code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
results = [] cache = {} tuning_options["scaling"] = False #build a bounds array as needed for the optimizer bounds = get_bounds(tuning_options.tune_params) args = (kernel_options, tuning_options, runner, results, cache) #call the differential evolution optimizer opt_result = differential_evolution(_cost_func, bounds, args, maxiter=1, polish=False, disp=tuning_options.verbose) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
5.730134
5.440999
1.05314
results = [] cache = {} #scale variables in x because PSO works with velocities to visit different configurations tuning_options["scaling"] = True #using this instead of get_bounds because scaling is used bounds, _, _ = get_bounds_x0_eps(tuning_options) args = (kernel_options, tuning_options, runner, results, cache) num_particles = 20 maxiter = 100 best_time_global = 1e20 best_position_global = [] # init particle swarm swarm = [] for i in range(0, num_particles): swarm.append(Particle(bounds, args)) for i in range(maxiter): if tuning_options.verbose: print("start iteration ", i, "best time global", best_time_global) # evaluate particle positions for j in range(num_particles): swarm[j].evaluate(_cost_func) # update global best if needed if swarm[j].time <= best_time_global: best_position_global = swarm[j].position best_time_global = swarm[j].time # update particle velocities and positions for j in range(0, num_particles): swarm[j].update_velocity(best_position_global) swarm[j].update_position(bounds) if tuning_options.verbose: print('Final result:') print(best_position_global) print(best_time_global) return results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: dict :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: dict :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: dict :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
4.167645
4.072231
1.02343
dna_size = len(tuning_options.tune_params.keys()) pop_size = 20 generations = 100 tuning_options["scaling"] = False tune_params = tuning_options.tune_params population = random_population(dna_size, pop_size, tune_params) best_time = 1e20 all_results = [] cache = {} for generation in range(generations): if tuning_options.verbose: print("Generation %d, best_time %f" % (generation, best_time)) #determine fitness of population members weighted_population = [] for dna in population: time = _cost_func(dna, kernel_options, tuning_options, runner, all_results, cache) weighted_population.append((dna, time)) population = [] #'best_time' is used only for printing if tuning_options.verbose and all_results: best_time = min(all_results, key=lambda x: x["time"])["time"] #population is sorted such that better configs have higher chance of reproducing weighted_population.sort(key=lambda x: x[1]) #crossover and mutate for _ in range(pop_size//2): ind1 = weighted_choice(weighted_population) ind2 = weighted_choice(weighted_population) ind1, ind2 = crossover(ind1, ind2) population.append(mutate(ind1, dna_size, tune_params)) population.append(mutate(ind2, dna_size, tune_params)) return all_results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
3.599841
3.392683
1.06106
random_number = random.betavariate(1, 2.5) #increased probability of selecting members early in the list #random_number = random.random() ind = int(random_number*len(population)) ind = min(max(ind, 0), len(population)-1) return population[ind][0]
def weighted_choice(population)
Randomly select, fitness determines probability of being selected
5.054161
5.038915
1.003026
population = [] for _ in range(pop_size): dna = [] for i in range(dna_size): dna.append(random_val(i, tune_params)) population.append(dna) return population
def random_population(dna_size, pop_size, tune_params)
create a random population
2.1866
2.098023
1.042219
key = list(tune_params.keys())[index] return random.choice(tune_params[key])
def random_val(index, tune_params)
return a random value for a parameter
2.964125
2.903581
1.020852
dna_out = [] mutation_chance = 10 for i in range(dna_size): if int(random.random()*mutation_chance) == 1: dna_out.append(random_val(i, tune_params)) else: dna_out.append(dna[i]) return dna_out
def mutate(dna, dna_size, tune_params)
Mutate DNA with 1/mutation_chance chance
2.692319
2.545232
1.057789
pos = int(random.random()*len(dna1)) if random.random() < 0.5: return (dna1[:pos]+dna2[pos:], dna2[:pos]+dna1[pos:]) else: return (dna2[:pos]+dna1[pos:], dna1[:pos]+dna2[pos:])
def crossover(dna1, dna2)
crossover dna1 and dna2 at a random index
1.704796
1.674692
1.017976
results = [] cache = {} method = tuning_options.method #scale variables in x to make 'eps' relevant for multiple variables tuning_options["scaling"] = True bounds, x0, _ = get_bounds_x0_eps(tuning_options) kwargs = setup_method_arguments(method, bounds) options = setup_method_options(method, tuning_options) #not all methods support 'disp' option if not method in ['TNC']: options['disp'] = tuning_options.verbose args = (kernel_options, tuning_options, runner, results, cache) opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method=method, options=options, **kwargs) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
5.94973
5.765334
1.031984
error_time = 1e20 logging.debug('_cost_func called') logging.debug('x: ' + str(x)) x_key = ",".join([str(i) for i in x]) if x_key in cache: return cache[x_key] #snap values in x to nearest actual value for each parameter unscale x if needed if tuning_options.scaling: params = unscale_and_snap_to_nearest(x, tuning_options.tune_params, tuning_options.eps) else: params = snap_to_nearest_config(x, tuning_options.tune_params) logging.debug('params ' + str(params)) x_int = ",".join([str(i) for i in params]) if x_int in cache: return cache[x_int] #check if this is a legal (non-restricted) parameter instance if tuning_options.restrictions: legal = util.check_restrictions(tuning_options.restrictions, params, tuning_options.tune_params.keys(), tuning_options.verbose) if not legal: cache[x_int] = error_time cache[x_key] = error_time return error_time #compile and benchmark this instance res, _ = runner.run([params], kernel_options, tuning_options) #append to tuning results if res: results.append(res[0]) cache[x_int] = res[0]['time'] cache[x_key] = res[0]['time'] return res[0]['time'] cache[x_int] = error_time cache[x_key] = error_time return error_time
def _cost_func(x, kernel_options, tuning_options, runner, results, cache)
Cost function used by minimize
3.374675
3.346135
1.008529
values = tuning_options.tune_params.values() if tuning_options.scaling: #bounds = [(0, 1) for _ in values] #x0 = [0.5 for _ in bounds] eps = numpy.amin([1.0/len(v) for v in values]) #reducing interval from [0, 1] to [0, eps*len(v)] bounds = [(0, eps*len(v)) for v in values] x0 = [0.5*eps*len(v) for v in values] else: bounds = get_bounds(tuning_options.tune_params) x0 = [(min_v+max_v)/2.0 for (min_v, max_v) in bounds] eps = 1e9 for v_list in values: vals = numpy.sort(v_list) eps = min(eps, numpy.amin(numpy.gradient(vals))) tuning_options["eps"] = eps logging.debug('get_bounds_x0_eps called') logging.debug('bounds ' + str(bounds)) logging.debug('x0 ' + str(x0)) logging.debug('eps ' + str(eps)) return bounds, x0, eps
def get_bounds_x0_eps(tuning_options)
compute bounds, x0 (the initial guess), and eps
3.046865
2.942141
1.035594
bounds = [] for values in tune_params.values(): sorted_values = numpy.sort(values) bounds.append((sorted_values[0], sorted_values[-1])) return bounds
def get_bounds(tune_params)
create a bounds array from the tunable parameters
2.924216
2.637511
1.108703
kwargs = {} #pass size of parameter space as max iterations to methods that support it #it seems not all methods iterpret this value in the same manner maxiter = numpy.prod([len(v) for v in tuning_options.tune_params.values()]) kwargs['maxiter'] = maxiter if method in ["Nelder-Mead", "Powell"]: kwargs['maxfev'] = maxiter elif method == "L-BFGS-B": kwargs['maxfun'] = maxiter #pass eps to methods that support it if method in ["CG", "BFGS", "L-BFGS-B", "TNC", "SLSQP"]: kwargs['eps'] = tuning_options.eps elif method == "COBYLA": kwargs['rhobeg'] = tuning_options.eps return kwargs
def setup_method_options(method, tuning_options)
prepare method specific options
3.637288
3.543112
1.02658
params = [] for i, k in enumerate(tune_params.keys()): values = numpy.array(tune_params[k]) idx = numpy.abs(values-x[i]).argmin() params.append(int(values[idx])) return params
def snap_to_nearest_config(x, tune_params)
helper func that for each param selects the closest actual value
2.969938
2.858811
1.038872
x_u = [i for i in x] for i, v in enumerate(tune_params.values()): #create an evenly spaced linear space to map [0,1]-interval #to actual values, giving each value an equal chance #pad = 0.5/len(v) #use when interval is [0,1] pad = 0.5*eps #use when interval is [0, eps*len(v)] linspace = numpy.linspace(pad, (eps*len(v))-pad, len(v)) #snap value to nearest point in space, store index idx = numpy.abs(linspace-x[i]).argmin() #safeguard that should not be needed idx = min(max(idx, 0), len(v)-1) #use index into array of actual values x_u[i] = v[idx] return x_u
def unscale_and_snap_to_nearest(x, tune_params, eps)
helper func that snaps a scaled variable to the nearest config
5.508785
5.541311
0.99413
logging.debug('sequential runner started for ' + kernel_options.kernel_name) results = [] #iterate over parameter space for element in parameter_space: params = OrderedDict(zip(tuning_options.tune_params.keys(), element)) time = self.dev.compile_and_benchmark(self.gpu_args, params, kernel_options, tuning_options) if time is None: logging.debug('received time is None, kernel configuration was skipped silently due to compile or runtime failure') continue #print and append to results params['time'] = time output_string = get_config_string(params, self.units) logging.debug(output_string) if not self.quiet: print(output_string) results.append(params) return results, self.dev.get_environment()
def run(self, parameter_space, kernel_options, tuning_options)
Iterate through the entire parameter space using a single Python process :param parameter_space: The parameter space as an iterable. :type parameter_space: iterable :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.iterface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
6.654332
