code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
try:
if self._data_from_search:
agent = self._data_from_search.find(
'ul', {'class': 'links'}).text
return agent.split(':')[1].strip()
else:
return self._ad_page_content.find('a', {'id': 'smi-link-branded'}).text.strip()
except Exception as e:
if self._debug:
logging.error(
"Error getting agent. Error message: " + e.args[0])
return
|
def agent(self)
|
This method returns the agent name.
:return:
| 5.602186 | 5.424238 | 1.032806 |
try:
if self._data_from_search:
agent = self._data_from_search.find('ul', {'class': 'links'})
links = agent.find_all('a')
return links[1]['href']
else:
return self._ad_page_content.find('a', {'id': 'smi-link-branded'})['href']
except Exception as e:
if self._debug:
logging.error(
"Error getting agent_url. Error message: " + e.args[0])
return
|
def agent_url(self)
|
This method returns the agent's url.
:return:
| 4.507099 | 4.489753 | 1.003863 |
try:
number = self._ad_page_content.find(
'button', {'class': 'phone-number'})
return (base64.b64decode(number.attrs['data-p'])).decode('ascii')
except Exception as e:
if self._debug:
logging.error(
"Error getting contact_number. Error message: " + e.args[0])
return 'N/A'
|
def contact_number(self)
|
This method returns the contact phone number.
:return:
| 5.268614 | 5.183738 | 1.016374 |
try:
if self._data_from_search:
link = self._data_from_search.find('a', href=True)
return 'http://www.daft.ie' + link['href']
else:
return self._ad_page_content.find('link', {'rel': 'canonical'})['href']
except Exception as e:
if self._debug:
logging.error(
"Error getting daft_link. Error message: " + e.args[0])
return
|
def daft_link(self)
|
This method returns the url of the listing.
:return:
| 3.517113 | 3.340982 | 1.052718 |
try:
div = self._ad_page_content.find(
'div', {'class': 'description_extras'})
index = [i for i, s in enumerate(
div.contents) if 'Shortcode' in str(s)][0] + 1
return div.contents[index]['href']
except Exception as e:
if self._debug:
logging.error(
"Error getting shortcode. Error message: " + e.args[0])
return 'N/A'
|
def shortcode(self)
|
This method returns the shortcode url of the listing.
:return:
| 4.69468 | 4.474502 | 1.049207 |
try:
div = self._ad_page_content.find(
'div', {'class': 'description_extras'})
index = [i for i, s in enumerate(
div.contents) if 'Property Views' in str(s)][0] + 1
return int(''.join(list(filter(str.isdigit, div.contents[index]))))
except Exception as e:
if self._debug:
logging.error(
"Error getting views. Error message: " + e.args[0])
return 'N/A'
|
def views(self)
|
This method returns the "Property Views" from listing.
:return:
| 4.68138 | 4.264647 | 1.097718 |
try:
if self._data_from_search:
info = self._data_from_search.find(
'ul', {"class": "info"}).text
s = info.split('|')
return s[0].strip()
else:
return self._ad_page_content.find(
'div', {'id': 'smi-summary-items'}
).find('span', {'class': 'header_text'}).text
except Exception as e:
if self._debug:
logging.error(
"Error getting dwelling_type. Error message: " + e.args[0])
return
|
def dwelling_type(self)
|
This method returns the dwelling type.
:return:
| 5.216168 | 5.170949 | 1.008745 |
try:
if self._data_from_search:
info = self._data_from_search.find(
'div', {"class": "date_entered"}).text
s = info.split(':')
return s[-1].strip()
else:
div = self._ad_page_content.find(
'div', {'class': 'description_extras'})
index = [i for i, s in enumerate(
div.contents) if 'Entered/Renewed' in str(s)][0] + 1
return re.search("([0-9]{1,2}/[0-9]{1,2}/[0-9]{4})", str(div.contents[index]))[0]
except Exception as e:
if self._debug:
logging.error(
"Error getting posted_since. Error message: " + e.args[0])
return
|
def posted_since(self)
|
This method returns the date the listing was entered.
:return:
| 4.214539 | 3.964803 | 1.062988 |
try:
if self._data_from_search:
info = self._data_from_search.find(
'ul', {"class": "info"}).text
s = info.split('|')
nb = s[1].strip()
return int(nb.split()[0])
else:
div = self._ad_page_content.find(
'div', {'id': 'smi-summary-items'})
spans = div.find_all('span', {'class': 'header_text'})
for span in spans:
# print(span.text)
if 'bed' in span.text.lower():
return int(''.join([n for n in span.text if n.isdigit()]))
return
except Exception as e:
if self._debug:
logging.error(
"Error getting bedrooms. Error message: " + e.args[0])
return 'N/A'
|
def bedrooms(self)
|
This method gets the number of bedrooms.
:return:
| 4.066585 | 3.996431 | 1.017554 |
try:
infos = self._ad_page_content.find_all(
'div', {"class": "map_info_box"})
for info in infos:
if 'Distance to City Centre' in info.text:
distance_list = re.findall(
'Distance to City Centre: (.*) km', info.text)
return distance_list[0]
return None
except Exception as e:
if self._debug:
logging.error(e.args[0])
print(e)
return 'N/A'
|
def city_center_distance(self)
|
This method gets the distance to city center, in km.
:return:
| 4.133668 | 3.900542 | 1.059768 |
routes = {}
try:
big_div = self._ad_page_content.find(
'div', {"class": "half_area_box_right"})
uls = big_div.find("ul")
if uls is None:
return None
for li in uls.find_all('li'):
route_li = li.text.split(':')
routes[route_li[0]] = [x.strip()
for x in route_li[1].split(',')]
return routes
except Exception as e:
if self._debug:
logging.error(e.args[0])
return 'N/A'
|
def transport_routes(self)
|
This method gets a dict of routes listed in Daft.
:return:
| 4.164271 | 3.969705 | 1.049013 |
try:
scripts = self._ad_page_content.find_all('script')
for script in scripts:
if 'longitude' in script.text:
find_list = re.findall(
r'"longitude":"([\-]?[0-9.]*[0-9]+)"', script.text)
if len(find_list) >= 1:
return find_list[0]
return None
except Exception as e:
if self._debug:
logging.error(
"Error getting longitude. Error message: " + e.args[0])
return None
|
def longitude(self)
|
This method gets a dict of routes listed in Daft.
:return:
| 3.629207 | 3.578692 | 1.014116 |
try:
alt_text = self._ad_page_content.find(
'span', {'class': 'ber-hover'}
).find('img')['alt']
if ('exempt' in alt_text):
return 'exempt'
else:
alt_arr = alt_text.split()
if 'ber' in alt_arr[0].lower():
return alt_arr[1].lower()
else:
return None
except Exception as e:
if self._debug:
logging.error(
"Error getting the Ber Code. Error message: " + e.args[0])
return None
|
def ber_code(self)
|
This method gets ber code listed in Daft.
:return:
| 4.512335 | 4.449023 | 1.01423 |
req = Request(debug=self._debug)
ad_search_type = self.search_type
agent_id = self.agent_id
ad_id = self.id
response = req.post('https://www.daft.ie/ajax_endpoint.php?', params={
'action': 'daft_contact_advertiser',
'from': name,
'email': email,
'message': message,
'contact_number': contact_number,
'type': ad_search_type,
'agent_id': agent_id,
'id': ad_id
})
if self._debug:
logging.info("Status code: %d" % response.status_code)
logging.info("Response: %s" % response.content)
if response.status_code != 200:
logging.error("Status code: %d" % response.status_code)
logging.error("Response: %s" % response.content)
return response.status_code == 200
|
def contact_advertiser(self, name, email, contact_number, message)
|
This method allows you to contact the advertiser of a listing.
:param name: Your name
:param email: Your email address.
:param contact_number: Your contact number.
:param message: Your message.
:return:
| 2.661849 | 2.726186 | 0.9764 |
return {
'search_type': self.search_type,
'agent_id': self.agent_id,
'id': self.id,
'price': self.price,
'price_change': self.price_change,
'viewings': self.upcoming_viewings,
'facilities': self.facilities,
'overviews': self.overviews,
'formalised_address': self.formalised_address,
'address_line_1': self.address_line_1,
'county': self.county,
'listing_image': self.images,
'listing_hires_image': self.hires_images,
'agent': self.agent,
'agent_url': self.agent_url,
'contact_number': self.contact_number,
'daft_link': self.daft_link,
'shortcode': self.shortcode,
'date_insert_update': self.date_insert_update,
'views': self.views,
'description': self.description,
'dwelling_type': self.dwelling_type,
'posted_since': self.posted_since,
'num_bedrooms': self.bedrooms,
'num_bathrooms': self.bathrooms,
'city_center_distance': self.city_center_distance,
'transport_routes': self.transport_routes,
'latitude': self.latitude,
'longitude': self.longitude,
'ber_code': self.ber_code,
'commercial_area_size': self.commercial_area_size
}
|
def as_dict(self)
|
Return a Listing object as Dictionary
:return: dict
| 2.961597 | 2.913855 | 1.016384 |
"Fetch the variables and functions"
#print("Here is the config:", config)
# fetch variables from YAML file:
self._variables = config.get(YAML_SUBSET)
# add variables and functions from the module:
module_reader.load_variables(self._variables, config)
print("Variables:", self.variables)
|
def on_config(self, config)
|
Fetch the variables and functions
| 13.235082 | 9.758271 | 1.356294 |
"Provide a hook for defining functions from an external module"
# the site_navigation argument has been made optional
# (deleted in post 1.0 mkdocs, but maintained here
# for backward compatibility)
if not self.variables:
return markdown
else:
# Create templae and get the variables
md_template = Template(markdown)
# Execute the jinja2 template and return
return md_template.render(**self.variables)
|
def on_page_markdown(self, markdown, page, config,
site_navigation=None, **kwargs)
|
Provide a hook for defining functions from an external module
| 13.862021 | 9.558552 | 1.450222 |
def macro(v, name=''):
name = name or v.__name__
variables[name] = v
return v
# determine the package name, from the filename:
python_module = config.get('python_module') or DEFAULT_MODULE_NAME
# get the directory of the yaml file:
config_file = config['config_file_path']
yaml_dir = os.path.dirname(config_file)
# print("Found yaml directory: %s" % yaml_dir)
# that's the directory of the package:
repackage.add(yaml_dir)
try:
module = importlib.import_module(python_module)
print("Found module '%s'" % python_module)
# execute the hook, passing the template decorator function
module.declare_variables(variables, macro)
except ModuleNotFoundError:
print("No module found.")
|
def load_variables(variables, config)
|
Add the template functions, via the python module
located in the same directory as the Yaml config file.
