cloud.js'", "'//wrobstory.github.io/vega/vega.v1.3.3.js'" ] get_lib = load_js = get_lib ipy_trigger = "window.dispatchEvent(vincent_event);" for elem in lib_urls[:-1]: load_js = load_js % (elem, get_lib) load_js = load_js % (lib_urls[-1], ipy_trigger) html = % (load_lib, load_js,) return display(HTML(html))
def initialize_notebook()
Initialize the IPython notebook display elements
4.002928
3.98075
1.005571
if not isinstance(value, value_type): if type(value_type) is tuple: types = ', '.join(t.__name__ for t in value_type) raise ValueError('{0} must be one of ({1})'.format(name, types)) else: raise ValueError('{0} must be {1}' .format(name, value_type.__name__))
def _assert_is_type(name, value, value_type)
Assert that a value must be a given type.
2.086491
1.978051
1.054821
def grammar_creator(validator, name): def setter(self, value): if isinstance(grammar_type, (type, tuple)): _assert_is_type(validator.__name__, value, grammar_type) validator(value) self.grammar[name] = value def getter(self): return self.grammar.get(name, None) def deleter(self): if name in self.grammar: del self.grammar[name] return property(getter, setter, deleter, validator.__doc__) if isinstance(grammar_type, (type, tuple)): # If grammar_type is a type, return another decorator. def grammar_dec(validator): # Make sure to use the grammar name if it's there. if grammar_name: return grammar_creator(validator, grammar_name) else: return grammar_creator(validator, validator.__name__) return grammar_dec elif isinstance(grammar_name, str_types): # If grammar_name is a string, use that name and return another # decorator. def grammar_dec(validator): return grammar_creator(validator, grammar_name) return grammar_dec else: # Otherwise we assume that grammar_type is actually the function being # decorated. return grammar_creator(grammar_type, grammar_type.__name__)
def grammar(grammar_type=None, grammar_name=None)
Decorator to define properties that map to the ``grammar`` dict. This dict is the canonical representation of the Vega grammar within Vincent. This decorator is intended for classes that map to some pre-defined JSON structure, such as axes, data, marks, scales, etc. It is assumed that this decorates functions with an instance of ``self.grammar``. Parameters ---------- grammar_type : type or tuple of types, default None If the argument to the decorated function is not of the given types, then a ValueError is raised. No type checking is done if the type is None (default). grammar_name : string, default None An optional name to map to the internal ``grammar`` dict. If None (default), then the key for the dict is the name of the function being decorated. If not None, then it will be the name specified here. This is useful if the expected JSON field name is a Python keyword or has an un-Pythonic name. This should decorate a "validator" function that should return no value but raise an exception if the provided value is not valid Vega grammar. If the validator throws no exception, then the value is assigned to the ``grammar`` dict. The validator function should take only one argument - the value to be validated - so that no ``self`` argument is included; the validator should not modify the class. If no arguments are given, then no type-checking is done the property will be mapped to a field with the name of the decorated function. The doc string for the property is taken from the validator functions's doc string.
2.640766
2.497151
1.057511
for key, val in self.grammar.items(): try: setattr(self, key, val) except ValueError as e: raise ValidationError('invalid contents: ' + e.args[0])
def validate(self)
Validate the contents of the object. This calls ``setattr`` for each of the class's grammar properties. It will catch ``ValueError``s raised by the grammar property's setters and re-raise them as :class:`ValidationError`.
5.586792
3.480639
1.605105
if validate: self.validate() if pretty_print: dumps_args = {'indent': 2, 'separators': (',', ': ')} else: dumps_args = {} def encoder(obj): if hasattr(obj, 'grammar'): return obj.grammar if html_out: template = Template( str(resource_string('vincent', 'vega_template.html'))) with open(html_path, 'w') as f: f.write(template.substitute(path=path)) if path: with open(path, 'w') as f: json.dump(self.grammar, f, default=encoder, sort_keys=True, **dumps_args) else: return json.dumps(self.grammar, default=encoder, sort_keys=True, **dumps_args)
def to_json(self, path=None, html_out=False, html_path='vega_template.html', validate=False, pretty_print=True)
Convert object to JSON Parameters ---------- path: string, default None Path to write JSON out. If there is no path provided, JSON will be returned as a string to the console. html_out: boolean, default False If True, vincent will output an simple HTML scaffold to visualize the vega json output. html_path: string, default 'vega_template.html' Path for the html file (if html_out=True) validate : boolean If True, call the object's `validate` method before serializing. Default is False. pretty_print : boolean If True (default), JSON is printed in more-readable form with indentation and spaces. Returns ------- string JSON serialization of the class's grammar properties.
