code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
donor_pairs = []
data = namedtuple('hbonddonor', 'd d_orig_atom d_orig_idx h type')
for donor in [a for a in all_atoms if a.OBAtom.IsHbondDonor() and a.idx not in self.altconf]:
in_ring = False
if not in_ring:
for adj_atom in [a for a in pybel.ob.OBAtomAtomIter(donor.OBAtom) if a.IsHbondDonorH()]:
d_orig_idx = self.Mapper.mapid(donor.idx, mtype=self.mtype, bsid=self.bsid)
d_orig_atom = self.Mapper.id_to_atom(d_orig_idx)
donor_pairs.append(data(d=donor, d_orig_atom=d_orig_atom, d_orig_idx=d_orig_idx,
h=pybel.Atom(adj_atom), type='regular'))
for carbon in hydroph_atoms:
for adj_atom in [a for a in pybel.ob.OBAtomAtomIter(carbon.atom.OBAtom) if a.GetAtomicNum() == 1]:
d_orig_idx = self.Mapper.mapid(carbon.atom.idx, mtype=self.mtype, bsid=self.bsid)
d_orig_atom = self.Mapper.id_to_atom(d_orig_idx)
donor_pairs.append(data(d=carbon, d_orig_atom=d_orig_atom,
d_orig_idx=d_orig_idx, h=pybel.Atom(adj_atom), type='weak'))
return donor_pairs
|
def find_hbd(self, all_atoms, hydroph_atoms)
|
Find all possible strong and weak hydrogen bonds donors (all hydrophobic C-H pairings)
| 2.660446 | 2.603281 | 1.021959 |
data = namedtuple('aromatic_ring', 'atoms orig_atoms atoms_orig_idx normal obj center type')
rings = []
aromatic_amino = ['TYR', 'TRP', 'HIS', 'PHE']
ring_candidates = mol.OBMol.GetSSSR()
write_message("Number of aromatic ring candidates: %i\n" % len(ring_candidates), mtype="debug")
# Check here first for ligand rings not being detected as aromatic by Babel and check for planarity
for ring in ring_candidates:
r_atoms = [a for a in all_atoms if ring.IsMember(a.OBAtom)]
if 4 < len(r_atoms) <= 6:
res = list(set([whichrestype(a) for a in r_atoms]))
if ring.IsAromatic() or res[0] in aromatic_amino or ring_is_planar(ring, r_atoms):
# Causes segfault with OpenBabel 2.3.2, so deactivated
# typ = ring.GetType() if not ring.GetType() == '' else 'unknown'
# Alternative typing
typ = '%s-membered' % len(r_atoms)
ring_atms = [r_atoms[a].coords for a in [0, 2, 4]] # Probe atoms for normals, assuming planarity
ringv1 = vector(ring_atms[0], ring_atms[1])
ringv2 = vector(ring_atms[2], ring_atms[0])
atoms_orig_idx = [self.Mapper.mapid(r_atom.idx, mtype=self.mtype,
bsid=self.bsid) for r_atom in r_atoms]
orig_atoms = [self.Mapper.id_to_atom(idx) for idx in atoms_orig_idx]
rings.append(data(atoms=r_atoms,
orig_atoms=orig_atoms,
atoms_orig_idx=atoms_orig_idx,
normal=normalize_vector(np.cross(ringv1, ringv2)),
obj=ring,
center=centroid([ra.coords for ra in r_atoms]),
type=typ))
return rings
|
def find_rings(self, mol, all_atoms)
|
Find rings and return only aromatic.
Rings have to be sufficiently planar OR be detected by OpenBabel as aromatic.
| 4.870939 | 4.61577 | 1.055282 |
unpaired_hba, unpaired_hbd, unpaired_hal = [], [], []
# Unpaired hydrogen bond acceptors/donors in ligand (not used for hydrogen bonds/water, salt bridges/mcomplex)
involved_atoms = [hbond.a.idx for hbond in self.hbonds_pdon] + [hbond.d.idx for hbond in self.hbonds_ldon]
[[involved_atoms.append(atom.idx) for atom in sb.negative.atoms] for sb in self.saltbridge_lneg]
[[involved_atoms.append(atom.idx) for atom in sb.positive.atoms] for sb in self.saltbridge_pneg]
[involved_atoms.append(wb.a.idx) for wb in self.water_bridges if wb.protisdon]
[involved_atoms.append(wb.d.idx) for wb in self.water_bridges if not wb.protisdon]
[involved_atoms.append(mcomplex.target.atom.idx) for mcomplex in self.metal_complexes
if mcomplex.location == 'ligand']
for atom in [hba.a for hba in self.ligand.get_hba()]:
if atom.idx not in involved_atoms:
unpaired_hba.append(atom)
for atom in [hbd.d for hbd in self.ligand.get_hbd()]:
if atom.idx not in involved_atoms:
unpaired_hbd.append(atom)
# unpaired halogen bond donors in ligand (not used for the previous + halogen bonds)
[involved_atoms.append(atom.don.x.idx) for atom in self.halogen_bonds]
for atom in [haldon.x for haldon in self.ligand.halogenbond_don]:
if atom.idx not in involved_atoms:
unpaired_hal.append(atom)
return unpaired_hba, unpaired_hbd, unpaired_hal
|
def find_unpaired_ligand(self)
|
Identify unpaired functional in groups in ligands, involving H-Bond donors, acceptors, halogen bond donors.
| 3.276624 | 3.187936 | 1.02782 |
sel = {}
# 1. Rings interacting via stacking can't have additional hydrophobic contacts between each other.
for pistack, h in itertools.product(pistacks, all_h):
h1, h2 = h.bsatom.idx, h.ligatom.idx
brs, lrs = [p1.idx for p1 in pistack.proteinring.atoms], [p2.idx for p2 in pistack.ligandring.atoms]
if h1 in brs and h2 in lrs:
sel[(h1, h2)] = "EXCLUDE"
hydroph = [h for h in all_h if not (h.bsatom.idx, h.ligatom.idx) in sel]
sel2 = {}
# 2. If a ligand atom interacts with several binding site atoms in the same residue,
# keep only the one with the closest distance
for h in hydroph:
if not (h.ligatom.idx, h.resnr) in sel2:
sel2[(h.ligatom.idx, h.resnr)] = h
else:
if sel2[(h.ligatom.idx, h.resnr)].distance > h.distance:
sel2[(h.ligatom.idx, h.resnr)] = h
hydroph = [h for h in sel2.values()]
hydroph_final = []
bsclust = {}
# 3. If a protein atom interacts with several neighboring ligand atoms, just keep the one with the closest dist
for h in hydroph:
if h.bsatom.idx not in bsclust:
bsclust[h.bsatom.idx] = [h, ]
else:
bsclust[h.bsatom.idx].append(h)
idx_to_h = {}
for bs in [a for a in bsclust if len(bsclust[a]) == 1]:
hydroph_final.append(bsclust[bs][0])
# A list of tuples with the idx of an atom and one of its neighbours is created
for bs in [a for a in bsclust if not len(bsclust[a]) == 1]:
tuples = []
all_idx = [i.ligatom.idx for i in bsclust[bs]]
for b in bsclust[bs]:
idx = b.ligatom.idx
neigh = [na for na in pybel.ob.OBAtomAtomIter(b.ligatom.OBAtom)]
for n in neigh:
n_idx = n.GetIdx()
if n_idx in all_idx:
if n_idx < idx:
tuples.append((n_idx, idx))
else:
tuples.append((idx, n_idx))
idx_to_h[idx] = b
tuples = list(set(tuples))
tuples = sorted(tuples, key=itemgetter(1))
clusters = cluster_doubles(tuples) # Cluster connected atoms (i.e. find hydrophobic patches)
for cluster in clusters:
min_dist = float('inf')
min_h = None
for atm_idx in cluster:
h = idx_to_h[atm_idx]
if h.distance < min_dist:
min_dist = h.distance
min_h = h
hydroph_final.append(min_h)
before, reduced = len(all_h), len(hydroph_final)
if not before == 0 and not before == reduced:
write_message('Reduced number of hydrophobic contacts from %i to %i.\n' % (before, reduced), indent=True)
return hydroph_final
|
def refine_hydrophobic(self, all_h, pistacks)
|
Apply several rules to reduce the number of hydrophobic interactions.
| 3.046341 | 3.027519 | 1.006217 |
i_set = {}
for hbond in all_hbonds:
i_set[hbond] = False
for salt in salt_pneg:
protidx, ligidx = [at.idx for at in salt.negative.atoms], [at.idx for at in salt.positive.atoms]
if hbond.d.idx in ligidx and hbond.a.idx in protidx:
i_set[hbond] = True
for salt in salt_lneg:
protidx, ligidx = [at.idx for at in salt.positive.atoms], [at.idx for at in salt.negative.atoms]
if hbond.d.idx in ligidx and hbond.a.idx in protidx:
i_set[hbond] = True
# Allow only one hydrogen bond per donor, select interaction with larger donor angle
second_set = {}
hbls = [k for k in i_set.keys() if not i_set[k]]
for hbl in hbls:
if hbl.d.idx not in second_set:
second_set[hbl.d.idx] = (hbl.angle, hbl)
else:
if second_set[hbl.d.idx][0] < hbl.angle:
second_set[hbl.d.idx] = (hbl.angle, hbl)
return [hb[1] for hb in second_set.values()]
|
def refine_hbonds_ldon(self, all_hbonds, salt_lneg, salt_pneg)
|
Refine selection of hydrogen bonds. Do not allow groups which already form salt bridges to form H-Bonds.
| 2.424083 | 2.398301 | 1.01075 |
i_set = []
for picat in all_picat:
exclude = False
for stack in stacks:
if whichrestype(stack.proteinring.atoms[0]) == 'HIS' and picat.ring.obj == stack.ligandring.obj:
exclude = True
if not exclude:
i_set.append(picat)
return i_set
|
def refine_pi_cation_laro(self, all_picat, stacks)
|
Just important for constellations with histidine involved. If the histidine ring is positioned in stacking
position to an aromatic ring in the ligand, there is in most cases stacking and pi-cation interaction reported
as histidine also carries a positive charge in the ring. For such cases, only report stacking.
| 6.023558 | 5.042306 | 1.194604 |
donor_atoms_hbonds = [hb.d.idx for hb in hbonds_ldon + hbonds_pdon]
wb_dict = {}
wb_dict2 = {}
omega = 110.0
# Just one hydrogen bond per donor atom
for wbridge in [wb for wb in wbridges if wb.d.idx not in donor_atoms_hbonds]:
if (wbridge.water.idx, wbridge.a.idx) not in wb_dict:
wb_dict[(wbridge.water.idx, wbridge.a.idx)] = wbridge
else:
if abs(omega - wb_dict[(wbridge.water.idx, wbridge.a.idx)].w_angle) < abs(omega - wbridge.w_angle):
wb_dict[(wbridge.water.idx, wbridge.a.idx)] = wbridge
for wb_tuple in wb_dict:
water, acceptor = wb_tuple
if water not in wb_dict2:
wb_dict2[water] = [(abs(omega - wb_dict[wb_tuple].w_angle), wb_dict[wb_tuple]), ]
elif len(wb_dict2[water]) == 1:
wb_dict2[water].append((abs(omega - wb_dict[wb_tuple].w_angle), wb_dict[wb_tuple]))
wb_dict2[water] = sorted(wb_dict2[water])
else:
if wb_dict2[water][1][0] < abs(omega - wb_dict[wb_tuple].w_angle):
wb_dict2[water] = [wb_dict2[water][0], (wb_dict[wb_tuple].w_angle, wb_dict[wb_tuple])]
filtered_wb = []
for fwbridges in wb_dict2.values():
[filtered_wb.append(fwb[1]) for fwb in fwbridges]
return filtered_wb
|
def refine_water_bridges(self, wbridges, hbonds_ldon, hbonds_pdon)
|
A donor atom already forming a hydrogen bond is not allowed to form a water bridge. Each water molecule
can only be donor for two water bridges, selecting the constellation with the omega angle closest to 110 deg.
| 2.144624 | 2.024281 | 1.05945 |
data = namedtuple('hal_acceptor', 'o o_orig_idx y y_orig_idx')
a_set = []
# All oxygens, nitrogen, sulfurs with neighboring carbon, phosphor, nitrogen or sulfur
for a in [at for at in atoms if at.atomicnum in [8, 7, 16]]:
n_atoms = [na for na in pybel.ob.OBAtomAtomIter(a.OBAtom) if na.GetAtomicNum() in [6, 7, 15, 16]]
if len(n_atoms) == 1: # Proximal atom
o_orig_idx = self.Mapper.mapid(a.idx, mtype=self.mtype, bsid=self.bsid)
y_orig_idx = self.Mapper.mapid(n_atoms[0].GetIdx(), mtype=self.mtype, bsid=self.bsid)
a_set.append(data(o=a, o_orig_idx=o_orig_idx, y=pybel.Atom(n_atoms[0]), y_orig_idx=y_orig_idx))
return a_set
|
def find_hal(self, atoms)
|
Look for halogen bond acceptors (Y-{O|P|N|S}, with Y=C,P,S)
| 3.694729 | 3.316266 | 1.114123 |
data = namedtuple('pcharge', 'atoms atoms_orig_idx type center restype resnr reschain')
a_set = []
# Iterate through all residue, exclude those in chains defined as peptides
for res in [r for r in pybel.ob.OBResidueIter(mol.OBMol) if not r.GetChain() in config.PEPTIDES]:
if config.INTRA is not None:
if res.GetChain() != config.INTRA:
continue
a_contributing = []
a_contributing_orig_idx = []
if res.GetName() in ('ARG', 'HIS', 'LYS'): # Arginine, Histidine or Lysine have charged sidechains
for a in pybel.ob.OBResidueAtomIter(res):
if a.GetType().startswith('N') and res.GetAtomProperty(a, 8) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf:
a_contributing.append(pybel.Atom(a))
a_contributing_orig_idx.append(self.Mapper.mapid(a.GetIdx(), mtype='protein'))
if not len(a_contributing) == 0:
a_set.append(data(atoms=a_contributing,
atoms_orig_idx=a_contributing_orig_idx,
type='positive',
center=centroid([ac.coords for ac in a_contributing]),
restype=res.GetName(),
resnr=res.GetNum(),
reschain=res.GetChain()))
if res.GetName() in ('GLU', 'ASP'): # Aspartic or Glutamic Acid
for a in pybel.ob.OBResidueAtomIter(res):
if a.GetType().startswith('O') and res.GetAtomProperty(a, 8) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf:
a_contributing.append(pybel.Atom(a))
a_contributing_orig_idx.append(self.Mapper.mapid(a.GetIdx(), mtype='protein'))
if not len(a_contributing) == 0:
a_set.append(data(atoms=a_contributing,
atoms_orig_idx=a_contributing_orig_idx,
type='negative',
center=centroid([ac.coords for ac in a_contributing]),
restype=res.GetName(),
resnr=res.GetNum(),
reschain=res.GetChain()))
return a_set
|
def find_charged(self, mol)
|
Looks for positive charges in arginine, histidine or lysine, for negative in aspartic and glutamic acid.
| 2.648996 | 2.538769 | 1.043418 |
data = namedtuple('metal_binding', 'atom atom_orig_idx type restype resnr reschain location')
a_set = []
for res in pybel.ob.OBResidueIter(mol.OBMol):
restype, reschain, resnr = res.GetName().upper(), res.GetChain(), res.GetNum()
if restype in ['ASP', 'GLU', 'SER', 'THR', 'TYR']: # Look for oxygens here
for a in pybel.ob.OBResidueAtomIter(res):
if a.GetType().startswith('O') and res.GetAtomProperty(a, 8) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf:
atom_orig_idx = self.Mapper.mapid(a.GetIdx(), mtype=self.mtype, bsid=self.bsid)
a_set.append(data(atom=pybel.Atom(a), atom_orig_idx=atom_orig_idx, type='O', restype=restype,
resnr=resnr, reschain=reschain,
location='protein.sidechain'))
if restype == 'HIS': # Look for nitrogen here
for a in pybel.ob.OBResidueAtomIter(res):
if a.GetType().startswith('N') and res.GetAtomProperty(a, 8) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf:
atom_orig_idx = self.Mapper.mapid(a.GetIdx(), mtype=self.mtype, bsid=self.bsid)
a_set.append(data(atom=pybel.Atom(a), atom_orig_idx=atom_orig_idx, type='N', restype=restype,
resnr=resnr, reschain=reschain,
location='protein.sidechain'))
if restype == 'CYS': # Look for sulfur here
for a in pybel.ob.OBResidueAtomIter(res):
if a.GetType().startswith('S') and res.GetAtomProperty(a, 8) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf:
atom_orig_idx = self.Mapper.mapid(a.GetIdx(), mtype=self.mtype, bsid=self.bsid)
a_set.append(data(atom=pybel.Atom(a), atom_orig_idx=atom_orig_idx, type='S', restype=restype,
resnr=resnr, reschain=reschain,
location='protein.sidechain'))
for a in pybel.ob.OBResidueAtomIter(res): # All main chain oxygens
if a.GetType().startswith('O') and res.GetAtomProperty(a, 2) \
and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf and restype != 'HOH':
atom_orig_idx = self.Mapper.mapid(a.GetIdx(), mtype=self.mtype, bsid=self.bsid)
a_set.append(data(atom=pybel.Atom(a), atom_orig_idx=atom_orig_idx, type='O', restype=res.GetName(),
resnr=res.GetNum(), reschain=res.GetChain(),
location='protein.mainchain'))
return a_set
|
def find_metal_binding(self, mol)
|
Looks for atoms that could possibly be involved in chelating a metal ion.