The python module must contain the following hook:
declare_variables(variables, macro):
variables['a'] = 5
@macro
def bar(x):
....
@macro
def baz(x):
....
| 6.099211 | 4.968483 | 1.22758 |
if version_info < (3, 0) or validate:
if validate and len(s) % 4 != 0:
raise BinAsciiError('Incorrect padding')
s = _get_bytes(s)
if altchars is not None:
altchars = _get_bytes(altchars)
assert len(altchars) == 2, repr(altchars)
if version_info < (3, 0):
map = maketrans(altchars, b'+/')
else:
map = bytes.maketrans(altchars, b'+/')
s = s.translate(map)
try:
result = builtin_decode(s, altchars)
except TypeError as e:
raise BinAsciiError(str(e))
if validate:
# check length of result vs length of input
padding = 0
if len(s) > 1 and s[-2] in (b'=', 61):
padding = padding + 1
if len(s) > 0 and s[-1] in (b'=', 61):
padding = padding + 1
if 3 * (len(s) / 4) - padding != len(result):
raise BinAsciiError('Non-base64 digit found')
return result
return builtin_decode(s, altchars)
|
def b64decode(s, altchars=None, validate=False)
|
Decode bytes encoded with the standard Base64 alphabet.
Argument ``s`` is a :term:`bytes-like object` or ASCII string to
decode.
Optional ``altchars`` must be a :term:`bytes-like object` or ASCII
string of length 2 which specifies the alternative alphabet used instead
of the '+' and '/' characters.
If ``validate`` is ``False`` (the default), characters that are neither in
the normal base-64 alphabet nor the alternative alphabet are discarded
prior to the padding check.
If ``validate`` is ``True``, these non-alphabet characters in the input
result in a :exc:`binascii.Error`.
The result is returned as a :class:`bytes` object.
A :exc:`binascii.Error` is raised if ``s`` is incorrectly padded.
| 2.877239 | 2.817064 | 1.021361 |
if altchars is not None:
altchars = _get_bytes(altchars)
assert len(altchars) == 2, repr(altchars)
if version_info < (3, 0):
if isinstance(s, text_type):
raise TypeError('a bytes-like object is required, not \''
+ type(s).__name__ + '\'')
return builtin_encode(s, altchars)
|
def b64encode(s, altchars=None)
|
Encode bytes using the standard Base64 alphabet.
Argument ``s`` is a :term:`bytes-like object` to encode.
Optional ``altchars`` must be a byte string of length 2 which specifies
an alternative alphabet for the '+' and '/' characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.
The result is returned as a :class:`bytes` object.
| 3.482126 | 3.505211 | 0.993414 |
for ext in ['*.so', '*.pyd']:
for file in glob.glob('./pybase64/' + ext):
log.info("removing '%s'", file)
if self.dry_run:
continue
os.remove(file)
|
def run(self)
|
Run command.
| 5.814494 | 5.799055 | 1.002662 |
try:
song_name = os.path.splitext(song_name)[0]
except IndexError:
pass
song_name = song_name.partition('ft')[0]
# Replace characters to filter with spaces
song_name = ''.join(
map(lambda c: " " if c in chars_filter else c, song_name))
# Remove crap words
song_name = re.sub('|'.join(re.escape(key) for key in words_filter),
"", song_name, flags=re.IGNORECASE)
# Remove duplicate spaces
song_name = re.sub(' +', ' ', song_name)
return song_name.strip()
|
def improve_name(song_name)
|
Improves file name by removing words such as HD, Official,etc
eg : Hey Jude (Official HD) lyrics -> Hey Jude
This helps in better searching of metadata since a spotify search of
'Hey Jude (Official HD) lyrics' fetches 0 results
| 3.265969 | 3.275213 | 0.997178 |
YOUTUBECLASS = 'spf-prefetch'
html = requests.get("https://www.youtube.com/results",
params={'search_query': song_input})
soup = BeautifulSoup(html.text, 'html.parser')
soup_section = soup.findAll('a', {'rel': YOUTUBECLASS})
# Use generator over list, since storage isn't important
song_urls = ('https://www.youtube.com' + i.get('href')
for i in soup_section)
song_titles = (i.get('title') for i in soup_section)
youtube_list = list(zip(song_urls, song_titles))
del song_urls
del song_titles
return youtube_list
|
def get_song_urls(song_input)
|
Gather all urls, titles for a search query
from youtube
| 3.825119 | 3.609012 | 1.05988 |
outtmpl = song_title + '.%(ext)s'
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': outtmpl,
'postprocessors': [
{'key': 'FFmpegExtractAudio','preferredcodec': 'mp3',
'preferredquality': '192',
},
{'key': 'FFmpegMetadata'},
],
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(song_url, download=True)
|
def download_song(song_url, song_title)
|
Download a song using youtube url and song title
| 1.710229 | 1.722234 | 0.993029 |
song_name = improve_name(file_name) # Remove useless words from title
client_credentials_manager = SpotifyClientCredentials(client_id, client_secret)
spotify = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
results = spotify.search(song_name, limit=1)
results = results['tracks']['items'][0] # Find top result
album = results['album']['name'] # Parse json dictionary
artist = results['album']['artists'][0]['name']
song_title = results['name']
album_art = results['album']['images'][0]['url']
return artist, album, song_title, album_art
|
def get_metadata(file_name, client_id, client_secret)
|
Tries finding metadata through Spotify
| 2.882999 | 2.711549 | 1.06323 |
img = requests.get(album_art, stream=True) # Gets album art from url
img = img.raw
audio = EasyMP3(file_name, ID3=ID3)
try:
audio.add_tags()
except _util.error:
pass
audio.tags.add(
APIC(
encoding=3, # UTF-8
mime='image/png',
type=3, # 3 is for album art
desc='Cover',
data=img.read() # Reads and adds album art
)
)
audio.save()
return album_art
|
def add_album_art(file_name, album_art)
|
Add album_art in .mp3's tags
| 3.007632 | 2.824157 | 1.064966 |
tags = EasyMP3(file_name)
if title:
tags["title"] = title
if artist:
tags["artist"] = artist
if album:
tags["album"] = album
tags.save()
return file_name
|
def add_metadata(file_name, title, artist, album)
|
As the method name suggests
| 2.982908 | 3.35984 | 0.887812 |
for file_path in files:
tags = EasyMP3(file_path)
tags.delete()
tags.save()
|
def revert_metadata(files)
|
Removes all tags from a mp3 file
| 7.314019 | 4.289663 | 1.705033 |
qset = self.filter(user=user)
if not qset:
return None
if qset.count() > 1:
raise Exception('This app does not currently support multiple vault ids')
return qset.get()
|
def get_user_vault_instance_or_none(self, user)
|
Returns a vault_id string or None
| 4.773189 | 4.470996 | 1.06759 |
assert self.is_in_vault(user)
if vault_id:
user_vault = self.get(user=user, vault_id=vault_id)
else:
user_vault = self.get(user=user)
|
def charge(self, user, vault_id=None)
|
If vault_id is not passed this will assume that there is only one instane of user and vault_id in the db.
| 2.806076 | 2.619694 | 1.071146 |
try:
result = Transaction.sale(
{
'amount': amount.quantize(Decimal('.01')),
'customer_id': self.vault_id,
"options": {
"submit_for_settlement": True
}
}
)
if result.is_success:
# create a payment log
payment_log = PaymentLog.objects.create(user=self.user, amount=amount, transaction_id=result.transaction.id)
return payment_log
else:
raise Exception('Logical error in CC transaction')
except Exception:
logging.error('Failed to charge $%s to user: %s with vault_id: %s' % (amount, self.user, self.vault_id))
return None
|
def charge(self, amount)
|
Charges the users credit card, with he passed $amount, if they are in the vault. Returns the payment_log instance
or None (if charge fails etc.)
| 3.478983 | 2.914896 | 1.193519 |
assert self.is_valid()
cc_details_map = { # cc details
'number': self.cleaned_data['cc_number'],
'cardholder_name': self.cleaned_data['name'],
'expiration_date': '%s/%s' %\
(self.cleaned_data['expiration_month'], self.cleaned_data['expiration_year']),
'cvv': self.cleaned_data['cvv'],
'billing_address': {
'postal_code': self.cleaned_data['zip_code'],
}
}
if self.__user_vault:
try:
# get customer info, its credit card and then update that credit card
response = Customer.find(self.__user_vault.vault_id)
cc_info = response.credit_cards[0]
return CreditCard.update(cc_info.token, params=cc_details_map)
except Exception, e:
logging.error('Was not able to get customer from vault. %s' % e)
self.__user_vault.delete() # delete the stale instance from our db
# in case the above updating fails or user was never in the vault
new_customer_vault_id = '%s%s' % (prepend_vault_id, md5_hash()[:24])
respone = Customer.create({ # creating a customer, but we really just want to store their CC details
'id': new_customer_vault_id, # vault id, uniquely identifies customer. We're not caring about tokens (used for storing multiple CC's per user)
'credit_card': cc_details_map
})
if respone.is_success: # save a new UserVault instance
UserVault.objects.create(user=self.__user, vault_id=new_customer_vault_id)
return respone
|
def save(self, prepend_vault_id='')
|
Adds or updates a users CC to the vault.
@prepend_vault_id: any string to prepend all vault id's with in case the same braintree account is used by
multiple projects/apps.
| 4.960135 | 4.626248 | 1.072172 |
d = {}
if request.method == 'POST':
# Credit Card is being changed/updated by the user
form = UserCCDetailsForm(request.user, True, request.POST)
if form.is_valid():
response = form.save()
if response.is_success:
messages.add_message(request, messages.SUCCESS, 'Your credit card information has been securely saved.')
return JsonResponse()
else:
return JsonResponse(success=False, errors=[BAD_CC_ERROR_MSG])
return JsonResponse(success=False, data={'form': form_errors_serialize(form)})
else:
if UserVault.objects.is_in_vault(request.user):
try:
response = Customer.find(UserVault.objects.get_user_vault_instance_or_none(request.user).vault_id)
d['current_cc_info'] = response.credit_cards[0]
except Exception, e:
logging.error('Unable to get vault information for user from braintree. %s' % e)
d['cc_form'] = UserCCDetailsForm(request.user)
return render(request, template, d)
|
def payments_billing(request, template='django_braintree/payments_billing.html')
|
Renders both the past payments that have occurred on the users credit card, but also their CC information on file
(if any)
| 4.022186 | 3.900055 | 1.031315 |
path = '{0}/{1}/{2}'.format(self.collection.name, self.id, 'snooze')
data = {"duration": duration}
extra_headers = {"From": requester}
return self.pagerduty.request('POST', path, data=_json_dumper(data), extra_headers=extra_headers)
|
def snooze(self, requester, duration)
|
Snooze incident.