2.344094
2.203559
1.063777
if text is None: return False mimetype = normalize_mimetype(text) return mimetype not in [DEFAULT, PLAIN, None]
def useful_mimetype(text)
Check to see if the given mime type is a MIME type which is useful in terms of how to treat this file.
6.507739
6.524581
0.997419
extension = decode_path(extension) if extension is None: return if extension.startswith('.'): extension = extension[1:] if '.' in extension: _, extension = os.path.splitext(extension) extension = slugify(extension, sep='') if extension is None: return if len(extension): return extension
def normalize_extension(extension)
Normalise a file name extension.
3.291712
3.215186
1.023801
kwargs.setdefault('headers', DEFAULT_HEADERS) try: res = requests.get(url, **kwargs) res.raise_for_status() except requests.RequestException as e: print(e) else: html = res.text tree = Selector(text=html) return tree
def fetch(url: str, **kwargs) -> Selector
Send HTTP request and parse it as a DOM tree. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions.
2.534437
2.823326
0.897678
kwargs.setdefault('headers', DEFAULT_HEADERS) async with aiohttp.ClientSession(**kwargs) as ses: async with ses.get(url, **kwargs) as res: html = await res.text() tree = Selector(text=html) return tree
async def async_fetch(url: str, **kwargs) -> Selector
Do the fetch in an async style. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions.
2.701533
3.326574
0.812107
kwargs.setdefault('headers', DEFAULT_HEADERS) html = requests.get(url, **kwargs).content if b'<base' not in html: repl = f'<head><base href="{url}">' html = html.replace(b'<head>', repl.encode('utf-8')) fd, fname = tempfile.mkstemp('.html') os.write(fd, html) os.close(fd) return webbrowser.open(f'file://{fname}')
def view(url: str, **kwargs) -> bool
View the page whether rendered properly. (ensure the <base> tag to make external links work) Args: url (str): The url of the site.
3.149184
2.84606
1.106507
hrefs = [link.to_text() for link in find_all_links(res.text)] if search: hrefs = [href for href in hrefs if search in href] if pattern: hrefs = [href for href in hrefs if re.findall(pattern, href)] return list(set(hrefs))
def links(res: requests.models.Response, search: str = None, pattern: str = None) -> list
Get the links of the page. Args: res (requests.models.Response): The response of the page. search (str, optional): Defaults to None. Search the links you want. pattern (str, optional): Defaults to None. Search the links use a regex pattern. Returns: list: All the links of the page.
2.506856
2.693911
0.930564
if sort_by: reverse = order == 'desc' total = sorted(total, key=itemgetter(sort_by), reverse=reverse) if no_duplicate: total = [key for key, _ in groupby(total)] data = json.dumps(total, ensure_ascii=False) Path(name).write_text(data, encoding='utf-8')
def save_as_json(total: list, name='data.json', sort_by: str = None, no_duplicate=False, order='asc')
Save what you crawled as a json file. Args: total (list): Total of data you crawled. name (str, optional): Defaults to 'data.json'. The name of the file. sort_by (str, optional): Defaults to None. Sort items by a specific key. no_duplicate (bool, optional): Defaults to False. If True, it will remove duplicated data. order (str, optional): Defaults to 'asc'. The opposite option is 'desc'.
2.191902
2.520806
0.869524
argv = docopt(__doc__, version=VERSION) if argv['genspider']: name = f"{argv['<name>']}.py" use_async = argv['--async'] template = 'data_async.tmpl' if use_async else 'data.tmpl' package_dir = Path(__file__).parent template_text = package_dir.joinpath('templates', template).read_text() Path(name).write_text(template_text) if argv['shell']: url = argv['<url>'] if argv['<url>'] else input( 'Plz specific a site to crawl\nurl: ') res = requests.get(url, headers=DEFAULT_HEADERS) if not res: exit('Failed to fetch the page.') tree = Selector(text=res.text) allvars = {**locals(), **globals()} try: from ptpython.repl import embed print(BANNER) embed(allvars) except ImportError: code.interact(local=allvars, banner=BANNER)
def cli()
Commandline for looter :d
4.370759
4.407304
0.991708
retval = tuple() for val in self.VALUES: retval += (getattr(self, val),) return retval
def get_value_tuple(self)
Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable.
