hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
dbdf4681c8315c30d07f86ec062381cf7da9e8d5
1,342
py
Python
spider/Config_2019.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
null
null
null
spider/Config_2019.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
2
2021-03-31T18:54:16.000Z
2021-12-13T19:49:08.000Z
spider/Config_2019.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # got文件、MongoDB数据库和Redis数据库配置文件 import os import sys import pymongo # import redis def get_noau_config(): # got文件 if sys.version_info[0] < 3: # print('import got') import got else: # print('import got333333333333333333333333333') # import got import got3 as got # MongoDB数据库 # client = pymongo.MongoClient(os.environ['MONGOHOST'], 27017, connect=False) #client = pymongo.MongoClient('mongodb://3.220.111.222:27017/') client=pymongo.MongoClient('3.220.111.222', 27017, connect=False) client.admin.authenticate("aircas", "aircas@2018", mechanism='SCRAM-SHA-1') # db = client.natural_disaster db = client['2019HongKong_protest'] # db.authenticate(name='aircas',password='aircas@2018') # Redis数据库 # r = redis.StrictRedis(host=os.environ['REDISHOST'], port=6379, db=0) # r = redis.StrictRedis(host='127.0.0.1', port=6379, db=0) return got, db def getMongoClient(): client = pymongo.MongoClient('3.220.111.222', 27017, connect=False) client.admin.authenticate("aircas", "aircas@2018", mechanism='SCRAM-SHA-1') return client def closeMongoClient(client): client.close() def getGot(): # got文件 if sys.version_info[0] < 3: import got else: import got3 as got return got
27.958333
81
0.655738
0edd2dee96976c08dc40974f087649b10764b73a
6,196
py
Python
sample/rpz-sensor/python3/tsl2572.py
yappy/RpzIrSensor
8ff11ad594e81380975ff84e2394ff0834d380cf
[ "MIT" ]
null
null
null
sample/rpz-sensor/python3/tsl2572.py
yappy/RpzIrSensor
8ff11ad594e81380975ff84e2394ff0834d380cf
[ "MIT" ]
null
null
null
sample/rpz-sensor/python3/tsl2572.py
yappy/RpzIrSensor
8ff11ad594e81380975ff84e2394ff0834d380cf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ TSL2572 Control Module via I2C 2018/11/15 """ import smbus import time class TSL2572: AGAIN_0_16 = 0 AGAIN_1 = 1 AGAIN_8 = 2 AGAIN_16 = 3 AGAIN_120 = 4 ATIME_50MS = 0xED ATIME_200MS = 0xB6 ATIME_600MS = 0x24 def __init__(self, i2c_addr): self.i2c_addr = i2c_addr self.i2c = smbus.SMBus(1) self.ch0 = 0 self.ch1 = 0 self.lux = 0 self.again = TSL2572.AGAIN_8 self.atime = TSL2572.ATIME_200MS # I2C read length byte from addr def read_address(self, addr, length): addr = addr | 0xA0 try: return self.i2c.read_i2c_block_data(self.i2c_addr, addr, length) except IOError: return [0 for i in range(length)] # I2C write data to addr def write_address(self, addr, data): addr = addr | 0xA0 self.i2c.write_i2c_block_data(self.i2c_addr, addr, data) # Read ID and return True if success def id_read(self): data = self.read_address(0x12, 1) if data[0] == 0x34: # Return true if TSL25721 (3.3V). Change to 0x3D if TSL25723 (1.8V). return True return False def set_atime(self, atime): self.write_address(0x1, [atime]) def set_again(self, again): if TSL2572.AGAIN_0_16 == again: self.write_address(0xD, [0x4]) self.write_address(0xF, [0]) elif TSL2572.AGAIN_1 == again: self.write_address(0xD, [0]) self.write_address(0xF, [0]) elif TSL2572.AGAIN_8 == again: self.write_address(0xD, [0]) self.write_address(0xF, [0x1]) elif TSL2572.AGAIN_16 == again: self.write_address(0xD, [0]) self.write_address(0xF, [0x2]) elif TSL2572.AGAIN_120 == again: self.write_address(0xD, [0]) self.write_address(0xF, [0x3]) # Read status register # Return avalid, aint as 0 or 1 def read_status(self): data = self.read_address(0x13, 1) avalid = data[0] & 0x1 aint = (data[0] & 0x10) >> 4 return avalid, aint # One time ALS integration and update ch0 and ch1 def als_integration(self): self.write_address(0x0, [0x1]) # Stop ALS integration self.set_again(self.again) self.set_atime(self.atime) self.write_address(0x0, [0x3]) # Start ALS integration # Check status every 10ms while True: avalid, aint = self.read_status() if avalid==1 and aint==1: self.write_address(0x0, [0x1]) # Stop ALS integration break else: time.sleep(0.01) data = self.read_address(0x14, 4) self.ch0 = (data[1] << 8) | data[0] self.ch1 = (data[3] << 8) | data[2] # One time lux measurement # Run ALS integration with auto again/atime and calculate lux # Select below again/atime automatically based on default measurement result # again, atime, scale, max count # 0.16, 50, 0.04, 19456 # 1, 200, 1, 65535 (Default) # 8, 200, 8, 65535 # 120, 200, 120, 65535 # 120, 600, 360, 65535 def meas_single(self): if not self.id_read(): return False self.again = TSL2572.AGAIN_1 self.atime = TSL2572.ATIME_200MS self.als_integration() if max([self.ch0, self.ch1]) == 65535: self.again = TSL2572.AGAIN_0_16 self.atime = TSL2572.ATIME_50MS self.als_integration() elif max([self.ch0, self.ch1]) < 100: self.again = TSL2572.AGAIN_120 self.atime = TSL2572.ATIME_600MS self.als_integration() elif max([self.ch0, self.ch1]) < 300 : self.again = TSL2572.AGAIN_120 self.atime = TSL2572.ATIME_200MS self.als_integration() elif max([self.ch0, self.ch1]) < 3000: self.again = TSL2572.AGAIN_8 self.atime = TSL2572.ATIME_200MS self.als_integration() self.write_address(0x0, [0x0]) # Sleep self.calc_lux() return True # Calculate lux from ch0/ch0 then update lux def calc_lux(self): if TSL2572.ATIME_50MS == self.atime: t = 50 elif TSL2572.ATIME_200MS == self.atime: t = 200 elif TSL2572.ATIME_600MS == self.atime: t = 600 if TSL2572.AGAIN_0_16 == self.again: g = 0.16 elif TSL2572.AGAIN_1 == self.again: g = 1 elif TSL2572.AGAIN_8 == self.again: g = 8 elif TSL2572.AGAIN_16 == self.again: g = 16 elif TSL2572.AGAIN_120 == self.again: g = 120 cpl = (t * g)/60 lux1 = (self.ch0 - 1.87*self.ch1) / cpl lux2 = (0.63*self.ch0 - self.ch1) / cpl self.lux = max([0, lux1, lux2]) # Print atime, again setting and ch0/ch1 data def print_reg(self): if TSL2572.ATIME_50MS == self.atime: print(' ADC Time : 50ms') elif TSL2572.ATIME_200MS == self.atime: print(' ADC Time : 200ms') elif TSL2572.ATIME_600MS == self.atime: print(' ADC Time : 600ms') if TSL2572.AGAIN_0_16 == self.again: print(' ADC Gain : 0.16') elif TSL2572.AGAIN_1 == self.again: print(' ADC Gain : 1') elif TSL2572.AGAIN_8 == self.again: print(' ADC Gain : 8') elif TSL2572.AGAIN_16 == self.again: print(' ADC Gain : 16') elif TSL2572.AGAIN_120 == self.again: print(' ADC Gain : 120') print(' ch0 : 0x{:X}'.format(self.ch0)) print(' ch1 : 0x{:X}'.format(self.ch1)) # Print lux def print_meas(self): print( ' Lux : {:.1f}lux'.format(self.lux)) def main(): tsl2572 = TSL2572(0x39) if tsl2572.id_read(): tsl2572.meas_single() tsl2572.print_reg() tsl2572.print_meas() else: print('ID Read Failed') if __name__ == '__main__': main()
29.932367
96
0.551323
1600965384d4954b6c890ff800eb7a1c2fbb9595
701
py
Python
solutions/MFA/webserver/src/deep_speaker/encode.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
1
2021-04-06T06:13:20.000Z
2021-04-06T06:13:20.000Z
solutions/MFA/webserver/src/deep_speaker/encode.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
null
null
null
solutions/MFA/webserver/src/deep_speaker/encode.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
null
null
null
import numpy as np import random from deep_speaker.audio import read_mfcc from deep_speaker.batcher import sample_from_mfcc from deep_speaker.constants import SAMPLE_RATE, NUM_FRAMES from deep_speaker.conv_models import DeepSpeakerModel from deep_speaker.test import batch_cosine_similarity def voc_to_vec(voc): np.random.seed(123) random.seed(123) model = DeepSpeakerModel() model.m.load_weights('/app/src/deep_speaker/checkpoints/ResCNN_triplet_training_checkpoint_265.h5', by_name=True) mfcc = sample_from_mfcc(read_mfcc(voc, SAMPLE_RATE), NUM_FRAMES) predict = model.m.predict(np.expand_dims(mfcc, axis=0)) vec = list(map(float,predict.tolist()[0])) return vec
33.380952
117
0.7903
16c17e40745319deae0b17ecebfaee869a182247
1,062
py
Python
examples/flask_caching.py
xinetzone/dash-tests
cd4526caa2f9d906915c31370b3487bdcef92aa4
[ "Apache-2.0" ]
1
2022-03-01T07:38:32.000Z
2022-03-01T07:38:32.000Z
examples/flask_caching.py
xinetzone/dash-tests
cd4526caa2f9d906915c31370b3487bdcef92aa4
[ "Apache-2.0" ]
12
2021-07-13T12:33:36.000Z
2021-07-14T05:25:19.000Z
examples/flask_caching.py
xinetzone/dash-book
1f624e87e2aa02c9931318918df969e44bdd2c07
[ "Apache-2.0" ]
null
null
null
import datetime import os from dash import dcc, html from dash.dependencies import Input, Output from flask_caching import Cache from app import app cache = Cache(app.server, config={ # try 'filesystem' if you don't want to setup redis 'CACHE_TYPE': 'redis', 'CACHE_REDIS_URL': os.environ.get('REDIS_URL', '') }) app.config.suppress_callback_exceptions = True timeout = 20 layout = html.Div([ html.Div(id='flask-cache-memoized-children'), dcc.RadioItems( id='flask-cache-memoized-dropdown', options=[ {'label': 'Option {}'.format(i), 'value': 'Option {}'.format(i)} for i in range(1, 4) ], value='Option 1' ), html.Div('Results are cached for {} seconds'.format(timeout)) ]) @app.callback( Output('flask-cache-memoized-children', 'children'), Input('flask-cache-memoized-dropdown', 'value')) @cache.memoize(timeout=timeout) # in seconds def render(value): return 'Selected "{}" at "{}"'.format( value, datetime.datetime.now().strftime('%H:%M:%S') )
27.947368
76
0.644068
bc7333e25a48def30179d76d4ea3dfb0cdb7dabd
21
py
Python
__init__.py
dustinmaurer/options-strategy-backtester
1974bfd672d163a39f928208f36a8470a99e1a48
[ "MIT" ]
null
null
null
__init__.py
dustinmaurer/options-strategy-backtester
1974bfd672d163a39f928208f36a8470a99e1a48
[ "MIT" ]
null
null
null
__init__.py
dustinmaurer/options-strategy-backtester
1974bfd672d163a39f928208f36a8470a99e1a48
[ "MIT" ]
1
2021-04-11T07:18:55.000Z
2021-04-11T07:18:55.000Z
from . import option
10.5
20
0.761905
4c4069bc986efb5251f07ea9fc42f08bfe83c3a3
855
py
Python
chord_rec/datasets/vec_datasets.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
chord_rec/datasets/vec_datasets.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
chord_rec/datasets/vec_datasets.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
from torch.utils.data import Dataset import numpy as np class Vec45Dataset(Dataset): def __init__(self, note_vec_seq, chord_seq, vocab): 'Initialization' self.note_vec_seq = note_vec_seq self.chord_seq = chord_seq self.vocab = vocab def __len__(self): 'Get the total length of the dataset' return len(self.note_vec_seq) def __getitem__(self, index): 'Generates one sample of data' # Select sample return self.note_vec_seq[index], self.vec_encode(self.chord_seq[index]) def encode(self, x): return self.vocab.stoi[x] def vec_encode(self, x): return np.vectorize(self.encode)(x) def decode(self, x): return self.vocab.itos[x] def vec_decode(self, x): return np.vectorize(self.decode)(x)
25.147059
79
0.625731
4c6eade565b287a3e519871de24a1eb1cee990c9
3,010
py
Python
test/test_npu/test_network_ops/test_dim_arange.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_dim_arange.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_dim_arange.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestDimArange(TestCase): def generate_data(self, min_d, max_d, shape, dtype): input_x = np.random.uniform(min_d, max_d, shape).astype(dtype) npu_input = torch.from_numpy(input_x) return npu_input def cpu_op_exec(self, input_x, dim): output = torch._dim_arange(input_x, dim) output = output.numpy().astype(np.int32) return output def npu_op_exec(self, input_x, dim): input1 = input_x.to("npu") output = torch._dim_arange(input1, dim) output = output.to("cpu") output = output.numpy() return output def test_dim_arange_3_4_5_0_float32(self, device): input_x1 = self.generate_data(-1, 1, (3, 4, 5), np.float32) cpu_output = self.cpu_op_exec(input_x1, 1) npu_output = self.npu_op_exec(input_x1, 1) self.assertRtolEqual(cpu_output, npu_output) def test_dim_arange_30_40_50_0_float32(self, device): input_x1 = self.generate_data(-1, 1, (30, 40, 50), np.float32) cpu_output = self.cpu_op_exec(input_x1, 0) npu_output = self.npu_op_exec(input_x1, 0) self.assertRtolEqual(cpu_output, npu_output) def test_dim_arange_10_10_10_10_10_10_10_2_float32(self, device): input_x1 = self.generate_data(-1, 1, (10, 10, 10, 10, 10, 10), np.float32) cpu_output = self.cpu_op_exec(input_x1, 2) npu_output = self.npu_op_exec(input_x1, 2) self.assertRtolEqual(cpu_output, npu_output) def test_dim_arange_7_13_22_193_45_2_float16(self, device): input_x1 = self.generate_data(-1, 1, (7, 13, 22, 193, 45, 2), np.float16) cpu_output = self.cpu_op_exec(input_x1, 2) npu_output = self.npu_op_exec(input_x1, 2) self.assertRtolEqual(cpu_output, npu_output) def test_dim_arange_7_13_22_float16(self, device): input_x1 = self.generate_data(-1, 1, (7, 13, 22), np.float16) cpu_output = self.cpu_op_exec(input_x1, 0) npu_output = self.npu_op_exec(input_x1, 0) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestDimArange, globals(), except_for='cpu') if __name__ == "__main__": run_tests()
41.232877
82
0.701661
9121defb61945cae4cade362dbee1b1b6c95fa15
21,859
py
Python
deprecated/examples/deepFM/distribute_base.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
170
2020-08-12T12:07:01.000Z
2022-03-07T02:38:26.000Z
deprecated/examples/deepFM/distribute_base.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
195
2020-08-13T03:22:15.000Z
2022-03-30T07:40:25.000Z
deprecated/examples/deepFM/distribute_base.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
67
2020-08-14T02:07:46.000Z
2022-03-28T10:05:33.000Z
#!/usr/bin/python # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import os import re import commands import logging import time import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.incubate.fleet.base.role_maker as role_maker from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig import py_reader_generator as py_reader from paddle.fluid.contrib.utils import multi_download, HDFSClient logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) class FleetDistRunnerBase(object): """ Distribute training base class: This class abstracts the training process into several major steps: 1. input_data: input data of network, this function should be realized by user 2. net: network definition, this function should be defined by user 3. run_pserver: run pserver node in distribute environment 4. run_trainer: run trainer, choose the way of training network according to requirement params 5. run_infer: prediction based on the trained model 6. py_reader: using py_reader method get data, this function should be realized by user 7. dataset_reader: using dataset method get data, this function should be realized by user 8. runtime_main: program entry, get the environment parameters, decide which function to call """ def input_data(self, params): """ Function input_data: Definition of input data format in the network Args: :params: the hyper parameters of network Returns: defined by users """ raise NotImplementedError( "input_data should be implemented by child classes.") def net(self, inputs, params): """ Function net: Definition of network structure Args: :inputs: input data, eg: dataset and labels. defined by funtion: self.input_data :params: the hyper parameters of network Returns: evaluation parameter, defined by users """ raise NotImplementedError( "net should be implemented by child classes.") def runtime_main(self, params): """ Function runtime_main: the entry point for program running Args: :params params: the hyper parameters of network """ # Step1: get the environment variable, mainly related to network communication parameters params.role = os.getenv("TRAINING_ROLE") logger.info("Training role: {}".format(params.role)) params.current_id = int(os.getenv("PADDLE_TRAINER_ID")) logger.info("Current Id: {}".format(params.current_id)) params.trainers = int(os.getenv("PADDLE_TRAINERS_NUM")) logger.info("Trainer num: {}".format(params.trainers)) params.pserver_ports = os.getenv("PADDLE_PORT") logger.info("Pserver ports: {}".format(params.pserver_ports)) params.pserver_ip = os.getenv("PADDLE_PSERVERS") logger.info("Pserver IP: {}".format(params.pserver_ip)) params.current_endpoint = os.getenv("POD_IP", "localhost") + ":" + params.pserver_ports params.cpu_num = os.getenv("CPU_NUM") logger.info("output path: {}".format(params.model_path)) # Step2: decide communication mode between PSERVER & TRAINER # recommended mode: pyreader + sync_mode / dataset + async_mode self.strategy = DistributeTranspilerConfig() if params.sync_mode == "sync": self.strategy.sync_mode = True self.strategy.runtime_split_send_recv = False self.async_mode = False params.batch_size = int(params.batch_size / params.trainers) elif params.sync_mode == "half_async": self.strategy.sync_mode = False self.async_mode = False self.strategy.runtime_split_send_recv = False elif params.sync_mode == "async" or params.is_dataset_train: self.strategy.sync_mode = False self.async_mode = True self.strategy.runtime_split_send_recv = True # Step3: Configure communication IP and ports if params.is_local_cluster: for port in params.pserver_ports.split(","): params.pserver_endpoints.append(':'.join( [params.pserver_ip, port])) else: for ip in params.pserver_ip.split(","): params.pserver_endpoints.append(':'.join( [ip, params.pserver_ports])) params.endpoints = ",".join(params.pserver_endpoints) if params.role == "TRAINER" and params.current_id == 0: params.is_first_trainer = True if params.is_local_cluster: params.train_files_path = "data/train_data" params.test_files_path = "data/test_data" # Step4: According to the parameters-> TRAINING_ROLE, decide which method to run train_result = {} infer_result = {} if params.role == "PSERVER": self.run_pserver(params) elif params.role == "TRAINER": if params.is_dataset_train: train_result = self.run_dataset_trainer(params) elif params.is_pyreader_train: train_result = self.run_pyreader_trainer(params) else: raise ValueError("Please choice training role for current node : PSERVER / TRAINER") # Step5: If the role is first trainer, after training, perform verification on the test data result = dict() if params.is_first_trainer: infer_result = self.run_infer(params) result[0] = dict() result[0]['loss'] = infer_result['loss'] result[0]['auc'] = infer_result['auc'] result[1] = train_result[0]['time'] elif params.role == "TRAINER" and params.current_id != 0: result[1] = train_result[0]['time'] logger.info(str(result)) logger.info("Distribute train success!") def run_pserver(self, params): """ Function run_pserver: Operation method of parameter server Args :params the hyper parameters of network Returns: None """ logger.info("run pserver") role = role_maker.UserDefinedRoleMaker( current_id=params.current_id, role=role_maker.Role.SERVER, worker_num=params.trainers, server_endpoints=params.pserver_endpoints) fleet.init(role) place = fluid.CPUPlace() exe = fluid.Executor(place) reader = None inputs = self.input_data(params) if params.is_pyreader_train: reader = self.py_reader(params) inputs = fluid.layers.read_file(reader) elif not params.is_dataset_train: raise ValueError("Program must has Date feed method: is_pyreader_train / is_dataset_train") loss, auc = self.net(inputs, params) optimizer = fluid.optimizer.SGD(learning_rate=params.learning_rate, regularization=fluid.regularizer.L2DecayRegularizer(params.reg)) optimizer = fleet.distributed_optimizer(optimizer, self.strategy) optimizer.minimize(loss) fleet.init_server() logger.info("PServer init success!") with open("pserver_train.proto", 'w') as f: f.write(str(fluid.default_main_program())) with open("pserver_startup.proto", 'w') as f: f.write(str(fluid.default_startup_program())) fleet.run_server() def run_dataset_trainer(self, params): """ Function run_dataset_trainer: Operation method of training node Args: :params params: the hyper parameters of network Returns :train_result: the dict of training log """ logger.info("run trainer") role = role_maker.UserDefinedRoleMaker( current_id=params.current_id, role=role_maker.Role.WORKER, worker_num=params.trainers, server_endpoints=params.pserver_endpoints) fleet.init(role) inputs = self.input_data(params) # Replace it with your network evaluation index, loss, auc = self.net(inputs, params) # define the optimizer for your model optimizer = fluid.optimizer.SGD(learning_rate=params.learning_rate, regularization=fluid.regularizer.L2DecayRegularizer(params.reg)) optimizer = fleet.distributed_optimizer(optimizer, self.strategy) optimizer.minimize(loss) logger.info("Program construction complete") exe = fluid.Executor(fluid.CPUPlace()) fleet.init_worker() exe.run(fleet.startup_program) with open(str(params.current_id) + "_trainer_train.proto", 'w') as f: f.write(str(fleet.main_program)) with open(str(params.current_id) + "_trainer_startup.proto", 'w') as f: f.write(str(fleet.startup_program)) train_result = {} # Notice: Both dataset and py_reader method don't using feed={dict} to input data # Paddle Fluid enter data by variable name # When we do the definition of the reader, the program has established the workflow logger.info("run dataset train") dataset = self.dataset_reader(inputs, params) file_list = [str(params.train_files_path) + "/%s" % x for x in os.listdir(params.train_files_path)] if params.is_local_cluster: file_list = fleet.split_files(file_list) logger.info("file list: {}".format(file_list)) logger.info('----------------------NO.%s trainer ready----------------' % (params.current_id)) for epoch in range(params.epochs): dataset.set_filelist(file_list) start_time = time.clock() # Notice: function train_from_dataset does not return fetch value exe.train_from_dataset(program=fleet.main_program, dataset=dataset, fetch_list=[auc], fetch_info=['auc'], print_period=100, debug=False) end_time = time.clock() self.record_time(epoch, train_result, end_time - start_time) self.record_memory(epoch, train_result) logger.info("epoch %d finished, use time=%d\n" % ((epoch), end_time - start_time)) if params.is_first_trainer and params.test: model_path = str(params.model_path) + '/trainer_' + str(params.current_id) + '_epoch_' + str(epoch) fleet.save_persistables(executor=exe, dirname=model_path) if params.is_first_trainer: train_method = '_dataset_train' log_path = str(params.log_path + '/' + str(params.current_id) + train_method + '.log') with open(log_path, 'w+') as f: f.write(str(train_result)) model_path = str(params.model_path + '/final' + train_method) fleet.save_persistables(executor=exe, dirname=model_path) logger.info("Train Success!") fleet.stop_worker() return train_result def run_pyreader_trainer(self, params): """ Function run_trainer: Operation method of training node Args: :params params: the hyper parameters of network Returns :train_result: the dict of training log """ logger.info("run trainer") role = role_maker.UserDefinedRoleMaker( current_id=params.current_id, role=role_maker.Role.WORKER, worker_num=params.trainers, server_endpoints=params.pserver_endpoints) fleet.init(role) exe = fluid.Executor(fluid.CPUPlace()) inputs = self.input_data(params) reader = self.py_reader(params) inputs = fluid.layers.read_file(reader) # Replace it with your network evaluation index, loss, auc = self.net(inputs, params) # define the optimizer for your model optimizer = fluid.optimizer.SGD(learning_rate=params.learning_rate, regularization=fluid.regularizer.L2DecayRegularizer(params.reg)) optimizer = fleet.distributed_optimizer(optimizer, self.strategy) optimizer.minimize(loss) logger.info("Program construction complete") fleet.init_worker() exe.run(fleet.startup_program) with open(str(params.current_id) + "_trainer_train.proto", 'w') as f: f.write(str(fleet.main_program)) with open(str(params.current_id) + "_trainer_startup.proto", 'w') as f: f.write(str(fleet.startup_program)) train_result = {} # Notice: Both dataset and py_reader method don't using feed={dict} to input data # Paddle Fluid enter data by variable name # When we do the definition of the reader, the program has established the workflow train_generator = py_reader.CriteoDataset() file_list = [str(params.train_files_path) + "/%s" % x for x in os.listdir(params.train_files_path)] if params.is_local_cluster: file_list = fleet.split_files(file_list) logger.info("file list: {}".format(file_list)) train_reader = paddle.batch( paddle.reader.shuffle( train_generator.train(file_list), buf_size=params.batch_size * 100 ), batch_size=params.batch_size) reader.decorate_paddle_reader(train_reader) exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = int(params.cpu_num) build_strategy = fluid.BuildStrategy() build_strategy.async_mode = self.async_mode if params.sync_mode == 'async': build_strategy.memory_optimize = False if int(params.cpu_num) > 1: build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce compiled_prog = fluid.compiler.CompiledProgram( fleet.main_program).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) logger.info('----------------------NO.%s trainer ready----------------' % (params.current_id)) for epoch in range(params.epochs): reader.start() start_time = time.clock() batch_id = 0 try: while True: loss_val, auc_val = exe.run(program=compiled_prog, fetch_list=[loss.name, auc.name]) loss_val = np.mean(loss_val) auc_val = np.mean(auc_val) if batch_id % 100 == 0 and batch_id != 0: logger.info("TRAIN --> pass: {} batch: {} loss: {} auc: {}" .format(epoch, batch_id, loss_val / params.batch_size, auc_val)) batch_id += 1 except fluid.core.EOFException: reader.reset() end_time = time.clock() if params.test and params.is_first_trainer: model_path = str(params.model_path) + '/trainer_' + str(params.current_id) + '_epoch_' + str(epoch) fleet.save_persistables(executor=exe, dirname=model_path) train_result = self.record_time(epoch, train_result, end_time - start_time) train_result = self.record_memory(epoch, train_result) logger.info("epoch %d finished, use time=%d\n" % ((epoch + 1), end_time - start_time)) if params.is_first_trainer: train_method = '_pyreader_train' log_path = str(params.log_path + '/' + str(params.current_id) + train_method + '.log') with open(log_path, 'w+') as f: f.write(str(train_result)) model_path = str(params.model_path + '/final' + train_method) fleet.save_persistables(executor=exe, dirname=model_path) logger.info("Train Success!") fleet.stop_worker() return train_result def run_infer(self, params): """ Function run_infer: Operation method of training node Args: :params params: the hyper parameters of network Returns :infer_result, type:dict, record the evalution parameter and program resource usage situation """ place = fluid.CPUPlace() dataset = py_reader.CriteoDataset() file_list = [str(params.test_files_path) + "/%s" % x for x in os.listdir(params.test_files_path)] test_reader = paddle.batch( dataset.test(file_list), batch_size=params.batch_size) startup_program = fluid.framework.Program() test_program = fluid.framework.Program() def set_zero(var_name): param = fluid.global_scope().var(var_name).get_tensor() param_array = np.zeros(param._get_dims()).astype("int64") param.set(param_array, place) with fluid.framework.program_guard(test_program, startup_program): with fluid.unique_name.guard(): inputs = self.input_data(params) loss, auc_var = self.net(inputs, params) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=inputs, place=place) train_method = '' if params.is_pyreader_train: train_method = '_pyreader_train/' else: train_method = '_dataset_train/' model_path = params.model_path + '/final' + train_method fluid.io.load_persistables( executor=exe, dirname=model_path, main_program=fluid.default_main_program()) auc_states_names = ['_generated_var_0', '_generated_var_1', '_generated_var_2', '_generated_var_3'] for name in auc_states_names: set_zero(name) run_index = 0 L = [] infer_auc = 0 for batch_id, data in enumerate(test_reader()): loss_val, auc_val = exe.run(test_program, feed=feeder.feed(data), fetch_list=[loss, auc_var]) infer_auc = auc_val run_index += 1 L.append(loss_val / params.batch_size) if batch_id % 1000 == 0: print("TEST --> batch: {} loss: {} auc: {}".format( batch_id, loss_val / params.batch_size, auc_val)) infer_loss = np.mean(L) infer_auc = np.mean(infer_auc) infer_result = {} infer_result['loss'] = infer_loss infer_result['auc'] = infer_auc logger.info(str(infer_result)) logger.info("Inference complete") return infer_result def py_reader(self, params): """ Function py_reader: define the data read method by fluid.layers.py_reader help: https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_cn/layers_cn/io_cn.html#py-reader Args: :params params: the hyper parameters of network Returns: defined by user """ raise NotImplementedError( "py_reader should be implemented by child classes.") def dataset_reader(self, inputs, params): """ Function dataset_reader: define the data read method by fluid.dataset.DatasetFactory help: https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_cn/dataset_cn.html#fluid-dataset Args: :params inputs: input data, eg: dataset and labels. defined by funtion: self.input_data :params params: the hyper parameters of network Returns: defined by user """ raise NotImplementedError( "dataset_reader should be implemented by child classes.") def record_time(self, epoch, train_result, time): """ record the operation time """ train_result[epoch] = {} train_result[epoch]['time'] = time return train_result def record_memory(self, epoch, train_result): info = process_info() logger.info(info) train_result[epoch]['memory'] = info['mem'] train_result[epoch]['cpu'] = info['cpu'] train_result[epoch]['rss'] = info['rss'] train_result[epoch]['vsa'] = info['vsa'] return train_result def process_info(): pid = os.getpid() res = commands.getstatusoutput('ps aux|grep ' + str(pid))[1].split('\n')[0] p = re.compile(r'\s+') l = p.split(res) info = {'user': l[0], 'pid': l[1], 'cpu': l[2], 'mem': l[3], 'vsa': l[4], 'rss': l[5], } return info
41.795411
115
0.613386
e6a062d0572ef02718e8fbdebe1537c58e1ff6a3
838
py
Python
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/bx_python-0.7.1-py2.7-linux-x86_64.egg/EGG-INFO/scripts/maf_print_chroms.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/bx_python-0.7.1-py2.7-linux-x86_64.egg/EGG-INFO/scripts/maf_print_chroms.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/bx_python-0.7.1-py2.7-linux-x86_64.egg/EGG-INFO/scripts/maf_print_chroms.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
#!/usr/bin/python2.7 """ Read a maf from stdin and print the chromosome number for each alignment. It searches for 'chr' in each alignment block src, and may not be robust if other src formats are used. NOTE: See 'align_print_template.py' for a more general variation of this program. usage: %prog refindex [options] """ from __future__ import division import sys from bx.cookbook import doc_optparse from bx.align import maf from optparse import OptionParser def __main__(): # Parse command line arguments options, args = doc_optparse.parse( __doc__ ) try: refindex = int( args[0] ) except: doc_optparse.exit() maf_reader = maf.Reader( sys.stdin ) for m in maf_reader: c = m.components[ refindex ].src print c[ c.rfind( "chr" ) + 3 : ] if __name__ == "__main__": __main__()
22.052632
78
0.695704
e6d3f8b600851c189da362904eab887decd97dd9
443
py
Python
zencad/examples/Models/organizer/assembly.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
5
2018-04-11T14:11:40.000Z
2018-09-12T19:03:36.000Z
zencad/examples/Models/organizer/assembly.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
null
null
null
zencad/examples/Models/organizer/assembly.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import case import organizer from zencad import * w = 27 h = 20 l = 64 t = 1.5 r = 27 / 2 - 4 z = 1 s = 0.965 d = 5 d2 = 5 m = 3 n = 5 st = organizer.organizer(m, n, w, h, l, t, d, d2) cs = case.case(w, h, l, t, r, z, s) ucs = union( [ cs.translate(t * 1.5 + (w + t) * i, 0, t + (h + t) * j) for i in range(0, m) for j in range(0, n) ] ) disp(ucs) disp(st, color=(1, 1, 1)) show()
12.657143
63
0.489842
fc63a193df46720c73df607e84a4485a4acadc4d
4,043
py
Python
projects/001-geburtstag/Firecat.py
gaylordmartin179/start-projects
094c7b3ab379bea39eabb31174e479307f9a3af0
[ "MIT" ]
null
null
null
projects/001-geburtstag/Firecat.py
gaylordmartin179/start-projects
094c7b3ab379bea39eabb31174e479307f9a3af0
[ "MIT" ]
2
2021-04-04T09:16:43.000Z
2021-04-07T08:53:53.000Z
projects/001-geburtstag/Firecat.py
gaylordmartin179/start-projects
094c7b3ab379bea39eabb31174e479307f9a3af0
[ "MIT" ]
2
2021-04-04T09:19:31.000Z
2021-05-02T15:06:50.000Z
# # Firecat's birthday task code # import os names = [] birthdays = [] def get_cmd(): cmd = input() if cmd: return cmd.split(" ") else: print("Please enter something as a command.\n") return def exe_cmd(cmd): base_cmd = cmd[0] if base_cmd == "help": print("help: shows this list\nadd [name] [birthday]: adds [name]'s birthday as [birthday]\nremove [name]: " "removes [name]'s birthday\nget birthday [name]: shows [name]'s birthday\nget name [birthday]: shows " "whose birthday is [birthday] - can return multiple names\nprint file [path]: prints all birthday data " "into a txt file at [program location]/path\nprint console: prints all birthday data into the console\n" "exit: stops the program\n") return 0 elif base_cmd == "add": if len(cmd) == 3: names.append(cmd[1]) birthdays.append(cmd[2]) return 1 print("Your command is too long or too short. The add cmd works as follows: \"add [name] [birthday]\".\n") return elif base_cmd == "remove": if len(cmd) == 2: if cmd[1] in tuple(names): birthdays.remove(birthdays[names.index(cmd[1])]) names.remove(cmd[1]) return 1 print("The person whose birthday you are trying to remove does not exist.\n") return print("Your command : \"remove [name]\".\n") return elif base_cmd == "get": if len(cmd) == 3: if cmd[1] == "birthday": if cmd[2] in tuple(names): print(birthdays[names.index(cmd[2])]) return 0 print("The person whose birthday you are trying to get does not exist.\n") return elif cmd[1] == "name": if cmd[2] in tuple(birthdays): print(names[birthdays.index(cmd[2])]) return 0 print("No person has that birthday.\n") return print("Your command doesn't have the correct length. Please alter the command if you want to get a birthday" "(\"get birthday [name]\") or a name(\"get name [birthday]\").\n") return elif base_cmd == "print": if len(cmd) == 2: if cmd[1] == "console": print_out = [] for i in range(len(names)): print_out.append(f"{names[i]} - {birthdays[i]}\n") print("".join(print_out)) return 0 elif len(cmd) == 3: if cmd[1] == "file": if os.path.isfile(f"{cmd[2]}.txt"): print("This file already exists. The program will not overwrite files.") return else: print_out = [] for i in range(len(names)): print_out.append(f"{names[i]} - [{birthdays[i]}\n") file = open(f"{cmd[2]}.txt", mode="w", encoding="utf-8") file.write("".join(print_out)) file.close() return 1 print("Please use the command like this: \"print console\" or \"print file [path]\".\n") return elif base_cmd == "exit" or base_cmd == "stop": yes = ["YES", "yes", "ok", "OK", "confirm", "sure", "yeah"] inp = input("Are you sure you want to end the program?\n") if inp in tuple(yes): print("Ending the program...\n") return 0 print("Cancelled ending the program.\n") return print("That is not a valid command. Type \"help\" to get a list of commands.\n") return def program(): cmd = get_cmd() if cmd: exe = exe_cmd(cmd) if exe == "end": return elif exe == 1: print("Success!\n") program() print("\nPlease enter a command. To get a list of commands, use \"help\".\n") program()
36.754545
118
0.509523
5d0e09d93b212966e3392eaa84308543f3b04d3f
709
py
Python
WiSe-2122/Wiederholung/Vorlesung/kontrollstrukturen-ausnahmebehandlungen.py
jonasrdt/Wirtschaftsinformatik2
30d5d896808b98664c55cb6fbb3b30a7f1904d9f
[ "MIT" ]
1
2022-03-23T09:40:39.000Z
2022-03-23T09:40:39.000Z
WiSe-2122/Wiederholung/Vorlesung/kontrollstrukturen-ausnahmebehandlungen.py
jonasrdt/Wirtschaftsinformatik2
30d5d896808b98664c55cb6fbb3b30a7f1904d9f
[ "MIT" ]
null
null
null
WiSe-2122/Wiederholung/Vorlesung/kontrollstrukturen-ausnahmebehandlungen.py
jonasrdt/Wirtschaftsinformatik2
30d5d896808b98664c55cb6fbb3b30a7f1904d9f
[ "MIT" ]
null
null
null
richtige_eingabe = False while not richtige_eingabe: try: # Inhaltliche Prüfung der Variablen a = int(input("Bitte geben Sie eine Zahl ein: ")) b = int(input("Bitte geben Sie eine zweite Zahl ein: ")) if a > b: print(a, "ist größer als", b) richtige_eingabe = True elif a == b: print(a, "ist genau so groß wie", b) richtige_eingabe = True elif a < b: print(a, "ist nicht größer als", b) richtige_eingabe = True else: print("Es konnte kein mathematischer Vergleich angestellt werden.") except: print("Es handelt sich hierbei scheinbar nicht um Zahlen.")