:param requester: The email address of the individual requesting snooze.
| 4.38978 | 4.889166 | 0.897858 |
path = '{0}'.format(self.collection.name)
assignments = []
if not user_ids:
raise Error('Must pass at least one user id')
for user_id in user_ids:
ref = {
"assignee": {
"id": user_id,
"type": "user_reference"
}
}
assignments.append(ref)
data = {
"incidents": [
{
"id": self.id,
"type": "incident_reference",
"assignments": assignments
}
]
}
extra_headers = {"From": requester}
return self.pagerduty.request('PUT', path, data=_json_dumper(data), extra_headers=extra_headers)
|
def reassign(self, user_ids, requester)
|
Reassign this incident to a user or list of users
:param user_ids: A non-empty list of user ids
:param requester: The email address of individual requesting reassign
| 3.359226 | 3.426088 | 0.980484 |
return self.create_event(description, "resolve",
details, incident_key)
|
def resolve_incident(self, incident_key,
description=None, details=None)
|
Causes the referenced incident to enter resolved state.
Send a resolve event when the problem that caused the initial
trigger has been fixed.
| 11.142553 | 13.119367 | 0.849321 |
'''Recurse through dictionary and replace any keys "self" with
"self_"'''
if type(response) is list:
for elem in response:
clean_response(elem)
elif type(response) is dict:
for key, val in response.items():
if key == 'self':
val = response.pop('self')
response['self_'] = val
clean_response(val)
else:
clean_response(response[key])
return response
|
def clean_response(response)
|
Recurse through dictionary and replace any keys "self" with
"self_"
| 3.427783 | 2.137256 | 1.603824 |
if not string:
return ""
new_string = [string[0].lower()]
for char in string[1:]:
if char.isupper():
new_string.append("_")
new_string.append(char.lower())
return "".join(new_string)
|
def _lower(string)
|
Custom lower string function.
Examples:
FooBar -> foo_bar
| 2.08638 | 2.154066 | 0.968578 |
if not user_ids:
raise Error('Must pass at least one user id')
self._do_action('reassign', requester_id=requester_id, assigned_to_user=','.join(user_ids))
|
def reassign(self, user_ids, requester_id)
|
Reassign this incident to a user or list of users
:param user_ids: A non-empty list of user ids
| 4.934003 | 5.579332 | 0.884336 |
return self.create_event(service_key, description, "acknowledge",
details, incident_key)
|
def acknowledge_incident(self, service_key, incident_key,
description=None, details=None)
|
Causes the referenced incident to enter the acknowledged state.
Send an acknowledge event when someone is presently working on the
incident.
| 6.27924 | 8.349441 | 0.752055 |
return self.create_event(service_key, description, "trigger",
details, incident_key,
client=client, client_url=client_url, contexts=contexts)
|
def trigger_incident(self, service_key, description,
incident_key=None, details=None,
client=None, client_url=None, contexts=None)
|
Report a new or ongoing problem. When PagerDuty receives a trigger,
it will either open a new incident, or add a new log entry to an
existing incident.
| 3.064194 | 4.10394 | 0.746647 |
if isinstance(dataset, numpy.ndarray) and not len(dataset.shape) == 4:
check_dataset_shape(dataset)
check_dataset_range(dataset)
else: # must be a list of arrays or a 4D NumPy array
for i, d in enumerate(dataset):
if not isinstance(d, numpy.ndarray):
raise ValueError(
'Requires a NumPy array (rgb x rows x cols) '
'with integer values in the range [0, 255].'
)
try:
check_dataset_shape(d)
check_dataset_range(d)
except ValueError as err:
raise ValueError(
'{}\nAt position {} in the list of arrays.'
.format(err, i)
)
|
def check_dataset(dataset)
|
Confirm shape (3 colors x rows x cols) and values [0 to 255] are OK.
| 3.364534 | 3.085645 | 1.090383 |
if isinstance(dataset, numpy.ndarray):
if len(dataset.shape) == 3: # NumPy 3D
if dataset.shape[-1] == 3:
return dataset.transpose((2, 0, 1))
elif len(dataset.shape) == 4: # NumPy 4D
if dataset.shape[-1] == 3:
return dataset.transpose((0, 3, 1, 2))
# Otherwise couldn't fix it.
return dataset
# List of Numpy 3D arrays.
for i, d in enumerate(dataset):
if not isinstance(d, numpy.ndarray):
return dataset
if not (len(d.shape) == 3 and d.shape[-1] == 3):
return dataset
dataset[i] = d.transpose()
return dataset
|
def try_fix_dataset(dataset)
|
Transpose the image data if it's in PIL format.
| 2.213011 | 2.079236 | 1.064339 |
dim, nrow, ncol = dataset.shape
uint8_dataset = dataset.astype('uint8')
if not (uint8_dataset == dataset).all():
message = (
"\nYour image was cast to a `uint8` (`<img>.astype(uint8)`), "
"but some information was lost.\nPlease check your gif and "
"convert to uint8 beforehand if the gif looks wrong."
)
warnings.warn(message)
image = [[
struct.pack(
'BBB',
uint8_dataset[0, i, j],
uint8_dataset[1, i, j],
uint8_dataset[2, i, j]
)
for j in range(ncol)]
for i in range(nrow)]
return image
|
def get_image(dataset)
|
Convert the NumPy array to two nested lists with r,g,b tuples.
| 4.482162 | 4.283247 | 1.04644 |
nbits = max(math.ceil(math.log(num_colors, 2)), 2)
return '{:03b}'.format(int(nbits - 1))
|
def get_color_table_size(num_colors)
|
Total values in the color table is 2**(1 + int(result, base=2)).
The result is a three-bit value (represented as a string with
ones or zeros) that will become part of a packed byte encoding
various details about the color table, used in the Logical
Screen Descriptor block.
| 3.889806 | 4.51002 | 0.862481 |
colors = Counter(pixel for row in image for pixel in row)
if len(colors) > 256:
msg = (
"The maximum number of distinct colors in a GIF is 256 but "
"this image has {} colors and can't be encoded properly."
)
raise RuntimeError(msg.format(len(colors)))
return colors
|
def get_colors(image)
|
Return a Counter containing each color and how often it appears.
| 4.909129 | 4.272678 | 1.148958 |
global_color_table = b''.join(c[0] for c in colors.most_common())
full_table_size = 2**(1+int(get_color_table_size(len(colors)), 2))
repeats = 3 * (full_table_size - len(colors))
zeros = struct.pack('<{}x'.format(repeats))
return global_color_table + zeros
|
def _get_global_color_table(colors)
|
Return a color table sorted in descending order of count.
| 5.546288 | 5.265185 | 1.053389 |
lzw_code_size, coded_bits = _lzw_encode(image, colors)
coded_bytes = ''.join(
'{{:0{}b}}'.format(nbits).format(val) for val, nbits in coded_bits)
coded_bytes = '0' * ((8 - len(coded_bytes)) % 8) + coded_bytes
coded_data = list(
reversed([
int(coded_bytes[8*i:8*(i+1)], 2)
for i in range(len(coded_bytes) // 8)
])
)
output = [struct.pack('<B', lzw_code_size)]
# Must output the data in blocks of length 255
block_length = min(255, len(coded_data))
while block_length > 0:
block = struct.pack(
'<{}B'.format(block_length + 1),
block_length,
*coded_data[:block_length]
)
output.append(block)
coded_data = coded_data[block_length:]
block_length = min(255, len(coded_data))
return b''.join(output)
|
def _get_image_data(image, colors)
|
Performs the LZW compression as described by Matthew Flickinger.
This isn't fast, but it works.
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_data.asp
| 2.623998 | 2.575447 | 1.018851 |
try:
check_dataset(dataset)
except ValueError as e:
dataset = try_fix_dataset(dataset)
check_dataset(dataset)
delay_time = 100 // int(fps)
def encode(d):
four_d = isinstance(dataset, numpy.ndarray) and len(dataset.shape) == 4
if four_d or not isinstance(dataset, numpy.ndarray):
return _make_animated_gif(d, delay_time=delay_time)
else:
return _make_gif(d)
with open(filename, 'wb') as outfile:
outfile.write(HEADER)
for block in encode(dataset):
outfile.write(block)
outfile.write(TRAILER)
|
def write_gif(dataset, filename, fps=10)
|
Write a NumPy array to GIF 89a format.
Or write a list of NumPy arrays to an animation (GIF 89a format).
- Positional arguments::
:param dataset: A NumPy arrayor list of arrays with shape
rgb x rows x cols and integer values in [0, 255].
:param filename: The output file that will contain the GIF image.
:param fps: The (integer) frames/second of the animation (default 10).
:type dataset: a NumPy array or list of NumPy arrays.
:return: None
- Example: a minimal array, with one red pixel, would look like this::
import numpy as np
one_red_pixel = np.array([[[255]], [[0]], [[0]]])
write_gif(one_red_pixel, 'red_pixel.gif')
..raises:: ValueError
| 3.852461 | 4.031632 | 0.955559 |
logging.basicConfig(level=logging.DEBUG)
# create the application and the main window
app = QtWidgets.QApplication(sys.argv)
window = QtWidgets.QMainWindow()
# setup ui
ui = example_ui.Ui_MainWindow()
ui.setupUi(window)
ui.bt_delay_popup.addActions([
ui.actionAction,
ui.actionAction_C
])
ui.bt_instant_popup.addActions([
ui.actionAction,
ui.actionAction_C
])
ui.bt_menu_button_popup.addActions([
ui.actionAction,
ui.actionAction_C
])
window.setWindowTitle('QDarkGrayStyle example')
# tabify dock widgets to show bug #6
window.tabifyDockWidget(ui.dockWidget1, ui.dockWidget2)
# setup stylesheet
app.setStyleSheet(qdarkgraystyle.load_stylesheet())
# auto quit after 2s when testing on travis-ci
if '--travis' in sys.argv:
QtCore.QTimer.singleShot(2000, app.exit)
# run
window.show()
app.exec_()
|
def main()
|
Application entry point
| 3.729223 | 3.61806 | 1.030725 |
# Smart import of the rc file
f = QtCore.QFile(':qdarkgraystyle/style.qss')
if not f.exists():
_logger().error('Unable to load stylesheet, file not found in '
'resources')
return ''
else:
f.open(QtCore.QFile.ReadOnly | QtCore.QFile.Text)
ts = QtCore.QTextStream(f)
stylesheet = ts.readAll()
if platform.system().lower() == 'darwin': # see issue #12 on github
mac_fix = '''
QDockWidget::title
{
background-color: #31363b;
text-align: center;
height: 12px;
}
'''
stylesheet += mac_fix
return stylesheet
|
def load_stylesheet()
|
Loads the stylesheet for use in a pyqt5 application.