This can be any main chain oxygen atom or oxygen, nitrogen and sulfur from specific amino acids
| 1.844639 | 1.798853 | 1.025453 |
n_atoms = [a_neighbor.GetAtomicNum() for a_neighbor in pybel.ob.OBAtomAtomIter(atom.OBAtom)]
if group in ['quartamine', 'tertamine'] and atom.atomicnum == 7: # Nitrogen
# It's a nitrogen, so could be a protonated amine or quaternary ammonium
if '1' not in n_atoms and len(n_atoms) == 4:
return True if group == 'quartamine' else False # It's a quat. ammonium (N with 4 residues != H)
elif atom.OBAtom.GetHyb() == 3 and len(n_atoms) >= 3:
return True if group == 'tertamine' else False # It's sp3-hybridized, so could pick up an hydrogen
else:
return False
if group in ['sulfonium', 'sulfonicacid', 'sulfate'] and atom.atomicnum == 16: # Sulfur
if '1' not in n_atoms and len(n_atoms) == 3: # It's a sulfonium (S with 3 residues != H)
return True if group == 'sulfonium' else False
elif n_atoms.count(8) == 3: # It's a sulfonate or sulfonic acid
return True if group == 'sulfonicacid' else False
elif n_atoms.count(8) == 4: # It's a sulfate
return True if group == 'sulfate' else False
if group == 'phosphate' and atom.atomicnum == 15: # Phosphor
if set(n_atoms) == {8}: # It's a phosphate
return True
if group in ['carboxylate', 'guanidine'] and atom.atomicnum == 6: # It's a carbon atom
if n_atoms.count(8) == 2 and n_atoms.count(6) == 1: # It's a carboxylate group
return True if group == 'carboxylate' else False
elif n_atoms.count(7) == 3 and len(n_atoms) == 3: # It's a guanidine group
nitro_partners = []
for nitro in pybel.ob.OBAtomAtomIter(atom.OBAtom):
nitro_partners.append(len([b_neighbor for b_neighbor in pybel.ob.OBAtomAtomIter(nitro)]))
if min(nitro_partners) == 1: # One nitrogen is only connected to the carbon, can pick up a H
return True if group == 'guanidine' else False
if group == 'halocarbon' and atom.atomicnum in [9, 17, 35, 53]: # Halogen atoms
n_atoms = [na for na in pybel.ob.OBAtomAtomIter(atom.OBAtom) if na.GetAtomicNum() == 6]
if len(n_atoms) == 1: # Halocarbon
return True
else:
return False
|
def is_functional_group(self, atom, group)
|
Given a pybel atom, look up if it belongs to a function group
| 2.890684 | 2.873008 | 1.006152 |
data = namedtuple('hal_donor', 'x orig_x x_orig_idx c c_orig_idx')
a_set = []
for a in atoms:
if self.is_functional_group(a, 'halocarbon'):
n_atoms = [na for na in pybel.ob.OBAtomAtomIter(a.OBAtom) if na.GetAtomicNum() == 6]
x_orig_idx = self.Mapper.mapid(a.idx, mtype=self.mtype, bsid=self.bsid)
orig_x = self.Mapper.id_to_atom(x_orig_idx)
c_orig_idx = [self.Mapper.mapid(na.GetIdx(), mtype=self.mtype, bsid=self.bsid) for na in n_atoms]
a_set.append(data(x=a, orig_x=orig_x, x_orig_idx=x_orig_idx,
c=pybel.Atom(n_atoms[0]), c_orig_idx=c_orig_idx))
if len(a_set) != 0:
write_message('Ligand contains %i halogen atom(s).\n' % len(a_set), indent=True)
return a_set
|
def find_hal(self, atoms)
|
Look for halogen bond donors (X-C, with X=F, Cl, Br, I)
| 3.756134 | 3.520526 | 1.066924 |
single_sites = []
for member in ligand.members:
single_sites.append(':'.join([str(x) for x in member]))
site = ' + '.join(single_sites)
site = site if not len(site) > 20 else site[:20] + '...'
longname = ligand.longname if not len(ligand.longname) > 20 else ligand.longname[:20] + '...'
ligtype = 'Unspecified type' if ligand.type == 'UNSPECIFIED' else ligand.type
ligtext = "\n%s [%s] -- %s" % (longname, ligtype, site)
if ligtype == 'PEPTIDE':
ligtext = '\n Chain %s [PEPTIDE / INTER-CHAIN]' % ligand.chain
if ligtype == 'INTRA':
ligtext = "\n Chain %s [INTRA-CHAIN]" % ligand.chain
any_in_biolip = len(set([x[0] for x in ligand.members]).intersection(config.biolip_list)) != 0
write_message(ligtext)
write_message('\n' + '-' * len(ligtext) + '\n')
if ligtype not in ['POLYMER', 'DNA', 'ION', 'DNA+ION', 'RNA+ION', 'SMALLMOLECULE+ION'] and any_in_biolip:
write_message('may be biologically irrelevant\n', mtype='info', indent=True)
lig_obj = Ligand(self, ligand)
cutoff = lig_obj.max_dist_to_center + config.BS_DIST
bs_res = self.extract_bs(cutoff, lig_obj.centroid, self.resis)
# Get a list of all atoms belonging to the binding site, search by idx
bs_atoms = [self.atoms[idx] for idx in [i for i in self.atoms.keys()
if self.atoms[i].OBAtom.GetResidue().GetIdx() in bs_res]
if idx in self.Mapper.proteinmap and self.Mapper.mapid(idx, mtype='protein') not in self.altconf]
if ligand.type == 'PEPTIDE':
# If peptide, don't consider the peptide chain as part of the protein binding site
bs_atoms = [a for a in bs_atoms if a.OBAtom.GetResidue().GetChain() != lig_obj.chain]
if ligand.type == 'INTRA':
# Interactions within the chain
bs_atoms = [a for a in bs_atoms if a.OBAtom.GetResidue().GetChain() == lig_obj.chain]
bs_atoms_refined = []
# Create hash with BSRES -> (MINDIST_TO_LIG, AA_TYPE)
# and refine binding site atom selection with exact threshold
min_dist = {}
for r in bs_atoms:
bs_res_id = ''.join([str(whichresnumber(r)), whichchain(r)])
for l in ligand.mol.atoms:
distance = euclidean3d(r.coords, l.coords)
if bs_res_id not in min_dist:
min_dist[bs_res_id] = (distance, whichrestype(r))
elif min_dist[bs_res_id][0] > distance:
min_dist[bs_res_id] = (distance, whichrestype(r))
if distance <= config.BS_DIST and r not in bs_atoms_refined:
bs_atoms_refined.append(r)
num_bs_atoms = len(bs_atoms_refined)
write_message('Binding site atoms in vicinity (%.1f A max. dist: %i).\n' % (config.BS_DIST, num_bs_atoms),
indent=True)
bs_obj = BindingSite(bs_atoms_refined, self.protcomplex, self, self.altconf, min_dist, self.Mapper)
pli_obj = PLInteraction(lig_obj, bs_obj, self)
self.interaction_sets[ligand.mol.title] = pli_obj
|
def characterize_complex(self, ligand)
|
Handles all basic functions for characterizing the interactions for one ligand
| 4.272356 | 4.252169 | 1.004747 |
return [obres.GetIdx() for obres in resis if self.res_belongs_to_bs(obres, cutoff, ligcentroid)]
|
def extract_bs(self, cutoff, ligcentroid, resis)
|
Return list of ids from residues belonging to the binding site
| 6.687406 | 5.280663 | 1.266395 |
rescentroid = centroid([(atm.x(), atm.y(), atm.z()) for atm in pybel.ob.OBResidueAtomIter(res)])
# Check geometry
near_enough = True if euclidean3d(rescentroid, ligcentroid) < cutoff else False
# Check chain membership
restricted_chain = True if res.GetChain() in config.PEPTIDES else False
return (near_enough and not restricted_chain)
|
def res_belongs_to_bs(self, res, cutoff, ligcentroid)
|
Check for each residue if its centroid is within a certain distance to the ligand centroid.
Additionally checks if a residue belongs to a chain restricted by the user (e.g. by defining a peptide chain)
| 6.303313 | 5.61337 | 1.122911 |
return {
'MEDIA_URL' : core_settings.MEDIA_URL,
'STATIC_URL': core_settings.STATIC_URL,
'VERSION' : core_settings.VERSION,
'SERVER_INFO' : core_settings.SERVER_INFO,
'SITE_NAME' : current_site_name,
'CURRENT_SITE': current_site,
}
|
def url_info(request)
|
Make MEDIA_URL and current HttpRequest object
available in template code.
| 3.153004 | 2.841515 | 1.109621 |
# never cache headers + ETag
add_never_cache_headers(response)
if not hasattr(request, '_cache_update_cache') or not request._cache_update_cache:
# We don't need to update the cache, just return.
return response
if request.method != 'GET':
# This is a stronger requirement than above. It is needed
# because of interactions between this middleware and the
# HTTPMiddleware, which throws the body of a HEAD-request
# away before this middleware gets a chance to cache it.
return response
if not response.status_code == 200:
return response
# use the precomputed cache_key
if request._cache_middleware_key:
cache_key = request._cache_middleware_key
else:
cache_key = learn_cache_key(request, response, self.cache_timeout, self.key_prefix)
# include the orig_time information within the cache
cache.set(cache_key, (time.time(), response), self.cache_timeout)
return response
|
def process_response(self, request, response)
|
Sets the cache, if needed.
| 5.445839 | 5.378323 | 1.012553 |
if self.cache_anonymous_only:
assert hasattr(request, 'user'), "The Django cache middleware with CACHE_MIDDLEWARE_ANONYMOUS_ONLY=True requires authentication middleware to be installed. Edit your MIDDLEWARE_CLASSES setting to insert 'django.contrib.auth.middleware.AuthenticationMiddleware' before the CacheMiddleware."
if not request.method in ('GET', 'HEAD') or request.GET:
request._cache_update_cache = False
return None # Don't bother checking the cache.
if self.cache_anonymous_only and request.user.is_authenticated():
request._cache_update_cache = False
return None # Don't cache requests from authenticated users.
cache_key = get_cache_key(request, self.key_prefix)
request._cache_middleware_key = cache_key
if cache_key is None:
request._cache_update_cache = True
return None # No cache information available, need to rebuild.
response = cache.get(cache_key, None)
if response is None:
request._cache_update_cache = True
return None # No cache information available, need to rebuild.
orig_time, response = response
# time to refresh the cache
if orig_time and ((time.time() - orig_time) > self.cache_refresh_timeout):
request._cache_update_cache = True
# keep the response in the cache for just self.timeout seconds and mark it for update
# other requests will continue werving this response from cache while I alone work on refreshing it
cache.set(cache_key, (None, response), self.timeout)
return None
request._cache_update_cache = False
return response
|
def process_request(self, request)
|
Checks whether the page is already cached and returns the cached
version if available.
| 3.545065 | 3.533456 | 1.003285 |
collected = []
for func in finder_funcs:
gathered = func(obj, count, collected, *args, **kwargs)
if gathered:
collected += gathered
if len(collected) >= count:
return collected[:count]
return collected
|
def collect_related(self, finder_funcs, obj, count, *args, **kwargs)
|
Collects objects related to ``obj`` using a list of ``finder_funcs``.
Stops when required count is collected or the function list is
exhausted.
| 2.849141 | 2.893735 | 0.98459 |
return self.collect_related(self._get_finders(finder), obj, count, mods, only_from_same_site)
|
def get_related_for_object(self, obj, count, finder=None, mods=[], only_from_same_site=True)
|
Returns at most ``count`` publishable objects related to ``obj`` using
named related finder ``finder``.
If only specific type of publishable is prefered, use ``mods`` attribute
to list required classes.
Finally, use ``only_from_same_site`` if you don't want cross-site
content.
``finder`` atribute uses ``RELATED_FINDERS`` settings to find out
what finder function to use. If none is specified, ``default``
is used to perform the query.
| 4.329672 | 6.044493 | 0.7163 |
assert offset >= 0, "Offset must be a positive integer"
assert count >= 0, "Count must be a positive integer"
if not count:
return []
limit = offset + count
qset = self.get_listing_queryset(category, children, content_types, date_range, exclude, **kwargs)
# direct listings, we don't need to check for duplicates
if children == ListingHandler.NONE:
return qset[offset:limit]
seen = set()
out = []
while len(out) < count:
skip = 0
# 2 i a reasonable value for padding, wouldn't you say dear Watson?
for l in qset[offset:limit + 2]:
if l.publishable_id not in seen:
seen.add(l.publishable_id)
out.append(l)
if len(out) == count:
break
else:
skip += 1
# no enough skipped, or not enough listings to work with, no need for another try
if skip <= 2 or (len(out) + skip) < (count + 2):
break
# get another page to fill in the gaps
offset += count
limit += count
return out
|
def get_listing(self, category=None, children=ListingHandler.NONE, count=10, offset=0, content_types=[], date_range=(), exclude=None, **kwargs)
|
Get top objects for given category and potentionally also its child categories.
Params:
category - Category object to list objects for. None if any category will do
count - number of objects to output, defaults to 10
offset - starting with object number... 1-based
content_types - list of ContentTypes to list, if empty, object from all models are included
date_range - range for listing's publish_from field
**kwargs - rest of the parameter are passed to the queryset unchanged
| 4.386189 | 4.454028 | 0.984769 |
tname, context = _do_paginator(context, adjacent_pages, template_name)
return render_to_string(tname, context)
|
def paginator(context, adjacent_pages=2, template_name=None)
|
Renders a ``inclusion_tags/paginator.html`` or ``inc/paginator.html``
template with additional pagination context. To be used in conjunction
with the ``object_list`` generic
view.
If ``TEMPLATE_NAME`` parameter is given,
``inclusion_tags/paginator_TEMPLATE_NAME.html`` or
``inc/paginator_TEMPLATE_NAME.html`` will be used instead.
Adds pagination context variables for use in displaying first, adjacent pages and
last page links in addition to those created by the ``object_list`` generic
view.