35.45
79
0.572638
53de4ed232ee780b58dc033dbcc6a4c83d45a927
1,484
py
Python
LF7/EMail/1Stunde.py
JohannesMuelle/workshops
af9140159e3872aff75864ced99b5163d7bba1ba
[ "CC0-1.0" ]
5
2016-07-07T09:00:31.000Z
2017-03-09T22:46:33.000Z
LF7/EMail/1Stunde.py
JohannesMuelle/workshops
af9140159e3872aff75864ced99b5163d7bba1ba
[ "CC0-1.0" ]
null
null
null
LF7/EMail/1Stunde.py
JohannesMuelle/workshops
af9140159e3872aff75864ced99b5163d7bba1ba
[ "CC0-1.0" ]
8
2016-05-13T14:29:06.000Z
2019-10-20T16:43:32.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os, subprocess import sys, traceback import crypt print("Kopiere: .my.cnf kann das Passwort und Benutzername von MySQL-Nutzern hinterlegt werden. Achtung: Sicherheitsrisiko!") cmd1 = os.system("cp my.cnf ~/.my.cnf") # Update Upgrade print("Update und Upgrade des Betriebssystems") print("Namen 'mail' für den Server festlegen") cmd1 = os.system("echo 'mail' > /etc/hostname") datei = open("/etc/hosts", "a") datei.write("127.0.0.1 mail.mysystems.tld mail localhost.localdomain localhost\n") datei.write("::1 mail.mysystems.tld mail localhost.localdomain ip6-localhost\n") datei.close() print("Hostname für E-Mail-Server setzen") cmd1 = os.system("echo $(hostname -f) > /etc/mailname") cmd1 = os.system("apt-get update -qq && sudo apt-get upgrade -y -qq") print(" Passwort und Benutzer für mysql festlegen: fbs/bs") cmd1 = os.system("debconf-set-selections <<< 'mysql-server mysql-server/root_password password fbs'") cmd1 = os.system("debconf-set-selections <<< 'mysql-server mysql-server/root_password_again password fbs'") print(" Datenbank installieren") cmd1 = os.system("apt install mysql-server -y") print(" Datenbank vmail anlegen.") cmd1 = os.system("mysql -u root -pfbs -e 'create database vmail;'") print("Benutzer vmail anlegen.") cmd1 = os.system("mysql -u root -pfbs -e 'GRANT ALL ON vmail.* TO 'vmail'@'localhost' IDENTIFIED BY 'fbs';'") print("Tabellen anlegen") cmd1 = os.system("mysql 'vmail' < 'mysql'")
49.466667
125
0.724394
4aeea47200170052629377961f8ba8cc3b36c93f
2,513
py
Python
py-td3-cinema/gui/edit.py
HuguesGuilleus/istyPOO
f460665799be2b2f34a1ebaa9878e06bb028a410
[ "BSD-3-Clause" ]
null
null
null
py-td3-cinema/gui/edit.py
HuguesGuilleus/istyPOO
f460665799be2b2f34a1ebaa9878e06bb028a410
[ "BSD-3-Clause" ]
null
null
null
py-td3-cinema/gui/edit.py
HuguesGuilleus/istyPOO
f460665799be2b2f34a1ebaa9878e06bb028a410
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from gi.repository import Gtk allValues = {} struct = None removeID = 0 def create(builder, s): """Edite une Struct dans l'interface utilisateur.""" global allValues, struct, removeID allValues = {} struct = s builder.get_object("indexList").hide() builder.get_object("newZone").hide() builder.get_object("save").show() builder.get_object("rm").show() builder.get_object("new").hide() rm = builder.get_object("rm") rm.show() if removeID: rm.disconnect(removeID) removeID = rm.connect("clicked", lambda _ : s.autoremove()) builder.get_object("editZone").show() builder.get_object("editHead").set_text(f"{s.__class__.__name__}: {s.idValue}") editTable = builder.get_object("editTable") editTable.foreach(lambda e : editTable.remove(e)) i = 0 for k, v in s: i += 1 editTable.insert_row(i) label = Gtk.Label(k) editTable.attach(label, 0, i, 1, 1) button = None if type(v) == type(""): button = Gtk.Entry() button.set_text(v) button.connect("changed", changeStr(k, button)) elif type(v) == type(False): button = Gtk.Switch() button.set_active(v) button.connect("state-set", changeBool(k, button)) elif type(v) == type(0): button = Gtk.SpinButton() button.set_adjustment(Gtk.Adjustment(v, 0, 10000, 1, 10, 0)) button.connect("value-changed", changeNb(k, button)) else: button = listStore(k, s.getDB(k)) if button == None: continue editTable.attach(button, 1, i, 1, 1) editTable.show_all() def save(_): if not struct: return for k, v in allValues.items(): struct[k] = v print(f"struct: {type(struct)} :: {struct}") def changeStr(k, b): """Renvoie une fonction pour enregistrer dans le tempons la valeur de l'entré textuelle""" return lambda _ : allValues.__setitem__(k, b.get_text()) def changeBool(k, b): "Renvoie une fonction pour enregistrer dans le tempons la valeur du switch" return lambda _, v : allValues.__setitem__(k, v) def changeNb(k, b): return lambda _ : allValues.__setitem__(k, int(b.get_value())) def listStore(key, db): if db == None: return None l = Gtk.ListStore(str, str) for k, v in db.items(): l.append([str(k), v.idValue]) combo = Gtk.ComboBox.new_with_model_and_entry(l) combo.connect("changed", lambda _ : changeListStore(key, combo)) combo.set_entry_text_column(1) return combo def changeListStore(key, combo): i = combo.get_active_iter() if i == None: return v = combo.get_model()[i][0] allValues.__setitem__(key, bytes(v, "utf-8"))
27.315217
80
0.68842
db68614f2cc9f1f2f998d1580306625cae561358
577
py
Python
数据结构/NowCode/5_ReplaceSpace.py
Blankwhiter/LearningNotes
83e570bf386a8e2b5aa699c3d38b83e5dcdd9cb0
[ "MIT" ]
null
null
null
数据结构/NowCode/5_ReplaceSpace.py
Blankwhiter/LearningNotes
83e570bf386a8e2b5aa699c3d38b83e5dcdd9cb0
[ "MIT" ]
3
2020-08-14T07:50:27.000Z
2020-08-14T08:51:06.000Z
数据结构/NowCode/5_ReplaceSpace.py
Blankwhiter/LearningNotes
83e570bf386a8e2b5aa699c3d38b83e5dcdd9cb0
[ "MIT" ]
2
2021-03-14T05:58:45.000Z
2021-08-29T17:25:52.000Z
# 替换空格 # 请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。 class Solution: # s 源字符串 def replaceSpace(self, s): return s.replace(' ', '%20') def replaceSpace2(self, s): strLen = len(s) aaa = [] for i in range(0, strLen): if s[i] == " ": aaa.append("%") aaa.append("2") aaa.append("0") else: aaa.append(s[i]) return ''.join(aaa) if __name__ == '__main__': print(Solution().replaceSpace2('We Are Happy'))
27.47619
81
0.506066
535f8bdaa8e6e41f06359cf8a97ab1ad425aa3c6
4,073
py
Python
bazzell/www/basket.py
libracore/bazzell
f4cf4ec5b9f264f68d853e7b946fd49bd0d5e4d9
[ "MIT" ]
null
null
null
bazzell/www/basket.py
libracore/bazzell
f4cf4ec5b9f264f68d853e7b946fd49bd0d5e4d9
[ "MIT" ]
null
null
null
bazzell/www/basket.py
libracore/bazzell
f4cf4ec5b9f264f68d853e7b946fd49bd0d5e4d9
[ "MIT" ]
1
2021-08-14T22:25:24.000Z
2021-08-14T22:25:24.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020, libracore.com and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe from frappe import _ import json from bazzell.www.selection import get_customer, get_stocks from erpnext.selling.doctype.quotation.quotation import make_sales_order no_cache = True def get_context(context): if frappe.session.user == 'Guest': frappe.throw(_("You need to be logged in to access this page"), frappe.PermissionError) #get customer customer = get_customer(frappe.session.user) context["items"] = get_items(customer.name) context["currency"] = get_currency(customer.name) return context def get_items(customer): quotation = frappe.db.sql("""SELECT `name` FROM `tabQuotation` WHERE `party_name` = '{customer}' AND `docstatus` = 0 LIMIT 1""".format(customer=customer), as_dict=True) items = frappe.db.sql("""SELECT `qty`, `item_code`, `item_name`, `rate`, `uom`, `stock_uom`, `conversion_factor` FROM `tabQuotation Item` WHERE `parent` = '{quotation}'""".format(quotation=quotation[0].name), as_dict=True) for item in items: item["stock"] = get_stocks(item.item_code) return items def get_currency(customer): quotation = frappe.db.sql("""SELECT `currency` FROM `tabQuotation` WHERE `party_name` = '{customer}' AND `docstatus` = 0 LIMIT 1""".format(customer=customer), as_dict=True) return quotation[0].currency @frappe.whitelist() def order_now(): customer = get_customer(frappe.session.user) _quotation = frappe.db.sql("""SELECT `name` FROM `tabQuotation` WHERE `party_name` = '{customer}' AND `docstatus` = 0 LIMIT 1""".format(customer=customer.name), as_dict=True)[0].name quotation = frappe.get_doc("Quotation", _quotation).submit() sales_order = frappe.get_doc(make_sales_order(_quotation)) sales_order.insert(ignore_permissions=True) return sales_order @frappe.whitelist() def change_qtn(item_code, qty): #get customer customer = get_customer(frappe.session.user) quotation = frappe.db.sql("""SELECT `name` FROM `tabQuotation` WHERE `party_name` = '{customer}' AND `docstatus` = 0 LIMIT 1""".format(customer=customer.name), as_dict=True) items = frappe.db.sql("""SELECT `item_code`, `rate`, `name` FROM `tabQuotation Item` WHERE `parent` = '{quotation}'""".format(quotation=quotation[0].name), as_dict=True) if int(qty) > 0: for item in items: if item.item_code == item_code: new_amount = item.rate * int(qty) frappe.db.sql("""UPDATE `tabQuotation Item` SET `qty` = '{qty}', `amount` = '{new_amount}' WHERE `name` = '{name}' AND `parent` = '{qtn}'""".format(qty=qty, name=item.name, new_amount=new_amount, qtn=quotation[0].name), as_list=True) quotation = frappe.get_doc("Quotation", quotation[0].name).save(ignore_permissions=True) return 'changed' else: for item in items: if item.item_code == item_code: frappe.db.sql("""DELETE FROM `tabQuotation Item` WHERE `name` = '{name}'""".format(name=item.name), as_list=True) check_qtn_qty = frappe.db.sql("""SELECT COUNT(`name`) FROM `tabQuotation Item` WHERE `parent` = '{qtn}'""".format(qtn=quotation[0].name), as_list=True)[0][0] if check_qtn_qty > 0: quotation = frappe.get_doc("Quotation", quotation[0].name).save(ignore_permissions=True) else: quotation = frappe.get_doc("Quotation", quotation[0].name).delete() return 'qtn deleted' return 'reload' @frappe.whitelist() def get_totals(): customer = get_customer(frappe.session.user) quotation = frappe.db.sql("""SELECT `name` FROM `tabQuotation` WHERE `party_name` = '{customer}' AND `docstatus` = 0 LIMIT 1""".format(customer=customer.name), as_dict=True) quotation = frappe.get_doc("Quotation", quotation[0].name) return { 'total': quotation.total, 'tax': quotation.total_taxes_and_charges, 'grand_total': quotation.grand_total }
50.283951
249
0.678861
be529258ff6077cd6d47f0a0128fe7d14511cf42
825
py
Python
src/ingestion/transformers/monosi/anomalies.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
156
2021-11-19T18:50:14.000Z
2022-03-31T19:48:59.000Z
src/ingestion/transformers/monosi/anomalies.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
30
2021-12-27T19:30:56.000Z
2022-03-30T17:49:00.000Z
src/ingestion/transformers/monosi/anomalies.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
14
2022-01-17T23:24:34.000Z
2022-03-29T09:27:47.000Z
from ingestion.transformers.base import Transformer class AnomalyTransformer(Transformer): @classmethod def _transform(cls, zscores): return list(filter(lambda x: x['error'] == True, zscores)) @classmethod def _original_schema(cls): return { "type": "array", "items": { "type": "object", "required": ["error"] }, "minItems": 1 } @classmethod def _normalized_schema(cls): return { "type": "array", "items": { "type": "object", "properties": { "error": { "type": "boolean", "const": True }, }, "required": ["error"] }, "minItems": 1 }
23.571429
66
0.437576
22e073034c450e34ebbcbff8a89c350bce34306b
220
py
Python
src/onegov/swissvotes/collections/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/collections/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/collections/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.swissvotes.collections.pages import TranslatablePageCollection from onegov.swissvotes.collections.votes import SwissVoteCollection __all__ = ( 'SwissVoteCollection', 'TranslatablePageCollection', )
24.444444
74
0.822727
4aaa930b3aa1eaf5428764e58a328d69c64d9262
1,686
py
Python
myspiders/ruia/middleware.py
zhouhongf/bank_hr
a42e5e18f3ec36b1ec65931415fe476c9690e0a0
[ "MIT" ]
2
2021-11-27T06:40:47.000Z
2022-01-06T03:12:46.000Z
myspiders/ruia/middleware.py
zhouhongf/bank_hr
a42e5e18f3ec36b1ec65931415fe476c9690e0a0
[ "MIT" ]
null
null
null
myspiders/ruia/middleware.py
zhouhongf/bank_hr
a42e5e18f3ec36b1ec65931415fe476c9690e0a0
[ "MIT" ]
null
null
null
from collections import deque from functools import wraps class Middleware: """ Define a middleware to customize the crawler request or response eg: middleware = Middleware() Middleware的目的是对每次请求前后进行一番处理,分下面两种情况: 在每次请求之前做一些事 @middleware.request 在每次请求后做一些事 @middleware.response """ def __init__(self): # request middleware self.request_middleware = deque() # response middleware self.response_middleware = deque() def request(self, *args, **kwargs): """ Define a Decorate to be called before a request. eg: @middleware.request """ middleware = args[0] @wraps(middleware) def register_middleware(*args, **kwargs): self.request_middleware.append(middleware) return middleware return register_middleware() def response(self, *args, **kwargs): """ Define a Decorate to be called after a response. eg: @middleware.response """ middleware = args[0] @wraps(middleware) def register_middleware(*args, **kwargs): self.response_middleware.appendleft(middleware) return middleware return register_middleware() def __add__(self, other): new_middleware = Middleware() # asc new_middleware.request_middleware.extend(self.request_middleware) new_middleware.request_middleware.extend(other.request_middleware) # desc new_middleware.response_middleware.extend(other.response_middleware) new_middleware.response_middleware.extend(self.response_middleware) return new_middleware
29.578947
76
0.655991
4ac548c2d7298281e9294aca2405d481b5fb5b82
2,051
py
Python
project/cli/test.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
null
null
null
project/cli/test.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
35
2022-01-24T22:15:59.000Z
2022-03-31T15:01:35.000Z
project/cli/test.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
null
null
null
import json import click from flask.cli import AppGroup from flask_migrate import stamp from sqlalchemy import MetaData from project import app, db from project.init_data import create_initial_data from tests.model_seeder import ModelSeeder test_cli = AppGroup("test") seeder = ModelSeeder(db) @test_cli.command("reset") @click.option("--seed/--no-seed", default=False) def reset(seed): meta = MetaData(bind=db.engine, reflect=True) con = db.engine.connect() trans = con.begin() for table in meta.sorted_tables: con.execute(f'ALTER TABLE "{table.name}" DISABLE TRIGGER ALL;') con.execute(table.delete()) con.execute(f'ALTER TABLE "{table.name}" ENABLE TRIGGER ALL;') trans.commit() if seed: create_initial_data() click.echo("Reset done.") @test_cli.command("drop-all") def drop_all(): db.drop_all() db.engine.execute("DROP TABLE IF EXISTS alembic_version;") click.echo("Drop all done.") @test_cli.command("create-all") def create_all(): stamp() db.create_all() click.echo("Create all done.") @test_cli.command("seed") def seed(): create_initial_data() click.echo("Seed done.") @test_cli.command("create-common-scenario") def create_common_scenario(): seeder.create_common_scenario() click.echo("Created common scenario.") @test_cli.command("news-item-create") def create_news_item(): news_feed_id = seeder.create_news_feed() news_item_id = seeder.create_news_item(news_feed_id) result = { "news_item_id": news_item_id, "news_feed_id": news_feed_id, } click.echo(json.dumps(result)) @test_cli.command("news-feed-create") def create_news_feed(): news_feed_id = seeder.create_news_feed() result = { "news_feed_id": news_feed_id, } click.echo(json.dumps(result)) @test_cli.command("place-create") def create_place(): place_id = seeder.create_place() result = { "place_id": place_id, } click.echo(json.dumps(result)) app.cli.add_command(test_cli)
22.293478
71
0.691858
435ec39933a6d7197454e318f6a7670bb2e4ed7e
424
py
Python
src/onegov/org/views/qrcode.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/org/views/qrcode.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/org/views/qrcode.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from morepath.request import Response from onegov.core.security import Public from onegov.org import OrgApp from onegov.qrcode import QrCode @OrgApp.view(model=QrCode, permission=Public, request_method='GET') def get_qr_code_from_payload(self, request): return Response( self.encoded_image, content_type=self.content_type, content_disposition=f'inline; filename=qrcode.{self.img_format}' )
30.285714
72
0.766509
436151138c15608b115e78d6e2e8fb01df231ba8
2,838
py
Python
tapia/exercise1/ex1.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
11
2017-04-21T11:39:55.000Z
2022-02-11T20:25:18.000Z
tapia/exercise1/ex1.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
69
2017-04-26T09:30:38.000Z
2017-08-01T11:31:21.000Z
tapia/exercise1/ex1.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
53
2017-04-20T16:16:11.000Z
2017-07-19T12:53:01.000Z
"""@package docstring Author: Roxana Tapia Campos Module: Advanced practical programming skills for scientists SS17 - TU Berlin Exercise 1: GeoMean """ import sys import math LINES_COUNT = 0 VALID_VALUES_LOC1 = 0 LOG_SUM_LOC1 = 0 VALID_VALUES_LOC2 = 0 LOG_SUM_LOC2 = 0 def read_file(filename): """ Reads a file, counts its lines and yields each line. :param filename: A filename from command line. """ global LINES_COUNT with open(filename) as f: for line in f: LINES_COUNT += 1 if is_valid(line): yield line def is_valid(line): """ Returns True if the line is valid, False otherwise. :param line: A raw input line from the file. :rtype: Boolean """ values = line.split(';') wrong_args_number = len(values) != 3 is_empty_line = not line.strip() is_comment = line.startswith("#") if wrong_args_number or is_empty_line or is_comment: print('Wrong format, skipping line.') return False try: int(values[1]) float_value = float(values[2]) if math.isnan(float_value) or float_value <= 0.0: return False except ValueError: return False return True def aggregate_data(line): """ Aggregates line counts and logarithm calculations for locations 1 and 2. Checks if location is valid. :param line: A validated input line from the file. """ global VALID_VALUES_LOC1, VALID_VALUES_LOC2, LOG_SUM_LOC1, LOG_SUM_LOC2 values = line.split(';') location = int(values[1]) point = float(values[2]) result = math.log(point) if location == 1: VALID_VALUES_LOC1 += 1 LOG_SUM_LOC1 += result elif location == 2: VALID_VALUES_LOC2 += 1 LOG_SUM_LOC2 += result else: print('Location not supported.') def compute_result(): """ Computes the geometric mean for locations 1 and 2 and displays the formatted result. """ geo_mean_loc1 = math.exp(LOG_SUM_LOC1/VALID_VALUES_LOC1) geo_mean_loc2 = math.exp(LOG_SUM_LOC2/VALID_VALUES_LOC2) print(math.isnan(geo_mean_loc1)) print(math.isnan(geo_mean_loc2)) print("File: {filename} with {lines_count} lines".format( filename=sys.argv[-1], lines_count=LINES_COUNT, )) print("Valid values Loc1: {valid_values_loc1} with GeoMean: {geo_mean_loc1}".format( valid_values_loc1=VALID_VALUES_LOC1, geo_mean_loc1=geo_mean_loc1 )) print("Valid values Loc2: {valid_values_loc2} with GeoMean: {geo_mean_loc2}".format( valid_values_loc2=VALID_VALUES_LOC2, geo_mean_loc2=geo_mean_loc2 )) if __name__ == '__main__': content = read_file(sys.argv[-1]) for line in content: aggregate_data(line) compute_result()
23.262295
89
0.653629
43a121e2caf0c3426f2fb9231a89716afa22c661
309
py
Python
handlemoursedata/main.py
qsunny/python
ace8c3178a9a9619de2b60ca242c2079dd2f825e
[ "MIT" ]
null
null
null
handlemoursedata/main.py
qsunny/python
ace8c3178a9a9619de2b60ca242c2079dd2f825e
[ "MIT" ]
2
2021-03-25T22:00:07.000Z
2022-01-20T15:51:48.000Z
handlemoursedata/main.py
qsunny/python
ace8c3178a9a9619de2b60ca242c2079dd2f825e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' Created on 2019-04-19 @FileName: main.py @Description: 项目入口 @author: 'Aaron.Qiu' @version V1.0.0 ''' from com.aaron.load_mouse_data import load_excel from com.aaron.dao.base_dao import create_db,drop_db if __name__ == "__main__": # create_db() # drop_db() load_excel()
20.6
52
0.68932
e82315a6966f473770759385f5d38a54b2f2b827
2,363
py
Python
kicker/control_human_automatic_strategy.py
GeorgJohn/2D_Kicker_git
8a451f2d573d703ceac1c2011f26e6ff953d2090
[ "MIT" ]
null
null
null
kicker/control_human_automatic_strategy.py
GeorgJohn/2D_Kicker_git
8a451f2d573d703ceac1c2011f26e6ff953d2090
[ "MIT" ]
null
null
null
kicker/control_human_automatic_strategy.py
GeorgJohn/2D_Kicker_git
8a451f2d573d703ceac1c2011f26e6ff953d2090
[ "MIT" ]
1
2018-08-24T17:53:41.000Z
2018-08-24T17:53:41.000Z
import math from kicker.CONST_BALL import Coordinate from kicker.CONST_KICKER import COURT_HEIGHT from kicker.CONST_GAME_FIGURES import FIGURE_FOOT_HEIGHT class HumanStrategy: def __init__(self, kicker): self.kicker = kicker def next_move(self): if - math.pi / 2 < self.kicker.ball.angle < math.pi / 2: if self.kicker.ball.pos[Coordinate.Y] < COURT_HEIGHT / 2: new_pos_keeper = self.kicker.ball.pos[Coordinate.Y] - self.kicker.human_keeper.POSITION_ON_BAR - \ FIGURE_FOOT_HEIGHT / 2 new_pos_defender = self.kicker.ball.pos[Coordinate.Y] - \ self.kicker.human_defender.POSITION_ON_BAR_DEFENDER_LEFT + FIGURE_FOOT_HEIGHT / 2 elif self.kicker.ball.pos[Coordinate.Y] > COURT_HEIGHT / 2: new_pos_keeper = self.kicker.ball.pos[Coordinate.Y] - self.kicker.human_keeper.POSITION_ON_BAR \ + FIGURE_FOOT_HEIGHT / 2 new_pos_defender = self.kicker.ball.pos[Coordinate.Y] - \ self.kicker.human_defender.POSITION_ON_BAR_DEFENDER_RIGHT - FIGURE_FOOT_HEIGHT / 2 else: new_pos_keeper = self.kicker.ball.pos[Coordinate.Y] - self.kicker.human_keeper.POSITION_ON_BAR new_pos_defender = self.kicker.ball.pos[Coordinate.Y] - \ self.kicker.human_defender.POSITION_ON_BAR_DEFENDER_RIGHT - FIGURE_FOOT_HEIGHT / 2 if new_pos_keeper > self.kicker.human_keeper.MAX_POS_KEEPER: new_pos_keeper = self.kicker.human_keeper.MAX_POS_KEEPER elif new_pos_keeper < 0: new_pos_keeper = 0 if new_pos_defender > self.kicker.human_defender.MAX_POS_DEFENDER: new_pos_defender = self.kicker.human_defender.MAX_POS_DEFENDER elif new_pos_defender < 0: new_pos_defender = 0 else: new_pos_keeper = self.kicker.human_keeper.MAX_POS_KEEPER / 2 new_pos_defender = self.kicker.human_defender.MAX_POS_DEFENDER / 2 self.kicker.human_keeper.next_position = new_pos_keeper self.kicker.human_defender.next_position = new_pos_defender self.kicker.human_keeper.move_bar() self.kicker.human_defender.move_bar()
50.276596
117
0.645366
1c7d1ee3ec47c77b70391dda7b6af41c07b50aa8
7,361
py
Python
Python-Encrypt-master/sploit.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
Python-Encrypt-master/sploit.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
Python-Encrypt-master/sploit.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
import base64, zlib, marshal, sys W = '\x1b[1;37m' RR = '\x1b[1;37m\x1b[31m' O = '\x1b[33m' B = '\x1b[34m' print ("{}{}\n______ _ \n| ___ \\ | | \n| |_/ / _ _ ___ _ __ _ _ _ __ | |_ ___ _ __ \n| __/ | | | | / __|| '__|| | | || '_ \\ | __| / _ \\ | '__|\n| | | |_| || (__ | | | |_| || |_) || |_ | (_) || | \n\\_| \\__, | \\___||_| \\__, || .__/ \\__| \\___/ |_| \n __/ | __/ || | \n |___/ |___/ |_| - {}Coders By TheSploit\n \n{}[==) {}Menu:\n\t\n {}[{}01{}]{} endcrypt file dengan base64\n {}[{}02{}]{} endcrypt file dengan base16\n {}[{}03{}]{} endcrypt file dengan base32\n {}[{}04{}]{} endcrypt file dengan marshal\n {}[{}05{}]{} endcrypt file dengan zlib&base64\n {}[{}06{}]{} endcrypt file dengan zlib&base64&marshal\n {}[{}07{}]{} endcrypt file dengan zlib&base16&marshal\n {}[{}08{}]{} endcrypt file dengan zlib&base32&marshal\n {}[{}09{}]{} keluar\n {}[{}10{}]{} tentang\n").format(W, O, W, RR, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W, B, RR, B, W) def main(): choice = raw_input(RR + '[==) ' + W + 'Silahkeun Pilih: ') if choice == '1' or choice == '01': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() a = base64.b64encode(fileopen) b = "import base64\nexec(base64.b64decode('" + a + "'))" c = file.replace('.py', '_endcrypt.py') d = open(c, 'w') d.write(b) d.close() print RR + '[*] ' + W + 'OUTPUT:', c main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '2' or choice == '02': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() a = base64.b16encode(fileopen) b = "import base64\nexec(base64.b16decode('" + a + "'))" c = file.replace('.py', '_endcrypt.py') d = open(c, 'w') d.write(b) d.close() print RR + '[*] ' + W + 'OUTPUT:', c main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '3' or choice == '03': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() a = base64.b32encode(fileopen) b = "import base64\nexec(base64.b32decode('" + a + "'))" c = file.replace('.py', '_endcrypt.py') d = open(c, 'w') d.write(b) d.close() print RR + '[*] ' + W + 'OUTPUT:', c main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '4' or choice == '04': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() a = compile(fileopen, 'dg', 'exec') m = marshal.dumps(a) s = repr(m) b = 'import marshal\nexec(marshal.loads(' + s + '))' c = file.replace('.py', '_endcrypt.py') d = open(c, 'w') d.write(b) d.close() print RR + '[*] ' + W + 'OUTPUT:', c main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '5' or choice == '05': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() c = zlib.compress(fileopen) d = base64.b64encode(c) e = 'import marshal,zlib,base64\nexec(zlib.decompress(base64.b64decode("' + d + '")))' f = file.replace('.py', '_endcrypt.py') g = open(f, 'w') g.write(e) g.close() print RR + '[*] ' + W + 'OUTPUT:', f main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '6' or choice == '06': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() sa = compile(fileopen, 'dg', 'exec') sb = marshal.dumps(sa) c = zlib.compress(sb) d = base64.b64encode(c) e = 'import marshal,zlib,base64\nexec(marshal.loads(zlib.decompress(base64.b64decode("' + str(d) + '"))))' f = file.replace('.py', '_endcrypt.py') g = open(f, 'w') g.write(e) g.close() print RR + '[*] ' + W + 'OUTPUT:', f main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '7' or choice == '07': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() sa = compile(fileopen, 'dg', 'exec') sb = marshal.dumps(sa) c = zlib.compress(sb) d = base64.b16encode(c) e = 'import marshal,zlib,base64\nexec(marshal.loads(zlib.decompress(base64.b16decode("' + str(d) + '"))))' f = file.replace('.py', '_endcrypt.py') g = open(f, 'w') g.write(e) g.close() print RR + '[*] ' + W + 'OUTPUT:', f main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '8' or choice == '08': try: file = raw_input(RR + '[+] ' + W + 'File: ') fileopen = open(file).read() sa = compile(fileopen, 'dg', 'exec') sb = marshal.dumps(sa) c = zlib.compress(sb) d = base64.b32encode(c) e = 'import marshal,zlib,base64\nexec(marshal.loads(zlib.decompress(base64.b32decode("' + str(d) + '"))))' f = file.replace('.py', '_endcrypt.py') g = open(f, 'w') g.write(e) g.close() print RR + '[*] ' + W + 'OUTPUT:', f main() except: print RR + '[-] ' + W + 'File tidak ditemukan Zheyenkk!' main() if choice == '9' or choice == '09': sys.exit(RR + '[*] ' + W + 'See you and Thanks for using this tools') else: if choice == '10': print '\n\tCODERS\n\t===================================\n\tCODERS BY : TheSploit\n\tCODERS : Sploit1109\n\tPASTEBIN : https://pastebin.com/u/TheSPloit\n\tGITHUB : https://github.com/TheSploit\n\t\t \n\tSUBS My YOUTUBE ACCOUNT FOR MORE DETAILS\n\t===================================\n\tYoutube : TryOne\n\tGITHUB : TheSploit\n\t===================================\n\t' main() else: print RR + '[-] ' + W + 'Maaf Anda salah Input^_^' sys.exit(RR + '[*] ' + W + 'See you and Thanks for using this tools') if __name__ == '__main__': main()
44.884146
1,136
0.416248
c7b8e741206c3c42c8548aaad20a97708a25b815
452
py
Python
admin-tutorial/AdminDateHierarchy/simple/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
5
2020-07-14T07:48:10.000Z
2021-12-20T21:20:10.000Z
admin-tutorial/AdminDateHierarchy/simple/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
7
2021-03-26T03:13:38.000Z
2022-03-12T00:42:03.000Z
admin-tutorial/AdminDateHierarchy/simple/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
1
2021-02-16T07:04:25.000Z
2021-02-16T07:04:25.000Z
from django.db import models # Create your models here. class ArticleModel(models.Model): title = models.CharField(verbose_name="文章标题", max_length=200) content = models.TextField(verbose_name="文章内容", max_length=5000) author = models.CharField(verbose_name="作者", max_length=50) date_joined = models.DateTimeField(verbose_name="创建时间", auto_now=True) date_last_change = models.DateTimeField(verbose_name="最后一次修改时间", auto_now=True)
34.769231
83
0.763274
4000322822874c488bff48d0776c518876b9a472
28,140
py
Python
Packs/Oracle_IAM/Integrations/OracleIAM/OracleIAM.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Oracle_IAM/Integrations/OracleIAM/OracleIAM.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Oracle_IAM/Integrations/OracleIAM/OracleIAM.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto from CommonServerPython import * import traceback import base64 import urllib3 # Disable insecure warnings urllib3.disable_warnings() ERROR_CODES_TO_SKIP = [ 404 ] '''CLIENT CLASS''' def build_body_request_for_update_user(old_user_data, new_user_data): operations = [] for key, value in new_user_data.items(): operation = { 'op': 'replace' if key in old_user_data.keys() else 'add', 'path': key, 'value': [value] if key in ('emails', 'phoneNumbers') and not isinstance(value, list) else value, } operations.append(operation) data = { 'schemas': ['urn:ietf:params:scim:api:messages:2.0:PatchOp'], 'Operations': operations, } return data class Client(BaseClient): """ A client class that implements logic to authenticate with the application. """ def __init__(self, base_url, verify=True, proxy=False, ok_codes=tuple(), headers=None, client_id=None, client_secret=None): super().__init__(base_url, verify, proxy, ok_codes, headers) self.base_url = base_url self.verify = verify self.client_id = client_id self.client_secret = client_secret self.headers = headers self.headers['Authorization'] = f'Bearer {self.get_access_token()}' def get_access_token(self): client_id_and_secret = f'{self.client_id}:{self.client_secret}' # Standard Base64 Encoding encodedBytes = base64.b64encode(client_id_and_secret.encode('utf-8')) encodedStr = str(encodedBytes, 'utf-8') headers = { 'Authorization': f'Basic {encodedStr}', 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8', } data = { 'grant_type': 'client_credentials', 'scope': 'urn:opc:idm:__myscopes__', } token = self._http_request('POST', url_suffix='/oauth2/v1/token', headers=headers, data=data) return token.get('access_token') def test(self): """ Tests connectivity with the application. """ return self.get_access_token() def get_user_by_id(self, user_id): """ Queries the user in the application using REST API by its email, and returns an IAMUserAppData object that holds the user_id, username, is_active and app_data attributes given in the query response. :type user_id: ``str`` :param user_id: ID of the user :return: An IAMUserAppData object if user exists, None otherwise. :rtype: ``IAMUserAppData`` """ user_app_data = self._http_request( 'GET', url_suffix=f'/admin/v1/Users/{user_id}', ) if user_app_data: user_name = user_app_data.get('userName') is_active = user_app_data.get('active') email = get_first_primary_email_by_scim_schema(user_app_data) return IAMUserAppData(user_id, user_name, is_active, user_app_data, email) return None def get_user(self, filter_name: str, filter_value: str) -> Optional['IAMUserAppData']: """ Queries the user in the application using REST API by its email, and returns an IAMUserAppData object that holds the user_id, username, is_active and app_data attributes given in the query response. :type filter_name: ``str`` :param filter_name: Attribute name to filter by. :type filter_value: ``str`` :param filter_value: The filter attribute value. :return: An IAMUserAppData object if user exists, None otherwise. :rtype: ``Optional[IAMUserAppData]`` """ query_params = {'filter': f'{filter_name} eq "{filter_value}"'} res = self._http_request( method='GET', url_suffix='/admin/v1/Users', params=query_params, ) if res and res.get('Resources'): user_app_data = res.get('Resources')[0] user_id = user_app_data.get('id') return self.get_user_by_id(user_id) return None def create_user(self, user_data: Dict[str, Any]) -> 'IAMUserAppData': """ Creates a user in the application using REST API. :type user_data: ``Dict[str, Any]`` :param user_data: User data in the application format :return: An IAMUserAppData object that contains the data of the created user in the application. :rtype: ``IAMUserAppData`` """ user_data['schemas'] = ['urn:ietf:params:scim:schemas:core:2.0:User'] if not isinstance(user_data.get('emails'), list): user_data['emails'] = [user_data.get('emails')] if not isinstance(user_data.get('phoneNumbers'), list): user_data['phoneNumbers'] = [user_data.get('phoneNumbers')] user_app_data = self._http_request( method='POST', url_suffix='/admin/v1/Users', json_data=user_data, ) user_id = user_app_data.get('id') is_active = user_app_data.get('active') username = user_app_data.get('userName') email = get_first_primary_email_by_scim_schema(user_app_data) return IAMUserAppData(user_id, username, is_active, user_app_data, email) def update_user(self, user_id, new_user_data): old_user_data = self._http_request( 'GET', url_suffix=f'/admin/v1/Users/{user_id}', ) user_app_data = self._http_request( 'PATCH', url_suffix=f'/admin/v1/Users/{user_id}', json_data=build_body_request_for_update_user(old_user_data, new_user_data), ) is_active = user_app_data.get('active') username = user_app_data.get('userName') email = get_first_primary_email_by_scim_schema(user_app_data) return IAMUserAppData(user_id, username, is_active, user_app_data, email) def enable_user(self, user_id: str): """ Enables a user in the application using REST API. :type user_id: ``str`` :param user_id: ID of the user in the application :return: An IAMUserAppData object that contains the data of the user in the application. :rtype: ``IAMUserAppData`` """ user_data = { 'schemas': ['urn:ietf:params:scim:api:messages:2.0:PatchOp'], 'Operations': [ { 'op': 'replace', 'path': 'active', 'value': True, } ] } user_app_data = self._http_request( 'PATCH', url_suffix=f'/admin/v1/Users/{user_id}', json_data=user_data, ) if user_app_data: user_name = user_app_data.get('userName') is_active = user_app_data.get('active') email = get_first_primary_email_by_scim_schema(user_app_data) return IAMUserAppData(user_id, user_name, is_active, user_app_data, email) return None def disable_user(self, user_id: str): """ Disables a user in the application using REST API. :type user_id: ``str`` :param user_id: ID of the user in the application :return: An IAMUserAppData object that contains the data of the user in the application. :rtype: ``IAMUserAppData`` """ user_data = { 'schemas': ['urn:ietf:params:scim:api:messages:2.0:PatchOp'], 'Operations': [ { 'op': 'replace', 'path': 'active', 'value': False, } ] } user_app_data = self._http_request( 'PATCH', url_suffix=f'/admin/v1/Users/{user_id}', json_data=user_data, ) if user_app_data: user_name = user_app_data.get('userName') is_active = user_app_data.get('active') email = get_first_primary_email_by_scim_schema(user_app_data) return IAMUserAppData(user_id, user_name, is_active, user_app_data, email) return None def get_group_by_id(self, group_id: str): """ Retrieves the group information by ID. :type group_id: ``str`` :param group_id: ID of the group in the application. :return: The group data. :rtype: ``dict`` """ return self._http_request( method='GET', url_suffix=f'admin/v1/Groups/{group_id}?attributes=id,displayName,members', resp_type='response', ) def get_group_by_name(self, group_name): """ Retrieves the group information by display name. :type group_name: ``str`` :param group_name: Display name of the group in the application. :return: The group data. :rtype: ``dict`` """ query_params = { 'filter': f'displayName eq "{group_name}"' } return self._http_request( method='GET', url_suffix='admin/v1/Groups?attributes=id,displayName,members', params=query_params, resp_type='response', ) def create_group(self, group_data: dict): """ Creates an empty group with a given name. :type group_data: ``str`` :param group_data: Display name of the group to be created. :return: The group data. :rtype: ``dict`` """ return self._http_request( method='POST', url_suffix='admin/v1/Groups', json_data=group_data, resp_type='response', ) def update_group(self, group_id: str, group_data: dict): """ Updates a group in the application. :type group_id: ``str`` :param group_id: ID of the group in the application. :type group_data: ``str`` :param group_data: The data that needs to be updated. :return: The group data. :rtype: ``dict`` """ return self._http_request( method='PATCH', url_suffix=f'admin/v1/Groups/{group_id}', json_data=group_data, resp_type='response', ) def delete_group(self, group_id: str): """ Deletes a group in the application. :type group_id: ``str`` :param group_id: ID of the group in the application. """ return self._http_request( method='DELETE', url_suffix=f'admin/v1/Groups/{group_id}', resp_type='response', ) def get_app_fields(self) -> Dict[str, Any]: """ Gets a dictionary of the user schema fields in the application and their description. :return: The user schema fields dictionary :rtype: ``Dict[str, str]`` """ res = self._http_request( method='GET', url_suffix='admin/v1/Schemas/urn:ietf:params:scim:schemas:core:2.0:User' ) fields = res.get('attributes', []) return {field.get('name'): field.get('description') for field in fields} @staticmethod def handle_exception(user_profile: 'IAMUserProfile', e: Union[DemistoException, Exception], action: 'IAMActions'): """ Handles failed responses from the application API by setting the User Profile object with the result. The result entity should contain the following data: 1. action (``IAMActions``) The failed action Required 2. success (``bool``) The success status Optional (by default, True) 3. skip (``bool``) Whether or not the command was skipped Optional (by default, False) 3. skip_reason (``str``) Skip reason Optional (by default, None) 4. error_code (``Union[str, int]``) HTTP error code Optional (by default, None) 5. error_message (``str``) The error description Optional (by default, None) Note: This is the place to determine how to handle specific edge cases from the API, e.g., when a DISABLE action was made on a user which is already disabled and therefore we can't perform another DISABLE action. :type user_profile: ``IAMUserProfile`` :param user_profile: The user profile object :type e: ``Union[DemistoException, Exception]`` :param e: The exception object - if type is DemistoException, holds the response json object (`res` attribute) :type action: ``IAMActions`` :param action: An enum represents the current action (GET, UPDATE, CREATE, DISABLE or ENABLE) """ if isinstance(e, DemistoException) and e.res is not None: error_code = e.res.status_code if action == IAMActions.DISABLE_USER and error_code in ERROR_CODES_TO_SKIP: skip_message = 'Users is already disabled or does not exist in the system.' user_profile.set_result(action=action, skip=True, skip_reason=skip_message) try: resp = e.res.json() error_message = get_error_details(resp) except ValueError: error_message = str(e) else: error_code = '' error_message = str(e) user_profile.set_result(action=action, success=False, error_code=error_code, error_message=f'{error_message}\n{traceback.format_exc()}') demisto.error(traceback.format_exc()) class OutputContext: """ Class to build a generic output and context. """ def __init__(self, success=None, active=None, id=None, username=None, email=None, errorCode=None, errorMessage=None, details=None, displayName=None, members=None): self.instanceName = demisto.callingContext.get('context', {}).get('IntegrationInstance') self.brand = demisto.callingContext.get('context', {}).get('IntegrationBrand') self.command = demisto.command().replace('-', '_').title().replace('_', '').replace('Iam', '') self.success = success self.active = active self.id = id self.username = username self.email = email self.errorCode = errorCode self.errorMessage = errorMessage self.details = details self.displayName = displayName # Used in group self.members = members # Used in group self.data = { 'brand': self.brand, 'instanceName': self.instanceName, 'success': success, 'active': active, 'id': id, 'username': username, 'email': email, 'errorCode': errorCode, 'errorMessage': errorMessage, 'details': details, 'displayName': displayName, 'members': members, } # Remove empty values self.data = { k: v for k, v in self.data.items() if v is not None } '''HELPER FUNCTIONS''' def get_error_details(res: Dict[str, Any]) -> str: """ Parses the error details retrieved from the application and outputs the resulted string. :type res: ``Dict[str, Any]`` :param res: The error data retrieved from the application. :return: The parsed error details. :rtype: ``str`` """ details = str(res.get('detail')) return details '''COMMAND FUNCTIONS''' def test_module(client: Client): """ Tests connectivity with the client. """ res = client.test() if isinstance(res, DemistoException): if 'Unauthorized' in str(res): return 'Authorization Error: Make sure "Client ID" and "Client Secret" is correctly set' else: return str(res) return 'ok' def get_group_command(client, args): scim = safe_load_json(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not (group_id or group_name): raise Exception('You must supply either "id" or "displayName" in the scim data') if group_id: try: res = client.get_group_by_id(group_id) res_json = res.json() if res.status_code == 200: generic_iam_context = OutputContext(success=True, id=group_id, displayName=res_json.get('displayName'), members=res_json.get('members')) except DemistoException as exc: if exc.res.status_code == 404: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=404, errorMessage='Group Not Found', details=str(exc)) else: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=exc.res.status_code, errorMessage=exc.message, details=str(exc)) else: try: res = client.get_group_by_name(group_name) res_json = res.json() if res.status_code == 200 and res_json.get('totalResults') > 0: res_json = res_json['Resources'][0] generic_iam_context = OutputContext(success=True, id=res_json.get('id'), displayName=group_name, members=res_json.get('members')) except DemistoException as exc: if exc.res.status_code == 404: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=404, errorMessage='Group Not Found', details=str(exc)) else: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=exc.res.status_code, errorMessage=exc.message, details=str(exc)) readable_output = tableToMarkdown('Oracle Cloud Get Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output, ) def create_group_command(client, args): scim = safe_load_json(args.get('scim')) group_name = scim.get('displayName') if not group_name: raise Exception('You must supply "displayName" of the group in the scim data') group_data = scim group_data['schemas'] = ['urn:ietf:params:scim:schemas:core:2.0:Group'] try: res = client.create_group(group_data) res_json = res.json() if res.status_code == 201: generic_iam_context = OutputContext(success=True, id=res_json.get('id'), displayName=group_name) else: res_json = res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) except DemistoException as e: res_json = e.res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, errorCode=res_json.get('status'), errorMessage=res_json.get('detail'), details=res_json) readable_output = tableToMarkdown('Oracle Cloud Create Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output, ) def update_group_command(client, args): scim = safe_load_json(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: raise Exception('You must supply "id" in the scim data') member_ids_to_add = args.get('memberIdsToAdd') member_ids_to_delete = args.get('memberIdsToDelete') if member_ids_to_add is member_ids_to_delete is None: raise Exception('You must supply either "memberIdsToAdd" or "memberIdsToDelete" in the scim data') operations = [] member_ids_json_list = [] if member_ids_to_add: if not isinstance(member_ids_to_add, list): member_ids_to_add = safe_load_json(member_ids_to_add) for member_id in member_ids_to_add: member_ids_json_list.append( { 'value': member_id, 'type': 'User', } ) if member_ids_json_list: operation = { 'op': 'add', 'path': 'members', 'value': member_ids_json_list, } operations.append(operation) if member_ids_to_delete: if not isinstance(member_ids_to_delete, list): member_ids_to_delete = safe_load_json(member_ids_to_delete) for member_id in member_ids_to_delete: operation = { 'op': 'remove', 'path': f'members[value eq "{member_id}"]', } operations.append(operation) group_input = {'schemas': ['urn:ietf:params:scim:api:messages:2.0:PatchOp'], 'Operations': operations} try: res = client.update_group(group_id, group_input) res_json = res.json() if res.status_code == 200: generic_iam_context = OutputContext(success=True, id=group_id, displayName=group_name, details=res_json) except DemistoException as exc: if exc.res.status_code == 404: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=404, errorMessage='Group/User Not Found or User not a member of group', details=str(exc)) else: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=exc.res.status_code, errorMessage=exc.message, details=str(exc)) readable_output = tableToMarkdown('Oracle Cloud Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output, ) def delete_group_command(client, args): scim = safe_load_json(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: raise Exception('You must supply "id" in the scim data') res = client.delete_group(group_id) try: if res.status_code == 204: generic_iam_context = OutputContext(success=True, id=group_id, displayName=group_name) except DemistoException as exc: if exc.res.status_code == 404: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=404, errorMessage='Group Not Found', details=str(exc)) else: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=exc.res.status_code, errorMessage=exc.message, details=str(exc)) readable_output = tableToMarkdown('Oracle Cloud Delete Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output, ) def get_mapping_fields(client: Client) -> GetMappingFieldsResponse: """ Creates and returns a GetMappingFieldsResponse object of the user schema in the application :param client: (Client) The integration Client object that implements a get_app_fields() method :return: (GetMappingFieldsResponse) An object that represents the user schema """ app_fields = client.get_app_fields() incident_type_scheme = SchemeTypeMapping(type_name=IAMUserProfile.DEFAULT_INCIDENT_TYPE) for field, description in app_fields.items(): incident_type_scheme.add_field(field, description) return GetMappingFieldsResponse([incident_type_scheme]) def main(): user_profile = None params = demisto.params() base_url = params['url'].strip('/') client_id = params.get('credentials', {}).get('identifier') client_secret = params.get('credentials', {}).get('password') mapper_in = params.get('mapper_in') mapper_out = params.get('mapper_out') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) command = demisto.command() args = demisto.args() is_create_enabled = params.get('create_user_enabled') is_enable_enabled = params.get('enable_user_enabled') is_disable_enabled = params.get('disable_user_enabled') is_update_enabled = params.get('update_user_enabled') create_if_not_exists = params.get('create_if_not_exists') iam_command = IAMCommand(is_create_enabled, is_enable_enabled, is_disable_enabled, is_update_enabled, create_if_not_exists, mapper_in, mapper_out, get_user_iam_attrs=['id', 'userName', 'emails']) headers = { 'Content-Type': 'application/scim+json', 'Accept': 'application/scim+json', } client = Client( base_url=base_url, verify=verify_certificate, proxy=proxy, headers=headers, ok_codes=(200, 201, 204), client_id=client_id, client_secret=client_secret, ) demisto.debug(f'Command being called is {command}') '''CRUD commands''' if command == 'iam-get-user': user_profile = iam_command.get_user(client, args) elif command == 'iam-create-user': user_profile = iam_command.create_user(client, args) elif command == 'iam-update-user': user_profile = iam_command.update_user(client, args) elif command == 'iam-disable-user': user_profile = iam_command.disable_user(client, args) if user_profile: return_results(user_profile) '''non-CRUD commands''' try: if command == 'test-module': return_results(test_module(client)) elif command == 'iam-get-group': return_results(get_group_command(client, args)) elif command == 'iam-create-group': return_results(create_group_command(client, args)) elif command == 'iam-update-group': return_results(update_group_command(client, args)) elif command == 'iam-delete-group': return_results(delete_group_command(client, args)) elif command == 'get-mapping-fields': return_results(get_mapping_fields(client)) except Exception as exc: # For any other integration command exception, return an error demisto.error(traceback.format_exc()) return_error(f'Failed to execute {command} command. Error:\n{exc}', error=exc) from IAMApiModule import * # noqa E402 if __name__ in ('__main__', '__builtin__', 'builtins'): main()
36.736292
120
0.603198
406d75c1bbdd0a3a8947d69ef9f39f580ed500b2
2,666
py
Python
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
1
2021-03-22T18:38:43.000Z
2021-03-22T18:38:43.000Z
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
null
null
null
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
1
2021-02-06T10:07:36.000Z
2021-02-06T10:07:36.000Z
# sgp30_simpletest.py # https://github.com/alexmrqt/micropython-sgp30 # adaption to the I2C bus of Raspberry Pi Pico by # 2021-03-11 Claus Kühnel [email protected] """ Example for using the SGP30 with MicroPython and the Adafruit library. Uses instructions from "SGP30 Driver Integration (for Software I²C)" to handle self-calibration of the sensor: - if no baseline found, wait 12h before storing baseline, - if baseline found, store baseline every hour. Baseline is writen in co2eq_baseline.txt and tvoc_baseline.txt. Note that if the sensor is shut down during more than one week, then baselines must be manually deleted. """ import time from machine import Pin, I2C import adafruit_sgp30 # Initialize I2C bus sda=Pin(0) scl=Pin(1) i2c=I2C(0,sda=sda, scl=scl, freq=100000) # Create library object on our I2C port sgp30 = adafruit_sgp30.Adafruit_SGP30(i2c) print("SGP30 serial #", [hex(i) for i in sgp30.serial]) # Initialize SGP-30 internal drift compensation algorithm. sgp30.iaq_init() # Wait 15 seconds for the SGP30 to properly initialize print("Waiting 15 seconds for SGP30 initialization.") time.sleep(15) # Retrieve previously stored baselines, if any (helps the compensation algorithm). has_baseline = False try: f_co2 = open('co2eq_baseline.txt', 'r') f_tvoc = open('tvoc_baseline.txt', 'r') co2_baseline = int(f_co2.read()) tvoc_baseline = int(f_tvoc.read()) #Use them to calibrate the sensor sgp30.set_iaq_baseline(co2_baseline, tvoc_baseline) f_co2.close() f_tvoc.close() has_baseline = True except: print('Impossible to read SGP30 baselines!') #Store the time at which last baseline has been saved baseline_time = time.time() while True: co2eq, tvoc = sgp30.iaq_measure() print('co2eq = ' + str(co2eq) + ' ppm \t tvoc = ' + str(tvoc) + ' ppb') # Baselines should be saved after 12 hour the first timen then every hour, # according to the doc. if (has_baseline and (time.time() - baseline_time >= 3600)) \ or ((not has_baseline) and (time.time() - baseline_time >= 43200)): print('Saving baseline!') baseline_time = time.time() try: f_co2 = open('co2eq_baseline.txt', 'w') f_tvoc = open('tvoc_baseline.txt', 'w') bl_co2, bl_tvoc = sgp30.get_iaq_baseline() f_co2.write(str(bl_co2)) f_tvoc.write(str(bl_tvoc)) f_co2.close() f_tvoc.close() has_baseline = True except: print('Impossible to write SGP30 baselines!') #A measurement should be done every 60 seconds, according to the doc. time.sleep(1)
28.666667
82
0.685296
294088911bd3105d4c586280dab7103564976714
1,899
py
Python
marsyas-vamp/marsyas/scripts/large-evaluators/tempo-reference-implementation/mar_collection.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
18
2020-01-22T14:58:18.000Z
2022-02-21T12:07:51.000Z
marsyas-vamp/marsyas/scripts/large-evaluators/tempo-reference-implementation/mar_collection.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
2
2020-02-24T13:14:05.000Z
2020-09-21T13:34:53.000Z
marsyas-vamp/marsyas/scripts/large-evaluators/tempo-reference-implementation/mar_collection.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
1
2020-01-22T14:55:36.000Z
2020-01-22T14:55:36.000Z
#!/usr/bin/env python import os try: marsyas_datadir = os.environ['MARSYAS_DATADIR'] except: marsyas_datadir = "." class MarCollection(): def __init__(self, mf_filename=None): self.data = [] if mf_filename is not None: try: self.read_mf(mf_filename) except: pass def write(self, mf_filename=None): if mf_filename is not None: self.filename = mf_filename out = open(self.filename, 'w') for filename, label in self.data: out.write("%s\t%s\n" % (filename, label)) out.close() def read_mf(self, mf_filename): self.filename = mf_filename self.data = [] self.merge_mf(mf_filename) def merge_mf(self, new_mf_filename): lines = open(new_mf_filename).readlines() for line in lines: if len(line) < 2: continue if line[0] == '#': continue splitline = line.split('\t') filename = splitline[0].rstrip().replace( "MARSYAS_DATADIR", marsyas_datadir) try: label = splitline[1].rstrip() except: label = "" self.set_item(filename, label) def get_filenames(self): return [f for f,l in self.data ] def get_filename_index(self, filename): for i, pair in enumerate(self.data): if filename == pair[0]: return i, pair return False, None def set_item(self, filename, label=""): index, pair = self.get_filename_index(filename) if index is not False: self.data[index] = (pair[0], label) else: self.data.append( (filename, label) ) def get_filenames_matching_label(self, label_match): return [f for f,l in self.data if l == label_match]
28.772727
59
0.54871
46511f7f3881a08595f0b1950e9988fb1a58cb8f
13,340
py
Python
Packs/Syslog/Integrations/Syslogv2/Syslogv2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Syslog/Integrations/Syslogv2/Syslogv2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Syslog/Integrations/Syslogv2/Syslogv2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
from dataclasses import dataclass from tempfile import NamedTemporaryFile from typing import Callable import syslogmp from gevent.server import StreamServer from syslog_rfc5424_parser import SyslogMessage, ParseError from CommonServerPython import * # noqa # pylint: disable=unused-wildcard-import from CommonServerUserPython import * # noqa # Disable insecure warnings requests.packages.urllib3.disable_warnings() # pylint: disable=no-member ''' CONSTANTS ''' MAX_SAMPLES = 10 BUF_SIZE = 1024 MESSAGE_REGEX: Optional[str] = None MAX_PORT: int = 65535 @dataclass class SyslogMessageExtract: app_name: Optional[str] facility: str host_name: Optional[str] msg: str msg_id: Optional[str] process_id: Optional[str] sd: dict severity: str timestamp: str version: Optional[int] occurred: Optional[str] def parse_rfc_3164_format(log_message: bytes) -> Optional[SyslogMessageExtract]: """ Receives a log message which is in RFC 3164 format. Parses it into SyslogMessageExtract data class object Args: log_message (bytes): Syslog message. Returns: (Optional[SyslogMessageExtract]): Extraction data class """ try: syslog_message: syslogmp.Message = syslogmp.parse(log_message) except syslogmp.parser.MessageFormatError: return None return SyslogMessageExtract( app_name=None, facility=syslog_message.facility.name, host_name=syslog_message.hostname, msg=syslog_message.message.decode('utf-8'), msg_id=None, process_id=None, sd={}, severity=syslog_message.severity.name, timestamp=syslog_message.timestamp.isoformat(), version=None, # Because RF-3164 doesn't return localized date, can't determine the localized time it occurred. occurred=None ) def parse_rfc_5424_format(log_message: bytes) -> Optional[SyslogMessageExtract]: """ Receives a log message which is in RFC 5424 format. Parses it into SyslogMessageExtract data class object Args: log_message (bytes): Syslog message. Returns: (Optional[SyslogMessageExtract]): Extraction data class """ try: syslog_message: SyslogMessage = SyslogMessage.parse(log_message.decode('utf-8')) except ParseError: return None return SyslogMessageExtract( app_name=syslog_message.appname, facility=syslog_message.facility.name, host_name=syslog_message.hostname, msg=syslog_message.msg, msg_id=syslog_message.msgid, process_id=syslog_message.procid, sd=syslog_message.sd, severity=syslog_message.severity.name, timestamp=syslog_message.timestamp, version=syslog_message.version, occurred=syslog_message.timestamp ) def parse_rfc_6587_format(log_message: bytes) -> Optional[SyslogMessageExtract]: """ Receives a log message which is in RFC 5424 format. Parses it into SyslogMessageExtract data class object Args: log_message (bytes): Syslog message. Returns: (SyslogMessageExtract): Extraction data class """ log_message = log_message.decode('utf-8') split_msg: List[str] = log_message.split(' ') if not log_message or not log_message[0].isdigit() or not len(split_msg) > 1: return None try: log_message = ' '.join(split_msg[1:]) encoded_msg = log_message.encode() for format_func in format_funcs: # if it is RFC6587 itself, continue if format_func == parse_rfc_6587_format: continue extracted_message = format_func(encoded_msg) if extracted_message: return extracted_message except ValueError: return None return None format_funcs: List[Callable[[bytes], Optional[SyslogMessageExtract]]] = [parse_rfc_3164_format, parse_rfc_5424_format, parse_rfc_6587_format] def test_module() -> str: """ Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. Returns: (str): 'ok' if test passed, anything else will fail the test. """ return 'ok' def fetch_samples() -> None: """ Retrieves samples from context. """ demisto.incidents(get_integration_context().get('samples')) def create_incident_from_syslog_message(extracted_message: SyslogMessageExtract) -> dict: """ Creates incident from the extracted Syslog message. Args: extracted_message (SyslogMessageExtract): Syslog message extraction details. Returns: (dict): Incident. """ return { 'name': f'Syslog from [{extracted_message.host_name}][{extracted_message.timestamp}]', 'rawJSON': json.dumps(vars(extracted_message)), 'occurred': extracted_message.occurred, 'details': '\n'.join([f'{k}: {v}' for k, v in vars(extracted_message).items() if v]) } def update_integration_context_samples(incident: dict, max_samples: int = MAX_SAMPLES) -> None: """ Updates the integration context samples with the newly created incident. If the size of the samples has reached `MAX_SAMPLES`, will pop out the latest sample. Args: incident (dict): The newly created incident. max_samples (int): Max samples size. Returns: (None): Modifies the integration context samples field. """ ctx = get_integration_context() updated_samples_list: List[Dict] = [incident] + ctx.get('samples', []) if len(updated_samples_list) > max_samples: updated_samples_list.pop() ctx['samples'] = updated_samples_list set_integration_context(ctx) def log_message_passes_filter(log_message: SyslogMessageExtract, message_regex: Optional[str]) -> bool: """ Given log message extraction and a possible message regex, checks if the message passes the filters: 1) Message regex is None, therefore no filter was asked to be made. 2) Message regex is not None: Filter the Syslog message if regex does not exist in the message, if regex exists in the Syslog message, do not filter. Args: log_message (SyslogMessageExtract): The extracted details of a Syslog message. message_regex (Optional[str]): Message regex to match if exists. Returns: (bool): True if the message shouldn't be filtered, false if the message should be filtered. """ if not message_regex: return True regexp = re.compile(message_regex) return True if regexp.search(log_message.msg) else False def perform_long_running_loop(socket_data: bytes): """ Performs one loop of a long running execution. - Gets data from socket. - Parses the Syslog message data. - If the Syslog message data passes filter, creates a new incident. - Saves the incident in integration context for samples. Args: socket_data (bytes): Retrieved socket data. Returns: (None): Creates incident in Cortex XSOAR platform. """ extracted_message: Optional[SyslogMessageExtract] = None for format_func in format_funcs: extracted_message = format_func(socket_data) if extracted_message: break if not extracted_message: raise DemistoException(f'Could not parse the following message: {socket_data.decode("utf-8")}') if log_message_passes_filter(extracted_message, MESSAGE_REGEX): incident: dict = create_incident_from_syslog_message(extracted_message) update_integration_context_samples(incident) demisto.createIncidents([incident]) def perform_long_running_execution(sock: Any, address: tuple) -> None: """ The long running execution loop. Gets input, and performs a while True loop and logs any error that happens. Stops when there is no more data to read. Args: sock: Socket. address(tuple): Address. Not used inside loop so marked as underscore. Returns: (None): Reads data, calls that creates incidents from inputted data. """ demisto.debug('Starting long running execution') file_obj = sock.makefile(mode='rb') try: while True: try: line = file_obj.readline() if not line: demisto.info(f'Disconnected from {address}') break perform_long_running_loop(line.strip()) except Exception as e: demisto.error(traceback.format_exc()) # print the traceback demisto.error(f'Error occurred during long running loop. Error was: {e}') finally: demisto.debug('Finished reading message') finally: file_obj.close() def prepare_globals_and_create_server(port: int, message_regex: Optional[str], certificate: Optional[str], private_key: Optional[str]) -> StreamServer: """ Prepares global environments of LOG_FORMAT, MESSAGE_REGEX and creates the server to listen to Syslog messages. Args: port (int): Port message_regex (Optional[str]): Regex. Will create incident only if Syslog message matches this regex. certificate (Optional[str]): Certificate. For SSL connection. private_key (Optional[str]): Private key. For SSL connection. Returns: (StreamServer): Server to listen to Syslog messages. """ global MESSAGE_REGEX MESSAGE_REGEX = message_regex if certificate and private_key: certificate_file = NamedTemporaryFile(delete=False) certificate_path = certificate_file.name certificate_file.write(bytes(certificate, 'utf-8')) certificate_file.close() private_key_file = NamedTemporaryFile(delete=False) private_key_path = private_key_file.name private_key_file.write(bytes(private_key, 'utf-8')) private_key_file.close() server = StreamServer(('0.0.0.0', port), perform_long_running_execution, keyfile=private_key_path, certfile=certificate_path) demisto.debug('Starting HTTPS Server') else: server = StreamServer(('0.0.0.0', port), perform_long_running_execution) demisto.debug('Starting HTTP Server') return server def get_mapping_fields() -> Dict[str, str]: return { 'app_name': 'Application Name', 'facility': 'Facility', 'host_name': 'Host Name', 'msg': 'Message', 'msg_id': 'Message ID', 'process_id': 'Process ID', 'sd': 'Structured Data', 'severity': 'Severity', 'timestamp': 'Timestamp', 'version': 'Syslog Version', 'occurred': 'Occurred Time' } ''' MAIN FUNCTION ''' def main() -> None: params = demisto.params() command = demisto.command() message_regex: Optional[str] = params.get('message_regex') certificate: Optional[str] = params.get('certificate') private_key: Optional[str] = params.get('private_key') port: Union[Optional[str], int] = params.get('longRunningPort') try: port = int(params.get('longRunningPort')) except (ValueError, TypeError): raise DemistoException(f'Invalid listen port - {port}. Make sure your port is a number') if port < 0 or MAX_PORT < port: raise DemistoException(f'Given port: {port} is not valid and must be between 0-{MAX_PORT}') demisto.debug(f'Command being called is {demisto.command()}') try: if command == 'test-module': try: prepare_globals_and_create_server(port, message_regex, certificate, private_key) except OSError as e: if 'Address already in use' in str(e): raise DemistoException(f'Given port: {port} is already in use. Please either change port or ' f'make sure to close the connection in the server using that port.') raise e return_results('ok') elif command == 'fetch-incidents': # The integration fetches incidents in the long-running-execution command. Fetch incidents is called # only when "Pull From Instance" is clicked in create new classifier section in Cortex XSOAR. # The fetch incidents returns samples of incidents generated by the long-running-execution. fetch_samples() elif command == 'long-running-execution': server: StreamServer = prepare_globals_and_create_server(port, message_regex, certificate, private_key) server.serve_forever() elif command == 'get-mapping-fields': return_results(get_mapping_fields()) else: raise NotImplementedError(f'''Command '{command}' is not implemented.''') # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): main()
37.055556
118
0.666792
31107869ae687d5a76f261e9b17e7d5e0bd24f53
34
py
Python
insomniac/__main__.py
shifenis/Insomniac
7c9d572b83c29049bc3075073be5549fe821a739
[ "MIT" ]
533
2020-06-01T10:40:11.000Z
2022-03-29T17:05:50.000Z
insomniac/__main__.py
shifenis/Insomniac
7c9d572b83c29049bc3075073be5549fe821a739
[ "MIT" ]
399
2020-06-01T22:01:55.000Z
2022-03-29T20:39:29.000Z
insomniac/__main__.py
shifenis/Insomniac
7c9d572b83c29049bc3075073be5549fe821a739
[ "MIT" ]
166
2020-06-01T21:51:52.000Z
2022-03-12T14:14:44.000Z
import insomniac insomniac.run()
8.5
16
0.794118
7362ca85718b460645bd5b10716c15e229e93db6
405
py
Python
Python/M01_ProgrammingBasics/L06_NestedLoops/Lab/Solutions/P05_Travelling.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L06_NestedLoops/Lab/Solutions/P05_Travelling.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L06_NestedLoops/Lab/Solutions/P05_Travelling.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
1
2022-02-23T13:03:14.000Z
2022-02-23T13:03:14.000Z
destination = 0 new_savings = 0 savings = 0 while destination != "End": destination = input() if destination == "End": break min_budget = float(input()) while min_budget >= new_savings: savings = float(input()) new_savings += savings if new_savings >= min_budget: print(f"Going to {destination}!") new_savings = 0 break
23.823529
45
0.575309
c33d80695edc09acc64b42f7bb98e56ef52342b3
1,133
py
Python
loesungsvorschlaege/ml_1_lineare_regression/praxis/diabetes/lin_reg_mit_scikit.py
severinhaller/einf-machinelearning
4dfc8f1da0d81c5aa800d1459f81b72d1bf6dd9b
[ "MIT" ]
null
null
null
loesungsvorschlaege/ml_1_lineare_regression/praxis/diabetes/lin_reg_mit_scikit.py
severinhaller/einf-machinelearning
4dfc8f1da0d81c5aa800d1459f81b72d1bf6dd9b
[ "MIT" ]
null
null
null
loesungsvorschlaege/ml_1_lineare_regression/praxis/diabetes/lin_reg_mit_scikit.py
severinhaller/einf-machinelearning
4dfc8f1da0d81c5aa800d1459f81b72d1bf6dd9b
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import sklearn.linear_model as lin # Die ersten 10 Spalten beinhalten die Features. Die letzte Spalte beinhaltet das Label (Target). diabetes_data_set = pd.read_csv("diabetes_daten.csv", header=None) # Matrix X: alle 442 Zeilen und die ersten 10 Spalten => X hat die Dimension 442 x 10 matrix_X = diabetes_data_set.iloc[0:442, 0:10].values print(f"Dimension Matrix X: {matrix_X.shape}") # Vektor y: alle 442 Zeilen und nur die letzte Spalte => y hat die Dimension 442 x 1 vektor_y = diabetes_data_set.iloc[0:442, 10].values print(f"Dimension Vektor y: {vektor_y.shape}") # Berechne die lineare Regression # Da wir fit_intercept=True angeben müssen wir keine Spalte mit "1'en" zur Matrix X hinzufügen # dies wird automatisch erledigt. regr = lin.LinearRegression(fit_intercept=True) regr.fit(matrix_X, vektor_y) # coef beinhaltet die Unbekannten => w-Vektor # Unterdrückt die wissenschaftliche Notation mit e # Beispiel: -3.63612242e-02 = -3.63612242+10^-2 = -0.0363612242 np.set_printoptions(suppress=True) print(f"(w_1, w_2, ..., w_10): {regr.coef_}") print(f"(w_0): {regr.intercept_}")
39.068966
97
0.761695
5edc0378e1634ca2d7249cd7e7467ab9220d7b94
12,433
py
Python
frappe-bench/apps/erpnext/erpnext/education/api.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/education/api.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/education/api.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe import json from frappe import _ from frappe.model.mapper import get_mapped_doc from frappe.utils import flt, cstr from frappe.email.doctype.email_group.email_group import add_subscribers def get_course(program): '''Return list of courses for a particular program :param program: Program ''' courses = frappe.db.sql('''select course, course_name from `tabProgram Course` where parent=%s''', (program), as_dict=1) return courses @frappe.whitelist() def enroll_student(source_name): """Creates a Student Record and returns a Program Enrollment. :param source_name: Student Applicant. """ frappe.publish_realtime('enroll_student_progress', {"progress": [1, 4]}, user=frappe.session.user) student = get_mapped_doc("Student Applicant", source_name, {"Student Applicant": { "doctype": "Student", "field_map": { "name": "student_applicant" } }}, ignore_permissions=True) student.save() program_enrollment = frappe.new_doc("Program Enrollment") program_enrollment.student = student.name program_enrollment.student_name = student.title program_enrollment.program = frappe.db.get_value("Student Applicant", source_name, "program") frappe.publish_realtime('enroll_student_progress', {"progress": [4, 4]}, user=frappe.session.user) return program_enrollment @frappe.whitelist() def check_attendance_records_exist(course_schedule=None, student_group=None, date=None): """Check if Attendance Records are made against the specified Course Schedule or Student Group for given date. :param course_schedule: Course Schedule. :param student_group: Student Group. :param date: Date. """ if course_schedule: return frappe.get_list("Student Attendance", filters={"course_schedule": course_schedule}) else: return frappe.get_list("Student Attendance", filters={"student_group": student_group, "date": date}) @frappe.whitelist() def mark_attendance(students_present, students_absent, course_schedule=None, student_group=None, date=None): """Creates Multiple Attendance Records. :param students_present: Students Present JSON. :param students_absent: Students Absent JSON. :param course_schedule: Course Schedule. :param student_group: Student Group. :param date: Date. """ present = json.loads(students_present) absent = json.loads(students_absent) for d in present: make_attendance_records(d["student"], d["student_name"], "Present", course_schedule, student_group, date) for d in absent: make_attendance_records(d["student"], d["student_name"], "Absent", course_schedule, student_group, date) frappe.db.commit() frappe.msgprint(_("Attendance has been marked successfully.")) def make_attendance_records(student, student_name, status, course_schedule=None, student_group=None, date=None): """Creates/Update Attendance Record. :param student: Student. :param student_name: Student Name. :param course_schedule: Course Schedule. :param status: Status (Present/Absent) """ student_attendance_list = frappe.get_list("Student Attendance", fields = ['name'], filters = { "student": student, "course_schedule": course_schedule, "student_group": student_group, "date": date }) if student_attendance_list: student_attendance = frappe.get_doc("Student Attendance", student_attendance_list[0]) else: student_attendance = frappe.new_doc("Student Attendance") student_attendance.student = student student_attendance.student_name = student_name student_attendance.course_schedule = course_schedule student_attendance.student_group = student_group student_attendance.date = date student_attendance.status = status student_attendance.save() @frappe.whitelist() def get_student_guardians(student): """Returns List of Guardians of a Student. :param student: Student. """ guardians = frappe.get_list("Student Guardian", fields=["guardian"] , filters={"parent": student}) return guardians @frappe.whitelist() def get_student_group_students(student_group, include_inactive=0): """Returns List of student, student_name in Student Group. :param student_group: Student Group. """ if include_inactive: students = frappe.get_list("Student Group Student", fields=["student", "student_name"] , filters={"parent": student_group}, order_by= "group_roll_number") else: students = frappe.get_list("Student Group Student", fields=["student", "student_name"] , filters={"parent": student_group, "active": 1}, order_by= "group_roll_number") return students @frappe.whitelist() def get_fee_structure(program, academic_term=None): """Returns Fee Structure. :param program: Program. :param academic_term: Academic Term. """ fee_structure = frappe.db.get_values("Fee Structure", {"program": program, "academic_term": academic_term}, 'name', as_dict=True) return fee_structure[0].name if fee_structure else None @frappe.whitelist() def get_fee_components(fee_structure): """Returns Fee Components. :param fee_structure: Fee Structure. """ if fee_structure: fs = frappe.get_list("Fee Component", fields=["fees_category", "amount"] , filters={"parent": fee_structure}, order_by= "idx") return fs @frappe.whitelist() def get_fee_schedule(program, student_category=None): """Returns Fee Schedule. :param program: Program. :param student_category: Student Category """ fs = frappe.get_list("Program Fee", fields=["academic_term", "fee_structure", "due_date", "amount"] , filters={"parent": program, "student_category": student_category }, order_by= "idx") return fs @frappe.whitelist() def collect_fees(fees, amt): paid_amount = flt(amt) + flt(frappe.db.get_value("Fees", fees, "paid_amount")) total_amount = flt(frappe.db.get_value("Fees", fees, "total_amount")) frappe.db.set_value("Fees", fees, "paid_amount", paid_amount) frappe.db.set_value("Fees", fees, "outstanding_amount", (total_amount - paid_amount)) return paid_amount @frappe.whitelist() def get_course_schedule_events(start, end, filters=None): """Returns events for Course Schedule Calendar view rendering. :param start: Start date-time. :param end: End date-time. :param filters: Filters (JSON). """ from frappe.desk.calendar import get_event_conditions conditions = get_event_conditions("Course Schedule", filters) data = frappe.db.sql("""select name, course, timestamp(schedule_date, from_time) as from_datetime, timestamp(schedule_date, to_time) as to_datetime, room, student_group, 0 as 'allDay' from `tabCourse Schedule` where ( schedule_date between %(start)s and %(end)s ) {conditions}""".format(conditions=conditions), { "start": start, "end": end }, as_dict=True, update={"allDay": 0}) return data @frappe.whitelist() def get_assessment_criteria(course): """Returns Assessmemt Criteria and their Weightage from Course Master. :param Course: Course """ return frappe.get_list("Course Assessment Criteria", \ fields=["assessment_criteria", "weightage"], filters={"parent": course}, order_by= "idx") @frappe.whitelist() def get_assessment_students(assessment_plan, student_group): student_list = get_student_group_students(student_group) for i, student in enumerate(student_list): result = get_result(student.student, assessment_plan) if result: student_result = {} for d in result.details: student_result.update({d.assessment_criteria: [cstr(d.score), d.grade]}) student_result.update({ "total_score": [cstr(result.total_score), result.grade], "comment": result.comment }) student.update({ "assessment_details": student_result, "docstatus": result.docstatus, "name": result.name }) else: student.update({'assessment_details': None}) return student_list @frappe.whitelist() def get_assessment_details(assessment_plan): """Returns Assessment Criteria and Maximum Score from Assessment Plan Master. :param Assessment Plan: Assessment Plan """ return frappe.get_list("Assessment Plan Criteria", \ fields=["assessment_criteria", "maximum_score", "docstatus"], filters={"parent": assessment_plan}, order_by= "idx") @frappe.whitelist() def get_result(student, assessment_plan): """Returns Submitted Result of given student for specified Assessment Plan :param Student: Student :param Assessment Plan: Assessment Plan """ results = frappe.get_all("Assessment Result", filters={"student": student, "assessment_plan": assessment_plan, "docstatus": ("!