hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
3caa8c2fe47cf10713e3e66ed8e6985477f4487d
206
py
Python
Licence 1/I11/TP3/tp3_2_3.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
8
2020-11-26T20:45:12.000Z
2021-11-29T15:46:22.000Z
Licence 1/I11/TP3/tp3_2_3.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
null
null
null
Licence 1/I11/TP3/tp3_2_3.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
6
2020-10-23T15:29:24.000Z
2021-05-05T19:10:45.000Z
from pocketnoobj import * characters = input("saisir une chaine de caracteres :") contains = 0 for char in characters: if char == " ": contains += 1 print("la chaine contient", contains, "fois ' '")
20.6
55
0.674757
3cdba889124713972e3312d0ad3587989af46e37
225
py
Python
Kapitel 1/Kugel.py
mqng/HS-CO_WS2122_IF_FProg
b52470e0991bdbaeba22b154c4029e6cded51fd7
[ "MIT" ]
null
null
null
Kapitel 1/Kugel.py
mqng/HS-CO_WS2122_IF_FProg
b52470e0991bdbaeba22b154c4029e6cded51fd7
[ "MIT" ]
null
null
null
Kapitel 1/Kugel.py
mqng/HS-CO_WS2122_IF_FProg
b52470e0991bdbaeba22b154c4029e6cded51fd7
[ "MIT" ]
null
null
null
import math r = float(input("Geben Sie den Radius einer Kugel ein: ")) v = (4/3) * math.pi * math.pow(r,3) o = math.pi * 4 * math.pow(r,2) print("Radius: {} | Volumen: {:.3f} | Oberflächenvolumen: {:.3f} ".format(r, v, o))
28.125
83
0.6
597df9fd9b80612e97c32372d924a5a116e45ba2
833
py
Python
___Python/Jonas/Python/p11_uebungen/m01_excel.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Jonas/Python/p11_uebungen/m01_excel.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Jonas/Python/p11_uebungen/m01_excel.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
import pandas as pd from datetime import date, datetime, time import xlrd from xlrd import open_workbook, cellname, XL_CELL_TEXT, xldate_as_tuple, xldate_as_datetime file_location = "O:\___Python\personen.xlsx" book = open_workbook("O:\___Python\personen.xlsx") #print(book.nsheets) #for sheet_index in range(book.nsheets): # print(book.sheet_by_index(sheet_index)) sheet = book.sheet_by_index(0) #print(book.sheet_names()) #print(sheet.ncols) #print(sheet.nrows) # for row_index in range(sheet.nrows): # for col_index in range(sheet.ncols): # print(sheet.cell(row_index,col_index).value) cell = sheet.cell(0, 0) for i in range(sheet.ncols-1): print(sheet.cell_value(1, i)) date_value = xldate_as_tuple(sheet.cell(1,2).value, book.datemode) print(datetime(*date_value))
24.5
92
0.720288
051f9560c8573bfec1acf813ddc345d417467807
487
py
Python
Packs/IntegrationsAndIncidentsHealthCheck/Scripts/IncidentsCheck_Widget_UnassignedFailingIncidents/IncidentsCheck_Widget_UnassignedFailingIncidents_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/IntegrationsAndIncidentsHealthCheck/Scripts/IncidentsCheck_Widget_UnassignedFailingIncidents/IncidentsCheck_Widget_UnassignedFailingIncidents_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/IntegrationsAndIncidentsHealthCheck/Scripts/IncidentsCheck_Widget_UnassignedFailingIncidents/IncidentsCheck_Widget_UnassignedFailingIncidents_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import pytest import demistomock as demisto from IncidentsCheck_Widget_UnassignedFailingIncidents import main @pytest.mark.parametrize('list_, expected', [ ([{'Contents': '7,4,1'}], 3), ([{'Contents': ''}], 0), ([{}], 0) ]) def test_script(mocker, list_, expected): mocker.patch.object(demisto, 'executeCommand', return_value=list_) mocker.patch.object(demisto, 'results') main() contents = demisto.results.call_args[0][0] assert contents == expected
25.631579
70
0.685832
2f0387b293e47579b3930645936d42460a0c022c
1,892
py
Python
kernel/slovaki/migrations/0005_auto_20180605_2110.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
kernel/slovaki/migrations/0005_auto_20180605_2110.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
kernel/slovaki/migrations/0005_auto_20180605_2110.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
# Generated by Django 2.0.6 on 2018-06-05 21:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('slovaki', '0004_auto_20180605_2105'), ] operations = [ migrations.AlterField( model_name='slovakiawardscontent', name='sku', field=models.CharField(default='lw1CGr1PCDE', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakinews', name='sku', field=models.CharField(default='iBsM1oTURdY', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakinewsmovies', name='sku', field=models.CharField(default='2ltt2vqJJe4', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakinewsphotos', name='sku', field=models.CharField(default='Bmlhxg-x_50', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakiproduct', name='sku', field=models.CharField(default='kFZdhKfRcko', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakiproductmovies', name='sku', field=models.CharField(default='EhWg7JiBUxk', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='slovakiproductphotos', name='sku', field=models.CharField(default='p_kWMN38ID8', help_text='Unique code for refrence to supervisors', max_length=15), ), ]
38.612245
126
0.624207
b5d7d9e0ed5498e6c806bfd4075818dd22f1fcff
1,568
py
Python
python/pickle/text_based_rpg_engine/game_engine.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pickle/text_based_rpg_engine/game_engine.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pickle/text_based_rpg_engine/game_engine.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import sys, time, random import pickle def slow_type(t): typing_speed = 75 # wpm for l in t: sys.stdout.write(l) sys.stdout.flush() time.sleep(random.random() * 10.0 / typing_speed) print("") def get_input(valid_input: list): while True: user_entered = input() if user_entered not in valid_input: print("Invalid input. Please use one of the following inputs:\n") print(valid_input) user_entered = None else: return user_entered def display_page_text(lines: list): for line in lines: slow_type(line) # Make the user press enter to see the next line get_input([""]) def get_response(options: list): for index, option in enumerate(options): print(f"{index}. {option[0]}") valid_inputs = [str(num) for num in range(len(options))] option_index = int(get_input(valid_inputs)) return options[option_index][1] def story_flow(story: dict): curr_page = 1 while curr_page != None: page = story.get(curr_page, None) if page == None: curr_page = None break display_page_text(page["Text"]) if len(page["Options"]) == 0: curr_page = None break curr_page = get_response(page["Options"]) if __name__ == "__main__": story = {} with open("chapter1.ch", "rb") as chapter: story = pickle.load(chapter) story_flow(story)
23.058824
78
0.567602
952bdbad783529d6b66d3ff4fa272a3a6c52be6c
1,067
py
Python
Packs/PaloAltoNetworks_IoT/Scripts/iot_alert_post_processing/iot_alert_post_processing_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/PaloAltoNetworks_IoT/Scripts/iot_alert_post_processing/iot_alert_post_processing_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/PaloAltoNetworks_IoT/Scripts/iot_alert_post_processing/iot_alert_post_processing_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto import iot_alert_post_processing from iot_alert_post_processing import iot_resolve_alert _INCIDENT = { 'id': 28862, 'labels': [ { 'type': 'id', 'value': '5ed08587fe03d30d000016e8' } ] } def test_iot_resolve_alert(monkeypatch, mocker): """ Scenario: resolving alert in post processing after closing the XSOAR incident Given - An alert incident When - Resolving an alert in IoT Security Portal Then - Ensure the correct parameters to the iot-security-resolve-alert command """ monkeypatch.setattr(iot_alert_post_processing, "_get_incident", lambda: _INCIDENT) execute_mocker = mocker.patch.object(demisto, 'executeCommand') expected_command = 'iot-security-resolve-alert' expected_args = { 'id': '5ed08587fe03d30d000016e8', 'reason': 'resolved by XSOAR incident 28862', 'reason_type': 'No Action Needed' } iot_resolve_alert() execute_mocker.assert_called_with(expected_command, expected_args)
27.358974
86
0.689784
1f1162ab030c193c3f03ee665b2ca57140c35709
876
py
Python
Python/Courses/Object-Oriented-Programming.Python-Engineer/01-Class-and-Instance.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Courses/Object-Oriented-Programming.Python-Engineer/01-Class-and-Instance.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Courses/Object-Oriented-Programming.Python-Engineer/01-Class-and-Instance.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
# position, name, age, level, salary se1 = ["Software Engineer", "Max", 20, "Junior", 5000] se2 = ["Software Engineer", "Lisa", 25, "Senior", 7000] # class class SoftwareEngineer: # class attributes alias = "Keyboard Magician" def __init__(self, name, age, level, salary): # instance attributes self.name = name self.age = age self.level = level self.salary = salary # instance se1 = SoftwareEngineer("Max", 20, "Junior", 5000) print(se1.name, se1.age) se2 = SoftwareEngineer("Lisa", 25, "Senior", 7000) print(se2.alias) print(se1.alias) print(SoftwareEngineer.alias) SoftwareEngineer.alias = "Something Else" print(se2.alias) print(se1.alias) print(SoftwareEngineer.alias) # Recap # create a class (blueprint) # create a instance (object) # instance attributes: defined in __init__(self) method # class attribute
21.9
55
0.68379
1f51d98d09c8a7571a84fdd27efadfc23c78e464
5,808
py
Python
Contrib-Microsoft/Olympus_rack_manager/python-ocs/commonapi/controls/bladenextboot_lib.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
5
2019-11-11T07:57:26.000Z
2022-03-28T08:26:53.000Z
Contrib-Microsoft/Olympus_rack_manager/python-ocs/commonapi/controls/bladenextboot_lib.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
3
2019-09-05T21:47:07.000Z
2019-09-17T18:10:45.000Z
Contrib-Microsoft/Olympus_rack_manager/python-ocs/commonapi/controls/bladenextboot_lib.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
11
2019-07-20T00:16:32.000Z
2022-01-11T14:17:48.000Z
# Copyright (C) Microsoft Corporation. All rights reserved. # This program is free software; you can redistribute it # and/or modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. #!/usr/bin/python # -*- coding: utf-8 -*- from ipmicmd_library import * class boot_type: none = "0x00" pxe = "0x04" disk = "0x08" bios = "0x18" floppy = "0x3C" class persistent: legacy_persistent = "0xC0" legacy_nonpersistent = "0x80" efi_persistent = "0xE0" efi_nonpersistent = "0xA0" def get_nextboot(serverid): try: interface = get_ipmi_interface(serverid) ipmi_cmd = 'chassis bootparam get 5' # IPMI command to get next boot details cmdinterface = interface + ' ' + ipmi_cmd get_next_boot = parse_get_nextboot_result(cmdinterface, "getnextboot") if get_next_boot is None or not get_next_boot: # Check empty or none return set_failure_dict("Empty data for getnetxtboot", completion_code.failure) except Exception, e: #Log_Error("Failed Exception:",e) return set_failure_dict("get_nextboot: Exception {0}".format(e), completion_code.failure) return get_next_boot def set_nextboot(serverid, boottype, mode=0, ispersist=0): try: persistent_val = '' if mode == 0 and ispersist == 0: persistent_val = persistent.legacy_nonpersistent elif mode == 0 and ispersist == 1: persistent_val = persistent.legacy_persistent elif mode == 1 and ispersist == 0: persistent_val = persistent.efi_nonpersistent elif mode == 1 and ispersist == 1: persistent_val = persistent.efi_persistent boot_value = '' if boottype == "none": boot_value = boot_type.none elif boottype == "pxe": boot_value = boot_type.pxe elif boottype == "disk": boot_value = boot_type.disk elif boottype == "bios": boot_value = boot_type.bios elif boottype == "floppy": boot_value = boot_type.floppy interface = get_ipmi_interface(serverid, ["raw","0x00","0x08","0x05", persistent_val,boot_value , "0x00", "0x00", "0x00"]) set_next_boot = parse_set_nextboot_result(interface, "setnextboot") if set_next_boot is None or not set_next_boot: # Check empty or none return set_failure_dict("Empty data for setnetxtboot", completion_code.failure) except Exception, e: #Log_Error("Failed Exception:",e) return set_failure_dict("set_nextboot: Exception {0}".format(e), completion_code.failure) return set_next_boot # Parse setnextboot output def parse_set_nextboot_result(interface, command): try: output = call_ipmi(interface, command) if "ErrorCode" in output: return output setnextboot = {} if(output['status_code'] == 0): setnextboot[completion_code.cc_key] = completion_code.success return setnextboot else: error_data = output['stderr'] return set_failure_dict (error_data.split (":")[-1].strip ()) except Exception, e: #log.exception("serverNextBoot Command: %s Exception error is: %s ", command, e) return set_failure_dict(("SetNextBoot: parse_set_nextboot_result() Exception:", e) , completion_code.failure) # Parse getnextboot output def parse_get_nextboot_result(interface, command): try: output = call_ipmi(interface, command) if "ErrorCode" in output: return output getnextboot = {} if(output['status_code'] == 0): getnextbootopt = output['stdout'].split('\n') for bootval in getnextbootopt: if "Boot Device Selector" in bootval: boot = bootval.split (":")[-1] getnextboot["Next boot is"] = boot getnextboot["BootSourceOverrideTarget"] = boot elif "BIOS PC Compatible (legacy) boot" in bootval: getnextboot["BootSourceOverrideMode"] = "Legacy" elif "BIOS EFI boot" in bootval: getnextboot["BootSourceOverrideMode"] = "UEFI" elif "Options apply to only next boot" in bootval: getnextboot["BootSourceOverrideEnabled"] = "Once" elif "Options apply to all future boots" in bootval: getnextboot["BootSourceOverrideEnabled"] = "Persistent" getnextboot[completion_code.cc_key] = completion_code.success return getnextboot else: error_data = output['stderr'] getnextboot[completion_code.cc_key] = completion_code.failure getnextboot[completion_code.desc] = error_data.split(":")[-1] return getnextboot except Exception, e: #log.exception("serverNextBoot Command: %s Exception error is: %s ", command, e) #print "serverNextBoot: Failed to parse setnextboot output. Exception: " ,e return set_failure_dict(("GetNextBoot: parse_get_nextboot_result() Exception ",e) , completion_code.failure)
40.615385
139
0.579201
c85ffe1675c528eb5ba2ba2c060da3a824b300a1
1,225
py
Python
crypto/rotoRSA/src/source.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
crypto/rotoRSA/src/source.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
crypto/rotoRSA/src/source.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
from sympy import poly, symbols from collections import deque import Crypto.Random.random as random from Crypto.Util.number import getPrime, bytes_to_long, long_to_bytes def build_poly(coeffs): x = symbols('x') return poly(sum(coeff * x ** i for i, coeff in enumerate(coeffs))) def encrypt_msg(msg, poly, e, N): return long_to_bytes(pow(poly(msg), e, N)).hex() p = getPrime(256) q = getPrime(256) N = p * q e = 11 flag = bytes_to_long(open("/challenge/flag.txt", "rb").read()) coeffs = deque([random.randint(0, 128) for _ in range(16)]) welcome_message = f""" Welcome to RotorSA! With our state of the art encryption system, you have two options: 1. Encrypt a message 2. Get the encrypted flag The current public key is n = {N} e = {e} """ print(welcome_message) while True: padding = build_poly(coeffs) choice = int(input('What is your choice? ')) if choice == 1: message = int(input('What is your message? '), 16) encrypted = encrypt_msg(message, padding, e, N) print(f'The encrypted message is {encrypted}') elif choice == 2: encrypted_flag = encrypt_msg(flag, padding, e, N) print(f'The encrypted flag is {encrypted_flag}') coeffs.rotate(1)
27.222222
70
0.679184
c863807714070600292378e7ba7e81fb0de972c7
4,188
py
Python
tool_discovery/tool_discoverer/tool_discoverer/html_temp.py
FAIRplus/WP3_FAIR_tooling
3c6470c4f5fc3d686b4571711bb7ed6f849a9622
[ "Apache-2.0" ]
null
null
null
tool_discovery/tool_discoverer/tool_discoverer/html_temp.py
FAIRplus/WP3_FAIR_tooling
3c6470c4f5fc3d686b4571711bb7ed6f849a9622
[ "Apache-2.0" ]
13
2021-06-01T10:07:02.000Z
2022-03-24T12:16:26.000Z
tool_discovery/tool_discoverer/tool_discoverer/html_temp.py
FAIRplus/WP3_FAIR_tooling
3c6470c4f5fc3d686b4571711bb7ed6f849a9622
[ "Apache-2.0" ]
null
null
null
template = ''' <head> <link rel="stylesheet" href="https://cdn.datatables.net/1.10.21/css/jquery.dataTables.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.21/css/jquery.dataTables.min.css" /> <script src="https://code.jquery.com/jquery-3.5.1.js"></script> <script src="https://cdn.datatables.net/1.10.21/js/jquery.dataTables.min.js"></script> <style> #title {{ font-size: 2em; font-family: sans-serif; text-align: center; }} #subtitle {{ font-size: 1em; font-family: sans-serif; text-align: center; }} .parameters {{ font-size: 1em; font-family: sans-serif; width: 80%; margin-left: auto; margin-right: auto; }} .styled-table{{ width: 95%; margin-left: auto; margin-right: auto; font-size: 0.9em; font-family: sans-serif; white-space: pre-line; }} .dataTable {{ border-collapse: collapse; font-size: 0.9em; font-family: sans-serif; width: 80%; box-shadow: 0 0 20px rgba(0, 0, 0, 0.15); }} .dataTable thead tr {{ background-color: #156094; color: #ffffff; text-align: left; padding-top: 5%; }} table.dataTable td {{ min-width: 50px; box-sizing: border-box; }} table.dataTable thead tr th input{{ min-width: 50px; max-width: 200px; width:100%; box-sizing: border-box; }} .dataTable tbody tr {{ border-bottom: thin solid #dddddd; }} .dataTable tbody tr:nth-of-type(even) {{ background-color: #f3f3f3; }} .dataTables_filter{{ margin-top: 1%; margin-bottom: 1%; }} .dataTables_length{{ margin-top: 1%; margin-bottom: 1%; }} .short{{ max-height: 150px; overflow: hidden; }} .link{{ max-width: 200px; font-size: 0.9em; padding-left: 2%; padding-top: 2%; word-wrap: break-word; }} .citations{{ max-width: 50px; text-align: center; }} .name {{ min-width: 120px; }} .desc {{ text-align: left; padding-left: 1.2%; padding-top: 1.2%; padding-right:1.2%; padding-bottom: 1.2%; font-size: 0.9em; min-width: 200px; }} .type {{ min-width: 180px; vertical-align: text-top; }} .topic {{ min-width: 200px; vertical-align: text-top; }} .operation {{ min-width: 200px; vertical-align: text-top; }} .formats {{ min-width: 200px; vertical-align: text-top; }} </style> </style> </head> <body> ​​​<h1 id=title>Tools discovery results</h1> <h2 id=subtitle>{name}</h2> <div class=parameters> <h3> Search parameters: </h3> <ul> <li><span style="font-weight: bold">Name</span>: {name}</li> <li><span style="font-weight: bold">Keywords</span>: {keywords}</li> </ul> </div> <div class=parameters> <h3> Results: </h3> <div class="styled-table"> {content} </div> </div> </body> <script> $('#my-table').dataTable( {{ "order": [], }} ); var userSelection = document.getElementsByClassName('click_expand'); for(var i = 0; i < userSelection.length; i++) {{ (function(index) {{ userSelection[index].addEventListener("click", function() {{ console.log("Clicked index: "); $(this).closest("tr").find('div').toggleClass("short"); }}) }})(i); }} $('#my-table thead th').each(function() {{ var title = $('#my-table thead th').eq($(this).index()).text(); $(this).html(title+'</br><input type="text" placeholder="Search"' + title + '/>'); $(this).css('text-align', 'left'); }}); var r = $('#my-table thead th'); r.find('input').each(function(){{ $(this).css('margin', 4); $(this).css('padding', 4); }}); // DataTable var table = $('#my-table').DataTable(); // Apply the search table.columns().eq(0).each(function(colIdx) {{ $('input', table.column(colIdx).header()).on('keyup change', function() {{ table .column(colIdx) .search(this.value) .draw(); }}); $('input', table.column(colIdx).header()).on('click', function(e) {{ e.stopPropagation(); }}); }}); </script> '''
19.47907
117
0.56256
23d33235975b56858506cc00736575e9ec781ea3
4,612
py
Python
official/cv/ADNet/src/utils/get_wrapper_utils.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/ADNet/src/utils/get_wrapper_utils.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/ADNet/src/utils/get_wrapper_utils.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os from mindspore import dataset as ds from mindspore.communication.management import get_rank, get_group_size def get_dataLoader(source, opts, args, column_names): if args.distributed: rank_id = get_rank() rank_size = get_group_size() if isinstance(source, tuple): data_loaders_pos = [] data_loaders_neg = [] datasets_pos, datasets_neg = source if not args.distributed: for dataset_pos in datasets_pos: dataset = ds.GeneratorDataset(source=dataset_pos, column_names=column_names, num_parallel_workers=args.num_workers, shuffle=True) dataset = dataset.batch(batch_size=opts['minibatch_size']) data_loaders_pos.append(dataset) for dataset_neg in datasets_neg: dataset = ds.GeneratorDataset(source=dataset_neg, column_names=column_names, num_parallel_workers=args.num_workers, shuffle=True) dataset = dataset.batch(batch_size=opts['minibatch_size']) data_loaders_neg.append(dataset) else: for dataset_pos in datasets_pos: dataset = ds.GeneratorDataset(source=dataset_pos, column_names=column_names, num_parallel_workers=args.num_workers, shuffle=True, num_shards=rank_size, shard_id=rank_id) dataset = dataset.batch(batch_size=opts['minibatch_size']) data_loaders_pos.append(dataset) for dataset_neg in datasets_neg: dataset = ds.GeneratorDataset(source=dataset_neg, column_names=["im", "bbox", "action_label", "score_label", "vid_idx"], num_parallel_workers=args.num_workers, shuffle=True, num_shards=rank_size, shard_id=rank_id) dataset = dataset.batch(batch_size=opts['minibatch_size']) data_loaders_neg.append(dataset) return data_loaders_pos, data_loaders_neg if args.distributed: dataset = ds.GeneratorDataset(source=source, column_names=column_names, num_parallel_workers=args.num_workers, shuffle=True, num_shards=rank_size, shard_id=rank_id) dataset = dataset.batch(batch_size=opts['minibatch_size']) else: dataset = ds.GeneratorDataset(source=source, column_names=column_names, num_parallel_workers=args.num_workers, shuffle=True) dataset = dataset.batch(batch_size=opts['minibatch_size']) return dataset def get_groundtruth(gt_path): if not os.path.exists(gt_path): bboxes = [] t_sum = 0 return bboxes, t_sum # parse gt gtFile = open(gt_path, 'r') gt = gtFile.read().split('\n') for i in range(len(gt)): if gt[i] == '' or gt[i] is None: continue if ',' in gt[i]: separator = ',' elif '\t' in gt[i]: separator = '\t' elif ' ' in gt[i]: separator = ' ' else: separator = ',' gt[i] = gt[i].split(separator) gt[i] = list(map(float, gt[i])) gtFile.close() if len(gt[0]) >= 6: for gtidx in range(len(gt)): if gt[gtidx] == "": continue x = gt[gtidx][0:len(gt[gtidx]):2] y = gt[gtidx][1:len(gt[gtidx]):2] gt[gtidx] = [min(x), min(y), max(x) - min(x), max(y) - min(y)] return gt
43.509434
120
0.549219
b593fa8d45128963d9cc83e5fce6c881c62ee955
1,977
py
Python
assets/support/faq/docbook-xsl/extensions/xsltproc/python/xslt.py
brnnnfx/openoffice-org
8b1023c59fd9c7a58d108bb0b01dd1f8884c9163
[ "Apache-2.0" ]
5
2019-10-14T23:00:48.000Z
2021-11-06T22:21:06.000Z
assets/support/faq/docbook-xsl/extensions/xsltproc/python/xslt.py
brnnnfx/openoffice-org
8b1023c59fd9c7a58d108bb0b01dd1f8884c9163
[ "Apache-2.0" ]
31
2020-11-14T09:27:16.000Z
2022-03-08T17:09:15.000Z
assets/support/faq/docbook-xsl/extensions/xsltproc/python/xslt.py
brnnnfx/openoffice-org
8b1023c59fd9c7a58d108bb0b01dd1f8884c9163
[ "Apache-2.0" ]
15
2020-11-10T17:04:25.000Z
2022-01-31T12:12:48.000Z
#!/usr/bin/python -u # THIS IS ALPHA CODE AND MAY NOT WORK CORRECTLY! import sys import string import libxml2 import libxslt from docbook import adjustColumnWidths # Check the arguments usage = "Usage: %s xmlfile.xml xslfile.xsl [outputfile] [param1=val [param2=val]...]" % sys.argv[0] xmlfile = None xslfile = None outfile = "-" params = {} try: xmlfile = sys.argv[1] xslfile = sys.argv[2] except IndexError: print usage; sys.exit(1) try: outfile = sys.argv[3] if string.find(outfile, "=") > 0: name, value = string.split(outfile, "=", 2); params[name] = value count = 4; while (sys.argv[count]): try: name, value = string.split(sys.argv[count], "=", 2); if params.has_key(name): print "Warning: '%s' re-specified; replacing value" % name params[name] = value except ValueError: print "Invalid parameter specification: '" + sys.argv[count] + "'" print usage sys.exit(1); count = count+1; except IndexError: pass # ====================================================================== # Memory debug specific # libxml2.debugMemory(1) # Setup environment libxml2.lineNumbersDefault(1) libxml2.substituteEntitiesDefault(1) libxslt.registerExtModuleFunction("adjustColumnWidths", "http://nwalsh.com/xslt/ext/xsltproc/python/Table", adjustColumnWidths) # Initialize and run styledoc = libxml2.parseFile(xslfile) style = libxslt.parseStylesheetDoc(styledoc) doc = libxml2.parseFile(xmlfile) result = style.applyStylesheet(doc, params) # Save the result style.saveResultToFilename(outfile, result, 0) # Free things up style.freeStylesheet() doc.freeDoc() result.freeDoc() # Memory debug specific #libxslt.cleanup() #if libxml2.debugMemory(1) != 0: # print "Memory leak %d bytes" % (libxml2.debugMemory(1)) # libxml2.dumpMemory()
25.346154
99
0.621649
8d9733bda06d92a0de48eb3114bc5ef322a25396
7,553
py
Python
Hackathons_19_20/Brainwaves 2019/complaint status tracking/comp track 75677.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
Hackathons_19_20/Brainwaves 2019/complaint status tracking/comp track 75677.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
Hackathons_19_20/Brainwaves 2019/complaint status tracking/comp track 75677.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Jan 16 13:16:36 2019 @author: avi """ import pandas as pd #data manipulation and data anlysis (read files) import numpy as np #transform data into format that model can understand import sklearn #helps to create machine learning model import matplotlib.pyplot as plt #visualize data from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import LogisticRegression import re from textblob import Word from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC stop = stopwords.words('english') stop_f=stopwords.words('spanish') stop_s=stopwords.words('french') from nltk.stem.snowball import SnowballStemmer sbFr = SnowballStemmer('french') sbEsp = SnowballStemmer('spanish') sbEng = SnowballStemmer('english') ######################################Pre Process procedure com_int_cat ={0:'Closed with explanation', 1:'Closed with non-monetary relief', 2:'Closed', 3:'Closed with monetary relief', 4:'Untimely response'} input_int_cat ={'Closed with explanation':0, 'Closed with non-monetary relief':1, 'Closed':2, 'Closed with monetary relief':3, 'Untimely response':4} ##############################Data load file_read_train='D:\\Python project\\brainwaves 2019\\complaint status tracking\\train.csv' file_read_test='D:\\Python project\\brainwaves 2019\\complaint status tracking\\test.csv' df_train = pd.read_csv(file_read_train) df_test = pd.read_csv(file_read_test) #####bkp copy df_train_cp=df_train df_test_cp=df_test #### Combining text df_train["processed_summary"]=df_train["Consumer-complaint-summary"].fillna('') +" "+ df_train['Transaction-Type'].fillna('No')+" "+ df_train['Consumer-disputes'].fillna('') + " " +df_train['Company-response'].fillna('')+" "+df_train['Complaint-reason'].fillna('') df_test["processed_summary"]=df_test["Consumer-complaint-summary"].fillna('') +" "+ df_test['Transaction-Type'].fillna('No')+" "+ df_test['Consumer-disputes'].fillna('') + " " +df_test['Company-response'].fillna('')+" "+df_test['Complaint-reason'].fillna('') ##### Cleaning data ### A: Train df_train['Complaint_Status'] = df_train['Complaint-Status'].map(input_int_cat) df_train['processed_summary']= df_train['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop)) df_train['processed_summary']= df_train['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop_f)) df_train['processed_summary']= df_train['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop_s)) #df_train['processed_summary']= df_train['processed_summary'].apply(lambda x: " ".join([x for x in x.split() if len(x)>2])) #### B: Test #df_test['processed_summary']= df_test['processed_summary'].str.lower() df_test['processed_summary']= df_test['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop)) df_test['processed_summary']= df_test['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop_f)) df_test['processed_summary']= df_test['processed_summary'].apply(lambda x: " ".join(x for x in x.split() if x not in stop_s)) #df_test['processed_summary']= df_test['processed_summary'].apply(lambda x: " ".join([x for x in x.split() if len(x)>2])) #stemming # A - Train Stemming df_train['processed_summary'] = df_train['processed_summary'].apply(lambda x: " ".join([Word(word).lemmatize() for word in x.split()])) df_train['processed_summary'] = df_train['processed_summary'].apply(lambda x: " ".join([sbFr.stem(item) for item in x.split()])) df_train['processed_summary'] = df_train['processed_summary'].apply(lambda x: " ".join([sbEsp.stem(item) for item in x.split()])) df_train['processed_summary'] = df_train['processed_summary'].str.replace(r"[^a-zA-Z]+", " ") df_train['processed_summary']=df_train['processed_summary'].str.replace("XXXX"," ") df_train['processed_summary']=df_train['processed_summary'].str.replace("XX"," ") df_train['processed_summary']=df_train['processed_summary'].str.replace(",","") df_train['processed_summary']=df_train['processed_summary'].str.replace(".","") df_train['processed_summary']=df_train['processed_summary'].str.replace(" "," ") df_train['processed_summary']=df_train['processed_summary'].str.replace(" "," ") df_train['processed_summary']=df_train['processed_summary'].str.replace(" "," ") df_train['processed_summary']=df_train['processed_summary'].str.replace(" "," ") # B - Test Stemming df_test['processed_summary'] = df_test['processed_summary'].apply(lambda x: " ".join([Word(word).lemmatize() for word in x.split()])) df_test['processed_summary'] = df_test['processed_summary'].apply(lambda x: " ".join([sbFr.stem(item) for item in x.split()])) df_test['processed_summary'] = df_test['processed_summary'].apply(lambda x: " ".join([sbEsp.stem(item) for item in x.split()])) df_test['processed_summary'] = df_test['processed_summary'].str.replace(r"[^a-zA-Z]+", " ") df_test['processed_summary']=df_test['processed_summary'].str.replace("XXXX"," ") df_test['processed_summary']=df_test['processed_summary'].str.replace("XX"," ") df_test['processed_summary']=df_test['processed_summary'].str.replace(",","") df_test['processed_summary']=df_test['processed_summary'].str.replace(".","") df_test['processed_summary']=df_test['processed_summary'].str.replace(" "," ") df_test['processed_summary']=df_test['processed_summary'].str.replace(" "," ") df_test['processed_summary']=df_test['processed_summary'].str.replace(" "," ") df_test['processed_summary']=df_test['processed_summary'].str.replace(" "," ") ############################################################## ### Split data -train into : test-train """ df_train_d, df_test_d = train_test_split(df_train,test_size=0.1,random_state=0) df_test_d['Complaint_Status_acc']=df_test_d['Complaint-Status'] """ ######################## test / train assigment df_train_d, df_test_d = train_test_split(df_train,test_size=0.0,random_state=0) df_test_d=df_test ##################################################Model ### Model execution fr_text_clf=Pipeline([('vect',TfidfVectorizer(norm='l2',ngram_range=(1,5),use_idf=True,smooth_idf=True, sublinear_tf=False)),('clf',LinearSVC(C=1.0,tol=0.1))]) #svc=LinearSVC(C=2.3,tol=0.1) model = fr_text_clf.fit(df_train_d['processed_summary'],df_train_d['Complaint_Status']) df_test_d['new_complain_status']=model.predict(df_test_d["processed_summary"]) df_test_d['Complaint-Status'] = df_test_d['new_complain_status'].map(com_int_cat) df_test_d['Complaint-Status'].value_counts() #######################################Accuracy Check """ df_test_d['Complaint-Status'].value_counts() from sklearn.metrics import confusion_matrix confusion_matrix(df_test_d["Complaint_Status_acc"], df_test_d['Complaint-Status']) accuracy_score(df_test_d["Complaint_Status_acc"], df_test_d["Complaint-Status"]) """ ################################################## ### ##Output File creation df_test_output= df_test_d[['Complaint-ID','Complaint-Status']] df_test_output.to_csv("D:\\Python project\\brainwaves 2019\\complaint status tracking\\output_new270119_ra2cbcbxcb.csv", index=False, header=True) ##################################################
54.338129
266
0.699457
9e171c2db2ce83e95935911d2bd31e1429302352
2,347
py
Python
research/cv/ICNet/src/loss.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/ICNet/src/loss.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/ICNet/src/loss.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Custom losses.""" import mindspore as ms import mindspore.nn as nn import mindspore.ops as ops from src.losses import SoftmaxCrossEntropyLoss __all__ = ['ICNetLoss'] class ICNetLoss(nn.Cell): """Cross Entropy Loss for ICNet""" def __init__(self, aux_weight=0.4, ignore_index=-1): super(ICNetLoss, self).__init__() self.aux_weight = aux_weight self.ignore_index = ignore_index self.sparse = True self.base_loss = SoftmaxCrossEntropyLoss(num_cls=19, ignore_label=-1) self.resize_bilinear = nn.ResizeBilinear() # 输入必须为4D def construct(self, *inputs): """construct""" preds, target = inputs pred = preds[0] pred_sub4 = preds[1] pred_sub8 = preds[2] pred_sub16 = preds[3] # [batch, H, W] -> [batch, 1, H, W] expand_dims = ops.ExpandDims() if target.shape[0] == 720 or target.shape[0] == 1024: target = expand_dims(target, 0).astype(ms.dtype.float32) target = expand_dims(target, 0).astype(ms.dtype.float32) else: target = expand_dims(target, 1).astype(ms.dtype.float32) h, w = pred.shape[2:] target_sub4 = self.resize_bilinear(target, size=(h / 4, w / 4)).squeeze(1) target_sub8 = self.resize_bilinear(target, size=(h / 8, w / 8)).squeeze(1) target_sub16 = self.resize_bilinear(target, size=(h / 16, w / 16)).squeeze(1) loss1 = self.base_loss(pred_sub4, target_sub4) loss2 = self.base_loss(pred_sub8, target_sub8) loss3 = self.base_loss(pred_sub16, target_sub16) return loss1 + loss2 * self.aux_weight + loss3 * self.aux_weight
36.107692
85
0.643801
f557a735dc3b79a38cb10ff4065a1511955a96c3
476
py
Python
nz_django/day3/db_relation_demo/front/migrations/0004_auto_20200220_1513.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
null
null
null
nz_django/day3/db_relation_demo/front/migrations/0004_auto_20200220_1513.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
27
2020-02-12T07:55:58.000Z
2022-03-12T00:19:09.000Z
nz_django/day3/db_relation_demo/front/migrations/0004_auto_20200220_1513.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
2
2020-02-18T01:54:55.000Z
2020-02-21T11:36:28.000Z
# Generated by Django 2.0 on 2020-02-20 07:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('front', '0003_auto_20200220_1510'), ] operations = [ migrations.AlterField( model_name='userextension', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='front.FrontUser'), ), ]
23.8
106
0.644958
1990ac9337e3bcc737c4073560d05d8460b5b92c
686
py
Python
find-bottom-left-tree-value/find-bottom-left-tree-value.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
2
2021-12-05T14:29:06.000Z
2022-01-01T05:46:13.000Z
find-bottom-left-tree-value/find-bottom-left-tree-value.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
find-bottom-left-tree-value/find-bottom-left-tree-value.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findBottomLeftValue(self, root: Optional[TreeNode]) -> int: bottomleft=root.val stack=[(root, 0)] prev_depth=0 while(stack): cur, depth = stack.pop(0) if depth!=prev_depth: bottomleft=cur.val if cur.left: stack.append((cur.left, depth+1)) if cur.right: stack.append((cur.right, depth+1)) prev_depth=depth return bottomleft
32.666667
67
0.542274
5ff5ff9c9414eec6e594e1649ce3b3f35b8a669a
787
py
Python
662/tuwulisu_662_tree.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
662/tuwulisu_662_tree.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
662/tuwulisu_662_tree.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def widthOfBinaryTree(self, root: TreeNode) -> int: if not root: return 0 queue=[[root,0]] max_width=1 while queue: new_queue=[] for node,node_id in queue: if node.left: new_queue.append([node.left,node_id*2]) if node.right: new_queue.append([node.right,node_id*2+1]) if len(new_queue)>=2: max_width=max(max_width,new_queue[-1][1] - new_queue[0][1] + 1) queue=new_queue return max_width
32.791667
79
0.526048
27b73ab20b9e387550a33ab9205adeaaf4633a19
613
py
Python
profiles/admin.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
profiles/admin.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
profiles/admin.py
Thames1990/BadBatBets
8dffb69561668b8991bf4103919e4b254d4ca56a
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Profile, ForbiddenUser, Feedback class ProfileAdmin(admin.ModelAdmin): fields = ['user', 'account', 'verified', 'accepted_general_terms_and_conditions', 'accepted_privacy_policy'] list_display = ['user', 'verified'] class ForbiddenUserAdmin(admin.ModelAdmin): list_display = ['name', 'has_account'] class FeedbackAdmin(admin.ModelAdmin): list_display = ['provided_by', 'feedback', 'resolved'] admin.site.register(Profile, ProfileAdmin) admin.site.register(ForbiddenUser, ForbiddenUserAdmin) admin.site.register(Feedback, FeedbackAdmin)
29.190476
112
0.769984
d024fc5d3790d7475bbc9e59c08f275bfee78358
1,333
py
Python
tools/pythonpkg/tests/fast/test_case_alias.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
2,816
2018-06-26T18:52:52.000Z
2021-04-06T10:39:15.000Z
tools/pythonpkg/tests/fast/test_case_alias.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
1,310
2021-04-06T16:04:52.000Z
2022-03-31T13:52:53.000Z
tools/pythonpkg/tests/fast/test_case_alias.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
270
2021-04-09T06:18:28.000Z
2022-03-31T11:55:37.000Z
import pandas import numpy as np import datetime import duckdb class TestCaseAlias(object): def test_case_alias(self, duckdb_cursor): import pandas import numpy as np import datetime import duckdb con = duckdb.connect(':memory:') df = pandas.DataFrame([{"COL1": "val1", "CoL2": 1.05},{"COL1": "val3", "CoL2": 17}]) r1 = con.from_df(df).query('df', 'select * from df').fetchdf() assert r1["COL1"][0] == "val1" assert r1["COL1"][1] == "val3" assert r1["CoL2"][0] == 1.05 assert r1["CoL2"][1] == 17 r2 = con.from_df(df).query('df', 'select COL1, COL2 from df').fetchdf() assert r2["COL1"][0] == "val1" assert r2["COL1"][1] == "val3" assert r2["CoL2"][0] == 1.05 assert r2["CoL2"][1] == 17 r3 = con.from_df(df).query('df', 'select COL1, COL2 from df ORDER BY COL1').fetchdf() assert r3["COL1"][0] == "val1" assert r3["COL1"][1] == "val3" assert r3["CoL2"][0] == 1.05 assert r3["CoL2"][1] == 17 r4 = con.from_df(df).query('df', 'select COL1, COL2 from df GROUP BY COL1, COL2 ORDER BY COL1').fetchdf() assert r4["COL1"][0] == "val1" assert r4["COL1"][1] == "val3" assert r4["CoL2"][0] == 1.05 assert r4["CoL2"][1] == 17
33.325
113
0.535634
ef8cadc119a3ac98d061a16fa77fef11daee59ee
1,946
py
Python
test/test_npu/test_network_ops/test_apply_adam.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_apply_adam.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_apply_adam.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from common_utils import TestCase, run_tests from common_device_type import instantiate_device_type_tests class TestApplyAdam(TestCase): def test_apply_adam_fp32(self, device): var = torch.randn(2, 2, 2, 2, dtype=torch.float32).to("npu") m = torch.randn(2, 2, 2, 2, dtype=torch.float32).to("npu") v = torch.randn(2, 2, 2, 2, dtype=torch.float32).to("npu") grad = torch.randn(2, 2, 2, 2, dtype=torch.float32).to("npu") bt1p = 1 bt2p = 1 lr = 0.2 bt1 = 0.2 bt2 = 0.2 ep = 0.2 ul = False un = False var_o, m_o, v_o = torch.npu_apply_adam(var, m, v, bt1p, bt2p, lr, bt1, bt2, ep, grad, ul, un) expect_vo = torch.tensor([[[[1.7452, 0.1779], [1.6296, 3.0590]], [[1.7282, 0.0648], [0.6864, 0.4539]]], [[[1.5883, 2.6426], [0.3080, 0.1884]], [[0.3690, 1.9991], [3.0633, 0.4669]]]], dtype = torch.float32) self.assertRtolEqual(expect_vo, v_o.cpu()) instantiate_device_type_tests(TestApplyAdam, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
41.404255
101
0.578109
efa3324f837577bb44837764431d5d1ec15540a5
1,443
py
Python
projects/api/templates.py
Matheus158257/projects
26a6148046533476e625a872a2950c383aa975a8
[ "Apache-2.0" ]
null
null
null
projects/api/templates.py
Matheus158257/projects
26a6148046533476e625a872a2950c383aa975a8
[ "Apache-2.0" ]
null
null
null
projects/api/templates.py
Matheus158257/projects
26a6148046533476e625a872a2950c383aa975a8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Templates blueprint.""" from flask import Blueprint, jsonify, request from ..controllers.templates import list_templates, create_template, \ get_template, update_template, delete_template from ..utils import to_snake_case bp = Blueprint("templates", __name__) @bp.route("", methods=["GET"]) def handle_list_templates(): """Handles GET requests to /.""" return jsonify(list_templates()) @bp.route("", methods=["POST"]) def handle_post_templates(): """Handles POST requests to /.""" kwargs = request.get_json(force=True) kwargs = {to_snake_case(k): v for k, v in kwargs.items()} template = create_template(**kwargs) return jsonify(template) @bp.route("<template_id>", methods=["GET"]) def handle_get_template(template_id): """Handles GET requests to /<template_id>.""" return jsonify(get_template(uuid=template_id)) @bp.route("<template_id>", methods=["PATCH"]) def handle_patch_template(template_id): """Handles PATCH requests to /<template_id>.""" kwargs = request.get_json(force=True) kwargs = {to_snake_case(k): v for k, v in kwargs.items()} template = update_template(uuid=template_id, **kwargs) return jsonify(template) @bp.route("<template_id>", methods=["DELETE"]) def handle_delete_template(template_id): """Handles DELETE requests to /<template_id>.""" template = delete_template(uuid=template_id) return jsonify(template)
30.0625
70
0.704782
4be7d027414a5f997b3893b769640f5824944d8c
369
py
Python
main.py
pchchv/getqr
f8858d6d539632309841059422004f8f3a6e358e
[ "MIT" ]
null
null
null
main.py
pchchv/getqr
f8858d6d539632309841059422004f8f3a6e358e
[ "MIT" ]
null
null
null
main.py
pchchv/getqr
f8858d6d539632309841059422004f8f3a6e358e
[ "MIT" ]
null
null
null
def _check_box_size(size): if int(size) <= 0: raise ValueError(f"Invalid box size. Must be larger than 0") def _check_border(size): if int(size) <= 0: raise ValueError(f"Invalid border value. Must be larger than 0") class QRCode: def __init__(self, box_size=10, border=2): _check_box_size(box_size) _check_border(border)
24.6
72
0.663957
3262015dc57743176fd8f07e02c8037b984bbe5f
972
py
Python
tag_1/p_2_4_schaltjahr.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
tag_1/p_2_4_schaltjahr.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
tag_1/p_2_4_schaltjahr.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
""" 2 If-Abfragen (Tag 1) 2.4 Überprüfe, ob ein vorher festgelegtes Jahr ein Schaltjahr ist. Hinweise: - Jahreszahl nicht durch 4 teilbar: kein Schaltjahr - Jahreszahl durch 4 teilbar: Schaltjahr - Jahreszahl durch 100 teilbar: kein Schaltjahr - Jahreszahl durch 400 teilbar: Schaltjahr Beispiele: - 2000, 2004 sind Schaltjahre - 1900, 2006 sind keine Schaltjahre """ def ist_schaltjahr(jahr): return (jahr % 4 == 0 and jahr % 100 != 0) or jahr % 400 == 0 if __name__ == '__main__': print(f'Das Jahr 1900 ist', " ein" if ist_schaltjahr(1900) else "kein", 'Schaltjahr.') print(f'Das Jahr 2000 ist', " ein" if ist_schaltjahr(2000) else "kein", 'Schaltjahr.') print(f'Das Jahr 2001 ist', " ein" if ist_schaltjahr(2001) else "kein", 'Schaltjahr.') print(f'Das Jahr 2004 ist', " ein" if ist_schaltjahr(2004) else "kein", 'Schaltjahr.') print(f'Das Jahr 2006 ist', " ein" if ist_schaltjahr(2006) else "kein", 'Schaltjahr.')