Taken from http://www.djangosnippets.org/snippets/73/
Syntax::
{% paginator [NUMBER_OF_ADJACENT_PAGES] [TEMPLATE_NAME] %}
Examples::
{% paginator %}
{% paginator 5 %}
{% paginator 5 "special" %}
# with Django 1.4 and above you can also do:
{% paginator template_name="special" %}
| 4.747203 | 9.955762 | 0.47683 |
contents = token.split_contents()
if len(contents) not in [5, 7]:
raise template.TemplateSyntaxError('%r tag requires 4 or 6 arguments.' % contents[0])
elif len(contents) == 5:
tag, obj_var, count, fill, var_name = contents
return AuthorListingNode(obj_var, count, var_name)
else:
tag, obj_var, count, fill, var_name, filll, omit_var = contents
return AuthorListingNode(obj_var, count, var_name, omit_var)
|
def do_author_listing(parser, token)
|
Get N listing objects that were published by given author recently and optionally
omit a publishable object in results.
**Usage**::
{% author_listing <author> <limit> as <result> [omit <obj>] %}
**Parameters**::
================================== ================================================
Option Description
================================== ================================================
``author`` Author to load objects for.
``limit`` Maximum number of objects to store,
``result`` Store the resulting list in context under given
name.
================================== ================================================
**Examples**::
{% author_listing object.authors.all.0 10 as article_listing %}
| 3.076631 | 3.339848 | 0.921189 |
def f(T):
pw = _Region1(T, P)
gw = pw["h"]-T*pw["s"]
pv = _Region2(T, P)
gv = pv["h"]-T*pv["s"]
ps = SeaWater._saline(T, P, S)
return -ps["g"]+S*ps["gs"]-gw+gv
Tb = fsolve(f, 300)[0]
return Tb
|
def _Tb(P, S)
|
Procedure to calculate the boiling temperature of seawater
Parameters
----------
P : float
Pressure, [MPa]
S : float
Salinity, [kg/kg]
Returns
-------
Tb : float
Boiling temperature, [K]
References
----------
IAPWS, Advisory Note No. 5: Industrial Calculation of the Thermodynamic
Properties of Seawater, http://www.iapws.org/relguide/Advise5.html, Eq 7
| 6.78319 | 8.059806 | 0.841607 |
def f(T):
T = float(T)
pw = _Region1(T, P)
gw = pw["h"]-T*pw["s"]
gih = _Ice(T, P)["g"]
ps = SeaWater._saline(T, P, S)
return -ps["g"]+S*ps["gs"]-gw+gih
Tf = fsolve(f, 300)[0]
return Tf
|
def _Tf(P, S)
|
Procedure to calculate the freezing temperature of seawater
Parameters
----------
P : float
Pressure, [MPa]
S : float
Salinity, [kg/kg]
Returns
-------
Tf : float
Freezing temperature, [K]
References
----------
IAPWS, Advisory Note No. 5: Industrial Calculation of the Thermodynamic
Properties of Seawater, http://www.iapws.org/relguide/Advise5.html, Eq 12
| 10.562848 | 11.660273 | 0.905883 |
def f(parr):
T, P = parr
pw = _Region1(T, P)
gw = pw["h"]-T*pw["s"]
pv = _Region2(T, P)
gv = pv["h"]-T*pv["s"]
gih = _Ice(T, P)["g"]
ps = SeaWater._saline(T, P, S)
return -ps["g"]+S*ps["gs"]-gw+gih, -ps["g"]+S*ps["gs"]-gw+gv
Tt, Pt = fsolve(f, [273, 6e-4])
prop = {}
prop["Tt"] = Tt
prop["Pt"] = Pt
return prop
|
def _Triple(S)
|
Procedure to calculate the triple point pressure and temperature for
seawater
Parameters
----------
S : float
Salinity, [kg/kg]
Returns
-------
prop : dict
Dictionary with the triple point properties:
* Tt: Triple point temperature, [K]
* Pt: Triple point pressure, [MPa]
References
----------
IAPWS, Advisory Note No. 5: Industrial Calculation of the Thermodynamic
Properties of Seawater, http://www.iapws.org/relguide/Advise5.html, Eq 7
| 7.484588 | 6.413662 | 1.166976 |
pw = _Region1(T, P)
gw = pw["h"]-T*pw["s"]
def f(Posm):
pw2 = _Region1(T, P+Posm)
gw2 = pw2["h"]-T*pw2["s"]
ps = SeaWater._saline(T, P+Posm, S)
return -ps["g"]+S*ps["gs"]-gw+gw2
Posm = fsolve(f, 0)[0]
return Posm
|
def _OsmoticPressure(T, P, S)
|
Procedure to calculate the osmotic pressure of seawater
Parameters
----------
T : float
Tmperature, [K]
P : float
Pressure, [MPa]
S : float
Salinity, [kg/kg]
Returns
-------
Posm : float
Osmotic pressure, [MPa]
References
----------
IAPWS, Advisory Note No. 5: Industrial Calculation of the Thermodynamic
Properties of Seawater, http://www.iapws.org/relguide/Advise5.html, Eq 15
| 6.472671 | 7.133564 | 0.907355 |
# Check input parameters
if T < 273.15 or T > 523.15 or P < 0 or P > 140 or S < 0 or S > 0.17:
raise NotImplementedError("Incoming out of bound")
# Eq 4
a1 = -7.180891e-5+1.831971e-7*P
a2 = 1.048077e-3-4.494722e-6*P
# Eq 5
b1 = 1.463375e-1+9.208586e-4*P
b2 = -3.086908e-3+1.798489e-5*P
a = a1*exp(a2*(T-273.15)) # Eq 2
b = b1*exp(b2*(T-273.15)) # Eq 3
# Eq 1
DL = a*(1000*S)**(1+b)
return DL
|
def _ThCond_SeaWater(T, P, S)
|
Equation for the thermal conductivity of seawater
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [MPa]
S : float
Salinity, [kg/kg]
Returns
-------
k : float
Thermal conductivity excess relative to that of the pure water, [W/mK]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 273.15 ≤ T ≤ 523.15
* 0 ≤ P ≤ 140
* 0 ≤ S ≤ 0.17
Examples
--------
>>> _ThCond_Seawater(293.15, 0.1, 0.035)
-0.00418604
References
----------
IAPWS, Guideline on the Thermal Conductivity of Seawater,
http://www.iapws.org/relguide/Seawater-ThCond.html
| 3.974284 | 3.841416 | 1.034588 |
# Check input parameters
if T < 523.15 or T > 623.15 or mH2SO4 < 0 or mH2SO4 > 0.75 or \
mNaCl < 0 or mNaCl > 2.25:
raise NotImplementedError("Incoming out of bound")
A00 = -0.8085987*T+81.4613752+0.10537803*T*log(T)
A10 = 3.4636364*T-281.63322-0.46779874*T*log(T)
A20 = -6.0029634*T+480.60108+0.81382854*T*log(T)
A30 = 4.4540258*T-359.36872-0.60306734*T*log(T)
A01 = 0.4909061*T-46.556271-0.064612393*T*log(T)
A02 = -0.002781314*T+1.722695+0.0000013319698*T*log(T)
A03 = -0.014074108*T+0.99020227+0.0019397832*T*log(T)
A11 = -0.87146573*T+71.808756+0.11749585*T*log(T)
S = A00 + A10*mH2SO4 + A20*mH2SO4**2 + A30*mH2SO4**3 + A01*mNaCl + \
A02*mNaCl**2 + A03*mNaCl**3 + A11*mH2SO4*mNaCl
return S
|
def _solNa2SO4(T, mH2SO4, mNaCl)
|
Equation for the solubility of sodium sulfate in aqueous mixtures of
sodium chloride and sulfuric acid
Parameters
----------
T : float
Temperature, [K]
mH2SO4 : float
Molality of sufuric acid, [mol/kg(water)]
mNaCl : float
Molality of sodium chloride, [mol/kg(water)]
Returns
-------
S : float
Molal solutility of sodium sulfate, [mol/kg(water)]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 523.15 ≤ T ≤ 623.15
* 0 ≤ mH2SO4 ≤ 0.75
* 0 ≤ mNaCl ≤ 2.25
Examples
--------
>>> _solNa2SO4(523.15, 0.25, 0.75)
2.68
References
----------
IAPWS, Solubility of Sodium Sulfate in Aqueous Mixtures of Sodium Chloride
and Sulfuric Acid from Water to Concentrated Solutions,
http://www.iapws.org/relguide/na2so4.pdf
| 3.608943 | 3.538986 | 1.019768 |
# Check input parameters
if x < 0 or x > 0.12:
raise NotImplementedError("Incoming out of bound")
T1 = Tc*(1 + 2.3e1*x - 3.3e2*x**1.5 - 1.8e3*x**2)
T2 = Tc*(1 + 1.757e1*x - 3.026e2*x**1.5 + 2.838e3*x**2 - 1.349e4*x**2.5 +
3.278e4*x**3 - 3.674e4*x**3.5 + 1.437e4*x**4)
f1 = (abs(10000*x-10-1)-abs(10000*x-10+1))/4+0.5
f2 = (abs(10000*x-10+1)-abs(10000*x-10-1))/4+0.5
# Eq 1
tc = f1*T1+f2*T2
# Eq 7
rc = rhoc*(1 + 1.7607e2*x - 2.9693e3*x**1.5 + 2.4886e4*x**2 -
1.1377e5*x**2.5 + 2.8847e5*x**3 - 3.8195e5*x**3.5 +
2.0633e5*x**4)
# Eq 8
DT = tc-Tc
pc = Pc*(1+9.1443e-3*DT+5.1636e-5*DT**2-2.5360e-7*DT**3+3.6494e-10*DT**4)
prop = {}
prop["Tc"] = tc
prop["rhoc"] = rc
prop["Pc"] = pc
return prop
|
def _critNaCl(x)
|
Equation for the critical locus of aqueous solutions of sodium chloride
Parameters
----------
x : float
Mole fraction of NaCl, [-]
Returns
-------
prop : dict
A dictionary withe the properties:
* Tc: critical temperature, [K]
* Pc: critical pressure, [MPa]
* rhoc: critical density, [kg/m³]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 0 ≤ x ≤ 0.12
Examples
--------
>>> _critNaCl(0.1)
975.571016
References
----------
IAPWS, Revised Guideline on the Critical Locus of Aqueous Solutions of
Sodium Chloride, http://www.iapws.org/relguide/critnacl.html
| 3.376898 | 3.296753 | 1.02431 |
T = self.kwargs["T"]
P = self.kwargs["P"]
S = self.kwargs["S"]
self.m = S/(1-S)/Ms
if self.kwargs["fast"] and T <= 313.15:
pw = self._waterSupp(T, P)
elif self.kwargs["IF97"]:
pw = self._waterIF97(T, P)
else:
pw = self._water(T, P)
ps = self._saline(T, P, S)
prop = {}
for key in ps:
prop[key] = pw[key]+ps[key]
self.__setattr__(key, prop[key])
self.T = T
self.P = P
self.rho = 1./prop["gp"]
self.v = prop["gp"]
self.s = -prop["gt"]
self.cp = -T*prop["gtt"]
self.cv = T*(prop["gtp"]**2/prop["gpp"]-prop["gtt"])
self.h = prop["g"]-T*prop["gt"]
self.u = prop["g"]-T*prop["gt"]-P*1000*prop["gp"]
self.a = prop["g"]-P*1000*prop["gp"]
self.alfav = prop["gtp"]/prop["gp"]
self.betas = -prop["gtp"]/prop["gtt"]
self.xkappa = -prop["gpp"]/prop["gp"]
self.ks = (prop["gtp"]**2-prop["gtt"]*prop["gpp"])/prop["gp"] / \
prop["gtt"]
self.w = prop["gp"]*(prop["gtt"]*1000/(prop["gtp"]**2 -
prop["gtt"]*1000*prop["gpp"]*1e-6))**0.5
if "thcond" in pw:
kw = pw["thcond"]
else:
kw = _ThCond(1/pw["gp"], T)
try:
self.k = _ThCond_SeaWater(T, P, S)+kw
except NotImplementedError:
self.k = None
if S:
self.mu = prop["gs"]
self.muw = prop["g"]-S*prop["gs"]
self.mus = prop["g"]+(1-S)*prop["gs"]
self.osm = -(ps["g"]-S*prop["gs"])/self.m/Rm/T
self.haline = -prop["gsp"]/prop["gp"]
else:
self.mu = None
self.muw = None
self.mus = None
self.osm = None
self.haline = None
|
def calculo(self)
|
Calculate procedure
| 3.890736 | 3.866103 | 1.006372 |
water = IAPWS95(P=P, T=T)
prop = {}
prop["g"] = water.h-T*water.s
prop["gt"] = -water.s
prop["gp"] = 1./water.rho
prop["gtt"] = -water.cp/T
prop["gtp"] = water.betas*water.cp/T
prop["gpp"] = -1e6/(water.rho*water.w)**2-water.betas**2*1e3*water.cp/T
prop["gs"] = 0
prop["gsp"] = 0
prop["thcond"] = water.k
return prop
|
def _water(cls, T, P)
|
Get properties of pure water, Table4 pag 8
| 4.756545 | 4.729024 | 1.00582 |
fir = 0
# Polinomial terms
nr1 = coef.get("nr1", [])
d1 = coef.get("d1", [])
t1 = coef.get("t1", [])
for n, d, t in zip(nr1, d1, t1):
fir += n*delta**d*tau**t
# Exponential terms
nr2 = coef.get("nr2", [])
d2 = coef.get("d2", [])
g2 = coef.get("gamma2", [])
t2 = coef.get("t2", [])
c2 = coef.get("c2", [])
for n, d, g, t, c in zip(nr2, d2, g2, t2, c2):
fir += n*delta**d*tau**t*exp(-g*delta**c)
# Gaussian terms
nr3 = coef.get("nr3", [])
d3 = coef.get("d3", [])
t3 = coef.get("t3", [])
a3 = coef.get("alfa3", [])
e3 = coef.get("epsilon3", [])
b3 = coef.get("beta3", [])
g3 = coef.get("gamma3", [])
for n, d, t, a, e, b, g in zip(nr3, d3, t3, a3, e3, b3, g3):
fir += n*delta**d*tau**t*exp(-a*(delta-e)**2-b*(tau-g)**2)
# Non analitic terms
nr4 = coef.get("nr4", [])
a4 = coef.get("a4", [])
b4 = coef.get("b4", [])
Ai = coef.get("A", [])
Bi = coef.get("B", [])
Ci = coef.get("C", [])
Di = coef.get("D", [])
bt4 = coef.get("beta4", [])
for n, a, b, A, B, C, D, bt in zip(nr4, a4, b4, Ai, Bi, Ci, Di, bt4):
Tita = (1-tau)+A*((delta-1)**2)**(0.5/bt)
F = exp(-C*(delta-1)**2-D*(tau-1)**2)
Delta = Tita**2+B*((delta-1)**2)**a
fir += n*Delta**b*delta*F
return fir
|
def _phir(tau, delta, coef)
|
Residual contribution to the adimensional free Helmholtz energy
Parameters
----------
tau : float
Inverse reduced temperature Tc/T, [-]
delta : float
Reduced density rho/rhoc, [-]
coef : dict
Dictionary with equation of state parameters
Returns
-------
fir : float
Adimensional free Helmholtz energy
References
----------
IAPWS, Revised Release on the IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use, September 2016, Table 5
http://www.iapws.org/relguide/IAPWS-95.html
| 2.154863 | 2.197437 | 0.980626 |
def decorator(f):