6.593547
5.879219
1.1215
observer = str(observer) if observer not in color_constants.OBSERVERS: raise InvalidObserverError(self) self.observer = observer
def set_observer(self, observer)
Validates and sets the color's observer angle. .. note:: This only changes the observer angle value. It does no conversion of the color's coordinates. :param str observer: One of '2' or '10'.
6.7325
11.376806
0.591774
illuminant = illuminant.lower() if illuminant not in color_constants.ILLUMINANTS[self.observer]: raise InvalidIlluminantError(illuminant) self.illuminant = illuminant
def set_illuminant(self, illuminant)
Validates and sets the color's illuminant. .. note:: This only changes the illuminant. It does no conversion of the color's coordinates. For this, you'll want to refer to :py:meth:`XYZColor.apply_adaptation <colormath.color_objects.XYZColor.apply_adaptation>`. .. tip:: Call this after setting your observer. :param str illuminant: One of the various illuminants.
3.507856
3.961984
0.885379
try: if observer is None: observer = self.observer illums_observer = color_constants.ILLUMINANTS[observer] except KeyError: raise InvalidObserverError(self) try: if illuminant is None: illuminant = self.illuminant illum_xyz = illums_observer[illuminant] except (KeyError, AttributeError): raise InvalidIlluminantError(illuminant) return {'X': illum_xyz[0], 'Y': illum_xyz[1], 'Z': illum_xyz[2]}
def get_illuminant_xyz(self, observer=None, illuminant=None)
:param str observer: Get the XYZ values for another observer angle. Must be either '2' or '10'. :param str illuminant: Get the XYZ values for another illuminant. :returns: the color's illuminant's XYZ values.
2.654704
2.704164
0.98171
# This holds the obect's spectral data, and will be passed to # numpy.array() to create a numpy array (matrix) for the matrix math # that will be done during the conversion to XYZ. values = [] # Use the required value list to build this dynamically. Default to # 0.0, since that ultimately won't affect the outcome due to the math # involved. for val in self.VALUES: values.append(getattr(self, val, 0.0)) # Create and the actual numpy array/matrix from the spectral list. color_array = numpy.array([values]) return color_array
def get_numpy_array(self)
Dump this color into NumPy array.
11.971473
11.074844
1.080961
if density_standard is not None: return density.ansi_density(self, density_standard) else: return density.auto_density(self)
def calc_density(self, density_standard=None)
Calculates the density of the SpectralColor. By default, Status T density is used, and the correct density distribution (Red, Green, or Blue) is chosen by comparing the Red, Green, and Blue components of the spectral sample (the values being red in via "filters").
4.343236
4.671123
0.929806
logger.debug(" \- Original illuminant: %s", self.illuminant) logger.debug(" \- Target illuminant: %s", target_illuminant) # If the XYZ values were taken with a different reference white than the # native reference white of the target RGB space, a transformation matrix # must be applied. if self.illuminant != target_illuminant: logger.debug(" \* Applying transformation from %s to %s ", self.illuminant, target_illuminant) # Sets the adjusted XYZ values, and the new illuminant. apply_chromatic_adaptation_on_color( color=self, targ_illum=target_illuminant, adaptation=adaptation)
def apply_adaptation(self, target_illuminant, adaptation='bradford')
This applies an adaptation matrix to change the XYZ color's illuminant. You'll most likely only need this during RGB conversions.
4.358024
4.229686
1.030342
if not self.is_upscaled: return min(max(coord, 0.0), 1.0) else: return min(max(coord, 1), 255)
def _clamp_rgb_coordinate(self, coord)
Clamps an RGB coordinate, taking into account whether or not the color is upscaled or not. :param float coord: The coordinate value. :rtype: float :returns: The clamped value.
3.23777
2.681174
1.207594
# Scale up to 0-255 values. rgb_r = int(math.floor(0.5 + self.rgb_r * 255)) rgb_g = int(math.floor(0.5 + self.rgb_g * 255)) rgb_b = int(math.floor(0.5 + self.rgb_b * 255)) return rgb_r, rgb_g, rgb_b
def get_upscaled_value_tuple(self)
Scales an RGB color object from decimal 0.0-1.0 to int 0-255.