:return the stylesheet string
| 4.442508 | 4.30756 | 1.031328 |
# If input is not flow, then create from iamge sequence
try:
assert image_sequence_or_flow.ndim == 1
flow_org = image_sequence_or_flow
except AssertionError:
flow_org = tracking.optical_flow_magnitude(image_sequence_or_flow)
# Gyro from gyro data
gyro_mag = np.sum(gyro_data**2, axis=0)
flow_timestamps = image_timestamps[:-2]
# Resample to match highest
rate = lambda ts: len(ts) / (ts[-1] - ts[0])
freq_gyro = rate(gyro_timestamps)
freq_image = rate(flow_timestamps)
if freq_gyro > freq_image:
rel_rate = freq_gyro / freq_image
flow_mag = znccpyr.upsample(flow_org, rel_rate)
else:
flow_mag = flow_org
rel_rate = freq_image / freq_gyro
gyro_mag = znccpyr.upsample(gyro_mag, rel_rate)
ishift = znccpyr.find_shift_pyr(flow_mag, gyro_mag, levels)
if freq_gyro > freq_image:
flow_shift = int(-ishift / rel_rate)
else:
flow_shift = int(-ishift)
time_offset = flow_timestamps[flow_shift]
if full_output:
return time_offset, flow_org # Return the orginal flow, not the upsampled version
else:
return time_offset
|
def sync_camera_gyro(image_sequence_or_flow, image_timestamps, gyro_data, gyro_timestamps, levels=6, full_output=False)
|
Get time offset that aligns image timestamps with gyro timestamps.
Given an image sequence, and gyroscope data, with their respective timestamps,
calculate the offset that aligns the image data with the gyro data.
The timestamps must only differ by an offset, not a scale factor.
This function finds an approximation of the offset *d* that makes this transformation
t_gyro = t_camera + d
i.e. your new image timestamps should be
image_timestamps_aligned = image_timestamps + d
The offset is calculated using zero-mean cross correlation of the gyroscope data magnitude
and the optical flow magnitude, calculated from the image sequence.
ZNCC is performed using pyramids to make it quick.
The offset is accurate up to about +/- 2 frames, so you should run
*refine_time_offset* if you need better accuracy.
Parameters
---------------
image_sequence_or_flow : sequence of image data, or ndarray
This must be either a list or generator that provides a stream of
images that are used for optical flow calculations.
image_timestamps : ndarray
Timestamps of the images in image_sequence
gyro_data : (3, N) ndarray
Gyroscope measurements (angular velocity)
gyro_timestamps : ndarray
Timestamps of data in gyro_data
levels : int
Number of pyramid levels
full_output : bool
If False, only return the offset, otherwise return extra data
Returns
--------------
time_offset : float
The time offset to add to image_timestamps to align the image data
with the gyroscope data
flow : ndarray
(Only if full_output=True)
The calculated optical flow magnitude
| 4.092644 | 3.953516 | 1.035191 |
flow = tracking.optical_flow_magnitude(image_sequence)
flow_timestamps = image_timestamps[:-2]
# Let user select points in both pieces of data
(frame_pair, gyro_idx) = manual_sync_pick(flow, gyro_timestamps, gyro_data)
# Normalize data
gyro_abs_max = np.max(np.abs(gyro_data), axis=0)
gyro_normalized = (gyro_abs_max / np.max(gyro_abs_max)).flatten()
flow_normalized = (flow / np.max(flow)).flatten()
rate = lambda ts: len(ts) / (ts[-1] - ts[0])
# Resample to match highest
freq_gyro = rate(gyro_timestamps)
freq_image = rate(flow_timestamps)
logger.debug("Gyro sampling frequency: %.2f Hz, Image sampling frequency: %.2f Hz", freq_gyro, freq_image)
gyro_part = gyro_normalized[gyro_idx[0]:gyro_idx[1]+1] # only largest
flow_part = flow_normalized[frame_pair[0]:frame_pair[1]+1]
N = flow_part.size * freq_gyro / freq_image
flow_part_resampled = ssig.resample(flow_part, N).flatten()
# ) Cross correlate the two signals and find time diff
corr = ssig.correlate(gyro_part, flow_part_resampled, 'full') # Find the flow in gyro data
i = np.argmax(corr)
t_0_f = flow_timestamps[frame_pair[0]]
t_1_f = flow_timestamps[frame_pair[1]]
t_off_g = gyro_timestamps[gyro_idx[0] + i]
t_off_f = t_1_f
time_offset = t_off_g - t_off_f
if full_output:
return time_offset, flow, frame_pair
else:
return time_offset
|
def sync_camera_gyro_manual(image_sequence, image_timestamps, gyro_data, gyro_timestamps, full_output=False)
|
Get time offset that aligns image timestamps with gyro timestamps.
Given an image sequence, and gyroscope data, with their respective timestamps,
calculate the offset that aligns the image data with the gyro data.
The timestamps must only differ by an offset, not a scale factor.
This function finds an approximation of the offset *d* that makes this transformation
t_gyro = t_camera + d
i.e. your new image timestamps should be
image_timestamps_aligned = image_timestamps + d
The offset is calculated using correlation. The parts of the signals to use are
chosen by the user by picking points in a plot window.
The offset is accurate up to about +/- 2 frames, so you should run
*refine_time_offset* if you need better accuracy.
Parameters
---------------
image_sequence : sequence of image data
This must be either a list or generator that provides a stream of
images that are used for optical flow calculations.
image_timestamps : ndarray
Timestamps of the images in image_sequence
gyro_data : (3, N) ndarray
Gyroscope measurements (angular velocity)
gyro_timestamps : ndarray
Timestamps of data in gyro_data
full_output : bool
If False, only return the offset, otherwise return extra data
Returns
--------------
time_offset : float
The time offset to add to image_timestamps to align the image data
with the gyroscope data
flow : ndarray
(Only if full_output=True)
The calculated optical flow magnitude
frame_pair : (int, int)
The frame pair that was picked for synchronization
| 4.257293 | 4.069656 | 1.046106 |
endpoints = []
in_low = False
for i, val in enumerate(flow):
if val < motion_threshold:
if not in_low:
endpoints.append(i)
in_low = True
else:
if in_low:
endpoints.append(i-1) # Previous was last in a low spot
in_low = False
def mean_score_func(m):
mu = 15
sigma = 8
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def max_score_func(m):
mu = 40
sigma = 8
if m <= mu:
return 1.
else:
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def length_score_func(l):
mu = 30
sigma = 10
top_val = normpdf(mu, mu, sigma)
return normpdf(l, mu, sigma) / top_val
min_length = 5 # frames
sequences = []
for k, i in enumerate(endpoints[:-1]):
for j in endpoints[k+1:]:
length = j - i
if length < min_length:
continue
seq = flow[i:j+1]
m_score = mean_score_func(np.mean(seq))
mx_score = max_score_func(np.max(seq))
l_score = length_score_func(length)
logger.debug("%d, %d scores: (mean=%.5f, max=%.5f, length=%.5f)" % (i,j,m_score, mx_score, l_score))
if min(m_score, mx_score, l_score) < 0.2:
continue
score = m_score + mx_score + l_score
sequences.append((i, j, score))
return sorted(sequences, key=lambda x: x[2], reverse=True)
|
def good_sequences_to_track(flow, motion_threshold=1.0)
|
Get list of good frames to do tracking in.
Looking at the optical flow, this function chooses a span of frames
that fulfill certain criteria.
These include
* not being too short or too long
* not too low or too high mean flow magnitude
* a low max value (avoids motion blur)
Currently, the cost function for a sequence is hard coded. Sorry about that.
Parameters
-------------
flow : ndarray
The optical flow magnitude
motion_threshold : float
The maximum amount of motion to consider for sequence endpoints.
Returns
------------
sequences : list
Sorted list of (a, b, score) elements (highest scpre first) of sequences
where a sequence is frames with frame indices in the span [a, b].
| 2.494828 | 2.509679 | 0.994082 |
self.params['user']['gyro_rate'] = gyro_rate
for p in ('gbias_x', 'gbias_y', 'gbias_z'):
self.params['initialized'][p] = 0.0
if slices is not None:
self.slices = slices
if self.slices is None:
self.slices = videoslice.Slice.from_stream_randomly(self.video)
logger.debug("Number of slices: {:d}".format(len(self.slices)))
if len(self.slices) < 2:
logger.error("Calibration requires at least 2 video slices to proceed, got %d", len(self.slices))
raise InitializationError("Calibration requires at least 2 video slices to proceed, got {:d}".format(len(self.slices)))
if not skip_estimation:
time_offset = self.find_initial_offset()
# TODO: Detect when time offset initialization fails, and raise InitializationError
R = self.find_initial_rotation()
if R is None:
raise InitializationError("Failed to calculate initial rotation")
|
def initialize(self, gyro_rate, slices=None, skip_estimation=False)
|
Prepare calibrator for calibration
This method does three things:
1. Create slices from the video stream, if not already provided
2. Estimate time offset
3. Estimate rotation between camera and gyroscope
Parameters
------------------
gyro_rate : float
Estimated gyroscope sample rate
slices : list of Slice, optional
Slices to use for optimization
skip_estimation : bool
Do not estimate initial time offset and rotation.