6.112992
1.088556
results = [] cache = {} method = tuning_options.method #scale variables in x to make 'eps' relevant for multiple variables tuning_options["scaling"] = True bounds, x0, eps = get_bounds_x0_eps(tuning_options) kwargs = setup_method_arguments(method, bounds) options = setup_method_options(method, tuning_options) kwargs['options'] = options args = (kernel_options, tuning_options, runner, results, cache) minimizer_kwargs = dict(**kwargs) minimizer_kwargs["method"] = method minimizer_kwargs["args"] = args opt_result = scipy.optimize.basinhopping(_cost_func, x0, stepsize=eps, minimizer_kwargs=minimizer_kwargs, disp=tuning_options.verbose) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: dict :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: dict :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: dict :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
5.02438
4.970342
1.010872
return drv.pagelocked_empty(int(n), dtype, order='C', mem_flags=drv.host_alloc_flags.PORTABLE)
def allocate(n, dtype=numpy.float32)
allocate context-portable pinned host memory
7.845421
7.443726
1.053964
gpu_args = [] for arg in arguments: # if arg i is a numpy array copy to device if isinstance(arg, numpy.ndarray): alloc = drv.mem_alloc(arg.nbytes) self.allocations.append(alloc) gpu_args.append(alloc) drv.memcpy_htod(gpu_args[-1], arg) else: # if not an array, just pass argument along gpu_args.append(arg) return gpu_args
def ready_argument_list(self, arguments)
ready argument list to be passed to the kernel, allocates gpu mem :param arguments: List of arguments to be passed to the kernel. The order should match the argument list on the CUDA kernel. Allowed values are numpy.ndarray, and/or numpy.int32, numpy.float32, and so on. :type arguments: list(numpy objects) :returns: A list of arguments that can be passed to an CUDA kernel. :rtype: list( pycuda.driver.DeviceAllocation, numpy.int32, ... )
3.638385
3.171221
1.147314
try: no_extern_c = 'extern "C"' in kernel_string compiler_options = ['-Xcompiler=-Wall'] if self.compiler_options: compiler_options += self.compiler_options self.current_module = self.source_mod(kernel_string, options=compiler_options + ["-e", kernel_name], arch=('compute_' + self.cc) if self.cc != "00" else None, code=('sm_' + self.cc) if self.cc != "00" else None, cache_dir=False, no_extern_c=no_extern_c) func = self.current_module.get_function(kernel_name) return func except drv.CompileError as e: if "uses too much shared data" in e.stderr: raise Exception("uses too much shared data") else: raise e
def compile(self, kernel_name, kernel_string)
call the CUDA compiler to compile the kernel, return the device function :param kernel_name: The name of the kernel to be compiled, used to lookup the function after compilation. :type kernel_name: string :param kernel_string: The CUDA kernel code that contains the function `kernel_name` :type kernel_string: string :returns: An CUDA kernel that can be called directly. :rtype: pycuda.driver.Function
4.718875
4.620927
1.021197
start = drv.Event() end = drv.Event() time = [] for _ in range(self.iterations): self.context.synchronize() start.record() self.run_kernel(func, gpu_args, threads, grid) end.record() self.context.synchronize() time.append(end.time_since(start)) time = sorted(time) if times: return time else: if self.iterations > 4: return numpy.mean(time[1:-1]) else: return numpy.mean(time)
def benchmark(self, func, gpu_args, threads, grid, times)
runs the kernel and measures time repeatedly, returns average time Runs the kernel and measures kernel execution time repeatedly, number of iterations is set during the creation of CudaFunctions. Benchmark returns a robust average, from all measurements the fastest and slowest runs are discarded and the rest is included in the returned average. The reason for this is to be robust against initialization artifacts and other exceptional cases. :param func: A PyCuda kernel compiled for this specific kernel configuration :type func: pycuda.driver.Function :param gpu_args: A list of arguments to the kernel, order should match the order in the code. Allowed values are either variables in global memory or single values passed by value. :type gpu_args: list( pycuda.driver.DeviceAllocation, numpy.int32, ...) :param threads: A tuple listing the number of threads in each dimension of the thread block :type threads: tuple(int, int, int) :param grid: A tuple listing the number of thread blocks in each dimension of the grid :type grid: tuple(int, int) :param times: Return the execution time of all iterations. :type times: bool :returns: All execution times, if times=True, or a robust average for the kernel execution time. :rtype: float
2.652552
2.500003
1.061019
logging.debug('copy_constant_memory_args called') logging.debug('current module: ' + str(self.current_module)) for k, v in cmem_args.items(): symbol = self.current_module.get_global(k)[0] logging.debug('copying to symbol: ' + str(symbol)) logging.debug('array to be copied: ') logging.debug(v.nbytes) logging.debug(v.dtype) logging.debug(v.flags) drv.memcpy_htod(symbol, v)
def copy_constant_memory_args(self, cmem_args)
adds constant memory arguments to the most recently compiled module :param cmem_args: A dictionary containing the data to be passed to the device constant memory. The format to be used is as follows: A string key is used to name the constant memory symbol to which the value needs to be copied. Similar to regular arguments, these need to be numpy objects, such as numpy.ndarray or numpy.int32, and so on. :type cmem_args: dict( string: numpy.ndarray, ... )
3.243122
2.810128
1.154083
filter_mode_map = { 'point': drv.filter_mode.POINT, 'linear': drv.filter_mode.LINEAR } address_mode_map = { 'border': drv.address_mode.BORDER, 'clamp': drv.address_mode.CLAMP, 'mirror': drv.address_mode.MIRROR, 'wrap': drv.address_mode.WRAP } logging.debug('copy_texture_memory_args called') logging.debug('current module: ' + str(self.current_module)) self.texrefs = [] for k, v in texmem_args.items(): tex = self.current_module.get_texref(k) self.texrefs.append(tex) logging.debug('copying to texture: ' + str(k)) if not isinstance(v, dict): data = v else: data = v['array'] logging.debug('texture to be copied: ') logging.debug(data.nbytes) logging.debug(data.dtype) logging.debug(data.flags) drv.matrix_to_texref(data, tex, order="C") if isinstance(v, dict): if 'address_mode' in v and v['address_mode'] is not None: # address_mode is set per axis amode = v['address_mode'] if not isinstance(amode, list): amode = [ amode ] * data.ndim for i, m in enumerate(amode): try: if m is not None: tex.set_address_mode(i, address_mode_map[m]) except KeyError: raise ValueError('Unknown address mode: ' + m) if 'filter_mode' in v and v['filter_mode'] is not None: fmode = v['filter_mode'] try: tex.set_filter_mode(filter_mode_map[fmode]) except KeyError: raise ValueError('Unknown filter mode: ' + fmode) if 'normalized_coordinates' in v and v['normalized_coordinates']: tex.set_flags(tex.get_flags() | drv.TRSF_NORMALIZED_COORDINATES)
def copy_texture_memory_args(self, texmem_args)
adds texture memory arguments to the most recently compiled module :param texmem_args: A dictionary containing the data to be passed to the device texture memory. TODO
2.40706
2.347945
1.025178
func(*gpu_args, block=threads, grid=grid, texrefs=self.texrefs)
def run_kernel(self, func, gpu_args, threads, grid)
runs the CUDA kernel passed as 'func' :param func: A PyCuda kernel compiled for this specific kernel configuration :type func: pycuda.driver.Function :param gpu_args: A list of arguments to the kernel, order should match the order in the code. Allowed values are either variables in global memory or single values passed by value. :type gpu_args: list( pycuda.driver.DeviceAllocation, numpy.int32, ...) :param threads: A tuple listing the number of threads in each dimension of the thread block :type threads: tuple(int, int, int) :param grid: A tuple listing the number of thread blocks in each dimension of the grid :type grid: tuple(int, int)
5.616081
8.725694
0.643626
drv.memset_d8(allocation, value, size)
def memset(self, allocation, value, size)
set the memory in allocation to the value in value :param allocation: A GPU memory allocation unit :type allocation: pycuda.driver.DeviceAllocation :param value: The value to set the memory to :type value: a single 8-bit unsigned int :param size: The size of to the allocation unit in bytes :type size: int
9.530638
13.618479
0.699831
if isinstance(src, drv.DeviceAllocation): drv.memcpy_dtoh(dest, src) else: dest = src
def memcpy_dtoh(self, dest, src)
perform a device to host memory copy :param dest: A numpy array in host memory to store the data :type dest: numpy.ndarray :param src: A GPU memory allocation unit :type src: pycuda.driver.DeviceAllocation
5.52231
4.95401
1.114715
if isinstance(dest, drv.DeviceAllocation): drv.memcpy_htod(dest, src) else: dest = src
def memcpy_htod(self, dest, src)
perform a host to device memory copy :param dest: A GPU memory allocation unit :type dest: pycuda.driver.DeviceAllocation :param src: A numpy array in host memory to store the data :type src: numpy.ndarray
5.79091
5.098469
1.135814
results = [] cache = {} # SA works with real parameter values and does not need scaling tuning_options["scaling"] = False args = (kernel_options, tuning_options, runner, results, cache) tune_params = tuning_options.tune_params # optimization parameters T = 1.0 T_min = 0.001 alpha = 0.9 niter = 20 # generate random starting point and evaluate cost pos = [] for i, _ in enumerate(tune_params.keys()): pos.append(random_val(i, tune_params)) old_cost = _cost_func(pos, *args) if tuning_options.verbose: c = 0 # main optimization loop while T > T_min: if tuning_options.verbose: print("iteration: ", c, "T", T, "cost: ", old_cost) c += 1 for i in range(niter): new_pos = neighbor(pos, tune_params) new_cost = _cost_func(new_pos, *args) ap = acceptance_prob(old_cost, new_cost, T) r = random.random() if ap > r: if tuning_options.verbose: print("new position accepted", new_pos, new_cost, 'old:', pos, old_cost, 'ap', ap, 'r', r, 'T', T) pos = new_pos old_cost = new_cost T = T * alpha return results, runner.dev.get_environment()
def tune(runner, kernel_options, device_options, tuning_options)
Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: dict :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: dict :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: dict :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
3.896374
3.83248
1.016672
#if start pos is not valid, always move if old_cost == 1e20: return 1.0 #if we have found a valid ps before, never move to nonvalid pos if new_cost == 1e20: return 0.0 #always move if new cost is better if new_cost < old_cost: return 1.0 #maybe move if old cost is better than new cost depending on T and random value return np.exp(((old_cost-new_cost)/old_cost)/T)
def acceptance_prob(old_cost, new_cost, T)
annealing equation, with modifications to work towards a lower value
5.519389
5.654478
0.976109
size = len(pos) pos_out = [] # random mutation # expected value is set that values all dimensions attempt to get mutated for i in range(size): key = list(tune_params.keys())[i] values = tune_params[key] if random.random() < 0.2: #replace with random value new_value = random_val(i, tune_params) else: #adjacent value ind = values.index(pos[i]) if random.random() > 0.5: ind += 1 else: ind -= 1 ind = min(max(ind, 0), len(values)-1) new_value = values[ind] pos_out.append(new_value) return pos_out
def neighbor(pos, tune_params)
return a random neighbor of pos
4.208025
4.194338
1.003263
tune_params = tuning_options.tune_params restrictions = tuning_options.restrictions verbose = tuning_options.verbose #compute cartesian product of all tunable parameters parameter_space = itertools.product(*tune_params.values()) #check for search space restrictions if restrictions is not None: parameter_space = filter(lambda p: util.check_restrictions(restrictions, p, tune_params.keys(), verbose), parameter_space) results, env = runner.run(parameter_space, kernel_options, tuning_options) return results, env
def tune(runner, kernel_options, device_options, tuning_options)
Tune all instances in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict()
4.038055
4.162121
0.970192
ctype_args = [ None for _ in arguments] for i, arg in enumerate(arguments): if not isinstance(arg, (numpy.ndarray, numpy.number)): raise TypeError("Argument is not numpy ndarray or numpy scalar %s" % type(arg)) dtype_str = str(arg.dtype) data = arg.copy() if isinstance(arg, numpy.ndarray): if dtype_str in dtype_map.keys(): # In numpy <= 1.15, ndarray.ctypes.data_as does not itself keep a reference # to its underlying array, so we need to store a reference to arg.copy() # in the Argument object manually to avoid it being deleted. # (This changed in numpy > 1.15.) data_ctypes = data.ctypes.data_as(C.POINTER(dtype_map[dtype_str])) else: raise TypeError("unknown dtype for ndarray") elif isinstance(arg, numpy.generic): data_ctypes = dtype_map[dtype_str](arg) ctype_args[i] = Argument(numpy=data, ctypes=data_ctypes) return ctype_args
def ready_argument_list(self, arguments)
ready argument list to be passed to the C function :param arguments: List of arguments to be passed to the C function. The order should match the argument list on the C function. Allowed values are numpy.ndarray, and/or numpy.int32, numpy.float32, and so on. :type arguments: list(numpy objects) :returns: A list of arguments that can be passed to the C function. :rtype: list(Argument)
4.400523
4.117949
1.06862
logging.debug('compiling ' + kernel_name) if self.lib != None: self.cleanup_lib() compiler_options = ["-fPIC"] #detect openmp if "#include <omp.h>" in kernel_string or "use omp_lib" in kernel_string: logging.debug('set using_openmp to true') self.using_openmp = True if self.compiler == "pgfortran": compiler_options.append("-mp") else: compiler_options.append("-fopenmp") #select right suffix based on compiler suffix = ".cc" #detect whether to use nvcc as default instead of g++, may overrule an explicitly passed g++ if ("#include <cuda" in kernel_string) or ("cudaMemcpy" in kernel_string): if self.compiler == "g++" and self.nvcc_available: self.compiler = "nvcc" #if contains device code suffix .cu is required by nvcc if self.compiler == "nvcc" and "__global__" in kernel_string: suffix = ".cu" if self.compiler in ["gfortran", "pgfortran", "ftn", "ifort"]: suffix = ".F90" if self.compiler == "nvcc": compiler_options = ["-Xcompiler=" + c for c in compiler_options] if ".c" in suffix: if not "extern \"C\"" in kernel_string: kernel_string = "extern \"C\" {\n" + kernel_string + "\n}" #copy user specified compiler options to current list if self.compiler_options: compiler_options += self.compiler_options lib_args = [] if "CL/cl.h" in kernel_string: lib_args = ["-lOpenCL"] logging.debug('using compiler ' + self.compiler) logging.debug('compiler_options ' + " ".join(compiler_options)) logging.debug('lib_args ' + " ".join(lib_args)) source_file = get_temp_filename(suffix=suffix) filename = ".".join(source_file.split(".")[:-1]) #detect Fortran modules match = re.search(r"\s*module\s+([a-zA-Z_]*)", kernel_string) if match: if self.compiler == "gfortran": kernel_name = "__" + match.group(1) + "_MOD_" + kernel_name elif self.compiler in ["ftn", "ifort"]: kernel_name = match.group(1) + "_mp_" + kernel_name + "_" elif self.compiler == "pgfortran": kernel_name = match.group(1) + "_" + kernel_name + "_" try: write_file(source_file, kernel_string) lib_extension = ".so" if platform.system() == "Darwin": lib_extension = ".dylib" subprocess.check_call([self.compiler, "-c", source_file] + compiler_options + ["-o", filename + ".o"]) subprocess.check_call([self.compiler, filename + ".o"] + compiler_options + ["-shared", "-o", filename + lib_extension] + lib_args) self.lib = numpy.ctypeslib.load_library(filename, '.') func = getattr(self.lib, kernel_name) func.restype = C.c_float finally: delete_temp_file(source_file) delete_temp_file(filename+".o") delete_temp_file(filename+".so") delete_temp_file(filename+".dylib") return func
def compile(self, kernel_name, kernel_string)
call the C compiler to compile the kernel, return the function :param kernel_name: The name of the kernel to be compiled, used to lookup the function after compilation. :type kernel_name: string :param kernel_string: The C code that contains the function `kernel_name` :type kernel_string: string :returns: An ctypes function that can be called directly. :rtype: ctypes._FuncPtr
3.089201
3.096159
0.997753
time = [] for _ in range(self.iterations): value = self.run_kernel(func, c_args, threads, grid) #I would like to replace the following with actually capturing #stderr and detecting the error directly in Python, it proved #however that capturing stderr for non-Python functions from Python #is a rather difficult thing to do # #The current, less than ideal, scheme uses the convention that a #negative time indicates a 'too many resources requested for launch' if value < 0.0: raise Exception("too many resources requested for launch") time.append(value) time = sorted(time) if times: return time else: if self.iterations > 4: return numpy.mean(time[1:-1]) else: return numpy.mean(time)
def benchmark(self, func, c_args, threads, grid, times)
runs the kernel repeatedly, returns averaged returned value The C function tuning is a little bit more flexible than direct CUDA or OpenCL kernel tuning. The C function needs to measure time, or some other quality metric you wish to tune on, on its own and should therefore return a single floating-point value. Benchmark runs the C function repeatedly and returns the average of the values returned by the C function. The number of iterations is set during the creation of the CFunctions object. For all measurements the lowest and highest values are discarded and the rest is included in the average. The reason for this is to be robust against initialization artifacts and other exceptional cases. :param func: A C function compiled for this specific configuration :type func: ctypes._FuncPtr :param c_args: A list of arguments to the function, order should match the order in the code. The list should be prepared using ready_argument_list(). :type c_args: list(Argument) :param threads: Ignored, but left as argument for now to have the same interface as CudaFunctions and OpenCLFunctions. :type threads: any :param grid: Ignored, but left as argument for now to have the same interface as CudaFunctions and OpenCLFunctions. :type grid: any :param times: Return the execution time of all iterations. :type times: bool :returns: All execution times, if times=True, or a robust average for the kernel execution time. :rtype: float
9.004115
8.923889
1.00899
logging.debug("run_kernel") logging.debug("arguments=" + str([str(arg.ctypes) for arg in c_args])) time = func(*[arg.ctypes for arg in c_args]) return time
def run_kernel(self, func, c_args, threads, grid)
runs the kernel once, returns whatever the kernel returns :param func: A C function compiled for this specific configuration :type func: ctypes._FuncPtr :param c_args: A list of arguments to the function, order should match the order in the code. The list should be prepared using ready_argument_list(). :type c_args: list(Argument) :param threads: Ignored, but left as argument for now to have the same interface as CudaFunctions and OpenCLFunctions. :type threads: any :param grid: Ignored, but left as argument for now to have the same interface as CudaFunctions and OpenCLFunctions. :type grid: any :returns: A robust average of values returned by the C function. :rtype: float
5.881613
5.546748
1.060372
C.memset(allocation.ctypes, value, size)
def memset(self, allocation, value, size)
set the memory in allocation to the value in value :param allocation: An Argument for some memory allocation unit :type allocation: Argument :param value: The value to set the memory to :type value: a single 8-bit unsigned int :param size: The size of to the allocation unit in bytes :type size: int
11.216046
48.133305
0.23302
if not self.using_openmp: #this if statement is necessary because shared libraries that use #OpenMP will core dump when unloaded, this is a well-known issue with OpenMP logging.debug('unloading shared library') _ctypes.dlclose(self.lib._handle)
def cleanup_lib(self)
unload the previously loaded shared library
12.056811
10.209291
1.180965
while True: yield from rpc.notify('clock', str(datetime.datetime.now())) yield from asyncio.sleep(1)
def clock(rpc)
This task runs forever and notifies all clients subscribed to 'clock' once a second.