=", 2)}) if results: return frappe.get_doc("Assessment Result", results[0]) else: return None @frappe.whitelist() def get_grade(grading_scale, percentage): """Returns Grade based on the Grading Scale and Score. :param Grading Scale: Grading Scale :param Percentage: Score Percentage Percentage """ grading_scale_intervals = {} if not hasattr(frappe.local, 'grading_scale'): grading_scale = frappe.get_all("Grading Scale Interval", fields=["grade_code", "threshold"], filters={"parent": grading_scale}) frappe.local.grading_scale = grading_scale for d in frappe.local.grading_scale: grading_scale_intervals.update({d.threshold:d.grade_code}) intervals = sorted(grading_scale_intervals.keys(), key=float, reverse=True) for interval in intervals: if flt(percentage) >= interval: grade = grading_scale_intervals.get(interval) break else: grade = "" return grade @frappe.whitelist() def mark_assessment_result(assessment_plan, scores): student_score = json.loads(scores); assessment_details = [] for criteria in student_score.get("assessment_details"): assessment_details.append({ "assessment_criteria": criteria, "score": flt(student_score["assessment_details"][criteria]) }) assessment_result = get_assessment_result_doc(student_score["student"], assessment_plan) assessment_result.update({ "student": student_score.get("student"), "assessment_plan": assessment_plan, "comment": student_score.get("comment"), "total_score":student_score.get("total_score"), "details": assessment_details }) assessment_result.save() details = {} for d in assessment_result.details: details.update({d.assessment_criteria: d.grade}) assessment_result_dict = { "name": assessment_result.name, "student": assessment_result.student, "total_score": assessment_result.total_score, "grade": assessment_result.grade, "details": details } return assessment_result_dict @frappe.whitelist() def submit_assessment_results(assessment_plan, student_group): total_result = 0 student_list = get_student_group_students(student_group) for i, student in enumerate(student_list): doc = get_result(student.student, assessment_plan) if doc and doc.docstatus==0: total_result += 1 doc.submit() return total_result def get_assessment_result_doc(student, assessment_plan): assessment_result = frappe.get_all("Assessment Result", filters={"student": student, "assessment_plan": assessment_plan, "docstatus": ("!=", 2)}) if assessment_result: doc = frappe.get_doc("Assessment Result", assessment_result[0]) if doc.docstatus == 0: return doc elif doc.docstatus == 1: frappe.msgprint(_("Result already Submitted")) return None else: return frappe.new_doc("Assessment Result") @frappe.whitelist() def update_email_group(doctype, name): if not frappe.db.exists("Email Group", name): email_group = frappe.new_doc("Email Group") email_group.title = name email_group.save() email_list = [] students = [] if doctype == "Student Group": students = get_student_group_students(name) for stud in students: for guard in get_student_guardians(stud.student): email = frappe.db.get_value("Guardian", guard.guardian, "email_address") if email: email_list.append(email) add_subscribers(name, email_list) @frappe.whitelist() def get_current_enrollment(student, academic_year=None): current_academic_year = academic_year or frappe.defaults.get_defaults().academic_year program_enrollment_list = frappe.db.sql(''' select name as program_enrollment, student_name, program, student_batch_name as student_batch, student_category, academic_term, academic_year from `tabProgram Enrollment` where student = %s and academic_year = %s order by creation''', (student, current_academic_year), as_dict=1) if program_enrollment_list: return program_enrollment_list[0] else: return None
32.891534
129
0.756535
48b2f168061329c24e1f6812589cc116688ec631
389
py
Python
production/pygsl-0.9.5/pygsl/math.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
production/pygsl-0.9.5/pygsl/math.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/math.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
""" Simple Mathematical functions fcmp(a, b, epsilon) -> -1, 0, 1 """ import pygsl._gslwrap log1p = pygsl._gslwrap.gsl_log1p expm1 = pygsl._gslwrap.gsl_expm1 hypot = pygsl._gslwrap.gsl_hypot acosh = pygsl._gslwrap.gsl_acosh asinh = pygsl._gslwrap.gsl_asinh atanh = pygsl._gslwrap.gsl_atanh ldexp = pygsl._gslwrap.gsl_ldexp frexp = pygsl._gslwrap.gsl_frexp fcmp = pygsl._gslwrap.gsl_fcmp
24.3125
32
0.77892
5b11720c74506829605adbbd168ba8a1a231fa4d
11,119
py
Python
fhirclient/r4models/invoice.py
Healthedata1/Flask-PL
88a2f40ca430c4cbb9fbded7fc92fdc166ebb9f1
[ "MIT" ]
null
null
null
fhirclient/r4models/invoice.py
Healthedata1/Flask-PL
88a2f40ca430c4cbb9fbded7fc92fdc166ebb9f1
[ "MIT" ]
null
null
null
fhirclient/r4models/invoice.py
Healthedata1/Flask-PL
88a2f40ca430c4cbb9fbded7fc92fdc166ebb9f1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.0-a53ec6ee1b (http://hl7.org/fhir/StructureDefinition/Invoice) on 2019-05-07. # 2019, SMART Health IT. from . import domainresource class Invoice(domainresource.DomainResource): """ Invoice containing ChargeItems from an Account. Invoice containing collected ChargeItems from an Account with calculated individual and total price for Billing purpose. """ resource_type = "Invoice" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.account = None """ Account that is being balanced. Type `FHIRReference` (represented as `dict` in JSON). """ self.cancelledReason = None """ Reason for cancellation of this Invoice. Type `str`. """ self.date = None """ Invoice date / posting date. Type `FHIRDate` (represented as `str` in JSON). """ self.identifier = None """ Business Identifier for item. List of `Identifier` items (represented as `dict` in JSON). """ self.issuer = None """ Issuing Organization of Invoice. Type `FHIRReference` (represented as `dict` in JSON). """ self.lineItem = None """ Line items of this Invoice. List of `InvoiceLineItem` items (represented as `dict` in JSON). """ self.note = None """ Comments made about the invoice. List of `Annotation` items (represented as `dict` in JSON). """ self.participant = None """ Participant in creation of this Invoice. List of `InvoiceParticipant` items (represented as `dict` in JSON). """ self.paymentTerms = None """ Payment details. Type `str`. """ self.recipient = None """ Recipient of this invoice. Type `FHIRReference` (represented as `dict` in JSON). """ self.status = None """ draft | issued | balanced | cancelled | entered-in-error. Type `str`. """ self.subject = None """ Recipient(s) of goods and services. Type `FHIRReference` (represented as `dict` in JSON). """ self.totalGross = None """ Gross total of this Invoice. Type `Money` (represented as `dict` in JSON). """ self.totalNet = None """ Net total of this Invoice. Type `Money` (represented as `dict` in JSON). """ self.totalPriceComponent = None """ Components of Invoice total. List of `InvoiceLineItemPriceComponent` items (represented as `dict` in JSON). """ self.type = None """ Type of Invoice. Type `CodeableConcept` (represented as `dict` in JSON). """ super(Invoice, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(Invoice, self).elementProperties() js.extend([ ("account", "account", fhirreference.FHIRReference, False, None, False), ("cancelledReason", "cancelledReason", str, False, None, False), ("date", "date", fhirdate.FHIRDate, False, None, False), ("identifier", "identifier", identifier.Identifier, True, None, False), ("issuer", "issuer", fhirreference.FHIRReference, False, None, False), ("lineItem", "lineItem", InvoiceLineItem, True, None, False), ("note", "note", annotation.Annotation, True, None, False), ("participant", "participant", InvoiceParticipant, True, None, False), ("paymentTerms", "paymentTerms", str, False, None, False), ("recipient", "recipient", fhirreference.FHIRReference, False, None, False), ("status", "status", str, False, None, True), ("subject", "subject", fhirreference.FHIRReference, False, None, False), ("totalGross", "totalGross", money.Money, False, None, False), ("totalNet", "totalNet", money.Money, False, None, False), ("totalPriceComponent", "totalPriceComponent", InvoiceLineItemPriceComponent, True, None, False), ("type", "type", codeableconcept.CodeableConcept, False, None, False), ]) return js from . import backboneelement class InvoiceLineItem(backboneelement.BackboneElement): """ Line items of this Invoice. Each line item represents one charge for goods and services rendered. Details such as date, code and amount are found in the referenced ChargeItem resource. """ resource_type = "InvoiceLineItem" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.chargeItemCodeableConcept = None """ Reference to ChargeItem containing details of this line item or an inline billing code. Type `CodeableConcept` (represented as `dict` in JSON). """ self.chargeItemReference = None """ Reference to ChargeItem containing details of this line item or an inline billing code. Type `FHIRReference` (represented as `dict` in JSON). """ self.priceComponent = None """ Components of total line item price. List of `InvoiceLineItemPriceComponent` items (represented as `dict` in JSON). """ self.sequence = None """ Sequence number of line item. Type `int`. """ super(InvoiceLineItem, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(InvoiceLineItem, self).elementProperties() js.extend([ ("chargeItemCodeableConcept", "chargeItemCodeableConcept", codeableconcept.CodeableConcept, False, "chargeItem", True), ("chargeItemReference", "chargeItemReference", fhirreference.FHIRReference, False, "chargeItem", True), ("priceComponent", "priceComponent", InvoiceLineItemPriceComponent, True, None, False), ("sequence", "sequence", int, False, None, False), ]) return js class InvoiceLineItemPriceComponent(backboneelement.BackboneElement): """ Components of total line item price. The price for a ChargeItem may be calculated as a base price with surcharges/deductions that apply in certain conditions. A ChargeItemDefinition resource that defines the prices, factors and conditions that apply to a billing code is currently under development. The priceComponent element can be used to offer transparency to the recipient of the Invoice as to how the prices have been calculated. """ resource_type = "InvoiceLineItemPriceComponent" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.amount = None """ Monetary amount associated with this component. Type `Money` (represented as `dict` in JSON). """ self.code = None """ Code identifying the specific component. Type `CodeableConcept` (represented as `dict` in JSON). """ self.factor = None """ Factor used for calculating this component. Type `float`. """ self.type = None """ base | surcharge | deduction | discount | tax | informational. Type `str`. """ super(InvoiceLineItemPriceComponent, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(InvoiceLineItemPriceComponent, self).elementProperties() js.extend([ ("amount", "amount", money.Money, False, None, False), ("code", "code", codeableconcept.CodeableConcept, False, None, False), ("factor", "factor", float, False, None, False), ("type", "type", str, False, None, True), ]) return js class InvoiceParticipant(backboneelement.BackboneElement): """ Participant in creation of this Invoice. Indicates who or what performed or participated in the charged service. """ resource_type = "InvoiceParticipant" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.actor = None """ Individual who was involved. Type `FHIRReference` (represented as `dict` in JSON). """ self.role = None """ Type of involvement in creation of this Invoice. Type `CodeableConcept` (represented as `dict` in JSON). """ super(InvoiceParticipant, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(InvoiceParticipant, self).elementProperties() js.extend([ ("actor", "actor", fhirreference.FHIRReference, False, None, True), ("role", "role", codeableconcept.CodeableConcept, False, None, False), ]) return js import sys try: from . import annotation except ImportError: annotation = sys.modules[__package__ + '.annotation'] try: from . import codeableconcept except ImportError: codeableconcept = sys.modules[__package__ + '.codeableconcept'] try: from . import fhirdate except ImportError: fhirdate = sys.modules[__package__ + '.fhirdate'] try: from . import fhirreference except ImportError: fhirreference = sys.modules[__package__ + '.fhirreference'] try: from . import identifier except ImportError: identifier = sys.modules[__package__ + '.identifier'] try: from . import money except ImportError: money = sys.modules[__package__ + '.money']
40.140794
132
0.611836
826419ad44e28f827131ca0f6175dddaf17a403b
261,090
py
Python
Co-Simulation/Sumo/sumo-1.7.0/tools/contributed/sumopy/coremodules/demand/virtualpop.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
4
2020-11-13T02:35:56.000Z
2021-03-29T20:15:54.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/contributed/sumopy/coremodules/demand/virtualpop.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
9
2020-12-09T02:12:39.000Z
2021-02-18T00:15:28.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/contributed/sumopy/coremodules/demand/virtualpop.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
1
2020-11-20T19:31:26.000Z
2020-11-20T19:31:26.000Z
# Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo # Copyright (C) 2016-2020 German Aerospace Center (DLR) and others. # SUMOPy module # Copyright (C) 2012-2017 University of Bologna - DICAM # This program and the accompanying materials are made available under the # terms of the Eclipse Public License 2.0 which is available at # https://www.eclipse.org/legal/epl-2.0/ # This Source Code may also be made available under the following Secondary # Licenses when the conditions for such availability set forth in the Eclipse # Public License 2.0 are satisfied: GNU General Public License, version 2 # or later which is available at # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later # @file virtualpop.py # @author Joerg Schweizer # @date import numpy as np from numpy import random import agilepy.lib_base.classman as cm import agilepy.lib_base.arrayman as am import agilepy.lib_base.xmlman as xm from agilepy.lib_base.misc import random_choice, get_inversemap from agilepy.lib_base.processes import Process # from coremodules.modules_common import * from coremodules.network.network import SumoIdsConf, MODES from coremodules.network import routing from coremodules.simulation import results as res from coremodules.demand.demandbase import * import virtualpop_results as res GENDERS = {'male': 0, 'female': 1, 'unknown': -1} OCCUPATIONS = {'unknown': -1, 'worker': 1, 'student': 2, 'employee': 3, 'public employee': 4, 'selfemployed': 5, 'pensioneer': 6, 'other': 7 } class Activities(am.ArrayObjman): # http://www.sumo.dlr.de/userdoc/Networks/Building_Networks_from_own_XML-descriptions.html#Edge_Descriptions def __init__(self, ident, virtualpop, **kwargs): self._init_objman(ident=ident, parent=virtualpop, name='Activities', info='Activity database of persons contains type, time, duration and location of activities.', version=0.0, **kwargs) self._init_attributes() def _init_attributes(self): # activy types now in demand activitytypes = self.parent.get_demand().activitytypes self.add_col(am.IdsArrayConf('ids_activitytype', activitytypes, groupnames=['parameters'], choices=activitytypes.names.get_indexmap(), name='Type', info='Type of activity performed during the stop.', #xmltag = 'actType', #xmlmap = get_inversemap( activitytypes.names.get_indexmap()), )) # attention, this may cause trouble durung init if # facilities are not yet initialized self.add_col(am.IdsArrayConf('ids_facility', self.parent.get_scenario().landuse.facilities, groupnames=['parameters'], name='ID fac.', info='Facility ID where activity takes place.', #activitytype = 'home', )) # self.add_col(am.ArrayConf( 'descriptions', '', # dtype = np.object, # perm='rw', # is_index = True, # name = 'Description', # info = 'Description of activity.', # )) # self.add_col(am.IdlistsArrayConf( 'ids_landusetypes', self.parent.get_landuse().landusetypes, # name = 'Landuse types', # info = "Landuse type IDs, eher this activity type can take place.", # )) self.add_col(am.ArrayConf('hours_begin_earliest', 0.0, dtype=np.float32, groupnames=['parameters'], perm='rw', name='Earliest hour begin', unit='h', info='Earliest hour when this activity can begin.', )) self.add_col(am.ArrayConf('hours_begin_latest', 1.0, dtype=np.float32, groupnames=['parameters'], perm='rw', name='Latest begin hour', unit='h', info='Latest hour when this activity can begin.', )) self.add_col(am.ArrayConf('durations_min', 6.0, dtype=np.float32, groupnames=['parameters'], perm='rw', name='Min. Duration', unit='h', info='Minimum activity duration for a person within a day.', )) self.add_col(am.ArrayConf('durations_max', 8.0, dtype=np.float32, groupnames=['parameters'], perm='rw', name='Max. Duration', unit='h', info='Maximum activity duration for a person within a day.', )) def get_hours_end_earliest(self, ids): return self.hours_begin_earliest[ids]+self.durations_min[ids] def get_hours_end_latest(self, ids): return self.hours_begin_latest[ids]+self.durations_max[ids] def get_durations(self, ids, pdf='unit'): durations = np.zeros(len(ids), dtype=np.float32) i = 0 for time_start, time_end in zip( np.array(self.durations_min[ids]*3600, dtype=np.int32), np.array(self.durations_max[ids]*3600, dtype=np.int32)): durations[i] = np.random.randint(time_start, time_end, 1) i += 1 return durations def get_times_end(self, ids, pdf='unit'): """ Returns an array with activity ending time for the given activity IDs. The ending time is calculated by drawing random samples from the departure interval. The random samples are drawn according to the given probability density function, pdf. Input arguments: ids: integer array with activity IDs pdf: probability density function 'unit'|'normal' Returned arguments: times_end: integer array with departure times """ times_end = np.zeros(len(ids), dtype=np.float32) i = 0 for time_start, time_end in zip( np.array(self.get_hours_end_earliest(ids)*3600, dtype=np.int32), np.array(self.get_hours_end_latest(ids)*3600, dtype=np.int32)): times_end[i] = np.random.randint(time_start, time_end, 1) i += 1 return times_end def get_times_begin(self, ids, pdf='unit'): """ Returns an array with beginning time for the given activity IDs. The begin time is calculated by drawing random samples from the departure interval. The random samples are drawn according to the given probability density function, pdf. Input arguments: ids: integer array with activity IDs pdf: probability density function 'unit'|'normal' Returned arguments: times_begin: integer array with departure times """ times_begin = np.zeros(len(ids), dtype=np.float32) i = 0 for time_start, time_end in zip( np.array(self.get_hours_begin_earliest(ids)*3600, dtype=np.int32), np.array(self.get_hours_begin_latest(ids)*3600, dtype=np.int32)): times_begin[i] = np.random.randint(time_start, time_end, 1) i += 1 return times_begin class IndividualAutos(am.ArrayObjman): def __init__(self, ident, population, **kwargs): # print 'individualvehicle vtype id_default',vtypes.ids_sumo.get_id_from_index('passenger1') self._init_objman(ident=ident, parent=population, name='Indiv. Autos', info='Individual auto database. These are privately owned autos.', **kwargs) self._init_attributes() self._init_constants() def _init_constants(self): self.do_not_save_attrs(['mode', 'mode_prefix', '_edges', '_lanes', '_individualvehicle', '_ids_vtype_sumo', '_ids_edge_sumo', '_id_mode', '_get_laneid_allowed', '_get_sumoinfo_from_id_lane', '_space_access', '_parking', '_time_after_unboarding', ]) def def_mode(self): self.mode = 'passenger' self.mode_prefix = 'iauto' def _init_attributes(self): vtypes = self.parent.get_demand().vtypes self.def_mode() ids_vtype = vtypes.select_by_mode(mode=self.mode) self.add(cm.AttrConf('space_access', 0.5, groupnames=['options'], perm='rw', name='Space access', unit='m', info='Space to access vehicles at parkings. This is typically less than the vehicle length.', )) self.add(cm.AttrConf('time_after_unboarding', 5, groupnames=['options'], perm='rw', name='time after unboarding', unit='s', info='Time the vehicle waits before disappearing after unboarding.', )) self.add_col(am.IdsArrayConf('ids_vtype', vtypes, id_default=ids_vtype[0], groupnames=['state'], name='Veh. type', info='Vehicle type.', #xmltag = 'type', )) self.add_col(am.IdsArrayConf('ids_person', self.parent, groupnames=['state'], name='ID person', info='ID of person who ownes the vehicle.', )) self.add_col(am.ArrayConf('times_exec', 0.0, name='Exec time', info='Total route execution time from simulation run of last plan.', unit='s', )) def get_virtualpop(self): return self.parent def get_ids_veh_pop(self): """ To be overridden by other individual vehicle types. """ return self.get_virtualpop().ids_iauto def get_share(self, is_abs=False): n_veh = len(self) if is_abs: return n_veh else: return float(n_veh)/float(len(self.get_virtualpop())) def get_stagetable(self): return self.parent.get_plans().get_stagetable('autorides') def get_demand(self): return self.parent.parent def clear_vehicles(self): self.get_ids_veh_pop()[self.ids_person.get_value()] = -1 self.clear() def assign_to_persons(self, ids_person): # print 'assign_to_persons',len(ids_person),self.mode # self.clear_vehicles() #ids_person_noveh = set(ids_person).difference(set(self.ids_person)) n_new = len(ids_person) # # this call is selecting a veh id aof the specific mode # according to its share within this mode ids_vtype = self.get_demand().vtypes.generate_vtypes_for_mode(n_new, mode=self.mode) # print ' ids_vtype',ids_vtype ids_veh = self.add_rows(n=n_new, ids_person=ids_person, ids_vtype=ids_vtype, ) self.get_ids_veh_pop()[ids_person] = ids_veh return ids_veh def get_vtypes(self): """ Returns a set with all used vehicle types. """ # print 'Vehicles_individual.get_vtypes',self.cols.vtype return set(self.ids_vtype.get_value()) def get_id_veh_xml(self, id_veh, id_stage): return self.mode_prefix + '.%s.%s' % (id_veh, id_stage) def get_id_line_xml(self, id_veh): return self.mode_prefix + '.%s' % (id_veh) def get_id_from_id_sumo(self, id_veh_sumo): # print 'get_id_from_id_sumo',id_veh_sumo,id_veh_sumo.split('.'),self.mode_prefix if len(id_veh_sumo.split('.')) == 3: prefix, id_veh, id_stage = id_veh_sumo.split('.') if prefix == self.mode_prefix: return int(id_veh) else: return -1 return -1 # def append_ride(self, id_veh, id_ride): # ids_ride = self.ids_rides[id_veh] # if ids_ride is None: # self.ids_rides[id_veh] = [id_ride] # else: # ids_ride.append(id_ride) def prepare_write_xml(self): """ Prepare xml export. Must return export function. """ virtualpop = self.get_virtualpop() scenario = virtualpop.get_scenario() #plans = virtualpop.get_plans() self._rides = self.get_stagetable() self._edges = scenario.net.edges self._lanes = scenario.net.lanes #self._individualvehicle = virtualpop.get_ibikes() self._ids_vtype_sumo = scenario.demand.vtypes.ids_sumo self._ids_edge_sumo = self._edges.ids_sumo self._id_mode = scenario.net.modes.get_id_mode(self.mode) self._get_laneid_allowed = self._edges.get_laneid_allowed self._get_sumoinfo_from_id_lane = scenario.net.lanes.get_sumoinfo_from_id_lane self._space_access = self.space_access.get_value() #self._time_veh_wait_after_stop = 3600 self._parking = virtualpop.get_landuse().parking self._time_after_unboarding = self.time_after_unboarding.get_value() return self.write_xml def get_id_veh(self, id_stage): return self._rides.ids_iauto[id_stage] def write_xml(self, fd, id_stage, time_begin, indent=2): # TODO: actually this should go in individualvehicle #time_veh_wait_after_stop = 3600 #plans = self.get_plans() #walkstages = plans.get_stagetable('walks') #rides = plans.get_stagetable('autorides') #activitystages = plans.get_stagetable('activities') rides = self._rides #lanes = self._lanes parking = self._parking #net = self.get_net() #lanes = net.lanes #edges = net.edges #ind_ride = rides.get_inds(id_stage) id_veh = self.get_id_veh(id_stage) #individualvehicle = self._iveh id_vtype = self.ids_vtype[id_veh] # id_veh_ride, # ids_vtypes_iveh[id_veh], # ids_edges_rides_arr[ind_ride], # ids_parking_from_rides_arr[ind_ride], # ids_parking_to_rides_arr[ind_ride], id_parking_from = rides.ids_parking_from[id_stage] id_lane_from = parking.ids_lane[id_parking_from] #laneindex_from = self._lanes.indexes[id_lane_from] pos_from = parking.positions[id_parking_from] id_parking_to = rides.ids_parking_to[id_stage] id_lane_to = parking.ids_lane[id_parking_to] #laneindex_to = self._lanes.indexes[id_lane_to] pos_to = parking.positions[id_parking_to] # write unique veh ID to prevent confusion with other veh declarations fd.write(xm.start('vehicle id="%s"' % self.get_id_veh_xml(id_veh, id_stage), indent+2)) # get start time of first stage of the plan #id_plan = rides.ids_plan[id_stage] #stages0, id_stage0 = self.get_plans().stagelists[id_plan][0] # this is the time when the vehicle appers in the scenario fd.write(xm.num('depart', '%.d' % rides.times_init[id_stage])) #fd.write(xm.num('depart', '%.d'%stages0.times_start[id_stage0])) fd.write(xm.num('type', self._ids_vtype_sumo[id_vtype])) fd.write(xm.num('line', self.get_id_line_xml(id_veh))) fd.write(xm.num('departPos', pos_from)) fd.write(xm.num('departLane', self._lanes.indexes[id_lane_from])) fd.write(xm.stop()) # write route fd.write(xm.start('route', indent+4)) # print ' edgeindex[ids_edge]',edgeindex[ids_edge] fd.write(xm.arr('edges', self._ids_edge_sumo[rides.ids_edges[id_stage]])) # does not seem to have an effect, always starts at base???? #fd.write(xm.num('departPos', pos_from)) #fd.write(xm.num('departLane', laneindex_from )) fd.write(xm.stopit()) # write depart stop fd.write(xm.start('stop', indent+4)) #id_lane = self._lanes.ids_edge[id_lane_from] fd.write(xm.num('lane', self._get_sumoinfo_from_id_lane(id_lane_from))) # in 0.31 the vehicle will wait until after this duration # so it will be removed unless it will get a timeout function #fd.write(xm.num('duration', time_veh_wait_after_stop)) fd.write(xm.num('startPos', pos_from - parking.lengths[id_parking_from])) fd.write(xm.num('endPos', pos_from)) fd.write(xm.num('triggered', "True")) # chrashes with parking=True in 0.30! # however if not parked the vhcle is blocking the traffic # while waiting: workaround: delay departure to be shure that person already arrived fd.write(xm.num('parking', "True")) # in windows 0.30 parked vehicles do not depart!! #fd.write(xm.num('parking', "False")) fd.write(xm.stopit()) # write arrival stop fd.write(xm.start('stop', indent+4)) fd.write(xm.num('lane', self._get_sumoinfo_from_id_lane(id_lane_to))) fd.write(xm.num('duration', self._time_after_unboarding)) # for unboarding only fd.write(xm.num('startPos', pos_to - parking.lengths[id_parking_to])) fd.write(xm.num('endPos', pos_to)) #fd.write(xm.num('triggered', "True")) fd.write(xm.stopit()) fd.write(xm.end('vehicle', indent+2)) class IndividualBikes(IndividualAutos): def __init__(self, ident, population, **kwargs): # print 'individualvehicle vtype id_default',vtypes.ids_sumo.get_id_from_index('passenger1') self._init_objman(ident=ident, parent=population, name='Indiv. Bikes', info='Individual bike database. These are privately owned bikes.', **kwargs) self._init_attributes() self._init_constants() def _init_attributes(self): IndividualAutos._init_attributes(self) def _init_constants(self): self.do_not_save_attrs(['mode', 'mode_prefix', '_edges', '_ids_vtype_sumo', '_ids_edge_sumo', '_id_mode', '_get_laneid_allowed', '_get_sumoinfo_from_id_lane', '_space_access', ]) def def_mode(self): self.mode = 'bicycle' self.mode_prefix = 'ibike' def get_ids_veh_pop(self): """ To be overridden by other individual vehicle types. """ return self.parent.ids_ibike def get_stagetable(self): return self.parent.get_plans().get_stagetable('bikerides') def get_id_veh(self, id_stage): return self._rides.ids_ibike[id_stage] def prepare_write_xml(self): """ Prepare xml export. Must return export function. """ virtualpop = self.get_virtualpop() scenario = virtualpop.get_scenario() #plans = virtualpop.get_plans() self._rides = self.get_stagetable() self._edges = scenario.net.edges #self._individualvehicle = virtualpop.get_ibikes() self._ids_vtype_sumo = scenario.demand.vtypes.ids_sumo self._ids_edge_sumo = self._edges.ids_sumo self._id_mode = scenario.net.modes.get_id_mode(self.mode) self._get_laneid_allowed = self._edges.get_laneid_allowed self._get_sumoinfo_from_id_lane = scenario.net.lanes.get_sumoinfo_from_id_lane self._space_access = self.space_access.get_value() return self.write_xml # def _limit_pos(self,pos,id_edge): def write_xml(self, fd, id_stage, time_begin, indent=2): rides = self._rides id_veh = self.get_id_veh(id_stage) # print 'write_xml',id_stage, time_begin,self.get_id_veh_xml(id_veh, id_stage) # print ' ids_edge_from,ids_edge_to',rides.ids_edge_from[id_stage],rides.ids_edge_to[id_stage],self._get_laneid_allowed( rides.ids_edge_from[id_stage], self._id_mode),self._get_laneid_allowed( rides.ids_edge_to[id_stage], self._id_mode) # TODO: actually this should go in individualvehicle #time_veh_wait_after_stop = 3600 #plans = self.get_plans() #walkstages = plans.get_stagetable('walks') #rides = plans.get_stagetable('bikerides') #activitystages = plans.get_stagetable('activities') # for debug only: #virtualpop = self.get_virtualpop() #ids_edge_sumo = virtualpop.get_net().edges.ids_sumo #parking = self.get_landuse().parking #net = self.get_net() #lanes = net.lanes #edges = net.edges #ind_ride = rides.get_inds(id_stage) #individualvehicle = self.get_ibikes() id_vtype = self.ids_vtype[id_veh] # id_veh_ride, # ids_vtypes_iveh[id_veh], # ids_edges_rides_arr[ind_ride], # ids_parking_from_rides_arr[ind_ride], # ids_parking_to_rides_arr[ind_ride], #id_parking_from = rides.ids_parking_from[id_stage] #id_lane_from = parking.ids_lane[id_parking_from] #laneindex_from = lanes.indexes[id_lane_from] #pos_from = parking.positions[id_parking_from] #id_parking_to = rides.ids_parking_to[id_stage] #id_lane_to = parking.ids_lane[id_parking_to] #laneindex_to = lanes.indexes[id_lane_to] #pos_to = parking.positions[id_parking_to] # write unique veh ID to prevent confusion with other veh declarations fd.write(xm.start('vehicle id="%s"' % self.get_id_veh_xml(id_veh, id_stage), indent+2)) # get start time of first stage of the plan #id_plan = rides.ids_plan[id_stage] #stages0, id_stage0 = self.get_plans().stagelists[id_plan][0] # this is the time when the vehicle appers in the scenario #fd.write(xm.num('depart', '%.d'%rides.times_init[id_stage])) fd.write(xm.num('depart', '%.d' % time_begin)) fd.write(xm.num('type', self._ids_vtype_sumo[id_vtype])) fd.write(xm.num('line', self.get_id_line_xml(id_veh))) #fd.write(xm.num('departPos', pos_from)) #fd.write(xm.num('departLane', laneindex_from )) fd.write(xm.num('from', self._ids_edge_sumo[rides.ids_edge_from[id_stage]])) pos_from = rides.positions_from[id_stage] pos_to = rides.positions_to[id_stage] fd.write(xm.num('departPos', pos_from)) fd.write(xm.num('arrivalPos', pos_to)) fd.write(xm.num('departLane', 'best')) fd.write(xm.stop()) # write route fd.write(xm.start('route', indent+4)) # print ' ids_edges',rides.ids_edges[id_stage] # print ' ids_sumo',self._ids_edge_sumo[rides.ids_edges[id_stage]] fd.write(xm.arr('edges', self._ids_edge_sumo[rides.ids_edges[id_stage]])) # fd.write(xm.arr('edges',edges.ids_sumo[rides.ids_edges[id_stage]])) # does not seem to have an effect, always starts at base???? #id_edge = rides.ids_edge_from[id_stage] # print ' id_lane',id_lane,self._get_sumoinfo_from_id_lane(id_lane),'id_edge',id_edge,ids_edge_sumo[id_edge] fd.write(xm.stopit()) # write depart stop fd.write(xm.start('stop', indent+4)) id_lane = self._get_laneid_allowed(rides.ids_edge_from[id_stage], self._id_mode) fd.write(xm.num('lane', self._get_sumoinfo_from_id_lane(id_lane))) # in 0.31 the vehicle will wait until after this duration # so it will be removed unless it will get a timeout function #fd.write(xm.num('duration', time_veh_wait_after_stop)) if pos_from > self._space_access: fd.write(xm.num('startPos', pos_from - self._space_access)) fd.write(xm.num('endPos', pos_from+self._space_access)) else: fd.write(xm.num('startPos', 0.1*pos_from)) fd.write(xm.num('endPos', pos_from+self._space_access)) fd.write(xm.num('triggered', "True")) # chrashes with parking=True in 0.30! # however if not parked the vhcle is blocking the traffic # while waiting: workaround: delay departure to be shure that person already arrived fd.write(xm.num('parking', 'True')) # in windows 0.30 parked vehicles do not depart!! #fd.write(xm.num('parking', "False")) fd.write(xm.stopit()) # write arrival stop fd.write(xm.start('stop', indent+4)) id_lane = self._get_laneid_allowed(rides.ids_edge_to[id_stage], self._id_mode) #id_edge = rides.ids_edge_to[id_stage] # print ' id_lane',id_lane,self._get_sumoinfo_from_id_lane(id_lane),'id_edge',id_edge,ids_edge_sumo[id_edge] fd.write(xm.num('lane', self._get_sumoinfo_from_id_lane(id_lane))) fd.write(xm.num('duration', 5)) # for unboarding only if pos_to > self._space_access: fd.write(xm.num('startPos', pos_to - self._space_access)) fd.write(xm.num('endPos', pos_to)) else: fd.write(xm.num('startPos', 0.1*pos_to)) fd.write(xm.num('endPos', pos_to)) #fd.write(xm.num('triggered', "True")) fd.write(xm.stopit()) fd.write(xm.end('vehicle', indent+2)) class IndividualMotorcycles(IndividualBikes): def __init__(self, ident, population, **kwargs): # print 'individualvehicle vtype id_default',vtypes.ids_sumo.get_id_from_index('passenger1') self._init_objman(ident=ident, parent=population, name='Indiv. Moto', info='Individual Motorcycle/moped database. These are privately owned motorcycles.', **kwargs) IndividualBikes._init_attributes(self) IndividualBikes._init_constants(self) def def_mode(self): self.mode = 'moped' self.mode_prefix = 'imoto' def get_ids_veh_pop(self): """ To be overridden by other individual vehicle types. """ return self.parent.ids_imoto def get_stagetable(self): return self.parent.get_plans().get_stagetable('motorides') def get_id_veh(self, id_stage): return self._rides.ids_imoto[id_stage] class StrategyMixin(cm.BaseObjman): def __init__(self, ident, parent=None, name='Strategy mixin', info='Info on strategy.', **kwargs): """ To be overridden. """ # attention parent is the Strategies table self._init_objman(ident, parent, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) def _init_attributes(self, **kwargs): # print 'StrategyMixin._init_attributes' attrsman = self.get_attrsman() def get_id_strategy(self): return self.parent.names.get_id_from_index(self.get_ident()) def get_scenario(self): return self.parent.parent.get_scenario() def get_activities(self): return self.parent.parent.get_activities() def get_virtualpop(self): return self.parent.parent def get_plans(self): return self.parent.parent.plans def clip_positions(self, positions, ids_edge): lengths = self.get_scenario().net.edges.lengths[ids_edge] # print 'clip_positions',positions.shape,ids_edge.shape,lengths.shape positions_clip = np.clip(positions, self.dist_node_min*np.ones(len(positions), dtype=np.float32), lengths-self.dist_node_min) inds = lengths < 2*self.dist_node_min # print ' inds.shape',inds.shape,positions_clip.shape positions_clip[inds] = 0.5*lengths[inds] return positions_clip def _init_attributes_strategy(self, **kwargs): attrsman = self.get_attrsman() self.dist_node_min = attrsman.add(cm.AttrConf('dist_node_min', kwargs.get('dist_node_min', 40.0), groupnames=['options'], perm='rw', name='Min. dist to nodes', unit='m', info='Minimum distance between starting position and node center.', )) # def _init_constants_strategy(self): # #print '_init_constants_strategy' # modes = self.get_virtualpop().get_scenario().net.modes # self._id_mode_bike = modes.get_id_mode('bicycle') # self._id_mode_auto = modes.get_id_mode('passenger') # self._id_mode_moto = modes.get_id_mode('motorcycle') # self.get_attrsman().do_not_save_attrs([ # '_id_mode_bike','_id_mode_auto','_id_mode_moto', # ]) # print ' _id_mode_auto',self._id_mode_auto # def are_feasible(self, ids_person): # """ # Returns a bool vector, with True values for # persons where this strategy can be applied. # """ # return [] # def is_feasible(self, id_person): # """ # Returns True if this strategy is feasible for this person. # Overriden by specific strategy. # """ # return False def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ return zeros(len(ids_person), dtype=np.int32) def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ pass class NoneStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='None strategy', info='With this strategy, no mobility plan is generated.