Raises
--------------------
InitializationError
If the initialization fails
| 4.047801 | 3.544798 | 1.141899 |
f_g = self.parameter['gyro_rate']
d_c = self.parameter['time_offset']
n = f_g * (t + d_c)
n0 = int(np.floor(n))
tau = n - n0
return n0, tau
|
def video_time_to_gyro_sample(self, t)
|
Convert video time to gyroscope sample index and interpolation factor
Parameters
-------------------
t : float
Video timestamp
Returns
--------------------
n : int
Sample index that precedes t
tau : float
Interpolation factor [0.0-1.0]. If tau=0, then t falls on exactly n. If tau=1 then t falls exactly on n+1
| 5.200774 | 5.176226 | 1.004742 |
D = {}
for source in PARAM_SOURCE_ORDER:
D.update(self.params[source])
return D
|
def parameter(self)
|
Return the current best value of a parameter
| 9.573488 | 10.792624 | 0.88704 |
x0 = np.array([self.parameter[param] for param in PARAM_ORDER])
available_tracks = np.sum([len(s.inliers) for s in self.slices])
if available_tracks < max_tracks:
warnings.warn("Could not use the requested {} tracks, since only {} were available in the slice data.".format(max_tracks, available_tracks))
max_tracks = available_tracks
# Get subset of available tracks such that all slices are still used
slice_sample_idxs = videoslice.fill_sampling(self.slices, max_tracks)
func_args = (self.slices, slice_sample_idxs, self.video.camera_model, self.gyro, norm_c)
self.slice_sample_idxs = slice_sample_idxs
logger.debug("Starting optimization on {:d} slices and {:d} tracks".format(len(self.slices), max_tracks))
start_time = time.time()
# TODO: Check what values of ftol and xtol are required for good results. The current setting is probably pessimistic.
leastsq_result = scipy.optimize.leastsq(optimization_func, x0, args=func_args, full_output=True, ftol=1e-10, xtol=1e-10, maxfev=max_eval)
elapsed = time.time() - start_time
x, covx, infodict, mesg, ier = leastsq_result
self.__debug_leastsq = leastsq_result
logger.debug("Optimization completed in {:.1f} seconds and {:d} function evaluations. ier={}, mesg='{}'".format(elapsed, infodict['nfev'], ier, mesg))
if ier in (1,2,3,4):
for pname, val in zip(PARAM_ORDER, x):
self.params['calibrated'][pname] = val
return self.parameter
else:
raise CalibrationError(mesg)
|
def calibrate(self, max_tracks=MAX_OPTIMIZATION_TRACKS, max_eval=MAX_OPTIMIZATION_FEV, norm_c=DEFAULT_NORM_C)
|
Perform calibration
Parameters
----------------------
max_eval : int
Maximum number of function evaluations
Returns
---------------------
dict
Optimization result
Raises
-----------------------
CalibrationError
If calibration fails
| 3.935332 | 4.162555 | 0.945413 |
flow = self.video.flow
gyro_rate = self.parameter['gyro_rate']
frame_times = np.arange(len(flow)) / self.video.frame_rate
gyro_times = np.arange(self.gyro.num_samples) / gyro_rate
time_offset = timesync.sync_camera_gyro(flow, frame_times, self.gyro.data.T, gyro_times, levels=pyramids)
logger.debug("Initial time offset: {:.4f}".format(time_offset))
self.params['initialized']['time_offset'] = time_offset
return time_offset
|
def find_initial_offset(self, pyramids=6)
|
Estimate time offset
This sets and returns the initial time offset estimation.
Parameters
---------------
pyramids : int
Number of pyramids to use for ZNCC calculations.
If initial estimation of time offset fails, try lowering this value.
Returns
---------------
float
Estimated time offset
| 5.458827 | 6.024276 | 0.906138 |
if 'time_offset' not in self.parameter:
raise InitializationError("Can not estimate rotation without an estimate of time offset. Please estimate the offset and try again.")
dt = float(1.0 / self.parameter['gyro_rate']) # Must be python float for fastintegrate
q = self.gyro.integrate(dt)
video_axes = []
gyro_axes = []
for _slice in self.slices:
# Estimate rotation here
_slice.estimate_rotation(self.video.camera_model, ransac_threshold=7.0) # sets .axis and .angle memebers
if _slice.axis is None:
continue
assert _slice.angle > 0
t1 = _slice.start / self.video.frame_rate
n1, _ = self.video_time_to_gyro_sample(t1)
t2 = _slice.end / self.video.frame_rate
n2, _ = self.video_time_to_gyro_sample(t2)
try:
qx = q[n1]
qy = q[n2]
except IndexError:
continue # No gyro data -> nothing to do with this slice
Rx = rotations.quat_to_rotation_matrix(qx)
Ry = rotations.quat_to_rotation_matrix(qy)
R = np.dot(Rx.T, Ry)
v, theta = rotations.rotation_matrix_to_axis_angle(R)
if theta < 0:
v = -v
gyro_axes.append(v)
video_axes.append(_slice.axis)
if len(gyro_axes) < 2:
logger.warning("Rotation estimation requires at least 2 rotation axes, got {}".format(len(gyro_axes)))
return None
logger.debug("Using {:d} slices (from initial {:d} for rotation estimation".format(len(gyro_axes), len(self.slices)))
model_func = lambda data: rotations.procrustes(data[:3], data[3:6], remove_mean=False)[0]
def eval_func(model, data):
X = data[:3].reshape(3,-1)
Y = data[3:6].reshape(3,-1)
R = model
Xhat = np.dot(R, Y)
costheta = np.sum(Xhat*X, axis=0)
theta = np.arccos(costheta)
return theta
inlier_selection_prob = 0.99999
model_points = 2 # Set to 3 to use non-minimal case
inlier_ratio = 0.5
threshold = np.deg2rad(10.0)
ransac_iterations = int(np.log(1 - inlier_selection_prob) / np.log(1-inlier_ratio**model_points))
data = np.vstack((np.array(video_axes).T, np.array(gyro_axes).T))
assert data.shape == (6, len(gyro_axes))
R, ransac_conseus_idx = ransac.RANSAC(model_func, eval_func, data,
model_points, ransac_iterations,
threshold, recalculate=True)
n, theta = rotations.rotation_matrix_to_axis_angle(R)
logger.debug("Found rotation: n={} theta={}; r={}".format(n, theta, n*theta))
logger.debug(R)
rx, ry, rz = theta * n
self.params['initialized']['rot_x'] = rx
self.params['initialized']['rot_y'] = ry
self.params['initialized']['rot_z'] = rz
return R
|
def find_initial_rotation(self)
|
Estimate rotation between camera and gyroscope
This sets and returns the initial rotation estimate.
Note that the initial time offset must have been estimated before calling this function!
Returns
--------------------
(3,3) ndarray
Estimated rotation between camera and gyroscope
| 4.248617 | 4.198574 | 1.011919 |
print("Parameters")
print("--------------------")
for param in PARAM_ORDER:
print(' {:>11s} = {}'.format(param, self.parameter[param]))
|
def print_params(self)
|
Print the current best set of parameters
| 6.482729 | 6.339329 | 1.022621 |
gf1 = cv2.getGaussianKernel(ksize, gstd1)
gf2 = cv2.getGaussianKernel(ksize, gstd2)
gf3 = cv2.getGaussianKernel(ksize, gstd3)
sqrtimg = cv2.sqrt(img)
p1 = cv2.sepFilter2D(sqrtimg, -1, gf1, gf1)
p2 = cv2.sepFilter2D(sqrtimg, -1, gf2, gf2)
maxarr = np.maximum(0, (p1 - p2) / p2)
minarr = np.minimum(w * maxarr, 1)
p = 1 - minarr
nc = cv2.sepFilter2D(p, -1, gf3, gf3) + EPS
output = cv2.sepFilter2D(p*sqrtimg, -1, gf3, gf3)
output = (output / nc) ** 2 # Since input is sqrted
return output
|
def remove_slp(img, gstd1=GSTD1, gstd2=GSTD2, gstd3=GSTD3, ksize=KSIZE, w=W)
|
Remove the SLP from kinect IR image
The input image should be a float32 numpy array, and should NOT be a square root image
Parameters
------------------
img : (M, N) float ndarray
Kinect NIR image with SLP pattern
gstd1 : float
Standard deviation of gaussian kernel 1
gstd2 : float
Standard deviation of gaussian kernel 2
gstd3 : float
Standard deviation of gaussian kernel 3
ksize : int
Size of kernel (should be odd)
w : float
Weighting factor
Returns
------------------
img_noslp : (M,N) float ndarray
Input image with SLP removed
| 2.952372 | 3.010046 | 0.980839 |
import h5py
with h5py.File(filename, 'r') as f:
wc = f["wc"].value
lgamma = f["lgamma"].value
K = f["K"].value
readout = f["readout"].value
image_size = f["size"].value
fps = f["fps"].value
instance = cls(image_size, fps, readout, K, wc, lgamma)
return instance
|
def from_hdf(cls, filename)
|
Load camera model params from a HDF5 file
The HDF5 file should contain the following datasets:
wc : (2,) float with distortion center
lgamma : float distortion parameter
readout : float readout value
size : (2,) int image size
fps : float frame rate
K : (3, 3) float camera matrix
Parameters
--------------------
filename : str
Path to file with parameters
Returns
---------------------
AtanCameraModel
Camera model instance
| 3.812725 | 2.035504 | 1.873111 |
X = points if not points.ndim == 1 else points.reshape((points.size, 1))
wx, wy = self.wc
# Switch to polar coordinates
rn = np.sqrt((X[0,:] - wx)**2 + (X[1,:] - wy)**2)
phi = np.arctan2(X[1,:] - wy, X[0,:]-wx)
# 'atan' method
r = np.tan(rn * self.lgamma) / self.lgamma;
# Switch back to rectangular coordinates
Y = np.ones(X.shape)
Y[0,:] = wx + r * np.cos(phi)
Y[1,:]= wy + r * np.sin(phi)
return Y
|
def invert(self, points)
|
Invert the distortion
Parameters
------------------
points : ndarray
Input image points
Returns
-----------------
ndarray
Undistorted points
| 4.245648 | 4.732121 | 0.897198 |
K = self.camera_matrix
XU = points
XU = XU / np.tile(XU[2], (3,1))
X = self.apply(XU)
x2d = np.dot(K, X)
return from_homogeneous(x2d)
|
def project(self, points)
|
Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
| 5.754476 | 6.549926 | 0.878556 |
Ki = self.inv_camera_matrix
X = np.dot(Ki, to_homogeneous(image_points))
X = X / X[2]
XU = self.invert(X)
return XU
|
def unproject(self, image_points)
|
Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
| 6.2766 | 7.369689 | 0.851678 |
rvec = tvec = np.zeros(3)
image_points, jac = cv2.projectPoints(points.T.reshape(-1,1,3), rvec, tvec, self.camera_matrix, self.dist_coefs)
return image_points.reshape(-1,2).T
|
def project(self, points)
|
Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
| 2.899207 | 3.16976 | 0.914646 |
undist_image_points = cv2.undistortPoints(image_points.T.reshape(1,-1,2), self.camera_matrix, self.dist_coefs, P=self.camera_matrix)
world_points = np.dot(self.inv_camera_matrix, to_homogeneous(undist_image_points.reshape(-1,2).T))
return world_points
|
def unproject(self, image_points)
|
Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
| 2.847396 | 3.274031 | 0.869691 |
"Take list of Kinect filenames (without path) and extracts timestamps while accounting for timestamp overflow (returns linear timestamps)."