36
90
0.682099
329899291405ade21285cff7fc99ae518ffc3286
14,609
py
Python
puppet/puppet_v4.py
pchaos/wanggejiaoyi
60242d465bf10d4be46ee6eafc99557affc2a52e
[ "MIT" ]
15
2018-05-16T02:39:01.000Z
2021-05-22T13:12:55.000Z
puppet/puppet_v4.py
pchaos/wanggejiaoyi
60242d465bf10d4be46ee6eafc99557affc2a52e
[ "MIT" ]
null
null
null
puppet/puppet_v4.py
pchaos/wanggejiaoyi
60242d465bf10d4be46ee6eafc99557affc2a52e
[ "MIT" ]
9
2018-05-16T00:47:34.000Z
2021-11-26T05:39:48.000Z
""" 扯线木偶界面自动化应用编程接口(Puppet UIAutomation API) 技术群:624585416 """ __author__ = "睿瞳深邃(https://github.com/Raytone-D)" __project__ = 'Puppet' __version__ = "0.4.33" __license__ = 'MIT' # coding: utf-8 import ctypes from functools import reduce import time import sys import platform try: import pyperclip except Exception as e: print("{}\n请先在命令行下运行:pip install pyperclip,再使用puppet!".format(e)) MSG = {'WM_SETTEXT': 12, 'WM_GETTEXT': 13, 'WM_KEYDOWN': 256, 'WM_KEYUP': 257, 'WM_COMMAND': 273, 'BM_CLICK': 245, 'CB_GETCOUNT': 326, 'CB_SETCURSEL': 334, 'CBN_SELCHANGE': 1, 'COPY_DATA': 57634} INIT = {'买入': 161, '卖出': 162, '撤单': 163} NODE = {'FRAME': (59648, 59649), 'FORM': (59648, 59649, 1047, 200, 1047), 'ACCOUNT': (59392, 0, 1711), 'COMBO': (59392, 0, 2322), 'BUY': (1032, 1033, 1034, '买入[B]', 1036, 1018), 'SELL': (1032, 1033, 1034, '卖出[S]', 1036, 1038), 'CANCEL': (3348, '查询代码', '撤单'), 'ENTRUSTMENT': 168, '撤单': 163, '双向委托': 512, '新股申购': 554, '中签查询': 1070} TWO_WAY = {'买入代码': 1032, '买入价格': 1033, '买入数量': 1034, '买入': 1006, '卖出代码': 1035, '卖出价格': 1058, '卖出数量': 1039, '卖出': 1008, '可用余额': 1038, '刷新': 32790, '报表': 1047} NEW = {'新股代码': 1032, '新股名称': 1036, '申购价格': 1033, '可申购数量': 1018, '申购数量': 1034, '申购': 1006} RAFFLE = ['新股代码', '证券代码', '申购价格'] # , '申购上限'] VKCODE = {'F1': 112, 'F2': 113, 'F3': 114, 'F4': 115, 'F5': 116, 'F6': 117} import platform sysstr = platform.system() if (sysstr == "Windows"): op = ctypes.windll.user32 def switch_combo(index, idCombo, hCombo): op.SendMessageW(hCombo, MSG['CB_SETCURSEL'], index, 0) op.SendMessageW(op.GetParent(hCombo), MSG['WM_COMMAND'], MSG['CBN_SELCHANGE'] << 16 | idCombo, hCombo) def click_button(dialog, label): handle = op.FindWindowExW(dialog, 0, 0, label) id_btn = op.GetDlgCtrlID(handle) op.PostMessageW(dialog, MSG['WM_COMMAND'], id_btn, 0) def fill_in(container, _id_item, _str): op.SendDlgItemMessageW(container, _id_item, MSG['WM_SETTEXT'], 0, _str) def kill_popup(hDlg, name='是(&Y)'): for x in range(100): time.sleep(0.01) popup = op.GetLastActivePopup(hDlg) if popup != hDlg and op.IsWindowVisible(popup): yes = op.FindWindowExW(popup, 0, 0, name) idYes = op.GetDlgCtrlID(yes) op.PostMessageW(popup, MSG['WM_COMMAND'], idYes, 0) print('popup has killed.') break class Puppet: """ 界面自动化操控包装类 # 方法 # '委买': buy(), '委卖': sell(), '撤单': cancel(), '打新': raffle(), # 属性 # '帐号': account, '可用余额': balance, '持仓': position, '成交': deals, '可撤委托': cancelable, # # '新股': new, '中签': bingo, """ def __init__(self, main=None, title='网上股票交易系统5.0'): print('木偶: 欢迎使用Puppet TraderApi, version {}'.format(__version__)) print('{}\nPython version: {}'.format(platform.platform(), platform.python_version())) self._main = main or op.FindWindowW(0, title) self.buff = ctypes.create_unicode_buffer(32) self.switch = lambda node: op.SendMessageW(self._main, MSG['WM_COMMAND'], node, 0) if self._main: self._container = {label: self._get_item(_id) for label, _id in INIT.items()} self._position, self._cancelable, self._entrustment = None, None, None self.switch(NODE['双向委托']) time.sleep(0.5) self.two_way = reduce(op.GetDlgItem, NODE['FRAME'], self._main) self.members = {k: op.GetDlgItem(self.two_way, v) for k, v in TWO_WAY.items()} self._position = reduce(op.GetDlgItem, NODE['FORM'], self._main) if not self._main: print("木偶:客户交易端没登录,我先撤了!") sys.exit('木偶:错误的标题字符串"{}"!'.format(title)) # 获取登录账号 self.account = reduce(op.GetDlgItem, NODE['ACCOUNT'], self._main) op.SendMessageW(self.account, MSG['WM_GETTEXT'], 32, self.buff) self.account = self.buff.value # self.combo = reduce(op.GetDlgItem, NODE['COMBO'], self._main) # self.count = op.SendMessageW(self.combo, MSG['CB_GETCOUNT']) def _get_item(self, _id, sec=0.5): self.switch(_id) time.sleep(sec) return reduce(op.GetDlgItem, NODE['FRAME'], self._main) def switch_tab(self, hCtrl, keyCode, param=0): # 单击 op.PostMessageW(hCtrl, MSG['WM_KEYDOWN'], keyCode, param) time.sleep(0.1) op.PostMessageW(hCtrl, MSG['WM_KEYUP'], keyCode, param) def copy_data(self, hCtrl, key=0): "将CVirtualGridCtrl|Custom<n>的数据复制到剪贴板" _replace = {'参考市值': '市值', '最新市值': '市值'} # 兼容国金/平安"最新市值"、银河“参考市值”。 start = time.time() if key: self.switch(NODE['双向委托']) # 激活对话框窗口,保证正常切换到成交和委托控件。 self.switch_tab(self.two_way, key) for i in range(10): time.sleep(0.3) op.SendMessageW(hCtrl, MSG['WM_COMMAND'], MSG['COPY_DATA'], NODE['FORM'][-1]) ret = pyperclip.paste().splitlines() if len(ret) > 1: break temp = (x.split('\t') for x in ret) header = next(temp) for tag, value in _replace.items(): if tag in header: header.insert(header.index(tag), value) header.remove(tag) print('it take {} loop, {} seconds.'.format(i, time.time() - start)) return tuple(dict(zip(header, x)) for x in temp) def _wait(self, container, id_item): self.buff.value = '' # False,待假成真 for n in range(500): time.sleep(0.01) op.SendDlgItemMessageW(container, id_item, MSG['WM_GETTEXT'], 64, self.buff) if self.buff.value: break def _order(self, container, id_items, *triple): # self.switch(NODE['BUY'][0]) fill_in(container, id_items[0], triple[0]) # 证券代码 self._wait(container, id_items[-2]) # 证券名称 fill_in(container, id_items[1], triple[1]) # 价格 self._wait(container, id_items[-1]) # 可用数量 fill_in(container, id_items[2], triple[2]) # 数量 click_button(container, id_items[3]) # 下单按钮 if len(str(triple[1]).split('.')[1]) == 3: # 基金三位小数价格弹窗 kill_popup(self._main) def buy(self, symbol, price, qty): # self.switch(NODE['BUY'][0]) self._order(self._container['买入'], NODE['BUY'], symbol, price, qty) def sell(self, symbol, price, qty): # self.switch(NODE['SELL'][0]) self._order(self._container['卖出'], NODE['SELL'], symbol, price, qty) def buy2(self, symbol, price, qty, sec=0.3): # 买入(B) self.switch(NODE['双向委托']) op.SendMessageW(self.members['买入代码'], MSG['WM_SETTEXT'], 0, str(symbol)) time.sleep(0.1) op.SendMessageW(self.members['买入价格'], MSG['WM_SETTEXT'], 0, str(price)) time.sleep(0.1) op.SendMessageW(self.members['买入数量'], MSG['WM_SETTEXT'], 0, str(qty)) # op.SendMessageW(self.members['买入'], MSG['BM_CLICK'], 0, 0) time.sleep(sec) op.PostMessageW(self.two_way, MSG['WM_COMMAND'], TWO_WAY['买入'], 0) if len(price.split('.')[1]) == 3: # 基金三位小数价格弹窗 kill_popup(self._main) def sell2(self, symbol, price, qty, sec=0.3): # 卖出(S) self.switch(NODE['双向委托']) op.SendMessageW(self.members['卖出代码'], MSG['WM_SETTEXT'], 0, str(symbol)) time.sleep(0.1) op.SendMessageW(self.members['卖出价格'], MSG['WM_SETTEXT'], 0, str(price)) time.sleep(0.1) op.SendMessageW(self.members['卖出数量'], MSG['WM_SETTEXT'], 0, str(qty)) # op.SendMessageW(self.members['卖出'], MSG['BM_CLICK'], 0, 0) time.sleep(sec) op.PostMessageW(self.two_way, MSG['WM_COMMAND'], TWO_WAY['卖出'], 0) if len(price.split('.')[1]) == 3: # 基金三位小数价格弹窗 kill_popup(self._main) def refresh(self): # 刷新(F5) op.PostMessageW(self.two_way, MSG['WM_COMMAND'], TWO_WAY['刷新'], 0) def cancel(self, symbol=None, choice='buy'): # print("请尽快将"buy"改成"cancel_buy", "sell"改成"cancel_sell",并移植到cancel_order方法。") time.sleep(3) cases = {'buy': 'cancel_buy', 'sell': 'cancel_sell'} self.cancel_order(cases.get(choice)) def cancel_order(self, symbol=None, choice='cancel_all', symbolid=3348, nMarket=None, orderId=None): """撤销订单,choice选择操作的结果,默认“cancel_all”,可选“cancel_buy”、“cancel_sell”或"cancel" "cancel"是撤销指定股票symbol的全部委托。 """ hDlg = self._container['撤单'] symbol = str(symbol) if symbol: fill_in(hDlg, symbolid, symbol) for i in range(10): time.sleep(0.3) click_button(hDlg, '查询代码') hButton = op.FindWindowExW(hDlg, 0, 0, '撤单') # 撤单按钮的状态检查 if op.IsWindowEnabled(hButton): break cases = { 'cancel_all': '全撤(Z /)', 'cancel_buy': '撤买(X)', 'cancel_sell': '撤卖(C)', 'cancel': '撤单' } click_button(hDlg, cases.get(choice)) @property def balance(self): self.switch(NODE['双向委托']) self.refresh() op.SendMessageW(self.members['可用余额'], MSG['WM_GETTEXT'], 32, self.buff) return float(self.buff.value) @property def position(self): return self.copy_data(self._position, ord('W')) @property def market_value(self): ret = self.position return sum((float(pair['市值']) for pair in ret)) if ret else 0.0 @property def deals(self): return self.copy_data(self._position, ord('E')) @property def entrustment(self): """ 委托 :return: """ if not self._entrustment: self.switch(NODE['ENTRUSTMENT']) self._entrustment = reduce(op.GetDlgItem, NODE['FORM'], self._main) return self.copy_data(self._entrustment) @property def cancelable(self): if not self._cancelable: self.switch(NODE['撤单']) self._cancelable = reduce(op.GetDlgItem, NODE['FORM'], self._main) return self.copy_data(self._cancelable) # ret = self.entrustment # return [pair for pair in ret if '已报' in pair['备注']] if ret else ret @property def new(self): self.switch(NODE['新股申购']) time.sleep(0.5) self._new = reduce(op.GetDlgItem, NODE['FORM'], self._main) return self.copy_data(self._new) @property def bingo(self): self.switch(NODE['中签查询']) time.sleep(0.5) self._bingo = reduce(op.GetDlgItem, NODE['FORM'], self._main) return self.copy_data(self._bingo) def cancel_all(self): # 全撤(Z) # 只有撤单窗的按钮才能做到无弹窗撤单 print("请用trader.cancel_order('cancel_all') 取代trader.cancel_all()") click_button(self._container['撤单'], '全撤(Z /)') def cancel_buy(self): # 撤买(X) print("请用trader.cancel_order('cancel_buy') 取代trader.cancel_buy()") click_button(self._container['撤单'], '撤买(X)') def cancel_sell(self): # 撤卖(C) print("请用trader.cancel_order('cancel_sell') 取代trader.cancel_sell()") click_button(self._container['撤单'], '撤卖(C)') def raffle(self, skip=False): # 打新 # op.SendMessageW(self._main, MSG['WM_COMMAND'], NODE['新股申购'], 0) # self._raffle = reduce(op.GetDlgItem, NODE['FORM'], self._main) # close_pop() # 弹窗无需关闭,不影响交易。 # schedule = self.copy_data(self._raffle) ret = self.new if not ret: print("是日无新!") return ret self._raffle = reduce(op.GetDlgItem, NODE['FRAME'], self._main) self._raffle_parts = {k: op.GetDlgItem(self._raffle, v) for k, v in NEW.items()} # new = [x.split() for x in schedule.splitlines()] # index = [new[0].index(x) for x in RAFFLE if x in new[0]] # 索引映射:代码0, 价格1, 数量2 # new = map(lambda x: [x[y] for y in index], new[1:]) for new in ret: symbol, price = [new[y] for y in RAFFLE if y in new.keys()] if symbol[0] == '3' and skip: print("跳过创业板新股: {}".format(symbol)) continue op.SendMessageW(self._raffle_parts['新股代码'], MSG['WM_SETTEXT'], 0, symbol) time.sleep(0.3) op.SendMessageW(self._raffle_parts['申购价格'], MSG['WM_SETTEXT'], 0, price) time.sleep(0.3) op.SendMessageW(self._raffle_parts['可申购数量'], MSG['WM_GETTEXT'], 32, self.buff) if not int(self.buff.value): print('跳过零数量新股:{}'.format(symbol)) continue op.SendMessageW(self._raffle_parts['申购数量'], MSG['WM_SETTEXT'], 0, self.buff.value) time.sleep(0.3) op.PostMessageW(self._raffle, MSG['WM_COMMAND'], NEW['申购'], 0) # op.SendMessageW(self._main, MSG['WM_COMMAND'], NODE['双向委托'], 0) # 切换到交易操作台 return [new for new in self.cancelable if '配售申购' in new['操作']] if __name__ == '__main__': trader = Puppet() # trader = Puppet(title='广发证券核新网上交易系统7.60') if trader.account: print(trader.account) # 帐号 print(trader.new) # 查当天新股名单 # trader.raffle() # 打新,skip=True, 跳过创业板不打。 # print(trader.balance) # 可用余额 print(trader.position) # 实时持仓 # print(trader.deals) # 当天成交 # print(trader.cancelable) # 可撤委托 print(trader.market_value) print(trader.entrustment) # 当日委托(可撤委托,已成委托,已撤销委托) # print(trader.bingo) # 注意只兼容部分券商! # trader.cancel_all() # trader.cancel_buy() # trader.cancel_sell() # limit = '510160', '0.557', '1000' # trader.buy(*limit) # trader.cancel_order('000001', 'cancel') # trader.cancel_order(stcode, 'cancel_buy') stcode = '150153' limit = stcode, '0.644', '5400' trader.buy2(*limit) limit = stcode, '0.678', '1700' trader.sell2(*limit) limit = stcode, '0.659', '1600' # trader.sell2(*limit)
36.98481
107
0.551852
eb220d9ee93f34921d37f851cb91dad10b4b4707
1,658
py
Python
official/cv/c3d/src/lr_schedule.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/c3d/src/lr_schedule.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/c3d/src/lr_schedule.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np def linear_warmup_learning_rate(lr_max, epoch_step, global_step=0, lr_init=1e-8, warmup_epochs=0, total_epochs=1, steps_per_epoch=1): """Set learning rate.""" lr_each_step = [] total_steps = steps_per_epoch * total_epochs warmup_steps = steps_per_epoch * warmup_epochs if warmup_steps != 0: inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps) else: inc_each_step = 0 lr_value = lr_max for i in range(total_steps): if i <= warmup_steps: lr_value = float(lr_init) + inc_each_step * float(i) else: if i // steps_per_epoch in epoch_step and i % steps_per_epoch == 0: lr_value *= 0.1 if lr_value < 0.0: lr_value = 0.0 lr_each_step.append(lr_value) lr_each_step = np.array(lr_each_step).astype(np.float32) learning_rate = lr_each_step[global_step:] return learning_rate
37.681818
84
0.646562
de4246269a934b5715df066dd7198a69067008cf
2,225
py
Python
Test.py
software-engineering-hsfhh/Asteroids_Team_All-Mann
cfc28e81322ce7b5c1b1b111a447714bb3f586d8
[ "MIT" ]
1
2020-10-22T14:57:44.000Z
2020-10-22T14:57:44.000Z
Test.py
software-engineering-hsfhh/Asteroids_Team_All-Mann
cfc28e81322ce7b5c1b1b111a447714bb3f586d8
[ "MIT" ]
26
2020-10-17T09:05:53.000Z
2020-11-12T17:57:19.000Z
Test.py
software-engineering-hsfhh/Asteroids_Team_All-Mann
cfc28e81322ce7b5c1b1b111a447714bb3f586d8
[ "MIT" ]
null
null
null
""" This program shows how to: * Display a sequence of screens in your game. The "arcade.View" class makes it easy to separate the code for each screen into its own class. * This example shows the absolute basics of using "arcade.View". See the "different_screens_example.py" for how to handle screen-specific data. Make a separate class for each view (screen) in your game. The class will inherit from arcade.View. The structure will look like an arcade.Window as each View will need to have its own draw, update and window event methods. To switch a View, simply create a View with `view = MyView()` and then use the "self.window.set_view(view)" method. If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.view_screens_minimal """ import arcade WIDTH = 1600 HEIGHT = 900 class GameView(arcade.View): """ Manage the 'game' view for our program. """ def __init__(self): super().__init__() # Create variables here def setup(self): """ This should set up your game and get it ready to play """ # Replace 'pass' with the code to set up your game pass def on_show(self): """ Called when switching to this view""" arcade.set_background_color(arcade.color.BLACK) def on_draw(self): """ Draw everything for the game. """ arcade.start_render() arcade.draw_text("Achim Allmann ist auf einer ewig währenden Reise durchs Weltall auf\n" "der Suche nach dem Sinn des Lebens als plötzlich eine bösartige\n" "Gruppe Asteroiden auftaucht!\n\n\nDrücke die Leertaste, um fortzufahren", WIDTH/2, HEIGHT/2, arcade.color.WHITE, font_size=25, anchor_x="center") def on_key_press(self, key, _modifiers): """Drücke Leertaste um fortzufahren""" if key == arcade.key.SPACE: self.game_over = True print ("Game Over") def main(): """ Startup """ window = arcade.Window(1600, 900, "Asteroids", fullscreen=False) Game_View = GameView() window.show_view(Game_View) arcade.run() if __name__ == "__main__": main()
32.246377
118
0.660674
a037fcfc8dd8f8addb4268d02c2c36c9fcd33ad9
58
py
Python
___Python/Daniel/2018-06-25-VHS-Bielefeld-Python/p09_isbn/m02_init_example.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Daniel/2018-06-25-VHS-Bielefeld-Python/p09_isbn/m02_init_example.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Daniel/2018-06-25-VHS-Bielefeld-Python/p09_isbn/m02_init_example.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
from p10_requests import * print(FOO) print(math.pi)
11.6
27
0.706897
a0946cf0268b1dae5b2e48f45e274f9d3252cf5e
881
py
Python
core/embeds.py
Pug234/BytesBump
d5ff3130bffae92e1c5c671db4ed8904c403e9dc
[ "MIT" ]
11
2020-11-14T17:28:50.000Z
2021-05-19T18:21:07.000Z
core/embeds.py
AnimeDyno/BytesBump
a0cf0bfc4c13592c7b10ad46faa46a2a98dc1443
[ "MIT" ]
3
2021-01-22T15:48:41.000Z
2021-06-22T17:16:50.000Z
core/embeds.py
zImPinguin/Bump-Bot
3f449a4e5581a35a5cff998e94a13ae33dbe2b04
[ "MIT" ]
13
2020-11-18T05:20:31.000Z
2021-06-19T16:31:30.000Z
import random from discord import Embed, Color class Embeds: def __init__(self, message): self.message = message def success(self, **kwargs): embed = Embed( description=self.message, color=Color.green() ) for i in kwargs: embed.add_field(name=i.replace("_", " "), value=kwargs[i]) return embed def error(self, **kwargs): embed = Embed( description=self.message, color=Color.red() ) for i in kwargs: embed.add_field(name=i.replace("_", " "), value=kwargs[i]) return embed def warn(self, **kwargs): embed = Embed( description=self.message, color=Color.orange() ) for i in kwargs: embed.add_field(name=i.replace("_", " "), value=kwargs[i]) return embed
26.69697
70
0.53462
3e77cfff7cdcfa192004292baf261d166602206d
423
py
Python
webapp/data_viewer/streamlit/dataViewer.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
webapp/data_viewer/streamlit/dataViewer.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
webapp/data_viewer/streamlit/dataViewer.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import streamlit as st import pandas as pd from pydataset import data df_data = data().sort_values('dataset_id').reset_index(drop=True) st.dataframe(df_data) # choices options = st.selectbox( 'select a dataset do you like best?', df_data['dataset_id']) dataset = data(options) if isinstance(dataset, (pd.core.frame.DataFrame, pd.core.series.Series)): st.dataframe(dataset) st.line_chart(dataset)
23.5
65
0.728132
f2f1ba4eeb291db85d118c86c2e8bf2638aa983a
1,714
py
Python
mod/units/eat_handler.py
HeraldStudio/wechat
b023b7460a6b4284ea782333e13f24d169ddaff4
[ "MIT" ]
1
2015-06-28T15:26:52.000Z
2015-06-28T15:26:52.000Z
mod/units/eat_handler.py
HeraldStudio/wechat
b023b7460a6b4284ea782333e13f24d169ddaff4
[ "MIT" ]
null
null
null
mod/units/eat_handler.py
HeraldStudio/wechat
b023b7460a6b4284ea782333e13f24d169ddaff4
[ "MIT" ]
6
2015-03-20T16:36:22.000Z
2021-08-28T07:58:18.000Z
# -*- coding: utf-8 -*- # @Date : 2015-05-28 import tornado.web from ..models.eat import Eat from config import eat_token import datetime,time from sqlalchemy.orm.exc import NoResultFound class EatHandler(tornado.web.RequestHandler): @property def db(self): return self.application.db def get(self): self.render('eat.html') def post(self): status = self.get_argument('status',default = None) token = self.get_argument('token',default = None) if not status or not token: self.write('请填写完整信息哦') self.finish() else: if not token==eat_token: self.write('token不正确') self.finish() else: day = time.strftime('%Y-%m-%d',time.localtime(time.time())) today = time.strftime('%Y-%m-%d-%H',time.localtime(time.time())) try: item = self.db.query(Eat).filter(Eat.day == day).one() item.status = status item.time = today except NoResultFound: eat = Eat( day = day, time = today, status = status) self.db.add(eat) try: self.db.commit() self.write('success') self.finish() except Exception,e: print str(e) self.db.rollback() self.write('发布失败T T') self.finish() self.db.close()
32.961538
81
0.446908
4b8c97d92940bc9748b145e44bfea9c2dbd8eba9
757
py
Python
solution/data_structure/5397/main.py
gkgg123/baekjoon
4ff8a1238a5809e4958258b5f2eeab7b22105ce9
[ "MIT" ]
2,236
2019-08-05T00:36:59.000Z
2022-03-31T16:03:53.000Z
solution/data_structure/5397/main.py
juy4556/baekjoon
bc0b0a0ebaa45a5bbd32751f84c458a9cfdd9f92
[ "MIT" ]
225
2020-12-17T10:20:45.000Z
2022-01-05T17:44:16.000Z
solution/data_structure/5397/main.py
juy4556/baekjoon
bc0b0a0ebaa45a5bbd32751f84c458a9cfdd9f92
[ "MIT" ]
602
2019-08-05T00:46:25.000Z
2022-03-31T13:38:23.000Z
# // Authored by : chj3748 # // Co-authored by : - # // Link : http://boj.kr/471d69f455a544769c6c2fa7199442d1 import sys from collections import deque def input(): return sys.stdin.readline().rstrip() T = int(input()) for test in range(T): answer_l = deque() answer_r = deque() for string in input(): if string == '<': if answer_l: temp = answer_l.pop() answer_r.appendleft(temp) elif string == '>': if answer_r: temp = answer_r.popleft() answer_l.append(temp) elif string == '-': if answer_l: answer_l.pop() else: answer_l.append(string) print(''.join(answer_l + answer_r))
26.103448
58
0.532365
4b12fcb105f6d3f2213110a67fff9dda133fcce5
556
py
Python
Pythonjunior2020/Woche3/Aufgabe_3_3_2.py
Zeyecx/HPI-Potsdam
ed45ca471cee204dde74dd2c3efae3877ee71036
[ "MIT" ]
null
null
null
Pythonjunior2020/Woche3/Aufgabe_3_3_2.py
Zeyecx/HPI-Potsdam
ed45ca471cee204dde74dd2c3efae3877ee71036
[ "MIT" ]
null
null
null
Pythonjunior2020/Woche3/Aufgabe_3_3_2.py
Zeyecx/HPI-Potsdam
ed45ca471cee204dde74dd2c3efae3877ee71036
[ "MIT" ]
null
null
null
# 3.3.2, Woche 3, Block 3, Aufgabe 2 # Import from daten import satz from daten import woerterbuch # Funktionen def uebersetze(s): # Reset x x = [] w = woerterbuch # Satz in Array umwandeln s = s.split(" ") # Gehe den Satz durch for i in range(len(s)): # Woertbuch[String[Iteration]] x.append(w[s[i]]) # String combine for i in range(len(x)): if i == 0 : y = x[i] else: y += " "+x[i] # Return des Strings return y+"." # Main print(uebersetze(satz))
17.935484
38
0.534173
8a5734442f6d89cf63f8f9d805b8fa2c9d2fe877
12,706
py
Python
Hackathons_19_20/Club Mahindra DataOlympics/Data Olympics.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
Hackathons_19_20/Club Mahindra DataOlympics/Data Olympics.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
Hackathons_19_20/Club Mahindra DataOlympics/Data Olympics.py
aviggithub/Hackathons_20
a1bbc63cff3bd71982017749a0cc162d684e452b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri May 3 09:10:46 2019 @author: avi """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression from lightgbm import LGBMClassifier,LGBMRegressor from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC train_data=pd.read_csv("D:\\Python project\\Club Mahindra DataOlympics\\train.csv") test_data=pd.read_csv("D:\\Python project\\Club Mahindra DataOlympics\\test.csv") train_data_c=pd.read_csv("D:\\Python project\\Club Mahindra DataOlympics\\train.csv") test_data_c=pd.read_csv("D:\\Python project\\Club Mahindra DataOlympics\\test.csv") #print top rows train_data.head(5) #find correlation train_data.corr() #summary of data train_data.describe() #count null values per variable train_data.isnull().sum() #total null values train_data.isnull().sum().sum() #fill the null data function def fillnull_data(df): return df.fillna(df.mean()) #fill null value using mean train_data.state_code_residence=fillnull_data(train_data.state_code_residence) train_data.season_holidayed_code=fillnull_data(train_data.season_holidayed_code) #find value counts of feature train_data.channel_code.value_counts() #plot sns.countplot(train_data.channel_code) #boxplot sns.barplot(train_data.state_code_residence) #find data type of all features train_data.dtypes #find diff data type column names and group them str_col_datatype=train_data.columns.astype("object") #replace / in booking date train_data.booking_date=train_data.booking_date.str.replace("/","") train_data.booking_date.head() #function for replace / in dateformate def replace_bacs(df): return df.str.replace("/","") train_data.checkin_date=replace_bacs(train_data.checkin_date) train_data.checkout_date=replace_bacs(train_data.checkout_date) train_data.head(5) #from string get first 4 digit def get_day(txt): #txt="1234566" return txt[:2] def get_month(txt): #txt="1234566" return txt[2:4] def get_year(txt): #txt="1234566" return txt[4:] #use apply function for process each element want #train_data.booking_date=train_data_c.booking_date.apply(get_daymonth) #train_data.checkin_date=train_data_c.checkin_date.apply(get_daymonth) #train_data.checkout_date=train_data_c.checkout_date.apply(get_daymonth) train_data["checkin_date_day"]=train_data.checkin_date.apply(get_day) train_data["checkin_date_month"]=train_data.checkin_date.apply(get_month) train_data["checkin_date_year"]=train_data.checkin_date.apply(get_year) train_data["checkin_date_day"]=train_data["checkin_date_day"].astype("int64") train_data["checkin_date_month"]=train_data["checkin_date_month"].astype("int64") train_data["checkin_date_year"]=train_data["checkin_date_year"].astype("int64") train_data["checkout_date_day"]=train_data.checkout_date.apply(get_day) train_data["checkout_date_month"]=train_data.checkout_date.apply(get_month) train_data["checkout_date_year"]=train_data.checkout_date.apply(get_year) train_data["checkout_date_day"]=train_data["checkout_date_day"].astype("int64") train_data["checkout_date_month"]=train_data["checkout_date_month"].astype("int64") train_data["checkout_date_year"]=train_data["checkout_date_year"].astype("int64") train_data["booking_date_day"]=train_data.booking_date.apply(get_day) train_data["booking_date_month"]=train_data.booking_date.apply(get_month) train_data["booking_date_year"]=train_data.booking_date.apply(get_year) train_data["booking_date_day"]=train_data["booking_date_day"].astype("int64") train_data["booking_date_month"]=train_data["booking_date_month"].astype("int64") train_data["booking_date_year"]=train_data["booking_date_year"].astype("int64") train_data["checkout_date_day"]=train_data.checkout_date.apply(get_day) train_data["checkout_date_month"]=train_data.checkout_date.apply(get_month) train_data["checkout_date_year"]=train_data.checkout_date.apply(get_year) train_data["checkout_date_day"]=train_data["checkin_date_day"].astype("int64") train_data["checkout_date_month"]=train_data["checkin_date_month"].astype("int64") train_data["checkout_date_year"]=train_data["checkin_date_year"].astype("int64") train_data["chkin_chkout_day"]=train_data["checkout_date_day"]-train_data["checkin_date_day"] #object to int train_data["booking_date_int"]=train_data["booking_date"].astype("int64") train_data["checkin_date_int"]=train_data["checkin_date"].astype("int64") train_data["checkout_date_int"]=train_data["checkout_date"].astype("int64") #object category to code def cat_to_codes(df): df=df.astype("category").cat.codes return df.astype("int64") train_data.resort_id.value_counts() train_data["memberid_code"]=train_data.memberid.astype("category").cat.codes train_data["member_age_buckets_code"]=cat_to_codes(train_data["member_age_buckets"]) train_data["cluster_code _code"]=cat_to_codes(train_data.cluster_code ) train_data["reservationstatusid_code_code"]=cat_to_codes(train_data.reservationstatusid_code) train_data["resort_id _code"]=cat_to_codes(train_data.resort_id ) #train_data["booking_date"]=cat_to_codes(train_data.booking_date) #train_data["checkout_date"]=cat_to_codes(train_data.checkout_date) train_data["booking_date_code"]=train_data_c.booking_date train_data["checkin_date_code"]=train_data_c.checkin_date train_data["checkout_date_code"]=train_data_c.checkout_date from datetime import datetime from dateutil.relativedelta import relativedelta from datetime import date #convert object to Date time format train_data["booking_date_code"]=pd.to_datetime(train_data["booking_date_code"], format='%d/%m/%y') train_data["checkin_date_code"]=pd.to_datetime(train_data["checkin_date_code"], format='%d/%m/%y') train_data["checkout_date_code"]=pd.to_datetime(train_data["checkout_date_code"],format='%d/%m/%y') train_data["checkout_date_code"].head() #find the days stay in there(diff betn checkin and checkout) train_data['diff_days'] = train_data['checkout_date_code'] - train_data['checkin_date_code'] train_data['diff_days']=train_data['diff_days']/np.timedelta64(1,'D') train_data['diff_book_check'] = train_data['checkin_date_code'] - train_data['booking_date_code'] train_data['diff_book_check']=train_data['diff_book_check']/np.timedelta64(1,'D') train_data['diff_book_chkout'] = train_data['checkout_date_code'] - train_data['booking_date_code'] train_data['diff_book_chkout']=train_data['diff_book_chkout']/np.timedelta64(1,'D') train_data['diff_btn_nights_day'] = train_data['diff_days'] - train_data['roomnights'] train_data['roomnights'].max() train_data.columns ##############################test data test_data.isnull().sum() test_data.state_code_residence=fillnull_data(test_data.state_code_residence) test_data.season_holidayed_code=fillnull_data(test_data.season_holidayed_code) test_data.booking_date=replace_bacs(test_data.booking_date) test_data.checkin_date=replace_bacs(test_data.checkin_date) test_data.checkout_date=replace_bacs(test_data.checkout_date) test_data["checkin_date_day"]=test_data.checkin_date.apply(get_day) test_data["checkin_date_month"]=test_data.checkin_date.apply(get_month) test_data["checkin_date_year"]=test_data.checkin_date.apply(get_year) test_data["checkin_date_day"]=test_data["checkin_date_day"].astype("int64") test_data["checkin_date_month"]=test_data["checkin_date_month"].astype("int64") test_data["checkin_date_year"]=test_data["checkin_date_year"].astype("int64") test_data["checkout_date_day"]=test_data.checkout_date.apply(get_day) train_data["checkout_date_month"]=train_data.checkout_date.apply(get_month) train_data["checkout_date_year"]=train_data.checkout_date.apply(get_year) test_data["checkout_date_day"]=test_data["checkout_date_day"].astype("int64") train_data["checkout_date_month"]=train_data["checkout_date_month"].astype("int64") train_data["checkout_date_year"]=train_data["checkout_date_year"].astype("int64") test_data["booking_date_day"]=test_data.booking_date.apply(get_day) test_data["booking_date_month"]=test_data.booking_date.apply(get_month) test_data["booking_date_year"]=test_data.booking_date.apply(get_year) test_data["booking_date_day"]=test_data["booking_date_day"].astype("int64") test_data["booking_date_month"]=test_data["booking_date_month"].astype("int64") test_data["booking_date_year"]=test_data["booking_date_year"].astype("int64") test_data["chkin_chkout_day"]=test_data["checkout_date_day"]-test_data["checkin_date_day"] test_data["memberid_code"]=test_data.memberid.astype("category").cat.codes test_data["member_age_buckets_code"]=cat_to_codes(test_data["member_age_buckets"]) test_data["cluster_code _code"]=cat_to_codes(test_data.cluster_code ) test_data["reservationstatusid_code_code"]=cat_to_codes(test_data.reservationstatusid_code) test_data["resort_id _code"]=cat_to_codes(test_data.resort_id ) test_data["booking_date_code"]=pd.to_datetime(test_data_c["booking_date"], format='%d/%m/%y') test_data["checkin_date_code"]=pd.to_datetime(test_data_c["checkin_date"], format='%d/%m/%y') test_data["checkout_date_code"]=pd.to_datetime(test_data_c["checkout_date"],format='%d/%m/%y') test_data['diff_days'] =(test_data['checkout_date_code']) - (test_data['checkin_date_code']) test_data['diff_days']=test_data['diff_days']/np.timedelta64(1,'D') test_data['diff_book_check'] = test_data['checkin_date_code'] - test_data['booking_date_code'] test_data['diff_book_check']=test_data['diff_book_check']/np.timedelta64(1,'D') test_data['diff_book_chkout'] = test_data['checkout_date_code'] - test_data['booking_date_code'] test_data['diff_book_chkout']= test_data['diff_book_chkout']/np.timedelta64(1,'D') test_data['diff_btn_nights_day'] = test_data['diff_days'] - test_data['roomnights'] #totatl persons train_data["total_persons"]=train_data.numberofadults + train_data.numberofchildren test_data["total_persons"]=test_data.numberofadults + test_data.numberofchildren test_data.dtypes train_data.dtypes all_inputs=["diff_days","checkin_date_day","checkin_date_month","checkin_date_year","resort_id _code","reservationstatusid_code_code","cluster_code _code","member_age_buckets_code","memberid_code","booking_type_code","total_pax","state_code_resort","state_code_residence","season_holidayed_code","roomnights","room_type_booked_code","resort_type_code","resort_region_code","persontravellingid","numberofchildren","numberofadults","main_product_code","channel_code"] #all_inputs=["diff_days","checkin_date_day","checkin_date_month","checkin_date_year","resort_id _code","reservationstatusid_code_code","cluster_code _code","member_age_buckets_code","memberid_code","booking_type_code","total_pax","state_code_resort","state_code_residence","season_holidayed_code","roomnights","room_type_booked_code","resort_type_code","resort_region_code","persontravellingid","numberofchildren","numberofadults","main_product_code","channel_code"] op_var=["amount_spent_per_room_night_scaled"] new_col=["diff_days","diff_book_check","diff_book_chkout","total_persons","numberofadults","numberofchildren","roomnights","booking_type_code","total_pax","state_code_residence","resort_type_code","resort_id _code","reservationstatusid_code_code"] X_train, X_test, y_train, y_test = train_test_split( train_data[all_inputs],train_data["amount_spent_per_room_night_scaled"], test_size=0.2, random_state=42) #clf=LinearRegression() #97.99 clf=LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, importance_type='split', learning_rate=0.111, max_depth=-1, min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, n_estimators=225, n_jobs=-1, num_leaves=31, objective=None, random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0) #clf=LGBMClassifier() #clf=LinearSVC() model=clf.fit(X_train,y_train) pred=model.predict(X_test) train_data_c.dtypes from sklearn.metrics import mean_squared_error from math import sqrt rms = sqrt(mean_squared_error(y_test, pred)) print(rms) model2=clf.fit(train_data[all_inputs],train_data[op_var]) pred_v=model2.predict(test_data[all_inputs]) test_data["amount_spent_per_room_night_scaled"]=pred_v op_file=test_data[["reservation_id","amount_spent_per_room_night_scaled"]] #op_file.head(2) op_file.to_csv("D:\\Python project\\Club Mahindra DataOlympics\\output.csv",index=False,header=True)
45.870036
467
0.79372
8a67d40fcf341e06108d4cbf7ff08865af1229bc
133
py
Python
Shivani/circle.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
Shivani/circle.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
Shivani/circle.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
r=int(input("enter radius\n")) area=3.14*r*r print(area) r=int(input("enter radius\n")) circumference=2*3.14*r print(circumference)
16.625
30
0.721805
0a5be50a580709abbd3da29e2935ca49e6acb24a
4,932
py
Python
src/onegov/directory/collections/directory_entry.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/directory/collections/directory_entry.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/directory/collections/directory_entry.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from itertools import groupby from onegov.core.collection import GenericCollection, Pagination from onegov.core.utils import toggle from onegov.directory.models import DirectoryEntry from onegov.form import as_internal_id from sqlalchemy import and_, desc from sqlalchemy.orm import object_session from sqlalchemy.dialects.postgresql import array class DirectoryEntryCollection(GenericCollection, Pagination): """ Provides a view on a directory's entries. The directory itself might be a natural place for lots of these methods to reside, but ultimately we want to avoid mixing the concerns of the directory model and this view-supporting collection. """ def __init__(self, directory, type='*', keywords=None, page=0, searchwidget=None): super().__init__(object_session(directory)) self.type = type self.directory = directory self.keywords = keywords or {} self.page = page self.searchwidget = searchwidget def __eq__(self, other): return self.type == other.type and self.page == other.page def subset(self): return self.query() @property def search(self): return self.searchwidget and self.searchwidget.name @property def search_query(self): return self.searchwidget and self.searchwidget.search_query @property def page_index(self): return self.page def page_by_index(self, index): return self.__class__( self.directory, self.type, self.keywords, page=index ) def by_name(self, name): return self.query().filter_by(name=name).first() def query(self): cls = self.model_class query = super().query().filter_by(directory_id=self.directory.id) keywords = self.valid_keywords(self.keywords) def keyword_group(value): return value.split(':')[0] values = [ ':'.join((keyword, value)) for keyword in keywords for value in keywords[keyword] ] values.sort(key=keyword_group) query = query.filter(and_( cls._keywords.has_any(array(group_values)) for group, group_values in groupby(values, key=keyword_group) )) if self.directory.configuration.direction == 'desc': query = query.order_by(desc(cls.order)) else: query = query.order_by(cls.order) if self.searchwidget: query = self.searchwidget.adapt(query) return query def valid_keywords(self, parameters): return { as_internal_id(k): v for k, v in parameters.items() if k in { as_internal_id(kw) for kw in self.directory.configuration.keywords } } @property def directory_name(self): return self.directory.name @property def model_class(self): return DirectoryEntry.get_polymorphic_class(self.type, DirectoryEntry) def available_filters(self, sort_choices=False, sortfunc=None): """ Retrieve the filters with their choices. Return by default in the order of how the are defined in the structrue. To filter alphabetically, set sort_choices=True. """ keywords = tuple( as_internal_id(k) for k in self.directory.configuration.keywords or tuple() ) fields = {f.id: f for f in self.directory.fields if f.id in keywords} def _sort(values): if not sort_choices: return values if not sortfunc: return sorted(values) return sorted(values, key=sortfunc) return ( (k, fields[k].label, _sort([c.label for c in fields[k].choices])) for k in keywords if hasattr(fields[k], 'choices') ) def for_filter(self, singular=False, **keywords): if not self.directory.configuration.keywords: return self parameters = self.keywords.copy() for keyword, value in self.valid_keywords(keywords).items(): collection = set(parameters.get(keyword, [])) if singular: collection = set() if value in collection else {value} else: collection = toggle(collection, value) if collection: parameters[keyword] = list(collection) elif keyword in parameters: del parameters[keyword] return self.__class__( directory=self.directory, type=self.type, searchwidget=self.searchwidget, keywords=parameters) def without_keywords(self): return self.__class__( directory=self.directory, type=self.type, page=self.page, searchwidget=self.searchwidget )