# __doc__ is only writable in python3.
# The doc build must be done with python3 so this snnippet do the work
py_version = platform.python_version()
if py_version[0] == "3":
doc = f.__doc__.split(os.linesep)
try:
ind = doc.index("")
except ValueError:
ind = 1
doc1 = os.linesep.join(doc[:ind])
doc3 = os.linesep.join(doc[ind:])
doc2 = os.linesep.join(MEoS.__doc__.split(os.linesep)[3:])
f.__doc__ = doc1 + os.linesep + os.linesep + \
doc2 + os.linesep + os.linesep + doc3
return f
return decorator
|
def mainClassDoc()
|
Function decorator used to automatic adiction of base class MEoS in
subclass __doc__
| 4.506114 | 3.953447 | 1.139794 |
self._mode = ""
if self.kwargs["T"] and self.kwargs["P"]:
self._mode = "TP"
elif self.kwargs["T"] and self.kwargs["rho"]:
self._mode = "Trho"
elif self.kwargs["T"] and self.kwargs["h"] is not None:
self._mode = "Th"
elif self.kwargs["T"] and self.kwargs["s"] is not None:
self._mode = "Ts"
elif self.kwargs["T"] and self.kwargs["u"] is not None:
self._mode = "Tu"
elif self.kwargs["P"] and self.kwargs["rho"]:
self._mode = "Prho"
elif self.kwargs["P"] and self.kwargs["h"] is not None:
self._mode = "Ph"
elif self.kwargs["P"] and self.kwargs["s"] is not None:
self._mode = "Ps"
elif self.kwargs["P"] and self.kwargs["u"] is not None:
self._mode = "Pu"
elif self.kwargs["rho"] and self.kwargs["h"] is not None:
self._mode = "rhoh"
elif self.kwargs["rho"] and self.kwargs["s"] is not None:
self._mode = "rhos"
elif self.kwargs["rho"] and self.kwargs["u"] is not None:
self._mode = "rhou"
elif self.kwargs["h"] is not None and self.kwargs["s"] is not None:
self._mode = "hs"
elif self.kwargs["h"] is not None and self.kwargs["u"] is not None:
self._mode = "hu"
elif self.kwargs["s"] is not None and self.kwargs["u"] is not None:
self._mode = "su"
elif self.kwargs["T"] and self.kwargs["x"] is not None:
self._mode = "Tx"
elif self.kwargs["P"] and self.kwargs["x"] is not None:
self._mode = "Px"
return bool(self._mode)
|
def calculable(self)
|
Check if inputs are enough to define state
| 1.370251 | 1.342476 | 1.02069 |
return deriv_H(self, z, x, y, fase)
|
def derivative(self, z, x, y, fase)
|
Wrapper derivative for custom derived properties
where x, y, z can be: P, T, v, rho, u, h, s, g, a
| 6.776799 | 6.217253 | 1.089999 |
rhoc = self._constants.get("rhoref", self.rhoc)
Tc = self._constants.get("Tref", self.Tc)
if T > Tc:
T = Tc
tau = Tc/T
rhoLo = self._Liquid_Density(T)
rhoGo = self._Vapor_Density(T)
def f(parr):
rhol, rhog = parr
deltaL = rhol/rhoc
deltaG = rhog/rhoc
phirL = _phir(tau, deltaL, self._constants)
phirG = _phir(tau, deltaG, self._constants)
phirdL = _phird(tau, deltaL, self._constants)
phirdG = _phird(tau, deltaG, self._constants)
Jl = deltaL*(1+deltaL*phirdL)
Jv = deltaG*(1+deltaG*phirdG)
Kl = deltaL*phirdL+phirL+log(deltaL)
Kv = deltaG*phirdG+phirG+log(deltaG)
return Kv-Kl, Jv-Jl
rhoL, rhoG = fsolve(f, [rhoLo, rhoGo])
if rhoL == rhoG:
Ps = self.Pc
else:
deltaL = rhoL/self.rhoc
deltaG = rhoG/self.rhoc
firL = _phir(tau, deltaL, self._constants)
firG = _phir(tau, deltaG, self._constants)
Ps = self.R*T*rhoL*rhoG/(rhoL-rhoG)*(firL-firG+log(deltaL/deltaG))
return rhoL, rhoG, Ps
|
def _saturation(self, T)
|
Saturation calculation for two phase search
| 3.153778 | 3.15834 | 0.998556 |
if isinstance(rho, ndarray):
rho = rho[0]
if isinstance(T, ndarray):
T = T[0]
if rho < 0:
rho = 1e-20
if T < 50:
T = 50
rhoc = self._constants.get("rhoref", self.rhoc)
Tc = self._constants.get("Tref", self.Tc)
delta = rho/rhoc
tau = Tc/T
ideal = self._phi0(tau, delta)
fio = ideal["fio"]
fiot = ideal["fiot"]
fiott = ideal["fiott"]
res = self._phir(tau, delta)
fir = res["fir"]
firt = res["firt"]
firtt = res["firtt"]
fird = res["fird"]
firdd = res["firdd"]
firdt = res["firdt"]
propiedades = {}
propiedades["fir"] = fir
propiedades["fird"] = fird
propiedades["firdd"] = firdd
propiedades["delta"] = delta
propiedades["rho"] = rho
propiedades["P"] = (1+delta*fird)*self.R*T*rho
propiedades["h"] = self.R*T*(1+tau*(fiot+firt)+delta*fird)
propiedades["s"] = self.R*(tau*(fiot+firt)-fio-fir)
propiedades["cv"] = -self.R*tau**2*(fiott+firtt)
propiedades["alfap"] = (1-delta*tau*firdt/(1+delta*fird))/T
propiedades["betap"] = rho*(
1+(delta*fird+delta**2*firdd)/(1+delta*fird))
return propiedades
|
def _Helmholtz(self, rho, T)
|
Calculated properties from helmholtz free energy and derivatives
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
prop : dict
Dictionary with calculated properties:
* fir: [-]
* fird: ∂fir/∂δ|τ
* firdd: ∂²fir/∂δ²|τ
* delta: Reducen density rho/rhoc, [-]
* P: Pressure, [kPa]
* h: Enthalpy, [kJ/kg]
* s: Entropy, [kJ/kgK]
* cv: Isochoric specific heat, [kJ/kgK]
* alfav: Thermal expansion coefficient, [1/K]
* betap: Isothermal compressibility, [1/kPa]
References
----------
IAPWS, Revised Release on the IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use, September 2016, Table 3
http://www.iapws.org/relguide/IAPWS-95.html
| 3.391468 | 2.946372 | 1.151066 |
rhoc = self._constants.get("rhoref", self.rhoc)
Tc = self._constants.get("Tref", self.Tc)
delta = rho/rhoc
tau = Tc/T
ideal = self._phi0(tau, delta)
fio = ideal["fio"]
fiot = ideal["fiot"]
fiott = ideal["fiott"]
propiedades = _fase()
propiedades.h = self.R*T*(1+tau*fiot)
propiedades.s = self.R*(tau*fiot-fio)
propiedades.cv = -self.R*tau**2*fiott
propiedades.cp = self.R*(-tau**2*fiott+1)
propiedades.alfap = 1/T
propiedades.betap = rho
return propiedades
|
def _prop0(self, rho, T)
|
Ideal gas properties
| 4.84067 | 4.644521 | 1.042232 |
Fi0 = self.Fi0
fio = Fi0["ao_log"][0]*log(delta)+Fi0["ao_log"][1]*log(tau)
fiot = +Fi0["ao_log"][1]/tau
fiott = -Fi0["ao_log"][1]/tau**2
fiod = 1/delta
fiodd = -1/delta**2
fiodt = 0
for n, t in zip(Fi0["ao_pow"], Fi0["pow"]):
fio += n*tau**t
if t != 0:
fiot += t*n*tau**(t-1)
if t not in [0, 1]:
fiott += n*t*(t-1)*tau**(t-2)
for n, t in zip(Fi0["ao_exp"], Fi0["titao"]):
fio += n*log(1-exp(-tau*t))
fiot += n*t*((1-exp(-t*tau))**-1-1)
fiott -= n*t**2*exp(-t*tau)*(1-exp(-t*tau))**-2
# Extension to especial terms of air
if "ao_exp2" in Fi0:
for n, g, C in zip(Fi0["ao_exp2"], Fi0["titao2"], Fi0["sum2"]):
fio += n*log(C+exp(g*tau))
fiot += n*g/(C*exp(-g*tau)+1)
fiott += C*n*g**2*exp(-g*tau)/(C*exp(-g*tau)+1)**2
prop = {}
prop["fio"] = fio
prop["fiot"] = fiot
prop["fiott"] = fiott
prop["fiod"] = fiod
prop["fiodd"] = fiodd
prop["fiodt"] = fiodt
return prop
|
def _phi0(self, tau, delta)
|
Ideal gas Helmholtz free energy and derivatives
Parameters
----------
tau : float
Inverse reduced temperature Tc/T, [-]
delta : float
Reduced density rho/rhoc, [-]
Returns
-------
prop : dictionary with ideal adimensional helmholtz energy and deriv
fio, [-]
fiot: ∂fio/∂τ|δ
fiod: ∂fio/∂δ|τ
fiott: ∂²fio/∂τ²|δ
fiodt: ∂²fio/∂τ∂δ
fiodd: ∂²fio/∂δ²|τ
References
----------
IAPWS, Revised Release on the IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use, September 2016, Table 4
http://www.iapws.org/relguide/IAPWS-95.html
| 3.180475 | 2.913843 | 1.091505 |
if not rho:
prop = {}
prop["fir"] = 0
prop["firt"] = 0
prop["fird"] = 0
prop["firtt"] = 0
prop["firdt"] = 0
prop["firdd"] = 0
return prop
R = self._constants.get("R")/self._constants.get("M", self.M)
rhoc = self._constants.get("rhoref", self.rhoc)
Tc = self._constants.get("Tref", self.Tc)
delta = rho/rhoc
tau = Tc/T
ideal = self._phi0(tau, delta)
fio = ideal["fio"]
fiot = ideal["fiot"]
fiott = ideal["fiott"]
fiod = ideal["fiod"]
fiodd = ideal["fiodd"]
res = self._phir(tau, delta)
fir = res["fir"]
firt = res["firt"]
firtt = res["firtt"]
fird = res["fird"]
firdd = res["firdd"]
firdt = res["firdt"]
prop = {}
prop["fir"] = R*T*(fio+fir)
prop["firt"] = R*(fio+fir-(fiot+firt)*tau)
prop["fird"] = R*T/rhoc*(fiod+fird)
prop["firtt"] = R*tau**2/T*(fiott+firtt)
prop["firdt"] = R/rhoc*(fiod+fird-firdt*tau)
prop["firdd"] = R*T/rhoc**2*(fiodd+firdd)
return prop
|
def _derivDimensional(self, rho, T)
|
Calcule the dimensional form or Helmholtz free energy derivatives
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
prop : dict
Dictionary with residual helmholtz energy and derivatives:
* fir, [kJ/kg]
* firt: ∂fir/∂T|ρ, [kJ/kgK]
* fird: ∂fir/∂ρ|T, [kJ/m³kg²]
* firtt: ∂²fir/∂T²|ρ, [kJ/kgK²]
* firdt: ∂²fir/∂T∂ρ, [kJ/m³kg²K]
* firdd: ∂²fir/∂ρ²|T, [kJ/m⁶kg]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 7,
http://www.iapws.org/relguide/SeaAir.html
| 2.858429 | 2.479547 | 1.152803 |
tau = 1-T/self.Tc
sigma = 0
for n, t in zip(self._surf["sigma"], self._surf["exp"]):
sigma += n*tau**t
return sigma
|
def _surface(self, T)
|
Generic equation for the surface tension
Parameters
----------
T : float
Temperature, [K]
Returns
-------
σ : float
Surface tension, [N/m]
Notes
-----
Need a _surf dict in the derived class with the parameters keys:
sigma: coefficient
exp: exponent
| 7.078767 | 5.866027 | 1.20674 |
Tita = 1-T/cls.Tc
suma = 0
for n, x in zip(cls._Pv["ao"], cls._Pv["exp"]):
suma += n*Tita**x
Pr = exp(cls.Tc/T*suma)
Pv = Pr*cls.Pc
return Pv
|
def _Vapor_Pressure(cls, T)
|
Auxiliary equation for the vapour pressure
Parameters
----------
T : float
Temperature, [K]
Returns
-------
Pv : float
Vapour pressure, [Pa]
References
----------
IAPWS, Revised Supplementary Release on Saturation Properties of
Ordinary Water Substance September 1992,
http://www.iapws.org/relguide/Supp-sat.html, Eq.1
| 7.195637 | 9.690859 | 0.742518 |
eq = cls._rhoL["eq"]
Tita = 1-T/cls.Tc
if eq == 2:
Tita = Tita**(1./3)
suma = 0
for n, x in zip(cls._rhoL["ao"], cls._rhoL["exp"]):
suma += n*Tita**x
Pr = suma+1
rho = Pr*cls.rhoc
return rho
|
def _Liquid_Density(cls, T)
|
Auxiliary equation for the density of saturated liquid
Parameters
----------
T : float
Temperature, [K]
Returns
-------
rho : float
Saturated liquid density, [kg/m³]
References
----------
IAPWS, Revised Supplementary Release on Saturation Properties of
Ordinary Water Substance September 1992,
http://www.iapws.org/relguide/Supp-sat.html, Eq.2
| 6.495708 | 8.308781 | 0.781788 |
eq = cls._rhoG["eq"]
Tita = 1-T/cls.Tc
if eq == 4:
Tita = Tita**(1./3)
suma = 0
for n, x in zip(cls._rhoG["ao"], cls._rhoG["exp"]):
suma += n*Tita**x
Pr = exp(suma)
rho = Pr*cls.rhoc
return rho
|
def _Vapor_Density(cls, T)
|
Auxiliary equation for the density of saturated vapor
Parameters
----------
T : float
Temperature, [K]
Returns
-------
rho : float
Saturated vapor density, [kg/m³]
References
----------
IAPWS, Revised Supplementary Release on Saturation Properties of
Ordinary Water Substance September 1992,
http://www.iapws.org/relguide/Supp-sat.html, Eq.3
| 6.248743 | 8.06592 | 0.774709 |
Tita = 1-T/cls.Tc
suma1 = 0
suma2 = 0
for n, x in zip(cls._Pv["ao"], cls._Pv["exp"]):
suma1 -= n*x*Tita**(x-1)/cls.Tc
suma2 += n*Tita**x
Pr = (cls.Tc*suma1/T-cls.Tc/T**2*suma2)*exp(cls.Tc/T*suma2)
dPdT = Pr*cls.Pc
return dPdT
|
def _dPdT_sat(cls, T)
|
Auxiliary equation for the dP/dT along saturation line
Parameters
----------
T : float
Temperature, [K]
Returns
-------
dPdT : float
dPdT, [MPa/K]
References
----------
IAPWS, Revised Supplementary Release on Saturation Properties of
Ordinary Water Substance September 1992,
http://www.iapws.org/relguide/Supp-sat.html, derived from Eq.1
| 5.442887 | 6.440501 | 0.845103 |
# Check input parameters
if T < 193 or T > 473 or P < 0 or P > 5 or x < 0 or x > 1:
raise(NotImplementedError("Input not in range of validity"))
R = 8.314462 # J/molK
# Virial coefficients
vir = _virial(T)
# Eq 3
beta = x*(2-x)*vir["Bww"]+(1-x)**2*(2*vir["Baw"]-vir["Baa"])
# Eq 4
gamma = x**2*(3-2*x)*vir["Cwww"] + \
(1-x)**2*(6*x*vir["Caww"]+3*(1-2*x)*vir["Caaw"]-2*(1-x)*vir["Caaa"]) +\
(x**2*vir["Bww"]+2*x*(1-x)*vir["Baw"]+(1-x)**2*vir["Baa"]) * \
(x*(3*x-4)*vir["Bww"]+2*(1-x)*(3*x-2)*vir["Baw"]+3*(1-x)**2*vir["Baa"])
# Eq 2
fv = x*P*exp(beta*P*1e6/R/T+0.5*gamma*(P*1e6/R/T)**2)
return fv
|
def _fugacity(T, P, x)
|
Fugacity equation for humid air
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [MPa]
x : float
Mole fraction of water-vapor, [-]
Returns
-------
fv : float
fugacity coefficient, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in range of validity:
* 193 ≤ T ≤ 473
* 0 ≤ P ≤ 5
* 0 ≤ x ≤ 1
Really the xmax is the xsaturation but isn't implemented
Examples
--------
>>> _fugacity(300, 1, 0.1)
0.0884061686
References
----------
IAPWS, Guideline on a Virial Equation for the Fugacity of H2O in Humid Air,
http://www.iapws.org/relguide/VirialFugacity.html
| 3.882554 | 3.540165 | 1.096715 |
c = cls._blend["bubble"]
Tj = cls._blend["Tj"]
Pj = cls._blend["Pj"]
Tita = 1-T/Tj
suma = 0
for i, n in zip(c["i"], c["n"]):
suma += n*Tita**(i/2.)