timestamps = np.array([Kinect.timestamp_from_filename(fname) for fname in file_list])
# Handle overflow
diff = np.diff(timestamps)
idxs = np.flatnonzero(diff < 0)
ITEM_SIZE = 2**32
for i in idxs:
timestamps[i+1:] += ITEM_SIZE
return timestamps.flatten()
|
def timestamps_from_file_list(file_list)
|
Take list of Kinect filenames (without path) and extracts timestamps while accounting for timestamp overflow (returns linear timestamps).
| 8.074514 | 3.83679 | 2.104497 |
"Given a list of image files, find bad frames, remove them and modify file_list"
MAX_INITIAL_BAD_FRAMES = 15
bad_ts = Kinect.detect_bad_timestamps(Kinect.timestamps_from_file_list(file_list))
# Trivial case
if not bad_ts:
return file_list
# No bad frames after the initial allowed
last_bad = max(bad_ts)
if last_bad >= MAX_INITIAL_BAD_FRAMES:
raise Exception('Only 15 initial bad frames are allowed, but last bad frame is %d' % last_bad)
# Remove all frames up to the last bad frame
for i in range(last_bad + 1):
os.remove(file_list[i])
# Purge from the list
file_list = file_list[last_bad+1:]
return file_list
|
def purge_bad_timestamp_files(file_list)
|
Given a list of image files, find bad frames, remove them and modify file_list
| 4.698282 | 3.904018 | 1.203448 |
(root, filename) = os.path.split(video_filename)
needle_ts = int(filename.split('-')[2].split('.')[0])
haystack_ts_list = np.array(Kinect.timestamps_from_file_list(depth_file_list))
haystack_idx = np.flatnonzero(haystack_ts_list == needle_ts)[0]
depth_filename = depth_file_list[haystack_idx]
return depth_filename
|
def depth_file_for_nir_file(video_filename, depth_file_list)
|
Returns the corresponding depth filename given a NIR filename
| 3.254307 | 3.157841 | 1.030548 |
(root, filename) = os.path.split(rgb_filename)
rgb_timestamps = np.array(Kinect.timestamps_from_file_list(rgb_file_list))
depth_timestamps = np.array(Kinect.timestamps_from_file_list(depth_file_list))
needle_ts = rgb_timestamps[rgb_file_list.index(rgb_filename)]
haystack_idx = np.argmin(np.abs(depth_timestamps - needle_ts))
depth_filename = depth_file_list[haystack_idx]
return depth_filename
|
def depth_file_for_rgb_file(rgb_filename, rgb_file_list, depth_file_list)
|
Returns the *closest* depth file from an RGB filename
| 2.679957 | 2.571733 | 1.042082 |
"Remove all files without its own counterpart. Returns new lists of files"
new_video_list = []
new_depth_list = []
for fname in video_file_list:
try:
depth_file = Kinect.depth_file_for_nir_file(fname, depth_file_list)
new_video_list.append(fname)
new_depth_list.append(depth_file)
except IndexError: # Missing file
pass
# Purge bad files
bad_nir = [f for f in video_file_list if f not in new_video_list]
bad_depth = [f for f in depth_file_list if f not in new_depth_list]
return (new_video_list, new_depth_list, bad_nir, bad_depth)
|
def find_nir_file_with_missing_depth(video_file_list, depth_file_list)
|
Remove all files without its own counterpart. Returns new lists of files
| 3.25508 | 2.486346 | 1.309182 |
"Convert image of Kinect disparity values to distance (linear method)"
dist_img = dval_img / 2048.0
dist_img = 1 / (self.opars[0]*dist_img + self.opars[1])
return dist_img
|
def disparity_image_to_distance(self, dval_img)
|
Convert image of Kinect disparity values to distance (linear method)
| 8.453995 | 4.948099 | 1.708534 |
A = [len(s.inliers) for s in slice_list]
N_max = np.sum(A)
if N > N_max:
raise ValueError("Tried to draw {:d} samples from a pool of only {:d} items".format(N, N_max))
samples_from = np.zeros((len(A),), dtype='int') # Number of samples to draw from each group
remaining = N
while remaining > 0:
remaining_groups = np.flatnonzero(samples_from - np.array(A))
if remaining < len(remaining_groups):
np.random.shuffle(remaining_groups)
for g in remaining_groups[:remaining]:
samples_from[g] += 1
else:
# Give each group the allowed number of samples. Constrain to their max size.
to_each = max(1, int(remaining / len(remaining_groups)))
samples_from = np.min(np.vstack((samples_from + to_each, A)), axis=0)
# Update remaining count
remaining = int(N - np.sum(samples_from))
if not remaining == 0:
raise ValueError("Still {:d} samples left! This is an error in the selection.")
# Construct index list of selected samples
samples = []
for s, a, n in zip(slice_list, A, samples_from):
if a == n:
samples.append(np.array(s.inliers)) # all
elif a == 0:
samples.append(np.arange([]))
else:
chosen = np.random.choice(s.inliers, n, replace=False)
samples.append(np.array(chosen))
return samples
|
def fill_sampling(slice_list, N)
|
Given a list of slices, draw N samples such that each slice contributes as much as possible
Parameters
--------------------------
slice_list : list of Slice
List of slices
N : int
Number of samples to draw
| 3.684188 | 3.763504 | 0.978925 |
if self.axis is None:
x = self.points[:, 0, :].T
y = self.points[:, -1, :].T
inlier_ratio = 0.5
R, t, dist, idx = rotations.estimate_rotation_procrustes_ransac(x, y,
camera,
ransac_threshold,
inlier_ratio=inlier_ratio,
do_translation=False)
if R is not None:
self.axis, self.angle = rotations.rotation_matrix_to_axis_angle(R)
if self.angle < 0: # Constrain to positive angles
self.angle = -self.angle
self.axis = -self.axis
self.inliers = idx
return self.axis is not None
|
def estimate_rotation(self, camera, ransac_threshold=7.0)
|
Estimate the rotation between first and last frame
It uses RANSAC where the error metric is the reprojection error of the points
from the last frame to the first frame.
Parameters
-----------------
camera : CameraModel
Camera model
ransac_threshold : float
Distance threshold (in pixels) for a reprojected point to count as an inlier
| 4.225238 | 4.518031 | 0.935195 |
new_step = lambda: int(np.random.uniform(low=step_bounds[0], high=step_bounds[1]))
new_length = lambda: int(np.random.uniform(low=length_bounds[0], high=length_bounds[1]))
seq_frames = []
slices = []
seq_start_points = None
next_seq_start = new_step() if max_start is None else min(new_step(), max_start)
next_seq_length = new_length()
for i, im in enumerate(video_stream):
if next_seq_start <= i < next_seq_start + next_seq_length:
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
seq_frames.append(im)
if len(seq_frames) == 1:
max_corners = 400
quality_level = 0.07
seq_start_points = cv2.goodFeaturesToTrack(im, max_corners, quality_level, min_distance)
elif len(seq_frames) == next_seq_length:
points, status = tracking.track_retrack(seq_frames, seq_start_points)
if points.shape[0] >= min_slice_points:
s = Slice(next_seq_start, i, points)
slices.append(s)
logger.debug('{0:4d} {1:3d} {2:5d} {3:>5d}-{4:<5d}'.format(len(slices)-1, points.shape[1], points.shape[0], next_seq_start, i))
seq_frames = []
next_seq_start = i + new_step()
next_seq_length = new_length()
return slices
|
def from_stream_randomly(video_stream, step_bounds=(5, 15), length_bounds=(2, 15), max_start=None, min_distance=10, min_slice_points=10)
|
Create slices from a video stream using random sampling
Parameters
-----------------
video_stream : VideoStream
A video stream
step_bounds : tuple
Range bounds (inclusive) of possible step lengths
length_bounds : tuple
Range bounds (inclusive) of possible slice lengths
max_start : int
Maximum frame number to start from
min_distance : float
Minimum (initial) distance between tracked points
min_slice_points : int
Minimum number of points to keep a slice
Returns
-------------------
list of Slice
List of slices
| 2.564723 | 2.656633 | 0.965403 |
assert X.shape == Y.shape
assert X.shape[0] > 1
# Minimal case, create third point using cross product
if X.shape[0] == 2:
X3 = np.cross(X[:,0], X[:,1], axis=0)
X = np.hstack((X, X3 / np.linalg.norm(X3)))
Y3 = np.cross(Y[:,0], Y[:,1], axis=0)
Y = np.hstack((Y, Y3 / np.linalg.norm(Y3)))
D, N = X.shape[:2]
if remove_mean:
mx = np.mean(X, axis=1).reshape(D, 1)
my = np.mean(Y, axis=1).reshape(D, 1)
Xhat = X - mx
Yhat = Y - my
else:
Xhat = X
Yhat = Y
(U, S, V) = np.linalg.svd((Xhat).dot(Yhat.T))
Dtmp = np.eye(Xhat.shape[0])
Dtmp[-1,-1] = np.linalg.det(U.dot(V))
R_est = U.dot(Dtmp).dot(V)
# Now X=R_est*(Y-my)+mx=R_est*Y+t_est
if remove_mean:
t_est= mx - R_est.dot(my)
else:
t_est = None
return (R_est, t_est)
|
def procrustes(X, Y, remove_mean=False)
|
Orthogonal procrustes problem solver
The procrustes problem finds the best rotation R, and translation t
where
X = R*Y + t
The number of points in X and Y must be at least 2.
For the minimal case of two points, a third point is temporarily created
and used for the estimation.