30.63354
78
0.615369
6a7aabfc4cb21c04ec36ae3668c14375b3193b77
7,903
py
Python
hashing/scripts/old/latency_figure5.py
ShuhaoZhangTony/WalnutDB
9ccc10b23351aa2e6793e0f5c7bd3dd511d7b050
[ "MIT" ]
null
null
null
hashing/scripts/old/latency_figure5.py
ShuhaoZhangTony/WalnutDB
9ccc10b23351aa2e6793e0f5c7bd3dd511d7b050
[ "MIT" ]
null
null
null
hashing/scripts/old/latency_figure5.py
ShuhaoZhangTony/WalnutDB
9ccc10b23351aa2e6793e0f5c7bd3dd511d7b050
[ "MIT" ]
null
null
null
import itertools as it import os import matplotlib import matplotlib.pyplot as plt import numpy as np import pylab from matplotlib.font_manager import FontProperties from matplotlib.ticker import LogLocator OPT_FONT_NAME = 'Helvetica' TICK_FONT_SIZE = 20 LABEL_FONT_SIZE = 22 LEGEND_FONT_SIZE = 24 LABEL_FP = FontProperties(style='normal', size=LABEL_FONT_SIZE) LEGEND_FP = FontProperties(style='normal', size=LEGEND_FONT_SIZE) TICK_FP = FontProperties(style='normal', size=TICK_FONT_SIZE) MARKERS = (['o', 's', 'v', "^", "h", "v", ">", "x", "d", "<", "|", "", "+", "_"]) # you may want to change the color map for different figures COLOR_MAP = ('#F15854', '#5DA5DA', '#60BD68', '#B276B2', '#DECF3F', '#F17CB0', '#B2912F', '#FAA43A', '#AFAFAF') # you may want to change the patterns for different figures PATTERNS = (["|", "\\", "/", "+", "-", ".", "*", "x", "o", "O", "////", ".", "|||", "o", "---", "+", "\\\\", "*"]) LABEL_WEIGHT = 'bold' LINE_COLORS = COLOR_MAP LINE_WIDTH = 3.0 MARKER_SIZE = 13.0 MARKER_FREQUENCY = 1000 matplotlib.rcParams['ps.useafm'] = True matplotlib.rcParams['pdf.use14corefonts'] = True matplotlib.rcParams['xtick.labelsize'] = TICK_FONT_SIZE matplotlib.rcParams['ytick.labelsize'] = TICK_FONT_SIZE matplotlib.rcParams['font.family'] = OPT_FONT_NAME FIGURE_FOLDER = '/data1/xtra/results/figure' # there are some embedding problems if directly exporting the pdf figure using matplotlib. # so we generate the eps format first and convert it to pdf. def ConvertEpsToPdf(dir_filename): os.system("epstopdf --outfile " + dir_filename + ".pdf " + dir_filename + ".eps") os.system("rm -rf " + dir_filename + ".eps") def DrawLegend(legend_labels, filename): fig = pylab.figure() ax1 = fig.add_subplot(111) FIGURE_LABEL = legend_labels LINE_WIDTH = 8.0 MARKER_SIZE = 12.0 LEGEND_FP = FontProperties(style='normal', size=26) figlegend = pylab.figure(figsize=(12, 0.5)) idx = 0 lines = [None] * (len(FIGURE_LABEL)) data = [1] x_values = [1] idx = 0 for group in xrange(len(FIGURE_LABEL)): lines[idx], = ax1.plot(x_values, data, color=LINE_COLORS[idx], linewidth=LINE_WIDTH, marker=MARKERS[idx], markersize=MARKER_SIZE, label=str(group)) idx = idx + 1 # LEGEND figlegend.legend(lines, FIGURE_LABEL, prop=LEGEND_FP, loc=1, ncol=len(FIGURE_LABEL), mode="expand", shadow=False, frameon=False, borderaxespad=0.0, handlelength=2) if not os.path.exists(FIGURE_FOLDER): os.makedirs(FIGURE_FOLDER) # no need to export eps in this case. figlegend.savefig(FIGURE_FOLDER + '/' + filename + '.pdf') # draw a bar chart def DrawFigure(x_values, y_values, legend_labels, x_label, y_label, y_min, y_max, filename, allow_legend): # you may change the figure size on your own. fig = plt.figure(figsize=(8, 3)) figure = fig.add_subplot(111) FIGURE_LABEL = legend_labels if not os.path.exists(FIGURE_FOLDER): os.makedirs(FIGURE_FOLDER) # values in the x_xis index = np.arange(len(x_values)) # the bar width. # you may need to tune it to get the best figure. width = 0.1 # draw the bars bars = [None] * (len(FIGURE_LABEL)) for i in range(len(y_values)): bars[i] = plt.bar(index + i * width + width / 2, y_values[i], width, hatch=PATTERNS[i], color=LINE_COLORS[i], label=FIGURE_LABEL[i]) # sometimes you may not want to draw legends. if allow_legend == True: plt.legend(bars, FIGURE_LABEL, prop=LEGEND_FP, ncol=4, loc='upper center', # mode='expand', shadow=False, bbox_to_anchor=(0.45, 1.6), columnspacing=0.1, handletextpad=0.2, # bbox_transform=ax.transAxes, # frameon=True, # columnspacing=5.5, # handlelength=2, ) # you may need to tune the xticks position to get the best figure. plt.xticks(index + 2.4 * width, x_values) plt.yscale('log') plt.grid(axis='y', color='gray') figure.yaxis.set_major_locator(LogLocator(base=10)) # figure.xaxis.set_major_locator(LinearLocator(5)) figure.get_xaxis().set_tick_params(direction='in', pad=10) figure.get_yaxis().set_tick_params(direction='in', pad=10) plt.xlabel(x_label, fontproperties=LABEL_FP) plt.ylabel(y_label, fontproperties=LABEL_FP) plt.savefig(FIGURE_FOLDER + "/" + filename + ".pdf", bbox_inches='tight') # example for reading csv file def ReadFile(): y = [] col1 = [] col2 = [] col3 = [] col4 = [] col5 = [] col6 = [] col7 = [] col8 = [] for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/PRJ_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col1.append(x) y.append(col1) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/NPJ_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col2.append(x) y.append(col2) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/MPASS_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col3.append(x) y.append(col3) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/MWAY_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col4.append(x) y.append(col4) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/SHJ_JM_NP_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col5.append(x) y.append(col5) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/SHJ_JBCR_NP_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col6.append(x) y.append(col6) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/PMJ_JM_NP_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col7.append(x) y.append(col7) for id in it.chain(range(20, 25)): file = '/data1/xtra/results/latency/PMJ_JBCR_NP_{}.txt'.format(id) f = open(file, "r") read = f.readlines() x = float(read.pop(int(len(read) * 0.99)).strip("\n")) # get last timestamp col8.append(x) y.append(col8) return y if __name__ == "__main__": # x_values = ['Unique', 'Zipf(0)', 'Zipf(0.2)', 'Zipf(0.4)', 'Zipf(0.8)', 'Zipf(1)'] x_values = [0, 0.2, 0.4, 0.8, 1] y_values = ReadFile() legend_labels = ['PRJ', 'NPJ', 'M-PASS', 'M-WAY', 'SHJ$^M$', 'SHJ$^B$', 'PMJ$^M$', 'PMJ$^B$'] DrawFigure(x_values, y_values, legend_labels, 'Key Skewness (zipf)', '$99^{th}$ latency (ms)', 0, 400, 'latency_figure5', False) # DrawLegend(legend_labels, 'factor_legend')
34.969027
114
0.580159
7cfc4a289194c5f16e035bb36148a8271cb1250d
4,856
py
Python
test/test_npu/test_network_ops/test_nllloss_backward.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_nllloss_backward.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_nllloss_backward.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020 Huawei Technologies Co., Ltd # Copyright (c) 2019, Facebook CORPORATION. # All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestNlllossbackward(TestCase): def cpu_op_exec_new(self, input1, target, reduction, ignore_index): if not ignore_index: ignore_index = -100 # 默认值 input1.requires_grad_(True) output = torch.nn.functional.nll_loss(input1, target, reduction=reduction, ignore_index=ignore_index) input_cpu = output.detach().numpy() output.backward(torch.ones_like(output)) res = input1.grad res = res.numpy() return input_cpu, res def npu_op_exec_new(self, input1, target, reduction, ignore_index): if not ignore_index: ignore_index = -100 # 默认值 target = target.to(torch.int32) target = target.to("npu") input1.requires_grad_(True) output = torch.nn.functional.nll_loss(input1, target, reduction=reduction, ignore_index=ignore_index) output.backward(torch.ones_like(output)) input_npu = output.to("cpu") input_npu = input_npu.detach().numpy() res = input1.grad.to("cpu") res = res.numpy() return input_npu, res def test_nllloss_shape_format_fp32(self, device): # 当前仅支持设置正数, 若np.sum(ignore_index == np_target) == 0,则ignore_index设置任意数值不影响 ignore_index = 1 for reduction in ['mean', 'none', 'sum']: shape_format = [ [[np.float32, 0, [256, 100]], [np.int32, 0, [256]], reduction, None], [[np.float32, 3, [256, 100]], [np.int32, 0, [256]], reduction, ignore_index], [[np.float32, 0, [4800, 3003]], [np.int32, 0, [4800]], reduction, ignore_index], [[np.float32, 3, [4800, 3003]], [np.int32, 0, [4800]], reduction, ignore_index], [[np.float32, 0, [4800, 3003]], [np.int32, 0, [4800]], reduction, None], ] for item in shape_format: np_target = np.random.randint(0, item[0][2][1], (item[1][2])).astype(np.long) target = torch.from_numpy(np_target) cpu_input1, npu_input1 = create_common_tensor(item[0], -100, 100) cpu_input, cpu_output = self.cpu_op_exec_new(cpu_input1, target, item[2], item[3]) npu_input, npu_output = self.npu_op_exec_new(npu_input1, target, item[2], item[3]) self.assertRtolEqual(cpu_input, npu_input) self.assertRtolEqual(cpu_output, npu_output) def test_nllloss_shape_format_fp16(self, device): # 当前仅支持设置正数, 若np.sum(ignore_index == np_target) == 0,则ignore_index设置任意数值不影响 ignore_index = 1 for reduction in ['mean', 'none', 'sum']: shape_format = [ [[np.float16, 0, [256, 100]], [np.int32, 0, [256]], reduction, ignore_index], [[np.float16, 3, [256, 100]], [np.int32, 0, [256]], reduction, ignore_index], [[np.float16, 0, [4800, 3003]], [np.int32, 0, [4800]], reduction, ignore_index], [[np.float16, 3, [4800, 3003]], [np.int32, 0, [4800]], reduction, ignore_index], [[np.float16, 0, [4800, 3003]], [np.int32, 0, [4800]], reduction, None], ] for item in shape_format: np_target = np.random.uniform(0, item[0][2][1], (item[1][2])).astype(np.long) target = torch.from_numpy(np_target) cpu_input1, npu_input1 = create_common_tensor(item[0], -100, 100) cpu_input1 = cpu_input1.to(torch.float32) cpu_input, cpu_output = self.cpu_op_exec_new(cpu_input1, target, item[2], item[3]) npu_input, npu_output = self.npu_op_exec_new(npu_input1, target, item[2], item[3]) cpu_input = cpu_input.astype(np.float16) cpu_output = cpu_output.astype(np.float16) self.assertRtolEqual(cpu_input, npu_input) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestNlllossbackward, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
50.061856
109
0.629736
861ea1651ae9d88e8a5ab6e9b805cc0603e2857a
30,548
py
Python
src/demo.py
bela127/Pruning_with_Saliency_Information
d0d67c88c863c49def3011862a9a26e94e6f5bf9
[ "MIT" ]
null
null
null
src/demo.py
bela127/Pruning_with_Saliency_Information
d0d67c88c863c49def3011862a9a26e94e6f5bf9
[ "MIT" ]
null
null
null
src/demo.py
bela127/Pruning_with_Saliency_Information
d0d67c88c863c49def3011862a9a26e94e6f5bf9
[ "MIT" ]
null
null
null
import tensorflow as tf import numpy as np from tensorflow import keras from matplotlib import pyplot as plt from matplotlib import colors import keras.backend as K sess = tf.InteractiveSession() mnist = keras.datasets.mnist#.fashion_mnist#.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # pixel werte auf 0 bis 1 skalieren train_images = train_images / 255.0 test_images = test_images / 255.0 # pixel werte auf -1 bis 1 skalieren train_images = train_images * 2 - 1 test_images = test_images * 2 - 1 # one hot encoding of labels def one_hot_encode(a, length): temp = np.zeros((a.shape[0], length)) temp[np.arange(a.shape[0]), a] = 1.0 return temp # one hot one cold encoding of labels def one_hot_one_cold_encode(a, length): temp = np.ones((a.shape[0], length)) temp = temp * -1 temp[np.arange(a.shape[0]), a] = 1.0 return temp labels_size = 10 #encoding für labels anwenden train_numeric_labels = train_labels test_numeric_labels = test_labels train_labels_one_hot = one_hot_encode(train_labels, labels_size) test_labels_one_hot = one_hot_encode(test_labels, labels_size) train_labels_one_hot_one_cold = one_hot_one_cold_encode(train_labels, labels_size) test_labels_one_hot_one_cold = one_hot_one_cold_encode(test_labels, labels_size) #dataset infos (ds_size,image_size,_) = train_images.shape ds_test_size = int(test_labels.shape[-1]) #augmentation rauschen = True #False ; True #loading of Modell model_to_load = "model_step_0_acc_0.8704000115394592" #"model_step_0_acc_0.932699978351593" # "None"; #learning infos learning_rate = 0.1 steps_number = 1551 batch_size = 200 #pruning pruning_loss = False #False ; True loss_change = False #False ; True pruning_faktor = 0.95 pruning_steps = 150 #info display_model = False #False ; True display_pruning = False #False ; True train_images = np.reshape(train_images, [-1, image_size*image_size]) test_images = np.reshape(test_images, [-1, image_size*image_size]) def augment_with_gaus(images, mean = 0.0, std = 0.2, max = 1, min = -1): images_augmented = [] for image in images: rausch = np.random.normal(mean,std,(image_size*image_size)) images_augmented.append(np.clip(image + rausch, min, max)) return np.asarray(images_augmented) def augment_with_salt_peper(images, percentage = 0.15, max = 1, min = -1): images_augmented = [] rausch_count = int(image_size*image_size*percentage) for image in images: rausch_index = np.random.randint(0,image_size*image_size,rausch_count) #salt image[rausch_index[:rausch_count//2]] = max #peper image[rausch_index[rausch_count//2:]] = min images_augmented.append(image) return np.asarray(images_augmented) if rauschen : print("augment data") # add rauschen, else minist is too easy # gaus um 0 std 0.2 train_images = augment_with_gaus(train_images) test_images = augment_with_gaus(test_images) #salt/peper 0.15 train_images = augment_with_salt_peper(train_images) test_images = augment_with_salt_peper(test_images) # create dataset objects from the arrays dx = tf.data.Dataset.from_tensor_slices(train_images) dy = tf.data.Dataset.from_tensor_slices(train_labels_one_hot_one_cold) #dy = tf.data.Dataset.from_tensor_slices(train_labels_one_hot) batches = tf.data.Dataset.zip((dx, dy)).shuffle(30000).batch(batch_size) test_labels = test_labels_one_hot_one_cold #test_labels = test_labels_one_hot # create a one-shot iterator iterator = batches.make_initializable_iterator() # extract an element next_element = iterator.get_next() weight_counts = [[],[],[]] sparcitys = [[],[],[]] accuracys = [] def main(): model = create_base_model(image_size*image_size,10) model_train = create_train_model(model) model_eval = create_evaluation_model(model) model_prun = create_pruning_model(model) saver = tf.train.Saver() loaded = load_or_init_model(saver) if not loaded: train_model(model_train,model_eval,learning_rate, steps_number) accuracy = evaluate_model(model_eval) if display_model: display_model_with_samples(model_prun, 1) important_weights = calculate_important_weights(model_prun,2000) if display_pruning: display_important_weights(important_weights) pruning_step = 0 while pruning_step < pruning_steps:#True: if not loaded: save_model(model,f"step_{pruning_step}_acc_{accuracy}",saver) pruning_step += 1 prune_model(model_prun,important_weights, pruning_faktor) train_model(model_train,model_eval,learning_rate, steps_number//2) accuracy = evaluate_model(model_eval) important_weights = calculate_important_weights(model_prun,1000) if display_pruning: display_important_weights(important_weights) loaded = False def create_base_model(inputs, outputs): x = tf.placeholder(tf.float32, shape=(None, inputs), name="input") tf.add_to_collection("layer_out",x) y, mask = connection(x) y, y_no_act, weights, mask = fc_layer(y, 36, activation=tf.nn.tanh) y, mask = connection(y) y, y_no_act, weights, mask = fc_layer(y, 25, activation=tf.nn.tanh) y, mask = connection(y) y, y_no_act, weights, mask = fc_layer(y, outputs, activation=tf.nn.tanh) y, mask = connection(y) return (x ,y) def create_train_model(model): x,y = model with tf.variable_scope("train"): ground_truth = tf.placeholder(tf.float32, (None, y.shape[-1]),name="ground_truth") tf.add_to_collection("train_labels", ground_truth) with tf.variable_scope("loss"): loss = tf.losses.mean_squared_error(ground_truth, y) tf.add_to_collection("train_losses", loss) # Training step learning_rate = tf.placeholder(tf.float32, None,name="learning_rate") train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) return x, ground_truth, loss, train_op, learning_rate def create_pruning_model(model): x,y = model with tf.variable_scope("prun"): ground_truth = tf.placeholder(tf.float32, (None, y.shape[-1]),name="ground_truth") tf.add_to_collection("prun_labels", ground_truth) with tf.variable_scope("loss"): if pruning_loss: minimum = tf.reduce_min(y) out = tf.subtract(y,minimum) masked_out = tf.multiply(ground_truth,out) loss = tf.reduce_max(masked_out) else: loss = tf.losses.mean_squared_error(ground_truth, y) tf.add_to_collection("prun_losses", loss) with tf.variable_scope("gradients"): layer_weights = tf.get_collection("layer_weights") connection_out = tf.get_collection("connection_out") for weights in layer_weights: if loss_change: weight_grad = tf.multiply(weights,tf.gradients(loss, weights)) else: weight_grad = tf.gradients(loss, weights) tf.add_to_collection("weight_grads", weight_grad) for layer_in in connection_out: if loss_change: input_grad = tf.multiply(layer_in,tf.gradients(loss, layer_in)) else: input_grad = tf.gradients(loss, layer_in) tf.add_to_collection("input_grads", input_grad) return x, ground_truth, loss def create_evaluation_model(model): x,y = model with tf.variable_scope("eval"): ground_truth = tf.placeholder(tf.float32, (None, y.shape[-1]),name="ground_truth") tf.add_to_collection("eval_labels", ground_truth) with tf.variable_scope("accuracy"): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(ground_truth, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.add_to_collection("evaluations", accuracy) return x, ground_truth, [accuracy] def load_or_init_model(saver): #saver.restore(sess, "./models/model.ckpt") try: saver.restore(sess, f"./models/{model_to_load}.ckpt") print("======-- model initiliced --======") return True except: print("========-- Warning! --========") print("= failed to load model =") print("= initiliced random =") print("========-- Warning! --========") sess.run(tf.global_variables_initializer()) return False def train_model(model_train, model_eval, learning_rate, steps_number): x_train, gt_train, loss, training_op, lr = model_train x_eval, gt_eval, [accuracy] = model_eval # Run the training sess.run(iterator.initializer) for step in range(steps_number): # get batch of images and labels (batch_x,batch_y) = sess.run(next_element) feed_dict_train = {x_train: batch_x, gt_train: batch_y, lr: learning_rate} # Run the training step training_op.run(feed_dict=feed_dict_train) # Print the accuracy progress on the batch every 100 steps if step%100 == 0: feed_dict_eval = {x_eval: batch_x, gt_eval: batch_y} train_accuracy = accuracy.eval(feed_dict=feed_dict_eval) print("Step %d, training batch accuracy %g %%"%(step, train_accuracy*100)) if (step + 1) % (ds_size // batch_size) == 0 and step > 0: sess.run(iterator.initializer) def evaluate_model(model_eval): x_eval, gt_eval, [accuracy] = model_eval feed_dict_eval = {x_eval: test_images, gt_eval: test_labels} test_accuracy = accuracy.eval(feed_dict=feed_dict_eval) print("Test accuracy: %g %%"%(test_accuracy*100)) accuracys.append(test_accuracy*100) return test_accuracy def save_model(model,name,saver): save_path = saver.save(sess, f"./models/model_{name}.ckpt") print("Model saved in path: %s" % save_path) def display_model_with_samples(model_prun, sampels): weight_grads = tf.get_collection("weight_grads") input_grads = tf.get_collection("input_grads") connection_out = tf.get_collection("connection_out") #Display some sample images for i in range(sampels): print(i, " from ", sampels) #choose random sample images test_image_nr = np.random.randint(0,ds_test_size) test_image_nr = 11 # select fixed image for testing image = np.reshape(test_images[test_image_nr],[1,-1]) if pruning_loss: label_mask = np.reshape(test_labels_one_hot[test_image_nr],[1,-1]) else: label_mask = np.reshape(test_labels_one_hot_one_cold[test_image_nr],[1,-1]) x, ground_truth, loss = model_prun feed_dict = {x: image, ground_truth: label_mask} # calculate the output (feature map) of each layer, Input of the next # -> perform a layer vice forward pass print("Layer Inputs:") outs = [] for outputs in connection_out: out = sess.run(outputs, feed_dict=feed_dict) outs.append(out) out = out[0] #display the output print(outputs.name) print(outputs.shape) plt.title(outputs.name) x = np.sqrt(len(out)) y = np.sqrt(len(out)) plt.xticks(np.arange(0, x)) plt.yticks(np.arange(0, y)) if x * y == len(out): out = np.reshape(out,[int(x),int(y)]) #print("Graident of inputs\n=", grad) plt.imshow(out, cmap='binary') plt.colorbar() plt.show() elif 2 * 5 == len(out): out = np.reshape(out,[2,5]) #print("Graident of inputs\n=", grad) plt.imshow(out, cmap='binary') plt.colorbar() plt.show() else: print("Error:",x,"*",y,"=",x * y," != ",len(grad)) print("Weight Importance:") #calculate impact of weights directly on final loss for weight_grad in weight_grads: weight_grad = weight_grad[0] grad = sess.run(weight_grad, feed_dict=feed_dict) print(weight_grad.name) print(weight_grad.shape) grad = np.abs(grad) x = np.sqrt(len(grad)) y = np.sqrt(len(grad)) if x * y == len(grad): show_images(grad,[int(x),int(y)],weight_grad.name) else: print("Error:",x,"*",y,"=",x * y," != ",len(grad)) print("Input Gradients:") #calculate impact of input directly on final loss for input_grad in input_grads: input_grad = input_grad[0] grad = sess.run(input_grad, feed_dict=feed_dict) grad = grad[0] print(input_grad.name) print(input_grad.shape) plt.title(input_grad.name) x = np.sqrt(len(grad)) y = np.sqrt(len(grad)) plt.xticks(np.arange(0, x)) plt.yticks(np.arange(0, y)) if x * y == len(grad): grad = np.reshape(grad,[int(x),int(y)]) plt.imshow(grad, cmap='binary') plt.colorbar() plt.show() elif 2 * 5 == len(grad): grad = np.reshape(grad,[2,5]) plt.imshow(grad, cmap='binary') plt.colorbar() plt.show() else: print("Error:",x,"*",y,"=",x * y," != ",len(out)) print("Input Importance:") #calculate abs impact of input directly on final loss for input_grad in input_grads: input_grad = input_grad[0] grad = sess.run(input_grad, feed_dict=feed_dict) grad = np.abs(grad[0]) print(input_grad.name) print(input_grad.shape) plt.title(input_grad.name) x = np.sqrt(len(grad)) y = np.sqrt(len(grad)) plt.xticks(np.arange(0, x)) plt.yticks(np.arange(0, y)) if x * y == len(grad): grad = np.reshape(grad,[int(x),int(y)]) plt.imshow(grad, cmap='binary') plt.colorbar() plt.show() elif 2 * 5 == len(grad): grad = np.reshape(grad,[2,5]) plt.imshow(grad, cmap='binary') plt.colorbar() plt.show() else: print("Error:",x,"*",y,"=",x * y," != ",len(out)) print("Scaled Importance:") #calculate input importance (scale abs grade 0 to 1) input_importance = [] for input_grad in input_grads: input_grad = input_grad[0] grad = sess.run(input_grad, feed_dict=feed_dict) grad = np.abs(grad[0]) minimum = np.min(grad) maximum = np.max(grad) if minimum < maximum: importance = grad - minimum importance = importance / (maximum - minimum) else: importance = grad - minimum input_importance.append(importance) print(input_grad.name) print(input_grad.shape) plt.title(input_grad.name) x = np.sqrt(len(importance)) y = np.sqrt(len(importance)) plt.xticks(np.arange(0, x)) plt.yticks(np.arange(0, y)) if x * y == len(importance): importance = np.reshape(importance,[int(x),int(y)]) plt.imshow(importance, cmap='binary') plt.colorbar() plt.show() elif 2 * 5 == len(importance): importance = np.reshape(importance,[2,5]) plt.imshow(importance, cmap='binary') plt.colorbar() plt.show() else: print("Error:",x,"*",y,"=",x * y," != ",len(grad)) print("Weight Importance:") #calculate weight importance from input importance for importance_1, importance_2 in zip(input_importance[:-1],input_importance[1:]): print(len(importance_1)) print(len(importance_2)) weight_importance = [] for importance in importance_2: singel_weight_importance = importance_1 * importance weight_importance.append(singel_weight_importance) weight_importance = np.asarray(weight_importance).T print(weight_importance.shape) x = np.sqrt(len(weight_importance)) y = np.sqrt(len(weight_importance)) if x * y == len(weight_importance): show_images(weight_importance,[int(x),int(y)],"weight_importance") else: print("Error:",x,"*",y,"=",x * y," != ",len(weight_importance)) def calculate_important_weights(model_prun,samples): input_grads = tf.get_collection("input_grads") cummulated_weight_importance=[] import time for i in range(samples):#ds_test_size): if display_pruning: print(i, " from ", samples) test_image_nr = np.random.randint(0,ds_test_size) image = np.reshape(test_images[test_image_nr],[1,-1]) if pruning_loss: label_mask = np.reshape(test_labels_one_hot[test_image_nr],[1,-1]) else: label_mask = np.reshape(test_labels_one_hot_one_cold[test_image_nr],[1,-1]) x, ground_truth, loss = model_prun feed_dict = {x: image, ground_truth: label_mask} input_importance = [] for input_grad in input_grads: input_grad = input_grad[0] grad = sess.run(input_grad, feed_dict=feed_dict) grad = np.abs(grad[0]) minimum = np.min(grad) maximum = np.max(grad) #Min Max norm of Gradients if minimum < maximum: importance = grad - minimum importance = importance / (maximum - minimum) else: importance = grad - minimum input_importance.append(importance) all_weight_importance=[] for importance_1, importance_2 in zip(input_importance[:-1],input_importance[1:]): weight_importance = [] for importance in importance_2: singel_weight_importance = importance_1 * importance weight_importance.append(singel_weight_importance) weight_importance = np.asarray(weight_importance).T all_weight_importance.append(weight_importance) if len(cummulated_weight_importance) == 0: cummulated_weight_importance = np.asarray(all_weight_importance) else: cummulated_weight_importance += np.asarray(all_weight_importance) ## Mask out pruned weights layer_masks = tf.get_collection("layer_masks") layer_masks_values=[] for layer_mask in layer_masks: layer_mask_value = layer_mask.eval() layer_masks_values.append(layer_mask_value) cummulated_weight_importance = cummulated_weight_importance * np.asarray(layer_masks_values) return cummulated_weight_importance def display_important_weights(cummulated_weight_importance): for weight_importance_sum in cummulated_weight_importance: x = np.sqrt(len(weight_importance_sum)) y = np.sqrt(len(weight_importance_sum)) if x * y == len(weight_importance_sum): show_images(weight_importance_sum,[int(x),int(y)]) else: print("Error:",x,"*",y,"=",x * y," != ",len(weight_importance_sum)) def prune_model(prune_model,important_weights,sparcification_factor): layer_masks = tf.get_collection("layer_masks") # Calculate pruning mask # Go through every layer for i,(important_weight,layer_mask) in enumerate(zip(important_weights,layer_masks)): layer_mask_value = layer_mask.eval() # Go through every neuron layer_mask_value = layer_mask_value.T important_weight = important_weight.T masks = [] for weight,weight_mask in zip(important_weight,layer_mask_value): maximum = np.max(weight) ##else here maybe empty list if sum(weight_mask) > 0 and maximum > 0: sparcity = len(weight_mask) / sum(weight_mask) #minimum = np.min(weight[np.nonzero(weight)]) #weight = weight - minimum median = np.median(weight[np.nonzero(weight)]) mask = weight > pow(sparcification_factor,sparcity) * median else: mask = weight_mask masks.append(mask) masks = np.asarray(masks).T if display_pruning: display_puning_masks(masks) print(sum(masks.flatten())," from ", len(masks.flatten())," sparsity: ", sum(masks.flatten())/len(masks.flatten())) weight_counts[i].append(sum(masks.flatten())) sparcitys[i].append(sum(masks.flatten())/len(masks.flatten())) layer_mask.load(masks, sess) def display_puning_masks(masks): x = np.sqrt(len(masks)) y = np.sqrt(len(masks)) if x * y == len(masks): show_images(masks,[int(x),int(y)]) else: print("Error:",x,"*",y,"=",x * y," != ",len(masks)) def connection(x, name = None): with tf.variable_scope(name, "connection",[x]): print(tf.get_variable_scope().name) print(x.shape) mask = tf.get_variable("mask",shape=x.shape[-1],initializer=tf.constant_initializer(1),trainable=False) tf.add_to_collection("connection_masks", mask) y = tf.multiply(x, mask) tf.add_to_collection("connection_out", y) print(y.shape) return y, mask def fc_layer(x, outputs, activation = tf.nn.sigmoid, name = None): with tf.variable_scope(name, "fc_layer", [x]): print(tf.get_variable_scope().name) print(x.shape) weights = tf.get_variable("weights", [x.shape[-1], outputs]) tf.add_to_collection("layer_weights", weights) print(weights.shape) biases = tf.get_variable("biases", [outputs]) tf.add_to_collection("layer_biases", biases) print(biases.shape) mask = tf.get_variable("mask",[x.shape[-1], outputs],initializer=tf.constant_initializer(1),trainable=False) tf.add_to_collection("layer_masks", mask) print(mask.shape) masked_weights = tf.multiply(weights, mask) y_no_activation = tf.nn.bias_add(tf.matmul(x, masked_weights), biases) tf.add_to_collection("layer_out_no_activation", y_no_activation) if activation == None: tf.add_to_collection("layer_out", y_no_activation) print(y_no_activation.shape) return y_no_activation, y_no_activation, weights, mask else: y = activation(y_no_activation) tf.add_to_collection("layer_out", y) print(y.shape) return y, y_no_activation, weights, mask def show_images(grad,image_shape,titel = 'Multiple images'): size, neurons = grad.shape Nc = 5 Nr = int(neurons/Nc) cmap = 'binary'#'coolwarm_r'#'hot'#'jet'#"cool" fig, axs = plt.subplots(Nr, Nc) fig.suptitle(titel) images = [] for i in range(Nr): for j in range(Nc): # Generate data with a range that varies from one plot to the next. neuron_grads = grad[:,i*j] data = np.reshape(neuron_grads,image_shape) images.append(axs[i, j].imshow(data, cmap=cmap)) axs[i, j].set_xticks(np.arange(0, image_shape[0])) axs[i, j].set_yticks(np.arange(0, image_shape[1])) axs[i, j].label_outer() # Find the min and max of all colors for use in setting the color scale. vmin = min(image.get_array().min() for image in images) vmax = max(image.get_array().max() for image in images) norm = colors.Normalize(vmin=vmin, vmax=vmax) for im in images: im.set_norm(norm) fig.colorbar(images[0], ax=axs, orientation='horizontal', fraction=.1) # Make images respond to changes in the norm of other images (e.g. via the # "edit axis, curves and images parameters" GUI on Qt), but be careful not to # recurse infinitely! def update(changed_image): for im in images: if (changed_image.get_cmap() != im.get_cmap() or changed_image.get_clim() != im.get_clim()): im.set_cmap(changed_image.get_cmap()) im.set_clim(changed_image.get_clim()) for im in images: im.callbacksSM.connect('changed', update) plt.show() if __name__ == "__main__": main() for i in range(3): values = weight_counts[i] fig, ax = plt.subplots() ax.plot(values, color="blue") ax.set(xlabel='Pruning Step', ylabel='Weight Count', title=f'Convergence of Weight Count for Layer {i}') ax.grid() #fig.savefig("test.png") plt.show() values = sparcitys fig, ax = plt.subplots() ax.plot(values, color="blue") ax.set(xlabel='Layer', ylabel='Sparcity', title='Convergence of Sparcity') ax.set_xticks([0,1,2]) ax.set_xticklabels(['zero', 'one','two']) ax.grid() #fig.savefig("test.png") plt.show() values = accuracys fig, ax = plt.subplots() ax.plot(values, color="blue") ax.set(xlabel='Pruning Step', ylabel='Accuracy', title='Behavior of Accuracy') ax.grid() #fig.savefig("test.png") plt.show()
41.114401
131
0.520296
863f9abefe15c05212e7522a515c3db972360a5a
18,386
py
Python
data-import/src/main.py
FoxComm/highlander
1aaf8f9e5353b94c34d574c2a92206a1c363b5be
[ "MIT" ]
10
2018-04-12T22:29:52.000Z
2021-10-18T17:07:45.000Z
data-import/src/main.py
FoxComm/highlander
1aaf8f9e5353b94c34d574c2a92206a1c363b5be
[ "MIT" ]
null
null
null
data-import/src/main.py
FoxComm/highlander
1aaf8f9e5353b94c34d574c2a92206a1c363b5be
[ "MIT" ]
1
2018-07-06T18:42:05.000Z
2018-07-06T18:42:05.000Z