2.171046
1.908322
1.137673
rgb_r, rgb_g, rgb_b = self.get_upscaled_value_tuple() return '#%02x%02x%02x' % (rgb_r, rgb_g, rgb_b)
def get_rgb_hex(self)
Converts the RGB value to a hex value in the form of: #RRGGBB :rtype: str
2.948136
3.161768
0.932432
colorstring = hex_str.strip() if colorstring[0] == '#': colorstring = colorstring[1:] if len(colorstring) != 6: raise ValueError("input #%s is not in #RRGGBB format" % colorstring) r, g, b = colorstring[:2], colorstring[2:4], colorstring[4:] r, g, b = [int(n, 16) / 255.0 for n in (r, g, b)] return cls(r, g, b)
def new_from_rgb_hex(cls, hex_str)
Converts an RGB hex string like #RRGGBB and assigns the values to this sRGBColor object. :rtype: sRGBColor
1.843833
1.933924
0.953415
return numpy.sqrt( numpy.sum(numpy.power(lab_color_vector - lab_color_matrix, 2), axis=1))
def delta_e_cie1976(lab_color_vector, lab_color_matrix)
Calculates the Delta E (CIE1976) between `lab_color_vector` and all colors in `lab_color_matrix`.
2.597642
3.04161
0.854035
C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) S_L = 1 S_C = 1 + K_1 * C_1 S_H = 1 + K_2 * C_1 LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[K_L * S_L], [K_C * S_C], [K_H * S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
def delta_e_cie1994(lab_color_vector, lab_color_matrix, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015)
Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles
2.284748
2.320741
0.984491
L, a, b = lab_color_vector C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C H_1 = numpy.degrees(numpy.arctan2(b, a)) if H_1 < 0: H_1 += 360 F = numpy.sqrt(numpy.power(C_1, 4) / (numpy.power(C_1, 4) + 1900.0)) # noinspection PyChainedComparisons if 164 <= H_1 and H_1 <= 345: T = 0.56 + abs(0.2 * numpy.cos(numpy.radians(H_1 + 168))) else: T = 0.36 + abs(0.4 * numpy.cos(numpy.radians(H_1 + 35))) if L < 16: S_L = 0.511 else: S_L = (0.040975 * L) / (1 + 0.01765 * L) S_C = ((0.0638 * C_1) / (1 + 0.0131 * C_1)) + 0.638 S_H = S_C * (F * T + 1 - F) delta_C = C_1 - C_2 delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[pl * S_L], [pc * S_C], [S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
def delta_e_cmc(lab_color_vector, lab_color_matrix, pl=2, pc=1)
Calculates the Delta E (CIE1994) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1
2.415849
2.454437
0.984278
# Load the spec_XXXnm attributes into a Numpy array. sample = color.get_numpy_array() # Matrix multiplication intermediate = sample * density_standard # Sum the products. numerator = intermediate.sum() # This is the denominator in the density equation. sum_of_standard_wavelengths = density_standard.sum() # This is the top level of the density formula. return -1.0 * log10(numerator / sum_of_standard_wavelengths)
def ansi_density(color, density_standard)
Calculates density for the given SpectralColor using the spectral weighting function provided. For example, ANSI_STATUS_T_RED. These may be found in :py:mod:`colormath.density_standards`. :param SpectralColor color: The SpectralColor object to calculate density for. :param numpy.ndarray density_standard: NumPy array of filter of choice from :py:mod:`colormath.density_standards`. :rtype: float :returns: The density value for the given color and density standard.
8.809732
8.963363
0.98286
blue_density = ansi_density(color, ANSI_STATUS_T_BLUE) green_density = ansi_density(color, ANSI_STATUS_T_GREEN) red_density = ansi_density(color, ANSI_STATUS_T_RED) densities = [blue_density, green_density, red_density] min_density = min(densities) max_density = max(densities) density_range = max_density - min_density # See comments in density_standards.py for VISUAL_DENSITY_THRESH to # understand what this is doing. if density_range <= VISUAL_DENSITY_THRESH: return ansi_density(color, ISO_VISUAL) elif blue_density > green_density and blue_density > red_density: return blue_density elif green_density > blue_density and green_density > red_density: return green_density else: return red_density
def auto_density(color)
Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically.
2.772206
2.771969
1.000086
if not color.__class__.__name__ == 'LabColor': raise ValueError( "Delta E functions can only be used with two LabColor objects.") return numpy.array([color.lab_l, color.lab_a, color.lab_b])
def _get_lab_color1_vector(color)
Converts an LabColor into a NumPy vector. :param LabColor color: :rtype: numpy.ndarray
5.09676
5.284231
0.964523
color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1976(color1_vector, color2_matrix)[0] return numpy.asscalar(delta_e)
def delta_e_cie1976(color1, color2)
Calculates the Delta E (CIE1976) of two colors.