5.169302
3.967521
1.302905
global __already_patched if not __already_patched: from django.db import connections connections._connections = local(connections._connections) __already_patched = True
def patch_db_connections()
This wraps django.db.connections._connections with a TaskLocal object. The Django transactions are only thread-safe, using threading.local, and don't know about coroutines.
6.461866
4.716433
1.370075
try: msg_data = json.loads(raw_msg) except ValueError: raise RpcParseError # check jsonrpc version if 'jsonrpc' not in msg_data or not msg_data['jsonrpc'] == JSONRPC: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # check requierd fields if not len(set(['error', 'result', 'method']) & set(msg_data)) == 1: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # find message type if 'method' in msg_data: if 'id' in msg_data and msg_data['id'] is not None: msg_type = JsonRpcMsgTyp.REQUEST else: msg_type = JsonRpcMsgTyp.NOTIFICATION elif 'result' in msg_data: msg_type = JsonRpcMsgTyp.RESULT elif 'error' in msg_data: msg_type = JsonRpcMsgTyp.ERROR # Request Objects if msg_type in (JsonRpcMsgTyp.REQUEST, JsonRpcMsgTyp.NOTIFICATION): # 'method' fields have to be strings if type(msg_data['method']) is not str: raise RpcInvalidRequestError # set empty 'params' if not set if 'params' not in msg_data: msg_data['params'] = None # set empty 'id' if not set if 'id' not in msg_data: msg_data['id'] = None # Response Objects if msg_type in (JsonRpcMsgTyp.RESULT, JsonRpcMsgTyp.ERROR): # every Response object has to define an id if 'id' not in msg_data: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # Error objects if msg_type == JsonRpcMsgTyp.ERROR: # the error field has to be a dict if type(msg_data['error']) is not dict: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # the error field has to define 'code' and 'message' if not len(set(['code', 'message']) & set(msg_data['error'])) == 2: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # the error code has to be in the specified ranges if not msg_data['error']['code'] in RpcError.lookup_table.keys(): raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) # set empty 'data' field if not set if 'data' not in msg_data['error']: msg_data['error']['data'] = None return JsonRpcMsg(msg_type, msg_data)
def decode_msg(raw_msg)
Decodes jsonrpc 2.0 raw message objects into JsonRpcMsg objects. Examples: Request: { "jsonrpc": "2.0", "id": 1, "method": "subtract", "params": [42, 23] } Notification: { "jsonrpc": "2.0", "method": "clock", "params": "12:00", } Response: { "jsonrpc": "2.0", "id": 1, "result": 0, } Error: { "jsonrpc": "2.0", "id": 1, "error": { "code": -32600, "message": "Invalid request", "data": null } }
2.066643
1.998042
1.034334
# Lazily load needed functions, as they import django model functions which # in turn load modules that need settings to be loaded and we can't # guarantee this module was loaded when the settings were ready. from .compat import get_public_schema_name, get_tenant_model old_schema = (connection.schema_name, connection.include_public_schema) setattr(task, '_old_schema', old_schema) schema = ( get_schema_name_from_task(task, kwargs) or get_public_schema_name() ) # If the schema has not changed, don't do anything. if connection.schema_name == schema: return if connection.schema_name != get_public_schema_name(): connection.set_schema_to_public() if schema == get_public_schema_name(): return tenant = get_tenant_model().objects.get(schema_name=schema) connection.set_tenant(tenant, include_public=True)
def switch_schema(task, kwargs, **kw)
Switches schema of the task, before it has been run.
4.214261
4.276668
0.985407
from .compat import get_public_schema_name schema_name = get_public_schema_name() include_public = True if hasattr(task, '_old_schema'): schema_name, include_public = task._old_schema # If the schema names match, don't do anything. if connection.schema_name == schema_name: return connection.set_schema(schema_name, include_public=include_public)
def restore_schema(task, **kwargs)
Switches the schema back to the one from before running the task.
3.681491
3.528731
1.04329
id_ = attrs['id'] data = {} data['directed'] = G.is_directed() data['graph'] = G.graph data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G] data['links'] = [] for u, v, timeline in G.interactions_iter(): for t in timeline['t']: for tid in past.builtins.xrange(t[0], t[-1]+1): data['links'].append({"source": u, "target": v, "time": tid}) return data
def node_link_data(G, attrs=_attrs)
Return data in node-link format that is suitable for JSON serialization and use in Javascript documents. Parameters ---------- G : DyNetx graph attrs : dict A dictionary that contains three keys 'id', 'source' and 'target'. The corresponding values provide the attribute names for storing DyNetx-internal graph data. The values should be unique. Default value: :samp:`dict(id='id', source='source', target='target')`. Returns ------- data : dict A dictionary with node-link formatted data. Examples -------- >>> from dynetx.readwrite import json_graph >>> G = dn.DynGraph([(1,2)]) >>> data = json_graph.node_link_data(G) To serialize with json >>> import json >>> s = json.dumps(data) Notes ----- Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. See Also -------- node_link_graph
3.695606
4.461659
0.828303
directed = data.get('directed', directed) graph = dn.DynGraph() if directed: graph = graph.to_directed() id_ = attrs['id'] mapping = [] graph.graph = data.get('graph', {}) c = count() for d in data['nodes']: node = d.get(id_, next(c)) mapping.append(node) nodedata = dict((make_str(k), v) for k, v in d.items() if k != id_) graph.add_node(node, **nodedata) for d in data['links']: graph.add_interaction(d['source'], d["target"], d['time']) return graph
def node_link_graph(data, directed=False, attrs=_attrs)
Return graph from node-link data format. Parameters ---------- data : dict node-link formatted graph data directed : bool If True, and direction not specified in data, return a directed graph. attrs : dict A dictionary that contains three keys 'id', 'source', 'target'. The corresponding values provide the attribute names for storing Dynetx-internal graph data. Default value: :samp:`dict(id='id', source='source', target='target')`. Returns ------- G : DyNetx graph A DyNetx graph object Examples -------- >>> from dynetx.readwrite import json_graph >>> G = dn.DynGraph([(1,2)]) >>> data = json_graph.node_link_data(G) >>> H = json_graph.node_link_graph(data) See Also -------- node_link_data
3.953047
4.223951
0.935865
tls = sorted(sind_list) conversion = {val: idx for idx, val in enumerate(tls)} return conversion
def compact_timeslot(sind_list)
Test method. Compact all snapshots into a single one. :param sind_list: :return:
7.856621
9.83035
0.799221
if t is not None: return iter([n for n in self.degree(t=t).values() if n > 0]) return iter(self._node)
def nodes_iter(self, t=None, data=False)
Return an iterator over the nodes with respect to a given temporal snapshot. Parameters ---------- t : snapshot id (default=None). If None the iterator returns all the nodes of the flattened graph. data : boolean, optional (default=False) If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary Returns ------- niter : iterator An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) Examples -------- >>> G = dn.DynGraph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2], 0) >>> [n for n, d in G.nodes_iter(t=0)] [0, 1, 2]
4.700296
7.458717
0.630175
return list(self.nodes_iter(t=t, data=data))
def nodes(self, t=None, data=False)
Return a list of the nodes in the graph at a given snapshot. Parameters ---------- t : snapshot id (default=None) If None the the method returns all the nodes of the flattened graph. data : boolean, optional (default=False) If False return a list of nodes. If True return a two-tuple of node and node data dictionary Returns ------- nlist : list A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Examples -------- >>> G = dn.DynGraph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2], 0) >>> G.nodes(t=0) [0, 1, 2] >>> G.add_edge(1, 4, t=1) >>> G.nodes(t=0) [0, 1, 2]
4.675714
13.904708
0.336268
seen = {} # helper dict to keep track of multiply stored interactions if nbunch is None: nodes_nbrs = self._adj.items() else: nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch)) for n, nbrs in nodes_nbrs: for nbr in nbrs: if t is not None: if nbr not in seen and self.__presence_test(n, nbr, t): yield (n, nbr, {"t": [t]}) else: if nbr not in seen: yield (n, nbr, self._adj[n][nbr]) seen[n] = 1 del seen
def interactions_iter(self, nbunch=None, t=None)
Return an iterator over the interaction present in a given snapshot. Edges are returned as tuples in the order (node, neighbor). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None the the method returns an iterator over the edges of the flattened graph. Returns ------- edge_iter : iterator An iterator of (u,v) tuples of interaction. See Also -------- interaction : return a list of interaction Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-interaction. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2], 0) >>> G.add_interaction(2,3,1) >>> [e for e in G.interactions_iter(t=0)] [(0, 1), (1, 2)] >>> list(G.interactions_iter()) [(0, 1), (1, 2), (2, 3)]
2.922731
3.493886
0.836527