#!/usr/bin/python3 # import argparse import itertools import json import os.path import logging import urllib.request import ssl from collections import defaultdict from urllib.error import HTTPError from adidas_convert import convert_taxonomies, convert_products class Taxon: def __init__(self, taxon_id: int, parent_id: int, name: str, taxonomy_id: int): self.taxonomyId = taxonomy_id self.parentId = parent_id self.name = name self.taxon_id = taxon_id self.path = [name] if parent_id is None else None class Taxonomy: def __init__(self, taxonomy_id, name, taxons): self.taxons = [] if taxons is None else taxons self.name = name self.taxonomy_id = taxonomy_id self.build_paths() def get_taxon_by_name(self, taxon_name, parent_id=None): def matches(taxon: Taxon): result = taxon.name == taxon_name if parent_id is not None: return result and parent_id == taxon.parentId else: return result return next(iter([taxon for taxon in self.taxons if matches(taxon)]), None) def get_taxon_by_path(self, path: list): parent_id = None taxon = None for name in path: taxon = self.get_taxon_by_name(name, parent_id) parent_id = taxon.parentId return taxon def get_taxon_by_id(self, taxon_id): for taxon in self.taxons: if taxon.taxon_id == taxon_id: return taxon return None def get_path(self, taxon: Taxon): if taxon.path is None: parent = self.get_taxon_by_id(taxon.parentId) taxon.path = parent.path + [taxon.name] return taxon.path def build_paths(self): for taxon in self.taxons: self.get_path(taxon) def merge(self, taxonomy, taxon: Taxon): if taxonomy is not None: assert type(taxonomy) == Taxonomy self.taxons = list(set(self.taxons + taxonomy.taxons)) if taxon is not None: self.taxons = list(set(self.taxons.append(taxon))) self.build_paths() return self class Elasticsearch: def __init__(self, jwt, host): self.host = host self.jwt = jwt self.taxonomies = {} def do_query(self, view_name: str): endpoint = 'https://' + self.host + '/api/search/admin/' + view_name + '/_search/?size=10000&pretty=0' req = urllib.request.Request(endpoint, headers={"Content-Type": "application/json", "JWT": self.jwt}) try: context = ssl.create_default_context() context.check_hostname = False response = urllib.request.urlopen(req, context=context) except HTTPError as err: logging.error(repr(err)) raise return json.loads(response.read().decode('utf-8')) def get_taxonomies(self): response = self.do_query('taxonomies_search_view') return [(item['name'], item['taxonomyId']) for item in response["result"] if item['context'] == 'default' and item['archivedAt'] is None] def get_taxons(self): def read_item(item): return Taxon(item['taxonId'], item['parentId'], item['name'], item['taxonomyId']) response = self.do_query('taxons_search_view') taxonomies = [read_item(item) for item in response["result"] if ('context' in item and item['context'] == 'default' and item['archivedAt'] is None)] return taxonomies def get_products(self): response = self.do_query('products_search_view') return response['result'] def get_inventory(self): response = self.do_query('inventory_search_view') return response['result'] class Phoenix: def __init__(self, host, user, password, org): self.host = host self.user = user self.password = password self.org = org self.prefix = "https://" + host + "/api/v1" self.jwt = None def ensure_logged_in(self): if self.jwt is None: return self.do_login() else: return True def do_query(self, endpoint_suffix, data, method="GET"): self.ensure_logged_in() endpoint = self.prefix + endpoint_suffix payload = None if (data is None or method == "GET") else json.dumps(data).encode() req = urllib.request.Request(endpoint, payload, headers={"Content-Type": "application/json", "JWT": self.jwt}, method=method) try: context = ssl.create_default_context() context.check_hostname = False response = urllib.request.urlopen(req, context=context) except HTTPError as err: logging.error("HTTP error. code: {}. message: {}".format(err.code, err.read())) raise code = response.getcode() if code == 204: return code, None return code, json.loads(response.read().decode('utf-8')) def do_login(self): logging.info("logging in: host:{}, user:{}, organization: {}".format(self.login_endpoint(), self.user, self.org)) payload = json.dumps({'email': self.user, 'password': self.password, 'org': self.org}).encode() context = ssl.create_default_context() context.check_hostname = False req = urllib.request.Request(self.login_endpoint(), payload, method='POST') req.add_header('Content-Type', 'application/json') try: response = urllib.request.urlopen(req, context=context) except urllib.error.URLError as err: logging.error("Cannot connect to %s %s", self.login_endpoint(), err) raise content = json.loads(response.read().decode('utf-8')) self.jwt = dict(response.info())['Jwt'] logging.info("logged in: " + self.prefix + " name: " + content['name'] + " scope: " + content['scope']) return True def create_taxonomy(self, taxonomy_json): self.ensure_logged_in() data = {k: v for k, v in taxonomy_json.items() if k != "taxons"} code, response = self.do_query("/taxonomies/default", data, method="POST") logging.info("taxonomy created: id:%d, attributes: %r" % (response['id'], response['attributes'])) return Taxonomy(response['id'], response["attributes"]["name"]["v"], []) def create_taxon(self, taxon_json, taxonomy_id, parent_id): self.ensure_logged_in() if parent_id is not None: taxon_json = taxon_json.copy() taxon_json['location'] = {'parent': parent_id} code, response = self.do_query("/taxonomies/default/" + str(taxonomy_id) + "/taxons", taxon_json, method="POST") logging.info("taxon created: id:%d, attributes: %r" % (response['id'], response['attributes'])) return Taxon(response['id'], parent_id, taxon_json["attributes"]["name"]["v"], taxonomy_id) def login_endpoint(self): return self.prefix + "/public/login" def upload_product(self, code, product): logging.info("uploading: " + code) self.ensure_logged_in() try: code, response = self.do_query("/products/default", product, method="POST") if code != 200: logging.error("error uploading: " + response) return False, None except HTTPError as err: logging.error("error uploading: " + repr(err)) return False, None return True, response def assign_taxon(self, product_id: int, taxon_id: int): self.ensure_logged_in() try: self.do_query("/taxons/default/{}/product/{}".format(taxon_id, product_id), data=None, method="PATCH") except HTTPError: logging.error("cannot assign taxon {} to product {}".format(taxon_id, product_id)) def load_taxonomies(file_name): return json.load(open(file_name, 'r')) def load_products(file_name): return json.load(open(file_name, 'r')) def query_es_taxonomies(jwt: str, host: str): es = Elasticsearch(jwt, host=host) taxons = es.get_taxons() taxonomies = es.get_taxonomies() result = defaultdict(lambda: None) for (name, taxonomy_id) in taxonomies: taxonomy_taxons = [taxon for taxon in taxons if taxon.taxonomyId == taxonomy_id] result[name] = Taxonomy(taxonomy_id, name, taxonomy_taxons) return result def assign_taxonomies(p: Phoenix, settings, taxonomies, data_product, product_id): def get_sku_taxonomies(sku_record): if 'taxonomies' in sku_record: return sku_record['taxonomies'] elif 'taxonomies' in sku_record['attributes']: return sku_record["attributes"]["taxonomies"]["v"] else: return [] data_taxonomies = defaultdict(set) for sku in data_product["skus"]: product_taxonomies = get_sku_taxonomies(sku) for (taxonomy, taxon) in product_taxonomies.items(): if type(taxon) is list: data_taxonomies[taxonomy] = data_taxonomies[taxonomy].union(taxon) else: data_taxonomies[taxonomy].add(taxon) for (taxonomy, taxons) in data_taxonomies.items(): for taxon in taxons: es_taxonomy, es_taxon = map_to_es_taxon(p, settings, data_product, taxon, taxonomies, taxonomy) if es_taxonomy is None or es_taxon is None: logging.info("Skipping taxon '{}' (Taxonomy: '{}')".format(taxon, taxonomy)) else: p.assign_taxon(product_id, es_taxon.taxon_id) logging.info("taxon {} is assigned to product {}".format(es_taxon.taxon_id, product_id)) def map_to_es_taxon(p: Phoenix, settings, data_product, taxon, taxonomies, taxonomy): es_taxonomy = taxonomies[taxonomy] if es_taxonomy is None: if settings.unknown_taxonomies[0] == 'fail': raise ValueError( "product '{}' references to unknown taxonomy '{}'".format(product_code(data_product), taxonomy)) elif settings.unknown_taxonomies[0] == 'ignore': return None, None else: assert settings.unknown_taxonomies[0] == 'create' r = create_taxon_from_name(p, taxonomy, taxon) es_taxonomy = r[0].merge(None, r[1]) taxonomies[taxonomy] = es_taxonomy es_taxon = next(iter([t for t in es_taxonomy.taxons if t.name == taxon]), None) if es_taxon is None: if settings.unknown_taxonomies[0] == 'fail': raise ValueError( "product '{}' references to unknown taxon '{}' in taxonomy '{}'".format(product_code(data_product), taxon, taxonomy)) elif settings.unknown_taxonomies[0] == 'ignore': return es_taxonomy, None else: assert settings.unknown_taxonomies[0] == 'create' r = create_taxon_from_name(p, es_taxonomy, taxon) taxonomies[taxonomy] = r[0].merge(es_taxonomy, r[1]) es_taxon = r[1] return es_taxonomy, es_taxon def create_taxon_from_name(p: Phoenix, taxonomy, taxon): if type(taxonomy) == Taxonomy: es_taxonomy = taxonomy else: assert type(taxonomy) == str es_taxonomy = p.create_taxonomy({"attributes": {"name": {"t": "string", "v": taxonomy}}, "hierarchical": False}) assert type(taxon) == str es_taxon = p.create_taxon({"attributes": {"name": {"t": "string", "v": taxon}}}, es_taxonomy.taxonomy_id, None) return es_taxonomy, es_taxon def import_taxons(p: Phoenix, taxons, existing_taxonomy, parent_id=None): for taxon in taxons: name = taxon["attributes"]["name"]["v"] existing_taxon = existing_taxonomy.get_taxon_by_name(name) if existing_taxon is None: t = p.create_taxon(taxon, existing_taxonomy.taxonomy_id, parent_id) taxon_id = t.taxon_id else: logging.info("skipping taxon '{}' as soon as it already exists. id: {}".format(taxon, existing_taxon.taxon_id)) taxon_id = existing_taxon.taxon_id if 'children' in taxon and taxon['children'] is not None: import_taxons(p, taxon['children'], existing_taxonomy, taxon_id) def import_taxonomies(p: Phoenix, input_dir, import_from_adidas): print("Importing taxonomies\n") if import_from_adidas: taxonomies = convert_taxonomies(input_dir) else: taxonomies_json = load_taxonomies(input_dir + "/taxonomies.json") taxonomies = taxonomies_json["taxonomies"] if p.ensure_logged_in(): imported = query_es_taxonomies(p.jwt, p.host) print("about to add {} taxonomies with overall {} taxons".format(len(taxonomies), sum([len(k["taxons"]) for k in taxonomies]))) for taxonomy in taxonomies: name = taxonomy["attributes"]["name"]["v"] taxons = taxonomy["taxons"] existing_taxonomy = imported[name] if existing_taxonomy is None: existing_taxonomy = p.create_taxonomy(taxonomy) else: msg = "skipping taxonomy '{}' as soon as it already exists. id: {}" logging.info(msg.format(taxonomy, existing_taxonomy.taxonomy_id)) import_taxons(p, taxons, existing_taxonomy, ) def import_products(p: Phoenix, settings, max_products, input_dir, import_from_adidas): print("Importing products\n") if import_from_adidas: products = convert_products(input_dir) else: products_json = load_products(input_dir + "/products.json") products = products_json["products"] cache_dir = "cache" if not os.path.exists(cache_dir): os.makedirs(cache_dir) p.ensure_logged_in() taxonomies = query_es_taxonomies(p.jwt, p.host) products = products if max_products is None else itertools.islice(products, int(max_products)) for product in products: code = product_code(product) cache_file = cache_dir + "/" + code + ".json" skip = os.path.exists(cache_file) if not skip: uploaded, result = p.upload_product(code, product) if uploaded: json.dump(product, open(cache_file, 'w')) assign_taxonomies(p, settings, taxonomies, product, result['id']) def product_code(product): return product['skus'][0]['attributes']['code']['v'] def get_inventory(phoenix): es = Elasticsearch(phoenix.jwt, phoenix.host) return es.get_inventory() def add_inventory_to_stock_item(phoenix, stock_item, amount): typ = stock_item['type'] if typ != 'Sellable': return itm = stock_item['stockItem'] item_id = str(itm['id']) sku = itm['sku'] old_amount = str(stock_item['onHand']) logging.info(sku + ' (' + item_id + ') ' + old_amount + ' => ' + str(amount)) increment = {"qty": amount, "type": "Sellable", "status": "onHand"} try: code, response = phoenix.do_query("/inventory/stock-items/" + item_id + "/increment", increment, method="PATCH") if code != 204: logging.error("error adding inventory: " + response) except HTTPError as err: logging.error("error adding inventory: " + repr(err)) def add_inventory(phoenix, amount): phoenix.ensure_logged_in() inventory = get_inventory(phoenix) for itm in inventory: add_inventory_to_stock_item(phoenix, itm, amount) def config_logging(): logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.DEBUG) def main(): config_logging() options = read_cmd_line() print("HOST: ", options.host) print("CMD: ", options.command[0]) if options.max_products is not None: print("MAX: ", options.max_products[0]) max_products = None if options.max_products is None else options.max_products[0] p = Phoenix(host=options.host, user='[email protected]', password='password', org='tenant') if options.command[0] == 'taxonomies': import_taxonomies(p, options.input[0], options.adidas) elif options.command[0] == 'products': import_products(p, options, max_products, options.input[0], options.adidas) elif options.command[0] == 'both': import_taxonomies(p, options.input[0], options.adidas) import_products(p, options, max_products, options.input[0], options.adidas) elif options.command[0] == 'inventory': add_inventory(p, options.inventory_amount[0]) else: print("Valid commands are, 'taxonomies', 'products', 'both', or 'inventory'") def read_cmd_line(): pp = argparse.ArgumentParser( description='Data import') pp.add_argument("--host", type=str, required=True, help="host of the API to import into") pp.add_argument("--max-products", "-m", nargs=1, type=int, help="Max products. Provides a way to restrict how many products are imported") pp.add_argument("--input", "-i", nargs=1, type=str, default=['data'], help="input directory") pp.add_argument("--inventory_amount", nargs=1, type=int, default=[100], help="inventory amount") pp.add_argument("--adidas", action='store_true', default=False, help="treat input directory as container of listing.json and products.json with adidas data") pp.add_argument("command", nargs=1, choices=['taxonomies', 'products', 'both', 'inventory'], type=str, help="Command") pp.add_argument("--unknown-taxonomies", nargs=1, choices=['ignore', 'create', 'fail'], type=str, help="defines behavior in case if product references on taxonomy/taxon which wasn't created before." " <ignore> - ignore the taxon and continue import." " <fail> - stop import. Prints error message." " <create> - creates the absent taxonomy and taxon. The created taxonomy is flat.", default='fail') return pp.parse_args() if __name__ == "__main__": main()
38.707368
122
0.617426
866b520bdb782b0e5f997f32ae5ef0e2833e2651
2,723
py
Python
service/api/main.py
netzbegruenung/schaufenster
c0860570cf6b46dc0fade9cef7562edd2fa7f3a0
[ "Apache-2.0" ]
1
2021-07-20T06:56:38.000Z
2021-07-20T06:56:38.000Z
service/api/main.py
netzbegruenung/schaufenster
c0860570cf6b46dc0fade9cef7562edd2fa7f3a0
[ "Apache-2.0" ]
1
2018-01-23T22:36:49.000Z
2018-01-24T18:52:27.000Z
service/api/main.py
netzbegruenung/schaufenster
c0860570cf6b46dc0fade9cef7562edd2fa7f3a0
[ "Apache-2.0" ]
2
2018-01-23T21:25:57.000Z
2018-01-24T21:46:41.000Z
# -*- coding: utf-8 -*- from . import events from . import jsonhandler from . import feeds from datetime import datetime from falcon import media from falcon_cors import CORS import falcon import logging import requests class IndexResource(object): def __init__(self): self.logger = logging.getLogger('api.' + __name__) def on_get(self, req, resp): resp.media = { "message": "Hallo! Hier läuft der Schaufenster-Service", "url": "https://github.com/netzbegruenung/schaufenster", "endpoints": [ "/events/", "/feed/", "/luftdaten.info/v1/sensor/{sensor_id}/", ], } class EventsResource(object): def __init__(self): self.logger = logging.getLogger('api.' + __name__) def on_get(self, req, resp): """ Loads an ical Calendar and returns the next events """ ical_url = req.get_param("ical_url", required=True) charset = req.get_param("charset") num = int(req.get_param("num", required=False, default="10")) client = events.Client(url=ical_url, charset=charset) next_events = client.next_events(num) del client resp.media = next_events maxage = 60 * 60 # 1 hour resp.cache_control = ["max_age=%d" % maxage] class FeedResource(object): def on_get(self, req, resp): feed_url = req.get_param("url", required=True) num = int(req.get_param("num", required=False, default="1")) c = feeds.Client(feed_url) resp.media = { "meta": c.metadata(), "items": c.recent_items(num=num) } class ParticleSensorResource(object): def on_get(self, req, resp, sensor_id): """ Delivers data for a particular luftdaten.info sensor """ url = "http://api.luftdaten.info/v1/sensor/%s/" % sensor_id r = requests.get(url) if r.status_code == 200: maxage = 60 * 5 # 5 minutes resp.cache_control = ["max_age=%d" % maxage] resp.media = r.json() else: resp.media = r.text resp.status = str(r.status_code) + " Unknown Error" handlers = media.Handlers({ 'application/json': jsonhandler.JSONHandler(), }) cors = CORS(allow_all_origins=True, allow_all_headers=True) app = falcon.API(middleware=[cors.middleware]) app.req_options.media_handlers = handlers app.resp_options.media_handlers = handlers app.add_route('/events/', EventsResource()) app.add_route('/feed/', FeedResource()) app.add_route('/luftdaten.info/v1/sensor/{sensor_id}/', ParticleSensorResource()) app.add_route('/', IndexResource())
28.968085
81
0.609254
07f94d1801ba040a7ccd5691cf1f22424c75214c
22,157
py
Python
benchmark/dnn_binary.py
zentonllo/tfg-tensorflow
095469a906de26984b4d781699e76bec02b1ef75
[ "MIT" ]
null
null
null
benchmark/dnn_binary.py
zentonllo/tfg-tensorflow
095469a906de26984b4d781699e76bec02b1ef75
[ "MIT" ]
null
null
null
benchmark/dnn_binary.py
zentonllo/tfg-tensorflow
095469a906de26984b4d781699e76bec02b1ef75
[ "MIT" ]
null
null
null
""" Module used to model Deep Neural Networks which solve binary classification problems (1 output neuron) Code obtained and adapted from: https://www.tensorflow.org/get_started/ https://github.com/ageron/handson-ml/blob/master/11_deep_learning.ipynb https://github.com/aymericdamien/TensorFlow-Examples https://github.com/zentonllo/gcom """ import tensorflow as tf import time import numpy as np import os import matplotlib.pyplot as plt import itertools from tensorflow.contrib.layers import fully_connected, dropout from tensorflow.contrib.framework import arg_scope from sklearn.metrics import auc, roc_auc_score, roc_curve, confusion_matrix # Disable info warnings from TF os.environ['TF_CPP_MIN_LOG_LEVEL']='2' # Source: https://www.tensorflow.org/get_started/summaries_and_tensorboard def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def print_execution_time(start, end): """Helper function to print execution times properly formatted.""" hours, rem = divmod(end-start, 3600) minutes, seconds = divmod(rem, 60) print("Execution time:","{:0>2}:{:0>2}:{:0>2}".format(int(hours),int(minutes),int(seconds))) """ n_inputs: Número de variables de entrada n_outputs: Número de clases objetivo (2 problemas clasificación binaria, >2 problemas clasificación multiclase) learning_rate: Tasa de aprendizaje (suele ser 0.001) hidden_list: Lista de capas ocultas (incluidas neuronas input y outpt, ej: [n_input, 300, 300, n_output]) activation_function: Funciones de activación (ej: tf.nn.relu, tf.nn.elu, tf.nn.sigmoid, tf.nn.tanh, tf.nn.identity) keep_prob: Keep probability para el Dropout (suele ser 0.5) regularizer: Regularizer a usar (ej: tf.contrib.layers.l1_regularizer(scale=beta, scope=None), tf.contrib.layers.l2_regularizer(scale=beta, scope=None)) normalizer_fn: función de normalización (None o batch_norm para realizar batch normalization) normalizer_params = { 'is_training': None, # 0.9 o 0.99 o 0.999 o 0.9999 ... # Segun performance guide de TF: menor si va bien en training y peor en validation/test # Según A.Geron, aumentar cuando el dataset es grande y los batches pequeños 'decay': 0.9, 'updates_collections': None, # Si usamos funciones de activacion que no sean relus --> scale_term debe ser True 'scale': scale_term, # Aumenta rendimiento según la performance guide de TF 'fused': True # Try zero_debias_moving_mean=True for improved stability # 'zero_debias_moving_mean':True } optimizer: = tf.train.AdamOptimizer, tf.train.RMSPropOptimizer, tf.train.AdadeltaOptimizer, tf.train.AdagradOptimizer, tf.train.MomentumOptimizer (este requiere cambios) El optimizer debe estar instanciado, ej: tf.train.AdamOptimizer(learning_rate=0.001, name='optimizer') """ class DNN(object): """Class that models a Deep Neural Network with just one output neuron There are training and predicting methods, as well as tools that generate plots. Most of the neural network hyperparameters are set when a class object is instanciated. Mostly similar to DNN class in dnn_multiclass (it might be a better way to merge both classes into one) Attributes ---------- file_writer : tf.summary.FileWriter object which adds summaries to TensorBoard saver : tf.train.Saver() used to save the model merged : TF node that if it is executed will generate the TensorBoard summaries hidden_list : List with the following shape [input_neurons, neurons_hidden_layer_1, neurons_hidden_layer_2, ..., 1] activation_function : TF activation function (tf.nn.relu, tf.nn.elu, tf.nn.sigmoid, tf.nn.tanh, tf.nn.identity, etc.) keep_prob : Probability to keep a neuron active during dropout (that is, 1 - dropout_rate, use None to avoid dropout) regularizer : TF regularizer to use (tf.contrib.layers.l1_regularizer(scale=beta, scope=None), tf.contrib.layers.l2_regularizer(scale=beta, scope=None)) normalizer_fn : Normalizer function to use. Use batch_norm for batch normalization and None to avoid normalizer functions normalizer_params : Extra parameters for the normalizer function optimizer : TF Optimizer during Gradient Descent (tf.train.AdamOptimizer, tf.train.RMSPropOptimizer, tf.train.AdadeltaOptimizer or tf.train.AdagradOptimizer) log_dir : Path used to save all the needed TensorFlow and TensorBoard information to save (graph, models, etc.) batch_size : Batch size to be used during training y_casted : Label column (NP array) casted to float (casted must be made in order to use the TF cross entropy function) predictions : NP array with class predictions (0.5 threshold used) """ def __init__(self, log_dir, hidden_list, activation_function=tf.nn.relu, keep_prob = None, regularizer = None, normalizer_fn = None, normalizer_params = None, optimizer = tf.train.AdamOptimizer(learning_rate=0.001, name='optimizer') ): """__init__ method for the DNN class Saves the hyperparameters as attributes and instatiates a deep neural network Parameters ---------- log_dir : Path used to save all the needed TensorFlow and TensorBoard information to save (graph, models, etc.) hidden_list : List with the following shape [input_neurons, neurons_hidden_layer_1, neurons_hidden_layer_2, ..., 1] activation_function : TF activation function (tf.nn.relu, tf.nn.elu, tf.nn.sigmoid, tf.nn.tanh, tf.nn.identity, etc.) keep_prob : Probability to keep a neuron active during dropout (that is, 1 - dropout_rate, use None to avoid dropout) regularizer : TF regularizer to use (tf.contrib.layers.l1_regularizer(scale=beta, scope=None), tf.contrib.layers.l2_regularizer(scale=beta, scope=None)) normalizer_fn : Normalizer function to use. Use batch_norm for batch normalization and None to avoid normalizer functions normalizer_params : Extra parameters for the normalizer function optimizer : TF Optimizer during Gradient Descent (tf.train.AdamOptimizer, tf.train.RMSPropOptimizer, tf.train.AdadeltaOptimizer or tf.train.AdagradOptimizer) """ # Create a new TF graph from scratch tf.reset_default_graph() self.file_writer = None self.saver = None self.merged = None self.hidden_list = hidden_list self.activation_function = activation_function self.keep_prob = keep_prob self.regularizer = regularizer self.normalizer_fn = normalizer_fn self.normalizer_params = normalizer_params self.optimizer = optimizer self.log_dir = log_dir self.batch_size = None self.y_casted = None self.predictions = None # Instantiate the neural network self.create_net() def create_net(self): """Method that instatiates a neural network using the hyperparameters passed to the DNN object. Most of the code was obtained and adapted from https://github.com/ageron/handson-ml/blob/master/11_deep_learning.ipynb """ hidden_list = self.hidden_list n_inputs = hidden_list[0] # This is hardcoded to show how this class works # hidden_list[-1] should be 1 and we should check it out right here n_outputs = 1 self.X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X") self.y = tf.placeholder(tf.int64, shape=(None), name="y") self.is_training = tf.placeholder(tf.bool, shape=(), name='is_training') if self.normalizer_params is not None: self.normalizer_params['is_training'] = self.is_training with tf.name_scope("dnn"): he_init = tf.contrib.layers.variance_scaling_initializer() with arg_scope( [fully_connected], activation_fn=self.activation_function, weights_initializer=he_init, normalizer_fn=self.normalizer_fn, normalizer_params=self.normalizer_params): # Build the fully-connected layers Z = self.X n_iter = len(hidden_list[1:]) for i in range(1,n_iter): name_scope = "hidden" + str(i) Z = fully_connected(inputs=Z, num_outputs=hidden_list[i], scope=name_scope) if self.keep_prob is not None: Z = dropout(Z, self.keep_prob, is_training=self.is_training) self.logits = fully_connected(inputs=Z, num_outputs=n_outputs, activation_fn=None, weights_initializer=he_init, normalizer_fn=self.normalizer_fn, normalizer_params=self.normalizer_params, scope="outputs") with tf.name_scope("softmaxed_output"): self.softmaxed_logits = tf.nn.sigmoid(self.logits) with tf.name_scope("loss"): y_casted = tf.cast(self.y, tf.float32) self.y_casted = tf.reshape(y_casted, [-1,1]) # Compute cross_entropy from logits (that is, dnn output without applying the sigmoid function) xentropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.y_casted, logits=self.logits) self.loss = tf.reduce_mean(xentropy) if self.regularizer is not None: self.loss += tf.contrib.layers.apply_regularization(self.regularizer, tf.trainable_variables()) tf.summary.scalar('cross_entropy', self.loss) with tf.name_scope("train"): opt = self.optimizer # Minimize the loss function self.train_step = opt.minimize(self.loss, name='train_step') with tf.name_scope("eval"): self.predictions = tf.round(self.softmaxed_logits) incorrect = tf.abs(tf.subtract(self.predictions, self.y_casted)) incorrect_casted = tf.cast(incorrect, tf.float32) self.accuracy = tf.subtract(tf.cast(100, tf.float32),tf.reduce_mean(incorrect_casted)) tf.summary.scalar('accuracy', self.accuracy) # TensorBoard summaries for the hidden layers weights for i in range(1,n_iter): with tf.variable_scope('hidden'+str(i), reuse=True): variable_summaries(tf.get_variable('weights')) with tf.variable_scope('outputs', reuse=True): variable_summaries(tf.get_variable('weights')) self.merged = tf.summary.merge_all() self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() def feed_dict(self, dataset, mode): """Method that builds a dictionary to feed the neuronal network. Parameters ---------- dataset : Dataset object mode : String that points which feed dictionary we want to get. Possible values: 'batch_training', 'training_test', 'validation_test' Returns ------- fd Dictionary that feeds the TensorFlow model """ fd = None if mode is 'batch_training': x_batch, y_batch = dataset.next_batch(self.batch_size) fd = {self.is_training: True, self.X: x_batch, self.y: y_batch} elif mode is 'training_test': fd = {self.is_training: False, self.X: dataset.x_train, self.y: dataset.y_train} elif mode is 'validation_test': fd = {self.is_training: False, self.X: dataset.x_val, self.y: dataset.y_val} return fd def train(self, dataset, model_path, train_path, nb_epochs=100, batch_size=10, silent_mode=False): """Method that trains a deep neuronal network. Parameters ---------- dataset : Dataset object model_path : Path where the optimal TensorFlow model will be saved train_path : Path where the training TensorFlow models will be saved. After the training process, the model trained in the very last epoch will be the only one saved nb_epochs : Number of epochs to train the model batch_size : Batch size to be used during training silent_mode : Flag which enables whether to print progress on the terminal during training. Returns ------- None """ start_time = time.time() x_training = dataset.x_train y_training = dataset.y_train x_validation = dataset.x_val y_validation = dataset.y_val nb_data = dataset._num_examples # nb_batches = nb_data // batch_size (integer division) self.batch_size= batch_size nb_batches = int(nb_data/batch_size) # Records best validation AUC during training, which will allow to save that model as optimal best_auc = 0 self.aucs = [] with tf.Session() as sess: sess.run(self.init) self.file_writer = tf.summary.FileWriter(self.log_dir, sess.graph) for epoch in range(nb_epochs): # Iterate through batches and keep training for batch in range(nb_batches): sess.run(self.train_step, feed_dict=self.feed_dict(dataset, mode='batch_training')) self.saver.save(sess, train_path) # Get the summaries for TensorBoard summary = sess.run(self.merged, feed_dict=self.feed_dict(dataset, mode='training_test')) self.file_writer.add_summary(summary, epoch) # We use a sklearn function to compute AUC. Couldn't manage to make tf.metrics.auc work due to some odd 'local variables' cur_auc = self.auc_roc(x_validation, y_validation, train_path) summary_auc = tf.Summary(value=[tf.Summary.Value(tag="AUCs_Validation", simple_value=cur_auc)]) self.file_writer.add_summary(summary_auc, epoch) # Only save best model if it gets the best AUC over the validation set if cur_auc > best_auc: best_auc = cur_auc self.saver.save(sess, model_path) if not silent_mode: acc_train = sess.run(self.accuracy, feed_dict=self.feed_dict(dataset, mode='training_test')) auc_train = self.auc_roc(x_training, y_training, train_path) acc_val = sess.run(self.accuracy, feed_dict=self.feed_dict(dataset, mode='validation_test')) print("Epoch:", (epoch+1), "Train accuracy:", acc_train, "Train AUC:", auc_train ) print("Validation accuracy:", acc_val, "Validation AUC:", cur_auc, "Best Validation AUC:", best_auc, "\n") self.file_writer.close() print_execution_time(start_time, time.time()) if silent_mode: print("Best Validation AUC:", best_auc) def predict(self, x_test, model_path): """Method that gets predictions from a trained deep neuronal network. Get a Numpy array of predictions P(y=1| W) for all the x_test Parameters ---------- x_test : Numpy array with data test to get predictions for model_path : Path where the TensorFlow model is located Returns ------- Numpy array with predictions (probabilities between 0 and 1) """ with tf.Session() as sess: self.saver.restore(sess, model_path) y_pred = sess.run(self.softmaxed_logits, feed_dict={self.is_training: False, self.X: x_test}) return y_pred def predict_class(self, x_test, model_path): """Method that gets predicted classes (0 or 1) from a trained deep neuronal network. Get a Numpy array of predicted classes for all the x_test Parameters ---------- x_test : Numpy array with data test to get their predicted classes model_path : Path where the TensorFlow model is located Returns ------- Numpy array with predicted classes (0 or 1) """ with tf.Session() as sess: self.saver.restore(sess, model_path) y_pred = sess.run(self.predictions, feed_dict={self.is_training: False, self.X: x_test}) return y_pred def test(self, x_test, y_test, model_path): """Method that prints accuracy and AUC for test data after getting predictions a trained deep neuronal network. Parameters ---------- x_test : Numpy array with data test to get their predicted classes y_test : Numpy array with the labels belonging to x_test model_path : Path where the TensorFlow model is located Returns ------- None """ start_time = time.time() with tf.Session() as sess: self.saver.restore(sess, model_path) acc_test = sess.run(self.accuracy, feed_dict={self.is_training: False, self.X: x_test, self.y: y_test}) print("Test accuracy:", acc_test) auc_test = self.auc_roc(x_test, y_test, model_path) print("Test AUC:", auc_test) print_execution_time(start_time, time.time()) def auc_roc(self, x_test, y_test, model_path): """Method that computes AUC for some data after getting predictions from a trained deep neural network. Parameters ---------- x_test : Numpy array with data test to get their predicted classes y_test : Numpy array with the labels belonging to x_test model_path : Path where the TensorFlow model is located Returns ------- AUC value for the test data (x_test and y_test) """ y_score = self.predict(x_test, model_path) auc = roc_auc_score(y_true=y_test, y_score=y_score) return auc*100 def save_roc(self, x_test, y_test, model_path, roc_path): """Method that computes a ROC curve from a model and save it as a png file. Parameters ---------- x_test : Numpy array with data test to get their predicted classes y_test : Numpy array with the labels belonging to x_test model_path : Path where the TensorFlow model is located roc_path : Path that points where to save the png file with the ROC curve Returns ------- None """ y_score = self.predict(x_test, model_path) fpr, tpr, thresholds = roc_curve(y_true=y_test, y_score=y_score) roc_auc = auc(fpr, tpr) plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc*100) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.savefig(roc_path, bbox_inches='tight') def save_cm(self, x_test, y_test, model_path, cm_path, classes, normalize=True): """Method that computes a confusion matrix from a model and save it as a png file. Parameters ---------- x_test : Numpy array with data test to get their predicted classes y_test : Numpy array with the labels belonging to x_test model_path : Path where the TensorFlow model is located cm_path : Path that points where to save the png file with the confusion matrix classes : List with labels for the confusion matrix rows and columns. For instance: ['Normal Transactions', 'Fraudulent transactions'] Returns ------- None """ y_pred = self.predict_class(x_test, model_path) cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) plt.figure() cmap=plt.cm.Blues if normalize: plt.title('Normalized confusion matrix') else: plt.title('Confusion matrix, without normalization') plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig(cm_path, bbox_inches='tight')
39.922523
216
0.623099
71f58f5d351fc9e9245f841e5c5e5119531cad91
274
py
Python
src/lcdoc/const.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
24
2021-10-04T22:11:59.000Z
2022-02-02T21:51:43.000Z
src/lcdoc/const.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
2
2021-10-04T21:51:30.000Z
2021-10-05T14:15:31.000Z
src/lcdoc/const.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
null
null
null
import time AttrDict = dict # class AttrDict(dict): # def __getattr__(self, k): # self[k] = 0 # return 0 Stats = AttrDict() PageStats = {} LogStats = {} now_ms = lambda: int(time.time() * 1000) t0 = [now_ms()] lprunner_sep = ['<!-- lprunner -->']
13.7
40
0.569343
139cf6e95d1772ad057c4aa1758d2566aceb2dfe
404
py
Python
cs/python/python_general/30-seconds-of-python-code/test/bubble_sort/bubble_sort.test.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
cs/python/python_general/30-seconds-of-python-code/test/bubble_sort/bubble_sort.test.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
8
2020-03-24T17:47:23.000Z
2022-03-12T00:33:21.000Z
cs/python/python_general/30-seconds-of-python-code/test/bubble_sort/bubble_sort.test.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
import types import functools from pytape import test from bubble_sort import bubble_sort def bubble_sort_test(t): t.true( isinstance(bubble_sort, (types.BuiltinFunctionType, types.FunctionType, functools.partial)), '<util.read_snippets.<locals>.snippet object at 0x7fc8ea4c6978> is a function' ) test('Testing bubble_sort', bubble_sort_test)
25.25
86
0.69802
13b3e524813c43b597c3fff3534673dc31d99b19
3,270
py
Python
test/test_find_sets.py
vidagy/setsolver
1d69dc33768ddb5b2110b6321106947de87cb7ac
[ "Apache-2.0" ]
null
null
null
test/test_find_sets.py
vidagy/setsolver
1d69dc33768ddb5b2110b6321106947de87cb7ac
[ "Apache-2.0" ]
null
null
null
test/test_find_sets.py
vidagy/setsolver
1d69dc33768ddb5b2110b6321106947de87cb7ac
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase from setsolver.board import Board from setsolver.card import Card, GameSet from setsolver.properties import Color, Count, Fill, Shape from setsolver.set_finder import ( find_all_sets, is_same_or_all_different, is_set, ) class TestSetFinder(TestCase): card1 = Card(Fill.FULL, Count.ONE, Color.RED, Shape.OVAL) card2 = Card(Fill.STRIPED, Count.TWO, Color.PURPLE, Shape.OVAL) card3 = Card(Fill.EMPTY, Count.THREE, Color.GREEN, Shape.OVAL) card4 = Card(Fill.EMPTY, Count.THREE, Color.PURPLE, Shape.WAVE) card5 = Card(Fill.EMPTY, Count.THREE, Color.RED, Shape.DIAMOND) card6 = Card(Fill.EMPTY, Count.THREE, Color.PURPLE, Shape.DIAMOND) card7 = Card(Fill.STRIPED, Count.ONE, Color.RED, Shape.DIAMOND) card8 = Card(Fill.STRIPED, Count.TWO, Color.GREEN, Shape.DIAMOND) card9 = Card(Fill.FULL, Count.ONE, Color.GREEN, Shape.WAVE) card10 = Card(Fill.EMPTY, Count.ONE, Color.RED, Shape.DIAMOND) card11 = Card(Fill.FULL, Count.TWO, Color.GREEN, Shape.DIAMOND) card12 = Card(Fill.EMPTY, Count.ONE, Color.PURPLE, Shape.DIAMOND) def test_is_set(self): self.assertTrue(is_set(self.card1, self.card2, self.card3)) def test_is_set_false(self): card1 = Card(Fill.FULL, Count.ONE, Color.GREEN, Shape.OVAL) card2 = Card(Fill.STRIPED, Count.TWO, Color.PURPLE, Shape.OVAL) card3 = Card(Fill.EMPTY, Count.THREE, Color.GREEN, Shape.OVAL) self.assertFalse(is_set(card1, card2, card3)) def test_is_same_or_all_different_same(self): self.assertTrue( is_same_or_all_different(Fill.FULL, Fill.EMPTY, Fill.STRIPED) ) self.assertTrue( is_same_or_all_different(Count.ONE, Count.TWO, Count.THREE) ) self.assertTrue( is_same_or_all_different(Color.PURPLE, Color.RED, Color.GREEN) ) self.assertTrue( is_same_or_all_different(Shape.OVAL, Shape.WAVE, Shape.DIAMOND) ) for p in [ Fill.FULL, Fill.EMPTY, Fill.STRIPED, Count.ONE, Count.TWO, Count.THREE, Color.PURPLE, Color.RED, Color.GREEN, Shape.OVAL, Shape.WAVE, Shape.DIAMOND, ]: self.assertTrue(is_same_or_all_different(p, p, p)) def test_find_all_sets(self): board = Board( { self.card1, self.card2, self.card3, self.card4, self.card5, self.card6, self.card7, self.card8, self.card9, self.card10, self.card11, self.card12, } ) expected_sets = [ GameSet({self.card1, self.card2, self.card3}), GameSet({self.card3, self.card4, self.card5}), GameSet({self.card3, self.card8, self.card9}), GameSet({self.card2, self.card5, self.card9}), GameSet({self.card1, self.card4, self.card8}), GameSet({self.card6, self.card7, self.card11}), ] self.assertCountEqual(expected_sets, find_all_sets(board))
35.543478
75
0.596636
13cedf07d8effbd73a16410582b2e0bae1bfe8f9
12,840
py
Python