P = Pj*exp(Tj/T*suma)
return P
|
def _bubbleP(cls, T)
|
Using ancillary equation return the pressure of bubble point
| 6.226317 | 5.809285 | 1.071787 |
self._mode = ""
if self.kwargs["T"] and self.kwargs["P"]:
self._mode = "TP"
elif self.kwargs["T"] and self.kwargs["rho"]:
self._mode = "Trho"
elif self.kwargs["P"] and self.kwargs["rho"]:
self._mode = "Prho"
# Composition definition
self._composition = ""
if self.kwargs["A"] is not None:
self._composition = "A"
elif self.kwargs["xa"] is not None:
self._composition = "xa"
return bool(self._mode) and bool(self._composition)
|
def calculable(self)
|
Check if inputs are enough to define state
| 2.862986 | 2.639065 | 1.084848 |
T = self.kwargs["T"]
rho = self.kwargs["rho"]
P = self.kwargs["P"]
# Composition alternate definition
if self._composition == "A":
A = self.kwargs["A"]
elif self._composition == "xa":
xa = self.kwargs["xa"]
A = xa/(1-(1-xa)*(1-Mw/Ma))
# Thermodynamic definition
if self._mode == "TP":
def f(rho):
fav = self._fav(T, rho, A)
return rho**2*fav["fird"]/1000-P
rho = fsolve(f, 1)[0]
elif self._mode == "Prho":
def f(T):
fav = self._fav(T, rho, A)
return rho**2*fav["fird"]/1000-P
T = fsolve(f, 300)[0]
# General calculation procedure
fav = self._fav(T, rho, A)
# Common thermodynamic properties
prop = self._prop(T, rho, fav)
self.T = T
self.rho = rho
self.v = 1/rho
self.P = prop["P"]
self.s = prop["s"]
self.cp = prop["cp"]
self.h = prop["h"]
self.g = prop["g"]
self.u = self.h-self.P*1000*self.v
self.alfav = prop["alfav"]
self.betas = prop["betas"]
self.xkappa = prop["xkappa"]
self.ks = prop["ks"]
self.w = prop["w"]
# Coligative properties
coligative = self._coligative(rho, A, fav)
self.A = A
self.W = 1-A
self.mu = coligative["mu"]
self.muw = coligative["muw"]
self.M = coligative["M"]
self.HR = coligative["HR"]
self.xa = coligative["xa"]
self.xw = coligative["xw"]
self.Pv = (1-self.xa)*self.P
# Saturation related properties
A_sat = self._eq(self.T, self.P)
self.xa_sat = A_sat*Mw/Ma/(1-A_sat*(1-Mw/Ma))
self.RH = (1-self.xa)/(1-self.xa_sat)
|
def calculo(self)
|
Calculate procedure
| 3.560818 | 3.511506 | 1.014043 |
if T <= 273.16:
ice = _Ice(T, P)
gw = ice["g"]
else:
water = IAPWS95(T=T, P=P)
gw = water.g
def f(parr):
rho, a = parr
if a > 1:
a = 1
fa = self._fav(T, rho, a)
muw = fa["fir"]+rho*fa["fird"]-a*fa["fira"]
return gw-muw, rho**2*fa["fird"]/1000-P
rinput = fsolve(f, [1, 0.95], full_output=True)
Asat = rinput[0][1]
return Asat
|
def _eq(self, T, P)
|
Procedure for calculate the composition in saturation state
Parameters
----------
T : float
Temperature [K]
P : float
Pressure [MPa]
Returns
-------
Asat : float
Saturation mass fraction of dry air in humid air [kg/kg]
| 7.666501 | 7.445586 | 1.029671 |
prop = {}
prop["P"] = rho**2*fav["fird"]/1000 # Eq T1
prop["s"] = -fav["firt"] # Eq T2
prop["cp"] = -T*fav["firtt"]+T*rho*fav["firdt"]**2/( # Eq T3
2*fav["fird"]+rho*fav["firdd"])
prop["h"] = fav["fir"]-T*fav["firt"]+rho*fav["fird"] # Eq T4
prop["g"] = fav["fir"]+rho*fav["fird"] # Eq T5
prop["alfav"] = fav["firdt"]/(2*fav["fird"]+rho*fav["firdd"]) # Eq T6
prop["betas"] = 1000*fav["firdt"]/rho/( # Eq T7
rho*fav["firdt"]**2-fav["firtt"]*(2*fav["fird"]+rho*fav["firdd"]))
prop["xkappa"] = 1e3/(rho**2*(2*fav["fird"]+rho*fav["firdd"])) # Eq T8
prop["ks"] = 1000*fav["firtt"]/rho**2/( # Eq T9
fav["firtt"]*(2*fav["fird"]+rho*fav["firdd"])-rho*fav["firdt"]**2)
prop["w"] = (rho**2*1000*(fav["firtt"]*fav["firdd"]-fav["firdt"]**2) /
fav["firtt"]+2*rho*fav["fird"]*1000)**0.5 # Eq T10
return prop
|
def _prop(self, T, rho, fav)
|
Thermodynamic properties of humid air
Parameters
----------
T : float
Temperature, [K]
rho : float
Density, [kg/m³]
fav : dict
dictionary with helmholtz energy and derivatives
Returns
-------
prop : dict
Dictionary with thermodynamic properties of humid air:
* P: Pressure, [MPa]
* s: Specific entropy, [kJ/kgK]
* cp: Specific isobaric heat capacity, [kJ/kgK]
* h: Specific enthalpy, [kJ/kg]
* g: Specific gibbs energy, [kJ/kg]
* alfav: Thermal expansion coefficient, [1/K]
* betas: Isentropic T-P coefficient, [K/MPa]
* xkappa: Isothermal compressibility, [1/MPa]
* ks: Isentropic compressibility, [1/MPa]
* w: Speed of sound, [m/s]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 5,
http://www.iapws.org/relguide/SeaAir.html
| 3.395459 | 2.842951 | 1.194343 |
prop = {}
prop["mu"] = fav["fira"]
prop["muw"] = fav["fir"]+rho*fav["fird"]-A*fav["fira"]
prop["M"] = 1/((1-A)/Mw+A/Ma)
prop["HR"] = 1/A-1
prop["xa"] = A*Mw/Ma/(1-A*(1-Mw/Ma))
prop["xw"] = 1-prop["xa"]
return prop
|
def _coligative(self, rho, A, fav)
|
Miscelaneous properties of humid air
Parameters
----------
rho : float
Density, [kg/m³]
A : float
Mass fraction of dry air in humid air, [kg/kg]
fav : dict
dictionary with helmholtz energy and derivatives
Returns
-------
prop : dict
Dictionary with calculated properties:
* mu: Relative chemical potential, [kJ/kg]
* muw: Chemical potential of water, [kJ/kg]
* M: Molar mass of humid air, [g/mol]
* HR: Humidity ratio, [-]
* xa: Mole fraction of dry air, [-]
* xw: Mole fraction of water, [-]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 12,
http://www.iapws.org/relguide/SeaAir.html
| 7.57799 | 4.485359 | 1.689495 |
if 50 <= T <= 273.16:
Tita = T/Tt
suma = 0
a = [-0.212144006e2, 0.273203819e2, -0.61059813e1]
expo = [0.333333333e-2, 1.20666667, 1.70333333]
for ai, expi in zip(a, expo):
suma += ai*Tita**expi
return exp(suma/Tita)*Pt
else:
raise NotImplementedError("Incoming out of bound")
|
def _Sublimation_Pressure(T)
|
Sublimation Pressure correlation
Parameters
----------
T : float
Temperature, [K]
Returns
-------
P : float
Pressure at sublimation line, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 50 ≤ T ≤ 273.16
Examples
--------
>>> _Sublimation_Pressure(230)
8.947352740189152e-06
References
----------
IAPWS, Revised Release on the Pressure along the Melting and Sublimation
Curves of Ordinary Water Substance, http://iapws.org/relguide/MeltSub.html.
| 6.337557 | 6.001661 | 1.055967 |
if ice == "Ih" and 251.165 <= T <= 273.16:
# Ice Ih
Tref = Tt
Pref = Pt
Tita = T/Tref
a = [0.119539337e7, 0.808183159e5, 0.33382686e4]
expo = [3., 0.2575e2, 0.10375e3]
suma = 1
for ai, expi in zip(a, expo):
suma += ai*(1-Tita**expi)
P = suma*Pref
elif ice == "III" and 251.165 < T <= 256.164:
# Ice III
Tref = 251.165
Pref = 208.566
Tita = T/Tref
P = Pref*(1-0.299948*(1-Tita**60.))
elif (ice == "V" and 256.164 < T <= 273.15) or 273.15 < T <= 273.31:
# Ice V
Tref = 256.164
Pref = 350.100
Tita = T/Tref
P = Pref*(1-1.18721*(1-Tita**8.))
elif 273.31 < T <= 355:
# Ice VI
Tref = 273.31
Pref = 632.400
Tita = T/Tref
P = Pref*(1-1.07476*(1-Tita**4.6))
elif 355. < T <= 715:
# Ice VII
Tref = 355
Pref = 2216.000
Tita = T/Tref
P = Pref*exp(1.73683*(1-1./Tita)-0.544606e-1*(1-Tita**5) +
0.806106e-7*(1-Tita**22))
else:
raise NotImplementedError("Incoming out of bound")
return P
|
def _Melting_Pressure(T, ice="Ih")
|
Melting Pressure correlation
Parameters
----------
T : float
Temperature, [K]
ice: string
Type of ice: Ih, III, V, VI, VII.
Below 273.15 is a mandatory input, the ice Ih is the default value.
Above 273.15, the ice type is unnecesary.
Returns
-------
P : float
Pressure at sublimation line, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 251.165 ≤ T ≤ 715
Examples
--------
>>> _Melting_Pressure(260)
8.947352740189152e-06
>>> _Melting_Pressure(254, "III")
268.6846466336108
References
----------
IAPWS, Revised Release on the Pressure along the Melting and Sublimation
Curves of Ordinary Water Substance, http://iapws.org/relguide/MeltSub.html.
| 3.553023 | 3.335039 | 1.065362 |
if 248.15 <= T <= Tc:
Tr = T/Tc
return 1e-3*(235.8*(1-Tr)**1.256*(1-0.625*(1-Tr)))
else:
raise NotImplementedError("Incoming out of bound")
|
def _Tension(T)
|
Equation for the surface tension
Parameters
----------
T : float
Temperature, [K]
Returns
-------
σ : float
Surface tension, [N/m]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 248.15 ≤ T ≤ 647
* Estrapolate to -25ºC in supercooled liquid metastable state
Examples
--------
>>> _Tension(300)
0.0716859625
>>> _Tension(450)
0.0428914992
References
----------
IAPWS, Revised Release on Surface Tension of Ordinary Water Substance
June 2014, http://www.iapws.org/relguide/Surf-H2O.html
| 8.94697 | 9.01015 | 0.992988 |
# Check input parameters
if T < 238 or T > 1200:
raise NotImplementedError("Incoming out of bound")
k = 1.380658e-23
Na = 6.0221367e23
alfa = 1.636e-40
epsilon0 = 8.854187817e-12
mu = 6.138e-30
d = rho/rhoc
Tr = Tc/T
I = [1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 10, None]
J = [0.25, 1, 2.5, 1.5, 1.5, 2.5, 2, 2, 5, 0.5, 10, None]
n = [0.978224486826, -0.957771379375, 0.237511794148, 0.714692244396,
-0.298217036956, -0.108863472196, .949327488264e-1, -.980469816509e-2,
.165167634970e-4, .937359795772e-4, -.12317921872e-9,
.196096504426e-2]
g = 1+n[11]*d/(Tc/228/Tr-1)**1.2
for i in range(11):
g += n[i]*d**I[i]*Tr**J[i]
A = Na*mu**2*rho*g/M*1000/epsilon0/k/T
B = Na*alfa*rho/3/M*1000/epsilon0
e = (1+A+5*B+(9+2*A+18*B+A**2+10*A*B+9*B**2)**0.5)/4/(1-B)
return e
|
def _Dielectric(rho, T)
|
Equation for the Dielectric constant
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
epsilon : float
Dielectric constant, [-]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 238 ≤ T ≤ 1200
Examples
--------
>>> _Dielectric(999.242866, 298.15)
78.5907250
>>> _Dielectric(26.0569558, 873.15)
1.12620970
References
----------
IAPWS, Release on the Static Dielectric Constant of Ordinary Water
Substance for Temperatures from 238 K to 873 K and Pressures up to 1000
MPa, http://www.iapws.org/relguide/Dielec.html
| 5.268328 | 5.425134 | 0.971096 |
# Check input parameters
if rho < 0 or rho > 1060 or T < 261.15 or T > 773.15 or l < 0.2 or l > 1.1:
raise NotImplementedError("Incoming out of bound")
Lir = 5.432937
Luv = 0.229202
d = rho/1000.
Tr = T/273.15
L = l/0.589
a = [0.244257733, 0.974634476e-2, -0.373234996e-2, 0.268678472e-3,
0.158920570e-2, 0.245934259e-2, 0.900704920, -0.166626219e-1]
A = d*(a[0]+a[1]*d+a[2]*Tr+a[3]*L**2*Tr+a[4]/L**2+a[5]/(L**2-Luv**2)+a[6]/(
L**2-Lir**2)+a[7]*d**2)
return ((2*A+1)/(1-A))**0.5
|
def _Refractive(rho, T, l=0.5893)
|
Equation for the refractive index
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
l : float, optional
Light Wavelength, [μm]
Returns
-------
n : float
Refractive index, [-]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 0 ≤ ρ ≤ 1060
* 261.15 ≤ T ≤ 773.15
* 0.2 ≤ λ ≤ 1.1
Examples
--------
>>> _Refractive(997.047435, 298.15, 0.2265)
1.39277824
>>> _Refractive(30.4758534, 773.15, 0.5893)
1.00949307
References
----------
IAPWS, Release on the Refractive Index of Ordinary Water Substance as a
Function of Wavelength, Temperature and Pressure,
http://www.iapws.org/relguide/rindex.pdf
| 4.932283 | 4.487862 | 1.099027 |
# Check input parameters
if rho < 0 or rho > 1250 or T < 273.15 or T > 1073.15:
raise NotImplementedError("Incoming out of bound")
# The internal method of calculation use rho in g/cm³
d = rho/1000.