# set up attribute dict if t is None: raise nx.NetworkXError( "The t argument must be a specified.") # process ebunch for ed in ebunch: self.add_interaction(ed[0], ed[1], t, e)
def add_interactions_from(self, ebunch, t=None, e=None)
Add all the interaction in ebunch at time t. Parameters ---------- ebunch : container of interaction Each interaction given in the container will be added to the graph. The interaction must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing interaction data. t : appearance snapshot id, mandatory e : vanishing snapshot id, optional See Also -------- add_edge : add a single interaction Examples -------- >>> G = dn.DynGraph() >>> G.add_edges_from([(0,1),(1,2)], t=0)
5.512092
7.363664
0.748553
try: if t is None: return list(self._adj[n]) else: return [i for i in self._adj[n] if self.__presence_test(n, i, t)] except KeyError: raise nx.NetworkXError("The node %s is not in the graph." % (n,))
def neighbors(self, n, t=None)
Return a list of the nodes connected to the node n at time t. Parameters ---------- n : node A node in the graph t : snapshot id (default=None) If None will be returned the neighbors of the node on the flattened graph. Returns ------- nlist : list A list of nodes that are adjacent to n. Raises ------ NetworkXError If the node n is not in the graph. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.neighbors(0, t=0) [1] >>> G.neighbors(0, t=1) []
3.195108
3.846482
0.830657
try: if t is None: return iter(self._adj[n]) else: return iter([i for i in self._adj[n] if self.__presence_test(n, i, t)]) except KeyError: raise nx.NetworkXError("The node %s is not in the graph." % (n,))
def neighbors_iter(self, n, t=None)
Return an iterator over all neighbors of node n at time t. Parameters ---------- n : node A node in the graph t : snapshot id (default=None) If None will be returned an iterator over the neighbors of the node on the flattened graph. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> [n for n in G.neighbors_iter(0, t=0)] [1]
3.171479
4.064692
0.780251
if nbunch in self: # return a single node return next(self.degree_iter(nbunch, t))[1] else: # return a dict return dict(self.degree_iter(nbunch, t))
def degree(self, nbunch=None, t=None)
Return the degree of a node or nodes at time t. The node degree is the number of interaction adjacent to that node in a given time frame. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned the degree of nodes on the flattened graph. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and degree as values or a number if a single node is specified. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.degree(0, t=0) 1 >>> G.degree([0,1], t=1) {0: 0, 1: 0} >>> list(G.degree([0,1], t=0).values()) [1, 2]
4.006824
5.043181
0.794503
if nbunch is None: nodes_nbrs = self._adj.items() else: nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._adj[n]) yield (n, deg) else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(n, v, t)]) if edges_t > 0: yield (n, edges_t) else: yield (n, 0)
def degree_iter(self, nbunch=None, t=None)
Return an iterator for (node, degree) at time t. The node degree is the number of edges adjacent to the node in a given timeframe. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned an iterator over the degree of nodes on the flattened graph. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> list(G.degree_iter(0, t=0)) [(0, 1)] >>> list(G.degree_iter([0,1], t=0)) [(0, 1), (1, 2)]
2.262061
2.657543
0.851185
s = sum(self.degree(t=t).values()) / 2 return int(s)
def size(self, t=None)
Return the number of edges at time t. Parameters ---------- t : snapshot id (default=None) If None will be returned the size of the flattened graph. Returns ------- nedges : int The number of edges See Also -------- number_of_edges Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.size(t=0) 3
8.5558
14.470971
0.591239
if t is None: return len(self._node) else: nds = sum([1 for n in self.degree(t=t).values() if n > 0]) return nds
def number_of_nodes(self, t=None)
Return the number of nodes in the t snpashot of a dynamic graph. Parameters ---------- t : snapshot id (default=None) If None return the number of nodes in the flattened graph. Returns ------- nnodes : int The number of nodes in the graph. See Also -------- order which is identical Examples -------- >>> G = dn.DynGraph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2], t=0) >>> G.number_of_nodes(0) 3
4.463794
6.090809
0.732874
if t is None: try: return n in self._node except TypeError: return False else: deg = list(self.degree([n], t).values()) if len(deg) > 0: return deg[0] > 0 else: return False
def has_node(self, n, t=None)
Return True if the graph, at time t, contains the node n. Parameters ---------- n : node t : snapshot id (default None) If None return the presence of the node in the flattened graph. Examples -------- >>> G = dn.DynGraph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2], t=0) >>> G.has_node(0, t=0) True It is more readable and simpler to use >>> 0 in G True
3.190264
3.686967
0.865281
nlist = list(nodes) v = nlist[0] interaction = ((v, n) for n in nlist[1:]) self.add_interactions_from(interaction, t)
def add_star(self, nodes, t=None)
Add a star at time t. The first node in nodes is the middle of the star. It is connected to all other nodes. Parameters ---------- nodes : iterable container A container of nodes. t : snapshot id (default=None) See Also -------- add_path, add_cycle Examples -------- >>> G = dn.DynGraph() >>> G.add_star([0,1,2,3], t=0)
5.613288
8.889803
0.63143
nlist = list(nodes) interaction = zip(nlist[:-1], nlist[1:]) self.add_interactions_from(interaction, t)
def add_path(self, nodes, t=None)
Add a path at time t. Parameters ---------- nodes : iterable container A container of nodes. t : snapshot id (default=None) See Also -------- add_path, add_cycle Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0)
6.191546
9.405036
0.658322
from .dyndigraph import DynDiGraph G = DynDiGraph() G.name = self.name G.add_nodes_from(self) for it in self.interactions_iter(): for t in it[2]['t']: G.add_interaction(it[0], it[1], t=t[0], e=t[1]) G.graph = deepcopy(self.graph) G._node = deepcopy(self._node) return G
def to_directed(self)
Return a directed representation of the graph. Returns ------- G : DynDiGraph A dynamic directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Notes ----- This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DynDiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not transfer to the DynDiGraph created by this method. Examples -------- >>> G = dn.DynGraph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] If already directed, return a (deep) copy >>> G = dn.DynDiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)]
3.678691
4.062516
0.90552
timestamps = sorted(self.time_to_edge.keys()) for t in timestamps: for e in self.time_to_edge[t]: yield (e[0], e[1], e[2], t)
def stream_interactions(self)
Generate a temporal ordered stream of interactions. Returns ------- nd_iter : an iterator The iterator returns a 4-tuples of (node, node, op, timestamp). Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.add_path([3,4,5,6], t=1) >>> list(G.stream_interactions()) [(0, 1, '+', 0), (1, 2, '+', 0), (2, 3, '+', 0), (3, 4, '+', 1), (4, 5, '+', 1), (5, 6, '+', 1)]
3.47407
3.85467
0.901263
# create new graph and copy subgraph into it H = self.__class__() if t_to is not None: if t_to < t_from: raise ValueError("Invalid range: t_to must be grater that t_from") else: t_to = t_from for u, v, ts in self.interactions_iter(): I = t_to F = t_from for a, b in ts['t']: if I <= a and b <= F: H.add_interaction(u, v, a, b) elif a <= I and F <= b: H.add_interaction(u, v, I, F) elif a <= I <= b and b <= F: H.add_interaction(u, v, I, b) elif I <= a <= F and F <= b: H.add_interaction(u, v, a, F) return H
def time_slice(self, t_from, t_to=None)
Return an new graph containing nodes and interactions present in [t_from, t_to]. Parameters ---------- t_from : snapshot id, mandatory t_to : snapshot id, optional (default=None) If None t_to will be set equal to t_from Returns ------- H : a DynGraph object the graph described by interactions in [t_from, t_to] Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.add_path([0,4,5,6], t=1) >>> G.add_path([7,1,2,3], t=2) >>> H = G.time_slice(0) >>> H.interactions() [(0, 1), (1, 2), (1, 3)] >>> H = G.time_slice(0, 1) >>> H.interactions() [(0, 1), (1, 2), (1, 3), (0, 4), (4, 5), (5, 6)]
2.891008
2.90675
0.994584
if t is None: return {k: v / 2 for k, v in self.snapshots.items()} else: try: return self.snapshots[t] / 2 except KeyError: return 0
def interactions_per_snapshots(self, t=None)
Return the number of interactions within snapshot t. Parameters ---------- t : snapshot id (default=None) If None will be returned total number of interactions across all snapshots Returns ------- nd : dictionary, or number A dictionary with snapshot ids as keys and interaction count as values or a number if a single snapshot id is specified. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.add_path([0,4,5,6], t=1) >>> G.add_path([7,1,2,3], t=2) >>> G.interactions_per_snapshots(t=0) 3 >>> G.interactions_per_snapshots() {0: 3, 1: 3, 2: 3}
2.543813
3.620372
0.702639