test/test_npu/test_network_ops/test_renorm.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_renorm.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_renorm.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestRenorm(TestCase): def generate_data(self, min_d, max_d, shape, dtype): input_x = np.random.uniform(min_d, max_d, shape).astype(dtype) npu_input = torch.from_numpy(input_x) return npu_input def get_p0_result_cpu(self, input_x, dim, maxnorm=1.0): input_x = input_x.numpy() dims = len(input_x.shape) shape_list = [] for i in range(dims): if(i != dim): shape_list = shape_list + [i] shape_list = tuple(shape_list) tmp = (input_x!=0) N = np.sum(tmp, shape_list, keepdims=True) N = np.where(N > maxnorm, maxnorm/(N+1e-7), 1.0) output = input_x * N return output def cpu_op_exec(self, input_x, p, dim, maxnorm): if(p==0): output = self.get_p0_result_cpu(input_x, dim, maxnorm) else: output = torch.renorm(input_x, p, dim, maxnorm) output = output.numpy() return output.astype(np.float32) def npu_op_exec(self, input_x, p, dim, maxnorm): input1 = input_x.to("npu") output = torch.renorm(input1, p, dim, maxnorm) output = output.to("cpu") output = output.numpy() return output def npu_op_exec_out(self, input_x, p, dim, maxnorm, output_y): input_x = input_x.to("npu") output_y = output_y.to("npu") torch.renorm(input_x, p, dim, maxnorm, out=output_y) output_y = output_y.to("cpu") output_y = output_y.numpy() return output_y def npu_op_exec_inplace(self, input_x, p, dim, maxnorm): input_x = input_x.to("npu") input_x.renorm_(p, dim, maxnorm) output = input_x.to("cpu") output = output.numpy() return output def test_renorm_3_3_4_0_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 0, 1) npu_output1 = self.npu_op_exec(input_x1, 4, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_1_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 1, 1) npu_output1 = self.npu_op_exec(input_x1, 1, 1, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_0_0_1_float16(self, device): input_x1 = self.generate_data(-10, 10, (3, 3), np.float16) input_x1_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_x1_cpu, 0, 0, 1).astype(np.float16) npu_output1 = self.npu_op_exec(input_x1, 0, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_0_0_1(self, device): input_x1 = self.generate_data(-10, 10, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 0, 0, 1) npu_output1 = self.npu_op_exec(input_x1, 0, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_4_0_1_float16(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float16) input_x1_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_x1_cpu, 4, 0, 1).astype(np.float16) npu_output1 = self.npu_op_exec(input_x1, 4, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_1_1_float16(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float16) input_x1_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_x1_cpu, 1, 1, 1).astype(np.float16) npu_output1 = self.npu_op_exec(input_x1, 1, 1, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_0_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 0, 1) npu_output1 = self.npu_op_exec(input_x1, 1, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_1_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 1, 1) npu_output1 = self.npu_op_exec(input_x1, 3, 1, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_2_2_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 2, 1) npu_output1 = self.npu_op_exec(input_x1, 2, 2, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_2_0_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 0, 1) npu_output1 = self.npu_op_exec(input_x1, 2, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_3_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 3, 1) npu_output1 = self.npu_op_exec(input_x1, 3, 3, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_4_4_1(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 4, 1) npu_output1 = self.npu_op_exec(input_x1, 4, 4, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_4_0_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 0, 1) npu_output1 = self.npu_op_exec_out(input_x1, 4, 0, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_1_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 1, 1) npu_output1 = self.npu_op_exec_out(input_x1, 1, 1, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_0_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 0, 1) npu_output1 = self.npu_op_exec_out(input_x1, 1, 0, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_1_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 1, 1) npu_output1 = self.npu_op_exec_out(input_x1, 3, 1, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_30_40_50_2_1_1_out_fp16(self, device): input_x1 = self.generate_data(-1, 1, (30, 40, 50), np.float16) output_y = self.generate_data(-1, 1, (30, 40, 50), np.float16) input_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_cpu, 2, 1, 1) cpu_output1 = cpu_output1.astype(np.float16) npu_output1 = self.npu_op_exec_out(input_x1, 2, 1, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_30_40_50_2_0_2_out_fp16(self, device): input_x1 = self.generate_data(-1, 1, (30, 40, 50), np.float16) output_y = self.generate_data(-1, 1, (30, 40, 50), np.float16) input_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_cpu, 2, 0, 2) cpu_output1 = cpu_output1.astype(np.float16) npu_output1 = self.npu_op_exec_out(input_x1, 2, 0, 2, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_2_2_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 2, 1) npu_output1 = self.npu_op_exec_out(input_x1, 2, 2, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_2_0_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 0, 1) npu_output1 = self.npu_op_exec_out(input_x1, 2, 0, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_3_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 3, 1) npu_output1 = self.npu_op_exec_out(input_x1, 3, 3, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_4_4_1_out(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3, 3), np.float32) output_y = self.generate_data(-1, 1, (3, 3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 4, 1) npu_output1 = self.npu_op_exec_out(input_x1, 4, 4, 1, output_y) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_4_0_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 0, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 4, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_1_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 1, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 1, 1, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_1_0_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 1, 0, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 1, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_1_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 1, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 3, 1, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_2_2_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 2, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 2, 2, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_2_0_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 2, 0, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 2, 0, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_3_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 3, 3, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 3, 3, 1) self.assertRtolEqual(cpu_output1, npu_output1) def test_renorm_3_3_3_3_3_4_4_1_inplace(self, device): input_x1 = self.generate_data(-1, 1, (3, 3, 3, 3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 4, 4, 1) npu_output1 = self.npu_op_exec_inplace(input_x1, 4, 4, 1) self.assertRtolEqual(cpu_output1, npu_output1) instantiate_device_type_tests(TestRenorm, globals(), except_for='cpu') if __name__ == "__main__": run_tests()
47.032967
80
0.657399
13e3d41212376737db1f2bc90807c8cf5cb99f96
38
py
Python
python_lessons/freecodecamp_python/009_fruit_banana.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/freecodecamp_python/009_fruit_banana.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/freecodecamp_python/009_fruit_banana.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
fruit = "banana" x = fruit[1] print(x)
12.666667
16
0.631579
b9249ca4ced9ac73dad0aa8a6e0d563081958b02
500
py
Python
Zh3r0/2021/crypto/1n_jection/challenge.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
1
2021-11-02T20:53:58.000Z
2021-11-02T20:53:58.000Z
Zh3r0/2021/crypto/1n_jection/challenge.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
null
null
null
Zh3r0/2021/crypto/1n_jection/challenge.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
null
null
null
from secret import flag def nk2n(nk): l = len(nk) if l==1: return nk[0] elif l==2: i,j = nk return ((i+j)*(i+j+1))//2 +j return nk2n([nk2n(nk[:l-l//2]), nk2n(nk[l-l//2:])]) print(nk2n(flag)) #2597749519984520018193538914972744028780767067373210633843441892910830749749277631182596420937027368405416666234869030284255514216592219508067528406889067888675964979055810441575553504341722797908073355991646423732420612775191216409926513346494355434293682149298585
35.714286
266
0.754
b9a8464dd110c56545caf49b7733cce22bf42c9f
1,276
py
Python
src/main/python/correlation/convert.py
gwdgithubnom/ox-patient
cddf4fe381cb4506db8e0d62803dd2044cf7ad92
[ "MIT" ]
null
null
null
src/main/python/correlation/convert.py
gwdgithubnom/ox-patient
cddf4fe381cb4506db8e0d62803dd2044cf7ad92
[ "MIT" ]
null
null
null
src/main/python/correlation/convert.py
gwdgithubnom/ox-patient
cddf4fe381cb4506db8e0d62803dd2044cf7ad92
[ "MIT" ]
1
2021-04-14T00:45:38.000Z
2021-04-14T00:45:38.000Z
from PIL import Image filename='test-50x50.jpg' im = Image.open(filename) import numpy from pandas import DataFrame # pixels = list(im.getdata()) width, height = im.size #imgarray=numpy.array(img) # pixels = [pixels[i * width:(i + 1) * width] for i in range(height)] # pixels = numpy.asarray(im) img = Image.open(filename) # img = img.convert("LA") img = img.convert("RGB") pixdata = img.load() rows=img.size[0] cols=img.size[1] #scan by cols """ for y in range(cols): for x in range(rows): pixdata[x,y]=0 if pixdata[x,y]>=128 else 255 """ x_variable=[] y_variable=[] pixels=numpy.zeros((rows,cols)) tag=0 for i in range(): for width_x in range(img.size[0]): count=0 for height_y in range(img.size[1]): pixel = img.getpixel((width_x, height_y)) # print('start' + str(img.getpixel((width_x, height_y)))) gray = pixel[0] * 0.299 + pixel[1] * 0.587 + pixel[2] * 0.114 if (gray >10): # pixels[height_y][width_x]=1 count=count+1 # z = (255 - z) / 255 * 255 pixels[tag][width_x]=count pixels=DataFrame(pixels) pixels.to_csv('pixel_data-01.csv') # numpy.savetxt("pixel_data.csv", pixels, delimiter=",")
29.674419
74
0.590125
b9e1656ac04bb19843019aa1e296d7b670033b74
1,576
py
Python
101-symmetric-tree/101-symmetric-tree.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
2
2021-12-05T14:29:06.000Z
2022-01-01T05:46:13.000Z
101-symmetric-tree/101-symmetric-tree.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
101-symmetric-tree/101-symmetric-tree.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSymmetric(self, root: Optional[TreeNode]) -> bool: # both does not exist if not root.left and not root.right: return True # one exists - left or right elif not root.left or not root.right: return False # both left and right exists stack1=[root.left] output1=[root.left.val] stack2=[root.right] output2=[root.right.val] # append left first while(stack1): cur = stack1.pop(0) if cur.left: stack1.append(cur.left) output1.append(cur.left.val) else: output1.append(101) # 101 = null if cur.right: stack1.append(cur.right) output1.append(cur.right.val) else: output1.append(101) # append right first while(stack2): cur = stack2.pop(0) if cur.right: output2.append(cur.right.val) stack2.append(cur.right) else: output2.append(101) if cur.left: output2.append(cur.left.val) stack2.append(cur.left) else: output2.append(101) if output1==output2: return True else: return False
30.901961
60
0.499365
6a26d705512ea29e001746622e4f91c9eb18ed9c
273
py
Python
programm/skype.py
team172011/ps_cagebot
ab6f7bdbc74ad3baee3feebc4b7b0fa4f726b179
[ "MIT" ]
null
null
null
programm/skype.py
team172011/ps_cagebot
ab6f7bdbc74ad3baee3feebc4b7b0fa4f726b179
[ "MIT" ]
null
null
null
programm/skype.py
team172011/ps_cagebot
ab6f7bdbc74ad3baee3feebc4b7b0fa4f726b179
[ "MIT" ]
null
null
null
""" Script to start video chat by calling a skype contact @author: wimmer, simon-justus """ import subprocess def call(username): command = "C:\Users\ITM2\Surrogate\ps_cagebot\programm\callsimelton91.cmd {}".format(username) subprocess.call(command, shell=False)
24.818182
98
0.747253
6a3559781bbede3aaca8efbc6d2bcbb75ca6c516
2,972
py
Python
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/utils/label_converter.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,045
2019-05-09T02:50:43.000Z
2022-03-31T06:22:11.000Z
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/utils/label_converter.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,468
2019-05-16T00:48:18.000Z
2022-03-08T04:12:44.000Z
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/utils/label_converter.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,077
2019-05-09T02:50:53.000Z
2022-03-27T11:05:32.000Z
import numpy as np from PIL import Image, ImageDraw, ImageFont from xml.dom import minidom import random import cv2 import os def generateXml(xml_path, boxes, w, h, d): impl = minidom.getDOMImplementation() doc = impl.createDocument(None, None, None) rootElement = doc.createElement('annotation') sizeElement = doc.createElement("size") width = doc.createElement("width") width.appendChild(doc.createTextNode(str(w))) sizeElement.appendChild(width) height = doc.createElement("height") height.appendChild(doc.createTextNode(str(h))) sizeElement.appendChild(height) depth = doc.createElement("depth") depth.appendChild(doc.createTextNode(str(d))) sizeElement.appendChild(depth) rootElement.appendChild(sizeElement) for item in boxes: objElement = doc.createElement('object') nameElement = doc.createElement("name") nameElement.appendChild(doc.createTextNode(str(item[0]))) objElement.appendChild(nameElement) difficultElement = doc.createElement("difficult") difficultElement.appendChild(doc.createTextNode(str(0))) objElement.appendChild(difficultElement) bndElement = doc.createElement('bndbox') xmin = doc.createElement('xmin') xmin.appendChild(doc.createTextNode(str(item[1]))) bndElement.appendChild(xmin) ymin = doc.createElement('ymin') ymin.appendChild(doc.createTextNode(str(item[2]))) bndElement.appendChild(ymin) xmax = doc.createElement('xmax') xmax.appendChild(doc.createTextNode(str(item[3]))) bndElement.appendChild(xmax) ymax = doc.createElement('ymax') ymax.appendChild(doc.createTextNode(str(item[4]))) bndElement.appendChild(ymax) objElement.appendChild(bndElement) rootElement.appendChild(objElement) doc.appendChild(rootElement) f = open(xml_path, 'w') doc.writexml(f, addindent=' ', newl='\n') f.close() Index = 0 exp_path='./DeepLeague100K/origin_data/train' def export(npz_file_name, exp_path): global Index np_obj = np.load(npz_file_name) print (len(np_obj['images'])) for image, boxes in zip(np_obj['images'], np_obj['boxes']): img = Image.fromarray(image) img = np.array(img, dtype = np.uint8) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) generateXml(exp_path + '/Annotations/' + str(Index) + '.xml', boxes, img.shape[0], img.shape[1], img.shape[2]) cv2.imwrite(exp_path + '/Images/' + str(Index) + '.jpg', img) Index += 1 if __name__ == '__main__': root_path = './DeepLeague100K/clusters_cleaned/train/' npz_names = os.listdir(root_path) for item in npz_names: export(os.path.join(root_path, item), './DeepLeague100K/lol/train') root_path = './DeepLeague100K/clusters_cleaned/val/' npz_names = os.listdir(root_path) for item in npz_names: export(os.path.join(root_path, item), './DeepLeague100K/lol/eval')
36.691358
118
0.68607
e02989408f61397fb05fddf021831b6b7fab7062
27,549
py
Python
src/onegov/swissvotes/models/vote.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/models/vote.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/models/vote.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from cached_property import cached_property from collections import OrderedDict from onegov.core.orm import Base from onegov.core.orm.mixins import ContentMixin from onegov.core.orm.mixins import content_property from onegov.core.orm.mixins import TimestampMixin from onegov.core.orm.types import JSON from onegov.core.utils import Bunch from onegov.pdf.utils import extract_pdf_info from onegov.swissvotes import _ from onegov.swissvotes.models.actor import Actor from onegov.swissvotes.models.file import FileSubCollection from onegov.swissvotes.models.file import LocalizedFile from onegov.swissvotes.models.file import LocalizedFiles from onegov.swissvotes.models.policy_area import PolicyArea from onegov.swissvotes.models.region import Region from sqlalchemy import Column from sqlalchemy import Date from sqlalchemy import func from sqlalchemy import Integer from sqlalchemy import Numeric from sqlalchemy import Text from sqlalchemy_utils import observes from sqlalchemy.dialects.postgresql import TSVECTOR from sqlalchemy.orm import deferred from urllib.parse import urlparse from urllib.parse import urlunparse class encoded_property(object): """ A shorthand property to return the label of an encoded value. Requires the instance the have a `codes`-lookup function. Creates the SqlAlchemy Column (with a prefixed underline). Example: class MyClass(object): value = encoded_property() def codes(self, attributes): return {0: 'None', 1: 'One'} """ def __init__(self, nullable=True): self.nullable = nullable def __set_name__(self, owner, name): self.name = name assert not hasattr(owner, f'_{name}') setattr( owner, f'_{name}', Column(name, Integer, nullable=self.nullable) ) def __get__(self, instance, owner): value = getattr(instance, f'_{self.name}') return instance.codes(self.name).get(value) class localized_property(object): """ A shorthand property to return a localized attribute. Requires at least a `xxx_de` attribute and falls back to this. Example: class MyClass(object): value_de = Column(Text) value_fr = Column(Text) value = localized_property() """ def __set_name__(self, owner, name): self.name = name def __get__(self, instance, owner): lang = instance.session_manager.current_locale[:2] attribute = f'{self.name}_{lang}' if hasattr(instance, attribute): return getattr(instance, attribute) return getattr(instance, f'{self.name}_de', None) class SwissVote(Base, TimestampMixin, LocalizedFiles, ContentMixin): """ A single vote as defined by the code book. There are a lot of columns: - Some general, ready to be used attributes (bfs_number, ...) - Encoded attributes, where the raw integer value is stored prefixed with an underline and the attribute returns a translatable label by using the ``codes`` function, e.g. ``_legal_form``, ``legal_form`` and ``codes(' _legal_form')``. - Descriptors, easily accessible by using ``policy_areas``. - A lot of lazy loaded, cantonal results only used when importing/exporting the dataset. - Recommendations from different parties and assocciations. Internally stored as JSON and easily accessible and group by slogan with ``recommendations_parties``, ``recommendations_divergent_parties`` and ``recommendations_associations``. - Different localized attachments, some of them indexed for full text search. - Metadata from external information sources such as Museum für Gestaltung can be stored in the content or meta field provided by the ``ContentMixin``. """ __tablename__ = 'swissvotes' ORGANIZATION_NO_LONGER_EXISTS = 9999 @staticmethod def codes(attribute): """ Returns the codes for the given attribute as defined in the code book. """ if attribute == 'legal_form': return OrderedDict(( (1, _("Mandatory referendum")), (2, _("Optional referendum")), (3, _("Popular initiative")), (4, _("Direct counter-proposal")), (5, _("Tie-breaker")), )) if attribute == 'result' or attribute.endswith('_accepted'): return OrderedDict(( (0, _("Rejected")), (1, _("Accepted")), (3, _("Majority of the cantons not necessary")), (8, _("Counter-proposal preferred")), (9, _("Popular initiative preferred")), )) if attribute in ( 'position_council_of_states', 'position_federal_council', 'position_national_council', 'position_parliament', ): return OrderedDict(( (1, _("Accepting")), (2, _("Rejecting")), (3, _("None")), (8, _("Preference for the counter-proposal")), (9, _("Preference for the popular initiative")), )) if attribute == 'recommendation': # Sorted by how it should be displayed in strengths table return OrderedDict(( (1, _("Yea")), (9, _("Preference for the popular initiative")), (2, _("Nay")), (8, _("Preference for the counter-proposal")), (4, _("Empty")), (5, _("Free vote")), (3, _("None")), (66, _("Neutral")), (9999, _("Organization no longer exists")), (None, _("unknown")) )) @staticmethod def metadata_codes(attribute): if attribute == 'position': return OrderedDict(( ('yes', _("Yes")), ('no', _("No")), ('neutral', _("Neutral")), ('mixed', _("Mixed")), )) if attribute == 'language': return OrderedDict(( ('de', _('German')), ('fr', _('French')), ('it', _('Italian')), ('rm', _('Rhaeto-Romanic')), ('mixed', _('Mixed')), )) if attribute == 'doctype': return OrderedDict(( ('argument', _('Argumentarium')), ('article', _('Press article')), ('release', _('Media release')), ('lecture', _('Lecture')), ('leaflet', _('Leaflet')), ('essay', _('Essay')), ('letter', _('Letter')), ('legal', _('Legal text')), ('other', _('Other')), )) raise RuntimeError(f"No codes available for '{attribute}'") id = Column(Integer, nullable=False, primary_key=True) # Formal description bfs_number = Column(Numeric(8, 2), nullable=False) date = Column(Date, nullable=False) title_de = Column(Text, nullable=False) title_fr = Column(Text, nullable=False) title = localized_property() short_title_de = Column(Text, nullable=False) short_title_fr = Column(Text, nullable=False) short_title = localized_property() brief_description_title = Column(Text) keyword = Column(Text) legal_form = encoded_property(nullable=False) initiator = Column(Text) anneepolitique = Column(Text) bfs_map_de = Column(Text) bfs_map_fr = Column(Text) bfs_map = localized_property() @property def bfs_map_host(self): """ Returns the Host of the BFS Map link for CSP. """ try: return urlunparse(list(urlparse(self.bfs_map)[:2]) + 4 * ['']) except ValueError: pass # Additional links link_curia_vista_de = content_property() link_curia_vista_fr = content_property() link_curia_vista = localized_property() link_bk_results_de = content_property() link_bk_results_fr = content_property() link_bk_results = localized_property() link_bk_chrono_de = content_property() link_bk_chrono_fr = content_property() link_bk_chrono = localized_property() link_federal_council_de = content_property() link_federal_council_fr = content_property() link_federal_council_en = content_property() link_federal_council = localized_property() link_federal_departement_de = content_property() link_federal_departement_fr = content_property() link_federal_departement_en = content_property() link_federal_departement = localized_property() link_federal_office_de = content_property() link_federal_office_fr = content_property() link_federal_office_en = content_property() link_federal_office = localized_property() link_post_vote_poll_de = content_property() link_post_vote_poll_fr = content_property() link_post_vote_poll_en = content_property() link_post_vote_poll = localized_property() # space-separated poster URLs coming from the dataset posters_mfg_yea = Column(Text) posters_mfg_nay = Column(Text) posters_sa_yea = Column(Text) posters_sa_nay = Column(Text) # Fetched list of image urls using MfG API posters_mfg_yea_imgs = content_property(default=dict) posters_mfg_nay_imgs = content_property(default=dict) # Fetched list of image urls using SA API posters_sa_yea_imgs = content_property(default=dict) posters_sa_nay_imgs = content_property(default=dict) def posters(self, request): result = {'yea': [], 'nay': []} for key, attribute, label in ( ('yea', 'posters_mfg_yea', _('Link eMuseum.ch')), ('nay', 'posters_mfg_nay', _('Link eMuseum.ch')), ('yea', 'posters_sa_yea', _('Link Social Archives')), ('nay', 'posters_sa_nay', _('Link Social Archives')), ): images = getattr(self, f'{attribute}_imgs') urls = (getattr(self, attribute) or '').strip().split(' ') for url in urls: image = images.get(url) if image: result[key].append( Bunch( thumbnail=image, image=image, url=url, label=label ) ) for key, attribute, label in ( ('yea', 'campaign_material_yea', _('Swissvotes database')), ('nay', 'campaign_material_nay', _('Swissvotes database')), ): for image in getattr(self, attribute): result[key].append( Bunch( thumbnail=request.link(image, 'thumbnail'), image=request.link(image), url=None, label=label ) ) return result # Media media_ads_total = Column(Integer) media_ads_yea_p = Column(Numeric(13, 10)) media_coverage_articles_total = Column(Integer) media_coverage_tonality_total = Column(Numeric(13, 10)) # Descriptor descriptor_1_level_1 = Column(Numeric(8, 4)) descriptor_1_level_2 = Column(Numeric(8, 4)) descriptor_1_level_3 = Column(Numeric(8, 4)) descriptor_2_level_1 = Column(Numeric(8, 4)) descriptor_2_level_2 = Column(Numeric(8, 4)) descriptor_2_level_3 = Column(Numeric(8, 4)) descriptor_3_level_1 = Column(Numeric(8, 4)) descriptor_3_level_2 = Column(Numeric(8, 4)) descriptor_3_level_3 = Column(Numeric(8, 4)) @cached_property def policy_areas(self): """ Returns the policy areas / descriptors of the vote. """ def get_level(number, level): value = getattr(self, f'descriptor_{number}_level_{level}') if value is not None: return PolicyArea(value, level) result = [] for number in (1, 2, 3): for level in (3, 2, 1): area = get_level(number, level) if area: result.append(area) break return result # Result result = encoded_property() result_turnout = Column(Numeric(13, 10)) result_people_accepted = encoded_property() result_people_yeas_p = Column(Numeric(13, 10)) result_cantons_accepted = encoded_property() result_cantons_yeas = Column(Numeric(3, 1)) result_cantons_nays = Column(Numeric(3, 1)) result_ag_accepted = encoded_property() result_ai_accepted = encoded_property() result_ar_accepted = encoded_property() result_be_accepted = encoded_property() result_bl_accepted = encoded_property() result_bs_accepted = encoded_property() result_fr_accepted = encoded_property() result_ge_accepted = encoded_property() result_gl_accepted = encoded_property() result_gr_accepted = encoded_property() result_ju_accepted = encoded_property() result_lu_accepted = encoded_property() result_ne_accepted = encoded_property() result_nw_accepted = encoded_property() result_ow_accepted = encoded_property() result_sg_accepted = encoded_property() result_sh_accepted = encoded_property() result_so_accepted = encoded_property() result_sz_accepted = encoded_property() result_tg_accepted = encoded_property() result_ti_accepted = encoded_property() result_ur_accepted = encoded_property() result_vd_accepted = encoded_property() result_vs_accepted = encoded_property() result_zg_accepted = encoded_property() result_zh_accepted = encoded_property() @cached_property def results_cantons(self): """ Returns the results of all cantons. """ result = {} for canton in Region.cantons(): value = getattr(self, f'_result_{canton}_accepted') if value is not None: result.setdefault(value, []).append(Region(canton)) codes = self.codes('result_accepted') return OrderedDict([ (codes[key], result[key]) for key in sorted(result.keys()) ]) # Authorities procedure_number = Column(Text) position_federal_council = encoded_property() position_parliament = encoded_property() position_national_council = encoded_property() position_national_council_yeas = Column(Integer) position_national_council_nays = Column(Integer) position_council_of_states = encoded_property() position_council_of_states_yeas = Column(Integer) position_council_of_states_nays = Column(Integer) # Duration duration_federal_assembly = Column(Integer) duration_initative_collection = Column(Integer) duration_referendum_collection = Column(Integer) signatures_valid = Column(Integer) # Voting recommendations recommendations = Column(JSON, nullable=False, default=dict) recommendations_other_yes = Column(Text) recommendations_other_no = Column(Text) recommendations_other_counter_proposal = Column(Text) recommendations_other_popular_initiative = Column(Text) recommendations_other_free = Column(Text) recommendations_divergent = Column(JSON, nullable=False, default=dict) def get_recommendation(self, name): """ Get the recommendations by name. """ return self.codes('recommendation').get( self.recommendations.get(name) ) def get_recommendation_of_existing_parties(self): """ Get only the existing parties as when this vote was conducted """ if not self.recommendations: return {} return { k: v for k, v in self.recommendations.items() if v != self.ORGANIZATION_NO_LONGER_EXISTS } def group_recommendations(self, recommendations, ignore_unknown=False): """ Group the given recommendations by slogan. """ codes = self.codes('recommendation') recommendation_codes = list(codes.keys()) def by_recommendation(reco): return recommendation_codes.index(reco) result = {} for actor, recommendation in recommendations: if recommendation == self.ORGANIZATION_NO_LONGER_EXISTS: continue if ignore_unknown and recommendation is None: continue result.setdefault(recommendation, []).append(actor) return OrderedDict([ (codes[key], result[key]) for key in sorted(result.keys(), key=by_recommendation) ]) def get_actors_share(self, actor): assert isinstance(actor, str), 'Actor must be a string' attr = f'national_council_share_{actor}' return getattr(self, attr, 0) or 0 @cached_property def sorted_actors_list(self): """ Returns a list of actors of the current vote sorted by: 1. codes for recommendations (strength table) 2. by electoral share (descending) It filters out those parties who have no electoral share """ result = [] for slogan, actor_list in self.recommendations_parties.items(): actors = (d.name for d in actor_list) # Filter out those who have None as share result.extend( sorted(actors, key=self.get_actors_share, reverse=True) ) return result @cached_property def recommendations_parties(self): """ The recommendations of the parties grouped by slogans. """ recommendations = self.recommendations or {} return self.group_recommendations(( (Actor(name), recommendations.get(name)) for name in Actor.parties() ), ignore_unknown=True) @cached_property def recommendations_divergent_parties(self, ignore_unknown=True): """ The divergent recommendations of the parties grouped by slogans. """ recommendations = self.recommendations_divergent or {} return self.group_recommendations(( ( (Actor(name.split('_')[0]), Region(name.split('_')[1])), recommendation, ) for name, recommendation in sorted(recommendations.items()) ), ignore_unknown=ignore_unknown) @cached_property def recommendations_associations(self): """ The recommendations of the associations grouped by slogans. """ def as_list(attribute, code): value = getattr(self, f'recommendations_other_{attribute}') return [ (Actor(name.strip()), code) for name in (value or '').split(',') if name.strip() ] recommendations = self.recommendations or {} recommendations = [ (Actor(name), recommendations.get(name)) for name in Actor.associations() ] for attribute, code in ( ('yes', 1), ('no', 2), ('free', 5), ('counter_proposal', 8), ('popular_initiative', 9), ): recommendations.extend(as_list(attribute, code)) return self.group_recommendations(recommendations, ignore_unknown=True) # Electoral strength national_council_election_year = Column(Integer) # drop? national_council_share_fdp = Column(Numeric(13, 10)) national_council_share_cvp = Column(Numeric(13, 10)) national_council_share_sps = Column(Numeric(13, 10)) national_council_share_svp = Column(Numeric(13, 10)) national_council_share_lps = Column(Numeric(13, 10)) national_council_share_ldu = Column(Numeric(13, 10)) national_council_share_evp = Column(Numeric(13, 10)) national_council_share_csp = Column(Numeric(13, 10)) national_council_share_pda = Column(Numeric(13, 10)) national_council_share_poch = Column(Numeric(13, 10)) national_council_share_gps = Column(Numeric(13, 10)) national_council_share_sd = Column(Numeric(13, 10)) national_council_share_rep = Column(Numeric(13, 10)) national_council_share_edu = Column(Numeric(13, 10)) national_council_share_fps = Column(Numeric(13, 10)) national_council_share_lega = Column(Numeric(13, 10)) national_council_share_kvp = Column(Numeric(13, 10)) national_council_share_glp = Column(Numeric(13, 10)) national_council_share_bdp = Column(Numeric(13, 10)) national_council_share_mcg = Column(Numeric(13, 10)) national_council_share_mitte = Column(Numeric(13, 10)) national_council_share_ubrige = Column(Numeric(13, 10)) national_council_share_yeas = Column(Numeric(13, 10)) national_council_share_nays = Column(Numeric(13, 10)) national_council_share_none = Column(Numeric(13, 10)) national_council_share_empty = Column(Numeric(13, 10)) national_council_share_free_vote = Column(Numeric(13, 10)) national_council_share_neutral = Column(Numeric(13, 10)) national_council_share_unknown = Column(Numeric(13, 10)) @cached_property def has_national_council_share_data(self): if self.national_council_election_year: return True return False # attachments voting_text = LocalizedFile( label=_('Voting text'), extension='pdf', static_views={ 'de_CH': 'abstimmungstext-de.pdf', 'fr_CH': 'abstimmungstext-fr.pdf', } ) brief_description = LocalizedFile( label=_('Brief description Swissvotes'), extension='pdf', static_views={ 'de_CH': 'kurzbeschreibung.pdf', } ) federal_council_message = LocalizedFile( label=_('Federal council message'), extension='pdf', static_views={ 'de_CH': 'botschaft-de.pdf', 'fr_CH': 'botschaft-fr.pdf', } ) parliamentary_debate = LocalizedFile( label=_('Parliamentary debate'), extension='pdf', static_views={ 'de_CH': 'parlamentsberatung.pdf', } ) voting_booklet = LocalizedFile( label=_('Voting booklet'), extension='pdf', static_views={ 'de_CH': 'brochure-de.pdf', 'fr_CH': 'brochure-fr.pdf', } ) resolution = LocalizedFile( label=_('Resolution'), extension='pdf', static_views={ 'de_CH': 'erwahrung-de.pdf', 'fr_CH': 'erwahrung-fr.pdf', } ) realization = LocalizedFile( label=_('Realization'), extension='pdf', static_views={ 'de_CH': 'zustandekommen-de.pdf', 'fr_CH': 'zustandekommen-fr.pdf', } ) ad_analysis = LocalizedFile( label=_('Analysis of the advertising campaign by Année Politique'), extension='pdf', static_views={ 'de_CH': 'inserateanalyse.pdf', } ) results_by_domain = LocalizedFile( label=_('Result by canton, district and municipality'), extension='xlsx', static_views={ 'de_CH': 'staatsebenen.xlsx', } ) foeg_analysis = LocalizedFile( label=_('Media coverage: fög analysis'), extension='pdf', static_views={ 'de_CH': 'medienanalyse.pdf', } ) post_vote_poll = LocalizedFile( label=_('Full analysis of post-vote poll results'), extension='pdf', static_views={ 'de_CH': 'nachbefragung-de.pdf', 'fr_CH': 'nachbefragung-fr.pdf', } ) post_vote_poll_methodology = LocalizedFile( label=_('Questionnaire of the poll'), extension='pdf', static_views={ 'de_CH': 'nachbefragung-methode-de.pdf', 'fr_CH': 'nachbefragung-methode-fr.pdf', } ) post_vote_poll_dataset = LocalizedFile( label=_('Dataset of the post-vote poll'), extension='csv', static_views={ 'de_CH': 'nachbefragung.csv', } ) post_vote_poll_dataset_sav = LocalizedFile( label=_('Dataset of the post-vote poll'), extension='sav', static_views={ 'de_CH': 'nachbefragung.sav', } ) post_vote_poll_dataset_dta = LocalizedFile( label=_('Dataset of the post-vote poll'), extension='dta', static_views={ 'de_CH': 'nachbefragung.dta', } ) post_vote_poll_codebook = LocalizedFile( label=_('Codebook for the post-vote poll'), extension='pdf', static_views={ 'de_CH': 'nachbefragung-codebuch-de.pdf', 'fr_CH': 'nachbefragung-codebuch-fr.pdf', } ) post_vote_poll_codebook_xlsx = LocalizedFile( label=_('Codebook for the post-vote poll'), extension='xlsx', static_views={ 'de_CH': 'nachbefragung-codebuch-de.xlsx', 'fr_CH': 'nachbefragung-codebuch-fr.xlsx', } ) post_vote_poll_report = LocalizedFile( label=_('Technical report of the post-vote poll'), extension='pdf', static_views={ 'de_CH': 'nachbefragung-technischer-bericht.pdf', } ) preliminary_examination = LocalizedFile( label=_('Preliminary examination'), extension='pdf', static_views={ 'de_CH': 'vorpruefung-de.pdf', 'fr_CH': 'vorpruefung-fr.pdf', } ) campaign_material_yea = FileSubCollection() campaign_material_nay = FileSubCollection() campaign_material_other = FileSubCollection() campaign_material_metadata = Column(JSON, nullable=False, default=dict) # searchable attachment texts searchable_text_de_CH = deferred(Column(TSVECTOR)) searchable_text_fr_CH = deferred(Column(TSVECTOR)) indexed_files = { 'voting_text', 'brief_description', 'federal_council_message', 'parliamentary_debate', # we don't include the voting booklet, resolution and ad analysis # - they might contain other votes from the same day! 'realization', 'preliminary_examination' } def vectorize_files(self): """ Extract the text from the indexed files and store it. """ for locale, language in (('de_CH', 'german'), ('fr_CH', 'french')): files = [ SwissVote.__dict__[file].__get_by_locale__(self, locale) for file in self.indexed_files ] text = ' '.join([ extract_pdf_info(file.reference.file)[1] or '' for file in files if file ]).strip() setattr( self, f'searchable_text_{locale}', func.to_tsvector(language, text) ) @observes('files') def files_observer(self, files): self.vectorize_files() def get_file(self, name, locale=None, fallback=True): """ Returns the requested localized file. Uses the current locale if no locale is given. Falls back to the default locale if the file is not available in the requested locale. """ get = SwissVote.__dict__.get(name).__get_by_locale__ default_locale = self.session_manager.default_locale fallback = get(self, default_locale) if fallback else None result = get(self, locale) if locale else getattr(self, name, None) return result or fallback