# Water molecular weight different
Mw = 18.015268
gamma = [6.1415e-1, 4.825133e4, -6.770793e4, 1.01021e7]
pKg = 0
for i, g in enumerate(gamma):
pKg += g/T**i
Q = d*exp(-0.864671+8659.19/T-22786.2/T**2*d**(2./3))
pKw = -12*(log10(1+Q)-Q/(Q+1)*d*(0.642044-56.8534/T-0.375754*d)) + \
pKg+2*log10(Mw/1000)
return pKw
|
def _Kw(rho, T)
|
Equation for the ionization constant of ordinary water
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
pKw : float
Ionization constant in -log10(kw), [-]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 0 ≤ ρ ≤ 1250
* 273.15 ≤ T ≤ 1073.15
Examples
--------
>>> _Kw(1000, 300)
13.906565
References
----------
IAPWS, Release on the Ionization Constant of H2O,
http://www.iapws.org/relguide/Ionization.pdf
| 7.975711 | 7.087572 | 1.125309 |
# FIXME: Dont work
rho_ = rho/1000
kw = 10**-_Kw(rho, T)
A = [1850., 1410., 2.16417e-6, 1.81609e-7, -1.75297e-9, 7.20708e-12]
B = [16., 11.6, 3.26e-4, -2.3e-6, 1.1e-8]
t = T-273.15
Loo = A[0]-1/(1/A[1]+sum([A[i+2]*t**(i+1) for i in range(4)])) # Eq 5
rho_h = B[0]-1/(1/B[1]+sum([B[i+2]*t**(i+1) for i in range(3)])) # Eq 6
# Eq 4
L_o = (rho_h-rho_)*Loo/rho_h
# Eq 1
k = 100*1e-3*L_o*kw**0.5*rho_
return k
|
def _Conductivity(rho, T)
|
Equation for the electrolytic conductivity of liquid and dense
supercrítical water
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
K : float
Electrolytic conductivity, [S/m]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 600 ≤ ρ ≤ 1200
* 273.15 ≤ T ≤ 1073.15
Examples
--------
>>> _Conductivity(1000, 373.15)
1.13
References
----------
IAPWS, Electrolytic Conductivity (Specific Conductance) of Liquid and Dense
Supercritical Water from 0°C to 800°C and Pressures up to 1000 MPa,
http://www.iapws.org/relguide/conduct.pdf
| 4.976099 | 5.236702 | 0.950235 |
Tr = T/643.847
rhor = rho/358.0
no = [1.0, 0.940695, 0.578377, -0.202044]
fi0 = Tr**0.5/sum([n/Tr**i for i, n in enumerate(no)])
Li = [0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 2, 5, 0, 1, 2, 3, 0, 1, 3,
5, 0, 1, 5, 3]
Lj = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
4, 5, 5, 5, 6]
Lij = [0.4864192, -0.2448372, -0.8702035, 0.8716056, -1.051126,
0.3458395, 0.3509007, 1.315436, 1.297752, 1.353448, -0.2847572,
-1.037026, -1.287846, -0.02148229, 0.07013759, 0.4660127,
0.2292075, -0.4857462, 0.01641220, -0.02884911, 0.1607171,
-.009603846, -.01163815, -.008239587, 0.004559914, -0.003886659]
arr = [lij*(1./Tr-1)**i*(rhor-1)**j for i, j, lij in zip(Li, Lj, Lij)]
fi1 = exp(rhor*sum(arr))
return 55.2651e-6*fi0*fi1
|
def _D2O_Viscosity(rho, T)
|
Equation for the Viscosity of heavy water
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
μ : float
Viscosity, [Pa·s]
Examples
--------
>>> _D2O_Viscosity(998, 298.15)
0.0008897351001498108
>>> _D2O_Viscosity(600, 873.15)
7.743019522728247e-05
References
----------
IAPWS, Revised Release on Viscosity and Thermal Conductivity of Heavy
Water Substance, http://www.iapws.org/relguide/TransD2O-2007.pdf
| 4.256696 | 4.47804 | 0.950571 |
rhor = rho/358
Tr = T/643.847
tau = Tr/(abs(Tr-1.1)+1.1)
no = [1.0, 37.3223, 22.5485, 13.0465, 0.0, -2.60735]
Lo = sum([Li*Tr**i for i, Li in enumerate(no)])
nr = [483.656, -191.039, 73.0358, -7.57467]
Lr = -167.31*(1-exp(-2.506*rhor))+sum(
[Li*rhor**(i+1) for i, Li in enumerate(nr)])
f1 = exp(0.144847*Tr-5.64493*Tr**2)
f2 = exp(-2.8*(rhor-1)**2)-0.080738543*exp(-17.943*(rhor-0.125698)**2)
f3 = 1+exp(60*(tau-1)+20)
f4 = 1+exp(100*(tau-1)+15)
Lc = 35429.6*f1*f2*(1+f2**2*(5e9*f1**4/f3+3.5*f2/f4))
Ll = -741.112*f1**1.2*(1-exp(-(rhor/2.5)**10))
return 0.742128e-3*(Lo+Lr+Lc+Ll)
|
def _D2O_ThCond(rho, T)
|
Equation for the thermal conductivity of heavy water
Parameters
----------
rho : float
Density, [kg/m³]
T : float
Temperature, [K]
Returns
-------
k : float
Thermal conductivity, [W/mK]
Examples
--------
>>> _D2O_ThCond(998, 298.15)
0.6077128675880629
>>> _D2O_ThCond(0, 873.15)
0.07910346589648833
References
----------
IAPWS, Revised Release on Viscosity and Thermal Conductivity of Heavy
Water Substance, http://www.iapws.org/relguide/TransD2O-2007.pdf
| 6.593382 | 7.057851 | 0.934191 |
if 210 <= T <= 276.969:
Tita = T/276.969
suma = 0
ai = [-0.1314226e2, 0.3212969e2]
ti = [-1.73, -1.42]
for a, t in zip(ai, ti):
suma += a*(1-Tita**t)
return exp(suma)*0.00066159
else:
raise NotImplementedError("Incoming out of bound")
|
def _D2O_Sublimation_Pressure(T)
|
Sublimation Pressure correlation for heavy water
Parameters
----------
T : float
Temperature, [K]
Returns
-------
P : float
Pressure at sublimation line, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 210 ≤ T ≤ 276.969
Examples
--------
>>> _Sublimation_Pressure(245)
3.27390934e-5
References
----------
IAPWS, Revised Release on the IAPWS Formulation 2017 for the Thermodynamic
Properties of Heavy Water, http://www.iapws.org/relguide/Heavy.html.
| 7.09549 | 6.185174 | 1.147177 |
if ice == "Ih" and 254.415 <= T <= 276.969:
# Ice Ih, Eq 9
Tita = T/276.969
ai = [-0.30153e5, 0.692503e6]
ti = [5.5, 8.2]
suma = 1
for a, t in zip(ai, ti):
suma += a*(1-Tita**t)
P = suma*0.00066159
elif ice == "III" and 254.415 < T <= 258.661:
# Ice III, Eq 10
Tita = T/254.415
P = 222.41*(1-0.802871*(1-Tita**33))
elif ice == "V" and 258.661 < T <= 275.748:
# Ice V, Eq 11
Tita = T/258.661
P = 352.19*(1-1.280388*(1-Tita**7.6))
elif (ice == "VI" and 275.748 < T <= 276.969) or 276.969 < T <= 315:
# Ice VI
Tita = T/275.748
P = 634.53*(1-1.276026*(1-Tita**4))
else:
raise NotImplementedError("Incoming out of bound")
return P
|
def _D2O_Melting_Pressure(T, ice="Ih")
|
Melting Pressure correlation for heavy water
Parameters
----------
T : float
Temperature, [K]
ice: string
Type of ice: Ih, III, V, VI, VII.
Below 276.969 is a mandatory input, the ice Ih is the default value.
Above 276.969, the ice type is unnecesary.
Returns
-------
P : float
Pressure at melting line, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 254.415 ≤ T ≤ 315
Examples
--------
>>> _D2O__Melting_Pressure(260)
8.947352740189152e-06
>>> _D2O__Melting_Pressure(254, "III")
268.6846466336108
References
----------
IAPWS, Revised Release on the Pressure along the Melting and Sublimation
Curves of Ordinary Water Substance, http://iapws.org/relguide/MeltSub.html.
| 3.522918 | 3.214339 | 1.096001 |
# Avoid round problem
P = round(P, 8)
T = round(T, 8)
if P > Pc and T > Tc:
phase = "Supercritical fluid"
elif T > Tc:
phase = "Gas"
elif P > Pc:
phase = "Compressible liquid"
elif P == Pc and T == Tc:
phase = "Critical point"
elif region == 4 and x == 1:
phase = "Saturated vapor"
elif region == 4 and x == 0:
phase = "Saturated liquid"
elif region == 4:
phase = "Two phases"
elif x == 1:
phase = "Vapour"
elif x == 0:
phase = "Liquid"
return phase
|
def getphase(Tc, Pc, T, P, x, region)
|
Return fluid phase string name
Parameters
----------
Tc : float
Critical temperature, [K]
Pc : float
Critical pressure, [MPa]
T : float
Temperature, [K]
P : float
Pressure, [MPa]
x : float
Quality, [-]
region: int
Region number, used only for IAPWS97 region definition
Returns
-------
phase : str
Phase name
| 2.808192 | 2.821534 | 0.995272 |
r
# We use the relation between rho and v and his partial derivative
# ∂v/∂b|c = -1/ρ² ∂ρ/∂b|c
# ∂a/∂v|c = -ρ² ∂a/∂ρ|c
mul = 1
if z == "rho":
mul = -fase.rho**2
z = "v"
if x == "rho":
mul = -1/fase.rho**2
x = "v"
if y == "rho":
y = "v"
dT = {"P": state.P*1000*fase.alfap,
"T": 1,
"v": 0,
"u": fase.cv,
"h": fase.cv+state.P*1000*fase.v*fase.alfap,
"s": fase.cv/state.T,
"g": state.P*1000*fase.v*fase.alfap-fase.s,
"a": -fase.s}
dv = {"P": -state.P*1000*fase.betap,
"T": 0,
"v": 1,
"u": state.P*1000*(state.T*fase.alfap-1),
"h": state.P*1000*(state.T*fase.alfap-fase.v*fase.betap),
"s": state.P*1000*fase.alfap,
"g": -state.P*1000*fase.v*fase.betap,
"a": -state.P*1000}
deriv = (dv[z]*dT[y]-dT[z]*dv[y])/(dv[x]*dT[y]-dT[x]*dv[y])
return mul*deriv
|
def deriv_H(state, z, x, y, fase)
|
r"""Calculate generic partial derivative
:math:`\left.\frac{\partial z}{\partial x}\right|_{y}` from a fundamental
helmholtz free energy equation of state
Parameters
----------
state : any python object
Only need to define P and T properties, non phase specific properties
z : str
Name of variables in numerator term of derivatives
x : str
Name of variables in denominator term of derivatives
y : str
Name of constant variable in partial derivaritive
fase : any python object
Define phase specific properties (v, cv, alfap, s, betap)
Notes
-----
x, y and z can be the following values:
* P: Pressure
* T: Temperature
* v: Specific volume
* rho: Density
* u: Internal Energy
* h: Enthalpy
* s: Entropy
* g: Gibbs free energy
* a: Helmholtz free energy
Returns
-------
deriv : float
∂z/∂x|y
References
----------
IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS
Formulations, http://www.iapws.org/relguide/Advise3.pdf
| 3.072343 | 2.67836 | 1.147099 |
r
mul = 1
if z == "rho":
mul = -fase.rho**2
z = "v"
if x == "rho":
mul = -1/fase.rho**2
x = "v"
dT = {"P": 0,
"T": 1,
"v": fase.v*fase.alfav,
"u": fase.cp-state.P*1000*fase.v*fase.alfav,
"h": fase.cp,
"s": fase.cp/state.T,
"g": -fase.s,
"a": -state.P*1000*fase.v*fase.alfav-fase.s}
dP = {"P": 1,
"T": 0,
"v": -fase.v*fase.xkappa,
"u": fase.v*(state.P*1000*fase.xkappa-state.T*fase.alfav),
"h": fase.v*(1-state.T*fase.alfav),
"s": -fase.v*fase.alfav,
"g": fase.v,
"a": state.P*1000*fase.v*fase.xkappa}
deriv = (dP[z]*dT[y]-dT[z]*dP[y])/(dP[x]*dT[y]-dT[x]*dP[y])
return mul*deriv
|
def deriv_G(state, z, x, y, fase)
|
r"""Calculate generic partial derivative
:math:`\left.\frac{\partial z}{\partial x}\right|_{y}` from a fundamental
Gibbs free energy equation of state
Parameters
----------
state : any python object
Only need to define P and T properties, non phase specific properties
z : str
Name of variables in numerator term of derivatives
x : str
Name of variables in denominator term of derivatives
y : str
Name of constant variable in partial derivaritive
fase : any python object
Define phase specific properties (v, cp, alfav, s, xkappa)
Notes
-----
x, y and z can be the following values:
* P: Pressure
* T: Temperature
* v: Specific volume
* rho: Density
* u: Internal Energy
* h: Enthalpy
* s: Entropy
* g: Gibbs free energy
* a: Helmholtz free energy
Returns
-------
deriv : float
∂z/∂x|y
References
----------
IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS
Formulations, http://www.iapws.org/relguide/Advise3.pdf
| 2.917101 | 2.572085 | 1.134139 |
# Check input parameters
if s < 3.397782955 or s > 3.77828134:
raise NotImplementedError("Incoming out of bound")
sigma = s/3.8
I = [0, 1, 1, 3, 5, 6]
J = [0, -2, 2, -12, -4, -3]
n = [0.913965547600543, -0.430944856041991e-4, 0.603235694765419e2,
0.117518273082168e-17, 0.220000904781292, -0.690815545851641e2]
suma = 0
for i, j, ni in zip(I, J, n):
suma += ni * (sigma-0.884)**i * (sigma-0.864)**j
return 1700 * suma
|
def _h13_s(s)
|
Define the boundary between Region 1 and 3, h=f(s)
Parameters
----------
s : float
Specific entropy, [kJ/kgK]
Returns
-------
h : float
Specific enthalpy, [kJ/kg]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* s(100MPa,623.15K) ≤ s ≤ s'(623.15K)
References
----------
IAPWS, Revised Supplementary Release on Backward Equations p(h,s) for
Region 3, Equations as a Function of h and s for the Region Boundaries, and
an Equation Tsat(h,s) for Region 4 of the IAPWS Industrial Formulation 1997
for the Thermodynamic Properties of Water and Steam,
http://www.iapws.org/relguide/Supp-phs3-2014.pdf. Eq 7
Examples
--------
>>> _h13_s(3.7)
1632.525047
>>> _h13_s(3.5)
1566.104611
| 6.54667 | 6.978097 | 0.938174 |
# Check input parameters
if T < 273.15 or T > Tc:
raise NotImplementedError("Incoming out of bound")
n = [0, 0.11670521452767E+04, -0.72421316703206E+06, -0.17073846940092E+02,
0.12020824702470E+05, -0.32325550322333E+07, 0.14915108613530E+02,
-0.48232657361591E+04, 0.40511340542057E+06, -0.23855557567849E+00,
0.65017534844798E+03]
tita = T+n[9]/(T-n[10])
A = tita**2+n[1]*tita+n[2]
B = n[3]*tita**2+n[4]*tita+n[5]
C = n[6]*tita**2+n[7]*tita+n[8]
return (2*C/(-B+(B**2-4*A*C)**0.5))**4
|
def _PSat_T(T)
|
Define the saturated line, P=f(T)
Parameters
----------
T : float
Temperature, [K]
Returns
-------
P : float
Pressure, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 273.15 ≤ T ≤ 647.096
References
----------
IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam August 2007,
http://www.iapws.org/relguide/IF97-Rev.html, Eq 30
Examples
--------
>>> _PSat_T(500)
2.63889776
| 4.676261 | 4.955167 | 0.943714 |
# Check input parameters
if P < 611.212677/1e6 or P > 22.064:
raise NotImplementedError("Incoming out of bound")
n = [0, 0.11670521452767E+04, -0.72421316703206E+06, -0.17073846940092E+02,
0.12020824702470E+05, -0.32325550322333E+07, 0.14915108613530E+02,
-0.48232657361591E+04, 0.40511340542057E+06, -0.23855557567849E+00,
0.65017534844798E+03]
beta = P**0.25
E = beta**2+n[3]*beta+n[6]
F = n[1]*beta**2+n[4]*beta+n[7]
G = n[2]*beta**2+n[5]*beta+n[8]
D = 2*G/(-F-(F**2-4*E*G)**0.5)
return (n[10]+D-((n[10]+D)**2-4*(n[9]+n[10]*D))**0.5)/2
|
def _TSat_P(P)
|
Define the saturated line, T=f(P)
Parameters
----------
P : float
Pressure, [MPa]
Returns
-------
T : float
Temperature, [K]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 0.00061121 ≤ P ≤ 22.064
References
----------
IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam August 2007,
http://www.iapws.org/relguide/IF97-Rev.html, Eq 31
Examples
--------
>>> _TSat_P(10)
584.149488
| 4.969 | 5.102876 | 0.973765 |
# Check input parameters
hmin_Ps3 = _Region1(623.15, Ps_623)["h"]
hmax_Ps3 = _Region2(623.15, Ps_623)["h"]
if h < hmin_Ps3 or h > hmax_Ps3:
raise NotImplementedError("Incoming out of bound")
nu = h/2600
I = [0, 1, 1, 1, 1, 5, 7, 8, 14, 20, 22, 24, 28, 36]
J = [0, 1, 3, 4, 36, 3, 0, 24, 16, 16, 3, 18, 8, 24]
n = [0.600073641753024, -0.936203654849857e1, 0.246590798594147e2,
-0.107014222858224e3, -0.915821315805768e14, -0.862332011700662e4,
-0.235837344740032e2, 0.252304969384128e18, -0.389718771997719e19,
-0.333775713645296e23, 0.356499469636328e11, -0.148547544720641e27,
0.330611514838798e19, 0.813641294467829e38]
suma = 0
for i, j, ni in zip(I, J, n):
suma += ni * (nu-1.02)**i * (nu-0.608)**j
return 22*suma
|
def _PSat_h(h)
|
Define the saturated line, P=f(h) for region 3
Parameters
----------
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
P : float
Pressure, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* h'(623.15K) ≤ h ≤ h''(623.15K)
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for the
Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS
Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam, http://www.iapws.org/relguide/Supp-Tv%28ph,ps%293-2014.pdf, Eq 10
Examples
--------
>>> _PSat_h(1700)
17.24175718
>>> _PSat_h(2400)
20.18090839
| 5.35286 | 5.428909 | 0.985992 |
# Check input parameters
smin_Ps3 = _Region1(623.15, Ps_623)["s"]
smax_Ps3 = _Region2(623.15, Ps_623)["s"]
if s < smin_Ps3 or s > smax_Ps3:
raise NotImplementedError("Incoming out of bound")
sigma = s/5.2
I = [0, 1, 1, 4, 12, 12, 16, 24, 28, 32]
J = [0, 1, 32, 7, 4, 14, 36, 10, 0, 18]
n = [0.639767553612785, -0.129727445396014e2, -0.224595125848403e16,
0.177466741801846e7, 0.717079349571538e10, -0.378829107169011e18,
-0.955586736431328e35, 0.187269814676188e24, 0.119254746466473e12,
0.110649277244882e37]
suma = 0
for i, j, ni in zip(I, J, n):
suma += ni * (sigma-1.03)**i * (sigma-0.699)**j
return 22*suma
|
def _PSat_s(s)
|
Define the saturated line, P=f(s) for region 3
Parameters
----------
s : float
Specific entropy, [kJ/kgK]
Returns
-------
P : float
Pressure, [MPa]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* s'(623.15K) ≤ s ≤ s''(623.15K)
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for the
Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS
Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam, http://www.iapws.org/relguide/Supp-Tv%28ph,ps%293-2014.pdf, Eq 11
Examples
--------
>>> _PSat_s(3.8)
16.87755057
>>> _PSat_s(5.2)
16.68968482
| 5.639427 | 5.718071 | 0.986246 |
I = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6]
J = [0, 1, 2, 6, 22, 32, 0, 1, 2, 3, 4, 10, 32, 10, 32, 10, 32, 32, 32, 32]
n = [-0.23872489924521e3, 0.40421188637945e3, 0.11349746881718e3,
-0.58457616048039e1, -0.15285482413140e-3, -0.10866707695377e-5,
-0.13391744872602e2, 0.43211039183559e2, -0.54010067170506e2,
0.30535892203916e2, -0.65964749423638e1, 0.93965400878363e-2,
0.11573647505340e-6, -0.25858641282073e-4, -0.40644363084799e-8,
0.66456186191635e-7, 0.80670734103027e-10, -0.93477771213947e-12,
0.58265442020601e-14, -0.15020185953503e-16]
Pr = P/1
nu = h/2500
T = 0
for i, j, ni in zip(I, J, n):
T += ni * Pr**i * (nu+1)**j
return T
|
def _Backward1_T_Ph(P, h)
|
Backward equation for region 1, T=f(P,h)
Parameters
----------
P : float
Pressure, [MPa]
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
T : float
Temperature, [K]
References
----------
IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam August 2007,
http://www.iapws.org/relguide/IF97-Rev.html, Eq 11
Examples
--------
>>> _Backward1_T_Ph(3,500)
391.798509
>>> _Backward1_T_Ph(80,1500)
611.041229
| 4.390492 | 4.483884 | 0.979172 |
I = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5]
J = [0, 1, 2, 4, 5, 6, 8, 14, 0, 1, 4, 6, 0, 1, 10, 4, 1, 4, 0]
n = [-0.691997014660582, -0.183612548787560e2, -0.928332409297335e1,
0.659639569909906e2, -0.162060388912024e2, 0.450620017338667e3,
0.854680678224170e3, 0.607523214001162e4, 0.326487682621856e2,
-0.269408844582931e2, -0.319947848334300e3, -0.928354307043320e3,
0.303634537455249e2, -0.650540422444146e2, -0.430991316516130e4,
-0.747512324096068e3, 0.730000345529245e3, 0.114284032569021e4,
-0.436407041874559e3]
nu = h/3400
sigma = s/7.6
P = 0
for i, j, ni in zip(I, J, n):
P += ni * (nu+0.05)**i * (sigma+0.05)**j
return 100*P
|
def _Backward1_P_hs(h, s)
|
Backward equation for region 1, P=f(h,s)
Parameters
----------
h : float
Specific enthalpy, [kJ/kg]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
P : float
Pressure, [MPa]
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for Pressure
as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of
Water and Steam, http://www.iapws.org/relguide/Supp-PHS12-2014.pdf, Eq 1
Examples
--------
>>> _Backward1_P_hs(0.001,0)
0.0009800980612
>>> _Backward1_P_hs(90,0)
91.92954727
>>> _Backward1_P_hs(1500,3.4)
58.68294423
| 4.66144 | 4.835889 | 0.963926 |
Jo = [0, 1, -5, -4, -3, -2, -1, 2, 3]
no = [-0.96927686500217E+01, 0.10086655968018E+02, -0.56087911283020E-02,
0.71452738081455E-01, -0.40710498223928E+00, 0.14240819171444E+01,
-0.43839511319450E+01, -0.28408632460772E+00, 0.21268463753307E-01]
go = log(Pr)
gop = Pr**-1
gopp = -Pr**-2
got = gott = gopt = 0
for j, ni in zip(Jo, no):
go += ni * Tr**j
got += ni*j * Tr**(j-1)
gott += ni*j*(j-1) * Tr**(j-2)
return go, gop, gopp, got, gott, gopt
|
def Region2_cp0(Tr, Pr)
|
Ideal properties for Region 2
Parameters
----------
Tr : float
Reduced temperature, [-]
Pr : float
Reduced pressure, [-]
Returns
-------
prop : array
Array with ideal Gibbs energy partial derivatives:
* g: Ideal Specific Gibbs energy [kJ/kg]
* gp: ∂g/∂P|T
* gpp: ∂²g/∂P²|T
* gt: ∂g/∂T|P
* gtt: ∂²g/∂T²|P
* gpt: ∂²g/∂T∂P
References
----------
IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam August 2007,
http://www.iapws.org/relguide/IF97-Rev.html, Eq 16
| 5.046224 | 5.06741 | 0.995819 |
smin = _Region2(_TSat_P(4), 4)["s"]
smax = _Region2(1073.15, 4)["s"]
if s < smin:
h = 0
elif s > smax:
h = 5000
else:
h = -0.349898083432139e4 + 0.257560716905876e4*s - \
0.421073558227969e3*s**2+0.276349063799944e2*s**3
return h
|
def _hab_s(s)
|
Define the boundary between Region 2a and 2b, h=f(s)
Parameters
----------
s : float
Specific entropy, [kJ/kgK]
Returns
-------
h : float
Specific enthalpy, [kJ/kg]
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for Pressure
as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of
Water and Steam, http://www.iapws.org/relguide/Supp-PHS12-2014.pdf, Eq 2
Examples
--------
>>> _hab_s(7)
3376.437884
| 6.952011 | 7.081943 | 0.981653 |
if P <= 4:
T = _Backward2a_T_Ph(P, h)
elif 4 < P <= 6.546699678:
T = _Backward2b_T_Ph(P, h)
else:
hf = _hbc_P(P)
if h >= hf:
T = _Backward2b_T_Ph(P, h)
else:
T = _Backward2c_T_Ph(P, h)
if P <= 22.064:
Tsat = _TSat_P(P)
T = max(Tsat, T)
return T
|
def _Backward2_T_Ph(P, h)
|
Backward equation for region 2, T=f(P,h)
Parameters
----------
P : float
Pressure, [MPa]
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
T : float
Temperature, [K]
| 3.356407 | 3.377023 | 0.993895 |
if P <= 4:
T = _Backward2a_T_Ps(P, s)
elif s >= 5.85:
T = _Backward2b_T_Ps(P, s)
else:
T = _Backward2c_T_Ps(P, s)
if P <= 22.064:
Tsat = _TSat_P(P)
T = max(Tsat, T)
return T
|
def _Backward2_T_Ps(P, s)
|
Backward equation for region 2, T=f(P,s)
Parameters
----------
P : float
Pressure, [MPa]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
T : float
Temperature, [K]
| 3.35488 | 3.512495 | 0.955127 |
sfbc = 5.85
hamin = _hab_s(s)
if h <= hamin:
P = _Backward2a_P_hs(h, s)
elif s >= sfbc:
P = _Backward2b_P_hs(h, s)
else:
P = _Backward2c_P_hs(h, s)
return P
|
def _Backward2_P_hs(h, s)
|
Backward equation for region 2, P=f(h,s)
Parameters
----------
h : float
Specific enthalpy, [kJ/kg]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
P : float
Pressure, [MPa]
| 4.059367 | 4.321452 | 0.939353 |
I = [0, 1, 2, -1, -2]
n = [0.154793642129415e4, -0.187661219490113e3, 0.213144632222113e2,
-0.191887498864292e4, 0.918419702359447e3]
Pr = P/1
T = 0
for i, ni in zip(I, n):
T += ni * log(Pr)**i
return T
|
def _tab_P(P)
|
Define the boundary between Region 3a-3b, T=f(P)
Parameters
----------
P : float
Pressure, [MPa]
Returns
-------
T : float
Temperature, [K]
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for Specific
Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water
and Steam, http://www.iapws.org/relguide/Supp-VPT3-2016.pdf, Eq. 2
Examples
--------
>>> _tab_P(40)
693.0341408
| 6.275052 | 6.959684 | 0.901629 |
hf = _h_3ab(P)
if h <= hf:
return _Backward3a_v_Ph(P, h)
else:
return _Backward3b_v_Ph(P, h)
|
def _Backward3_v_Ph(P, h)
|
Backward equation for region 3, v=f(P,h)
Parameters
----------
P : float
Pressure, [MPa]
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
v : float
Specific volume, [m³/kg]
| 3.790452 | 5.228876 | 0.724908 |
hf = _h_3ab(P)
if h <= hf:
T = _Backward3a_T_Ph(P, h)
else:
T = _Backward3b_T_Ph(P, h)
return T
|
def _Backward3_T_Ph(P, h)
|
Backward equation for region 3, T=f(P,h)
Parameters
----------
P : float
Pressure, [MPa]
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
T : float
Temperature, [K]
| 3.811208 | 4.788145 | 0.795967 |
if s <= sc:
return _Backward3a_v_Ps(P, s)
else:
return _Backward3b_v_Ps(P, s)
|
def _Backward3_v_Ps(P, s)
|
Backward equation for region 3, v=f(P,s)
Parameters
----------
P : float
Pressure, [MPa]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
v : float
Specific volume, [m³/kg]
| 3.05034 | 4.506558 | 0.676867 |
sc = 4.41202148223476
if s <= sc:
T = _Backward3a_T_Ps(P, s)
else:
T = _Backward3b_T_Ps(P, s)
return T
|
def _Backward3_T_Ps(P, s)
|
Backward equation for region 3, T=f(P,s)
Parameters
----------
P : float
Pressure, [MPa]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
T : float
Temperature, [K]
| 4.419693 | 5.088648 | 0.86854 |
sc = 4.41202148223476
if s <= sc:
return _Backward3a_P_hs(h, s)
else:
return _Backward3b_P_hs(h, s)
|
def _Backward3_P_hs(h, s)
|
Backward equation for region 3, P=f(h,s)
Parameters
----------
h : float
Specific enthalpy, [kJ/kg]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
P : float
Pressure, [MPa]
| 4.515633 | 5.601849 | 0.806097 |
if x == 0:
if P < 19.00881189:
region = "c"
elif P < 21.0434:
region = "s"
elif P < 21.9316:
region = "u"
else:
region = "y"
else:
if P < 20.5:
region = "t"
elif P < 21.0434:
region = "r"
elif P < 21.9009:
region = "x"
else:
region = "z"
return _Backward3x_v_PT(T, P, region)
|
def _Backward3_sat_v_P(P, T, x)
|
Backward equation for region 3 for saturated state, vs=f(P,x)
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [MPa]
x : integer
Vapor quality, [-]
Returns
-------
v : float
Specific volume, [m³/kg]
Notes
-----
The vapor quality (x) can be 0 (saturated liquid) or 1 (saturated vapour)
| 3.438508 | 3.846781 | 0.893867 |
T = _TSat_P(P)
if T > 623.15:
rhol = 1./_Backward3_sat_v_P(P, T, 0)
P1 = _Region3(rhol, T)
rhov = 1./_Backward3_sat_v_P(P, T, 1)
P2 = _Region3(rhov, T)
else:
P1 = _Region1(T, P)
P2 = _Region2(T, P)
propiedades = {}
propiedades["T"] = T
propiedades["P"] = P
propiedades["v"] = P1["v"]+x*(P2["v"]-P1["v"])
propiedades["h"] = P1["h"]+x*(P2["h"]-P1["h"])
propiedades["s"] = P1["s"]+x*(P2["s"]-P1["s"])
propiedades["cp"] = None
propiedades["cv"] = None
propiedades["w"] = None
propiedades["alfav"] = None
propiedades["kt"] = None
propiedades["region"] = 4
propiedades["x"] = x
return propiedades
|
def _Region4(P, x)
|
Basic equation for region 4
Parameters
----------
P : float
Pressure, [MPa]
x : float
Vapor quality, [-]
Returns
-------
prop : dict
Dict with calculated properties. The available properties are:
* T: Saturated temperature, [K]
* P: Saturated pressure, [MPa]
* x: Vapor quality, [-]
* v: Specific volume, [m³/kg]
* h: Specific enthalpy, [kJ/kg]
* s: Specific entropy, [kJ/kgK]
| 2.565558 | 2.630445 | 0.975332 |
region = None
if 1073.15 < T <= 2273.15 and Pmin <= P <= 50:
region = 5
elif Pmin <= P <= Ps_623:
Tsat = _TSat_P(P)
if 273.15 <= T <= Tsat:
region = 1
elif Tsat < T <= 1073.15:
region = 2
elif Ps_623 < P <= 100:
T_b23 = _t_P(P)
if 273.15 <= T <= 623.15:
region = 1
elif 623.15 < T < T_b23:
region = 3
elif T_b23 <= T <= 1073.15:
region = 2
return region
|
def _Bound_TP(T, P)
|
Region definition for input T and P
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [MPa]
Returns
-------
region : float
IAPWS-97 region code
References
----------
Wagner, W; Kretzschmar, H-J: International Steam Tables: Properties of
Water and Steam Based on the Industrial Formulation IAPWS-IF97; Springer,
2008; doi: 10.1007/978-3-540-74234-0. Fig. 2.3
| 2.897358 | 3.075604 | 0.942045 |
region = None
if Pmin <= P <= Ps_623:
h14 = _Region1(_TSat_P(P), P)["h"]
h24 = _Region2(_TSat_P(P), P)["h"]
h25 = _Region2(1073.15, P)["h"]
hmin = _Region1(273.15, P)["h"]
hmax = _Region5(2273.15, P)["h"]
if hmin <= h <= h14:
region = 1
elif h14 < h < h24:
region = 4
elif h24 <= h <= h25:
region = 2
elif h25 < h <= hmax:
region = 5
elif Ps_623 < P < Pc:
hmin = _Region1(273.15, P)["h"]
h13 = _Region1(623.15, P)["h"]
h32 = _Region2(_t_P(P), P)["h"]
h25 = _Region2(1073.15, P)["h"]
hmax = _Region5(2273.15, P)["h"]
if hmin <= h <= h13:
region = 1
elif h13 < h < h32:
try:
p34 = _PSat_h(h)
except NotImplementedError:
p34 = Pc
if P < p34:
region = 4
else:
region = 3
elif h32 <= h <= h25:
region = 2
elif h25 < h <= hmax:
region = 5
elif Pc <= P <= 100:
hmin = _Region1(273.15, P)["h"]
h13 = _Region1(623.15, P)["h"]
h32 = _Region2(_t_P(P), P)["h"]
h25 = _Region2(1073.15, P)["h"]
hmax = _Region5(2273.15, P)["h"]
if hmin <= h <= h13:
region = 1
elif h13 < h < h32:
region = 3
elif h32 <= h <= h25:
region = 2
elif P <= 50 and h25 <= h <= hmax:
region = 5
return region
|
def _Bound_Ph(P, h)
|
Region definition for input P y h
Parameters
----------
P : float
Pressure, [MPa]
h : float
Specific enthalpy, [kJ/kg]
Returns
-------
region : float
IAPWS-97 region code
References
----------
Wagner, W; Kretzschmar, H-J: International Steam Tables: Properties of
Water and Steam Based on the Industrial Formulation IAPWS-IF97; Springer,
2008; doi: 10.1007/978-3-540-74234-0. Fig. 2.5
| 1.948719 | 2.025245 | 0.962214 |
region = None
if Pmin <= P <= Ps_623:
smin = _Region1(273.15, P)["s"]
s14 = _Region1(_TSat_P(P), P)["s"]
s24 = _Region2(_TSat_P(P), P)["s"]
s25 = _Region2(1073.15, P)["s"]
smax = _Region5(2273.15, P)["s"]
if smin <= s <= s14:
region = 1
elif s14 < s < s24:
region = 4
elif s24 <= s <= s25:
region = 2
elif s25 < s <= smax:
region = 5
elif Ps_623 < P < Pc:
smin = _Region1(273.15, P)["s"]
s13 = _Region1(623.15, P)["s"]
s32 = _Region2(_t_P(P), P)["s"]
s25 = _Region2(1073.15, P)["s"]
smax = _Region5(2273.15, P)["s"]
if smin <= s <= s13:
region = 1
elif s13 < s < s32:
try:
p34 = _PSat_s(s)
except NotImplementedError:
p34 = Pc
if P < p34:
region = 4
else:
region = 3
elif s32 <= s <= s25:
region = 2
elif s25 < s <= smax:
region = 5
elif Pc <= P <= 100:
smin = _Region1(273.15, P)["s"]
s13 = _Region1(623.15, P)["s"]
s32 = _Region2(_t_P(P), P)["s"]
s25 = _Region2(1073.15, P)["s"]
smax = _Region5(2273.15, P)["s"]
if smin <= s <= s13:
region = 1
elif s13 < s < s32:
region = 3
elif s32 <= s <= s25:
region = 2
elif P <= 50 and s25 <= s <= smax:
region = 5
return region
|
def _Bound_Ps(P, s)
|
Region definition for input P and s
Parameters
----------
P : float
Pressure, [MPa]
s : float
Specific entropy, [kJ/kgK]
Returns
-------
region : float
IAPWS-97 region code
References
----------
Wagner, W; Kretzschmar, H-J: International Steam Tables: Properties of
Water and Steam Based on the Industrial Formulation IAPWS-IF97; Springer,
2008; doi: 10.1007/978-3-540-74234-0. Fig. 2.9
| 1.933741 | 1.969425 | 0.981881 |
if T <= 1073.15:
Tr = 540/T
Pr = P/1.