dist = {} if u is None: # global inter event first = True delta = None for ext in self.stream_interactions(): if first: delta = ext first = False continue disp = ext[-1] - delta[-1] delta = ext if disp in dist: dist[disp] += 1 else: dist[disp] = 1 elif u is not None and v is None: # node inter event delta = (0, 0, 0, 0) flag = False for ext in self.stream_interactions(): if ext[0] == u or ext[1] == u: if flag: disp = ext[-1] - delta[-1] delta = ext if disp in dist: dist[disp] += 1 else: dist[disp] = 1 else: delta = ext flag = True else: # interaction inter event evt = self._adj[u][v]['t'] delta = [] for i in evt: if i[0] != i[1]: for j in [0, 1]: delta.append(i[j]) else: delta.append(i[0]) if len(delta) == 2 and delta[0] == delta[1]: return {} for i in range(0, len(delta) - 1): e = delta[i + 1] - delta[i] if e not in dist: dist[e] = 1 else: dist[e] += 1 return dist
def inter_event_time_distribution(self, u=None, v=None)
Return the distribution of inter event time. If u and v are None the dynamic graph intere event distribution is returned. If u is specified the inter event time distribution of interactions involving u is returned. If u and v are specified the inter event time distribution of (u, v) interactions is returned Parameters ---------- u : node id v : node id Returns ------- nd : dictionary A dictionary from inter event time to number of occurrences
2.518634
2.464448
1.021987
if nbunch is None: nodes_nbrs = ((n, succs, self._pred[n]) for n, succs in self._succ.items()) else: nodes_nbrs = ((n, self._succ[n], self._pred[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, succ, pred in nodes_nbrs: yield (n, len(succ) + len(pred)) else: for n, succ, pred in nodes_nbrs: edges_succ = len([v for v in succ.keys() if self.__presence_test(n, v, t)]) edges_pred = len([v for v in pred.keys() if self.__presence_test(v, n, t)]) yield (n, edges_succ + edges_pred)
def degree_iter(self, nbunch=None, t=None)
Return an iterator for (node, degree) at time t. The node degree is the number of edges adjacent to the node in a given timeframe. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned an iterator over the degree of nodes on the flattened graph. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0, 1, t=0) >>> list(G.degree_iter(0, t=0)) [(0, 1)] >>> list(G.degree_iter([0,1], t=0)) [(0, 1), (1, 1)]
2.308757
2.307939
1.000355
seen = {} # helper dict to keep track of multiply stored interactions if nbunch is None: nodes_nbrs_succ = self._succ.items() else: nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)] for n, nbrs in nodes_nbrs_succ: for nbr in nbrs: if t is not None: if nbr not in seen and self.__presence_test(n, nbr, t): yield (n, nbr, {"t": [t]}) else: if nbr not in seen: yield (nbr, n, self._succ[n][nbr]) seen[n] = 1 del seen
def interactions_iter(self, nbunch=None, t=None)
Return an iterator over the interaction present in a given snapshot. Edges are returned as tuples in the order (node, neighbor). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None the the method returns an iterator over the edges of the flattened graph. Returns ------- edge_iter : iterator An iterator of (u,v) tuples of interaction. Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-interaction. Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0,1, 0) >>> G.add_interaction(1,2, 0) >>> G.add_interaction(2,3,1) >>> [e for e in G.interactions_iter(t=0)] [(0, 1), (1, 2)] >>> list(G.interactions_iter()) [(0, 1), (1, 2), (2, 3)]
3.429733
4.037752
0.849416
if nbunch is None: nodes_nbrs_pred = self._pred.items() else: nodes_nbrs_pred = [(n, self._pred[n]) for n in self.nbunch_iter(nbunch)] for n, nbrs in nodes_nbrs_pred: for nbr in nbrs: if t is not None: if self.__presence_test(nbr, n, t): yield (nbr, n, {"t": [t]}) else: if nbr in self._pred[n]: yield (nbr, n, self._pred[n][nbr])
def in_interactions_iter(self, nbunch=None, t=None)
Return an iterator over the in interactions present in a given snapshot. Edges are returned as tuples in the order (node, neighbor). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None the the method returns an iterator over the edges of the flattened graph. Returns ------- edge_iter : iterator An iterator of (u,v) tuples of interaction. Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-interaction. Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0,1, 0) >>> G.add_interaction(1,2, 0) >>> G.add_interaction(2,3,1) >>> [e for e in G.in_interactions_iter(t=0)] [(0, 1), (1, 2)] >>> list(G.in_interactions_iter()) [(0, 1), (1, 2), (2, 3)]
2.821266
3.434364
0.821481
if nbunch is None: nodes_nbrs_succ = self._succ.items() else: nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)] for n, nbrs in nodes_nbrs_succ: for nbr in nbrs: if t is not None: if self.__presence_test(n, nbr, t): yield (n, nbr, {"t": [t]}) else: if nbr in self._succ[n]: yield (n, nbr, self._succ[n][nbr])
def out_interactions_iter(self, nbunch=None, t=None)
Return an iterator over the out interactions present in a given snapshot. Edges are returned as tuples in the order (node, neighbor). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None the the method returns an iterator over the edges of the flattened graph. Returns ------- edge_iter : iterator An iterator of (u,v) tuples of interaction. Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-interaction. Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0,1, 0) >>> G.add_interaction(1,2, 0) >>> G.add_interaction(2,3,1) >>> [e for e in G.out_interactions_iter(t=0)] [(0, 1), (1, 2)] >>> list(G.out_interactions_iter()) [(0, 1), (1, 2), (2, 3)]
2.415235
3.034244
0.795992
if t is None: if u is None: return int(self.size()) elif u is not None and v is not None: if v in self._succ[u]: return 1 else: return 0 else: if u is None: return int(self.size(t)) elif u is not None and v is not None: if v in self._succ[u]: if self.__presence_test(u, v, t): return 1 else: return 0
def number_of_interactions(self, u=None, v=None, t=None)
Return the number of interaction between two nodes at time t. Parameters ---------- u, v : nodes, optional (default=all interaction) If u and v are specified, return the number of interaction between u and v. Otherwise return the total number of all interaction. t : snapshot id (default=None) If None will be returned the number of edges on the flattened graph. Returns ------- nedges : int The number of interaction in the graph. If nodes u and v are specified return the number of interaction between those nodes. If a single node is specified return None. See Also -------- size Examples -------- >>> G = dn.DynDiGraph() >>> G.add_path([0,1,2,3], t=0) >>> G.number_of_interactions() 3 >>> G.number_of_interactions(0,1, t=0) 1 >>> G.add_edge(3, 4, t=1) >>> G.number_of_interactions() 4
2.367402
2.682839
0.882424
try: if t is None: return v in self._succ[u] else: return v in self._succ[u] and self.__presence_test(u, v, t) except KeyError: return False
def has_interaction(self, u, v, t=None)
Return True if the interaction (u,v) is in the graph at time t. Parameters ---------- u, v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. t : snapshot id (default=None) If None will be returned the presence of the interaction on the flattened graph. Returns ------- edge_ind : bool True if interaction is in the graph, False otherwise. Examples -------- Can be called either using two nodes u,v or interaction tuple (u,v) >>> G = dn.DynDiGraph() >>> G.add_interaction(0,1, t=0) >>> G.add_interaction(1,2, t=0) >>> G.add_interaction(2,3, t=0) >>> G.has_interaction(0,1, t=0) True >>> G.has_interaction(0,1, t=1) False
3.852872
6.844769
0.562893
return self.has_interaction(u, v, t)
def has_successor(self, u, v, t=None)
Return True if node u has successor v at time t (optional). This is true if graph has the edge u->v. Parameters ---------- u, v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. t : snapshot id (default=None) If None will be returned the presence of the interaction on the flattened graph.
8.906857
11.143475
0.799289
return self.has_interaction(v, u, t)
def has_predecessor(self, u, v, t=None)
Return True if node u has predecessor v at time t (optional). This is true if graph has the edge u<-v. Parameters ---------- u, v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. t : snapshot id (default=None) If None will be returned the presence of the interaction on the flattened graph.
12.078711
14.900105
0.810646
try: if t is None: return iter(self._succ[n]) else: return iter([i for i in self._succ[n] if self.__presence_test(n, i, t)]) except KeyError: raise nx.NetworkXError("The node %s is not in the graph." % (n,))
def successors_iter(self, n, t=None)
Return an iterator over successor nodes of n at time t (optional). Parameters ---------- n : node Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. t : snapshot id (default=None) If None will be returned the presence of the interaction on the flattened graph.
3.199892
3.164518
1.011178
try: if t is None: return iter(self._pred[n]) else: return iter([i for i in self._pred[n] if self.__presence_test(i, n, t)]) except KeyError: raise nx.NetworkXError("The node %s is not in the graph." % (n,))
def predecessors_iter(self, n, t=None)
Return an iterator over predecessors nodes of n at time t (optional). Parameters ---------- n : node Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. t : snapshot id (default=None) If None will be returned the presence of the interaction on the flattened graph.