35.593023
79
0.620748
e047f5bdcb57a46d7c8cfa4c5ccc97c519816d86
1,102
pyde
Python
sketches/imagepalette/imagepalette.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
4
2018-06-03T02:11:46.000Z
2021-08-18T19:55:15.000Z
sketches/imagepalette/imagepalette.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
null
null
null
sketches/imagepalette/imagepalette.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
3
2019-12-23T19:12:51.000Z
2021-04-30T14:00:31.000Z
# Nach einer Idee von Kevin Workman # (https://happycoding.io/examples/p5js/images/image-palette) WIDTH = 800 HEIGHT = 640 palette = ["#264653", "#2a9d8f", "#e9c46a", "#f4a261", "#e76f51"] def setup(): global img size(WIDTH, HEIGHT) this.surface.setTitle("Image Palette") img = loadImage("akt.jpg") image(img, 0, 0) noLoop() def draw(): global y, img for x in range(width/2): for y in range(height): img_color = img.get(x, y) palette_color = get_palette_color(img_color) set(x + width/2, y, palette_color) def get_palette_color(img_color): min_distance = 999999 img_r = red(img_color) img_g = green(img_color) img_b = blue(img_color) for c in palette: palette_r = red(c) palette_g = green(c) palette_b = blue(c) color_distance = dist(img_r, img_g, img_b, palette_r, palette_g, palette_b) if color_distance < min_distance: target_color = c min_distance = color_distance return(target_color)
26.878049
65
0.598004
164fa02725b62e0ebdec2154127c81d33176130a
505
py
Python
06.BinarySearch/HG/B2003.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
1
2021-11-21T06:03:06.000Z
2021-11-21T06:03:06.000Z
06.BinarySearch/HG/B2003.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
2
2021-10-13T07:21:09.000Z
2021-11-14T13:53:08.000Z
06.BinarySearch/HG/B2003.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
null
null
null
import sys N, M = map(int, sys.stdin.readline().split()) arr = list(map(int, sys.stdin.readline().split())) # print("===================") s = 0 e = 0 answer = 0 tmp = arr[s] while s < N and e < N: if tmp < M: if e+1 >= N: break tmp += arr[e+1] e += 1 elif tmp == M: answer += 1 if e+1 >= N: break tmp += arr[e+1] e += 1 else: tmp -= arr[s] s += 1 # print(s, e, tmp, answer) print(answer)
16.833333
50
0.411881
16b03a4bdc1791f895a738f3289a159ca31508c3
217
py
Python
src/python/py-accepted/50A.py
cbarnson/UVa
0dd73fae656613e28b5aaf5880c5dad529316270
[ "Unlicense", "MIT" ]
2
2019-09-07T17:00:26.000Z
2020-08-05T02:08:35.000Z
src/python/py-accepted/50A.py
cbarnson/UVa
0dd73fae656613e28b5aaf5880c5dad529316270
[ "Unlicense", "MIT" ]
null
null
null
src/python/py-accepted/50A.py
cbarnson/UVa
0dd73fae656613e28b5aaf5880c5dad529316270
[ "Unlicense", "MIT" ]
null
null
null
#! python # Problem # : 50A # Created on : 2019-01-14 21:29:26 def Main(): m, n = map(int, input().split(' ')) val = m * n cnt = int(val / 2) print(cnt) if __name__ == '__main__': Main()
13.5625
39
0.502304
bcf6984647315163fa6dfa3c70fcb9ccd945a1c1
4,005
py
Python
tests/test_tarifeinschraenkung.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
1
2022-03-02T12:49:44.000Z
2022-03-02T12:49:44.000Z
tests/test_tarifeinschraenkung.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
21
2022-02-04T07:38:46.000Z
2022-03-28T14:01:53.000Z
tests/test_tarifeinschraenkung.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
null
null
null
from decimal import Decimal import pytest # type:ignore[import] from bo4e.com.geraet import Geraet from bo4e.com.geraeteeigenschaften import Geraeteeigenschaften from bo4e.com.menge import Menge # type:ignore[import] from bo4e.com.tarifeinschraenkung import Tarifeinschraenkung, TarifeinschraenkungSchema from bo4e.enum.geraetemerkmal import Geraetemerkmal from bo4e.enum.geraetetyp import Geraetetyp from bo4e.enum.mengeneinheit import Mengeneinheit from bo4e.enum.voraussetzungen import Voraussetzungen from tests.serialization_helper import assert_serialization_roundtrip # type:ignore[import] example_tarifeinschraenkung = Tarifeinschraenkung( zusatzprodukte=["foo", "bar"], voraussetzungen=[Voraussetzungen.ALTVERTRAG, Voraussetzungen.DIREKTVERTRIEB], einschraenkungzaehler=[ Geraet( geraetenummer="0815", geraeteeigenschaften=Geraeteeigenschaften( geraetemerkmal=Geraetemerkmal.GAS_G1000, geraetetyp=Geraetetyp.MULTIPLEXANLAGE, ), ), Geraet(geraetenummer="197foo"), ], einschraenkungleistung=[ Menge(wert=Decimal(12.5), einheit=Mengeneinheit.MWH), Menge(wert=Decimal(30), einheit=Mengeneinheit.KWH), ], ) class TestTarifeinschraenkung: @pytest.mark.parametrize( "tarifeinschraenkung, expected_json_dict", [ pytest.param( Tarifeinschraenkung(), { "zusatzprodukte": None, "voraussetzungen": None, "einschraenkungzaehler": None, "einschraenkungleistung": None, }, id="minimal attributes", ), pytest.param( Tarifeinschraenkung( zusatzprodukte=["foo", "bar"], voraussetzungen=[Voraussetzungen.ALTVERTRAG, Voraussetzungen.DIREKTVERTRIEB], einschraenkungzaehler=[ Geraet( geraetenummer="0815", geraeteeigenschaften=Geraeteeigenschaften( geraetemerkmal=Geraetemerkmal.GAS_G1000, geraetetyp=Geraetetyp.MULTIPLEXANLAGE, ), ), Geraet(geraetenummer="197foo"), ], einschraenkungleistung=[ Menge(wert=Decimal(12.5), einheit=Mengeneinheit.MWH), Menge(wert=Decimal(30), einheit=Mengeneinheit.KWH), ], ), { "zusatzprodukte": ["foo", "bar"], "voraussetzungen": ["ALTVERTRAG", "DIREKTVERTRIEB"], "einschraenkungzaehler": [ { "geraetenummer": "0815", "geraeteeigenschaften": {"geraetemerkmal": "GAS_G1000", "geraetetyp": "MULTIPLEXANLAGE"}, }, { "geraetenummer": "197foo", "geraeteeigenschaften": None, }, ], "einschraenkungleistung": [ { "wert": "12.5", "einheit": "MWH", }, { "wert": "30", "einheit": "KWH", }, ], }, id="maximal attributes", ), ], ) def test_serialization_roundtrip(self, tarifeinschraenkung: Tarifeinschraenkung, expected_json_dict: dict): """ Test de-/serialisation of Tarifeinschraenkung """ assert_serialization_roundtrip(tarifeinschraenkung, TarifeinschraenkungSchema(), expected_json_dict)
39.653465
117
0.518352
d5fe099416be061df33d43283a52c1995868dbe1
1,037
py
Python
2016/day05_how_about_a_nice_game_of_chess/python/src/part2.py
tlake/advent-of-code
17c729af2af5f1d95ba6ff68771a82ca6d00b05d
[ "MIT" ]
null
null
null
2016/day05_how_about_a_nice_game_of_chess/python/src/part2.py
tlake/advent-of-code
17c729af2af5f1d95ba6ff68771a82ca6d00b05d
[ "MIT" ]
null
null
null
2016/day05_how_about_a_nice_game_of_chess/python/src/part2.py
tlake/advent-of-code
17c729af2af5f1d95ba6ff68771a82ca6d00b05d
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Docstring.""" from hashlib import md5 from common import get_input class PasswordFinder(object): """.""" def __init__(self): """Initialize.""" self.integer = 0 self.password = [None for x in range(8)] def get_digest(self, source): """.""" return md5(source.encode()).hexdigest() def find_password(self, door_id): """.""" while None in self.password: digest = self.get_digest(str(door_id) + str(self.integer)) if digest[:5] == "00000": try: i = int(digest[5]) if i < 8 and self.password[i] is None: self.password[i] = digest[6] except ValueError: pass self.integer += 1 return ''.join(self.password) if __name__ == "__main__": finder = PasswordFinder() print("Finding password for Door ID {}...".format(get_input())) print(finder.find_password(get_input()))
24.690476
70
0.529412
f8d69f099f5609a2e46585f56b6c19c09e5b0f6e
1,460
py
Python
gen.py
bivab/-markov-university-classes
34e0563646c14e91cab8fb46b220b8b2f8866269
[ "MIT" ]
null
null
null
gen.py
bivab/-markov-university-classes
34e0563646c14e91cab8fb46b220b8b2f8866269
[ "MIT" ]
null
null
null
gen.py
bivab/-markov-university-classes
34e0563646c14e91cab8fb46b220b8b2f8866269
[ "MIT" ]
null
null
null
import codecs import sys import markovify BATCH_SIZE = 5 DATASETS = ['cs', 'phil', 'wiwi'] def get_all_models(state_size): return markovify.combine([get_model(state_size, ds) for ds in DATASETS]) def get_model(state_size, dataset): units = 'data/{0}/units.txt'.format(dataset) abstract_units = 'data/{0}/abstract_units.txt'.format(dataset) # with codecs.open(units, 'r', 'utf-8') as f: text = f.read() model1 = markovify.NewlineText(text, state_size=state_size) # with codecs.open(abstract_units, 'r', 'utf-8') as f: text =f.read() model2 = markovify.NewlineText(text, state_size=state_size) # model = markovify.combine([model1, model2], [ 1.5, 1 ]) return model def main(state_size=1, dataset='phil'): if dataset == 'ALL': model = get_all_models(state_size) else: model = get_model(state_size, dataset) for i in range(BATCH_SIZE): print(model.make_sentence()) print("\n----------------\n") for i in range(BATCH_SIZE): print(model.make_short_sentence(140)) print("\n----------------\n") try: for i in range(BATCH_SIZE): print(model.make_sentence_with_start("Die")) except KeyError: pass if __name__ == '__main__': kwargs = {} if len(sys.argv) > 1: kwargs['state_size'] = int(sys.argv[1]) if len(sys.argv) > 2: kwargs['dataset'] = sys.argv[2] main(**kwargs)
24.333333
76
0.609589
071cf486a8d65cffb0566b38855a718dd197e642
107
py
Python
cryptoauthlib/python/tests/__init__.py
PhillyNJ/SAMD21
0f123422ed0ad183d510add8f5d3472a16f1e8cb
[ "MIT" ]
12
2017-11-15T08:29:03.000Z
2021-05-22T04:57:20.000Z
cryptoauthlib/python/tests/__init__.py
PhillyNJ/SAMD21
0f123422ed0ad183d510add8f5d3472a16f1e8cb
[ "MIT" ]
2
2019-09-22T12:02:07.000Z
2021-09-09T22:38:25.000Z
cryptoauthlib/python/tests/__init__.py
PhillyNJ/SAMD21
0f123422ed0ad183d510add8f5d3472a16f1e8cb
[ "MIT" ]
5
2019-04-05T13:46:44.000Z
2020-11-25T08:58:32.000Z
import os import sys sys.path.append(os.path.dirname(__file__)) from cryptoauthlib_mock import atcab_mock
17.833333
42
0.831776
07252063a568e34edf388de3ddcb8f5db9bbd6e1
466
py
Python
backend/api/btb/api/models.py
prototypefund/project-c
a87a49d7c1317b1e3ec03ddd0ce146ad0391b5d2
[ "MIT" ]
4
2020-04-30T16:11:24.000Z
2020-06-02T10:08:07.000Z
backend/api/btb/api/models.py
prototypefund/project-c
a87a49d7c1317b1e3ec03ddd0ce146ad0391b5d2
[ "MIT" ]
291
2020-04-20T13:11:13.000Z
2022-02-10T21:54:46.000Z
backend/api/btb/api/models.py
prototypefund/project-c
a87a49d7c1317b1e3ec03ddd0ce146ad0391b5d2
[ "MIT" ]
2
2020-04-19T14:56:01.000Z
2020-04-19T18:09:34.000Z
from flask import current_app from sqlalchemy import create_engine, text from sqlalchemy.pool import NullPool class DB: def init_app(self, app): url = app.config["SQLALCHEMY_DATABASE_URI"] # lambda uses a single container per request model # we do the pooling via pgbouncer self.engine = create_engine( url, echo=True, echo_pool=True, poolclass=NullPool, ) db = DB()
22.190476
58
0.622318
073eb2a8ae160697bd059d18d8ffe51d0cd0b35a
762
py
Python
product/migrations/0002_auto_20201030_1515.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
1
2021-06-18T03:03:42.000Z
2021-06-18T03:03:42.000Z
product/migrations/0002_auto_20201030_1515.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
null
null
null
product/migrations/0002_auto_20201030_1515.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
null
null
null
# Generated by Django 2.2.16 on 2020-10-30 07:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('product', '0001_initial'), ] operations = [ migrations.AlterField( model_name='product', name='status', field=models.SmallIntegerField(choices=[(3, '待发货'), (2, '生产中'), (1, '备料'), (4, '订单完成')], default=1, verbose_name='生产状态'), ), migrations.AlterField( model_name='product', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='products', to='user.User', verbose_name='生产人员'), ), ]
30.48
144
0.581365
9194e7651831367cd37c6a412ff3e02cfb2c3b18
7,692
py
Python
features/snake_main.py
BogyMitutoyoCTL/Riesen-Tetris
8bbbaf0b7aeae7890da724d3d72719a7d068237a
[ "MIT" ]
1
2019-04-27T07:28:52.000Z
2019-04-27T07:28:52.000Z
features/snake_main.py
BogyMitutoyoCTL/Riesen-Tetris
8bbbaf0b7aeae7890da724d3d72719a7d068237a
[ "MIT" ]
null
null
null
features/snake_main.py
BogyMitutoyoCTL/Riesen-Tetris
8bbbaf0b7aeae7890da724d3d72719a7d068237a
[ "MIT" ]
null
null
null
import time from datetime import datetime from random import random import game_sound from Score import Score from features.feature import Feature from field import Field from highscorelist import Highscorelist, Highscoreentry from painter import RGB_Field_Painter, Led_Matrix_Painter BLACK = [0, 0, 0] class Snake_Main(Feature): def __init__(self, field_leds: Field, field_matrix: Field, rgb_field_painter: RGB_Field_Painter, led_matrix_painter: Led_Matrix_Painter, highscorelist: Highscorelist = Highscorelist("Not_used")): super(Snake_Main, self).__init__(field_leds, field_matrix, rgb_field_painter, led_matrix_painter, highscorelist) self.direction = 0 self.is_there_a_direction_change_in_this_tick = False self.food_is_on_field = False self.field_for_snake = [] def event(self, eventname: str): if not self.is_there_a_direction_change_in_this_tick: if eventname == "move up": if self.direction != 2: self.direction = 0 self.is_there_a_direction_change_in_this_tick = True elif eventname == "move left": if self.direction != 3: self.direction = 1 self.is_there_a_direction_change_in_this_tick = True elif eventname == "move down": if self.direction != 0: self.direction = 2 self.is_there_a_direction_change_in_this_tick = True elif eventname == "move right": if self.direction != 1: self.direction = 3 self.is_there_a_direction_change_in_this_tick = True elif eventname == "rotate left": self.direction += 1 if self.direction >= 4: self.direction -= 4 self.is_there_a_direction_change_in_this_tick = True elif eventname == "rotate right": self.direction -= 1 if self.direction < 0: self.direction += 4 self.is_there_a_direction_change_in_this_tick = True def move_snake_if_possible(self): if self.direction == 0: if self.test_for_case_of_block_in_field(self.head_x, self.head_y - 1) <= 0: self.head_y -= 1 elif self.test_for_case_of_block_in_field(self.head_x, self.head_y - 1) == 1: self.game_over = True elif self.direction == 1: if self.test_for_case_of_block_in_field(self.head_x - 1, self.head_y) <= 0: self.head_x -= 1 elif self.test_for_case_of_block_in_field(self.head_x - 1, self.head_y) == 1: self.game_over = True elif self.direction == 2: if self.test_for_case_of_block_in_field(self.head_x, self.head_y + 1) <= 0: self.head_y += 1 elif self.test_for_case_of_block_in_field(self.head_x, self.head_y + 1) == 1: self.game_over = True elif self.direction == 3: if self.test_for_case_of_block_in_field(self.head_x + 1, self.head_y) <= 0: self.head_x += 1 elif self.test_for_case_of_block_in_field(self.head_x + 1, self.head_y) == 1: self.game_over = True if not self.game_over: if self.test_for_case_of_block_in_field(self.head_x, self.head_y) == -1: # if head eats food self.food_is_on_field = False self.lenght_of_snake += 1 self.score.score_for_block() self.field_matrix.set_all_pixels_to_black() self.score.draw_score_on_field(self.field_matrix) self.led_matrix_painter.draw(self.field_matrix) self.turn_every_pixel_in_snakes_field_ones_up() self.field_for_snake[self.head_y][self.head_x] = 1 else: game_sound.stop_song() game_sound.play_sound("game_over") self.highscorelist.add_entry(Highscoreentry(datetime.today(), self.playername, self.score.get_score_int())) self.highscorelist.save() self.led_matrix_painter.show_Message("Game over - Your Points: " + self.score.get_score_str(), 250) def turn_every_pixel_in_snakes_field_ones_up(self): for y in range(len(self.field_for_snake)): for x in range(len(self.field_for_snake[0])): if self.field_for_snake[y][x] > 0: self.field_for_snake[y][x] += 1 if self.field_for_snake[y][x] > self.lenght_of_snake: self.field_for_snake[y][x] = 0 def test_for_case_of_block_in_field(self, x: int, y: int) -> int: if 0 <= x < len(self.field_for_snake[0]) and 0 <= y < len(self.field_for_snake): if self.field_for_snake[y][x] == 0: return 0 elif self.field_for_snake[y][x] < 0: return -1 else: return 1 else: return 1 def translate_snakes_field_into_normal_field(self): self.field_leds.set_all_pixels_to_black() for y in range(self.field_leds.height): for x in range(self.field_leds.width): if self.field_for_snake[y][x] == 1: self.field_leds.field[y][x] = [255, 0, 0] elif self.field_for_snake[y][x] > 1: self.field_leds.field[y][x] = [0, 255, 0] elif self.field_for_snake[y][x] == -1: self.field_leds.field[y][x] = [0, 0, 255] def test_and_print_food(self): if not self.food_is_on_field: while not self.food_is_on_field: self.food_x = int(random()*len(self.field_for_snake[0])) self.food_y = int(random()*len(self.field_for_snake)) if self.test_for_case_of_block_in_field(self.food_x, self.food_y) == 0: self.food_is_on_field = True self.field_for_snake[self.food_y][self.food_x] = -1 def tick(self): if not self.game_over: self.move_snake_if_possible() self.test_and_print_food() self.translate_snakes_field_into_normal_field() self.rgb_field_painter.draw(self.field_leds) self.is_there_a_direction_change_in_this_tick = False time.sleep(0.5) else: self.led_matrix_painter.move_Message() time.sleep(0.02) def start(self, playername: str = None): super().start(playername) self.prepare_for_start() def stop(self): self.game_over = True def is_game_over(self): return super(Snake_Main, self).is_game_over() def prepare_for_start(self): self.field_leds.set_all_pixels_to_black() self.field_matrix.set_all_pixels_to_black() self.field_for_snake = [] for i in range(self.field_leds.height): self.field_for_snake.append([]) for _ in range(self.field_leds.width): self.field_for_snake[i].append(0) self.head_x = 5 self.head_y = 20 self.direction = 0 self.lenght_of_snake = 3 self.delay = 0.5 self.game_over = False self.food_is_on_field = False self.food_x = 0 self.food_y = 0 self.is_there_a_direction_change_in_this_tick = False self.score = Score() self.score.points = 3 self.score.draw_score_on_field(self.field_matrix) self.rgb_field_painter.draw(self.field_leds) self.led_matrix_painter.draw(self.field_matrix)
41.578378
120
0.602054
91c58aa889ea5118cf58f2a53f95f841a66dbf63
405
py
Python
3_Functions/defaults.py
felixdittrich92/Python3
16b767465e4bdf0adc652c195d15384bb9faa4cf
[ "MIT" ]
1
2022-03-02T07:16:30.000Z
2022-03-02T07:16:30.000Z
3_Functions/defaults.py
felixdittrich92/Python3
16b767465e4bdf0adc652c195d15384bb9faa4cf
[ "MIT" ]
null
null
null
3_Functions/defaults.py
felixdittrich92/Python3
16b767465e4bdf0adc652c195d15384bb9faa4cf
[ "MIT" ]
null
null
null
# x, y: arguments x = 2 y = 3 # a, b: parameters def function(a, b): print(a, b) function(x, y) # default arguments def function2(a, b=None): if b: print(a, b) else: print(a) function2(x) function2(x, b=y) # bei default parametern immer variable= -> besser lesbar # Funktionen ohne return Value returnen immer None ! #return_value = function2(x ,b=y) #print(return_value)
17.608696
76
0.644444
53315be361a8c097c81fd165c0a76c88bf0bd91b
1,797
py
Python
examples/text_to_sql/RAT-SQL/script/available_gpu.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
examples/text_to_sql/RAT-SQL/script/available_gpu.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
examples/text_to_sql/RAT-SQL/script/available_gpu.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import traceback import logging import nvgpu logging.basicConfig(level=logging.DEBUG, format='%(levelname)s: %(asctime)s %(filename)s' ' [%(funcName)s:%(lineno)d][%(process)d] %(message)s', datefmt='%m-%d %H:%M:%S', filename=None, filemode='a') if __name__ == "__main__": from argparse import ArgumentParser try: arg_parser = ArgumentParser( description="print available_gpu id, using nvgpu") arg_parser.add_argument("-b", "--best", default=None, type=int, help="output best N") args = arg_parser.parse_args() if args.best is not None: gpus = sorted(nvgpu.gpu_info(), key=lambda x: (x['mem_used'], x['index'])) ids = [x['index'] for x in gpus] print(','.join(ids[:args.best])) else: print(','.join(nvgpu.available_gpus())) except Exception as e: traceback.print_exc() exit(-1)
35.235294
74
0.576516
f42cf75aa4b2896d8fd88356432a0be891d51aac
5,221
py
Python
python/oneflow/compatible/single_client/nn/modules/slice.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
1
2021-09-13T02:34:53.000Z
2021-09-13T02:34:53.000Z
python/oneflow/compatible/single_client/nn/modules/slice.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/compatible/single_client/nn/modules/slice.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
1
2021-01-17T03:34:39.000Z
2021-01-17T03:34:39.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Sequence, Tuple import numpy as np from oneflow.compatible import single_client as flow from oneflow.compatible.single_client.nn.module import Module from oneflow.compatible.single_client.ops.array_ops import ( GetSliceAttrs, check_slice_tup_list, ) class Slice(Module): def __init__( self, start: Tuple[int, ...], stop: Tuple[int, ...], step: Tuple[int, ...] ) -> None: super().__init__() self.start = start self.stop = stop self.step = step def forward(self, x): return flow.F.slice(x, start=self.start, stop=self.stop, step=self.step) def slice_op(x, slice_tup_list: Sequence[Tuple[int, int, int]]): """Extracts a slice from a tensor. The `slice_tup_list` assigns the slice indices in each dimension, the format is (start, stop, step). The operator will slice the tensor according to the `slice_tup_list`. Args: x: A `Tensor`. slice_tup_list: A list of slice tuple, indicate each dimension slice (start, stop, step). For example: .. code-block:: python >>> import numpy as np >>> import oneflow.compatible.single_client.experimental as flow >>> flow.enable_eager_execution() >>> input = flow.Tensor(np.random.randn(3, 6, 9).astype(np.float32)) >>> tup_list = [[None, None, None], [0, 5, 2], [0, 6, 3]] >>> y = flow.slice(input, slice_tup_list=tup_list) >>> y.shape flow.Size([3, 3, 2]) """ (start, stop, step) = check_slice_tup_list(slice_tup_list, x.shape) return Slice(start, stop, step)(x) class SliceUpdate(Module): def __init__( self, start: Tuple[int, ...], stop: Tuple[int, ...], step: Tuple[int, ...] ) -> None: super().__init__() self.start = start self.stop = stop self.step = step def forward(self, x, update): return flow.F.slice_update( x, update, start=self.start, stop=self.stop, step=self.step ) def slice_update_op(x, update, slice_tup_list: Sequence[Tuple[int, int, int]]): """Update a slice of tensor `x`. Like `x[start:stop:step] = update`. Args: x: A `Tensor`, whose slice will be updated. update: A `Tensor`, indicate the update content. slice_tup_list: A list of slice tuple, indicate each dimension slice (start, stop, step). For example: .. code-block:: python >>> import numpy as np >>> import oneflow.compatible.single_client.experimental as flow >>> flow.enable_eager_execution() >>> input = flow.Tensor(np.array([1, 1, 1, 1, 1]).astype(np.float32)) >>> update = flow.Tensor(np.array([2, 3, 4]).astype(np.float32)) >>> y = flow.slice_update(input, update, slice_tup_list=[[1, 4, 1]]) >>> y.numpy() array([1., 2., 3., 4., 1.], dtype=float32) """ (start, stop, step) = GetSliceAttrs(slice_tup_list, x.shape) return SliceUpdate(start, stop, step)(x, update) class LogicalSliceAssign(Module): def __init__( self, start: Tuple[int, ...], stop: Tuple[int, ...], step: Tuple[int, ...] ) -> None: super().__init__() self.start = start self.stop = stop self.step = step def forward(self, x, update): if update.dtype != x.dtype: update = update.to(dtype=x.dtype) return flow.F.logical_slice_assign( x, update, start=self.start, stop=self.stop, step=self.step ) def logical_slice_assign_op(x, update, slice_tup_list: Sequence[Tuple[int, int, int]]): """Update a slice of tensor `x`(in-place). Like `x[start:stop:step] = update`. Args: x: A `Tensor`, whose slice will be updated. update: A `Tensor`, indicate the update content. slice_tup_list: A list of slice tuple, indicate each dimension slice (start, stop, step). For example: .. code-block:: python >>> import numpy as np >>> import oneflow.compatible.single_client.experimental as flow >>> flow.enable_eager_execution() >>> input = flow.Tensor(np.array([1, 1, 1, 1, 1]).astype(np.float32)) >>> update = flow.Tensor(np.array([2, 3, 4]).astype(np.float32)) >>> y = flow.tmp.logical_slice_assign(input, update, slice_tup_list=[[1, 4, 1]]) """ "[summary]\n\n Returns:\n [type]: [description]\n " (start, stop, step) = GetSliceAttrs(slice_tup_list, x.shape) return LogicalSliceAssign(start, stop, step)(x, update) if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
33.683871
104
0.633787
be64c57399a0e2f019955ddd3b92ec663af63efa
948
py
Python
314/Fcat_314_bfs.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
314/Fcat_314_bfs.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
314/Fcat_314_bfs.py
Leetcode-Secret-Society/warehouse
40d7969683b1296f361e799cda37f15ceec52af8
[ "MIT" ]
null
null
null
# Definition for a binary tree node. from typing import List from collections import defaultdict, deque class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def verticalOrder(self, root) -> List[List[int]]: if not root: return [] position_mapping = defaultdict(list) bound = [0,0] bfs = deque([(root, 0)]) while bfs: node, pos = bfs.popleft() position_mapping[pos].append(node.val) if node.left: bound[0] = min(bound[0], pos - 1) bfs.append((node.left, pos - 1)) if node.right: bound[1] = max(bound[1], pos + 1) bfs.append((node.right, pos + 1)) result = [] for i in range(bound[0], bound[1]+1): result.append(position_mapping[i]) return result
30.580645
53
0.542194
fea3b772b61a812c02365208b2da226f3efb7fdf
7,561
py
Python
Crawler/crawl_divi_public.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
15
2020-04-24T20:18:11.000Z
2022-01-31T21:05:05.000Z
Crawler/crawl_divi_public.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
2
2021-05-19T07:15:09.000Z
2022-03-07T08:29:34.000Z
Crawler/crawl_divi_public.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
4
2020-04-27T16:20:13.000Z
2021-02-23T10:39:42.000Z
#!/usr/bin/env python # coding: utf-8 # author: Max Fischer import os import logging import jsonschema as jsonschema import psycopg2 as pg import psycopg2.extensions import psycopg2.extras import requests import json from datetime import datetime, timezone # noinspection PyUnresolvedReferences import loadenv # logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) from db_config import SQLALCHEMY_DATABASE_URI, get_connection logging.basicConfig(level=logging.DEBUG, format='%(message)s') logger = logging.getLogger(__name__) logger.info('Crawler for divi public data') STORAGE_PATH = "/var/divi_public/" URL_API = "https://www.intensivregister.de/api/public/intensivregister" header_base = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/86.0.4298.4 Safari/537.36 ' } # start session session = requests.Session() session.headers.update(header_base) # prepare bearer token headers = { 'Content-Type': 'application/json', } session.headers.update(headers) JSONPAYLOAD = {"criteria": {"bundesland": None, "standortId": None, "standortBezeichnung":"", "bettenStatus":[], "bettenKategorie":[], # only look for beds for adults since otherwise it always uses the best possible status # i.e., there are beds for kids available but none for adults: overall status is still available # this request is also the default on the DIVI website "behandlungsschwerpunktL1":["ERWACHSENE"], "behandlungsschwerpunktL2":[], "behandlungsschwerpunktL3":[] }, "pageNumber":0, "pageSize": 3000 } logger.info('Assembling bearer and downloading data...') # get private api data x = session.post(URL_API, json=JSONPAYLOAD) data = x.json() # infos count = data['rowCount'] logger.info(f'Downloaded data from {count} hospitals.') # # store data # if os.name == 'nt': # debug only STORAGE_PATH = './' if not os.path.isdir(STORAGE_PATH): logger.error(f"Storage path {STORAGE_PATH} does not appear to be a valid directory") exit(1) current_update = datetime.now(timezone.utc) filepath = STORAGE_PATH + current_update.strftime("divi-public-%Y-%m-%dT%H-%M-%S") + '.json' logger.info(f'Storing data on pvc: {filepath}') with open(filepath, 'w') as outfile: json.dump(data, outfile) with open('./divi_public.schema.json') as schema: logger.info('Validate json data with schema') jsonschema.validate(data, json.load(schema)) logger.info(f'Loading the data into the database') # logger.debug(data) conn, cur = get_connection('crawl_divi_public') # noinspection PyShadowingNames def insert_data(data): query_krankenhaus_standorte = f'INSERT INTO divi_krankenhaus_standorte ' \ f'(id, bezeichnung, strasse, hausnummer, plz, ort, bundesland, iknummer, ' \ f'position) ' \ f'VALUES %s ON CONFLICT ON CONSTRAINT divi_krankenhaus_standorte_pk DO ' \ f'UPDATE SET ' \ f'bezeichnung = EXCLUDED.bezeichnung, ' \ f'strasse = EXCLUDED.strasse, ' \ f'hausnummer = EXCLUDED.hausnummer, ' \ f'plz = EXCLUDED.plz, ' \ f'ort = EXCLUDED.ort, ' \ f'bundesland = EXCLUDED.bundesland, ' \ f'iknummer = EXCLUDED.iknummer, ' \ f'position = EXCLUDED.position;' entries_kh_standorte = [] for d in data['data']: e = d['krankenhausStandort'] e['pos_lon'] = e['position']['longitude'] e['pos_lat'] = e['position']['latitude'] entries_kh_standorte.append(e) # print(entries_kh_standorte) psycopg2.extras.execute_values( cur, query_krankenhaus_standorte, entries_kh_standorte, template='(%(id)s, %(bezeichnung)s, %(strasse)s, %(hausnummer)s, %(plz)s, %(ort)s, %(bundesland)s, ' '%(ikNummer)s, ST_SetSRID(ST_POINT(%(pos_lon)s, %(pos_lat)s), 4326))', page_size=500 ) conn.commit() query_krankenhaus_meldungen = f'INSERT INTO divi_meldungen ' \ f'(private, meldezeitpunkt, kh_id, meldebereiche, statuseinschaetzunglowcare, ' \ f'statuseinschaetzunghighcare, statuseinschaetzungecmo, behandlungsschwerpunktl1, ' \ f'behandlungsschwerpunktl2, behandlungsschwerpunktl3) ' \ f'VALUES %s ON CONFLICT ON CONSTRAINT divi_meldungen_pk DO ' \ f'UPDATE SET ' \ f'meldebereiche = EXCLUDED.meldebereiche, ' \ f'statuseinschaetzunglowcare = EXCLUDED.statuseinschaetzunglowcare, ' \ f'statuseinschaetzunghighcare = EXCLUDED.statuseinschaetzunghighcare, ' \ f'statuseinschaetzungecmo = EXCLUDED.statuseinschaetzungecmo, ' \ f'behandlungsschwerpunktl1 = EXCLUDED.behandlungsschwerpunktl1, ' \ f'behandlungsschwerpunktl2 = EXCLUDED.behandlungsschwerpunktl2, ' \ f'behandlungsschwerpunktl3 = EXCLUDED.behandlungsschwerpunktl3;' entries_meldunden = [] for d in data['data']: e = {'id': d['krankenhausStandort']['id'], 'meldezeitpunkt': d['letzteMeldezeitpunkt'], 'statusEinschaetzungLowcare': d['maxBettenStatusEinschaetzungLowCare'], 'statusEinschaetzungHighcare': d['maxBettenStatusEinschaetzungHighCare'], 'statusEinschaetzungEcmo': d['maxBettenStatusEinschaetzungEcmo'], 'meldebereiche': list(map(lambda x: x['meldebereichBezeichnung'], d['meldebereiche'])), 'behandlungsschwerpunktL1': list(map(lambda x: x['behandlungsschwerpunktL1'], d['meldebereiche'])), 'behandlungsschwerpunktL2': list(map(lambda x: x['behandlungsschwerpunktL2'], d['meldebereiche'])), 'behandlungsschwerpunktL3': list(map(lambda x: x['behandlungsschwerpunktL3'], d['meldebereiche']))} if d['krankenhausStandort']['id'] == '773017': print(e) entries_meldunden.append(e) psycopg2.extras.execute_values( cur, query_krankenhaus_meldungen, entries_meldunden, template='(false, %(meldezeitpunkt)s, %(id)s, %(meldebereiche)s, %(statusEinschaetzungLowcare)s, ' '%(statusEinschaetzungHighcare)s, %(statusEinschaetzungEcmo)s, %(behandlungsschwerpunktL1)s, ' '%(behandlungsschwerpunktL2)s, %(behandlungsschwerpunktL3)s)', page_size=500 ) conn.commit() try: # load the newest data into the DB to overwrite the latest data insert_data(data) logger.info('Refreshing materialized view') cur.execute('set time zone \'UTC\'; REFRESH MATERIALIZED VIEW filled_hospital_timeseries_with_fix;') conn.commit() cur.close() conn.close() logger.info('Done. Exiting...') except Exception as e: if cur: cur.close() if conn: conn.close() raise e
39.586387
119
0.606269
4309776c2b978f8f9b79f48f9888d944549162cd
490
py
Python
backend/search/client.py
saulhappy/drf
5e62da54cdf0f0fead742c891d34e7eacd488a1b
[ "MIT" ]
null
null
null
backend/search/client.py
saulhappy/drf
5e62da54cdf0f0fead742c891d34e7eacd488a1b
[ "MIT" ]
null
null
null
backend/search/client.py
saulhappy/drf
5e62da54cdf0f0fead742c891d34e7eacd488a1b
[ "MIT" ]
null
null
null
from algoliasearch_django import algolia_engine def get_client(): return algolia_engine.client def get_index(index_name="_Product"): client = get_client() index = client.init_index(index_name) return index def perform_search(query, **kwargs): index = get_index() params = {} if "tags" in kwargs: tags = kwargs.pop("tags") or None if tags: params["tagFilters"] = tags results = index.search(query, params) return results
21.304348
47
0.661224
4394a86b457382c9c24852be7b2e32365ad50ee3
1,941
py
Python
MAIN/STM32F405/V18/peripheral.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
MAIN/STM32F405/V18/peripheral.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
MAIN/STM32F405/V18/peripheral.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
from pyb import Pin, Timer import utime ESP32RESET = Pin('B0', Pin.OUT_PP) IGNITION = Pin('Y7', Pin.IN, Pin.PULL_DOWN) startTime = 0 stopTime = 0 ignitionFlag = False ignitionTriggerValue = 250 def IGNITIONCallback(): global startTime global stopTime global ignitionFlag global ignitionTriggerValue if IGNITION.value() == 1 and ignitionFlag == False: stopTime = 0 if startTime == 0: startTime = utime.ticks_ms() if (utime.ticks_ms() - startTime) > ignitionTriggerValue: ignitionFlag = True elif IGNITION.value() == 0 and ignitionFlag == True: startTime = 0 if stopTime == 0: stopTime = utime.ticks_ms() if (utime.ticks_ms() - stopTime) > ignitionTriggerValue: ignitionFlag = False return ignitionFlag buzPin = Pin('X1') buzTimer = Timer(2, freq=1000) buzChannel = buzTimer.channel(1, Timer.PWM, pin=buzPin) buzzerOrderList = [] def buzzer(value=0): buzChannel.pulse_width_percent(value) toggleValue = False def buzzerToggle(timer): global toggleValue global buzzerOrderList if toggleValue == False: buzzer(50) toggleValue = True else: buzzer(0) toggleValue = False # if toggleValue == True: # timer.freq(1000 / buzzerOrderList[1]) # else: # timer.freq(1000 / buzzerOrderList[2]) if buzzerOrderList[0] > 0 and toggleValue == True: buzzerOrderList[0] -= 1 elif buzzerOrderList[0] < 1 and toggleValue == False: buzzer(0) buzzerOrderList = [] timer.callback(None) timer.deinit() def buzzerObject(replay=1, onTime=100, offTime=100, priority=1): global buzzerOrderList global toggleValue buzzerOrderList = [replay, onTime, offTime, priority] toggleValue = False periodicTimer = Timer(4, freq=1000 / buzzerOrderList[1]) periodicTimer.callback(buzzerToggle)
23.670732
65
0.64915
78e0a1d18183e5a58cf26302f999bb3cf45215bc
493
py
Python
INBa/2015/Semyenov_A_N/task_3_24.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/Semyenov_A_N/task_3_24.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/Semyenov_A_N/task_3_24.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
#Задача 3. Вариант 24 #Напишите программу, которая выводит имя "Максимилиан Гольдман", и запрашивает его псевдоним. Программа должна сцеплять две эти строки и выводить полученную строку, разделяя имя и псевдоним с помощью тире. #Semyenov A.N.Ы #08.03.2016 print("Сегодня речь пойдёт про Максимилиана Гольдмана") print("Под каким именем мы знаем этого человека?"); print("Ваш ответ: Макс Рейнхардт") print("Всё верно: Максимилиан Гольдман - Макс Рейнхардт") input('\nНажмите Enter для выхода')
54.777778
205
0.787018
60635645dc074ef9ef9fb9011fa7e487e8c19733
697
py
Python
python/primary/模块/demo_list2.py
EstherLacan/jiangfw
a449b1925742873c76dc1b3284aedb359204bc76
[ "Apache-2.0" ]
1
2020-07-29T16:43:46.000Z
2020-07-29T16:43:46.000Z
python/primary/模块/demo_list2.py
EstherLacan/jiangfw
a449b1925742873c76dc1b3284aedb359204bc76
[ "Apache-2.0" ]
null
null
null
python/primary/模块/demo_list2.py
EstherLacan/jiangfw
a449b1925742873c76dc1b3284aedb359204bc76
[ "Apache-2.0" ]
null
null
null
#A Python Program for List and tuple import sys #Make a User-Passwd Login database = [ ['admin', 123456], ['guest', 123], ['Tom', 'tom123'], ['Alice', 'alice123'] ] username = raw_input("User name: ") passwd = raw_input("Password: ") if [username, passwd] in database: print "Access granted!" else: print "Access denyed!" sys.exit() #After login... x = [3, 5, 2, 8, 9, 10, 56, 99] print "List X is: " print x y = x # x y 用的同一个引用地址 z = x[:] x.sort() print "List y is after x.sort(): " print y print "List z is after x.sort(): " print z y.reverse() print "List x after y.reverse()" print x raw_input("Please Enter for Exit...")