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) class TransitStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='Public Transport Strategy', info='With this strategy, the person uses his private auto as main transport mode. He may accept passengers or public transport with P&R', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes() self._init_constants() def _init_attributes(self): # print 'StrategyMixin._init_attributes' pass def _init_constants(self): #virtualpop = self.get_virtualpop() #stagetables = virtualpop.get_stagetables() #self._walkstages = stagetables.get_stagetable('walks') #self._ridestages = stagetables.get_stagetable('rides') #self._activitystages = stagetables.get_stagetable('activities') #self._plans = virtualpop.get_plans() # # print 'AutoStrategy._init_constants' # print dir(self) # self.get_attrsman().do_not_save_attrs(['_activitystages','_ridestages','_walkstages','_plans']) modes = self.get_virtualpop().get_scenario().net.modes self._id_mode_bike = modes.get_id_mode('bicycle') self._id_mode_auto = modes.get_id_mode('passenger') self._id_mode_moto = modes.get_id_mode('motorcycle') self._id_mode_bus = modes.get_id_mode('bus') self.get_attrsman().do_not_save_attrs([ '_id_mode_bike', '_id_mode_auto', '_id_mode_moto', '_id_mode_bus' ]) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) # TODO: here we could exclude by age or distance facilities-stops # put 0 for persons whose preference is not public transport preeval[persons.ids_mode_preferred[ids_person] != self._id_mode_bus] = 0 # put 2 for persons with car access and who prefer cars preeval[persons.ids_mode_preferred[ids_person] == self._id_mode_bus] = 2 print ' TransitStrategy.preevaluate', len(np.flatnonzero(preeval)) return preeval def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ print 'TransitStrategy.pan', len(ids_person) #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans demand = virtualpop.get_demand() ptlines = demand.ptlines walkstages = plans.get_stagetable('walks') transitstages = plans.get_stagetable('transits') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = demand.activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities parking = landuse.parking scenario = virtualpop.get_scenario() net = scenario.net edges = net.edges lanes = net.lanes modes = net.modes ptstops = net.ptstops # print ' demand',demand # print ' demand.ptlines',demand.ptlines,dir(demand.ptlines) # print ' demand.ptlines.get_ptlinks()',demand.ptlines.get_ptlinks() # print ' demand.virtualpop',demand.virtualpop,dir(demand.virtualpop) # print ' demand.trips',demand.trips,dir(demand.trips) if len(ptlines) == 0: print 'WARNING in TrasitStrategy.plan: no transit services available.' return False ptlinks = ptlines.get_ptlinks() ptlinktypes = ptlinks.types.choices type_enter = ptlinktypes['enter'] type_transit = ptlinktypes['transit'] type_board = ptlinktypes['board'] type_alight = ptlinktypes['alight'] type_transfer = ptlinktypes['transfer'] type_walk = ptlinktypes['walk'] type_exit = ptlinktypes['exit'] ptfstar = ptlinks.get_fstar() pttimes = ptlinks.get_times() stops_to_enter, stops_to_exit = ptlinks.get_stops_to_enter_exit() ids_stoplane = ptstops.ids_lane ids_laneedge = net.lanes.ids_edge times_est_plan = plans.times_est # here we can determine edge weights for different modes # this could be centralized to avoid redundance plans.prepare_stagetables(['walks', 'transits', 'activities']) ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in TrasitStrategy.plan: no eligible persons found.' return False # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) #ids_plan_act = virtualpop.add_plans(ids_person_act, id_strategy = self.get_id_strategy()) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] n_plans = len(ids_person_act) print 'TrasitStrategy.plan n_plans=', n_plans # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) ## ind_act = 0 # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] times_from = map_times[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] centroids_from = facilities.centroids[ids_fac_from] centroids_to = facilities.centroids[ids_fac_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to = facilities.positions_roadedge_closest[ids_fac_to] ids_stop_from = ptstops.get_closest(centroids_from) ids_stop_to = ptstops.get_closest(centroids_to) ids_stopedge_from = ids_laneedge[ids_stoplane[ids_stop_from]] ids_stopedge_to = ids_laneedge[ids_stoplane[ids_stop_to]] # do random pos here poss_stop_from = 0.5*(ptstops.positions_from[ids_stop_from] + ptstops.positions_to[ids_stop_from]) poss_stop_to = 0.5*(ptstops.positions_from[ids_stop_to] + ptstops.positions_to[ids_stop_to]) i = 0.0 for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to\ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_edge_from, poss_edge_from, ids_edge_to, poss_edge_to, ids_stop_from, ids_stopedge_from, poss_stop_from, ids_stop_to, ids_stopedge_to, poss_stop_to): n_pers = len(ids_person_act) if logger: logger.progress(i/n_pers*100) i += 1.0 print 79*'_' print ' id_plan=%d, id_person=%d, ' % (id_plan, id_person) id_stage_walk1, time = walkstages.append_stage(id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_stopedge_from, position_edge_to=pos_stop_from, # -7.0, ) # print ' id_stopedge_from',id_stopedge_from # print ' pos_stop_from',pos_stop_from # print # print ' id_stopedge_to',id_stopedge_to # print ' pos_stop_to',pos_stop_to # print # print ' id_stop_from',id_stop_from # print ' id_stop_to',id_stop_to durations, linktypes, ids_line, ids_fromstop, ids_tostop =\ ptlinks.route(id_stop_from, id_stop_to, fstar=ptfstar, times=pttimes, stops_to_enter=stops_to_enter, stops_to_exit=stops_to_exit) # print ' routing done. make plan..' if len(linktypes) > 0: if linktypes[-1] == type_walk: # is last stage a walk? # remove it, because will go directly to destination linktypes = linktypes[:-1] ids_line = ids_line[:-1] durations = durations[:-1] ids_fromstop = ids_fromstop[:-1] ids_tostop = ids_tostop[:-1] # print ' ids_line ',ids_line # print ' ids_fromstop',ids_fromstop # print ' ids_tostop ',ids_tostop if len(linktypes) > 0: # is there any public transport line to take? # go though PT links and generate transits and walks to trasfer ids_stopedge_from = ids_laneedge[ids_stoplane[ids_fromstop]] ids_stopedge_to = ids_laneedge[ids_stoplane[ids_tostop]] poss_stop_from = 0.5*(ptstops.positions_from[ids_fromstop] + ptstops.positions_to[ids_fromstop]) poss_stop_to = 0.5*(ptstops.positions_from[ids_tostop] + ptstops.positions_to[ids_tostop]) # this is wait time buffer to be added to the successive stage # as waiting is currently not modelled as an extra stage duration_wait = 0.0 # create stages for PT for linktype, id_line, duration,\ id_stopedge_from, pos_fromstop,\ id_stopedge_to, pos_tostop in\ zip(linktypes, ids_line, durations, ids_stopedge_from, poss_stop_from, ids_stopedge_to, poss_stop_to, ): print ' stage for linktype %2d fromedge %s toedge %s' % ( linktype, edges.ids_sumo[id_stopedge_from], edges.ids_sumo[id_stopedge_to]) print ' id_stopedge_from,id_stopedge_to', id_stopedge_from, id_stopedge_to if linktype == type_transit: # transit! print ' add transit' id_stage_transit, time = transitstages.append_stage( id_plan, time, id_line=id_line, duration=duration+duration_wait, id_fromedge=id_stopedge_from, id_toedge=id_stopedge_to, ) duration_wait = 0.0 elif linktype == type_walk: # walk to transfer print ' add transfer' id_stage_transfer, time = walkstages.append_stage( id_plan, time, id_edge_from=id_stopedge_from, position_edge_from=pos_fromstop, id_edge_to=id_stopedge_to, position_edge_to=pos_tostop, duration=duration+duration_wait, ) duration_wait = 0.0 else: # all other link time are no modelld # do not do anything , just add wait time to next stage print ' add duration', duration duration_wait += duration # walk from final stop to activity # print ' Stage for linktype %2d fromedge %s toedge %s'%(linktype, edges.ids_sumo[id_stopedge_to],edges.ids_sumo[id_edge_to] ) id_stage_walk2, time = walkstages.append_stage(id_plan, time, id_edge_from=id_stopedge_to, position_edge_from=pos_tostop, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # there is no public transport line linking these nodes. # Modify walk directly from home to activity time = walkstages.modify_stage(id_stage_walk1, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) # update time for trips estimation for this plan plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) # store time for next iteration in case other activities are # following map_times[id_person] = time # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) class WalkStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='Walk Strategy', info='With this strategy, the person walks to all destinations.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes() self._init_constants() def _init_attributes(self): # print 'StrategyMixin._init_attributes' pass def _init_constants(self): #virtualpop = self.get_virtualpop() #stagetables = virtualpop.get_stagetables() #self._walkstages = stagetables.get_stagetable('walks') #self._ridestages = stagetables.get_stagetable('rides') #self._activitystages = stagetables.get_stagetable('activities') #self._plans = virtualpop.get_plans() # # print 'AutoStrategy._init_constants' # print dir(self) # self.get_attrsman().do_not_save_attrs(['_activitystages','_ridestages','_walkstages','_plans']) modes = self.get_virtualpop().get_scenario().net.modes self._id_mode_bike = modes.get_id_mode('bicycle') self._id_mode_auto = modes.get_id_mode('passenger') self._id_mode_moto = modes.get_id_mode('motorcycle') self._id_mode_bus = modes.get_id_mode('bus') self._id_mode_ped = modes.get_id_mode('pedestrian') self.get_attrsman().do_not_save_attrs([ '_id_mode_bike', '_id_mode_auto', '_id_mode_moto', '_id_mode_bus', '_id_mode_ped', ]) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) # TODO: here we could exclude by age or distance facilities-stops # put 0 for persons whose preference is not public transport preeval[persons.ids_mode_preferred[ids_person] != self._id_mode_ped] = 0 # put 2 for persons with car access and who prefer cars preeval[persons.ids_mode_preferred[ids_person] == self._id_mode_ped] = 2 print ' WalkStrategy.preevaluate', len(np.flatnonzero(preeval)) return preeval def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ print 'WalkStrategy.pan', len(ids_person) #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans demand = virtualpop.get_demand() #ptlines = demand.ptlines walkstages = plans.get_stagetable('walks') #transitstages = plans.get_stagetable('transits') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = demand.activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities #parking = landuse.parking scenario = virtualpop.get_scenario() net = scenario.net edges = net.edges lanes = net.lanes modes = net.modes #ptstops = net.ptstops ids_laneedge = net.lanes.ids_edge times_est_plan = plans.times_est # here we can determine edge weights for different modes # this could be centralized to avoid redundance plans.prepare_stagetables(['walks', 'activities']) ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in WalkStrategy.plan: no eligible persons found.' return False # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) #ids_plan_act = virtualpop.add_plans(ids_person_act, id_strategy = self.get_id_strategy()) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] n_plans = len(ids_person_act) print 'TrasitStrategy.plan n_plans=', n_plans # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) ## ind_act = 0 # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] times_from = map_times[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] centroids_from = facilities.centroids[ids_fac_from] centroids_to = facilities.centroids[ids_fac_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to = facilities.positions_roadedge_closest[ids_fac_to] #ids_stop_from = ptstops.get_closest(centroids_from) #ids_stop_to = ptstops.get_closest(centroids_to) #ids_stopedge_from = ids_laneedge[ids_stoplane[ids_stop_from]] #ids_stopedge_to = ids_laneedge[ids_stoplane[ids_stop_to]] # do random pos here # poss_stop_from = 0.5*( ptstops.positions_from[ids_stop_from]\ # +ptstops.positions_to[ids_stop_from]) # poss_stop_to = 0.5*( ptstops.positions_from[ids_stop_to]\ # +ptstops.positions_to[ids_stop_to]) i = 0.0 for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, \ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_edge_from, poss_edge_from, ids_edge_to, poss_edge_to): n_pers = len(ids_person_act) if logger: logger.progress(i/n_pers*100) i += 1.0 print 79*'_' print ' id_plan=%d, id_person=%d, ' % (id_plan, id_person) id_stage_walk1, time = walkstages.append_stage(id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, # -7.0, ) # update time for trips estimation for this plan plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) # store time for next iteration in case other activities are # following map_times[id_person] = time # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) class AutoStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='Auto strategy', info='With this strategy, the person uses his private auto as main transport mode.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes() self._init_constants() def _init_attributes(self): # print 'StrategyMixin._init_attributes' pass def _init_constants(self): #virtualpop = self.get_virtualpop() #stagetables = virtualpop.get_stagetables() #self._walkstages = stagetables.get_stagetable('walks') #self._ridestages = stagetables.get_stagetable('rides') #self._activitystages = stagetables.get_stagetable('activities') #self._plans = virtualpop.get_plans() # # print 'AutoStrategy._init_constants' # print dir(self) # self.get_attrsman().do_not_save_attrs(['_activitystages','_ridestages','_walkstages','_plans']) modes = self.get_virtualpop().get_scenario().net.modes self._id_mode_bike = modes.get_id_mode('bicycle') self._id_mode_auto = modes.get_id_mode('passenger') self._id_mode_moto = modes.get_id_mode('motorcycle') self.get_attrsman().do_not_save_attrs([ '_id_mode_bike', '_id_mode_auto', '_id_mode_moto', ]) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) print 'Autostrategy.preevaluate', n_pers, 'persons' persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) # put -1 for persons without car access preeval[persons.ids_iauto[ids_person] == -1] = -1 print ' persons having no auto', len(np.flatnonzero(persons.ids_iauto[ids_person] == -1)) # put 0 for persons with car but with a different preferred mode preeval[(persons.ids_iauto[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] != self._id_mode_auto)] = 0 print ' persons with car but with a different preferred mode', len(np.flatnonzero( (persons.ids_iauto[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] != self._id_mode_auto))) # put 2 for persons with car access and who prefer the car preeval[(persons.ids_iauto[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] == self._id_mode_auto)] = 2 print ' persons with car access and who prefer the car', len(np.flatnonzero( (persons.ids_iauto[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] == self._id_mode_auto))) return preeval # def are_feasible(self, ids_person): # """ # Returns a bool vector, with True values for # persons where this strategy can be applied. # """ # persons = self.get_virtualpop() # # # check if person has a car # # one may also check if there is parking available # # at all desinations # return persons.ids_iautos[ids_person] >= 0 def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans walkstages = plans.get_stagetable('walks') ridestages = plans.get_stagetable('autorides') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = virtualpop.get_demand().activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities parking = landuse.parking scenario = virtualpop.get_scenario() edges = scenario.net.edges lanes = scenario.net.lanes modes = scenario.net.modes #times_est_plan = plans.times_est # here we can determine edge weights for different modes plans.prepare_stagetables(['walks', 'autorides', 'activities']) # get initial travel times for persons. # initial travel times depend on the initial activity landuse.parking.clear_booking() ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in Autostrategy.plan: no eligible persons found.' return False # ok # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) #ids_plan_act = virtualpop.add_plans(ids_person_act, id_strategy = self.get_id_strategy()) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) # err map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] # err map_ids_parking_from = np.zeros(nm, dtype=np.int32) ids_parking_from, inds_vehparking = parking.get_closest_parkings(virtualpop.ids_iauto[ids_person_act], facilities.centroids[activities.ids_facility[ids_act_from]]) if len(ids_parking_from) == 0: return False # err map_ids_parking_from[ids_person_act] = ids_parking_from n_plans = len(ids_person_act) print 'AutoStrategy.plan n_plans=', n_plans # print ' map_ids_parking_from[ids_person_act].shape',map_ids_parking_from[ids_person_act].shape # set initial activity # this is because the following steps start with travel # and set the next activity #names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] # for id_plan ind_act = 0 # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] ids_veh = virtualpop.ids_iauto[ids_person_act] #inds_pers = virtualpop.get_inds(ids_person) # self.persons.cols.mode_preferred[inds_pers]='private' times_from = map_times[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] centroids_to = facilities.centroids[ids_fac_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] # this method will find and occupy parking space ids_parking_from = map_ids_parking_from[ids_person_act] # print ' ids_veh.shape',ids_veh.shape # print ' centroids_to.shape',centroids_to.shape ids_parking_to, inds_vehparking = parking.get_closest_parkings(ids_veh, centroids_to) ids_lane_parking_from = parking.ids_lane[ids_parking_from] ids_edge_parking_from = lanes.ids_edge[ids_lane_parking_from] poss_edge_parking_from = parking.positions[ids_parking_from] # print ' ids_parking_to.shape',ids_parking_to.shape # print ' np.max(parking.get_ids()), np.max(ids_parking_to)',np.max(parking.get_ids()), np.max(ids_parking_to) ids_lane_parking_to = parking.ids_lane[ids_parking_to] ids_edge_parking_to = lanes.ids_edge[ids_lane_parking_to] poss_edge_parking_to = parking.positions[ids_parking_to] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to = facilities.positions_roadedge_closest[ids_fac_to] i = 0.0 n_pers = len(ids_person_act) for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_veh, id_edge_from, pos_edge_from, id_edge_parking_from, pos_edge_parking_from, id_parking_from, id_parking_to, id_edge_parking_to, pos_edge_parking_to, id_edge_to, pos_edge_to\ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_veh, ids_edge_from, poss_edge_from, ids_edge_parking_from, poss_edge_parking_from, ids_parking_from, ids_parking_to, ids_edge_parking_to, poss_edge_parking_to, ids_edge_to, poss_edge_to): if logger: logger.progress(i/n_pers*100) i += 1.0 #plans.set_row(id_plan, ids_person = id_person, ids_strategy = self.get_id_strategy()) #times_est_plan[id_plan] = time-time_start # map_times[id_person] = self.plan_activity(\ # id_person, id_plan, time_from, # id_act_from, id_act_to, # name_acttype_to, duration_act_to, # id_veh, # id_edge_from, pos_edge_from, # id_parking_from, id_edge_parking_from, pos_edge_parking_from, # id_parking_to, id_edge_parking_to, pos_edge_parking_to, # id_edge_to, pos_edge_to, edges.ids_lanes[id_edge_to][0]) # start creating stages for activity id_stage_walk1, time = walkstages.append_stage( id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_parking_from, position_edge_to=pos_edge_parking_from-1.5, # wait 1.5 m before nose of parked car ) # ride from car parking to road edge near activity id_stage_car, time = ridestages.append_stage( id_plan, time, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time+30, # time_from, id_parking_from=id_parking_from, id_parking_to=id_parking_to, # TODO: here we could use id_edge_to as via edge to emulate search for parking ) if id_stage_car >= 0: # print ' car ride successful' id_stage_walk2, time = walkstages.append_stage( id_plan, time, id_edge_from=id_edge_parking_to, position_edge_from=pos_edge_parking_to-1.5, # ecessary? id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' parking not connected or distance too short, modify first walk and go directly to activity' # print ' id_stage_walk1',id_stage_walk1,type(id_stage_walk1) # print ' id_edge_from',id_edge_from # print ' position_edge_from',position_edge_from # print ' id_edge_to',id_edge_to # print ' position_edge_to',position_edge_to time = walkstages.modify_stage( id_stage_walk1, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) # store time estimation for this plan # note that these are the travel times, no activity time plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time # finally add activity and respective duration id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) map_times[id_person] = time # return time ## # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) # update timing with (random) activity duration!! return True def plan_activity(self, id_person, id_plan, time_start, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_veh, id_edge_from, pos_edge_from, id_parking_from, id_edge_parking_from, pos_edge_parking_from, id_parking_to, id_edge_parking_to, pos_edge_parking_to, id_edge_to, pos_edge_to, id_lane_to): print 79*'_' print ' id_plan=%d, id_person=%d, ids_veh=%d' % (id_plan, id_person, id_veh) plans = self.get_virtualpop().get_plans() #stagetables = virtualpop.get_stagetables() walkstages = plans.get_stagetable('walks') ridestages = plans.get_stagetable('autorides') activitystages = plans.get_stagetable('activities') id_stage_walk1, time = walkstages.append_stage( id_plan, time_start, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_parking_from, position_edge_to=pos_edge_parking_from-1.5, # wait 1.5 m before nose of parked car ) # ride from car parking to road edge near activity id_stage_car, time = ridestages.append_stage( id_plan, time, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time+30, # time_start, id_parking_from=id_parking_from, id_parking_to=id_parking_to, # TODO: here we could use id_edge_to as via edge to emulate search for parking ) if id_stage_car >= 0: # print ' car ride successful' id_stage_walk2, time = walkstages.append_stage( id_plan, time, id_edge_from=id_edge_parking_to, position_edge_from=pos_edge_parking_to-1.5, # ecessary? id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' parking not connected or distance too short, modify first walk and go directly to activity' # print ' id_stage_walk1',id_stage_walk1,type(id_stage_walk1) # print ' id_edge_from',id_edge_from # print ' position_edge_from',position_edge_from # print ' id_edge_to',id_edge_to # print ' position_edge_to',position_edge_to time = walkstages.modify_stage( id_stage_walk1, time_start, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) # store time estimation for this plan # note that these are the travel times, no activity time plans.times_est[id_plan] += time-time_start # define current end time without last activity duration plans.times_end[id_plan] = time # finally add activity and respective duration id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=id_lane_to, positions=pos_edge_to, ) return time class BikeStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='Bike strategy', info='With this strategy, the person uses his private bike as main transport mode.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes(**kwargs) self._init_constants() def _init_attributes(self, **kwargs): # print 'StrategyMixin._init_attributes' attrsman = self.get_attrsman() self._init_attributes_strategy(**kwargs) self.n_iter_bikeacces_max = attrsman.add(cm.AttrConf('n_iter_bikeacces_max', kwargs.get('n_iter_bikeacces_max', 5), groupnames=['options'], perm='rw', name='Max. bike access search iterations', info='Max. number of iterations while searching an edge with bike access.', )) self.length_edge_min = attrsman.add(cm.AttrConf('length_edge_min', kwargs.get('length_edge_min', 20.0), groupnames=['options'], perm='rw', name='Min. edge length search', unit='m', info='Min. edge length when searching an edge with bike access.', )) def _init_constants(self): #virtualpop = self.get_virtualpop() #stagetables = virtualpop.get_stagetables() #self._walkstages = stagetables.get_stagetable('walks') #self._ridestages = stagetables.get_stagetable('rides') #self._activitystages = stagetables.get_stagetable('activities') #self._plans = virtualpop.get_plans() # # print 'AutoStrategy._init_constants' # print dir(self) # self.get_attrsman().do_not_save_attrs(['_activitystages','_ridestages','_walkstages','_plans']) modes = self.get_virtualpop().get_scenario().net.modes self._id_mode_ped = modes.get_id_mode('pedestrian') self._id_mode_bike = modes.get_id_mode('bicycle') self._id_mode_auto = modes.get_id_mode('passenger') self._id_mode_moto = modes.get_id_mode('motorcycle') self._edges = self.get_virtualpop().get_scenario().net.edges self.get_attrsman().do_not_save_attrs([ '_id_mode_bike', '_id_mode_auto', '_id_mode_moto', '_id_mode_ped', '_edges']) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) print 'BikeStrategy.preevaluate', n_pers, 'persons' persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) # put -1 for persons without car access preeval[persons.ids_ibike[ids_person] == -1] = -1 print ' persons having no bike', len(np.flatnonzero(persons.ids_ibike[ids_person] == -1)) # put 0 for persons with bike but with a different preferred mode preeval[(persons.ids_ibike[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] != self._id_mode_bike)] = 0 print ' persons with bike but with a different preferred mode', len(np.flatnonzero( (persons.ids_ibike[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] != self._id_mode_bike))) # put 2 for persons with bike access and who prefer the bikr preeval[(persons.ids_ibike[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] == self._id_mode_auto)] = 2 print ' persons with car access and who prefer the car', len(np.flatnonzero( (persons.ids_ibike[ids_person] > -1) & (persons.ids_mode_preferred[ids_person] == self._id_mode_bike))) return preeval def get_edge_bikeaccess(self, id_edge, is_search_backward=False): # print 'get_edge_bikeaccess',id_edge, is_search_backward,'id_sumo',self._edges.ids_sumo[id_edge] id_mode = self._id_mode_bike id_mode_ped = self._id_mode_ped get_accesslevel = self._edges.get_accesslevel if is_search_backward: get_next = self._edges.get_incoming else: get_next = self._edges.get_outgoing edgelengths = self._edges.lengths #ids_tried = set() ids_current = [id_edge] id_bikeedge = -1 pos = 0.0 n = 0 while (id_bikeedge < 0) & (n < self.n_iter_bikeacces_max): n += 1 ids_new = [] for id_edge_test, is_long_enough in zip(ids_current, edgelengths[ids_current] > self.length_edge_min): # print ' check id',id_edge_test, is_long_enough,get_accesslevel(id_edge_test, id_mode) if is_long_enough & (get_accesslevel(id_edge_test, id_mode) >= 0) & (get_accesslevel(id_edge_test, id_mode_ped) >= 0): id_bikeedge = id_edge_test # print ' found',id_bikeedge,self._edges.ids_sumo[id_bikeedge] break else: ids_new += get_next(id_edge_test) ids_current = ids_new if id_bikeedge > -1: if is_search_backward: pos = edgelengths[id_bikeedge]-0.5*self.length_edge_min else: pos = 0.5*self.length_edge_min if id_bikeedge == -1: print 'WARNING in get_edge_bikeaccess no access for', id_edge, self._edges.ids_sumo[id_edge] return id_bikeedge, pos def plan_bikeride(self, id_plan, time_from, id_veh, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, dist_from_to, dist_walk_max, walkstages, ridestages): # start creating stages id_stage_walk1 = -1 id_stage_bike = -1 id_edge_from_bike, pos_from_bike = self.get_edge_bikeaccess(id_edge_from) id_edge_to_bike, pos_to_bike = self.get_edge_bikeaccess(id_edge_to, is_search_backward=True) if (dist_from_to < dist_walk_max) | (id_edge_from_bike == -1) | (id_edge_to_bike == -1): # print ' go by foot because distance is too short or no bike access',dist_from_to,id_edge_from_bike,id_edge_to_bike id_stage_walk1, time = walkstages.append_stage( id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' try to take the bike',id_veh # print ' id_edge_from_bike',edges.ids_sumo[id_edge_from_bike],pos_from_bike # print ' id_edge_to_bike',edges.ids_sumo[id_edge_to_bike],pos_to_bike if id_edge_from_bike != id_edge_from: # print ' must walk from origin to bikerack',time_from id_stage_walk1, time = walkstages.append_stage( id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_from_bike, position_edge_to=pos_from_bike, ) if id_edge_to_bike != id_edge_to: # print ' must cycle from bikerack to dest bike rack',time id_stage_bike, time = ridestages.append_stage( id_plan, time, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time-10, # time_from, id_edge_from=id_edge_from_bike, position_edge_from=pos_from_bike, id_edge_to=id_edge_to_bike, position_edge_to=pos_to_bike, ) if id_stage_bike > -1: # print ' must walk from dest bikerack to dest',time id_stage_walk2, time = walkstages.append_stage( id_plan, time, id_edge_from=id_edge_to_bike, position_edge_from=pos_to_bike, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' cycle from bikerack to destination',time id_stage_bike, time = ridestages.append_stage( id_plan, time, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time-10, # time_from, id_edge_from=id_edge_from_bike, position_edge_from=pos_from_bike, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' cycle directly from orign edge',time_from if id_edge_to_bike != id_edge_to: # print ' must cycle from origin to bikerack',time_from #pos_to_bike = 0.1*edges.lengths[id_edge_to_bike] id_stage_bike, time = ridestages.append_stage( id_plan, time_from, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time_from-10, # time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to_bike, position_edge_to=pos_to_bike, ) if id_stage_bike > -1: id_stage_walk2, time = walkstages.append_stage( id_plan, time, id_edge_from=id_edge_to_bike, position_edge_from=pos_to_bike, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # print ' must cycle from origin to destination',time_from id_stage_bike, time = ridestages.append_stage( id_plan, time_from, id_veh=id_veh, # delay to be sure that person arrived!(workaround in combination with parking=False) time_init=time_from-10, # time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) # here we should have created a bike ride # if not, for ehatever reason, # we walk from origin to destination if id_stage_bike == -1: # print ' walk because no ride stage has been planned',time_from if id_stage_walk1 == -1: # no walk stage has been planned id_stage_walk1, time = walkstages.append_stage( id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) elif time_from == time: # walking to bike has already been schedules, # but cycling failed. So walk the whole way time = walkstages.modify_stage( id_stage_walk1, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) return time def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans walkstages = plans.get_stagetable('walks') ridestages = plans.get_stagetable('bikerides') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = virtualpop.get_demand().activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities #parking = landuse.parking scenario = virtualpop.get_scenario() edges = scenario.net.edges lanes = scenario.net.lanes modes = scenario.net.modes #times_est_plan = plans.times_est # here we can determine edge weights for different modes plans.prepare_stagetables(['walks', 'bikerides', 'activities']) # get initial travel times for persons. # initial travel times depend on the initial activity # landuse.parking.clear_booking() ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in BikeStrategy.plan: no eligible persons found.' return False # ok # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] #map_ids_parking_from = np.zeros(nm, dtype = np.int32) # ids_parking_from, inds_vehparking = parking.get_closest_parkings( virtualpop.ids_iauto[ids_person_act], # facilities.centroids[activities.ids_facility[ids_act_from]]) # if len(ids_parking_from)==0: # return False # err #map_ids_parking_from[ids_person_act] = ids_parking_from n_plans = len(ids_person_act) print 'BikeStrategy.plan n_plans=', n_plans # print ' map_ids_parking_from[ids_person_act].shape',map_ids_parking_from[ids_person_act].shape # set initial activity # this is because the following steps start with travel # and set the next activity #names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] # for id_plan ind_act = 0 # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = self.clip_positions(poss_edge_from, ids_edge_from) # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') # do initial stage # could be common to all strategies for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] ids_veh = virtualpop.ids_ibike[ids_person_act] dists_walk_max = virtualpop.dists_walk_max[ids_person_act] times_from = map_times[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] poss_edge_from = self.clip_positions(poss_edge_from, ids_edge_from) centroids_from = facilities.centroids[ids_fac_from] # this method will find and occupy parking space #ids_parking_from = map_ids_parking_from[ids_person_act] # print ' ids_veh.shape',ids_veh.shape # print ' centroids_to.shape',centroids_to.shape #ids_parking_to, inds_vehparking = parking.get_closest_parkings(ids_veh, centroids_to) #ids_lane_parking_from = parking.ids_lane[ids_parking_from] #ids_edge_parking_from = lanes.ids_edge[ids_lane_parking_from] #poss_edge_parking_from = parking.positions[ids_parking_from] # print ' ids_parking_to.shape',ids_parking_to.shape # print ' np.max(parking.get_ids()), np.max(ids_parking_to)',np.max(parking.get_ids()), np.max(ids_parking_to) #ids_lane_parking_to = parking.ids_lane[ids_parking_to] #ids_edge_parking_to = lanes.ids_edge[ids_lane_parking_to] #poss_edge_parking_to = parking.positions[ids_parking_to] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to1 = facilities.positions_roadedge_closest[ids_fac_to] poss_edge_to = self.clip_positions(poss_edge_to1, ids_edge_to) centroids_to = facilities.centroids[ids_fac_to] # debug poscorrection..OK # for id_edge, id_edge_sumo, length, pos_to1, pos in zip(ids_edge_to, edges.ids_sumo[ids_edge_to],edges.lengths[ids_edge_to],poss_edge_to1, poss_edge_to): # print ' ',id_edge, 'IDe%s'%id_edge_sumo, 'L=%.2fm'%length, '%.2fm'%pos_to1, '%.2fm'%pos dists_from_to = np.sqrt(np.sum((centroids_to - centroids_from)**2, 1)) i = 0.0 n_pers = len(ids_person_act) for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_veh, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, dist_from_to, dist_walk_max\ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_veh, ids_edge_from, poss_edge_from, ids_edge_to, poss_edge_to, dists_from_to, dists_walk_max): if logger: logger.progress(i/n_pers*100) i += 1.0 print 79*'*' print ' plan id_plan', id_plan, 'time_from', time_from, 'from', id_edge_from, pos_edge_from, 'to', id_edge_to, pos_edge_to print ' id_edge_from', edges.ids_sumo[id_edge_from], 'id_edge_to', edges.ids_sumo[id_edge_to] time = self.plan_bikeride(id_plan, time_from, id_veh, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, dist_from_to, dist_walk_max, walkstages, ridestages) ################ # store time estimation for this plan # note that these are the travel times, no activity time plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time # finally add activity and respective duration id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) map_times[id_person] = time # return time ## # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) # update timing with (random) activity duration!! return True class TransitStrategy(StrategyMixin): def __init__(self, ident, parent=None, name='Public Transport Strategy', info='With this strategy, the person uses public transport.