3.267306
3.323691
0.983035
if nbunch in self: # return a single node return next(self.in_degree_iter(nbunch, t))[1] else: # return a dict return dict(self.in_degree_iter(nbunch, t))
def in_degree(self, nbunch=None, t=None)
Return the in degree of a node or nodes at time t. The node in degree is the number of incoming interaction to that node in a given time frame. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned the degree of nodes on the flattened graph. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and degree as values or a number if a single node is specified. Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0,1, t=0) >>> G.add_interaction(1,2, t=0) >>> G.add_interaction(2,3, t=0) >>> G.in_degree(0, t=0) 1 >>> G.in_degree([0,1], t=1) {0: 0, 1: 0} >>> list(G.in_degree([0,1], t=0).values()) [1, 2]
3.67823
4.700075
0.78259
if nbunch is None: nodes_nbrs = self._pred.items() else: nodes_nbrs = ((n, self._pred[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._pred[n]) yield (n, deg) else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(v, n, t)]) if edges_t > 0: yield (n, edges_t) else: yield (n, 0)
def in_degree_iter(self, nbunch=None, t=None)
Return an iterator for (node, in_degree) at time t. The node degree is the number of edges incoming to the node in a given timeframe. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned an iterator over the degree of nodes on the flattened graph. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0, 1, t=0) >>> list(G.in_degree_iter(0, t=0)) [(0, 0)] >>> list(G.in_degree_iter([0,1], t=0)) [(0, 0), (1, 1)]
2.423767
2.817749
0.860179
if nbunch in self: # return a single node return next(self.out_degree_iter(nbunch, t))[1] else: # return a dict return dict(self.out_degree_iter(nbunch, t))
def out_degree(self, nbunch=None, t=None)
Return the out degree of a node or nodes at time t. The node degree is the number of interaction outgoing from that node in a given time frame. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned the degree of nodes on the flattened graph. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and degree as values or a number if a single node is specified. Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interactions(0,1, t=0) >>> G.add_interactions(1,2, t=0) >>> G.add_interactions(2,3, t=0) >>> G.out_degree(0, t=0) 1 >>> G.out_degree([0,1], t=1) {0: 0, 1: 0} >>> list(G.out_degree([0,1], t=0).values()) [1, 2]
3.750111
4.569894
0.820612
if nbunch is None: nodes_nbrs = self._succ.items() else: nodes_nbrs = ((n, self._succ[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._succ[n]) yield (n, deg) else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(n, v, t)]) if edges_t > 0: yield (n, edges_t) else: yield (n, 0)
def out_degree_iter(self, nbunch=None, t=None)
Return an iterator for (node, out_degree) at time t. The node out degree is the number of interactions outgoing from the node in a given timeframe. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. t : snapshot id (default=None) If None will be returned an iterator over the degree of nodes on the flattened graph. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree Examples -------- >>> G = dn.DynDiGraph() >>> G.add_interaction(0, 1, t=0) >>> list(G.out_degree_iter(0, t=0)) [(0, 1)] >>> list(G.out_degree_iter([0,1], t=0)) [(0, 1)]
2.348552
2.697447
0.870657
from .dyngraph import DynGraph H = DynGraph() H.name = self.name H.add_nodes_from(self) if reciprocal is True: for u in self._node: for v in self._node: if u >= v: try: outc = self._succ[u][v]['t'] intc = self._pred[u][v]['t'] for o in outc: r = set(range(o[0], o[1]+1)) for i in intc: r2 = set(range(i[0], i[1]+1)) inter = list(r & r2) if len(inter) == 1: H.add_interaction(u, v, t=inter[0]) elif len(inter) > 1: H.add_interaction(u, v, t=inter[0], e=inter[-1]) except: pass else: for it in self.interactions_iter(): for t in it[2]['t']: H.add_interaction(it[0], it[1], t=t[0], e=t[1]) H.graph = deepcopy(self.graph) H._node = deepcopy(self._node) return H
def to_undirected(self, reciprocal=False)
Return an undirected representation of the dyndigraph. Parameters ---------- reciprocal : bool (optional) If True only keep edges that appear in both directions in the original dyndigraph. Returns ------- G : DynGraph An undirected dynamic graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the dyndigraph. If both edges exist in dyndigraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Notes ----- If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DynDiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method.
2.688502
2.810768
0.956501
for line in generate_interactions(G, delimiter): line += '\n' path.write(line.encode(encoding))
def write_interactions(G, path, delimiter=' ', encoding='utf-8')
Write a DyNetx graph in interaction list format. Parameters ---------- G : graph A DyNetx graph. path : basestring The desired output filename delimiter : character Column delimiter
4.408297
7.541616
0.584529
ids = None lines = (line.decode(encoding) for line in path) if keys: ids = read_ids(path.name, delimiter=delimiter, timestamptype=timestamptype) return parse_interactions(lines, comments=comments, directed=directed, delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype, keys=ids)
def read_interactions(path, comments="#", directed=False, delimiter=None, nodetype=None, timestamptype=None, encoding='utf-8', keys=False)
Read a DyNetx graph from interaction list format. Parameters ---------- path : basestring The desired output filename delimiter : character Column delimiter
3.017782
4.757212
0.634359
for line in generate_snapshots(G, delimiter): line += '\n' path.write(line.encode(encoding))
def write_snapshots(G, path, delimiter=' ', encoding='utf-8')
Write a DyNetx graph in snapshot graph list format. Parameters ---------- G : graph A DyNetx graph. path : basestring The desired output filename delimiter : character Column delimiter
4.565804
8.428078
0.541737
ids = None lines = (line.decode(encoding) for line in path) if keys: ids = read_ids(path.name, delimiter=delimiter, timestamptype=timestamptype) return parse_snapshots(lines, comments=comments, directed=directed, delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype, keys=ids)
def read_snapshots(path, comments="#", directed=False, delimiter=None, nodetype=None, timestamptype=None, encoding='utf-8', keys=False)
Read a DyNetx graph from snapshot graph list format. Parameters ---------- path : basestring The desired output filename delimiter : character Column delimiter
3.369744
5.134241
0.656328
return G.number_of_interactions(u, v, t)
def number_of_interactions(G, u=None, v=None, t=None)
Return the number of edges between two nodes at time t. Parameters ---------- u, v : nodes, optional (default=all edges) If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. t : snapshot id (default=None) If None will be returned the number of edges on the flattened graph. Returns ------- nedges : int The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Examples -------- >>> G = dn.DynGraph() >>> G.add_path([0,1,2,3], t=0) >>> dn.number_of_interactions(G, t=0)
3.183272
9.664195
0.329388
r n = number_of_nodes(G, t) m = number_of_interactions(G, t) if m == 0 or m is None or n <= 1: return 0 d = m / (n * (n - 1)) if not G.is_directed(): d *= 2 return d
def density(G, t=None)
r"""Return the density of a graph at timestamp t. The density for undirected graphs is .. math:: d = \frac{2m}{n(n-1)}, and for directed graphs is .. math:: d = \frac{m}{n(n-1)}, where `n` is the number of nodes and `m` is the number of edges in `G`. Parameters ---------- G : Graph opject DyNetx graph object t : snapshot id (default=None) If None the density will be computed on the flattened graph. Notes ----- The density is 0 for a graph without edges and 1 for a complete graph. Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.
3.808434
4.27345
0.891185
counts = Counter(d for n, d in G.degree(t=t).items()) return [counts.get(i, 0) for i in range(max(counts) + 1)]
def degree_histogram(G, t=None)
Return a list of the frequency of each degree value. Parameters ---------- G : Graph opject DyNetx graph object t : snapshot id (default=None) snapshot id Returns ------- hist : list A list of frequencies of degrees. The degree values are the index in the list. Notes ----- Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))
2.712159
3.695054
0.733997
G.add_node = frozen G.add_nodes_from = frozen G.remove_node = frozen G.remove_nodes_from = frozen G.add_edge = frozen G.add_edges_from = frozen G.remove_edge = frozen G.remove_edges_from = frozen G.clear = frozen G.frozen = True return G
def freeze(G)
Modify graph to prevent further change by adding or removing nodes or edges. Node and edge data can still be modified. Parameters ---------- G : graph A NetworkX graph Notes ----- To "unfreeze" a graph you must make a copy by creating a new graph object. See Also -------- is_frozen
1.981601
2.166039
0.91485
nlist = iter(nodes) v = next(nlist) edges = ((v, n) for n in nlist) G.add_interactions_from(edges, t, **attr)
def add_star(G, nodes, t, **attr)
Add a star at time t. The first node in nodes is the middle of the star. It is connected to all other nodes. Parameters ---------- G : graph A DyNetx graph nodes : iterable container A container of nodes. t : snapshot id (default=None) snapshot id See Also -------- add_path, add_cycle Examples -------- >>> G = dn.DynGraph() >>> dn.add_star(G, [0,1,2,3], t=0)
4.592834
6.888082
0.66678
nlist = list(nodes) edges = zip(nlist[:-1], nlist[1:]) G.add_interactions_from(edges, t, **attr)
def add_path(G, nodes, t, **attr)
Add a path at time t. Parameters ---------- G : graph A DyNetx graph nodes : iterable container A container of nodes. t : snapshot id (default=None) snapshot id See Also -------- add_path, add_cycle Examples -------- >>> G = dn.DynGraph() >>> dn.add_path(G, [0,1,2,3], t=0)
3.904894
6.961126
0.560957
H = G.__class__() H.add_nodes_from(G.nodes(data=with_data)) if with_data: H.graph.update(G.graph) return H
def create_empty_copy(G, with_data=True)
Return a copy of the graph G with all of the edges removed. Parameters ---------- G : graph A DyNetx graph with_data : bool (default=True) Include data. Notes ----- Graph and edge data is not propagated to the new graph.
2.293858
3.493232
0.656658
# Set node attributes based on type of `values` if name is not None: # `values` must not be a dict of dict try: # `values` is a dict for n, v in values.items(): try: G.node[n][name] = values[n] except KeyError: pass except AttributeError: # `values` is a constant for n in G: G.node[n][name] = values else: # `values` must be dict of dict for n, d in values.items(): try: G.node[n].update(d) except KeyError: pass
def set_node_attributes(G, values, name=None)
Set node attributes from dictionary of nodes and values Parameters ---------- G : DyNetx Graph name : string Attribute name values: dict Dictionary of attribute values keyed by node. If `values` is not a dictionary, then it is treated as a single attribute value that is then applied to every node in `G`.
2.547703
2.819642
0.903555
return {n: d[name] for n, d in G.node.items() if name in d}
def get_node_attributes(G, name)
Get node attributes from graph Parameters ---------- G : DyNetx Graph name : string Attribute name Returns ------- Dictionary of attributes keyed by node.