3.257775
3.218294
1.012268
color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1994( color1_vector, color2_matrix, K_L=K_L, K_C=K_C, K_H=K_H, K_1=K_1, K_2=K_2)[0] return numpy.asscalar(delta_e)
def delta_e_cie1994(color1, color2, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015)
Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles
2.383739
2.575901
0.9254
color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie2000( color1_vector, color2_matrix, Kl=Kl, Kc=Kc, Kh=Kh)[0] return numpy.asscalar(delta_e)
def delta_e_cie2000(color1, color2, Kl=1, Kc=1, Kh=1)
Calculates the Delta E (CIE2000) of two colors.
2.865243
2.93249
0.977068
color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cmc( color1_vector, color2_matrix, pl=pl, pc=pc)[0] return numpy.asscalar(delta_e)
def delta_e_cmc(color1, color2, pl=2, pc=1)
Calculates the Delta E (CMC) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1
3.141172
3.611605
0.869744
# Get the appropriate transformation matrix, [MsubA]. m_sharp = color_constants.ADAPTATION_MATRICES[adaptation] # In case the white-points are still input as strings # Get white-points for illuminant if isinstance(wp_src, str): orig_illum = wp_src.lower() wp_src = color_constants.ILLUMINANTS[observer][orig_illum] elif hasattr(wp_src, '__iter__'): wp_src = wp_src if isinstance(wp_dst, str): targ_illum = wp_dst.lower() wp_dst = color_constants.ILLUMINANTS[observer][targ_illum] elif hasattr(wp_dst, '__iter__'): wp_dst = wp_dst # Sharpened cone responses ~ rho gamma beta ~ sharpened r g b rgb_src = numpy.dot(m_sharp, wp_src) rgb_dst = numpy.dot(m_sharp, wp_dst) # Ratio of whitepoint sharpened responses m_rat = numpy.diag(rgb_dst / rgb_src) # Final transformation matrix m_xfm = numpy.dot(numpy.dot(pinv(m_sharp), m_rat), m_sharp) return m_xfm
def _get_adaptation_matrix(wp_src, wp_dst, observer, adaptation)
Calculate the correct transformation matrix based on origin and target illuminants. The observer angle must be the same between illuminants. See colormath.color_constants.ADAPTATION_MATRICES for a list of possible adaptations. Detailed conversion documentation is available at: http://brucelindbloom.com/Eqn_ChromAdapt.html
4.547472
4.22586
1.076106
# It's silly to have to do this, but some people may want to call this # function directly, so we'll protect them from messing up upper/lower case. adaptation = adaptation.lower() # Get white-points for illuminant if isinstance(orig_illum, str): orig_illum = orig_illum.lower() wp_src = color_constants.ILLUMINANTS[observer][orig_illum] elif hasattr(orig_illum, '__iter__'): wp_src = orig_illum if isinstance(targ_illum, str): targ_illum = targ_illum.lower() wp_dst = color_constants.ILLUMINANTS[observer][targ_illum] elif hasattr(targ_illum, '__iter__'): wp_dst = targ_illum logger.debug(" \* Applying adaptation matrix: %s", adaptation) # Retrieve the appropriate transformation matrix from the constants. transform_matrix = _get_adaptation_matrix(wp_src, wp_dst, observer, adaptation) # Stuff the XYZ values into a NumPy matrix for conversion. XYZ_matrix = numpy.array((val_x, val_y, val_z)) # Perform the adaptation via matrix multiplication. result_matrix = numpy.dot(transform_matrix, XYZ_matrix) # Return individual X, Y, and Z coordinates. return result_matrix[0], result_matrix[1], result_matrix[2]
def apply_chromatic_adaptation(val_x, val_y, val_z, orig_illum, targ_illum, observer='2', adaptation='bradford')
Applies a chromatic adaptation matrix to convert XYZ values between illuminants. It is important to recognize that color transformation results in color errors, determined by how far the original illuminant is from the target illuminant. For example, D65 to A could result in very high maximum deviance. An informative article with estimate average Delta E values for each illuminant conversion may be found at: http://brucelindbloom.com/ChromAdaptEval.html
3.370268
3.49672
0.963837
xyz_x = color.xyz_x xyz_y = color.xyz_y xyz_z = color.xyz_z orig_illum = color.illuminant targ_illum = targ_illum.lower() observer = color.observer adaptation = adaptation.lower() # Return individual X, Y, and Z coordinates. color.xyz_x, color.xyz_y, color.xyz_z = apply_chromatic_adaptation( xyz_x, xyz_y, xyz_z, orig_illum, targ_illum, observer=observer, adaptation=adaptation) color.set_illuminant(targ_illum) return color
def apply_chromatic_adaptation_on_color(color, targ_illum, adaptation='bradford')
Convenience function to apply an adaptation directly to a Color object.