Parameters
-----------------
X : (3, N) ndarray
First set of points
Y : (3, N) ndarray
Second set of points
remove_mean : bool
If true, the mean is removed from X and Y before solving the
procrustes problem. Can yield better results in some applications.
Returns
-----------------
R : (3,3) ndarray
Rotation component
t : (3,) ndarray
Translation component (None if remove_mean is False)
| 2.611223 | 2.453054 | 1.064478 |
assert R.shape == (3,3)
assert_almost_equal(np.linalg.det(R), 1.0, err_msg="Not a rotation matrix: determinant was not 1")
S, V = np.linalg.eig(R)
k = np.argmin(np.abs(S - 1.))
s = S[k]
assert_almost_equal(s, 1.0, err_msg="Not a rotation matrix: No eigen value s=1")
v = np.real(V[:, k]) # Result is generally complex
vhat = np.array([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
sintheta = 0.5 * np.dot(v, vhat)
costheta = 0.5 * (np.trace(R) - 1)
theta = np.arctan2(sintheta, costheta)
return (v, theta)
|
def rotation_matrix_to_axis_angle(R)
|
Convert a 3D rotation matrix to a 3D axis angle representation
Parameters
---------------
R : (3,3) array
Rotation matrix
Returns
----------------
v : (3,) array
(Unit-) rotation angle
theta : float
Angle of rotations, in radians
Note
--------------
This uses the algorithm as described in Multiple View Geometry, p. 584
| 2.606009 | 2.565317 | 1.015862 |
if np.abs(theta) < np.spacing(1):
return np.eye(3)
else:
v = v.reshape(3,1)
np.testing.assert_almost_equal(np.linalg.norm(v), 1.)
vx = np.array([[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]])
vvt = np.dot(v, v.T)
R = np.eye(3)*np.cos(theta) + (1 - np.cos(theta))*vvt + vx * np.sin(theta)
return R
|
def axis_angle_to_rotation_matrix(v, theta)
|
Convert rotation from axis-angle to rotation matrix
Parameters
---------------
v : (3,) ndarray
Rotation axis (normalized)
theta : float
Rotation angle (radians)
Returns
----------------
R : (3,3) ndarray
Rotation matrix
| 2.229653 | 2.382759 | 0.935745 |
q = q.flatten()
assert q.size == 4
assert_almost_equal(np.linalg.norm(q), 1.0, err_msg="Not a unit quaternion!")
qq = q ** 2
R = np.array([[qq[0] + qq[1] - qq[2] - qq[3], 2*q[1]*q[2] -
2*q[0]*q[3], 2*q[1]*q[3] + 2*q[0]*q[2]],
[2*q[1]*q[2] + 2*q[0]*q[3], qq[0] - qq[1] + qq[2] -
qq[3], 2*q[2]*q[3] - 2*q[0]*q[1]],
[2*q[1]*q[3] - 2*q[0]*q[2], 2*q[2]*q[3] + 2*q[0]*q[1],
qq[0] - qq[1] - qq[2] + qq[3]]])
return R
|
def quat_to_rotation_matrix(q)
|
Convert unit quaternion to rotation matrix
Parameters
-------------
q : (4,) ndarray
Unit quaternion, scalar as first element
Returns
----------------
R : (3,3) ndarray
Rotation matrix
| 1.545731 | 1.592733 | 0.97049 |
#NB: Quaternion q = [a, n1, n2, n3], scalar first
q_list = np.zeros((gyro_ts.shape[0], 4)) # Nx4 quaternion list
q_list[0,:] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all (except first)
for i in range(1, gyro_ts.size):
w = gyro_data[i]
dt = gyro_ts[i] - gyro_ts[i - 1]
qprev = q_list[i - 1]
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew /= qnorm
q_list[i] = qnew
return q_list
|
def integrate_gyro_quaternion(gyro_ts, gyro_data)
|
Integrate angular velocities to rotations
Parameters
---------------
gyro_ts : ndarray
Timestamps
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
---------------
rotations : (4, N) ndarray
Rotation sequence as unit quaternions (first element scalar)
| 2.751794 | 2.726628 | 1.009229 |
q1 = q1.flatten()
q2 = q2.flatten()
assert q1.shape == q2.shape
assert q1.size == 4
costheta = np.dot(q1, q2)
if np.isclose(u, 0.):
return q1
elif np.isclose(u, 1.):
return q2
elif u > 1 or u < 0:
raise ValueError("u must be in range [0, 1]")
# Shortest path
if costheta < 0:
costheta = -costheta
q2 = -q2
# Almost the same, we can return any of them?
if np.isclose(costheta, 1.0):
return q1
theta = np.arccos(costheta)
f1 = np.sin((1.0 - u)*theta) / np.sin(theta)
f2 = np.sin(u*theta) / np.sin(theta)
q = f1*q1 + f2*q2
q = q / np.sqrt(np.sum(q**2)) # Normalize
return q
|
def slerp(q1, q2, u)
|
SLERP: Spherical linear interpolation between two unit quaternions.
Parameters
------------
q1 : (4, ) ndarray
Unit quaternion (first element scalar)
q2 : (4, ) ndarray
Unit quaternion (first element scalar)
u : float
Interpolation factor in range [0,1] where 0 is first quaternion
and 1 is second quaternion.
Returns
-----------
q : (4,) ndarray
The interpolated unit quaternion
| 2.268945 | 2.349572 | 0.965684 |
assert x.shape == y.shape
assert x.shape[0] == 2
X = camera.unproject(x)
Y = camera.unproject(y)
data = np.vstack((X, Y, x))
assert data.shape[0] == 8
model_func = lambda data: procrustes(data[:3], data[3:6], remove_mean=do_translation)
def eval_func(model, data):
Y = data[3:6].reshape(3,-1)
x = data[6:].reshape(2,-1)
R, t = model
Xhat = np.dot(R, Y) if t is None else np.dot(R, Y) + t
xhat = camera.project(Xhat)
dist = np.sqrt(np.sum((x-xhat)**2, axis=0))
return dist
inlier_selection_prob = 0.99999
model_points = 2
ransac_iterations = int(np.log(1 - inlier_selection_prob) / np.log(1-inlier_ratio**model_points))
model_est, ransac_consensus_idx = ransac.RANSAC(model_func, eval_func, data, model_points, ransac_iterations, threshold, recalculate=True)
if model_est is not None:
(R, t) = model_est
dist = eval_func((R, t), data)
else:
dist = None
R, t = None, None
ransac_consensus_idx = []
return R, t, dist, ransac_consensus_idx
|
def estimate_rotation_procrustes_ransac(x, y, camera, threshold, inlier_ratio=0.75, do_translation=False)
|
Calculate rotation between two sets of image coordinates using ransac.
Inlier criteria is the reprojection error of y into image 1.
Parameters
-------------------------
x : array 2xN image coordinates in image 1
y : array 2xN image coordinates in image 2
camera : Camera model
threshold : float pixel distance threshold to accept as inlier
do_translation : bool Try to estimate the translation as well
Returns
------------------------
R : array 3x3 The rotation that best fulfills X = RY
t : array 3x1 translation if do_translation is False
residual : array pixel distances ||x - xhat|| where xhat ~ KRY (and lens distorsion)
inliers : array Indices of the points (in X and Y) that are RANSAC inliers
| 3.174117 | 3.225483 | 0.984075 |
M = None
max_consensus = 0
all_idx = list(range(data.shape[1]))
final_consensus = []
for k in range(num_iter):
np.random.shuffle(all_idx)
model_set = all_idx[:num_points]
x = data[:, model_set]
m = model_func(x)
model_error = eval_func(m, data)
assert model_error.ndim == 1
assert model_error.size == data.shape[1]
consensus_idx = np.flatnonzero(model_error < threshold)
if len(consensus_idx) > max_consensus:
M = m
max_consensus = len(consensus_idx)
final_consensus = consensus_idx
# Recalculate using current consensus set?
if recalculate and len(final_consensus) > 0:
final_consensus_set = data[:, final_consensus]
M = model_func(final_consensus_set)
return (M, final_consensus)
|
def RANSAC(model_func, eval_func, data, num_points, num_iter, threshold, recalculate=False)
|
Apply RANSAC.
This RANSAC implementation will choose the best model based on the number of points in the consensus set. At evaluation time the model is created using num_points points. Then it will be recalculated using the points in the consensus set.
Parameters
------------
model_func: Takes a data parameter of size DxK where K is the number of points needed to construct the model and returns the model (Mx1 vector)
eval_func: Takes a model parameter (Lx1) and one or more data points (DxC, C>=1) and calculates the score of the point(s) relative to the selected model
data : array (DxN) where D is dimensionality and N number of samples
| 2.693147 | 2.973257 | 0.90579 |
params = GFTT_DEFAULTS
if gftt_params:
params.update(gftt_params)
if initial_points is None:
initial_points = cv2.goodFeaturesToTrack(img1, params['max_corners'], params['quality_level'], params['min_distance'])
[_points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, initial_points, np.array([]))
# Filter out valid points only
points = _points[np.nonzero(status)]
initial_points = initial_points[np.nonzero(status)]
return (points, initial_points)
|
def track_points(img1, img2, initial_points=None, gftt_params={})
|
Track points between two images
Parameters
-----------------
img1 : (M, N) ndarray
First image
img2 : (M, N) ndarray
Second image
initial_points : ndarray
Initial points. If empty, initial points will be calculated from
img1 using goodFeaturesToTrack in OpenCV
gftt_params : dict
Keyword arguments for goodFeaturesToTrack
Returns
-----------------
points : ndarray
Tracked points
initial_points : ndarray
Initial points used
| 2.553009 | 2.980609 | 0.856539 |
flow = []
prev_img = None
for img in image_sequence:
if img.ndim == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if prev_img is None:
prev_img = img
continue
(next_points, prev_points) = track_points(prev_img, img, gftt_params=gftt_options)
distance = np.sqrt(np.sum((next_points - prev_points)**2, 1))
distance2 = distance[np.nonzero(distance < max_diff)] # Crude outlier rejection
dm = np.mean(distance2)
if np.isnan(dm):
dm = 0
flow.append(dm)
prev_img = img
return np.array(flow)
|
def optical_flow_magnitude(image_sequence, max_diff=60, gftt_options={})
|
Return optical flow magnitude for the given image sequence
The flow magnitude is the mean value of the total (sparse) optical flow
between two images.
Crude outlier detection using the max_diff parameter is used.