20.5
37
0.583931
716a14d0e6073ccb71412d7a8340df8c3f9f7421
5,603
py
Python
calibration.py
danielvh8/RP-granzyme-B
fcb29321f8ad55bfaa56e31f45eeab907e1ed1af
[ "MIT" ]
null
null
null
calibration.py
danielvh8/RP-granzyme-B
fcb29321f8ad55bfaa56e31f45eeab907e1ed1af
[ "MIT" ]
null
null
null
calibration.py
danielvh8/RP-granzyme-B
fcb29321f8ad55bfaa56e31f45eeab907e1ed1af
[ "MIT" ]
null
null
null
from configparser import ConfigParser from controls import getTestPerformance, File2Matches, IDfromFASTA, getPerformance from pathlib import Path from pipeline import PipeLine import matplotlib.pyplot as plt from time import sleep import pickle from tqdm import tqdm def ROC(path, parser, lbl, clr): parser.read(Path('In/parameters.ini')) #thresholds = [0, 0.5e-10, 1e-10, 0.5e-9, 1e-9, 0.5e-8, 1e-8, 0.5e-7, 1e-7, 0.5e-6, 1e-6, 0.5e-5, 1e-5, 0.5e-4, 1e-4, 0.5e-3, 1e-3, 0.5e-2, 1e-2, 0.5e-1, 1e-1, 1] thresholds = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] sensitivity = [] FPR = [] GrB = PipeLine.GenerateTarget([Path('In/neo-N-terminal.csv'), Path('In/neo-C-terminal.csv')], "Granzyme B") for n,i in enumerate(thresholds): print(f"\nTesting {n+1} of {len(thresholds)}...\n") parser.set('threshold', 'match', str(i)) with open(Path('In/parameters.ini'), 'w') as f: parser.write(f) RunTest(sensitivity, FPR, GrB) # print(sensitivity) # print(FPR) plt.plot(FPR, sensitivity, '--bo', label=lbl, color=clr) # plt.plot([0,1], [0,1], linestyle="--", color='gray') # plt.title('ROC-curve threshold parameter') # plt.ylabel('True Positive Rate') # plt.xlabel('False Positive Rate') # plt.savefig(path) # plt.clf() def setROCinfo(sensitivity, FPR, performance): sensitivity.append(performance.sensitivity) FPR.append(1-performance.specificity) def PlotROC(FPR, sensitivity, path): plt.plot(FPR, sensitivity, '--bo') plt.plot([0,1], [0,1], linestyle="--", color='gray') plt.title('ROC-curve threshold parameter') plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.savefig(path) plt.clf() def RunTest(sensitivity, FPR, GrB): MEROPScontrol = File2Matches(Path("In/Positives from MEROPS (incl Mouse).csv"), IDfromFASTA(Path("In/MEROPS HS proteins.gz"))) MEROPS = PipeLine.Run(Path("In/MEROPS HS proteins.gz"), Path('Out/MEROPS HS.csv'), GrB) performance = getTestPerformance(MEROPScontrol, MEROPS) sensitivity.append(performance.sensitivity) FPR.append(1-performance.specificity) def PerformanceCalibration(path, control): parser = ConfigParser() parser.read(Path("In/parameters.ini")) thresholds = [0, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1] #thresholds = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] performance = [] sensitivity = [] FPR = [] GrB = PipeLine.GenerateTarget([Path('In/neo-N-terminal.csv'), Path('In/neo-C-terminal.csv')], "Granzyme B") for i in tqdm(thresholds): parser.set('threshold', 'match', str(i)) with open(Path('In/parameters.ini'), 'w') as f: parser.write(f) MEROPS = PipeLine.Run(Path("In/MEROPS HS proteins.gz"), Path('Out/MEROPS HS.csv'), GrB) instance = getPerformance(control, MEROPS) performance.append(instance) #setROCinfo(sensitivity, FPR, instance) #PlotROC(FPR, sensitivity, path) return performance def ChangeParam(S, E, parser): endstring = '1' for i in range(1,E): endstring += ',1' startstring = '1' for i in range(1, S): startstring += ',1' parser.set('target', 'impstart', startstring) parser.set('target', 'impend', endstring) parser.set('target', 'lengthstart', str(S)) parser.set('target', 'lengthend', str(E)) with open(Path("In/parameters.ini"), 'w') as f: parser.write(f) def ROCbayes(): parser = ConfigParser() parser.read(Path("In/parameters.ini")) ChangeParam(4, 1, parser) ROC(Path(), parser, '4|1', 'blue') ChangeParam(4, 4, parser) ROC(Path(), parser, '4|4', 'orange') ChangeParam(6, 1, parser, ) ROC(Path(), parser, '6|1', 'green') ChangeParam(6, 4, parser, ) ROC(Path(), parser, '6|4', 'red') ChangeParam(6, 6, parser, ) ROC(Path(), parser, '6|6', 'black') plt.plot([0,1], [0,1], linestyle="--", color='gray', label='random') plt.title('ROC-curve threshold parameter') plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.legend() plt.savefig(Path("ROC/Sum over Max threshold/Combined.png")) if __name__ == "__main__": #ROCbayes() parser = ConfigParser() parser.read(Path("In/parameters.ini")) #ROC(Path("ROC/Sum over Max threshold/ROC S6E4.png"), parser) performance = [] MEROPScontrol = File2Matches(Path("In/Positives from MEROPS (incl Mouse).csv"), IDfromFASTA(Path("In/MEROPS HS proteins.gz"))) for start in tqdm(range(10, 0, -1)): out = [] for end in tqdm(range(1, 11)): endstring = '1' for i in range(1,end): endstring += ',1' startstring = '1' for i in range(1, start): startstring += ',1' parser.set('target', 'impstart', startstring) parser.set('target', 'impend', endstring) parser.set('target', 'lengthstart', str(start)) parser.set('target', 'lengthend', str(end)) with open(Path("In/parameters.ini"), 'w') as f: parser.write(f) out += PerformanceCalibration(Path(f"ROC/Sum over Max threshold/ROC S{start}E{end}.png"), MEROPScontrol) performance += out with open(Path(f'Out/cal_S{start}E1_S{start}E10 bayes score.pickle'), 'wb') as f: pickle.dump(out, f) with open(Path('Out/cal_all parameters bayes score.pickle'), 'wb') as f: pickle.dump(performance, f)
38.641379
166
0.611637
71792ae01e9b62dad9e5eeb2f9e01801ac5a285f
171
py
Python
Exercicios/ex05v3.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
Exercicios/ex05v3.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
Exercicios/ex05v3.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
nome = input('Digite seu nome: ') cpf = input('Digite seu CPF: ') rg = input('Digite seu RG: ') msg = '{0}, seu CPF é {1} e seu RG é {2}' print(msg.format(nome,cpf,rg))
21.375
41
0.602339
71bc160070e2e3bb0f09b32ba1b1d5dcecacda1f
2,378
py
Python
INBa/2015/SOSNOVY_M_S/task_10_26.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/SOSNOVY_M_S/task_10_26.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/SOSNOVY_M_S/task_10_26.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
POINT = 30 ochki = 30 person = {"Сила":"0","Здоровье":"0","Мудрость":"0","Ловкость":"0"} points = 0 choice = None while choice != 0: print(""" 0 - Выход 1 - Добавить пункты к характеристике 2 - Уменьшить пункты характеристики 3 - Просмотр характеристик """) choice = int(input("Выбор пункта меню: ")) if choice == 1: print("Пожалуйста, введите характеристику. ", len(person), "характеристики:") for item in person: print(item) char = str(input("\n:")) char = char.title() while char not in person: print("Нет такой характеристики, вы не в WoW: ") char = str(input("\n:")) char = char.title() else: print("\nВведите количество пунктов. У вас", ochki, "свободных пунктов") points = int(input("\n:")) while points > ochki or points < 0: print("Вы не можете назначить такое количество пунктов", "Доступно", ochki, "свободных пунктов") points = int(input("\n:")) person[char] = points print(points, "пунктов было добавлено к", char) ochki -= points elif choice == 2: print("Пожалуйста, введите имя характеристики.", "Доступно изменение для: ") for item in person: if int(person[item]) > 0: print(item) char = str(input("\n:")) char = char.title() while char not in person: print("Нет такой характеристики, вы не в WoW: ") char = str(input("\n:")) char = char.title() else: print("\nВведите количество пунктов. Доступно", person[char], "пунктов:") points = int(input("\n:")) while points > int(person[char]) or points < 0: print("Невозможно удалить такое количество пунктов. Доступно", person[char], "пунктов") points = int(input("\n:")) person[char] = points print(points, "пунктов было удалено") ochki += points elif choice == 3: print("\nХарактеристики Вашего героя") for item in person: print(item, "\t\t", person[item]) elif choice == 0: print("BB") elif choice == 100500: ochki += 99999999 print ("Вы ввели чит код на 99999999 поинтов") else: print("В меню нет такого пункта")
36.584615
112
0.549622
1c0606e7099727a34a4353c69a714cea307ce1e3
167
py
Python
python/python_backup/PRAC_PYTHON/tu.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/python_backup/PRAC_PYTHON/tu.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/python_backup/PRAC_PYTHON/tu.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
def tuple(t): maxvalue=t[0] minvalue=t[0] for i in range(t): .if t[i]>maxvalue: max=t[i] if t[i]<minvalue: min=t[i] print max, print mini,
15.181818
21
0.550898
1c59d651b58bb97890a30e93422a86f59f708a63
2,618
py
Python
src/bo4e/enum/leistungstyp.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
1
2022-03-02T12:49:44.000Z
2022-03-02T12:49:44.000Z
src/bo4e/enum/leistungstyp.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
21
2022-02-04T07:38:46.000Z
2022-03-28T14:01:53.000Z
src/bo4e/enum/leistungstyp.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
null
null
null
# pylint: disable=missing-module-docstring from bo4e.enum.strenum import StrEnum # pylint:disable=empty-docstring # no docstring in official docs as of 2021-12-01 class Leistungstyp(StrEnum): """ """ ARBEITSPREIS_WIRKARBEIT = "ARBEITSPREIS_WIRKARBEIT" #: Arbeitspreis zur Abrechnung der Wirkarbeit LEISTUNGSPREIS_WIRKLEISTUNG = "LEISTUNGSPREIS_WIRKLEISTUNG" #: Leistungspreis zur Abrechnung der Wirkleistung ARBEITSPREIS_BLINDARBEIT_IND = ( "ARBEITSPREIS_BLINDARBEIT_IND" #: Arbeitspreis zur Abrechnung der Blindarbeit induktiv ) ARBEITSPREIS_BLINDARBEIT_KAP = ( "ARBEITSPREIS_BLINDARBEIT_KAP" #: Arbeitspreis zur Abrechnung der Blindarbeit kapazitiv ) GRUNDPREIS = "GRUNDPREIS" #: Grundpreis (pro Zeiteinheit) GRUNDPREIS_ARBEIT = "GRUNDPREIS_ARBEIT" #: Grundpreis, der auf die Arbeit berechnet wird (bei RLM) GRUNDPREIS_LEISTUNG = "GRUNDPREIS_LEISTUNG" #: Grundpreis, der auf die Leistung berechnet wird (bei RLM) MEHRMINDERMENGE = "MEHRMINDERMENGE" #: Mehr- oder Mindermenge MESSSTELLENBETRIEB = "MESSSTELLENBETRIEB" #: Preis pro Zeiteinheit MESSDIENSTLEISTUNG = "MESSDIENSTLEISTUNG" #: Preis pro Zeiteinheit MESSDIENSTLEISTUNG_INKL_MESSUNG = ( "MESSDIENSTLEISTUNG_INKL_MESSUNG" #: MDL inklusive der Messung (ab 2017), Preis pro Zeiteinheit ) ABRECHNUNG = "ABRECHNUNG" #: Preis pro Zeiteinheit KONZESSIONS_ABGABE = "KONZESSIONS_ABGABE" #: Konzessionsabgabe KWK_UMLAGE = "KWK_UMLAGE" #: KWK-Umlage OFFSHORE_UMLAGE = "OFFSHORE_UMLAGE" #: Offshore-Haftungsumlage ABLAV_UMLAGE = "ABLAV_UMLAGE" #: Umlage für abschaltbare Lasten SONDERKUNDEN_UMLAGE = "SONDERKUNDEN_UMLAGE" #: §19 StromNEV Umlage REGELENERGIE_UMLAGE = "REGELENERGIE_UMLAGE" #: Regelenergieumlage BILANZIERUNG_UMLAGE = "BILANZIERUNG_UMLAGE" #: Bilanzierungsumlage AUSLESUNG_ZUSAETZLICH = "AUSLESUNG_ZUSAETZLICH" #: Zusätzliche Auslesung (pro Vorgang) ABLESUNG_ZUSAETZLICH = "ABLESUNG_ZUSAETZLICH" #: Zusätzliche Ablesung (pro Vorgang) ABRECHNUNG_ZUSAETZLICH = "ABRECHNUNG_ZUSAETZLICH" #: Zusätzliche Abresung (pro Vorgang) SPERRUNG = "SPERRUNG" #: Sperrung einer Abnahmestelle ENTSPERRUNG = "ENTSPERRUNG" #: Entsperrung einer Abnahmestelle MAHNKOSTEN = "MAHNKOSTEN" #: Mahnkosten INKASSOKOSTEN = "INKASSOKOSTEN" #: Inkassokosten EEG_UMLAGE = "EEG_UMLAGE" #: EEG-Umlage ENERGIESTEUER = "ENERGIESTEUER" #: Strom- oder Erdgassteuer NETZPREIS = "NETZPREIS" #: Netzpreis MESSPREIS = "MESSPREIS" #: Messpreis SONSTIGER_PREIS = "SONSTIGER_PREIS" #: Sonstiger_Preis
55.702128
114
0.747899
4672b6107575d1fc5b202803509017068f526d19
356
py
Python
Data Structures/DataStructures-Problems/Arrays/Micro and Array Update/microandarrayupdate.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
26
2019-07-17T11:05:43.000Z
2022-02-06T08:31:40.000Z
Data Structures/DataStructures-Problems/Arrays/Micro and Array Update/microandarrayupdate.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
7
2019-07-16T19:52:25.000Z
2022-01-08T08:03:44.000Z
Data Structures/DataStructures-Problems/Arrays/Micro and Array Update/microandarrayupdate.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
19
2020-01-14T02:44:28.000Z
2021-12-27T17:31:59.000Z
if __name__=="__main__": t=int(input()) while(t>0): (n, k) = map(int, input().split()) li=list(map(int, input().split()[:n])) min = 99999999 for i in range(len(li)): if li[i] < min: min=li[i] if k-min > 0: print(k-min) else: print(0) t=t-1
23.733333
46
0.407303
31adec41c7ef52b094097933816262e9bf48c6d1
1,882
py
Python
0-notes/job-search/Cracking the Coding Interview/C07ObjectOrientedDesign/python/7.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C07ObjectOrientedDesign/python/7.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C07ObjectOrientedDesign/python/7.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
''' Design Amazon / Flipkart (an online shopping platform) Beyond the basic functionality (signup, login etc.), interviewers will be looking for the following: Discoverability: How will the buyer discover a product? How will the search surface results? Cart & Checkout: Users expect the cart and checkout to behave in a certain way. How will the design adhere to such known best practices while also introducing innovative checkout semantics like One-Click-Purchase? Payment Methods: Users can pay using credit cards, gift cards, etc. How will the payment method work with the checkout process? Product Reviews & Ratings: When can a user post a review and a rating? How are useful reviews tracked and less useful reviews de-prioritized? ''' # Objects # Customer # account, cart, order # add_item_to_cart(item), remove_item_from_cart(item), place_order(order) # Account # username, password, status, name, shipping_address, email, phone, credit_cards # add_product(product), product_review(review) # Cart # items # add_item(item), remove_item(item), update_item_quantity(item, quantity), # get_items, checkout # Item # item, product_id, quantity, price # update_quantity(quantity) # Product # product_id, name, description, price, category, available_item_count, seller # ProductCategory # name, description # Order # status (unshipped, pending, shipped, completed, canceled), order_logs, # order_number, status, order_date # send_for_shipment, make_payment(payment), add_order_log(order_log) # Order Log # order_number, creation_date, status # Shipping # shipment_number, shipment_date, estimated_arrival, shipment_method, # order_details
41.822222
88
0.690223
31bcd25aad4c846bd2e353275be40d498f9d9c5e
1,833
py
Python
sorting_algorithms.py
caul1flower/alg
a9eaae99798df24fa611a83e7280c6ae2dde974e
[ "MIT" ]
null
null
null
sorting_algorithms.py
caul1flower/alg
a9eaae99798df24fa611a83e7280c6ae2dde974e
[ "MIT" ]
null
null
null
sorting_algorithms.py
caul1flower/alg
a9eaae99798df24fa611a83e7280c6ae2dde974e
[ "MIT" ]
null
null
null
def selection_sort(arr): comparisons = 1 for i in range(len(arr)): comparisons += 1 min_idx = i comparisons += 1 for j in range(i + 1, len(arr)): comparisons += 2 if arr[min_idx] > arr[j]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] return comparisons def insertion_sort(arr): comparisons = 1 for i in range(1, len(arr)): comparisons += 1 key = arr[i] j = i - 1 comparisons += 1 while j >= 0 and key < arr[j]: comparisons += 2 arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key return comparisons def merge_sort(lst): comparisons = 0 if len(lst) > 1: middle = len(lst) // 2 left = lst[:middle] right = lst[middle:] merge_sort(left) merge_sort(right) i = j = k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: lst[k] = left[i] i += 1 else: lst[k] = right[j] j += 1 k += 1 comparisons += 1 while i < len(left): lst[k] = left[i] i += 1 k += 1 while j < len(right): lst[k] = right[j] j += 1 k += 1 return comparisons def shell_sort(lst): length = len(lst) h = 1 comparisons = 0 while (h < (length//3)): h = 3*h + 1 while (h >= 1): for i in range(h, length): for j in range(i, h-1, -h): comparisons += 1 if (lst[j] < lst[j-h]): lst[j], lst[j-h] = lst[j-h], lst[j] else: break h = h//3 return comparisons
24.118421
55
0.414075
735131118b9ebe08eb5ab32dbba90663b0dde82b
1,003
py
Python
Aggregator/agg_parkhaeuser.py
cfleschhut/virushack
2fe7ded0be8672b066edef7fed52573794db2ba5
[ "Apache-2.0" ]
null
null
null
Aggregator/agg_parkhaeuser.py
cfleschhut/virushack
2fe7ded0be8672b066edef7fed52573794db2ba5
[ "Apache-2.0" ]
null
null
null
Aggregator/agg_parkhaeuser.py
cfleschhut/virushack
2fe7ded0be8672b066edef7fed52573794db2ba5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Mar 24 16:47:26 2020 @author: Peter """ from datetime import datetime import boto3 import json import csv def aggregate(date): s3_client = boto3.client('s3') response = s3_client.get_object(Bucket='sdd-s3-basebucket', Key='parkhaeuser/{}/{}/{}/{}'.format( str(date.year).zfill(4), str(date.month).zfill(2), str(date.day).zfill(2), str(date.hour).zfill(2))) json.loads(response["Body"].read()) results = [] with open('zuordnung_plz_ort_landkreis.csv', encoding='utf-8') as f: reader = csv.DictReader(f) for city in results: city_name = result['landkreis'] for row in reader: if row['ort'].startswith(city_name): ags = row['ags'] break data = {'landkreis': ags, 'parkhaeuser_score': result['Auslastung'] } results.append(data) return results
30.393939
109
0.555334
7353ce7d1b8334c9673af5ee74690556543399c0
836
py
Python
content/labs/lab8/solutions/exercise_2_sol.py
yankeesong/2021-CS109A
0fea6b4411092446719d09379c6a12815aa91ab2
[ "MIT" ]
19
2021-08-29T21:23:48.000Z
2022-03-16T14:38:25.000Z
docs/labs/lab8/solutions/exercise_2_sol.py
SBalas/2021-CS109A
0f57c3d80b7cef99d660f6a77c0166cffc1253e8
[ "MIT" ]
null
null
null
docs/labs/lab8/solutions/exercise_2_sol.py
SBalas/2021-CS109A
0f57c3d80b7cef99d660f6a77c0166cffc1253e8
[ "MIT" ]
22
2021-09-01T13:03:05.000Z
2022-03-31T14:34:36.000Z
# init exercise 2 solution # Using an approach similar to what was used in the Iris example # we can identify appropriate boundaries for our meshgrid by # referencing the actual wine data x_1_wine = X_wine_train[predictors[0]] x_2_wine = X_wine_train[predictors[1]] x_1_min_wine, x_1_max_wine = x_1_wine.min() - 0.2, x_1_wine.max() + 0.2 x_2_min_wine, x_2_max_wine = x_2_wine.min() - 0.2, x_2_wine.max() + 0.2 # Then we use np.arange to generate our interval arrays # and np.meshgrid to generate our actual grids xx_1_wine, xx_2_wine = np.meshgrid( np.arange(x_1_min_wine, x_1_max_wine, 0.003), np.arange(x_2_min_wine, x_2_max_wine, 0.003) ) # Now we have everything we need to generate our plot plot_wine_2d_boundaries( X_wine_train, y_wine_train, predictors, model1_wine, xx_1_wine, xx_2_wine, )
27.866667
71
0.742823
7d903782bb6421913de305607c7f084a6e880976
4,849
py
Python
PSA/psaEE.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
PSA/psaEE.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
PSA/psaEE.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
# -*- Mode:Python;indent-tabs-mode:nil; -*- # # File: psaEE.py # Created: 27/08/2014 # Author: BSC # Author: jju / VTT Technical Research Centre of Finland Ltd., 2016 # # Description: # Web service running on the PSA interacting with the PSC # # import falcon #import json import Config import logging import subprocess from execInterface import execInterface from getConfiguration import getConfiguration from psaExceptions import psaExceptions from dumpLogFile import dumpLogFile import os.path conf = Config.Configuration() date_format = "%m/%d/%Y %H:%M:%S" log_format = "[%(asctime)s.%(msecs)d] [%(module)s] %(message)s" logging.basicConfig( filename = conf.LOG_FILE, level = logging.DEBUG, format = log_format, datefmt = date_format ) # Enforce logging level even if handlers had already # been added into the root logger: logger = logging.getLogger() logger.setLevel( logging.DEBUG ) #pscAddr = conf.PSC_ADDRESS #configsPath = conf.PSA_CONFIG_PATH #psaID = conf.PSA_ID #confID = conf.CONF_ID if conf.TEST_MODE: logging.info( 'Test Mode enabled' ) logging.info( "--------" ) logging.info( "PSA EE init." ) logging.info( "PSA ID: " + str( conf.PSA_ID ) ) logging.info( "PSA NAME: " + str( conf.PSA_NAME ) ) logging.info( "PSA VERSION: " + str( conf.PSA_VERSION ) ) logging.info( "PSA-PSC API version: " + str( conf.PSA_API_VERSION ) ) logging.info( "PSA log location: " + str( conf.PSA_LOG_LOCATION ) ) logging.info( "--------" ) # instantiate class object to manage REST interface to the PSC execIntf = execInterface( conf.PSA_HOME, conf.PSA_CONFIG_PATH, conf.PSA_SCRIPTS_PATH, conf.PSA_LOG_LOCATION, conf.PSA_ID, conf.PSC_ADDRESS, str(conf.PSA_API_VERSION)) #confHand = getConfiguration(pscAddr, configsPath, confID, psaID) confHand = None if not conf.TEST_MODE: confHand = getConfiguration( conf.PSC_ADDRESS, conf.PSA_CONFIG_PATH, conf.PSA_SCRIPTS_PATH, conf.PSA_ID, str(conf.PSA_API_VERSION) ) # start the HTTP falcon proxy and adds reachable resources as routes app = falcon.API() base = '/' + str( conf.PSA_API_VERSION ) + '/execInterface/' app.add_route( base + '{command}', execIntf ) dumpLog = dumpLogFile() #FOR DEBUGGING ONLY, REMOVE IN PRODUCTION app.add_route( base + 'dump-log-ctrl', dumpLog ) logging.info("execInterface routes added.") # Inform our PSC that we are up #TODO ''' try: start_res = confHand.send_start_event() # We don't need to enable anything #proc = subprocess.Popen(confScript, stdout=subprocess.PIPE, shell=True) #(out, err) = proc.communicate() except psaExceptions as exc: pass ''' # Pull configuration and start the PSA. try: if not conf.TEST_MODE: confScript = confHand.pullPSAconf( execIntf ) else: # Do local test setup # Check that some psaconf file exists if not os.path.isfile( conf.PSA_CONFIG_PATH + '/psaconf' ): raise psaExceptions.confRetrievalFailed() execIntf.callInitScript() if conf.TEST_MODE_IP != None: # Only run ip_conf.sh if all the parameters are present if ( conf.TEST_MODE_DNS == None or conf.TEST_MODE_NETMASK == None or conf.TEST_MODE_GATEWAY == None ): raise psaExceptions.confRetrievalFailed() logging.info( 'PSA requires IP, configuring...' ) ip = conf.TEST_MODE_IP dns = conf.TEST_MODE_DNS netmask = conf.TEST_MODE_NETMASK gateway = conf.TEST_MODE_GATEWAY logging.info( 'ip: ' + str( ip ) ) logging.info( 'gateway: ' + str( gateway ) ) logging.info( 'dns: ' + str( dns ) ) logging.info( 'netmask: ' + str( netmask ) ) ret = subprocess.call( [ conf.PSA_SCRIPTS_PATH + 'ip_conf.sh', ip, gateway, dns, netmask ] ) logging.info( 'Result of setting config: ' + str( ret ) ) else: logging.info( "PSA doesn't require IP, skipping configuration." ) logging.info('PSA '+ conf.PSA_ID + ' configuration registered' ) execIntf.callStartScript() except psaExceptions.confRetrievalFailed as e: print e logging.info( "PSA start done." ) # http request to ask for the configuration and start the script ''' try: confScript = confHand.pullPSAconf() proc = subprocess.Popen(confScript, stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() except psaExceptions as exc: pass '''
32.763514
77
0.620953
81574b9b3bc094b3a084cb740cf3436263355003
8,561
py
Python
frappe-bench/env/lib/python2.7/site-packages/github/tests/BadAttributes.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/github/tests/BadAttributes.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/github/tests/BadAttributes.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ############################ Copyrights and license ############################ # # # Copyright 2013 Vincent Jacques <[email protected]> # # Copyright 2014 Vincent Jacques <[email protected]> # # Copyright 2016 Peter Buckley <[email protected]> # # Copyright 2017 Hugo <[email protected]> # # Copyright 2018 sfdye <[email protected]> # # # # This file is part of PyGithub. # # http://pygithub.readthedocs.io/ # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # ################################################################################ import datetime import Framework import github # Replay data is forged to simulate bad things returned by Github class BadAttributes(Framework.TestCase): def testBadSimpleAttribute(self): user = self.g.get_user("klmitch") self.assertEqual(user.created_at, datetime.datetime(2011, 3, 23, 15, 42, 9)) raised = False try: user.name except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, 42) self.assertEqual(e.expected_type, (str, unicode)) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised) def testBadAttributeTransformation(self): user = self.g.get_user("klmitch") self.assertEqual(user.name, "Kevin L. Mitchell") raised = False try: user.created_at except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, "foobar") self.assertEqual(e.expected_type, (str, unicode)) self.assertEqual(e.transformation_exception.__class__, ValueError) self.assertEqual(e.transformation_exception.args, ("time data 'foobar' does not match format '%Y-%m-%dT%H:%M:%SZ'",)) self.assertTrue(raised) def testBadTransformedAttribute(self): user = self.g.get_user("klmitch") self.assertEqual(user.name, "Kevin L. Mitchell") raised = False try: user.updated_at except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, 42) self.assertEqual(e.expected_type, (str, unicode)) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised) def testBadSimpleAttributeInList(self): hook = self.g.get_hook("activecollab") self.assertEqual(hook.name, "activecollab") raised = False try: hook.events except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, ["push", 42]) self.assertEqual(e.expected_type, [(str, unicode)]) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised) def testBadAttributeInClassAttribute(self): repo = self.g.get_repo("klmitch/turnstile") owner = repo.owner self.assertEqual(owner.id, 686398) raised = False try: owner.avatar_url except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, 42) self.assertTrue(raised) def testBadTransformedAttributeInList(self): commit = self.g.get_repo("klmitch/turnstile").get_commit("38d9082a898d0822b5ccdfd78f3a536e2efa6c26") raised = False try: commit.files except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, [42]) self.assertEqual(e.expected_type, [dict]) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised) def testBadTransformedAttributeInDict(self): gist = self.g.get_gist("6437766") raised = False try: gist.files except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, {"test.py": 42}) self.assertEqual(e.expected_type, {(str, unicode): dict}) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised) def testIssue195(self): hooks = self.g.get_hooks() # We can loop on all hooks as long as we don't access circleci's events attribute self.assertListKeyEqual(hooks, lambda h: h.name, [u'activecollab', u'acunote', u'agilebench', u'agilezen', u'amazonsns', u'apiary', u'apoio', u'appharbor', u'apropos', u'asana', u'backlog', u'bamboo', u'basecamp', u'bcx', u'blimp', u'boxcar', u'buddycloud', u'bugherd', u'bugly', u'bugzilla', u'campfire', u'cia', u'circleci', u'codeclimate', u'codeportingcsharp2java', u'codeship', u'coffeedocinfo', u'conductor', u'coop', u'copperegg', u'cube', u'depending', u'deployhq', u'devaria', u'docker', u'ducksboard', u'email', u'firebase', u'fisheye', u'flowdock', u'fogbugz', u'freckle', u'friendfeed', u'gemini', u'gemnasium', u'geocommit', u'getlocalization', u'gitlive', u'grmble', u'grouptalent', u'grove', u'habitualist', u'hakiri', u'hall', u'harvest', u'hipchat', u'hostedgraphite', u'hubcap', u'hubci', u'humbug', u'icescrum', u'irc', u'irker', u'ironmq', u'ironworker', u'jabber', u'jaconda', u'jeapie', u'jenkins', u'jenkinsgit', u'jira', u'jqueryplugins', u'kanbanery', u'kickoff', u'leanto', u'lechat', u'lighthouse', u'lingohub', u'loggly', u'mantisbt', u'masterbranch', u'mqttpub', u'nma', u'nodejitsu', u'notifo', u'ontime', u'pachube', u'packagist', u'phraseapp', u'pivotaltracker', u'planbox', u'planio', u'prowl', u'puppetlinter', u'pushalot', u'pushover', u'pythonpackages', u'railsbp', u'railsbrakeman', u'rally', u'rapidpush', u'rationaljazzhub', u'rationalteamconcert', u'rdocinfo', u'readthedocs', u'redmine', u'rubyforge', u'scrumdo', u'shiningpanda', u'sifter', u'simperium', u'slatebox', u'snowyevening', u'socialcast', u'softlayermessaging', u'sourcemint', u'splendidbacon', u'sprintly', u'sqsqueue', u'stackmob', u'statusnet', u'talker', u'targetprocess', u'tddium', u'teamcity', u'tender', u'tenxer', u'testpilot', u'toggl', u'trac', u'trajectory', u'travis', u'trello', u'twilio', u'twitter', u'unfuddle', u'web', u'weblate', u'webtranslateit', u'yammer', u'youtrack', u'zendesk', u'zohoprojects']) for hook in hooks: if hook.name != "circleci": hook.events raised = False for hook in hooks: if hook.name == "circleci": try: hook.events except github.BadAttributeException, e: raised = True self.assertEqual(e.actual_value, [["commit_comment", "create", "delete", "download", "follow", "fork", "fork_apply", "gist", "gollum", "issue_comment", "issues", "member", "public", "pull_request", "pull_request_review_comment", "push", "status", "team_add", "watch"]]) self.assertEqual(e.expected_type, [(str, unicode)]) self.assertEqual(e.transformation_exception, None) self.assertTrue(raised)
56.322368
1,932
0.579372
c4a3d62e2a0153457c02eb939e51f5a90406ad51
2,837
py
Python
Termux-Login-master/Termux-Lock.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
Termux-Login-master/Termux-Lock.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
Termux-Login-master/Termux-Lock.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
import stdiomask as sm import os,sys # coded by AnonyminHack5 flag = True endc = '\033[0m' black = '\033[30m' red = '\033[31m' green = '\033[32m' yellow = '\033[33m' blue = '\033[34m' magneto = '\033[36m' os.system('figlet -c -k -f slant Termux-Lock|lolcat') print ( magneto +'\n\t\t[ ★ Termux - Lock ★ ]\n',endc) print ( green +'\t\tcoded by - AnonyminHack5\n',endc) def main_menu(): dash = '-' print(blue +'\n'+ dash*15 +'Main-Menu'+ dash*15) print(yellow +''' 1.Register 2.Login 3.Remove Lock 4.Exit\n''',endc) print(blue +'\n'+ dash*13 +'Select option'+ dash*13) def register(): dash = '-' global usr,pw print(blue +'\n'+ dash*15 +'Register'+ dash*15) usr = input(blue +'\nEnter username : ') pw = input(green +'\nEnter password : ') rpw = input(green +'\nRetype password : ') if pw == rpw: os.chdir('/data/data/com.termux/files/usr/share') usrpwd = open("usr_nd_pwd.txt",'w') usrpwd.writelines(usr+'\n') usrpwd.writelines(pw+'\n') usrpwd.close() print(magneto +'\nRegistered Successfully...') os.chdir('/data/data/com.termux/files/home') else: print(red +"Password doesn't match") print(blue +'\n'+ dash*15 +'Complete'+ dash*15) def check_usr_pass(): dash = '-' global flag,usr,pw print(blue +'\n'+ dash*15 +'Login'+ dash*15) username = input(yellow + '\n\t[+] Username : ') password = sm.getpass(prompt=yellow + '\n\t[*] Password : ',mask='*') print(blue +'\n'+ dash*13 +'Completed'+ dash*13) usrpwd = open("/data/data/com.termux/files/usr/share/usr_nd_pwd.txt") lines = usrpwd.readlines() usrpwd.close() if(len(lines) >= 2): usr = lines[0] pwd = lines[1] if username+'\n' == usr and password+'\n' == pwd: print(green + '\n\t\t[★] Welcome to the termux [★]\n',endc) flag = False else: print(red + '\n\t\t[×] Invalid username or password [×]',endc) else: print(red +'\n\tYou have removed your lock') print(blue +'\tso, First register to login') def remove(): dash = '-' readFile = open("/data/data/com.termux/files/usr/share/usr_nd_pwd.txt") lines = readFile.readlines() readFile.close() print(blue +'\n'+dash*40) if(len(lines) >= 2): w = open("/data/data/com.termux/files/home/MyRepo/usr_nd_pwd.txt",'w') w.writelines([item for item in lines[:-2]]) w.close() print(magneto +'\n\tTermux-Lock disabled successfully...') else: print(red +'\n\tYou have already removed your lock') print(blue +'\tso, First register to login') print(blue +'\n'+dash*40) def exit(): global flag print(blue +'\n\tThank you for Using my tool...',endc) flag = False exit if len(sys.argv) >=2: arg = sys.argv[1] if arg == '-l': check_usr_pass() while flag == True: menu = {1:register,2:check_usr_pass,3:remove,4:exit} main_menu() choice = int(input(magneto +'\nEnter choice : ')) menu[choice]()
27.813725
72
0.627776
f20d99db7e934d0e282b0c5cdd817e4191209f22
1,075
py
Python
src/test/summarizeResults.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/test/summarizeResults.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/test/summarizeResults.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
#!/bin/env python # Copyright (c) Lawrence Livermore National Security, LLC and other VisIt # Project developers. See the top-level LICENSE file for dates and other # details. No copyright assignment is required to contribute to VisIt. """ file: summarizeResults.py description: prints a summary of test results contained in results.json author: Kathleen Biagas date: Tue Feb 11 08:57:54 PST 2014 """ # ---------------------------------------------------------------------------- # Modifications: # # ---------------------------------------------------------------------------- import os import json if (os.path.isfile("results.json")): full = json.load(open("results.json")) for r in full["results"]: if "status" in r: print("%s: %s/%s"%(r["status"],r["category"],r["base"])) if r["status"] != "succeeded": for s in r["details"]["sections"]: for c in s["cases"]: print(" %s: %s"%(c["status"],c["name"])) else: print("results.json does not exist.") exit()
34.677419
78
0.52093
f218761745689b7a14ddf565b2107df04ffa02aa
3,381
py
Python
Python/zzz_training_challenge/Python_Challenge/solutions/ch05_datastructures/solutions/ex06_longest_subsequence.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch05_datastructures/solutions/ex06_longest_subsequence.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch05_datastructures/solutions/ex06_longest_subsequence.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden import sys def find_longest_growing_sequence(values): longest_subsequence = [] current_subsequence = [] last_value = sys.maxsize for current_value in values: if current_value >= last_value: last_value = current_value current_subsequence.append(current_value) else: # Ende dieser Sequenz, starte neue Sequenz if len(current_subsequence) >= len(longest_subsequence): longest_subsequence = current_subsequence current_subsequence = [] last_value = current_value current_subsequence.append(current_value) # wichtig, weil sonst die letzte Sequenz ggf. nicht betrachtet wird if len(current_subsequence) >= len(longest_subsequence): longest_subsequence = current_subsequence return longest_subsequence def find_longest_growing_sequence_mini_opt(values): longest_subsequence = [] current_subsequence = [] last_value = sys.maxsize for current_value in values: if current_value < last_value: # Ende dieser Sequenz, starte neue Sequenz if len(current_subsequence) >= len(longest_subsequence): longest_subsequence = current_subsequence current_subsequence = [] last_value = current_value current_subsequence.append(current_value) # wichtig, weil sonst die letzte Sequenz ggf. nicht betrachtet wird if len(current_subsequence) >= len(longest_subsequence): longest_subsequence = current_subsequence return longest_subsequence def find_longest_growing_sequence_optimized(values): if len(values) == 0: return values longest = (0, 0) start_current = 0 end_current = 0 for end_current in range(1, len(values)): if values[end_current] < values[end_current - 1]: if end_current - start_current > len(longest): longest = (start_current, end_current) start_current = end_current if end_current - start_current > len(longest): longest = (start_current, end_current) return values[longest[0]: longest[1]] def main(): print(find_longest_growing_sequence([7, 2, 7, 1, 2, 5, 7, 1])) # [1, 2, 5, 7] print(find_longest_growing_sequence([7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5])) # [1, 2, 3, 4, 5]] print(find_longest_growing_sequence([1, 1, 2, 2, 2, 3, 3, 3, 3])) # [1, 1, 2, 2, 2, 3, 3, 3, 3] print(find_longest_growing_sequence([])) # [] print(find_longest_growing_sequence_mini_opt([7, 2, 7, 1, 2, 5, 7, 1])) # [1, 2, 5, 7] print(find_longest_growing_sequence_mini_opt([7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5])) # [1, 2, 3, 4, 5]] print(find_longest_growing_sequence_mini_opt([1, 1, 2, 2, 2, 3, 3, 3, 3])) # [1, 1, 2, 2, 2, 3, 3, 3, 3] print(find_longest_growing_sequence_mini_opt([])) # [] print(find_longest_growing_sequence_optimized([7, 2, 7, 1, 2, 5, 7, 1])) # [1, 2, 5, 7] print(find_longest_growing_sequence_optimized([7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5])) # [1, 2, 3, 4, 5]] print(find_longest_growing_sequence_optimized([1, 1, 2, 2, 2, 3, 3, 3, 3])) # [1, 1, 2, 2, 2, 3, 3, 3, 3] print(find_longest_growing_sequence_optimized([])) # [] if __name__ == "__main__": main()
34.5
110
0.644188
4872f274f6d34c0d04ca5b3c33bd445dfe444e3c
840
py
Python
exercises/de/test_02_05_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/de/test_02_05_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/de/test_02_05_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
def test(): assert ( "from spacy.tokens import Doc" in __solution__ ), "Importierst du die Klasse Doc?" assert ( len(words) == 5 ), "Es sieht so aus, als ob du eine falsche Anzahl an Wörtern hast." assert ( len(spaces) == 5 ), "Es sieht so aus, als ob du eine falsche Anzahl an Leerzeichen hast." assert words == ["Was", ",", "echt", "?", "!"], "Schau dir nochmal die Wörter an!" assert all( isinstance(s, bool) for s in spaces ), "Die Leerzeichen-Werte müssen boolesche Werte sein." assert [int(s) for s in spaces] == [0, 1, 0, 0, 0], "Sind die Leerzeichen korrekt?" assert ( doc.text == "Was, echt?!" ), "Bist du dir sicher, dass du das Doc richtig erstellt hast?" __msg__.good("Gut gemacht! Lass uns als nächstes ein paar Entitäten erstellen.")