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes() self._init_constants() def _init_attributes(self): # print 'StrategyMixin._init_attributes' pass def _init_constants(self): #virtualpop = self.get_virtualpop() #stagetables = virtualpop.get_stagetables() #self._walkstages = stagetables.get_stagetable('walks') #self._ridestages = stagetables.get_stagetable('rides') #self._activitystages = stagetables.get_stagetable('activities') #self._plans = virtualpop.get_plans() # # print 'AutoStrategy._init_constants' # print dir(self) # self.get_attrsman().do_not_save_attrs(['_activitystages','_ridestages','_walkstages','_plans']) modes = self.get_virtualpop().get_scenario().net.modes self._id_mode_bike = modes.get_id_mode('bicycle') self._id_mode_auto = modes.get_id_mode('passenger') self._id_mode_moto = modes.get_id_mode('motorcycle') self._id_mode_bus = modes.get_id_mode('bus') self.get_attrsman().do_not_save_attrs([ '_id_mode_bike', '_id_mode_auto', '_id_mode_moto', '_id_mode_bus' ]) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) # TODO: here we could exclude by age or distance facilities-stops # put 0 for persons whose preference is not public transport preeval[persons.ids_mode_preferred[ids_person] != self._id_mode_bus] = 0 # put 2 for persons with car access and who prefer cars preeval[persons.ids_mode_preferred[ids_person] == self._id_mode_bus] = 2 print ' TransitStrategy.preevaluate', len(np.flatnonzero(preeval)) return preeval def plan_transit(self, id_plan, time_from, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to, #dist_from_to, dist_walk_max, walkstages, transitstages, ptlines, ptfstar, pttimes, stops_to_enter, stops_to_exit, ids_laneedge, ids_stoplane, ptstops): ptlinks = ptlines.get_ptlinks() ptlinktypes = ptlinks.types.choices type_enter = ptlinktypes['enter'] type_transit = ptlinktypes['transit'] type_board = ptlinktypes['board'] type_alight = ptlinktypes['alight'] type_transfer = ptlinktypes['transfer'] type_walk = ptlinktypes['walk'] type_exit = ptlinktypes['exit'] if (id_edge_from == id_stopedge_from) & (abs(pos_edge_from-pos_stop_from) < 1.0): time = time_from id_stage_walk1 = None else: id_stage_walk1, time = walkstages.append_stage(id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_stopedge_from, position_edge_to=pos_stop_from, # -7.0, ) # print ' id_stopedge_from',id_stopedge_from # print ' pos_stop_from',pos_stop_from # print # print ' id_stopedge_to',id_stopedge_to # print ' pos_stop_to',pos_stop_to # print # print ' id_stop_from',id_stop_from # print ' id_stop_to',id_stop_to durations, linktypes, ids_line, ids_fromstop, ids_tostop =\ ptlinks.route(id_stop_from, id_stop_to, fstar=ptfstar, times=pttimes, stops_to_enter=stops_to_enter, stops_to_exit=stops_to_exit) # print ' routing done. make plan..' if len(linktypes) > 0: if linktypes[-1] == type_walk: # is last stage a walk? # remove it, because will go directly to destination linktypes = linktypes[:-1] ids_line = ids_line[:-1] durations = durations[:-1] ids_fromstop = ids_fromstop[:-1] ids_tostop = ids_tostop[:-1] # print ' ids_line ',ids_line # print ' ids_fromstop',ids_fromstop # print ' ids_tostop ',ids_tostop if len(linktypes) > 0: # is there any public transport line to take? # go though PT links and generate transits and walks to trasfer ids_stopedge_from = ids_laneedge[ids_stoplane[ids_fromstop]] ids_stopedge_to = ids_laneedge[ids_stoplane[ids_tostop]] poss_stop_from = 0.5*(ptstops.positions_from[ids_fromstop] + ptstops.positions_to[ids_fromstop]) poss_stop_to = 0.5*(ptstops.positions_from[ids_tostop] + ptstops.positions_to[ids_tostop]) # this is wait time buffer to be added to the successive stage # as waiting is currently not modelled as an extra stage duration_wait = 0.0 # create stages for PT for linktype, id_line, duration,\ id_stopedge_from, pos_fromstop,\ id_stopedge_to, pos_tostop in\ zip(linktypes, ids_line, durations, ids_stopedge_from, poss_stop_from, ids_stopedge_to, poss_stop_to, ): # print ' stage for linktype %2d fromedge %s toedge %s'%(linktype, edges.ids_sumo[id_stopedge_from],edges.ids_sumo[id_stopedge_to] ) print ' id_stopedge_from,id_stopedge_to', id_stopedge_from, id_stopedge_to if linktype == type_transit: # transit! print ' add transit' id_stage_transit, time = transitstages.append_stage( id_plan, time, id_line=id_line, duration=duration+duration_wait, id_fromedge=id_stopedge_from, id_toedge=id_stopedge_to, ) duration_wait = 0.0 elif linktype == type_walk: # walk to transfer print ' add transfer' id_stage_transfer, time = walkstages.append_stage( id_plan, time, id_edge_from=id_stopedge_from, position_edge_from=pos_fromstop, id_edge_to=id_stopedge_to, position_edge_to=pos_tostop, duration=duration+duration_wait, ) duration_wait = 0.0 else: # all other link time are no modelld # do not do anything , just add wait time to next stage print ' add duration', duration duration_wait += duration # walk from final stop to activity # print ' Stage for linktype %2d fromedge %s toedge %s'%(linktype, edges.ids_sumo[id_stopedge_to],edges.ids_sumo[id_edge_to] ) # if (id_edge_to == id_stopedge_to)&(abs(pos_edge_to-pos_tostop)<1.0): # print ' already at right edge and position' # pass # else: id_stage_walk2, time = walkstages.append_stage(id_plan, time, id_edge_from=id_stopedge_to, position_edge_from=pos_tostop, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # there is no public transport line linking these nodes. if id_stage_walk1 is None: # Create first walk directly from home to activity id_stage_walk1, time = walkstages.append_stage(id_plan, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) else: # Modify first walk directly from home to activity time = walkstages.modify_stage(id_stage_walk1, time_from, id_edge_from=id_edge_from, position_edge_from=pos_edge_from, id_edge_to=id_edge_to, position_edge_to=pos_edge_to, ) return time def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ print 'TransitStrategy.plan', len(ids_person) #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans demand = virtualpop.get_demand() ptlines = demand.ptlines walkstages = plans.get_stagetable('walks') transitstages = plans.get_stagetable('transits') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = demand.activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities parking = landuse.parking scenario = virtualpop.get_scenario() net = scenario.net edges = net.edges lanes = net.lanes modes = net.modes ptstops = net.ptstops # print ' demand',demand # print ' demand.ptlines',demand.ptlines,dir(demand.ptlines) # print ' demand.ptlines.get_ptlinks()',demand.ptlines.get_ptlinks() # print ' demand.virtualpop',demand.virtualpop,dir(demand.virtualpop) # print ' demand.trips',demand.trips,dir(demand.trips) if len(ptlines) == 0: print 'WARNING in TrasitStrategy.plan: no transit services available. Create public trasit services by connecting stops.' return False ptlinks = ptlines.get_ptlinks() if len(ptlinks) == 0: print 'WARNING in TrasitStrategy.plan: no public transport links. Run methods: "create routes" and "build links" from public trasport services.' return False ptlinktypes = ptlinks.types.choices ptfstar = ptlinks.get_fstar() pttimes = ptlinks.get_times() stops_to_enter, stops_to_exit = ptlinks.get_stops_to_enter_exit() ids_stoplane = ptstops.ids_lane ids_laneedge = net.lanes.ids_edge times_est_plan = plans.times_est # here we can determine edge weights for different modes # this could be centralized to avoid redundance plans.prepare_stagetables(['walks', 'transits', 'activities']) ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in TrasitStrategy.plan: no eligible persons found.' return False # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) #ids_plan_act = virtualpop.add_plans(ids_person_act, id_strategy = self.get_id_strategy()) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] n_plans = len(ids_person_act) print 'TrasitStrategy.plan n_plans=', n_plans # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) ## ind_act = 0 # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] times_from = map_times[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] centroids_from = facilities.centroids[ids_fac_from] centroids_to = facilities.centroids[ids_fac_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to = facilities.positions_roadedge_closest[ids_fac_to] ids_stop_from = ptstops.get_closest(centroids_from) ids_stop_to = ptstops.get_closest(centroids_to) ids_stopedge_from = ids_laneedge[ids_stoplane[ids_stop_from]] ids_stopedge_to = ids_laneedge[ids_stoplane[ids_stop_to]] # do random pos here poss_stop_from = 0.5*(ptstops.positions_from[ids_stop_from] + ptstops.positions_to[ids_stop_from]) poss_stop_to = 0.5*(ptstops.positions_from[ids_stop_to] + ptstops.positions_to[ids_stop_to]) i = 0.0 for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to\ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_edge_from, poss_edge_from, ids_edge_to, poss_edge_to, ids_stop_from, ids_stopedge_from, poss_stop_from, ids_stop_to, ids_stopedge_to, poss_stop_to): n_pers = len(ids_person_act) if logger: logger.progress(i/n_pers*100) i += 1.0 print 79*'_' print ' id_plan=%d, id_person=%d, ' % (id_plan, id_person) time = self.plan_transit(id_plan, time_from, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to, #dist_from_to, dist_walk_max, walkstages, transitstages, ptlines, ptfstar, pttimes, stops_to_enter, stops_to_exit, ids_laneedge, ids_stoplane, ptstops) # update time for trips estimation for this plan plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) # store time for next iteration in case other activities are # following map_times[id_person] = time # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) class BikeTransitStrategy(BikeStrategy, TransitStrategy): def __init__(self, ident, parent=None, name='Bike+Public Transport Strategy', info='With this strategy, the person combines bike and public transport.', **kwargs): self._init_objman(ident, parent, name=name, info=info, **kwargs) attrsman = self.set_attrsman(cm.Attrsman(self)) # specific init self._init_attributes() self._init_constants() def _init_attributes(self): # print 'StrategyMixin._init_attributes' BikeStrategy._init_attributes(self) TransitStrategy._init_attributes(self) def _init_constants(self): BikeStrategy._init_constants(self) TransitStrategy._init_constants(self) def preevaluate(self, ids_person): """ Preevaluation strategies for person IDs in vector ids_person. Returns a preevaluation vector with a preevaluation value for each person ID. The values of the preevaluation vector are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ n_pers = len(ids_person) persons = self.get_virtualpop() preeval = np.zeros(n_pers, dtype=np.int32) inds_prefer = (persons.ids_mode_preferred[ids_person] == self._id_mode_bus)\ | (persons.ids_mode_preferred[ids_person] == self._id_mode_bike)\ inds_avail = persons.ids_ibike[ids_person] > -1 preeval[np.logical_not(inds_avail)] = -1 # TODO: here we could exclude by age or distance facilities-stops # put 0 for persons whose preference is not public transport preeval[inds_avail & np.logical_not(inds_prefer)] = 0 # put 2 for persons with bike access and who prefer bike or bus preeval[inds_avail & inds_prefer] = 1 print ' BikeTransitStrategy.preevaluate', len(np.flatnonzero(preeval)) return preeval def plan(self, ids_person, logger=None): """ Generates a plan for these person according to this strategie. Overriden by specific strategy. """ print 'TransitStrategy.plan', len(ids_person) #make_plans_private(self, ids_person = None, mode = 'passenger') # routing necessary? virtualpop = self.get_virtualpop() plans = virtualpop.get_plans() # self._plans demand = virtualpop.get_demand() ptlines = demand.ptlines walkstages = plans.get_stagetable('walks') transitstages = plans.get_stagetable('transits') ridestages = plans.get_stagetable('bikerides') activitystages = plans.get_stagetable('activities') activities = virtualpop.get_activities() activitytypes = demand.activitytypes landuse = virtualpop.get_landuse() facilities = landuse.facilities #parking = landuse.parking scenario = virtualpop.get_scenario() net = scenario.net edges = net.edges lanes = net.lanes modes = net.modes ptstops = net.ptstops # print ' demand',demand # print ' demand.ptlines',demand.ptlines,dir(demand.ptlines) # print ' demand.ptlines.get_ptlinks()',demand.ptlines.get_ptlinks() # print ' demand.virtualpop',demand.virtualpop,dir(demand.virtualpop) # print ' demand.trips',demand.trips,dir(demand.trips) if len(ptlines) == 0: print 'WARNING in TrasitStrategy.plan: no transit services available.' return False ptlinks = ptlines.get_ptlinks() ptlinktypes = ptlinks.types.choices ptfstar = ptlinks.get_fstar() pttimes = ptlinks.get_times() stops_to_enter, stops_to_exit = ptlinks.get_stops_to_enter_exit() ids_stoplane = ptstops.ids_lane ids_laneedge = net.lanes.ids_edge times_est_plan = plans.times_est # here we can determine edge weights for different modes # this could be centralized to avoid redundance plans.prepare_stagetables(['walks', 'bikerides', 'transits', 'activities']) ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(0, ids_person=ids_person) if len(ids_person_act) == 0: print 'WARNING in TrasitStrategy.plan: no eligible persons found.' return False # temporary maps from ids_person to other parameters nm = np.max(ids_person_act)+1 map_ids_plan = np.zeros(nm, dtype=np.int32) #ids_plan_act = virtualpop.add_plans(ids_person_act, id_strategy = self.get_id_strategy()) map_ids_plan[ids_person_act] = virtualpop.add_plans(ids_person_act, id_strategy=self.get_id_strategy()) map_times = np.zeros(nm, dtype=np.int32) map_times[ids_person_act] = activities.get_times_end(ids_act_from, pdf='unit') # set start time to plans (important!) plans.times_begin[map_ids_plan[ids_person_act]] = map_times[ids_person_act] map_ids_fac_from = np.zeros(nm, dtype=np.int32) map_ids_fac_from[ids_person_act] = activities.ids_facility[ids_act_from] n_plans = len(ids_person_act) print 'TrasitStrategy.plan n_plans=', n_plans # make initial activity stage ids_edge_from = facilities.ids_roadedge_closest[map_ids_fac_from[ids_person_act]] poss_edge_from = facilities.positions_roadedge_closest[map_ids_fac_from[ids_person_act]] # this is the time when first activity starts # first activity is normally not simulated names_acttype_from = activitytypes.names[activities.ids_activitytype[ids_act_from]] durations_act_from = activities.get_durations(ids_act_from) times_from = map_times[ids_person_act]-durations_act_from #times_from = activities.get_times_end(ids_act_from, pdf = 'unit') for id_plan,\ time,\ id_act_from,\ name_acttype_from,\ duration_act_from,\ id_edge_from,\ pos_edge_from \ in zip(map_ids_plan[ids_person_act], times_from, ids_act_from, names_acttype_from, durations_act_from, ids_edge_from, poss_edge_from): id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_from, names_activitytype=name_acttype_from, durations=duration_act_from, ids_lane=edges.ids_lanes[id_edge_from][0], positions=pos_edge_from, ) ## ind_act = 0 # main loop while there are persons performing # an activity at index ind_act while len(ids_person_act) > 0: ids_plan = map_ids_plan[ids_person_act] times_from = map_times[ids_person_act] ids_veh = virtualpop.ids_ibike[ids_person_act] dists_walk_max = virtualpop.dists_walk_max[ids_person_act] names_acttype_to = activitytypes.names[activities.ids_activitytype[ids_act_to]] durations_act_to = activities.get_durations(ids_act_to) ids_fac_from = map_ids_fac_from[ids_person_act] ids_fac_to = activities.ids_facility[ids_act_to] centroids_from = facilities.centroids[ids_fac_from] centroids_to = facilities.centroids[ids_fac_to] # origin edge and position ids_edge_from = facilities.ids_roadedge_closest[ids_fac_from] poss_edge_from = facilities.positions_roadedge_closest[ids_fac_from] # destination edge and position ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] poss_edge_to = facilities.positions_roadedge_closest[ids_fac_to] ids_stop_from = ptstops.get_closest(centroids_from) ids_stop_to = ptstops.get_closest(centroids_to) ids_stopedge_from = ids_laneedge[ids_stoplane[ids_stop_from]] ids_stopedge_to = ids_laneedge[ids_stoplane[ids_stop_to]] centroids_stop_from = ptstops.centroids[ids_stop_from] centroids_stop_to = ptstops.centroids[ids_stop_to] # do random pos here poss_stop_from = 0.5*(ptstops.positions_from[ids_stop_from] + ptstops.positions_to[ids_stop_from]) poss_stop_to = 0.5*(ptstops.positions_from[ids_stop_to] + ptstops.positions_to[ids_stop_to]) dists_from_to = np.sqrt(np.sum((centroids_to - centroids_from)**2, 1)) dists_from_stop_from = np.sqrt(np.sum((centroids_stop_from - centroids_from)**2, 1)) dists_stop_to_to = np.sqrt(np.sum((centroids_to - centroids_stop_to)**2, 1)) i = 0.0 for id_person, id_plan, time_from, id_act_from, id_act_to, name_acttype_to, duration_act_to, id_veh, id_edge_from, pos_edge_from, id_edge_to, pos_edge_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to, dists_from_to, dist_from_stop_from, dist_stop_to_to, dist_walk_max\ in zip(ids_person_act, ids_plan, times_from, ids_act_from, ids_act_to, names_acttype_to, durations_act_to, ids_veh, ids_edge_from, poss_edge_from, ids_edge_to, poss_edge_to, ids_stop_from, ids_stopedge_from, poss_stop_from, ids_stop_to, ids_stopedge_to, poss_stop_to, dists_from_to, dists_from_stop_from, dists_stop_to_to, dists_walk_max): n_pers = len(ids_person_act) if logger: logger.progress(i/n_pers*100) i += 1.0 print 79*'_' print ' id_plan=%d, id_person=%d, ' % (id_plan, id_person) #dist_from_stop_from, dist_stop_to_to time = self.plan_bikeride(id_plan, time_from, id_veh, id_edge_from, pos_edge_from, id_stopedge_from, pos_stop_from, dist_from_stop_from, dist_walk_max, walkstages, ridestages) time = self.plan_transit(id_plan, time, id_stopedge_from, pos_stop_from, id_stopedge_to, pos_stop_to, id_stop_from, id_stopedge_from, pos_stop_from, id_stop_to, id_stopedge_to, pos_stop_to, #dist_from_to, dist_walk_max, walkstages, transitstages, ptlines, ptfstar, pttimes, stops_to_enter, stops_to_exit, ids_laneedge, ids_stoplane, ptstops) time = self.plan_bikeride(id_plan, time, id_veh, id_stopedge_to, pos_stop_to, id_edge_to, pos_edge_to, dist_stop_to_to, dist_walk_max, walkstages, ridestages) # update time for trips estimation for this plan plans.times_est[id_plan] += time-time_from # define current end time without last activity duration plans.times_end[id_plan] = time id_stage_act, time = activitystages.append_stage( id_plan, time, ids_activity=id_act_to, names_activitytype=name_acttype_to, durations=duration_act_to, ids_lane=edges.ids_lanes[id_edge_to][0], positions=pos_edge_to, ) # store time for next iteration in case other activities are # following map_times[id_person] = time # select persons and activities for next setp ind_act += 1 ids_person_act, ids_act_from, ids_act_to\ = virtualpop.get_activities_from_pattern(ind_act, ids_person=ids_person_act) class Strategies(am.ArrayObjman): def __init__(self, ident, virtualpop, **kwargs): self._init_objman(ident, parent=virtualpop, name='Mobility Strategies', info="""Contains different mobility strategies. A strategy has methods to identify whether a strategy is applicaple to a person and to make a plan fo a person. """, version=0.2, **kwargs) self.add_col(am.ArrayConf('names', default='', dtype='object', perm='r', is_index=True, name='Short name', info='Strategy name. Must be unique, used as index.', )) self._init_attributes() self._init_constants() def _init_attributes(self): self.add_col(cm.ObjsConf('strategies', #groupnames = ['state'], name='Strategy', info='Strategy object.', )) self.add_col(am.ArrayConf('colors', np.ones(4, np.float32), dtype=np.float32, metatype='color', perm='rw', name='Color', info="Route color. Color as RGBA tuple with values from 0.0 to 1.0", xmltag='color', )) if self.get_version() < 0.2: self._set_colors_default() self.set_version(0.2) def format_ids(self, ids): return ', '.join(self.names[ids]) def get_id_from_formatted(self, idstr): return self.names.get_id_from_index(idstr) def get_ids_from_formatted(self, idstrs): return self.names.get_ids_from_indices_save(idstrs.split(',')) def add_default(self): self.add_strategy('walk', WalkStrategy) self.add_strategy('auto', AutoStrategy) self.add_strategy('bike', BikeStrategy) self.add_strategy('transit', TransitStrategy) self.add_strategy('biketransit', BikeTransitStrategy) self._set_colors_default() def _set_colors_default(self): colors_default = {'walk': np.array([160, 72, 0, 220], np.float32)/255, 'auto': np.array([250, 213, 0, 220], np.float32)/255, 'bike': np.array([8, 191, 73, 210], np.float32)/255, 'transit': np.array([8, 77, 191, 220], np.float32)/255, 'biketransit': np.array([8, 201, 223, 220], np.float32)/255, } ids = self.names.get_ids_from_indices_save(colors_default.keys()) self.colors[ids] = colors_default.values() # np.array(colors_default.values(), np.float32).reshape(-1,4) #self.colors.indexset(colors_default.keys(), colors_default.values()) def add_strategy(self, ident, Strategyclass, color=(0.0, 0.0, 0.0, 1.0)): # print 'add_strategy', ident if not self.names.has_index(ident): strategy = Strategyclass(ident, self) self.add_row(names=ident, strategies=strategy, colours=color, ) return strategy else: # print 'WARNING in add_strategy: strategy %s already initialized'%ident return self.strategies[self.names.get_id_from_index(ident)] def preevaluate(self, ids_person): """ Preevaluation of strategies for person IDs in vector ids_person. Returns a vector with strategy IDs and a preevaluation matrix. The rows of the matrix corrispond to each person ID. The columns corrsopond to reck strategy ID. The values of the preevaluation matrix are as follows: -1 : Strategy cannot be applied 0 : Stategy can be applied, but the preferred mode is not used 1 : Stategy can be applied, and preferred mode is part of the strategy 2 : Strategy uses predomunantly preferred mode """ print 'preevaluate strategies' ids_strat = self.get_ids() n_pers = len(ids_person) n_strat = len(ids_strat) preeval = np.zeros((n_pers, n_strat), dtype=np.int32) for i, strategy in zip(range(n_strat), self.strategies[ids_strat]): print ' preevaluate strategiy', strategy.ident preeval[i, :] = strategy.preevaluate(ids_person) return ids_strat, preeval class StageTypeMixin(am.ArrayObjman): def init_stagetable(self, ident, stages, name='', info="Stage of Plan"): self._init_objman(ident=ident, parent=stages, name=name, info=info, version=0.2, ) self.add_col(am.IdsArrayConf('ids_plan', self.get_plans(), #groupnames = ['state'], name='ID plan', info='ID of plan.', xmltag='type', )) self.add_col(am.ArrayConf('times_start', -1.0, groupnames=['parameters'], # new name='Start time', unit='s', info='Planned or estimated time when this stage starts. Value -1 means unknown.', )) self.add_col(am.ArrayConf('durations', -1.0, name='Duration', groupnames=['parameters'], # new unit='s', info='Planned or estimated duration for this stage starts. Value -1 means unknown.', xmltag='type', )) def get_plans(self): return self.parent def get_ids_from_ids_plan(self, ids_plan): """ Returns only stage IDs which are part of the given plans IDs. """ # print 'get_ids_from_ids_plan for',type(ids_plan),ids_plan ids = self.get_ids() #ids_plan_part = self.ids_plan[ids] are_selected = np.zeros(len(ids), dtype=np.bool) for ind, id_plan_part in zip(xrange(len(ids)), self.ids_plan[ids]): are_selected[ind] = id_plan_part in ids_plan return ids[are_selected] # print ' ids_plan_part',type(ids_plan_part),ids_plan_part # print ' ids_selected',type(ids_plan_part.intersection(ids_plan)),ids_plan_part.intersection(ids_plan) # return np.array(list(ids_plan_part.intersection(ids_plan)), dtype = np.int32) def get_virtualpop(self): # print 'get_virtualpop ' return self.parent.parent def prepare_planning(self): pass def append_stage(self, id_plan, time_start, **kwargs): # try to fix timing # if time_start<0: # time_start_prev, duration_prev = self.parent.plans.get_timing_laststage(id_plan) # if (duration_prev>=0)&(time_start_prev>=0): # time_start = time_start_prev+duration_prev id_stage = self.add_row(ids_plan=id_plan, times_start=time_start, **kwargs) # print 'STAGE.appended stage %s id_plan=%d, id_stage=%d, t=%d'%(self.get_name(),id_plan,id_stage,time_start) # for key in kwargs.keys(): # print ' %s=%s'%(key,kwargs[key]) # print ' --id_plan, self, id_stage',id_plan, self, id_stage#,self.ids_plan.get_linktab() self.parent.append_stage(id_plan, self, id_stage) # print ' plan appended',id_plan, self, id_stage return id_stage, time_start+self.durations[id_stage] def modify_stage(self, id_stage, time_start, **kwargs): self.set_row(id_stage, **kwargs) return time_start+self.durations[id_stage] def get_timing(self, id_stage): #ind = self.get_ind(id_stage) return self.times_start[id_stage], self.durations[id_stage] def to_xml(self, id_stage, fd, indent=0): """ To be overridden by specific stage class. """ pass class TransitStages(StageTypeMixin): def __init__(self, ident, stages, name='Transit rides', info='Ride on a single public transport line (no transfers).'): self.init_stagetable(ident, stages, name=name, info=info, ) self._init_attributes() def _init_attributes(self): #ptstops = self.parent.get_ptstops() edges = self.get_virtualpop().get_net().edges if hasattr(self, 'ids_fromstop'): self.delete('ids_fromstop') self.delete('ids_tostop') self.add_col(am.IdsArrayConf('ids_line', self.get_virtualpop().get_ptlines(), groupnames=['parameters'], name='ID line', info='ID of public transport line.', )) self.add_col(am.IdsArrayConf('ids_fromedge', edges, groupnames=['parameters'], name='Edge ID from', info='Edge ID of departure bus stop or station.', )) self.add_col(am.IdsArrayConf('ids_toedge', edges, groupnames=['parameters'], name='Edge ID to', info='Edge ID of destination bus stop or station.', )) def _init_constants(self): self.get_attrsman().do_not_save_attrs(['_costs', '_fstar', ]) def prepare_planning(self): ptlinks = self.ids_line.get_linktab().ptlinks.get_value() if len(ptlinks) == 0: # no links built...built them ptlinks.build() self._costs = ptlinks.get_times() self._fstar = ptlinks.get_fstar() def append_stage(self, id_plan, time_start=-1.0, id_line=-1, duration=0.0, id_fromedge=-1, id_toedge=-1, **kwargs): """ Appends a transit stage to plan id_plan. """ # print 'TransitStages.append_stage',id_stage id_stage, time_end = StageTypeMixin.append_stage(self, id_plan, time_start, durations=duration, ids_line=id_line, ids_fromedge=id_fromedge, ids_toedge=id_toedge, ) # add this stage to the vehicle database # ind_ride gives the index of this ride (within the same plan??) #ind_ride = self.parent.get_iautos().append_ride(id_veh, id_stage) return id_stage, time_end def to_xml(self, id_stage, fd, indent=0): # <ride from="1/3to0/3" to="0/4to1/4" lines="train0"/> net = self.get_virtualpop().get_net() #ids_stoplane = net.ptstops.ids_lane #ids_laneedge = net.lanes.ids_edge ids_sumoedge = net.edges.ids_sumo #ind = self.get_ind(id_stage) fd.write(xm.start('ride', indent=indent)) fd.write(xm.num('from', ids_sumoedge[self.ids_fromedge[id_stage]])) fd.write(xm.num('to', ids_sumoedge[self.ids_toedge[id_stage]])) fd.write(xm.num('lines', self.ids_line.get_linktab().linenames[self.ids_line[id_stage]])) # if self.cols.pos_edge_from[ind]>0: # fd.write(xm.num('departPos', self.cols.pos_edge_from[ind])) # if self.cols.pos_edge_to[ind]>0: # fd.write(xm.num('arrivalPos', self.cols.pos_edge_to[ind])) fd.write(xm.stopit()) # ends stage class AutorideStages(StageTypeMixin): def __init__(self, ident, population, name='Auto rides', info='Rides with privately owned auto.', version=1.0, ): self.init_stagetable(ident, population, name=name, info=info) # print 'Rides.__init__',self.get_name() self._init_attributes() def _init_attributes(self): # TODO: this structure needs review: the private vehicle is part of a person, not a stage # street parking at home and work could be in stage. Private garage is part of person... # print '_init_attributes',self.parent.get_iautos(), self.ident,self.parent.get_landuse().parking self.add_col(am.IdsArrayConf('ids_iauto', self.get_virtualpop().get_iautos(), groupnames=['state'], name='ID vehicle', info='ID of private vehicle.', )) self.add_col(am.ArrayConf('times_init', -1.0, name='Init. time', unit='s', info='Initialization time, which is the time when the vehicle appears in the scenario. Value -1 means unknown.', )) self.add_col(am.IdsArrayConf('ids_parking_from', self.get_virtualpop().get_landuse().parking, groupnames=['state'], name='ID dep. parking', info='Parking ID at the departure of the ride starts.', )) self.add_col(am.IdsArrayConf('ids_parking_to', self.get_virtualpop().get_landuse().parking, groupnames=['state'], name='ID arr. parking', info='Parking ID at the arrival of the ride.', )) self.add_col(am.IdlistsArrayConf('ids_edges', self.get_virtualpop().get_net().edges, groupnames=['_private'], name='Route', info="The vehicle's route as a sequence of edge IDs.", )) self.add(cm.AttrConf('dist_ride_min', 400.0, dtype='object', groupnames=['options'], perm='rw', name='Min ride dist.', info='Minimum ride distance. If the distanve between parkings is less, then the person will walk.', )) # if hasattr(self,'parking'): # self.delete('parking') def _init_constants(self): self.get_attrsman().do_not_save_attrs(['_costs', '_fstar', ]) def prepare_planning(self): net = self.get_virtualpop().get_net() # ??? do this for all vehicles?? self._costs = net.edges.get_times(id_mode=net.modes.get_id_mode('passenger'), is_check_lanes=True) self._fstar = net.edges.get_fstar(is_ignor_connections=False) def append_stage(self, id_plan, time_start=-1.0, id_veh=-1, time_init=-1, id_parking_from=.1, id_parking_to=-1, **kwargs): """ Appends a ride stage to plan id_plan in case the ride is feasible. The ride is feasible if from parking and to parking are connected. If feasible, the stage ID and estimated time when stage is finished will be returned. If not feasible -1 and start time will be returned. """ # print 'Rides.append_stage',id_stage # check feasibility route, dist, duration = self.get_route_between_parking(id_parking_from, id_parking_to) if (len(route) > 0): # |(dist > self.dist_ride_min.get_value()): # is there a connection # create stage id_stage, time_end = StageTypeMixin.append_stage(self, id_plan, time_start, durations=duration, times_init=time_init, ids_iauto=id_veh, ids_parking_from=id_parking_from, ids_parking_to=id_parking_to, ids_edges=route, ) # add this stage to the vehicle database # ind_ride gives the index of this ride (within the same plan??) #ind_ride = self.parent.get_iautos().append_ride(id_veh, id_stage) return id_stage, time_end else: # not connected or too short of a distance return -1, time_start # no stage creation took place def get_route_between_parking(self, id_parking_from, id_parking_to): """ Return route and distance of ride with vehicle type vtype between id_parking_from and id_parking_to """ # print 'get_route_between_parking',id_parking_from, id_parking_to scenario = self.get_virtualpop().get_scenario() edges = scenario.net.edges lanes = scenario.net.lanes # print self.get_demand().getVehicles().cols.maxSpeed #v_max = self.get_demand().getVehicles().maxSpeed.get(vtype) parking = scenario.landuse.parking ids_lanes = parking.ids_lane[[id_parking_from, id_parking_to]] id_edge_from, id_edge_to = lanes.ids_edge[ids_lanes] pos_from, pos_to = parking.positions[[id_parking_from, id_parking_to]] # print ' id_edge_from, id_edge_to=',id_edge_from, id_edge_to duration_approx, route = routing.get_mincostroute_edge2edge( id_edge_from, id_edge_to, weights=self._costs, # mode-specific!! fstar=self._fstar # mode-specific!! ) # here is a big problem: starting with the successive node of edge_from # may result that the first edge of the route is not connected with edge_from # And arriving at the preceding node of edge_to may result that from # the last edge in route the edge_to is not connected. #route = [edge_from]+route+[edge_to] dist = np.sum(edges.lengths[route]) dist = dist - pos_from - (edges.lengths[id_edge_to] - pos_to) # if 0: # if len(route)>0: # print ' dist,duration',dist,duration_approx # else: # print ' no route found' return route, dist, duration_approx # def make_id_veh_ride(self, id_stage, i_ride): # # make a unique vehicle ID for this stage # self.inds_ride[id_stage] = i_ride # return str(self.ids_veh[id_stage])+'.'+str(i_ride) def get_writexmlinfo(self, ids_plan, is_route=True): print 'AutorideStages.get_writexmlinfo', len(ids_plan) iautos = self.get_virtualpop().get_iautos() writefunc = iautos.prepare_write_xml() ids = self.get_ids_from_ids_plan(ids_plan) writefuncs = np.zeros(len(ids), dtype=np.object) writefuncs[:] = writefunc return self.times_init[ids], writefuncs, ids def to_xml(self, id_stage, fd, indent=0): #lanes = self.parent.get_scenario().net.lanes scenario = self.get_virtualpop().get_scenario() edges = scenario.net.edges edgeindex = edges.ids_sumo parking = scenario.landuse.parking ind = self.get_ind(id_stage) fd.write(xm.start('ride', indent=indent)) id_edge_from, pos_from = parking.get_edge_pos_parking(self.ids_parking_from.value[ind]) id_edge_to, pos_to = parking.get_edge_pos_parking(self.ids_parking_to.value[ind]) # edgeindex.get_index_from_id(self.ids_edge_to.value[ind]) fd.write(xm.num('from', edgeindex[id_edge_from])) fd.write(xm.num('to', edgeindex[id_edge_to])) fd.write(xm.num('lines', self.ids_iauto.get_linktab().get_id_line_xml( self.ids_iauto[id_stage]))) # mode specific # if 0: # #pos = pos_from # length = max(edges.lengths[id_edge_from]-4.0,0.0) # # if (pos_from>0) & (pos_from < length ): # fd.write(xm.num('departPos', pos)) # # elif pos_from < 0: # fd.write(xm.num('departPos', 0.0)) # # else: # fd.write(xm.num('departPos', length)) # # #pos = self.positions_to.value[ind] # length = max(edges.lengths[id_edge_to]-4.0, 0.0) # if (pos_to>0) & (pos_to < length ): # fd.write(xm.num('arrivalPos', pos_to)) # # elif pos_to < 0: # fd.write(xm.num('arrivalPos', 0.0)) # # else: # fd.write(xm.num('arrivalPos', length)) fd.write(xm.stopit()) # ends stage class BikerideStages(StageTypeMixin): def __init__(self, ident, population, name='Bike rides', info='Rides with privately owned bike.', version=1.0, ): self.init_stagetable(ident, population, name=name, info=info) # print 'Rides.