Parameters
----------------
image_sequence : sequence
Sequence of image data (ndarrays) to calculate flow magnitude from
max_diff : float
Distance threshold for outlier rejection
gftt_options : dict
Keyword arguments to the OpenCV goodFeaturesToTrack function
Returns
----------------
flow : ndarray
The optical flow magnitude
| 2.576895 | 2.572788 | 1.001596 |
# Precreate track array
tracks = np.zeros((initial_points.shape[0], len(image_list), 2), dtype='float32') # NxMx2
tracks[:,0,:] = np.reshape(np.array(initial_points), [-1,2])
track_status = np.ones([np.size(initial_points,0),1]) # All initial points are OK
empty = np.array([])
window_size = (5,5)
for i in range(1, len(image_list)):
img1 = image_list[i-1]
img2 = image_list[i]
prev_ok_track = np.flatnonzero(track_status)
prev_points = tracks[prev_ok_track,i-1,:]
[points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, prev_points, empty, empty, empty, window_size)
if status is None:
track_status[:] = 0 # All tracks are bad
break
valid_set = np.flatnonzero(status)
now_ok_tracks = prev_ok_track[valid_set] # Remap
tracks[now_ok_tracks,i,:] = points[valid_set]
track_status[prev_ok_track] = status
if remove_bad:
final_ok = np.flatnonzero(track_status)
tracks = tracks[final_ok] # Only rows/tracks with nonzero status
track_status = track_status[final_ok]
return (tracks, track_status)
|
def track(image_list, initial_points, remove_bad=True)
|
Track points in image list
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
| 3.449874 | 3.390661 | 1.017463 |
(forward_track, forward_status) = track(image_list, initial_points, remove_bad=False)
# Reverse the order
(backward_track, backward_status) = track(image_list[::-1], forward_track[:,-1,:], remove_bad=False)
# Prune bad tracks
ok_track = np.flatnonzero(forward_status * backward_status) # Only good if good in both
forward_first = forward_track[ok_track,0,:]
backward_last = backward_track[ok_track,-1,:]
# Distance
retrack_distance = np.sqrt(np.sum((forward_first - backward_last)**2, 1))
# Allowed
retracked_ok = np.flatnonzero(retrack_distance <= max_retrack_distance)
final_ok = ok_track[retracked_ok]
if keep_bad: # Let caller check status
status = np.zeros(forward_status.shape)
status[final_ok] = 1
return (forward_track, status)
else: # Remove tracks with faulty retrack
return (forward_track[final_ok], forward_status[final_ok])
|
def track_retrack(image_list, initial_points, max_retrack_distance=0.5, keep_bad=False)
|
Track-retracks points in image list
Using track-retrack can help in only getting point tracks of high quality.
The point is tracked forward, and then backwards in the image sequence.
Points that end up further than max_retrack_distance from its starting point
are marked as bad.
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
max_retrack_distance : float
The maximum distance of the retracked point from its starting point to
still count as a succesful retrack.
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
Note that M is the number of image in the input, and is the track in
the forward tracking step.
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
| 3.332981 | 3.288329 | 1.013579 |
M = scipy.io.loadmat(matfilename)
instance = cls()
instance.gyro_data = M['gyro']
instance.timestamps = M['timestamps']
return instance
|
def from_mat_file(cls, matfilename)
|
Load gyro data from .mat file
The MAT file should contain the following two arrays
gyro : (3, N) float ndarray
The angular velocity measurements.
timestamps : (N, ) float ndarray
Timestamps of the measurements.
Parameters
---------------
matfilename : string
Name of the .mat file
Returns
----------------
A new IMU class instance
| 4.401412 | 3.295808 | 1.335458 |
N = len(self.timestamps)
t = self.timestamps[-1] - self.timestamps[0]
rate = 1.0 * N / t
return rate
|
def rate(self)
|
Get the sample rate in Hz.
Returns
---------
rate : float
The sample rate, in Hz, calculated from the timestamps
| 3.934084 | 3.387308 | 1.161419 |
t1 = t0 + duration
indices = np.flatnonzero((self.timestamps >= t0) & (self.timestamps <= t1))
m = np.mean(self.gyro_data[:, indices], axis=1)
self.gyro_data -= m.reshape(3,1)
return self.gyro_data
|
def zero_level_calibrate(self, duration, t0=0.0)
|
Performs zero-level calibration from the chosen time interval.
This changes the previously lodaded data in-place.
Parameters
--------------------
duration : float
Number of timeunits to use for calibration
t0 : float
Starting time for calibration
Returns
----------------------
gyro_data : (3, N) float ndarray
The calibrated data (note that it is also changed in-place!)
| 3.483032 | 3.253083 | 1.070686 |
if uniform:
dt = float(self.timestamps[1]-self.timestamps[0]) # Must be python float for fastintegrate to work
return fastintegrate.integrate_gyro_quaternion_uniform(self.gyro_data_corrected, dt)
else:
N = len(self.timestamps)
integrated = np.zeros((4, N))
integrated[:,0] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all
for i in range(1, len(self.timestamps)):
w = pose_correction.dot(self.gyro_data[:, i]) # Change to correct coordinate frame
dt = float(self.timestamps[i] - self.timestamps[i - 1])
qprev = integrated[:, i - 1].flatten()
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew = qnew / qnorm if qnorm > 0 else 0
integrated[:, i] = qnew
#print "%d, %s, %s, %s, %s" % (i, w, dt, qprev, qnew)
return integrated
|
def integrate(self, pose_correction=np.eye(3), uniform=True)
|
Integrate angular velocity measurements to rotations.
Parameters
-------------
pose_correction : (3,3) ndarray, optional
Rotation matrix that describes the relative pose between the IMU and something else (e.g. camera).
uniform : bool
If True (default), assume uniform sample rate. This will use a faster integration method.
Returns
-------------
rotations : (4, N) ndarray
Rotations as unit quaternions with scalar as first element.
| 3.273345 | 3.134402 | 1.044328 |
idx = np.flatnonzero(timestamps >= (t - 0.0001))[0]
t0 = timestamps[idx - 1]
t1 = timestamps[idx]
tau = (t - t0) / (t1 - t0)
q1 = rotation_sequence[:, idx - 1]
q2 = rotation_sequence[:, idx]
q = rotations.slerp(q1, q2, tau)
return q
|
def rotation_at_time(t, timestamps, rotation_sequence)
|
Get the gyro rotation at time t using SLERP.
Parameters
-----------
t : float
The query timestamp.
timestamps : array_like float
List of all timestamps
rotation_sequence : (4, N) ndarray
Rotation sequence as unit quaternions with scalar part as first element.
Returns
-----------
q : (4,) ndarray
Unit quaternion representing the rotation at time t.
| 2.776367 | 2.65033 | 1.047555 |
instance = cls()
instance.data = np.loadtxt(filename, delimiter=',')
return instance
|
def from_csv(cls, filename)
|
Create gyro stream from CSV data
Load data from a CSV file.
The data must be formatted with three values per line: (x, y, z)
where x, y, z is the measured angular velocity (in radians) of the specified axis.
Parameters
-------------------
filename : str
Path to the CSV file
Returns
---------------------
GyroStream
A gyroscope stream
| 4.355601 | 7.018912 | 0.620552 |
if not data.shape[1] == 3:
raise ValueError("Gyroscope data must have shape (N, 3)")
instance = cls()
instance.data = data
return instance
|
def from_data(cls, data)
|
Create gyroscope stream from data array
Parameters
-------------------
data : (N, 3) ndarray
Data array of angular velocities (rad/s)
Returns
-------------------
GyroStream
Stream object
| 4.638785 | 3.972841 | 1.167624 |
if not dt == self.__last_dt:
self.__last_q = fastintegrate.integrate_gyro_quaternion_uniform(self.data, dt)
self.__last_dt = dt
return self.__last_q
|
def integrate(self, dt)
|
Integrate gyro measurements to orientation using a uniform sample rate.
Parameters
-------------------
dt : float
Sample distance in seconds
Returns
----------------
orientation : (4, N) ndarray
Gyroscope orientation in quaternion form (s, q1, q2, q3)
| 8.208923 | 6.915275 | 1.187071 |
Nc = np.ceil(gstd*3)*2+1
x = np.linspace(-(Nc-1)/2,(Nc-1)/2,Nc,endpoint=True)
g = np.exp(-.5*((x/gstd)**2))
g = g/np.sum(g)
return g
|
def gaussian_kernel(gstd)
|
Generate odd sized truncated Gaussian
The generated filter kernel has a cutoff at $3\sigma$
and is normalized to sum to 1
Parameters
-------------
gstd : float
Standard deviation of filter
Returns
-------------
g : ndarray
Array with kernel coefficients
| 3.069142 | 3.024447 | 1.014778 |
Ns = np.int(np.floor(np.size(time_series)/downsample_factor))
g = gaussian_kernel(0.5*downsample_factor)
ts_blur = np.convolve(time_series,g,'same')
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = (k+.5)*downsample_factor-.5
cfrac = cpos-np.floor(cpos)
cind = np.floor(cpos)
if cfrac>0:
ts_out[k]=ts_blur[cind]*(1-cfrac)+ts_blur[cind+1]*cfrac
else:
ts_out[k]=ts_blur[cind]
return ts_out
|
def subsample(time_series, downsample_factor)
|
Subsample with Gaussian prefilter
The prefilter will have the filter size $\sigma_g=.5*ssfactor$
Parameters
--------------
time_series : ndarray
Input signal
downsample_factor : float
Downsampling factor
Returns
--------------
ts_out : ndarray
The downsampled signal
| 2.928866 | 2.882844 | 1.015964 |
Ns0 = np.size(time_series)
Ns = np.int(np.floor(np.size(time_series)*scaling_factor))
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = int(np.min([Ns0-1,np.max([0.,(k+0.5)/scaling_factor-0.5])]))
cfrac = cpos-np.floor(cpos)
cind = int(np.floor(cpos))
#print "cpos=%f cfrac=%f cind=%d", (cpos,cfrac,cind)
if cfrac>0:
ts_out[k]=time_series[cind]*(1-cfrac)+time_series[cind+1]*cfrac
else:
ts_out[k]=time_series[cind]
return ts_out
|
def upsample(time_series, scaling_factor)
|
Upsample using linear interpolation
The function uses replication of the value at edges
Parameters
--------------
time_series : ndarray
Input signal
scaling_factor : float
The factor to upsample with
Returns
--------------
ts_out : ndarray
The upsampled signal
| 2.768652 | 2.706974 | 1.022785 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.