42
87
0.611905
6f9beefb73314116a00ca03fca54e682bf861c63
259
py
Python
pypubsub-demo/sub.py
gregjhansell97/sandbox
d565da5db2c10af404ce62aa747d5e682bc02a86
[ "MIT" ]
null
null
null
pypubsub-demo/sub.py
gregjhansell97/sandbox
d565da5db2c10af404ce62aa747d5e682bc02a86
[ "MIT" ]
null
null
null
pypubsub-demo/sub.py
gregjhansell97/sandbox
d565da5db2c10af404ce62aa747d5e682bc02a86
[ "MIT" ]
null
null
null
import time from pubsub import pub # create a listener def on_publish(arg1, arg2=None): print(f"received: {arg1}, arg2={arg2})") if __name__ == "__main__": pub.subscribe(on_publish, "rootTopic") while True: time.sleep(10) pass
17.266667
44
0.648649
d22379deb1a05a7e3608c1b862bc46f8c8682e21
7,358
py
Python
src/main/python/client/clientView.py
mfentler-tgm/sew5-simple-user-database-mfentler-tgm
98fba2cdca4243c3b2f25c45ceb043c258a5db53
[ "MIT" ]
null
null
null
src/main/python/client/clientView.py
mfentler-tgm/sew5-simple-user-database-mfentler-tgm
98fba2cdca4243c3b2f25c45ceb043c258a5db53
[ "MIT" ]
null
null
null
src/main/python/client/clientView.py
mfentler-tgm/sew5-simple-user-database-mfentler-tgm
98fba2cdca4243c3b2f25c45ceb043c258a5db53
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'clientView.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore,QtGui,QtWidgets from PyQt5.QtWidgets import QHeaderView from functools import partial class Ui_Client(object): def setupUi(self, MainWindow, Controller): MainWindow.setObjectName("MainWindow") MainWindow.resize(1025, 786) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.allStudentsTable = QtWidgets.QTableWidget(self.centralwidget) self.allStudentsTable.setGeometry(QtCore.QRect(20, 80, 1000, 381)) self.allStudentsTable.setMaximumSize(QtCore.QSize(981, 16777215)) self.allStudentsTable.setAutoFillBackground(False) self.allStudentsTable.setAlternatingRowColors(True) self.allStudentsTable.setShowGrid(True) self.allStudentsTable.setWordWrap(True) self.allStudentsTable.setCornerButtonEnabled(True) self.allStudentsTable.setRowCount(0) self.allStudentsTable.setColumnCount(6) # Source: https://stackoverflow.com/a/31641703 self.allStudentsTable.horizontalHeader().setStretchLastSection(True) self.allStudentsTable.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.allStudentsTable.setObjectName("allStudentsTable") item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(3, item) item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(4, item) item = QtWidgets.QTableWidgetItem() self.allStudentsTable.setHorizontalHeaderItem(5, item) self.loadStudent_button = QtWidgets.QPushButton(self.centralwidget) self.loadStudent_button.setGeometry(QtCore.QRect(20, 490, 93, 28)) self.loadStudent_button.setObjectName("loadStudent_button") self.loadStudent_button.clicked.connect(Controller.getAllStudents) self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(250, 30, 191, 41)) font = QtGui.QFont() font.setPointSize(20) font.setBold(False) font.setWeight(50) self.label.setFont(font) self.label.setObjectName("label") self.formLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.formLayoutWidget.setGeometry(QtCore.QRect(20, 520, 411, 181)) self.formLayoutWidget.setObjectName("formLayoutWidget") self.formLayout = QtWidgets.QFormLayout(self.formLayoutWidget) self.formLayout.setContentsMargins(0, 0, 0, 0) self.formLayout.setObjectName("formLayout") self.label_2 = QtWidgets.QLabel(self.formLayoutWidget) self.label_2.setObjectName("label_2") self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_2) self.addStudent_username = QtWidgets.QLineEdit(self.formLayoutWidget) self.addStudent_username.setObjectName("addStudent_username") self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.addStudent_username) self.label_3 = QtWidgets.QLabel(self.formLayoutWidget) font = QtGui.QFont() font.setPointSize(20) font.setBold(False) font.setWeight(50) self.label_3.setFont(font) self.label_3.setTextFormat(QtCore.Qt.AutoText) self.label_3.setAlignment(QtCore.Qt.AlignCenter) self.label_3.setObjectName("label_3") self.formLayout.setWidget(0, QtWidgets.QFormLayout.SpanningRole, self.label_3) self.label_5 = QtWidgets.QLabel(self.formLayoutWidget) self.label_5.setLayoutDirection(QtCore.Qt.LeftToRight) self.label_5.setObjectName("label_5") self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_5) self.addStudent_email = QtWidgets.QLineEdit(self.formLayoutWidget) self.addStudent_email.setObjectName("addStudent_email") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.addStudent_email) self.label_4 = QtWidgets.QLabel(self.formLayoutWidget) self.label_4.setObjectName("label_4") self.formLayout.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.label_4) self.addStudent_picture = QtWidgets.QLineEdit(self.formLayoutWidget) self.addStudent_picture.setObjectName("addStudent_picture") self.formLayout.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.addStudent_picture) self.addStudent_button = QtWidgets.QPushButton(self.formLayoutWidget) self.addStudent_button.setMaximumSize(QtCore.QSize(93, 16777215)) self.addStudent_button.setObjectName("addStudent_button") self.addStudent_button.clicked.connect(partial(Controller.addNewStudent, username=self.addStudent_username, email=self.addStudent_email, picture=self.addStudent_picture)) self.formLayout.setWidget(4, QtWidgets.QFormLayout.FieldRole, self.addStudent_button) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.allStudentsTable.setSortingEnabled(False) item = self.allStudentsTable.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "ID")) item = self.allStudentsTable.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "Username")) item = self.allStudentsTable.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "Email")) item = self.allStudentsTable.horizontalHeaderItem(3) item.setText(_translate("MainWindow", "Picture")) item = self.allStudentsTable.horizontalHeaderItem(4) item.setText(_translate("MainWindow", "Edit")) item = self.allStudentsTable.horizontalHeaderItem(5) item.setText(_translate("MainWindow", "Delete")) self.loadStudent_button.setText(_translate("MainWindow", "Load")) self.label.setText(_translate("MainWindow", "All Students")) self.label_2.setText(_translate("MainWindow", "Username")) self.label_3.setText(_translate("MainWindow", "Add new student")) self.label_5.setText(_translate("MainWindow", "Email")) self.label_4.setText(_translate("MainWindow", "Picture")) self.addStudent_button.setText(_translate("MainWindow", "Add")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
52.184397
178
0.728323
963113e4741d616c6eb5adbc6d3b69e8df7bbaae
1,584
py
Python
interface/getIP/getip.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
1
2020-07-16T02:52:47.000Z
2020-07-16T02:52:47.000Z
interface/getIP/getip.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
null
null
null
interface/getIP/getip.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
null
null
null
import socket import platform def getip(): try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('www.baidu.com', 0)) ip = s.getsockname()[0] except: ip = "x.x.x.x" finally: s.close() return ip class GetIP: def __init__(self): self.module = 'GetIP' def Getip(self): ip_address = "0.0.0.0" sysstr = platform.system() if sysstr == "Windows": ip_address = socket.gethostbyname(socket.gethostname()) print ("Windows @ " + ip_address) elif sysstr == "Linux": ip_address = getip() # print ("Linux @ " + ip_address) elif sysstr == "Darwin": ip_address = socket.gethostbyname(socket.gethostname()) print ("Mac @ " + ip_address) else: print ("Other System @ some ip") return ip_address def ip2hexstr(self, ip): # 分开 hexstr = "" len_str = len(ip) for i in range(len_str): hex_str = str(hex(ord(ip[i])))[2:] hexstr = hexstr + hex_str # print("hex ip :", hexstr) return hexstr def ip2hexstr_(self, ip): # 整体 hexstr = "" len_str = len(ip) parting_ip = ip.split(".", -1) # print(parting_ip) for i in range(4): hex_str = str(hex(int(parting_ip[i], 10)))[2:] if len(hex_str) < 2: hex_str = "0" + hex_str hexstr = hexstr + hex_str # print("hex ip :", hexstr) return hexstr get = GetIP()
26.847458
67
0.510101
73afa277b4b76ad7e00a732d9cbf9c11056f1c1e
457
py
Python
frappe-bench/apps/erpnext/erpnext/patches/v8_4/make_scorecard_records.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:55:29.000Z
2021-04-29T14:55:29.000Z
frappe-bench/apps/erpnext/erpnext/patches/v8_4/make_scorecard_records.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/patches/v8_4/make_scorecard_records.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:39:01.000Z
2021-04-29T14:39:01.000Z
# Copyright (c) 2017, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from erpnext.buying.doctype.supplier_scorecard.supplier_scorecard import make_default_records def execute(): frappe.reload_doc('buying', 'doctype', 'supplier_scorecard_variable') frappe.reload_doc('buying', 'doctype', 'supplier_scorecard_standing') make_default_records()
41.545455
93
0.818381
793300304239a7ab0af9211f9ff48aa44dbd550d
707
py
Python
Packs/ApiModules/Scripts/CrowdStrikeApiModule/TestsInput/http_responses.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/ApiModules/Scripts/CrowdStrikeApiModule/TestsInput/http_responses.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/ApiModules/Scripts/CrowdStrikeApiModule/TestsInput/http_responses.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
MULTI_ERRORS_HTTP_RESPONSE = { "errors": [ { "code": 403, "message": "access denied, authorization failed" }, { "code": 401, "message": "test error #1" }, { "code": 402, "message": "test error #2" } ], "meta": { "powered_by": "crowdstrike-api-gateway", "query_time": 0.000654734, "trace_id": "39f1573c-7a51-4b1a-abaa-92d29f704afd" } } NO_ERRORS_HTTP_RESPONSE = { "errors": [], "meta": { "powered_by": "crowdstrike-api-gateway", "query_time": 0.000654734, "trace_id": "39f1573c-7a51-4b1a-abaa-92d29f704afd" } }
22.806452
60
0.486563
541915f012eb1076af797db4c87a7635be85bf27
6,282
py
Python
Mock/Api.py
jonaes/ds100bot
79a646114400c5c8d21ff21376276a8d380b031f
[ "Apache-2.0" ]
15
2019-12-20T08:24:31.000Z
2022-03-18T09:24:25.000Z
Mock/Api.py
jonaes/ds100bot
79a646114400c5c8d21ff21376276a8d380b031f
[ "Apache-2.0" ]
124
2020-04-20T04:36:49.000Z
2022-01-29T11:08:09.000Z
Mock/Api.py
jonaes/ds100bot
79a646114400c5c8d21ff21376276a8d380b031f
[ "Apache-2.0" ]
12
2020-07-08T22:19:39.000Z
2022-03-19T09:13:11.000Z
# pylint: disable=C0114 import tweepy # for exceptions from Externals import Twitter from Externals.Measure import Measure from AnswerMachine.tweet import Tweet import Persistence.log as log from .Tweet import User, mocked_source, mocked_tweets log_ = log.getLogger(__name__) class Count: # pylint: disable=too-few-public-methods def __init__(self): self.correct = 0 self.missed = 0 self.bad_content = 0 class Result: # pylint: disable=too-few-public-methods def __init__(self): self.tweet = Count() self.follow = Count() class MockApi(Twitter): # pylint: disable=too-many-instance-attributes def __init__(self, **kwargs): log_.setLevel(log_.getEffectiveLevel() - 10) self.running_id = 10001 self.myself = User.theBot self.mode = kwargs.get('mode', 'testcases') mocked_t = mocked_tweets() if self.mode == 'external': self.mock = mocked_source() elif self.mode == 'testcases': self.mock = mocked_t elif self.mode == 'id': self.mock = [t for t in mocked_t if t.id in kwargs.get('id_list', [])] else: raise ValueError("Invalid mode in {}: {}".format(__name__, self.mode)) self.replies = {} self.double_replies = [] self.measure = Measure() self.readonly = True def get_tweet(self, tweet_id): for t in self.mock: if t.id == tweet_id: return t raise tweepy.TweepError("Kein solcher Tweet vorhanden") def tweet_single(self, text, **kwargs): super().tweet_single(text, **kwargs) if 'in_reply_to_status_id' in kwargs: reply_id = kwargs['in_reply_to_status_id'] # don't track thread answers: if reply_id != self.running_id: if reply_id in self.replies: log_.warning("Tweet %d was replied to twice!", reply_id) self.double_replies.append(reply_id) else: self.replies[reply_id] = text.strip() self.running_id += 1 return self.running_id def mentions(self, highest_id): mention_list = [] for t in self.mock: for um in t.raw['entities']['user_mentions']: if um['screen_name'] == self.myself.screen_name: mention_list.append(t) break return mention_list def timeline(self, highest_id): return [t for t in self.mock if t.author.follows] def hashtag(self, tag, highest_id): return [t for t in self.mock if Tweet(t).has_hashtag(tag)] def is_followed(self, user): return user.follows def follow(self, user): super().follow(user) user.follows = True def defollow(self, user): super().defollow(user) user.follows = False def statistics(self, output='descriptive'): stat_log = log.getLogger('statistics', '{message}') res_count = Result() stat_log.debug(" RESULTS") for t in self.mock: was_replied_to = t.id in self.replies if t.expected_answer is None: if was_replied_to: stat_log.error("Tweet %d falsely answered", t.id) res_count.tweet.missed += 1 else: res_count.tweet.correct += 1 stat_log.info("Tweet %d correctly unanswered", t.id) continue # expected answer is not None: if not was_replied_to: res_count.tweet.missed += 1 stat_log.error("Tweet %d falsely unanswered", t.id) continue # correctly answered: is it the correct answer? if t.expected_answer == self.replies[t.id]: res_count.tweet.correct += 1 stat_log.info("Tweet %d correctly answered with correct answer", t.id) continue res_count.tweet.bad_content += 1 stat_log.error("Tweet %d correctly answered, but with wrong answer", t.id) stat_log.warning(t.expected_answer) stat_log.warning("↑↑↑↑EXPECTED↑↑↑↑ ↓↓↓↓GOT THIS↓↓↓↓") stat_log.warning(self.replies[t.id]) for l in User.followers, User.nonfollowers: for u in l: if u.follows == u.follow_after: stat_log.info("User @%s has correct following behaviour %s", u.screen_name, u.follows) res_count.follow.correct += 1 else: stat_log.error("User @%s doesn't follow correctly (should %s, does %s)", u.screen_name, u.follow_after, u.follows) res_count.follow.missed += 1 self.report_statisctics(stat_log, output, res_count) return res_count.tweet.missed + res_count.tweet.bad_content + res_count.follow.missed def report_statisctics(self, stat_log, output, res_count): # pylint: disable=R0201 denominator = (res_count.tweet.correct + res_count.tweet.missed + res_count.tweet.bad_content + res_count.follow.correct + res_count.follow.missed) if denominator == 0: stat_log.log(51, "No testcases found") elif output == 'descriptive': stat_log.log(51, "ALL GOOD: %2d", res_count.tweet.correct) stat_log.log(51, "INCORRECT TEXT: %2d", res_count.tweet.bad_content) stat_log.log(51, "WRONG ANSWER/NOT ANSWER:%2d", res_count.tweet.missed) stat_log.log(51, "CORRECT FOLLOWING: %2d", res_count.follow.correct) stat_log.log(51, "WRONG FOLLOWING: %2d", res_count.follow.missed) elif output == 'summary': ratio = (res_count.tweet.correct + res_count.follow.correct) / (0.0 + denominator) stat_log.log(51, "A %d/%d F %d/%d R %.1f%%", res_count.tweet.correct, res_count.tweet.bad_content + res_count.tweet.missed, res_count.follow.correct, res_count.follow.missed, 100.0 * ratio)
42.161074
94
0.572588
583d81504f5bea2a2272f13856141acbff1b368f
13,371
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/cloudengine/ce_mdn_interface.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/cloudengine/ce_mdn_interface.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/cloudengine/ce_mdn_interface.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2019 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ce_mdn_interface short_description: Manages MDN configuration on HUAWEI CloudEngine switches. description: - Manages MDN configuration on HUAWEI CloudEngine switches. author: xuxiaowei0512 (@CloudEngine-Ansible) options: lldpenable: description: - Set global LLDP enable state. type: str choices: ['enabled', 'disabled'] mdnstatus: description: - Set interface MDN enable state. type: str choices: ['rxOnly', 'disabled'] ifname: description: - Interface name. type: str state: description: - Manage the state of the resource. default: present type: str choices: ['present','absent'] notes: - This module requires the netconf system service be enabled on the remote device being managed. - This module works with connection C(netconf). ''' EXAMPLES = ''' - name: "Configure global LLDP enable state" ce_mdn_interface: lldpenable: enabled - name: "Configure interface MDN enable state" ce_mdn_interface: ifname: 10GE1/0/1 mdnstatus: rxOnly ''' RETURN = ''' proposed: description: k/v pairs of parameters passed into module returned: always type: dict sample: { "lldpenable": "enabled", "ifname": "10GE1/0/1", "mdnstatus": "rxOnly", "state":"present" } existing: description: k/v pairs of existing global LLDP configration returned: always type: dict sample: { "lldpenable": "enabled", "ifname": "10GE1/0/1", "mdnstatus": "disabled" } end_state: description: k/v pairs of global LLDP configration after module execution returned: always type: dict sample: { "lldpenable": "enabled", "ifname": "10GE1/0/1", "mdnstatus": "rxOnly" } updates: description: command sent to the device returned: always type: list sample: [ "interface 10ge 1/0/1", "lldp mdn enable", ] changed: description: check to see if a change was made on the device returned: always type: bool sample: true ''' import copy import re from xml.etree import ElementTree from ansible.module_utils.basic import AnsibleModule from ansible_collections.community.general.plugins.module_utils.network.cloudengine.ce import set_nc_config, get_nc_config, execute_nc_action CE_NC_GET_GLOBAL_LLDPENABLE_CONFIG = """ <filter type="subtree"> <lldp xmlns="http://www.huawei.com/netconf/vrp" content-version="1.0" format-version="1.0"> <lldpSys> <lldpEnable></lldpEnable> </lldpSys> </lldp> </filter> """ CE_NC_MERGE_GLOBA_LLDPENABLE_CONFIG = """ <config> <lldp xmlns="http://www.huawei.com/netconf/vrp" content-version="1.0" format-version="1.0"> <lldpSys operation="merge"> <lldpEnable>%s</lldpEnable> </lldpSys> </lldp> </config> """ CE_NC_GET_INTERFACE_MDNENABLE_CONFIG = """ <filter type="subtree"> <lldp xmlns="http://www.huawei.com/netconf/vrp" content-version="1.0" format-version="1.0"> <mdnInterfaces> <mdnInterface> <ifName></ifName> <mdnStatus></mdnStatus> </mdnInterface> </mdnInterfaces> </lldp> </filter> """ CE_NC_MERGE_INTERFACE_MDNENABLE_CONFIG = """ <config> <lldp xmlns="http://www.huawei.com/netconf/vrp" content-version="1.0" format-version="1.0"> <mdnInterfaces> <mdnInterface operation="merge"> <ifName>%s</ifName> <mdnStatus>%s</mdnStatus> </mdnInterface> </mdnInterfaces> </lldp> </config> """ def get_interface_type(interface): """Gets the type of interface, such as 10GE, ...""" if interface is None: return None iftype = None if interface.upper().startswith('GE'): iftype = 'ge' elif interface.upper().startswith('10GE'): iftype = '10ge' elif interface.upper().startswith('25GE'): iftype = '25ge' elif interface.upper().startswith('40GE'): iftype = '40ge' elif interface.upper().startswith('100GE'): iftype = '100ge' elif interface.upper().startswith('PORT-GROUP'): iftype = 'stack-Port' elif interface.upper().startswith('NULL'): iftype = 'null' else: return None return iftype.lower() class Interface_mdn(object): """Manage global lldp enable configration""" def __init__(self, argument_spec): self.spec = argument_spec self.module = None self.init_module() # LLDP global configration info self.lldpenable = self.module.params['lldpenable'] or None self.ifname = self.module.params['ifname'] self.mdnstatus = self.module.params['mdnstatus'] or None self.state = self.module.params['state'] self.lldp_conf = dict() self.conf_exsit = False self.enable_flag = 0 self.check_params() # state self.changed = False self.proposed_changed = dict() self.updates_cmd = list() self.results = dict() self.proposed = dict() self.existing = dict() self.end_state = dict() def check_params(self): """Check all input params""" if self.ifname: intf_type = get_interface_type(self.ifname) if not intf_type: self.module.fail_json( msg='Error: ifname name of %s ' 'is error.' % self.ifname) if (len(self.ifname) < 1) or (len(self.ifname) > 63): self.module.fail_json( msg='Error: Ifname length is beetween 1 and 63.') def init_module(self): """Init module object""" self.module = AnsibleModule( argument_spec=self.spec, supports_check_mode=True) def check_response(self, xml_str, xml_name): """Check if response message is already succeed""" if "<ok/>" not in xml_str: self.module.fail_json(msg='Error: %s failed.' % xml_name) def config_interface_mdn(self): """Configure lldp enabled and interface mdn enabled parameters""" if self.state == 'present': if self.enable_flag == 0 and self.lldpenable == 'enabled': xml_str = CE_NC_MERGE_GLOBA_LLDPENABLE_CONFIG % self.lldpenable ret_xml = set_nc_config(self.module, xml_str) self.check_response(ret_xml, "LLDP_ENABLE_CONFIG") self.changed = True elif self.enable_flag == 1 and self.lldpenable == 'disabled': xml_str = CE_NC_MERGE_GLOBA_LLDPENABLE_CONFIG % self.lldpenable ret_xml = set_nc_config(self.module, xml_str) self.check_response(ret_xml, "LLDP_ENABLE_CONFIG") self.changed = True elif self.enable_flag == 1 and self.conf_exsit: xml_str = CE_NC_MERGE_INTERFACE_MDNENABLE_CONFIG % (self.ifname, self.mdnstatus) ret_xml = set_nc_config(self.module, xml_str) self.check_response(ret_xml, "INTERFACE_MDN_ENABLE_CONFIG") self.changed = True def show_result(self): """Show result""" self.results['changed'] = self.changed self.results['proposed'] = self.proposed self.results['existing'] = self.existing self.results['end_state'] = self.end_state if self.changed: self.results['updates'] = self.updates_cmd else: self.results['updates'] = list() self.module.exit_json(**self.results) def get_interface_mdn_exist_config(self): """Get lldp existed configure""" lldp_config = list() lldp_dict = dict() conf_enable_str = CE_NC_GET_GLOBAL_LLDPENABLE_CONFIG conf_enable_obj = get_nc_config(self.module, conf_enable_str) xml_enable_str = conf_enable_obj.replace('\r', '').replace('\n', '').\ replace('xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"', "").\ replace('xmlns="http://www.huawei.com/netconf/vrp"', "") # get lldp enable config info root_enable = ElementTree.fromstring(xml_enable_str) ntpsite_enable = root_enable.findall("lldp/lldpSys") for nexthop_enable in ntpsite_enable: for ele_enable in nexthop_enable: if ele_enable.tag in ["lldpEnable"]: lldp_dict[ele_enable.tag] = ele_enable.text if self.state == "present": if lldp_dict['lldpEnable'] == 'enabled': self.enable_flag = 1 lldp_config.append(dict(lldpenable=lldp_dict['lldpEnable'])) if self.enable_flag == 1: conf_str = CE_NC_GET_INTERFACE_MDNENABLE_CONFIG conf_obj = get_nc_config(self.module, conf_str) if "<data/>" in conf_obj: return lldp_config xml_str = conf_obj.replace('\r', '').replace('\n', '').\ replace('xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"', "").\ replace('xmlns="http://www.huawei.com/netconf/vrp"', "") # get all ntp config info root = ElementTree.fromstring(xml_str) ntpsite = root.findall("lldp/mdnInterfaces/mdnInterface") for nexthop in ntpsite: for ele in nexthop: if ele.tag in ["ifName", "mdnStatus"]: lldp_dict[ele.tag] = ele.text if self.state == "present": cur_interface_mdn_cfg = dict(ifname=lldp_dict['ifName'], mdnstatus=lldp_dict['mdnStatus']) exp_interface_mdn_cfg = dict(ifname=self.ifname, mdnstatus=self.mdnstatus) if self.ifname == lldp_dict['ifName']: if cur_interface_mdn_cfg != exp_interface_mdn_cfg: self.conf_exsit = True lldp_config.append(dict(ifname=lldp_dict['ifName'], mdnstatus=lldp_dict['mdnStatus'])) return lldp_config lldp_config.append(dict(ifname=lldp_dict['ifName'], mdnstatus=lldp_dict['mdnStatus'])) return lldp_config def get_existing(self): """Get existing info""" self.existing = self.get_interface_mdn_exist_config() def get_proposed(self): """Get proposed info""" if self.lldpenable: self.proposed = dict(lldpenable=self.lldpenable) if self.enable_flag == 1: if self.ifname: self.proposed = dict(ifname=self.ifname, mdnstatus=self.mdnstatus) def get_end_state(self): """Get end state info""" self.end_state = self.get_interface_mdn_exist_config() def get_update_cmd(self): """Get updated commands""" update_list = list() if self.state == "present": if self.lldpenable == "enabled": cli_str = "lldp enable" update_list.append(cli_str) if self.ifname: cli_str = "%s %s" % ("interface", self.ifname) update_list.append(cli_str) if self.mdnstatus: if self.mdnstatus == "rxOnly": cli_str = "lldp mdn enable" update_list.append(cli_str) else: cli_str = "undo lldp mdn enable" update_list.append(cli_str) elif self.lldpenable == "disabled": cli_str = "undo lldp enable" update_list.append(cli_str) else: if self.enable_flag == 1: if self.ifname: cli_str = "%s %s" % ("interface", self.ifname) update_list.append(cli_str) if self.mdnstatus: if self.mdnstatus == "rxOnly": cli_str = "lldp mdn enable" update_list.append(cli_str) else: cli_str = "undo lldp mdn enable" update_list.append(cli_str) self.updates_cmd.append(update_list) def work(self): """Excute task""" self.check_params() self.get_existing() self.get_proposed() self.config_interface_mdn() self.get_update_cmd() self.get_end_state() self.show_result() def main(): """Main function entry""" argument_spec = dict( lldpenable=dict(type='str', choices=['enabled', 'disabled']), mdnstatus=dict(type='str', choices=['rxOnly', 'disabled']), ifname=dict(type='str'), state=dict(choices=['absent', 'present'], default='present'), ) lldp_obj = Interface_mdn(argument_spec) lldp_obj.work() if __name__ == '__main__': main()
33.17866
141
0.586344
545dbe96f79203847c2c7a187c1a6bed76d8e9fe
671
py
Python
Hackerrank_problems/Reverse Game/solution.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
165
2020-10-03T08:01:11.000Z
2022-03-31T02:42:08.000Z
Hackerrank_problems/Reverse Game/solution.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
383
2020-10-03T07:39:11.000Z
2021-11-20T07:06:35.000Z
Hackerrank_problems/Reverse Game/solution.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
380
2020-10-03T08:05:04.000Z
2022-03-19T06:56:59.000Z
#!/bin/python3 import math import os import random import re import sys if __name__ == '__main__': # since there's no def function you need to make a loop by yourself to keep asking input # for each testcase t = int(input()) for i in range(t): nk = input().split() n = int(nk[0]) k = int(nk[1]) # it can be seen from the pattern in the example case # you just need to check whether it is less than n-k-1 or not # and print it two times k plus one if it is less # or print two times n-k-1 if (k < n-k-1 ): print ((k*2)+1) else : print(2*(n-k-1))
23.964286
92
0.555887
4de1e359ad04c75efb70bca64f836467fdb303f9
2,104
py
Python
evolutionary-algo/Population.py
bjarnege/Portfolioleistung-KI-Entwicklungen
27be45e3735421a5dd8441cc76ab69da52678304
[ "MIT" ]
null
null
null
evolutionary-algo/Population.py
bjarnege/Portfolioleistung-KI-Entwicklungen
27be45e3735421a5dd8441cc76ab69da52678304
[ "MIT" ]
null
null
null
evolutionary-algo/Population.py
bjarnege/Portfolioleistung-KI-Entwicklungen
27be45e3735421a5dd8441cc76ab69da52678304
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu May 27 21:07:55 2021 @author: Bjarne Gerdes """ import uuid def f(x, y): """ Function that will be optimized Parameters ---------- x : float Value for parameter x. y : float Value for parameter x. Returns ------- float Function value for f(x,y). """ if (x**2 + y**2) <= 2: return (1-x)**2 + 100*((y - x**2)**2) else: return 10**8 class PopulationInstance: def __init__(self, x, y, parent_1_uuid, parent_2_uuid, parent_1_share, parent_2_share): """ Represents a an individual. Parameters ---------- x : float x-Value of the individual x from f(x,y). y : float y-Value of the individual y from f(x,y). parent_1_uuid : str Identifier of one parent of the individual. parent_2_uuid : str Identifier of the other parent of the individual. parent_1_share : float Share of the parent 1 on the x and y values. parent_2_share : float Share of the parent 2 on the x and y values. Returns ------- None. """ # parameters of the instance self.x = x self.y = y # store data about parents self.parent_1_uuid = parent_1_uuid self.parent_1_share = parent_1_share self.parent_2_uuid = parent_2_uuid self.parent_2_share = parent_2_share # initialize uuid of the instance self.uuid = str(uuid.uuid4()) # track if instance is alive self.is_alive = True def fitnessFunction(self, f): """ Function that defines the fitness of the individual. Parameters ---------- f : function Function that will be optimized. Returns ------- float fitness of the individual f(x,y) """ self.fitness_value = f(self.x, self.y) return self.fitness_value
22.382979
91
0.527567
12c5e3c6c68acab1454cacbfb112e33a0f981489
1,218
py
Python
src/python3_learn_video/exception_try_except.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
src/python3_learn_video/exception_try_except.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
src/python3_learn_video/exception_try_except.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
""" file_name = input('请输入需要打开的文件名:') f = open(file_name) print('文件的内容是:') for each_line in f: print(each_line) f.close() """ print('----------------------------------------------') my_list = ['小甲鱼是帅哥'] # print(len(my_list)) assert len(my_list) > 0 # False 抛出异常 """ try-except语句 try: 检测范围 except Exception[as reason]: 出现异常 (Exception) 后的处理代码 """ try: f = open('我为什么是一个文件.txt') print(f.read()) f.close() except OSError as reason: print('文件出错了!\n错误的原因是:' + str(reason)) print('----------------------------------------------') try: sum = 1 + '1' f = open('我为什么是一个文件.txt') print(f.read()) f.close() except OSError as reason: print('文件出错了!\n错误的原因是:' + str(reason)) except TypeError as reason: print('类型出错了!\n错误的原因是:' + str(reason)) print('----------------------------------------------') try: int('abc') sum = 1 + '1' f = open('我为什么是一个文件.txt') print(f.read()) f.close() except: print('出错了!') print('----------------------------------------------') try: sum = 1 + '1' f = open('我为什么是一个文件.txt') print(f.read()) f.close() except (OSError, TypeError): print('出错了!') print('----------------------------------------------')
19.645161
55
0.472906
12fea316285aee290dbd09625583fe2ba1617363
5,562
py
Python
robot/kuaipan.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
1
2017-10-23T14:58:47.000Z
2017-10-23T14:58:47.000Z
robot/kuaipan.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
null
null
null
robot/kuaipan.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
1
2018-04-06T07:49:18.000Z
2018-04-06T07:49:18.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import urllib.request, urllib.parse, urllib.error import urllib.request, urllib.error, urllib.parse import http.cookiejar import json import re import wx def create(parent): return Frame1(parent) [wxID_FRAME1, wxID_FRAME1BUTTON1, wxID_FRAME1PANEL1, wxID_FRAME1STATICTEXT1, wxID_FRAME1STATICTEXT2, wxID_FRAME1STATICTEXT3, wxID_FRAME1TEXTCTRL1, wxID_FRAME1TEXTCTRL2, ] = [wx.NewId() for _init_ctrls in range(8)] class Frame1(wx.Frame): def _init_ctrls(self, prnt): # generated method, don't edit wx.Frame.__init__(self, id=wxID_FRAME1, name='', parent=prnt, pos=wx.Point(529, 321), size=wx.Size(400, 250), style=wx.SYSTEM_MENU | wx.MINIMIZE_BOX | wx.CLOSE_BOX | wx.CAPTION, title='金山快盘自动签到V1.0') self.SetClientSize(wx.Size(392, 216)) self.panel1 = wx.Panel(id=wxID_FRAME1PANEL1, name='panel1', parent=self, pos=wx.Point(0, 0), size=wx.Size(392, 216), style=wx.TAB_TRAVERSAL) self.staticText1 = wx.StaticText(id=wxID_FRAME1STATICTEXT1, label='用户名:', name='staticText1', parent=self.panel1, pos=wx.Point(8, 16), size=wx.Size(95, 23), style=0) self.staticText1.SetFont(wx.Font(14, wx.SWISS, wx.NORMAL, wx.BOLD, False, 'Tahoma')) self.staticText2 = wx.StaticText(id=wxID_FRAME1STATICTEXT2, label='密码:', name='staticText2', parent=self.panel1, pos=wx.Point(8, 56), size=wx.Size(92, 23), style=0) self.staticText2.SetFont(wx.Font(14, wx.SWISS, wx.NORMAL, wx.BOLD, False, 'Tahoma')) self.textCtrl1 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL1, name='textCtrl1', parent=self.panel1, pos=wx.Point(112, 16), size=wx.Size(176, 24), style=0, value='') self.textCtrl2 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL2, name='textCtrl2', parent=self.panel1, pos=wx.Point(112, 56), size=wx.Size(176, 22), style=wx.TE_PASSWORD, value='') self.button1 = wx.Button(id=wxID_FRAME1BUTTON1, label='签到', name='button1', parent=self.panel1, pos=wx.Point(304, 56), size=wx.Size(75, 24), style=0) self.button1.Bind(wx.EVT_BUTTON, self.OnButton1Button, id=wxID_FRAME1BUTTON1) self.staticText3 = wx.StaticText(id=wxID_FRAME1STATICTEXT3, label='签到 状态 ......', name='staticText3', parent=self.panel1, pos=wx.Point(16, 104), size=wx.Size(352, 96), style=0) self.staticText3.SetFont(wx.Font(12, wx.SWISS, wx.NORMAL, wx.BOLD, False, 'Tahoma')) self.button1.Bind(wx.EVT_BUTTON, self.OnButton1Button, id=wxID_FRAME1BUTTON1) cj = http.cookiejar.CookieJar() self.opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj)) urllib.request.install_opener(self.opener) self.opener.addheaders = [('User-agent', 'IE')] def __init__(self, parent): self._init_ctrls(parent) def login(self, username, password): url = 'https://www.kuaipan.cn/index.php?ac=account&op=login' data = urllib.parse.urlencode({'username': username, 'userpwd': password}) req = urllib.request.Request(url, data) try: fd = self.opener.open(req) except Exception as e: self.staticText3.SetLabel('网络连接错误!') return False if fd.url != "http://www.kuaipan.cn/home.htm": self.staticText3.SetLabel("用户名跟密码不匹配!") return False self.staticText3.SetLabel('%s 登陆成功' % username), return True def logout(self): url = 'http://www.kuaipan.cn/index.php?ac=account&op=logout' req = urllib.request.Request(url) fd = self.opener.open(req) fd.close() def sign(self): url = 'http://www.kuaipan.cn/index.php?ac=common&op=usersign' req = urllib.request.Request(url) fd = self.opener.open(req) sign_js = json.loads(fd.read()) # print sign_js tri = self.staticText3.GetLabel() if sign_js['state'] == -102: self.staticText3.SetLabel(tri + '\n' + "今天已签到了!") elif sign_js['state'] == 1: self.staticText3.SetLabel(tri + '\n' + "签到成功! \n获得积分:%d,总积分:%d;\n获得空间:%dM\n" % ( sign_js['increase'], sign_js['status']['points'], sign_js['rewardsize'])) else: self.staticText3.SetLabel(tri + '\n' + "签到失败!") fd.close() def OnButton1Button(self, event): self.staticText3.SetLabel('') namew = self.textCtrl1.GetValue() passw = self.textCtrl2.GetValue() if self.login(namew, passw) == True: self.sign() self.logout() # event.Skip() class App(wx.App): def OnInit(self): self.main = create(None) self.main.Show() self.SetTopWindow(self.main) return True def main(): application = App(0) application.MainLoop() if __name__ == '__main__': main()
38.09589
102
0.556095
97ea3bb3774de114b5fdf8db56f5629bc4bf3d1f
1,066
py
Python
tests/api/test_image.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
1
2021-06-01T14:49:18.000Z
2021-06-01T14:49:18.000Z
tests/api/test_image.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
286
2020-12-04T14:13:00.000Z
2022-03-09T19:05:16.000Z
tests/api/test_image.py
DanielGrams/gsevpt
a92f71694388e227e65ed1b24446246ee688d00e
[ "MIT" ]
null
null
null
import pytest def test_validate_image(): from marshmallow import ValidationError from project.api.image.schemas import ImagePostRequestSchema data = { "copyright_text": "Horst", } schema = ImagePostRequestSchema() with pytest.raises(ValidationError) as e: schema.load(data) assert "Either image_url or image_base64 has to be defined." in str(e.value) def test_post_load_image_data(seeder): from project.api.image.schemas import ImagePostRequestSchema data = { "image_base64": seeder.get_default_image_upload_base64(), } item = dict() schema = ImagePostRequestSchema() schema.post_load_image_data(item, data) schema.load(data) assert item.get("encoding_format") is not None assert item.get("data") is not None def test_load_image_data(): from project.api.image.schemas import ImagePostRequestSchema schema = ImagePostRequestSchema() encoding_format, data = schema.load_image_data(None, None) assert encoding_format is None assert data is None
23.688889
80
0.719512