3.386255
5.67769
0.596414
if graph.is_directed(): values = chain(graph.predecessors(node, t=t), graph.successors(node, t=t)) else: values = graph.neighbors(node, t=t) return values
def all_neighbors(graph, node, t=None)
Returns all of the neighbors of a node in the graph at time t. If the graph is directed returns predecessors as well as successors. Parameters ---------- graph : DyNetx graph Graph to find neighbors. node : node The node whose neighbors will be returned. t : snapshot id (default=None) If None the neighbors are identified on the flattened graph. Returns ------- neighbors : iterator Iterator of neighbors
2.483831
2.873132
0.864503
if graph.is_directed(): values = chain(graph.predecessors(node, t=t), graph.successors(node, t=t)) else: values = graph.neighbors(node, t=t) nbors = set(values) | {node} return (nnode for nnode in graph if nnode not in nbors)
def non_neighbors(graph, node, t=None)
Returns the non-neighbors of the node in the graph at time t. Parameters ---------- graph : DyNetx graph Graph to find neighbors. node : node The node whose neighbors will be returned. t : snapshot id (default=None) If None the non-neighbors are identified on the flattened graph. Returns ------- non_neighbors : iterator Iterator of nodes in the graph that are not neighbors of the node.
3.197639
3.459065
0.924423
# if graph.is_directed(): # for u in graph: # for v in non_neighbors(graph, u, t): # yield (u, v) #else: nodes = set(graph) while nodes: u = nodes.pop() for v in nodes - set(graph[u]): yield (u, v)
def non_interactions(graph, t=None)
Returns the non-existent edges in the graph at time t. Parameters ---------- graph : NetworkX graph. Graph to find non-existent edges. t : snapshot id (default=None) If None the non-existent edges are identified on the flattened graph. Returns ------- non_edges : iterator Iterator of edges that are not in the graph.
2.699805
3.144074
0.858696
''' getMsg - Generate a default message based on parameters to FunctionTimedOut exception' @return <str> - Message ''' return 'Function %s (args=%s) (kwargs=%s) timed out after %f seconds.\n' %(self.timedOutFunction.__name__, repr(self.timedOutArgs), repr(self.timedOutKwargs), self.timedOutAfter)
def getMsg(self)
getMsg - Generate a default message based on parameters to FunctionTimedOut exception' @return <str> - Message
8.671842
3.535726
2.452634
''' retry - Retry the timed-out function with same arguments. @param timeout <float/RETRY_SAME_TIMEOUT/None> Default RETRY_SAME_TIMEOUT If RETRY_SAME_TIMEOUT : Will retry the function same args, same timeout If a float/int : Will retry the function same args with provided timeout If None : Will retry function same args no timeout @return - Returnval from function ''' if timeout is None: return self.timedOutFunction(*(self.timedOutArgs), **self.timedOutKwargs) from .dafunc import func_timeout if timeout == RETRY_SAME_TIMEOUT: timeout = self.timedOutAfter return func_timeout(timeout, self.timedOutFunction, args=self.timedOutArgs, kwargs=self.timedOutKwargs)
def retry(self, timeout=RETRY_SAME_TIMEOUT)
retry - Retry the timed-out function with same arguments. @param timeout <float/RETRY_SAME_TIMEOUT/None> Default RETRY_SAME_TIMEOUT If RETRY_SAME_TIMEOUT : Will retry the function same args, same timeout If a float/int : Will retry the function same args with provided timeout If None : Will retry function same args no timeout @return - Returnval from function
6.469436
2.296365
2.817251
''' func_timeout - Runs the given function for up to #timeout# seconds. Raises any exceptions #func# would raise, returns what #func# would return (unless timeout is exceeded), in which case it raises FunctionTimedOut @param timeout <float> - Maximum number of seconds to run #func# before terminating @param func <function> - The function to call @param args <tuple> - Any ordered arguments to pass to the function @param kwargs <dict/None> - Keyword arguments to pass to the function. @raises - FunctionTimedOut if #timeout# is exceeded, otherwise anything #func# could raise will be raised If the timeout is exceeded, FunctionTimedOut will be raised within the context of the called function every two seconds until it terminates, but will not block the calling thread (a new thread will be created to perform the join). If possible, you should try/except FunctionTimedOut to return cleanly, but in most cases it will 'just work'. @return - The return value that #func# gives ''' if not kwargs: kwargs = {} if not args: args = () ret = [] exception = [] isStopped = False def funcwrap(args2, kwargs2): try: ret.append( func(*args2, **kwargs2) ) except FunctionTimedOut: # Don't print traceback to stderr if we time out pass except Exception as e: exc_info = sys.exc_info() if isStopped is False: # Assemble the alternate traceback, excluding this function # from the trace (by going to next frame) # Pytohn3 reads native from __traceback__, # python2 has a different form for "raise" e.__traceback__ = exc_info[2].tb_next exception.append( e ) thread = StoppableThread(target=funcwrap, args=(args, kwargs)) thread.daemon = True thread.start() thread.join(timeout) stopException = None if thread.isAlive(): isStopped = True class FunctionTimedOutTempType(FunctionTimedOut): def __init__(self): return FunctionTimedOut.__init__(self, '', timeout, func, args, kwargs) FunctionTimedOutTemp = type('FunctionTimedOut' + str( hash( "%d_%d_%d_%d" %(id(timeout), id(func), id(args), id(kwargs))) ), FunctionTimedOutTempType.__bases__, dict(FunctionTimedOutTempType.__dict__)) stopException = FunctionTimedOutTemp thread._stopThread(stopException) thread.join(min(.1, timeout / 50.0)) raise FunctionTimedOut('', timeout, func, args, kwargs) else: # We can still cleanup the thread here.. # Still give a timeout... just... cuz.. thread.join(.5) if exception: raise_exception(exception) if ret: return ret[0]
def func_timeout(timeout, func, args=(), kwargs=None)
func_timeout - Runs the given function for up to #timeout# seconds. Raises any exceptions #func# would raise, returns what #func# would return (unless timeout is exceeded), in which case it raises FunctionTimedOut @param timeout <float> - Maximum number of seconds to run #func# before terminating @param func <function> - The function to call @param args <tuple> - Any ordered arguments to pass to the function @param kwargs <dict/None> - Keyword arguments to pass to the function. @raises - FunctionTimedOut if #timeout# is exceeded, otherwise anything #func# could raise will be raised If the timeout is exceeded, FunctionTimedOut will be raised within the context of the called function every two seconds until it terminates, but will not block the calling thread (a new thread will be created to perform the join). If possible, you should try/except FunctionTimedOut to return cleanly, but in most cases it will 'just work'. @return - The return value that #func# gives
6.217331
3.071887
2.023945
# initialize path integral T = 4. ndT = 8. # use larger ndT to reduce discretization error (goes like 1/ndT**2) neval = 3e5 # should probably use more evaluations (10x?) nitn = 6 alpha = 0.1 # damp adaptation # create integrator and train it (no x0list) integrand = PathIntegrand(V=V, T=T, ndT=ndT) integ = vegas.Integrator(integrand.region, alpha=alpha) integ(integrand, neval=neval, nitn=nitn / 2, alpha=2 * alpha) # evaluate path integral with trained integrator and x0list integrand = PathIntegrand(V=V, x0list=x0list, T=T, ndT=ndT) results = integ(integrand, neval=neval, nitn=nitn, alpha=alpha) print(results.summary()) E0 = -np.log(results['exp(-E0*T)']) / T print('Ground-state energy = %s Q = %.2f\n' % (E0, results.Q)) if len(x0list) <= 0: return E0 psi2 = results['exp(-E0*T) * psi(x0)**2'] / results['exp(-E0*T)'] print('%5s %-12s %-10s' % ('x', 'psi**2', 'sho-exact')) print(27 * '-') for i, (x0i, psi2i) in enumerate(zip(x0list, psi2)): exact = np.exp(- x0i ** 2) / np.sqrt(np.pi) #* np.exp(-T / 2.) print( "%5.1f %-12s %-10.5f" % (x0i, psi2i, exact) ) if plot: plot_results(E0, x0list, psi2, T) return E0
def analyze_theory(V, x0list=[], plot=False)
Extract ground-state energy E0 and psi**2 for potential V.
5.240754
5.002028
1.047726
''' _stopThread - @see StoppableThread.stop ''' if self.isAlive() is False: return True self._stderr = open(os.devnull, 'w') # Create "joining" thread which will raise the provided exception # on a repeat, until the thread stops. joinThread = JoinThread(self, exception, repeatEvery=raiseEvery) # Try to prevent spurrious prints joinThread._stderr = self._stderr joinThread.start() joinThread._stderr = self._stderr
def _stopThread(self, exception, raiseEvery=2.0)
_stopThread - @see StoppableThread.stop
7.793274
6.68763
1.165327
''' run - The thread main. Will attempt to stop and join the attached thread. ''' # Try to silence default exception printing. self.otherThread._Thread__stderr = self._stderr if hasattr(self.otherThread, '_Thread__stop'): # If py2, call this first to start thread termination cleanly. # Python3 does not need such ( nor does it provide.. ) self.otherThread._Thread__stop() while self.otherThread.isAlive(): # We loop raising exception incase it's caught hopefully this breaks us far out. ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.otherThread.ident), ctypes.py_object(self.exception)) self.otherThread.join(self.repeatEvery) try: self._stderr.close() except: pass
def run(self)
run - The thread main. Will attempt to stop and join the attached thread.
10.652821
7.672526
1.388437