__init__',self.get_name() self._init_attributes() def _init_attributes(self): # TODO: this structure needs review: the private vehicle is part of a person, not a stage # street parking at home and work could be in stage. Private garage is part of person... # print '_init_attributes',self.parent.get_iautos(), self.ident,self.parent.get_landuse().parking self.add_col(am.IdsArrayConf('ids_ibike', self.get_virtualpop().get_ibikes(), groupnames=['state'], name='ID bike', info='ID of private, individual bike.', )) self.add_col(am.ArrayConf('times_init', -1.0, name='Init. time', unit='s', info='Initialization time, which is the time when the vehicle appears in the scenario. Value -1 means unknown.', )) edges = self.get_virtualpop().get_net().edges self.add_col(am.IdsArrayConf('ids_edge_from', edges, groupnames=['state'], name='ID Dep. edge', info='Edge ID at departure of walk.', )) self.add_col(am.IdsArrayConf('ids_edge_to', edges, groupnames=['state'], name='ID Arr. edge', info='Edge ID where walk finishes.', )) self.add_col(am.ArrayConf('positions_from', 0.0, dtype=np.float32, #choices = OPTIONMAP_POS_DEPARTURE, perm='r', name='Depart pos', unit='m', info="Position on edge at the moment of departure.", #xmltag = 'departPos', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.add_col(am.ArrayConf('positions_to', 0.0, dtype=np.float32, #choices = OPTIONMAP_POS_ARRIVAL, perm='r', name='Arrival pos', unit='m', info="Position on edge at the moment of arrival.", #xmltag = 'arrivalPos', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.add_col(am.IdlistsArrayConf('ids_edges', self.get_virtualpop().get_net().edges, groupnames=['_private'], name='Route', info="The vehicle's route as a sequence of edge IDs.", )) def _init_constants(self): self.get_attrsman().do_not_save_attrs(['_costs', '_fstar', ]) def prepare_planning(self): net = self.get_virtualpop().get_net() print 'prepare_planning' self._costs = net.edges.get_times(id_mode=net.modes.get_id_mode('bicycle'), is_check_lanes=True) ids_edge = net.edges.get_ids() for id_edge, cost in zip(ids_edge, self._costs[ids_edge]): print ' id_edge', id_edge, 'sumo', net.edges.ids_sumo[id_edge], cost self._fstar = net.edges.get_fstar(is_ignor_connections=False) def append_stage(self, id_plan, time_start=-1.0, id_veh=-1, time_init=-1, id_edge_from=-1, id_edge_to=-1, position_edge_from=0.0, position_edge_to=0.0, **kwargs): """ Appends a ride stage to plan id_plan in case the ride is feasible. The ride is feasible if from parking and to parking are connected. If feasible, the stage ID and estimated time when stage is finished will be returned. If not feasible -1 and start time will be returned. """ # print 'BikeRides.append_stage',id_plan,time_start,time_init #edges = self.get_virtualpop().get_net().edges # check feasibility #route, dist, duration = self.get_route_between_parking(id_parking_from, id_parking_to) # print ' id_edge_from, id_edge_to=',id_edge_from, id_edge_to duration_approx, route = routing.get_mincostroute_edge2edge( id_edge_from, id_edge_to, weights=self._costs, # mode-specific!! fstar=self._fstar # mode-specific!! ) #route = [edge_from]+route+[edge_to] #dist = np.sum(edges.lengths[route]) #dist = dist - pos_from - ( edges.lengths[id_edge_to] - pos_to) if (len(route) > 0): # |(dist > self.dist_ride_min.get_value()): # is there a connection # create stage id_stage, time_end = StageTypeMixin.append_stage(self, id_plan, time_start, durations=duration_approx, times_init=time_init, ids_ibike=id_veh, ids_edge_from=id_edge_from, positions_from=position_edge_from, ids_edge_to=id_edge_to, positions_to=position_edge_to, ids_edges=route, ) # print ' route = ',route # print ' ids_edges = ',self.ids_edges[id_stage] # add this stage to the vehicle database # ind_ride gives the index of this ride (within the same plan??) #ind_ride = self.parent.get_iautos().append_ride(id_veh, id_stage) return id_stage, time_end else: # not connected or too short of a distance return -1, time_start # no stage creation took place def get_writexmlinfo(self, ids_plan, is_route=True): print 'BikerideStages.get_writexmlinfo', len(ids_plan) ibikes = self.get_virtualpop().get_ibikes() bikewritefunc = ibikes.prepare_write_xml() ids = self.get_ids_from_ids_plan(ids_plan) bikewritefuncs = np.zeros(len(ids), dtype=np.object) bikewritefuncs[:] = bikewritefunc return self.times_init[ids], bikewritefuncs, ids def to_xml(self, id_stage, fd, indent=0): #lanes = self.parent.get_scenario().net.lanes scenario = self.get_virtualpop().get_scenario() edges = scenario.net.edges edgeindex = edges.ids_sumo #parking = scenario.landuse.parking #ind = self.get_ind(id_stage) fd.write(xm.start('ride', indent=indent)) #id_edge_from, pos_from = parking.get_edge_pos_parking(self.ids_parking_from.value[ind]) #id_edge_to, pos_to = parking.get_edge_pos_parking(self.ids_parking_to.value[ind]) # edgeindex.get_index_from_id(self.ids_edge_to.value[ind]) id_edge_from = self.ids_edge_from[id_stage] fd.write(xm.num('from', edgeindex[self.ids_edge_from[id_stage]])) fd.write(xm.num('to', edgeindex[self.ids_edge_to[id_stage]])) fd.write(xm.num('lines', self.ids_ibike.get_linktab().get_id_line_xml( self.ids_ibike[id_stage]))) # mode specific # if 0: # #pos = pos_from # length = max(edges.lengths[id_edge_from]-4.0,0.0) # # if (pos_from>0) & (pos_from < length ): # fd.write(xm.num('departPos', pos)) # # elif pos_from < 0: # fd.write(xm.num('departPos', 0.0)) # # else: # fd.write(xm.num('departPos', length)) # # #pos = self.positions_to.value[ind] # length = max(edges.lengths[id_edge_to]-4.0, 0.0) # if (pos_to>0) & (pos_to < length ): # fd.write(xm.num('arrivalPos', pos_to)) # # elif pos_to < 0: # fd.write(xm.num('arrivalPos', 0.0)) # # else: # fd.write(xm.num('arrivalPos', length)) fd.write(xm.stopit()) # ends stage class WalkStages(StageTypeMixin): def __init__(self, ident, stages, name='WalkStages', info='walk from a position on a lane to another position of another lane.'): self.init_stagetable(ident, stages, name=name, info=info) edges = self.get_virtualpop().get_scenario().net.edges self.add_col(am.IdsArrayConf('ids_edge_from', edges, groupnames=['state'], name='ID Dep. edge', info='Edge ID at departure of walk.', )) self.add_col(am.IdsArrayConf('ids_edge_to', edges, groupnames=['state'], name='ID Arr. edge', info='Edge ID where walk finishes.', )) self.add_col(am.ArrayConf('positions_from', 0.0, dtype=np.float32, #choices = OPTIONMAP_POS_DEPARTURE, perm='r', name='Depart pos', unit='m', info="Position on edge at the moment of departure.", #xmltag = 'departPos', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.positions_from.set_xmltag(None) self.add_col(am.ArrayConf('positions_to', 0.0, dtype=np.float32, #choices = OPTIONMAP_POS_ARRIVAL, perm='r', name='Arrival pos', unit='m', info="Position on edge at the moment of arrival.", #xmltag = 'arrivalPos', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.positions_to.set_xmltag(None) def append_stage(self, id_plan, time_start=-1.0, id_edge_from=-1, id_edge_to=-1, position_edge_from=0.1, position_edge_to=0.0, **kwargs): # print 'WalkStages.append_stage',id_stage if kwargs.has_key('duration'): duration = kwargs['duration'] else: dist, duration = self.plan_walk(id_edge_from, id_edge_to, position_edge_from, position_edge_to) id_stage, time_end = StageTypeMixin.append_stage(self, id_plan, time_start, durations=duration, ids_edge_from=id_edge_from, ids_edge_to=id_edge_to, positions_from=position_edge_from, positions_to=position_edge_to, ) return id_stage, time_end def modify_stage(self, id_stage, time_start, id_edge_from=-1, id_edge_to=-1, position_edge_from=0.1, position_edge_to=0.0): dist, duration = self.plan_walk(id_edge_from, id_edge_to, position_edge_from, position_edge_to) time_end = StageTypeMixin.modify_stage(self, id_stage, time_start, durations=duration, ids_edge_from=id_edge_from, ids_edge_to=id_edge_to, positions_from=position_edge_from, positions_to=position_edge_to, ) return time_end def plan_walk(self, id_edge_from, id_edge_to, pos_from, pos_to, id_mode=1): """ Routing for pedestrians. Currently limited to estimation of line of sight distance and walk time. """ # print 'plan_walk',id_edge_from, id_edge_to,id_mode, pos_from, pos_to scenario = self.get_virtualpop().get_scenario() edges = scenario.net.edges coord_from = edges.get_coord_from_pos(id_edge_from, pos_from) coord_to = edges.get_coord_from_pos(id_edge_to, pos_to) # from lanes, more precis, but less efficient and less robust # lanes = scenario.net.lanes #coord_from = lanes.get_coord_from_pos(edges.ids_lane[id_edge_from][0], pos_from) #coord_to = lanes.get_coord_from_pos(edges.ids_lane[id_edge_to][0], pos_to) # print ' coord_from',coord_from,type(coord_from) # print ' coord_to',coord_from,type(coord_to) # print ' delta',coord_to-coord_from # line of sight distance dist = np.sqrt(np.sum((coord_to-coord_from)**2)) duration_approx = dist/scenario.net.modes.speeds_max[id_mode] # print ' dist,duration',dist,duration_approx,scenario.net.modes.speeds_max[id_mode] return dist, duration_approx def to_xml(self, id_stage, fd, indent=0): #scenario = self.parent.get_scenario() #edges = scenario.net.edges edges = self.ids_edge_from.get_linktab() edgeindex = edges.ids_sumo ind = self.get_ind(id_stage) id_edge_from = self.ids_edge_from.value[ind] id_edge_to = self.ids_edge_to.value[ind] fd.write(xm.start('walk', indent=indent)) fd.write(xm.num('from', edgeindex[id_edge_from])) fd.write(xm.num('to', edgeindex[id_edge_to])) pos = self.positions_from.value[ind] length = max(edges.lengths[id_edge_from]-4.0, 0.0) # depricated # if (pos>0) & (pos < length ): # fd.write(xm.num('departPos', pos)) # # elif pos < 0: # fd.write(xm.num('departPos', 0.0)) # # else: # fd.write(xm.num('departPos', length)) pos = self.positions_to.value[ind] length = max(edges.lengths[id_edge_to]-4.0, 0.0) if (pos > 0) & (pos < length): fd.write(xm.num('arrivalPos', pos)) elif pos < 0: fd.write(xm.num('arrivalPos', 0.0)) else: fd.write(xm.num('arrivalPos', length)) fd.write(xm.stopit()) # ends walk class ActivityStages(StageTypeMixin): def __init__(self, ident, stages, name='Activities'): self.init_stagetable(ident, stages, name=name, info='Do some activity at a position of a lane.') self._init_attributes() def _init_attributes(self): # TODO: this structure needs review: the private vehicle is part of a person, not a stage # street parking at home and work could be in stage. Private garage is part of person... activities = self.get_virtualpop().get_activities() self.add_col(am.IdsArrayConf('ids_activity', activities, groupnames=['parameters'], name='Activity ID', info='Scheduled activity ID. This is the activity which schould be carried out in this stage.', )) # this is redundant information but here for speed when writing xml self.add_col(am.ArrayConf('names_activitytype', '', groupnames=['parameters'], dtype=np.object, perm='r', name='Type name', info="Name of activity type.", xmltag='actType', #xmlmap = get_inversemap( activitytypes.names.get_indexmap()), )) # self.add_col(am.IdsArrayConf( 'ids_facility', self.get_virtualpop().get_landuse().facilities, # groupnames = ['parameters'], # name = 'ID facility', # info = 'Facility where activity takes place.', # )) # lane and position can be computed from facility self.add_col(am.IdsArrayConf('ids_lane', self.get_virtualpop().get_net().lanes, groupnames=['parameters'], name='Lane ID', info='Lane ID where activity takes place.', #xmltag = 'lane', )) # for update..can be removed self.ids_lane.set_xmltag(None) self.add_col(am.ArrayConf('positions', 0.0, groupnames=['parameters'], dtype=np.float32, perm='r', name='Lane pos', unit='m', info="Position on lane nearby where activity takes place.", #xmltag = 'startPos', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.positions.set_xmltag(None) self.add_col(am.ArrayConf('durations', 0.0, groupnames=['parameters'], dtype=np.int32, perm='r', name='Duration', unit='s', info="Duration of activity.", xmltag='duration', #xmlmap = get_inversemap(OPTIONMAP_POS_ARRIVAL), )) self.durations.set_xmltag('duration') def get_edges_positions(self, ids_stage): """ Returns road edge and positions of activity. """ return self.ids_lane.get_linktab().ids_edge[self.ids_lane[ids_stage]],\ self.positions[ids_stage] def _init_constants(self): #self._activities = self.get_virtualpop().get_activities() #self._activitytypes = self.get_virtualpop().get_demand().activitytypes # self.do_not_save_attrs(['_activities','_activitytypes']) pass def to_xml(self, id_stage, fd, indent=0): # <stop lane="1/4to2/4_0" duration="20" startPos="40" actType="singing"/> #ind = self.get_ind(id_stage) fd.write(xm.start('stop', indent=indent)) lanes = self.get_virtualpop().get_net().lanes id_lane = self.ids_lane[id_stage] # get all xml configs and damp to fd for attrconf in self.get_group('parameters'): # this will write only if a xmltag is defined attrconf.write_xml(fd, id_stage) fd.write(xm.num('lane', lanes.get_id_sumo(id_lane))) #fd.write(xm.num('duration', self.durations[id_stage])) pos = self.positions[id_stage] length = max(lanes.get_lengths(id_lane)-4.0, 0.0) if (pos > 0) & (pos < length): fd.write(xm.num('startPos', pos)) elif pos < 0: fd.write(xm.num('startPos', 0.0)) else: fd.write(xm.num('startPos', length)) #fd.write(xm.num('lane', self.cols.id_lane[ind])) #fd.write(xm.num('startPos', self.cols.pos_lane[ind])) #fd.write(xm.num('duration', self.cols.duration[ind])) # fd.write(xm.num('actType', self._activitytypes.names[self._activities.) fd.write(xm.stopit()) # ends activity class Plans(am.ArrayObjman): def __init__(self, population, **kwargs): """Plans database.""" self._init_objman(ident='plans', parent=population, name='Plans', info='Mobility plan for virtual population.', #xmltag = ('plans','plan',None), version=0.1, **kwargs) self._init_attributes() self._init_constants() def _init_attributes(self): # upgrade if self.get_version() < 0.1: pass self.set_version(0.1) persons = self.parent #self.add(cm.ObjConf(StageTables('stagetables',self)) ) self.add_stagetable('walks', WalkStages) self.add_stagetable('autorides', AutorideStages) self.add_stagetable('bikerides', BikerideStages) self.add_stagetable('transits', TransitStages) self.add_stagetable('activities', ActivityStages) self.add_col(am.IdsArrayConf('ids_person', persons, groupnames=['links'], name='Person ID', info='Person ID to who this plan belongs to.', )) self.add_col(am.IdsArrayConf('ids_strategy', persons.get_strategies(), groupnames=['links'], name='Stategy ID', info='Stategy ID with which this plan has been generated.', )) self.add_col(am.ArrayConf('times_begin', -np.inf, dtype=np.float32, name='Begin time', info='Time when active travelling begins. This is the time in the simulation when the person appears. The first activity is not simulated.', unit='s', )) self.add_col(am.ArrayConf('times_end', -np.inf, dtype=np.float32, name='End time', info='Time when active travelling ends. This is the time in the simulation when the person disappears. The last activity is not simulated.', unit='s', )) self.add_col(am.ArrayConf('times_est', 0.0, dtype=np.float32, name='Estim. time', info='Estimated time duration to execute travel plan. Activity times are excluded.', unit='s', )) self.add_col(am.ArrayConf('times_exec', 0.0, dtype=np.float32, name='Exec. time', info='Last plan execution time from simulation run.', unit='s', )) self.add_col(am.ArrayConf('utilities', 0.0, dtype=np.float32, name='utility', info='Utility of plan.', )) self.add_col(am.ArrayConf('probabilities', 1.0, dtype=np.float32, name='Probability', info='Probability that the plan is selected out of all plans available for one person.', )) self.add_col(am.TabIdListArrayConf('stagelists', name='Stages', info='Sequence of stages of this plan.', )) def _init_constants(self): #self._id_mode_bike = self.parent.get_scenario().net.modes.get_id_mode('bicycle') # self.do_not_save_attrs([]) pass def clear_plans(self): print 'Plans.clear_plans' for stagetable in self.get_stagetables(): # print ' stagetable',stagetable stagetable.clear() self.clear_rows() # for attrconfig in self.get_attrsman().get_colconfigs(): # print ' clear attrconfig',attrconfig.attrname # attrconfig.clear() # no: self.clear() def add_stagetable(self, ident, StagesClass, **kwargs): if not hasattr(self, ident): self.add(cm.ObjConf(StagesClass(ident, self, **kwargs), groupnames=['stagetables'])) return getattr(self, ident).get_value() def get_stagetable(self, ident): return getattr(self, ident).get_value() def get_stagetables(self): """Return a list of with all stage objects""" stageobjs = [] # print 'get_stagetables',self.get_group('stagetables') for stageobj in self.get_group('stagetables'): stageobjs.append(stageobj) return stageobjs def prepare_stagetables(self, idents_stagetable): # print 'prepare_stages',stagenames #ids = self.names.get_ids_from_indices_save(stagenames) # print ' ids',ids # print ' self.stagetables[ids]',self.stagetables[ids] for indent in idents_stagetable: self.get_stagetable(indent).prepare_planning() def get_stages(self, id_plan): stages = self.stagelists[id_plan] if stages is None: return [] else: return stages def append_stage(self, id_plan, stage, id_stage): # test: stage = cm.TableEntry(stagetable, id_plan) # print 'Plans.append_stage',self,id_plan, stage, id_stage if self.stagelists[id_plan] is None: self.stagelists[id_plan] = [(stage, id_stage)] else: self.stagelists[id_plan].append((stage, id_stage)) # print ' after append stagelists[id_plan]',type(self.stagelists[id_plan]),self.stagelists[id_plan] # def prepare_stages(self,stagenames): # self.get_stagetables().prepare_stages(stagenames) def get_timing_laststage(self, id_plan): """ Return time_start and duration of last stage of plan id_plan """ stages_current = self.stagelists[id_plan] if stages_current is not None: stage_last, id_stage_last = stages_current[-1] return stage_last.get_timing(id_stage_last) else: return -1, -1 class Virtualpopulation(DemandobjMixin, am.ArrayObjman): def __init__(self, ident, demand, **kwargs): self._init_objman(ident=ident, parent=demand, name='Virtual population', info='Contains information of each individual of the virtual population.', version=0.2, # only for new scenarios **kwargs) self._init_attributes() self._init_constants() def _init_attributes(self): # update here # self.set_version(0.2) demand = self.parent scenario = demand.get_scenario() # -------------------------------------------------------------------- # individual vehicles tables self.add(cm.ObjConf(IndividualAutos('iautos', self))) self.add(cm.ObjConf(IndividualBikes('ibikes', self))) self.add(cm.ObjConf(IndividualMotorcycles('imotos', self))) # -------------------------------------------------------------------- # activity table #self.add(cm.ObjConf(ActivityTypes('activitytypes', self)) ) self.add(cm.ObjConf(Activities('activities', self))) # -------------------------------------------------------------------- # strategies table (must be before plans) self.add(cm.ObjConf(Strategies('strategies', self))) # -------------------------------------------------------------------- # plans table self.add(cm.ObjConf(Plans(self))) self.get_strategies().add_default() # =================================================================== # Add person attributes # -------------------------------------------------------------------- # socio economic parameters self.add_col(am.ArrayConf('identifications', '', dtype=np.object, groupnames=['socioeconomic'], name='Name', info='Identification or name of person.', )) self.add_col(am.ArrayConf('ids_gender', default=-1, dtype=np.int32, groupnames=['socioeconomic'], choices=GENDERS, name='Gender', info='Gender of person.', )) self.add_col(am.ArrayConf('years_birth', default=-1, dtype=np.int32, groupnames=['socioeconomic'], name='Birth year', info='Year when person has been born.', )) self.add_col(am.ArrayConf('ids_occupation', default=OCCUPATIONS['unknown'], dtype=np.int32, choices=OCCUPATIONS, groupnames=['socioeconomic'], name='Occupation', info='Type of occupation.', )) # -------------------------------------------------------------------- # household parameters self.add_col(am.ArrayConf('numbers_houehold', default=1, dtype=np.int32, groupnames=['household'], name='Number in household', info='Number of persons in household.', )) self.add_col(am.ArrayConf('numbers_minor', default=0, dtype=np.int32, groupnames=['household'], name='Number minors', info='Number of minor in household. In the context of traffic simulations minors are persons who need to be accompaigned by adulds when travelling.', )) # -------------------------------------------------------------------- # activity parameters # lists with activity patterns self.add_col(am.IdlistsArrayConf('activitypatterns', self.activities.get_value(), groupnames=['activity'], name='Activity IDs', info="Sequence of activity IDs to be accomplished by the person.", )) # -------------------------------------------------------------------- # mobility parameters # -------------------------------------------------------------------- # give a pedestrian vtype to each person vtypes = self.get_demand().vtypes self.add_col(am.IdsArrayConf('ids_vtype', vtypes, id_default=vtypes.select_by_mode(mode='pedestrian')[0], groupnames=['mobility'], name='Ped. type', info='The pedestrian type ID specifies the walking characteristics and visual representation of the person. In SUMO terminology, this is the vehicle type.', #xmltag = 'type', )) self.add_col(am.ArrayConf('traveltimebudgets', default=55*60, dtype=np.int32, groupnames=['mobility'], name='time budget', unit='s', info='Daily time budget used for traveling.', )) self.add_col(am.IdsArrayConf('ids_mode_preferred', scenario.net.modes, groupnames=['mobility'], name='ID preferred mode', info='ID of preferred transport mode of person.', )) self.add_col(am.IdsArrayConf('ids_iauto', self.get_iautos(), groupnames=['mobility'], name='ID auto', info='ID of individual auto. Negative value means no bile available.', )) self.add_col(am.IdsArrayConf('ids_ibike', self.get_ibikes(), groupnames=['mobility'], name='ID bike', info='ID of individual bicycle. Negative value means no bike available.', )) self.add_col(am.IdsArrayConf('ids_imoto', self.get_imotos(), groupnames=['mobility'], name='ID motorcycle', info='ID of individual motorcycle. Negative value means no motorcycle available.', )) self.add_col(am.ArrayConf('dists_walk_max', default=300.0, dtype=np.float32, groupnames=['mobility'], name='Max. walk dist', info='Maximum acceptable walking distance between origin and destination or for transfers between modes.', )) # -------------------------------------------------------------------- # plans self.add_col(am.IdsArrayConf('ids_plan', self.get_plans(), groupnames=['plans'], name='ID Plan', info='Currently selected mobility plan ID of person. This is the plan which will be simulated.', )) self.add_col(am.IdlistsArrayConf('lists_ids_plan', self.get_plans(), groupnames=['plans'], name='Plan IDs', info='List with alternative, feasible mobility plan IDs for each person.', )) def _init_constants(self): modes = self.get_scenario().net.modes self.id_mode_bike = modes.get_id_mode('bicycle') self.id_mode_auto = modes.get_id_mode('passenger') self.id_mode_moto = modes.get_id_mode('motorcycle') self._edges = self.get_net().edges self.do_not_save_attrs(['id_mode_bike', 'id_mode_auto', 'id_mode_moto', '_edges']) def get_demand(self): return self.parent def clear_population(self): # self.clear() self.clear_plans() self.clear_ivehicles() # TODO: this should disappear self.get_landuse().parking.clear_booking() # for attrconfig in self.get_attrsman().get_colconfigs(): # attrconfig.clear() self.clear_rows() def clear_plans(self): # print 'clear_plans',self.get_stagetables() self.ids_plan.reset() self.lists_ids_plan.reset() self.get_plans().clear_plans() # TODO: this should disappear self.get_landuse().parking.clear_booking() def clear_ivehicles(self): """ Clear all individually owned vehicles. """ print 'clear_ivehicles' self.get_iautos().clear_vehicles() self.get_ibikes().clear_vehicles() self.get_imotos().clear_vehicles() def get_activities(self): return self.activities.get_value() def get_strategies(self): return self.strategies.get_value() def get_plans(self): return self.plans.get_value() def get_iautos(self): return self.iautos.get_value() def get_ibikes(self): return self.ibikes.get_value() def get_imotos(self): return self.imotos.get_value() def get_stagetables(self): return self.get_plans().get_stagetables() def get_landuse(self): return self.parent.get_scenario().landuse def get_scenario(self): return self.parent.get_scenario() def get_net(self): return self.parent.get_scenario().net def get_ptlines(self): return self.get_demand().ptlines def get_ptstops(self): return self.get_net().ptstops def get_id_sumo_from_id(self, id_sumo): return u'vp.%s' % id_sumo def get_id_from_id_sumo(self, id_veh_sumo): if len(id_veh_sumo.split('.')) == 2: prefix, id_pers = id_veh_sumo.split('.') if prefix == 'vp': return int(id_pers) else: return -1 return -1 def get_ids_from_ids_sumo(self, ids_sumo): ids = np.zeros(len(ids_sumo), dtype=int32) for id_sumo in ids_sumo: ids[i] = self.get_id_from_id_sumo(id_sumo) return ids def get_time_depart_first(self): # print 'Virtualpop.get_time_depart_first' if len(self.get_plans()) > 0: plans = self.get_plans() ids = self.select_ids(self.ids_plan.get_value() >= 0) # print ' ids',ids return float(np.min(plans.times_begin[self.ids_plan[ids]])) else: return 0.0 def get_time_depart_last(self): if len(self.get_plans()) > 0: # todo: this can be improved by adding plan execution time plans = self.get_plans() ids = self.select_ids(self.ids_plan.get_value() >= 0) return float(np.max(plans.times_end[self.ids_plan[ids]])) else: return 0.0 # def add_stagetable(self,ident,StageClass, **kwargs): # print 'add_stagetable',ident,StageClass#,kwargs # if not hasattr(self,ident): # #print ' StageClass',StageClass(ident, self, **kwargs) # #print ' ObjConf',cm.ObjConf(StageClass(ident, self, **kwargs), goupnames = ['stages']) # self.add(cm.ObjConf(StageClass(ident, self, **kwargs), goupnames = ['stages']) ) # return getattr(self, ident).get_value() # def get_stagetable(self, ident): # return getattr(self, ident).get_value() # def get_stagetables(self): # """Return a list of with all stage objects""" # stageobjs = [] # #print 'get_stagetables',self.get_group('stages') # for stageobj in self.get_group('stages'): # stageobjs.append(stageobj) # return stageobjs def make_multiple(self, n, **kwargs): return self.add_rows(n=n, **kwargs) def disaggregate_odflow(self, time_start, time_end, id_mode, ids_fac, probs_fac_orig, probs_fac_dest, tripnumber_tot, id_activitytype_orig, id_activitytype_dest, hour_begin_earliest_orig, hour_begin_earliest_dest, hour_begin_latest_orig, hour_begin_latest_dest, duration_min_orig, duration_min_dest, duration_max_orig, duration_max_dest, scale=1.0, hour_offset=8.0, # 08:00 hour_tripbudget=25.0/60, # 25min **kwargs ): """ Disaggregation of demand dem from taz id_zone_orig to id_zone_dest with id_mode during time interval time_start,time_end, and creation of persons which are parameterized accordingly. The facility type at origin will be landusetype_orig and at destination landusetype_dest. """ tripnumber = int(scale*tripnumber_tot) print 'disaggregate_odflow', time_start, time_end, id_mode, tripnumber print ' id_activitytype_orig,id_activitytype_dest', id_activitytype_orig, id_activitytype_dest # print ' probs_orig',sum(probs_fac_orig),'\n',probs_fac_orig # print ' probs_dest',sum(probs_fac_dest),'\n',probs_fac_dest # is there a chance to find facilities to locate persons in # origin and destination zone #activitytypes= self.get_scenario().demand.activitytypes #ctivitynames = self.activitytypes.names #get_id_act = activitynames.get_id_from_index if (np.sum(probs_fac_orig) > 0) & (np.sum(probs_fac_dest) > 0): # if id_mode == self._id_mode_bike: # are_bikeowner = np.ones(tripnumber, dtype=np.bool) # else: # # TODO: assign a default percentage of bike owners # are_bikeowner = np.zeros(tripnumber, dtype=np.bool) #times_start = np.random.randint(time_start,time_end,tripnumber) ids_person = self.make_multiple(tripnumber, ids_mode_preferred=id_mode * np.ones(tripnumber, dtype=np.int32), #times_start = times_start, ) unitvec_int = np.ones(tripnumber, dtype=np.int32) unitvec_float = np.ones(tripnumber, dtype=np.int32) # activity timing #hours_start = hour_offset + np.array(times_start,dtype = np.float32)/3600 #tol_orig = hour_begin_latest_orig+duration_max_orig-(hour_begin_earliest_orig+duration_min_orig) # print ' hours_start[:3]',hours_start[:3] # print ' tol_orig',tol_orig #hours_end_est = hours_start + hour_tripbudget #tol_dest = hour_begin_latest_dest-hour_begin_earliest_dest # print ' hours_end_est[:3]',hours_end_est[:3] # print ' tol_dest',tol_dest #self.map_id_act_to_ids_facattrconf[id_activitytype_orig][ids_person] = ids_fac[random_choice(tripnumber, probs_fac_orig)] #self.map_id_act_to_ids_facattrconf[id_activitytype_dest][ids_person] = ids_fac[random_choice(tripnumber, probs_fac_dest)] activities = self.get_activities() # fix first departure hours for first activity imposed by # OD flow data hours_end_earliest_orig = (hour_offset+float(time_start)/3600)*unitvec_float hours_end_latest_orig = (hour_offset+float(time_end)/3600)*unitvec_float duration_mean_orig = 0.5 * duration_min_orig+duration_max_orig hours_begin_earliest_orig = hours_end_earliest_orig-duration_mean_orig hours_begin_latest_orig = hours_end_latest_orig-duration_mean_orig # this estimate could be *optionally* replaced by preliminary routing hours_begin_earliest_dest = hours_end_earliest_orig+hour_tripbudget hours_begin_latest_dest = hours_end_latest_orig+hour_tripbudget #hours_end_earliest_dest = hours_begin_earliest_dest+duration_min_dest #hours_end_latest_dest = hours_begin_latest_dest+duration_max_dest ids_activity_orig = activities.add_rows( n=tripnumber, ids_activitytype=id_activitytype_orig * unitvec_int, ids_facility=ids_fac[random_choice(tripnumber, probs_fac_orig)], hours_begin_earliest=hours_begin_earliest_orig, hours_begin_latest=hours_begin_latest_orig, durations_min=duration_mean_orig-1.0/60.0 * unitvec_float, # min mast be less than max to prevent crash durations_max=duration_mean_orig * unitvec_float, ) ids_activity_dest = activities.add_rows( n=tripnumber, ids_activitytype=id_activitytype_dest * unitvec_int, ids_facility=ids_fac[random_choice(tripnumber, probs_fac_dest)], hours_begin_earliest=hours_begin_earliest_dest, hours_begin_latest=hours_begin_latest_dest, durations_min=duration_min_dest*unitvec_float, durations_max=duration_max_dest*unitvec_float, ) for id_person, id_activity_orig, id_activity_dest in zip(ids_person, ids_activity_orig, ids_activity_dest): self.activitypatterns[id_person] = [id_activity_orig, id_activity_dest] #activitypatterns = np.zeros((tripnumber,2), dtype = np.int32) #activitypatterns[:,0]= ids_activity_orig #activitypatterns[:,1]= ids_activity_dest # try convert in this way to lists # print ' activitypatterns',activitypatterns.tolist() #self.activitypatterns[ids_person] = activitypatterns.tolist() # for id_person, act_pattern in zip(ids_person,activitypatterns.tolist()): # self.activitypatterns[id_person] = act_pattern return ids_person else: print 'WARNING in disaggregate_odflow: no probabilities', np.sum(probs_fac_orig), np.sum(probs_fac_dest) return [] def create_pop_from_odflows(self, is_use_landusetypes=False, **kwargs): """ Creates a population and defines home and activity facility according to OD matrix defined in odflows. The population is distributed within the zones according to the area of the facility. if landusetype_orig and landusetype_dest also landuse types of facilities of origin and destination are taken into account. """ print 'create_pop_from_odflows' demand = self.parent odflowtab = demand.odintervals.generate_odflows() landuse = self.get_landuse() activitytypes = demand.activitytypes log = kwargs.get('logger', self.get_logger()) if is_use_landusetypes: # TODO: not tested and works only for one landusetype per activity #activitytypes = self.activitytypes.get_value() #id_landusetype_orig = activitytypes.ids_landusetypes[kwargs['id_activitytype_orig']][0] #id_landusetype_dest = activitytypes.ids_landusetypes[kwargs['id_activitytype_dest']][0] pass # TODO: get activitypes from activity #probs_fac, ids_fac = self.get_landuse().facilities.get_departure_probabilities_landuse() else: probs_fac_area, ids_fac = landuse.facilities.get_departure_probabilities() # self._make_map_id_act_to_ids_facattrconf() ids_flow = odflowtab.get_ids() n_flows = len(ids_flow) ids_activitytype_orig = odflowtab.ids_activitytype_orig[ids_flow] ids_activitytype_dest = odflowtab.ids_activitytype_dest[ids_flow] i = 0.0 for id_flow,\ id_orig,\ id_dest,\ id_mode,\ time_start,\ time_end,\ tripnumber,\ id_activitytype_orig,\ id_activitytype_dest,\ hour_begin_earliest_orig,\ hour_begin_earliest_dest,\ hour_begin_latest_orig,\ hour_begin_latest_dest,\ duration_min_orig,\ duration_min_dest,\ duration_max_orig,\ duration_max_dest\ in zip(ids_flow, odflowtab.ids_orig[ids_flow], odflowtab.ids_dest[ids_flow], odflowtab.ids_mode[ids_flow], odflowtab.times_start[ids_flow], odflowtab.times_end[ids_flow], odflowtab.tripnumbers[ids_flow], ids_activitytype_orig, ids_activitytype_dest, activitytypes.hours_begin_earliest[ids_activitytype_orig], activitytypes.hours_begin_earliest[ids_activitytype_dest], activitytypes.hours_begin_latest[ids_activitytype_orig], activitytypes.hours_begin_latest[ids_activitytype_dest], activitytypes.durations_min[ids_activitytype_orig], activitytypes.durations_min[ids_activitytype_dest], activitytypes.durations_max[ids_activitytype_orig], activitytypes.durations_max[ids_activitytype_dest], ): log.progress(i/n_flows*100) i += 1 if is_use_landusetypes: # TODO: not tested and works only for one landusetype per activity # but in activity typrs several landuse types are defined # idea: add the probabilities for landuse types of origin and dest #probs_fac_orig = probs_fac[id_orig][id_landusetype_orig] #probs_fac_dest = probs_fac[id_dest][id_landusetype_dest] pass else: probs_fac_orig = probs_fac_area[id_orig] probs_fac_dest = probs_fac_area[id_dest] self.disaggregate_odflow(time_start, time_end, id_mode, ids_fac, probs_fac_orig, probs_fac_dest, tripnumber, id_activitytype_orig, id_activitytype_dest, hour_begin_earliest_orig, hour_begin_earliest_dest, hour_begin_latest_orig, hour_begin_latest_dest, duration_min_orig, duration_min_dest, duration_max_orig, duration_max_dest, **kwargs ) # return odflowtab def add_plans(self, ids_person, id_strategy=-1): print 'add_plans n, id_strategy', len(ids_person), id_strategy n_plans = len(ids_person) # print ' get_plans',self.get_plans() # print ' stagetables',self.get_plans().get_stagetables().get_ident_abs() # print ' stagetables',self.get_plans().get_stagetables().stagetables.get_value() ids_plan = self.get_plans().add_rows(n=n_plans, ids_person=ids_person, ids_strategy=id_strategy*np.ones(n_plans, dtype=np.int32), ) # print ' post stagetables',self.get_plans().get_stagetables().get_ident_abs() # print ' post stagetables',self.get_plans().get_stagetables().stagetables.get_value() # return ids_plan self.ids_plan[ids_person] = 1*ids_plan for id_person, id_plan in zip(ids_person, ids_plan): if self.lists_ids_plan[id_person] is None: self.lists_ids_plan[id_person] = [id_plan] else: self.lists_ids_plan[id_person].append(id_plan) return ids_plan def plan_with_strategy(self, id_strategy, evalcrit=0, logger=None): strategy = self.get_strategies().strategies[id_strategy] ids_person = self.get_ids() evals = strategy.preevaluate(ids_person) # TODO: check whether at least two activities are in # activitypattern...could be done centrally ids_person_preeval = ids_person[evals >= evalcrit] print 'plan_with_strategy', strategy.ident, 'n_pers', len(ids_person_preeval) strategy.plan(ids_person_preeval, logger=logger) # def get_times(self, ind, ids_person = None, pdf = 'unit'): # """ # Returns person IDs, activity IDs and initial times # for persons with at least one acivity. # # ids_person: array of preselected person IDs # # pdf: gives the probability density function to be chosen to determin # the departure times within the initial time intervals given by # initial activity attributes. # """ # ids_person, ids_activity = self.get_activity_from_pattern(0,ids_person) # times_init = self.get_activities().get_times_init(ids_activity, pdf) # # return ids_person, ids_activity, times_init def get_activities_from_pattern(self, ind, ids_person=None): """ Returns person IDs and from/to activity IDs for persons who perform an activity at the given activity index ind. Returns arrays: ids_person, ids_activity_from, ids_activity_to ind: index of activity in activity pattern, starting with 0 ids_person: array of preselected person IDs """ ids_person_activity = [] ids_activity_from = [] ids_activity_to = [] if ids_person is None: ids_person = self.get_ids() for id_person, activitypattern in zip(ids_person, self.activitypatterns[ids_person]): # has person activity at index ind? if len(activitypattern) > ind+1: ids_person_activity.append(id_person) ids_activity_from.append(activitypattern[ind]) ids_activity_to.append(activitypattern[ind+1]) return ids_person_activity, ids_activity_from, ids_activity_to # activities.hours_begin_earliest[ids_person_activity], # activities.hours_begin_latest[ids_person_activity], # activities.durations_min[ids_person_activity], # activities.durations_max[ids_person_activity], def get_vtypes(self): ids_vtypes = set() # get individual vehicle types ids_vtypes.update(self.get_iautos().ids_vtype.get_value()) ids_vtypes.update(self.get_imotos().ids_vtype.get_value()) ids_vtypes.update(self.get_ibikes().ids_vtype.get_value()) # add public transport ids_vtypes.update(self.get_ptlines().ids_vtype.get_value()) # add pedestrian types ids_vtypes.update(self.ids_vtype.get_value()) return ids_vtypes def select_plans_preferred_mode(self, fraction=0.1, **kwargs): """ Selects current plant to satisfy best the preferred mode. """ strategies = self.get_strategies() ids_strat = strategies.get_ids() n_strat = len(ids_strat) ids_pers_all = self.get_ids() ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] n_pers = len(ids_pers) preevals = -1*np.ones((np.max(ids_pers)+1, np.max(ids_strat)+1), dtype=np.int32) for ind, id_strategy, strategy in zip(range(n_strat), ids_strat, strategies.strategies[ids_strat]): preevals[ids_pers, id_strategy] = strategy.preevaluate(ids_pers) preferred = 2 plans = self.get_plans() self.ids_plan.reset() for id_pers, ids_plan in zip(ids_pers, self.lists_ids_plan[ids_pers]): if len(ids_plan) > 0: # print ' id_pers,ids_plan',id_pers,ids_plan # print ' ids_strat, preeval',plans.ids_strategy[ids_plan],preevals[id_pers,plans.ids_strategy[ids_plan]] inds_sel = preevals[id_pers, plans.ids_strategy[ids_plan]] == preferred # print ' inds_sel',inds_sel,np.flatnonzero(inds_sel),inds_sel.dtype if len(inds_sel) > 0: #ids_plan_sel = np.array(ids_plan)[inds_sel] # print ' ids_plan_sel',ids_plan_sel # at least one plan contains preferred mode self.ids_plan[id_pers] = np.array(ids_plan)[inds_sel][0] # whu [1]? # else: # assumption: a plan for the preferred mode always exists # # no preferred mode