go, gop, gopp, got, gott, gopt = Region2_cp0(Tr, Pr)
else:
Tr = 1000/T
Pr = P/1.
go, gop, gopp, got, gott, gopt = Region5_cp0(Tr, Pr)
prop0 = {}
prop0["v"] = Pr*gop*R*T/P/1000
prop0["h"] = Tr*got*R*T
prop0["s"] = R*(Tr*got-go)
prop0["cp"] = -R*Tr**2*gott
prop0["cv"] = R*(-Tr**2*gott-1)
prop0["w"] = (R*T*1000/(1+1/Tr**2/gott))**0.5
prop0["alfav"] = 1/T
prop0["xkappa"] = 1/P
return prop0
|
def prop0(T, P)
|
Ideal gas properties
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [MPa]
Returns
-------
prop : dict
Dict with calculated properties. The available properties are:
* v: Specific volume, [m³/kg]
* h: Specific enthalpy, [kJ/kg]
* s: Specific entropy, [kJ/kgK]
* cp: Specific isobaric heat capacity, [kJ/kgK]
* cv: Specific isocoric heat capacity, [kJ/kgK]
* w: Speed of sound, [m/s]
* alfav: Cubic expansion coefficient, [1/K]
* kt: Isothermal compressibility, [1/MPa]
| 4.411794 | 4.11308 | 1.072626 |
self._thermo = ""
if self.kwargs["T"] and self.kwargs["P"]:
self._thermo = "TP"
elif self.kwargs["P"] and self.kwargs["h"] is not None:
self._thermo = "Ph"
elif self.kwargs["P"] and self.kwargs["s"] is not None:
self._thermo = "Ps"
# TODO: Add other pairs definitions options
# elif self.kwargs["P"] and self.kwargs["v"]:
# self._thermo = "Pv"
# elif self.kwargs["T"] and self.kwargs["s"] is not None:
# self._thermo = "Ts"
elif self.kwargs["h"] is not None and self.kwargs["s"] is not None:
self._thermo = "hs"
elif self.kwargs["T"] and self.kwargs["x"] is not None:
self._thermo = "Tx"
elif self.kwargs["P"] and self.kwargs["x"] is not None:
self._thermo = "Px"
return self._thermo
|
def calculable(self)
|
Check if class is calculable by its kwargs
| 2.137002 | 2.017005 | 1.059493 |
return deriv_G(self, z, x, y, fase)
|
def derivative(self, z, x, y, fase)
|
Wrapper derivative for custom derived properties
where x, y, z can be: P, T, v, u, h, s, g, a
| 6.853547 | 6.316701 | 1.084988 |
if 0 <= x <= 0.33367:
Ttr = 273.16*(1-0.3439823*x-1.3274271*x**2-274.973*x**3)
elif 0.33367 < x <= 0.58396:
Ttr = 193.549*(1-4.987368*(x-0.5)**2)
elif 0.58396 < x <= 0.81473:
Ttr = 194.38*(1-4.886151*(x-2/3)**2+10.37298*(x-2/3)**3)
elif 0.81473 < x <= 1:
Ttr = 195.495*(1-0.323998*(1-x)-15.87560*(1-x)**4)
else:
raise NotImplementedError("Incoming out of bound")
return Ttr
|
def Ttr(x)
|
Equation for the triple point of ammonia-water mixture
Parameters
----------
x : float
Mole fraction of ammonia in mixture, [mol/mol]
Returns
-------
Ttr : float
Triple point temperature, [K]
Notes
------
Raise :class:`NotImplementedError` if input isn't in limit:
* 0 ≤ x ≤ 1
References
----------
IAPWS, Guideline on the IAPWS Formulation 2001 for the Thermodynamic
Properties of Ammonia-Water Mixtures,
http://www.iapws.org/relguide/nh3h2o.pdf, Eq 9
| 4.058699 | 4.282547 | 0.94773 |
# FIXME: The values are good, bad difer by 1%, a error I can find
# In Pressure happen and only use fird
M = (1-x)*IAPWS95.M + x*NH3.M
R = 8.314471/M
phio = self._phi0(rho, T, x)
fio = phio["fio"]
tau0 = phio["tau"]
fiot = phio["fiot"]
fiott = phio["fiott"]
phir = self._phir(rho, T, x)
fir = phir["fir"]
tau = phir["tau"]
delta = phir["delta"]
firt = phir["firt"]
firtt = phir["firtt"]
fird = phir["fird"]
firdd = phir["firdd"]
firdt = phir["firdt"]
F = phir["F"]
prop = {}
Z = 1 + delta*fird
prop["M"] = M
prop["P"] = Z*R*T*rho/1000
prop["u"] = R*T*(tau0*fiot + tau*firt)
prop["s"] = R*(tau0*fiot + tau*firt - fio - fir)
prop["h"] = R*T*(1+delta*fird+tau0*fiot+tau*firt)
prop["g"] = prop["h"]-T*prop["s"]
prop["a"] = prop["u"]-T*prop["s"]
cvR = -tau0**2*fiott - tau**2*firtt
prop["cv"] = R*cvR
prop["cp"] = R*(cvR+(1+delta*fird-delta*tau*firdt)**2 /
(1+2*delta*fird+delta**2*firdd))
prop["w"] = (R*T*1000*(1+2*delta*fird+delta**2*firdd +
(1+delta*fird-delta*tau*firdt)**2 / cvR))**0.5
prop["fugH2O"] = Z*exp(fir+delta*fird-x*F)
prop["fugNH3"] = Z*exp(fir+delta*fird+(1-x)*F)
return prop
|
def _prop(self, rho, T, x)
|
Thermodynamic properties of ammonia-water mixtures
Parameters
----------
T : float
Temperature [K]
rho : float
Density [kg/m³]
x : float
Mole fraction of ammonia in mixture [mol/mol]
Returns
-------
prop : dict
Dictionary with thermodynamic properties of ammonia-water mixtures:
* M: Mixture molecular mass, [g/mol]
* P: Pressure, [MPa]
* u: Specific internal energy, [kJ/kg]
* s: Specific entropy, [kJ/kgK]
* h: Specific enthalpy, [kJ/kg]
* a: Specific Helmholtz energy, [kJ/kg]
* g: Specific gibbs energy, [kJ/kg]
* cv: Specific isochoric heat capacity, [kJ/kgK]
* cp: Specific isobaric heat capacity, [kJ/kgK]
* w: Speed of sound, [m/s]
* fugH2O: Fugacity of water, [-]
* fugNH3: Fugacity of ammonia, [-]
References
----------
IAPWS, Guideline on the IAPWS Formulation 2001 for the Thermodynamic
Properties of Ammonia-Water Mixtures,
http://www.iapws.org/relguide/nh3h2o.pdf, Table 4
| 4.817029 | 4.144177 | 1.162361 |
def func_wrapper(ds):
return grid_attrs_to_aospy_names(func(ds, **kwargs), grid_attrs)
return func_wrapper
|
def _preprocess_and_rename_grid_attrs(func, grid_attrs=None, **kwargs)
|
Call a custom preprocessing method first then rename grid attrs.
This wrapper is needed to generate a single function to pass to the
``preprocesss`` of xr.open_mfdataset. It makes sure that the
user-specified preprocess function is called on the loaded Dataset before
aospy's is applied. An example for why this might be needed is output from
the WRF model; one needs to add a CF-compliant units attribute to the time
coordinate of all input files, because it is not present by default.
Parameters
----------
func : function
An arbitrary function to call before calling
``grid_attrs_to_aospy_names`` in ``_load_data_from_disk``. Must take
an xr.Dataset as an argument as well as ``**kwargs``.
grid_attrs : dict (optional)
Overriding dictionary of grid attributes mapping aospy internal
names to names of grid attributes used in a particular model.
Returns
-------
function
A function that calls the provided function ``func`` on the Dataset
before calling ``grid_attrs_to_aospy_names``; this is meant to be
passed as a ``preprocess`` argument to ``xr.open_mfdataset``.
| 8.340243 | 3.777884 | 2.207649 |
if grid_attrs is None:
grid_attrs = {}
# Override GRID_ATTRS with entries in grid_attrs
attrs = GRID_ATTRS.copy()
for k, v in grid_attrs.items():
if k not in attrs:
raise ValueError(
'Unrecognized internal name, {!r}, specified for a custom '
'grid attribute name. See the full list of valid internal '
'names below:\n\n{}'.format(k, list(GRID_ATTRS.keys())))
attrs[k] = (v, )
dims_and_vars = set(data.variables).union(set(data.dims))
for name_int, names_ext in attrs.items():
data_coord_name = set(names_ext).intersection(dims_and_vars)
if data_coord_name:
data = data.rename({data_coord_name.pop(): name_int})
return set_grid_attrs_as_coords(data)
|
def grid_attrs_to_aospy_names(data, grid_attrs=None)
|
Rename grid attributes to be consistent with aospy conventions.
Search all of the dataset's coords and dims looking for matches to known
grid attribute names; any that are found subsequently get renamed to the
aospy name as specified in ``aospy.internal_names.GRID_ATTRS``.
Also forces any renamed grid attribute that is saved as a dim without a
coord to have a coord, which facilitates subsequent slicing/subsetting.
This function does not compare to Model coordinates or add missing
coordinates from Model objects.
Parameters
----------
data : xr.Dataset
grid_attrs : dict (default None)
Overriding dictionary of grid attributes mapping aospy internal
names to names of grid attributes used in a particular model.
Returns
-------
xr.Dataset
Data returned with coordinates consistent with aospy
conventions
| 3.736628 | 3.733676 | 1.000791 |
grid_attrs_in_ds = set(GRID_ATTRS.keys()).intersection(
set(ds.coords) | set(ds.data_vars))
ds = ds.set_coords(grid_attrs_in_ds)
return ds
|
def set_grid_attrs_as_coords(ds)
|
Set available grid attributes as coordinates in a given Dataset.
Grid attributes are assumed to have their internal aospy names. Grid
attributes are set as coordinates, such that they are carried by all
selected DataArrays with overlapping index dimensions.
Parameters
----------
ds : Dataset
Input data
Returns
-------
Dataset
Dataset with grid attributes set as coordinates
| 3.298058 | 4.712453 | 0.69986 |
if da.dtype == np.float32:
logging.warning('Datapoints were stored using the np.float32 datatype.'
'For accurate reduction operations using bottleneck, '
'datapoints are being cast to the np.float64 datatype.'
' For more information see: https://github.com/pydata/'
'xarray/issues/1346')
return da.astype(np.float64)
else:
return da
|
def _maybe_cast_to_float64(da)
|
Cast DataArrays to np.float64 if they are of type np.float32.
Parameters
----------
da : xr.DataArray
Input DataArray
Returns
-------
DataArray
| 5.302079 | 5.850239 | 0.906301 |
for name in var.names:
try:
da = ds[name].rename(var.name)
if upcast_float32:
return _maybe_cast_to_float64(da)
else:
return da
except KeyError:
pass
msg = '{0} not found among names: {1} in\n{2}'.format(var, var.names, ds)
raise LookupError(msg)
|
def _sel_var(ds, var, upcast_float32=True)
|
Select the specified variable by trying all possible alternative names.
Parameters
----------
ds : Dataset
Dataset possibly containing var
var : aospy.Var
Variable to find data for
upcast_float32 : bool (default True)
Whether to cast a float32 DataArray up to float64
Returns
-------
DataArray
Raises
------
KeyError
If the variable is not in the Dataset
| 3.696808 | 3.202641 | 1.1543 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.