2.686963
2.665042
1.008225
print("=== Simple Example: Lab->XYZ ===") # Instantiate an Lab color object with the given values. lab = LabColor(0.903, 16.296, -2.22) # Show a string representation. print(lab) # Convert to XYZ. xyz = convert_color(lab, XYZColor) print(xyz) print("=== End Example ===\n")
def example_lab_to_xyz()
This function shows a simple conversion of an Lab color to an XYZ color.
6.023636
5.40557
1.114339
print("=== Complex Example: LCHab->LCHuv ===") # Instantiate an LCHab color object with the given values. lchab = LCHabColor(0.903, 16.447, 352.252) # Show a string representation. print(lchab) # Convert to LCHuv. lchuv = convert_color(lchab, LCHuvColor) print(lchuv) print("=== End Example ===\n")
def example_lchab_to_lchuv()
This function shows very complex chain of conversions in action. LCHab to LCHuv involves four different calculations, making this the conversion requiring the most steps.
4.679805
4.370616
1.070743
print("=== RGB Example: Lab->RGB ===") # Instantiate an Lab color object with the given values. lab = LabColor(0.903, 16.296, -2.217) # Show a string representation. print(lab) # Convert to XYZ. rgb = convert_color(lab, sRGBColor) print(rgb) print("=== End Example ===\n")
def example_lab_to_rgb()
Conversions to RGB are a little more complex mathematically. There are also several kinds of RGB color spaces. When converting from a device-independent color space to RGB, sRGB is assumed unless otherwise specified with the target_rgb keyword arg.
7.060653
7.062833
0.999691
print("=== RGB Example: RGB->XYZ ===") # Instantiate an Lab color object with the given values. rgb = sRGBColor(120, 130, 140) # Show a string representation. print(rgb) # Convert RGB to XYZ using a D50 illuminant. xyz = convert_color(rgb, XYZColor, target_illuminant='D50') print(xyz) print("=== End Example ===\n")
def example_rgb_to_xyz()
The reverse is similar.
5.514726
5.35072
1.030651
print("=== Example: Spectral->XYZ ===") spc = SpectralColor( observer='2', illuminant='d50', spec_380nm=0.0600, spec_390nm=0.0600, spec_400nm=0.0641, spec_410nm=0.0654, spec_420nm=0.0645, spec_430nm=0.0605, spec_440nm=0.0562, spec_450nm=0.0543, spec_460nm=0.0537, spec_470nm=0.0541, spec_480nm=0.0559, spec_490nm=0.0603, spec_500nm=0.0651, spec_510nm=0.0680, spec_520nm=0.0705, spec_530nm=0.0736, spec_540nm=0.0772, spec_550nm=0.0809, spec_560nm=0.0870, spec_570nm=0.0990, spec_580nm=0.1128, spec_590nm=0.1251, spec_600nm=0.1360, spec_610nm=0.1439, spec_620nm=0.1511, spec_630nm=0.1590, spec_640nm=0.1688, spec_650nm=0.1828, spec_660nm=0.1996, spec_670nm=0.2187, spec_680nm=0.2397, spec_690nm=0.2618, spec_700nm=0.2852, spec_710nm=0.2500, spec_720nm=0.2400, spec_730nm=0.2300) xyz = convert_color(spc, XYZColor) print(xyz) print("=== End Example ===\n")
def example_spectral_to_xyz()
Instantiate an Lab color object with the given values. Note that the spectral range can run from 340nm to 830nm. Any omitted values assume a value of 0.0, which is more or less ignored. For the distribution below, we are providing an example reading from an X-Rite i1 Pro, which only measures between 380nm and 730nm.
1.824052
1.789331
1.019404
print("=== Simple Example: XYZ->IPT ===") # Instantiate an XYZ color object with the given values. xyz = XYZColor(0.5, 0.5, 0.5, illuminant='d65') # Show a string representation. print(xyz) # Convert to IPT. ipt = convert_color(xyz, IPTColor) print(ipt) print("=== End Example ===\n")
def example_lab_to_ipt()
This function shows a simple conversion of an XYZ color to an IPT color.
5.387578
4.232827
1.272809