found try to satisfy best possible # #ids_plan[preevals[id_pers,plans.ids_strategy[ids_plan]] == preferred] # self.ids_plan[id_pers] = -1 return True def select_plans_min_time_est(self, fraction=1.0, timedev=-1.0, c_probit=-1.0, **kwargs): """ Select plan with minimum estimated travel time as current plant. """ ids_pers_all = self.get_ids() ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] times_est = self.get_plans().times_est # self.ids_plan.reset() for id_pers, ids_plan_all in zip(ids_pers, self.lists_ids_plan[ids_pers]): ids_plan = np.array(ids_plan_all, dtype=np.int32)[times_est[ids_plan_all] > 0.1] if len(ids_plan) > 0: # print ' id_pers,ids_plan',id_pers,ids_plan if timedev > 0.1: times_rand = np.random.normal(0.0, timedev, len(ids_plan)) elif c_probit > 0: times_rand = np.zeros(len(ids_plan), dtype=np.float32) for i, t in zip(xrange(len(ids_plan)), times_est[ids_plan]): times_rand[i] = np.random.normal(0.0, c_probit * t, 1) else: times_rand = np.zeros(len(ids_plan), dtype=np.float32) self.ids_plan[id_pers] = np.array(ids_plan)[np.argmin(times_est[ids_plan]+times_rand)] return True def select_plans_random(self, fraction=0.1, **kwargs): """ A fraction of the population changes a plan. The new plans are chosen randomly. """ ids_pers_all = self.get_ids() print 'select_plans_random', len(ids_pers_all), fraction times_est = self.get_plans().times_est # self.ids_plan.reset() # ids_mode[random_choice(n,shares/np.sum(shares))] ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] print ' ids_pers', ids_pers for id_pers, ids_plan in zip(ids_pers, self.lists_ids_plan[ids_pers]): if len(ids_plan) > 0: # print ' id_pers,ids_plan',id_pers,ids_plan self.ids_plan[id_pers] = ids_plan[np.random.randint(len(ids_plan))] return True def select_plans_min_time_exec(self, fraction=0.1, timedev=-1, c_probit=-1, **kwargs): """ Select plan with minimum executed travel time as current plant. """ ids_pers_all = self.get_ids() # print 'select_plans_random',len(ids_pers_all),fraction ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] times_exec = self.get_plans().times_exec # self.ids_plan.reset() for id_pers, ids_plan_all in zip(ids_pers, self.lists_ids_plan[ids_pers]): # print ' ids_plan_all',ids_plan_all,type(ids_plan_all) ids_plan = np.array(ids_plan_all, dtype=np.int32)[times_exec[ids_plan_all] > 0.1] if len(ids_plan) > 0: # print ' id_pers,ids_plan',id_pers,ids_plan if timedev > 0.1: times_rand = np.random.normal(0.0, timedev, len(ids_plan)) elif c_probit > 0: times_rand = np.zeros(len(ids_plan), dtype=np.float32) for i, t in zip(xrange(len(ids_plan)), times_exec[ids_plan]): times_rand[i] = np.random.normal(0.0, c_probit * t, 1) else: times_rand = np.zeros(len(ids_plan), dtype=np.float32) self.ids_plan[id_pers] = np.array(ids_plan)[np.argmin(times_exec[ids_plan]+times_rand)] return True def select_plans_min_time_exec_est(self, fraction=0.1, timedev=-1, c_probit=-1, **kwargs): """ Select plan with minimum executed or estimated (if executed doesn't exist) travel time as current plant. """ n_analyzed_persons = 0 ids_pers_all = self.get_ids() ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] times_exec = self.get_plans().times_exec times_est = self.get_plans().times_est ids_plans = self.get_plans().get_ids() for id_pers, ids_plan_all in zip(ids_pers, self.lists_ids_plan[ids_pers]): ids_plan_est = np.array(ids_plan_all, dtype=np.int32)[times_est[ids_plan_all] > 0.1] ids_plan_exec = np.array(ids_plan_all, dtype=np.int32)[times_exec[ids_plan_all] > 0.1] if len(ids_plan_est) > 0: if len(ids_plan_est) == len(ids_plan_exec): ids_plan_est = [] else: c = np.zeros(len(ids_plan_est)) for x in range(len(ids_plan_est)): for y in range(len(ids_plan_exec)): if ids_plan_est[x] == ids_plan_exec[y]: c[x] = 1 d = np.delete(ids_plan_est, np.flatnonzero(c)) ids_plan_est = d n_analyzed_persons += 1 if timedev > 0.1: if len(ids_plan_est) > 0: times_rand_est = np.random.normal(0.0, timedev, len(ids_plan_est)) if len(ids_plan_exec) > 0: times_rand_exec = np.random.normal(0.0, timedev, len(ids_plan_exec)) elif c_probit > 0: if len(ids_plan_est) > 0: times_rand_est = np.zeros(len(ids_plan_est), dtype=np.float32) for i, t in zip(xrange(len(ids_plan_est)), times_est[ids_plan_est]): times_rand_est[i] = np.random.normal(0.0, c_probit * t, 1) if len(ids_plan_exec) > 0: times_rand_exec = np.zeros(len(ids_plan_exec), dtype=np.float32) for i, t in zip(xrange(len(ids_plan_exec)), times_exec[ids_plan_exec]): times_rand_exec[i] = np.random.normal(0.0, c_probit * t, 1) else: if len(ids_plan_exec) > 0: times_rand_exec = np.zeros(len(ids_plan_exec), dtype=np.float32) if len(ids_plan_est) > 0: times_rand_est = np.zeros(len(ids_plan_est), dtype=np.float32) if len(ids_plan_exec) > 0 and len(ids_plan_est) > 0: if min(times_exec[ids_plan_exec]+times_rand_exec) < min(times_est[ids_plan_est]+times_rand_est): self.ids_plan[id_pers] = np.array(ids_plan_exec)[np.argmin( times_exec[ids_plan_exec]+times_rand_exec)] else: self.ids_plan[id_pers] = np.array( ids_plan_est)[np.argmin(times_est[ids_plan_est]+times_rand_est)] elif len(ids_plan_exec) == 0: self.ids_plan[id_pers] = np.array(ids_plan_est)[np.argmin(times_est[ids_plan_est]+times_rand_est)] else: self.ids_plan[id_pers] = np.array(ids_plan_exec)[np.argmin( times_exec[ids_plan_exec]+times_rand_exec)] print 'were analyzed %d persons' % (n_analyzed_persons) return True def select_plans_next(self, fraction=0.1, **kwargs): """ Select next plan in the plan list as current plant. """ # print 'select_plans_next' ids_pers_all = self.get_ids() ids_pers = ids_pers_all[np.random.random(len(ids_pers_all)) > (1.0-fraction)] for id_pers, id_plan_current, ids_plan in zip(ids_pers, self.ids_plan[ids_pers], self.lists_ids_plan[ids_pers]): n_plan = len(ids_plan) if n_plan > 0: # print ' id_pers,id_plan_current',id_pers,id_plan_current,ids_plan,id_plan_current != -1 if id_plan_current != -1: ind = ids_plan.index(id_plan_current) # print ' ind',ind,ind +1 < n_plan if ind + 1 < n_plan: ind += 1 else: ind = 0 else: ind = 0 # print ' ind,n_plan',ind,n_plan,'ids_plan[ind]', ids_plan[ind] self.ids_plan[id_pers] = ids_plan[ind] # print ' finally: ids_plan=',self.ids_plan.get_value() return True def prepare_sim(self, process): return [] # [(steptime1,func1),(steptime2,func2),...] def get_trips(self): # returns trip object, method common to all demand objects return self.get_iautos() def get_writexmlinfo(self, is_route=False): """ Returns three array where the first array is the begin time of the first vehicle and the second array is the write function to be called for the respectice vehicle and the third array contains the vehicle ids Method used to sort trips when exporting to route or trip xml file """ print 'Virtualpop.get_writexmlinfo' plans = self.get_plans() ids_pers = self.select_ids(self.ids_plan.get_value() >= 0) n_pers = len(ids_pers) ids_plans = self.ids_plan[ids_pers] # get vehicle trip info times_depart_bike, writefuncs_bike, ids_rides_bike = plans.get_stagetable( 'bikerides').get_writexmlinfo(ids_plans, is_route) times_depart_auto, writefuncs_auto, ids_rides_auto = plans.get_stagetable( 'autorides').get_writexmlinfo(ids_plans, is_route) #self.add_stagetable('walks', WalkStages) #self.add_stagetable('autorides', AutorideStages) #self.add_stagetable('bikerides', BikerideStages) #self.add_stagetable('transits', TransitStages) #self.add_stagetable('activities', ActivityStages) #rides = plans.get_stagetable('autorides') # do persons times_depart_pers = plans.times_begin[ids_plans] writefuncs_pers = np.zeros(n_pers, dtype=np.object) writefuncs_pers[:] = self.write_person_xml # assemble vectors print ' times_depart_pers.shape', times_depart_pers.shape print ' times_depart_bike.shape', times_depart_bike.shape print ' times_depart_auto.shape', times_depart_auto.shape times_depart = np.concatenate((times_depart_pers, times_depart_auto, times_depart_bike, )) writefuncs = np.concatenate((writefuncs_pers, writefuncs_auto, writefuncs_bike, )) ids = np.concatenate((ids_pers, ids_rides_auto, ids_rides_bike, )) return times_depart, writefuncs, ids def write_person_xml(self, fd, id_pers, time_begin, indent=2): stages = self.get_plans().get_stages(self.ids_plan[id_pers]) fd.write(xm.start('person', indent=indent+2)) fd.write(xm.num('id', self.get_id_sumo_from_id(id_pers))) # fd.write(xm.num('depart',self.times_start[id_pers])) fd.write(xm.num('depart', time_begin)) fd.write(xm.num('type', self.parent.vtypes.ids_sumo[self.ids_vtype[id_pers]])) activity_init, id_stage_init = stages[0] id_edge_init, pos_init = activity_init.get_edges_positions(id_stage_init) # self.ids_edge_depart.write_xml(fd,id_trip) # self.positions_depart.write_xml(fd,id_trip) fd.write(xm.num('from', self._edges.ids_sumo[id_edge_init])) fd.write(xm.num('departPos', pos_init)) fd.write(xm.stop()) # write stages of this person. # Attention!! first and last stage, which are activities, # will NOT be exportes , therefore [1:-1] for stage, id_stage in stages[1:-1]: stage.to_xml(id_stage, fd, indent+4) fd.write(xm.end('person', indent=indent+2)) def config_results(self, results): results.add_resultobj(res.Personresults('virtualpersonresults', results, self, self.get_net().edges, name='Virtual person results', info='Table with simulation results for person of the virtual population. The results refer to all trips made by the person during the entire simulation period.', ), groupnames=['Trip results']) results.add_resultobj(res.Vehicleresults('iautotripresults', results, self.get_iautos(), self.get_net().edges, name='Auto trip results', info='Table with trip results mad with individual autos. The results refer to all trips made by a specific vehicle during the entire simulation period.', ), groupnames=['Trip results']) results.add_resultobj(res.Vehicleresults('ibiketripresults', results, self.get_ibikes(), self.get_net().edges, name='Bike trip results', info='Table with trip results mad with individual bikes. The results refer to all trips made by a specific vehicle during the entire simulation period.', ), groupnames=['Trip results']) # def process_results(self, results, process = None): # print 'process_results' # ## copy total travel into plan execution time # personresults = results.virtualpersonresults # self.update_plans(personresults) def update_results(self, personresults): """ Updates plans with results from previous simulation run, and updates plan choice """ ids_res = personresults.get_ids() print 'update_results', len(ids_res) ids_person = personresults.ids_person[ids_res] ids_plan = self.ids_plan[ids_person] self.get_plans().times_exec[ids_plan] = personresults.times_travel_total[ids_res] # change mobility plan based on updated travel times pass class PopGenerator(Process): def __init__(self, ident='virtualpopgenerator', virtualpop=None, logger=None, **kwargs): print 'PopFromOdfGenerator.__init__ ', ident, virtualpop # TODO: let this be independent, link to it or child?? # scenario = virtualpop.get_scenario() self._init_common(ident, parent=virtualpop, name='Population generator', logger=logger, info='Create virtual population from basic statistical data.', ) attrsman = self.set_attrsman(cm.Attrsman(self)) # make for each possible pattern a field for prob activitytypes = self.parent.get_scenario().demand.activitytypes self.n_person = attrsman.add(cm.AttrConf('n_person', kwargs.get('n_person', 1000), groupnames=['options'], perm='rw', name='Number of person', info='Number of adult persons.', )) self.ids_acttype_default = activitytypes.get_ids_from_formatted('home,work') # self.ids_acttype = attrsman.add(cm.AttrConf( 'ids_acttype',kwargs.get('id_acttype',activitytypes.get_id_from_formatted('home')), # groupnames = ['options'], # choices = activitytypes.names.get_indexmap(), # perm='rw', # name = 'Activity type', # info = 'Initial activity type.', # )) self.ttb_mean = attrsman.add(cm.AttrConf('ttb_mean', kwargs.get('ttb_mean', 55*60), groupnames=['options'], perm='rw', name='Avg. of 24h travel time budget', unit='s', info="""Average travel time budget for one day. This time excludes time for activities. """, )) self.ttb_dev = attrsman.add(cm.AttrConf('ttb_dev', kwargs.get('ttb_dev', 10*60), groupnames=['options'], perm='rw', name='Std. of 24h travel time budget', unit='s', info="""Standard deviation of travel time budget for one day. """, )) mode_to_id = self.parent.get_scenario().net.modes.get_id_mode self.share_pedestrian = attrsman.add(cm.AttrConf('share_pedestrian', kwargs.get('share_pedestrian', 0.1), groupnames=['options', 'modal split'], perm='rw', id_mode=mode_to_id('pedestrian'), name='Pedestrian share', info="""Share of pedestrians.""", )) self.share_autouser = attrsman.add(cm.AttrConf('share_autouser', kwargs.get('share_autouser', 0.5), groupnames=['options', 'modal split'], perm='rw', id_mode=mode_to_id('passenger'), name='Auto user share', info="""Share of auto users.""", )) self.share_motorcycleuser = attrsman.add(cm.AttrConf('share_motorcycleuser', kwargs.get('share_motorcycleuser', 0.1), groupnames=['options', 'modal split'], perm='rw', id_mode=mode_to_id('motorcycle'), name='Motorcycle user share', info="""Share of Motorcycle users.""", )) self.share_bikeuser = attrsman.add(cm.AttrConf('share_bikeuser', kwargs.get('share_bikeuser', 0.1), groupnames=['options', 'modal split'], perm='rw', id_mode=mode_to_id('bicycle'), name='Bike user share', info="""Share of bike users.""", )) self.share_ptuser = attrsman.add(cm.AttrConf('share_ptuser', kwargs.get('share_ptuser', 0.2), groupnames=['options', 'modal split'], id_mode=mode_to_id('bus'), perm='rw', name='PT share', info="""Share of public transport user.""", )) #self.modeshares = attrsman.add( cm.ObjConf(ModeShares('modeshares',self,scenario.net.modes),groupnames = ['options']) ) def do(self): print 'PopGenerator.do' # links virtualpop = self.parent virtualpop.clear_population() logger = self.get_logger() #logger.w('Update Landuse...') scenario = virtualpop.get_scenario() activitytypes = scenario.demand.activitytypes facilities = scenario.landuse.facilities edges = scenario.net.edges ids_fac = facilities.get_ids() map_id_edge_to_ids_fac = {} for id_fac, id_edge in zip(ids_fac, facilities.ids_roadedge_closest[ids_fac]): if map_id_edge_to_ids_fac.has_key(id_edge): map_id_edge_to_ids_fac[id_edge].append(id_fac) else: map_id_edge_to_ids_fac[id_edge] = [id_fac, ] n_pers = self.n_person unitvec_int = np.ones(n_pers, dtype=np.int32) ids_person = virtualpop.make_multiple(n_pers) virtualpop.traveltimebudgets[ids_person] = self.get_ttb(ids_person) virtualpop.ids_mode_preferred[ids_person] = self.get_modes_random(n_pers) # here we could preselect correct landuse based on # percentage of workers, students, employees prob_fac_to = facilities.capacities[ids_fac].astype(np.float32) prob_fac_to /= np.sum(prob_fac_to) # print ' np.sum(prob_fac_to)',np.sum(prob_fac_to) ids_fac_to = ids_fac[random_choice(n_pers, prob_fac_to)] # determine id_fac_from by backward routing from id_fac_to ids_edge_to = facilities.ids_roadedge_closest[ids_fac_to] # pre calculate backward star and mode dependent link travel times bstar = edges.get_bstar() edgetimes = {} ids_mode = self.get_ids_mode() # idea: do also consider gradient of house prices for id_mode, speed_max in zip(ids_mode, scenario.net.modes.speeds_max[ids_mode]): edgetimes[id_mode] = edges.get_times(id_mode=id_mode, speed_max=speed_max, is_check_lanes=True ) # determine home facilities by backwards tracking from work facility ids_fac_from = np.ones(n_pers, dtype=np.int32) i = 0 for id_person, id_edge_to, id_mode, ttb\ in zip(ids_person, ids_edge_to, virtualpop.ids_mode_preferred[ids_person], virtualpop.traveltimebudgets[ids_person], ): # print ' Backsearch',id_person,'id_edge_to',id_edge_to,edges.ids_sumo[id_edge_to],'ttb[s]',0.5*ttb ids_edge_from, costs, btree = routing.edgedijkstra_backwards(id_edge_to, 0.5*ttb, # to be specified better weights=edgetimes[id_mode], bstar=bstar, ) if len(ids_edge_from) == 0: # routing failed to deliver edges of origins # put work and home on same edge ids_edge_from = [id_edge_to, ] # look at all edges of origin and pick most likely facility ids_fac_lim = [] for id_edge_from in ids_edge_from: #id_from_check = id_edge_from # print ' check from',id_from_check,'back to',id_edge_to,'time =%.2fs'%costs[id_from_check] # while id_from_check != id_edge_to: # id_from_check = btree[id_from_check] # #print ' id_edge = ',id_from_check # print ' success = ',id_from_check==id_edge_to if map_id_edge_to_ids_fac.has_key(id_edge_from): ids_fac_lim += map_id_edge_to_ids_fac[id_edge_from] if len(ids_fac_lim) == 0: # no facilities at all destinations found # go edges backawards and search there # this will reduce travel time for id_edge_from in ids_edge_from: # verify if id_edge_from has facilities. while not map_id_edge_to_ids_fac.has_key(id_edge_from): # print ' no facility, go backward' id_edge_from = btree[id_edge_from] ids_fac_lim = np.array(ids_fac_lim, dtype=np.int32) prob_fac_from = facilities.capacities[ids_fac_lim].astype(np.float32) prob_fac_from /= np.sum(prob_fac_from) # print ' np.sum(prob_fac_to)',np.sum(prob_fac_to) ids_fac_from[i] = ids_fac[random_choice(1, prob_fac_to)] i += 1 # idea: adjust wake-up time with employment type activities = virtualpop.get_activities() ids_activity_from = activities.add_rows( n=n_pers, ids_activitytype=self.ids_acttype_default[0] * unitvec_int, ids_facility=ids_fac_from, # use default #hours_begin_earliest = None, #hours_begin_latest = None, #durations_min = None, #durations_max = None, ) ids_activity_to = activities.add_rows( n=n_pers, ids_activitytype=self.ids_acttype_default[1] * unitvec_int, ids_facility=ids_fac_to, # use default #hours_begin_earliest = None, #hours_begin_latest = None, #durations_min = None, #durations_max = None, ) for id_person, id_activity_from, ids_activity_to in zip(ids_person, ids_activity_from, ids_activity_to): virtualpop.activitypatterns[id_person] = [id_activity_from, ids_activity_to, ] return True def get_ids_mode(self): modesplitconfigs = self.get_attrsman().get_group('modal split') ids_mode = np.zeros(len(modesplitconfigs), dtype=np.int32) i = 0 for modeconfig in modesplitconfigs: ids_mode[i] = modeconfig.id_mode i += 1 return ids_mode def get_modes_random(self, n): """ Return a vector with mode IDs of length n. """ # print 'get_modes_random',n modesplitconfigs = self.get_attrsman().get_group('modal split') ids_mode = np.zeros(len(modesplitconfigs), dtype=np.int32) shares = np.zeros(len(modesplitconfigs), dtype=np.float32) i = 0 for modeconfig in modesplitconfigs: ids_mode[i] = modeconfig.id_mode shares[i] = modeconfig.get_value() i += 1 # print ' ids_mode',ids_mode # print ' shares',shares return ids_mode[random_choice(n, shares/np.sum(shares))] def get_ttb(self, ids_pers): n_pers = len(ids_pers) # Truncated Normal dist with scipy # load libraries #import scipy.stats as stats # lower, upper, mu, and sigma are four parameters #lower, upper = 0.5, 1 #mu, sigma = 0.6, 0.1 # instantiate an object X using the above four parameters, #X = stats.truncnorm((lower - mu) / sigma, (upper - mu) / sigma, loc=mu, scale=sigma) # generate 1000 sample data #samples = X.rvs(1000) return np.random.normal(self.ttb_mean, self.ttb_dev, n_pers).clip(0, 2*3600) class PopFromOdfGenerator(Process): def __init__(self, ident, virtualpop, logger=None, **kwargs): print 'PopFromOdfGenerator.__init__' # TODO: let this be independent, link to it or child?? self._init_common(ident, parent=virtualpop, name='Pop from OD-flow generator', logger=logger, info='Create virtual population from origin-to-destination zone flows by disaggregation.', ) attrsman = self.set_attrsman(cm.Attrsman(self)) # make for each possible pattern a field for prob activitytypes = self.parent.get_scenario().demand.activitytypes self.hour_offset = attrsman.add(cm.AttrConf('hour_offset', kwargs.get('hour_offset', 8.0), groupnames=['options'], perm='rw', name='Offset hours', unit='h', info='Hour when simulation starts. This is the hour (of the day) when simulation time shows zero seconds.', )) self.hour_tripbudget = attrsman.add(cm.AttrConf('hour_tripbudget', kwargs.get('hour_tripbudget', 0.5), groupnames=['options'], perm='rw', name='Triptime budget', unit='h', info="""Time budget for this trip. This time is used to initially estimate the time in hours between the activity at origin and the activity at destination. """, )) self.scale = attrsman.add(cm.AttrConf('scale', kwargs.get('scale', 1.0), groupnames=['options'], perm='rw', name='Scale', info='Global scale factor. Scales the number of all OD trips.', )) self.is_use_landusetypes = attrsman.add(cm.AttrConf('is_use_landusetypes', kwargs.get('is_use_landusetypes', False), groupnames=['options'], perm='rw', name='use landuse types', info="""If True, use the landuse type of facilities when assigning the origin and destination facility. The landuse type is selected according to the activity type. Use this option only if landuse types have been correctly defined for all facilities. """, )) self.is_update_landuse = attrsman.add(cm.AttrConf('is_update_landuse', kwargs.get('is_update_landuse', True), groupnames=['options'], perm='rw', name='update Landuse', info="""If True, update land use database (zones, facilities, parking) before generating the population. Updating means identifying edges and facilities within zones. """, )) def do(self): print 'PopFromOdfGenerator.do' # links virtualpop = self.parent logger = self.get_logger() if self.is_update_landuse: logger.w('Update Landuse...') scenario = virtualpop.get_scenario() scenario.landuse.zones.refresh_zoneedges() scenario.landuse.facilities.identify_taz() scenario.landuse.facilities.identify_closest_edge() scenario.landuse.facilities.update() logger.w('Create population...') virtualpop.create_pop_from_odflows(logger=logger, **self.get_kwoptions()) #activitytypes = virtualpop.activitytypes return True class Planner(Process): def __init__(self, ident='planner', virtualpop=None, strategy='all', logger=None, **kwargs): print 'Planner.__init__' # TODO: let this be independent, link to it or child?? self._init_common(ident, parent=virtualpop, name='Planner', logger=logger, info='Generates mobility plan for population for a specific mobility strategy. Plans are only generated for persons for whome the strategy is applicable.', ) attrsman = self.set_attrsman(cm.Attrsman(self)) # make for each possible pattern a field for prob strategies = virtualpop.get_strategies() strategychoices = {'all': -1} strategychoices.update(strategies.names.get_indexmap()) self.id_strategy = attrsman.add(cm.AttrConf('id_strategy', strategychoices[strategy], groupnames=['options'], choices=strategychoices, perm='rw', name='Strategy', info='Strategy to be used to create mobility plane. In case of all strategies, the planner generates all applicable plans.', )) evalcrits = {'apply to all persons if feasible': 0, 'apply only if preferred mode is used': 1, 'apply only if exclusively preferred mode is used': 2, } self.evalcrit = attrsman.add(cm.AttrConf('evalcrit', kwargs.get('evalcrit', evalcrits['apply to all persons if feasible']), groupnames=['options'], choices=evalcrits, perm='rw', name='Application criteria', info=""" Value that determines for which persons the plans will be generated. Apply to all persons if feasible:0 Apply only if preferred mode is used:1 Apply only if exclusively preferred mode is used:2 """, )) def do(self): print 'Planner.do' # links virtualpop = self.parent logger = self.get_logger() #logger.w('Check applicability') #strategies = virtualpop.strategies.get_value() if self.id_strategy != -1: virtualpop.plan_with_strategy(self.id_strategy, evalcrit=self.evalcrit, logger=logger) else: # plan with all strategies for id_strategy in virtualpop.get_strategies().get_ids(): virtualpop.plan_with_strategy(id_strategy, evalcrit=self.evalcrit, logger=logger) return True class PlanSelector(Process): def __init__(self, ident='planselector', virtualpop=None, logger=None, **kwargs): print 'PlanSelector.__init__' # TODO: let this be independent, link to it or child?? self._init_common(ident, parent=virtualpop, name='Plan Selector', logger=logger, info='Selects the plan for each person which will be executed during the next simulation run according to a defined selection method.', ) attrsman = self.set_attrsman(cm.Attrsman(self)) # make for each possible pattern a field for prob strategies = virtualpop.get_strategies() # strategychoices.update(strategies.names.get_indexmap()) methods = {'plan with shortest estim. time': virtualpop.select_plans_min_time_est, 'plan with shortest exec. time': virtualpop.select_plans_min_time_exec, 'plan with preferred mode': virtualpop.select_plans_preferred_mode, 'next plan in list': virtualpop.select_plans_next, 'random plan': virtualpop.select_plans_random, 'plan with shortest exec. time or est. time': virtualpop.select_plans_min_time_exec_est } self.method = attrsman.add(cm.AttrConf('method', methods[kwargs.get('methodname', 'plan with shortest estim. time')], groupnames=['options'], choices=methods, perm='rw', name='Selection method', info='Selection method used to select current plans.', )) self.fraction = attrsman.add(cm.AttrConf('fraction', kwargs.get('fraction', 1.0), groupnames=['options'], perm='rw', name='Change fraction', info="""Fraction of persons that are randomly chosen to change plans according to the defined method. A value of 1.0 mens that the plans of oll persons will be changed.""", )) self.timedev = attrsman.add(cm.AttrConf('timedev', kwargs.get('timedev', 0.0), groupnames=['options'], perm='rw', name='Time deviation', info='Time deviation of random time component of estimated or effective time. If zero, no random time is added.', )) self.c_probit = attrsman.add(cm.AttrConf('c_probit', kwargs.get('c_probit', 0.0), groupnames=['options'], perm='rw', name='Probit const', info="""Probit constant used to determine the deviation of the normal distributed random time component. The deviation is the product of this constant and the travel time. If zero, no random time is added.""", )) def do(self): print 'Planner.do' # links #virtualpop = self.parent logger = self.get_logger() #logger.w('Check applicability') return self.method(logger=logger, **self.get_kwoptions()) class VehicleProvider(Process): def __init__(self, ident='vehicleprovider', virtualpop=None, logger=None, **kwargs): print 'VehicleProvider.__init__' # TODO: let this be independent, link to it or child?? self._init_common(ident, parent=virtualpop, name='Vehicle Provider', logger=logger, info='Provides individual vehicles to persons according to preferred mode and giveb statistical data.', ) attrsman = self.set_attrsman(cm.Attrsman(self)) # make for each possible pattern a field for prob self.share_autoowner = attrsman.add(cm.AttrConf('share_autoowner', kwargs.get('share_autoowner', 0.8), groupnames=['options'], perm='rw', name='Car auto share', info="""Share of auto owners. This specifies the share of auto owners and a car will be created for each car owner. Attention if prefeered mode has been already defined: persons who have bicicle as preferred mode get automatically a bike assigned. """, )) self.share_motorcycleowner = attrsman.add(cm.AttrConf('share_motorcycleowner', kwargs.get('share_motorcycleowner', 0.3), groupnames=['options'], perm='rw', name='Motorcycle owner share', info="""Share of Motorcycle owners. This specifies the share of Motorcycle owners and a bike will be created for each Motorcycle owner. Attention if prefeered mode has been already defined: persons who have Motorcycle as preferred mode get automatically a Motorcycle assigned. """, )) self.share_bikeowner = attrsman.add(cm.AttrConf('share_bikeowner', kwargs.get('share_bikeowner', 0.5), groupnames=['options'], perm='rw', name='Bike owner share', info="""Share of bike owners. This specifies the share of bike owners and a bike will be created for each bike owner. Attention if prefeered mode has been already defined: persons who have bicicle as preferred mode get automatically a bike assigned. """, )) def do(self): print 'VehicleProvider.do' # links virtualpop = self.parent logger = self.get_logger() logger.w('Provide vehicles...') ids_person = virtualpop.get_ids() n_person = len(ids_person) modes = virtualpop.get_scenario().net.modes id_mode_bike = modes.get_id_mode('bicycle') id_mode_auto = modes.get_id_mode('passenger') id_mode_moto = modes.get_id_mode('motorcycle') iautos = virtualpop.get_iautos() ibikes = virtualpop.get_ibikes() imotos = virtualpop.get_imotos() logger.w('generate individual vehicles for prefered modes') ids_prefer_auto = virtualpop.select_ids( (virtualpop.ids_mode_preferred.get_value() == id_mode_auto) & (virtualpop.ids_iauto.get_value() == -1)) ids_iauto = iautos.assign_to_persons(ids_prefer_auto) n_current = iautos.get_share(is_abs=True) #n_none = int(self.share_autoowner*n_person)-(n_person-n_current) n_need = int(self.share_autoowner*n_person)-n_current if n_need > 0: ids_pers_miss = np.flatnonzero(virtualpop.ids_iauto.get_value() == -1) # print ' n_person,n_current,n_target,n_need,len(ids_pers_miss)',n_person,n_current,int(self.share_autoowner*n_person),n_need,len(ids_pers_miss) ids_pers_assign = np.random.choice(ids_pers_miss, n_need, replace=False) ids_iauto = iautos.assign_to_persons(ids_pers_assign) print ' created %d autos, target share=%.2f, share = %.2f' % ( iautos.get_share(is_abs=True), iautos.get_share(), self.share_autoowner) ids_prefer_bike = virtualpop.select_ids( (virtualpop.ids_mode_preferred.get_value() == id_mode_bike) & (virtualpop.ids_ibike.get_value() == -1)) ids_ibikes = ibikes.assign_to_persons(ids_prefer_bike) n_current = ibikes.get_share(is_abs=True) n_need = int(self.share_bikeowner*n_person)-n_current if n_need > 0: ids_pers_miss = np.flatnonzero(virtualpop.ids_ibike.get_value() == -1) # print ' n_person,n_current,n_target,n_need,len(ids_pers_miss)',n_person,n_current,int(self.share_autoowner*n_person),n_need,len(ids_pers_miss) ids_pers_assign = np.random.choice(ids_pers_miss, n_need, replace=False) ids_ibike = ibikes.assign_to_persons(ids_pers_assign) print ' created %d bikes, target share=%.2f, share = %.2f' % ( ibikes.get_share(is_abs=True), ibikes.get_share(), self.share_bikeowner) ids_prefer_moto = virtualpop.select_ids( (virtualpop.ids_mode_preferred.get_value() == id_mode_moto) & (virtualpop.ids_imoto.get_value() == -1)) ids_imoto = imotos.assign_to_persons(ids_prefer_moto) n_current = imotos.get_share(is_abs=True) n_need = int(self.share_motorcycleowner*n_person)-n_current if n_need > 0: ids_pers_miss = np.flatnonzero(virtualpop.ids_imoto.get_value() == -1) ids_pers_assign = np.random.choice(ids_pers_miss, n_need, replace=False) ids_imoto = imotos.assign_to_persons(ids_pers_assign) print ' created %d moto, target share=%.2f, share = %.2f' % ( imotos.get_share(is_abs=True), imotos.get_share(), self.share_motorcycleowner) return True # TODO: generate and assign additional vehicles # to satisfy prescribes ownership
45.414855
359
0.555241
82d2b952befcbe8fdee350a27ecabae2d3c8354c
10,333
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/icx/icx_linkagg.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/icx/icx_linkagg.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/network/icx/icx_linkagg.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: icx_linkagg author: "Ruckus Wireless (@Commscope)" short_description: Manage link aggregation groups on Ruckus ICX 7000 series switches description: - This module provides declarative management of link aggregation groups on Ruckus ICX network devices. notes: - Tested against ICX 10.1. - For information on using ICX platform, see L(the ICX OS Platform Options guide,../network/user_guide/platform_icx.html). options: group: description: - Channel-group number for the port-channel Link aggregation group. Range 1-255 or set to 'auto' to auto-generates a LAG ID type: int name: description: - Name of the LAG type: str mode: description: - Mode of the link aggregation group. type: str choices: ['dynamic', 'static'] members: description: - List of port members or ranges of the link aggregation group. type: list state: description: - State of the link aggregation group. type: str default: present choices: ['present', 'absent'] check_running_config: description: - Check running configuration. This can be set as environment variable. Module will use environment variable value(default:True), unless it is overridden, by specifying it as module parameter. type: bool default: yes aggregate: description: - List of link aggregation definitions. type: list suboptions: group: description: - Channel-group number for the port-channel Link aggregation group. Range 1-255 or set to 'auto' to auto-generates a LAG ID type: int name: description: - Name of the LAG type: str mode: description: - Mode of the link aggregation group. type: str choices: ['dynamic', 'static'] members: description: - List of port members or ranges of the link aggregation group. type: list state: description: - State of the link aggregation group. type: str choices: ['present', 'absent'] check_running_config: description: - Check running configuration. This can be set as environment variable. Module will use environment variable value(default:True), unless it is overridden, by specifying it as module parameter. type: bool purge: description: - Purge links not defined in the I(aggregate) parameter. type: bool default: no ''' EXAMPLES = """ - name: create static link aggregation group icx_linkagg: group: 10 mode: static name: LAG1 - name: create link aggregation group with auto id icx_linkagg: group: auto mode: dynamic name: LAG2 - name: delete link aggregation group icx_linkagg: group: 10 state: absent - name: Set members to LAG icx_linkagg: group: 200 mode: static members: - ethernet 1/1/1 to 1/1/6 - ethernet 1/1/10 - name: Remove links other then LAG id 100 and 3 using purge icx_linkagg: aggregate: - { group: 3} - { group: 100} purge: true """ RETURN = """ commands: description: The list of configuration mode commands to send to the device returned: always, except for the platforms that use Netconf transport to manage the device. type: list sample: - lag LAG1 dynamic id 11 - ports ethernet 1/1/1 to 1/1/6 - no ports ethernet 1/1/10 - no lag LAG1 dynamic id 12 """ import re from copy import deepcopy from ansible.module_utils._text import to_text from ansible.module_utils.basic import AnsibleModule, env_fallback from ansible.module_utils.connection import ConnectionError, exec_command from ansible_collections.community.general.plugins.module_utils.network.icx.icx import run_commands, get_config, load_config from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.config import CustomNetworkConfig from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import remove_default_spec def range_to_members(ranges, prefix=""): match = re.findall(r'(ethe[a-z]* [0-9]/[0-9]/[0-9]+)( to [0-9]/[0-9]/[0-9]+)?', ranges) members = list() for m in match: start, end = m if(end == ''): start = start.replace("ethe ", "ethernet ") members.append("%s%s" % (prefix, start)) else: start_tmp = re.search(r'[0-9]/[0-9]/([0-9]+)', start) end_tmp = re.search(r'[0-9]/[0-9]/([0-9]+)', end) start = int(start_tmp.group(1)) end = int(end_tmp.group(1)) + 1 for num in range(start, end): members.append("%sethernet 1/1/%s" % (prefix, num)) return members def map_config_to_obj(module): objs = dict() compare = module.params['check_running_config'] config = get_config(module, None, compare=compare) obj = None for line in config.split('\n'): l = line.strip() match1 = re.search(r'lag (\S+) (\S+) id (\S+)', l, re.M) if match1: obj = dict() obj['name'] = match1.group(1) obj['mode'] = match1.group(2) obj['group'] = match1.group(3) obj['state'] = 'present' obj['members'] = list() else: match2 = re.search(r'ports .*', l, re.M) if match2 and obj is not None: obj['members'].extend(range_to_members(match2.group(0))) elif obj is not None: objs[obj['group']] = obj obj = None return objs def map_params_to_obj(module): obj = [] aggregate = module.params.get('aggregate') if aggregate: for item in aggregate: for key in item: if item.get(key) is None: item[key] = module.params[key] d = item.copy() d['group'] = str(d['group']) obj.append(d) else: obj.append({ 'group': str(module.params['group']), 'mode': module.params['mode'], 'members': module.params['members'], 'state': module.params['state'], 'name': module.params['name'] }) return obj def search_obj_in_list(group, lst): for o in lst: if o['group'] == group: return o return None def is_member(member, lst): for li in lst: ml = range_to_members(li) if member in ml: return True return False def map_obj_to_commands(updates, module): commands = list() want, have = updates purge = module.params['purge'] for w in want: if have == {} and w['state'] == 'absent': commands.append("%slag %s %s id %s" % ('no ' if w['state'] == 'absent' else '', w['name'], w['mode'], w['group'])) elif have.get(w['group']) is None: commands.append("%slag %s %s id %s" % ('no ' if w['state'] == 'absent' else '', w['name'], w['mode'], w['group'])) if(w.get('members') is not None and w['state'] == 'present'): for m in w['members']: commands.append("ports %s" % (m)) if w['state'] == 'present': commands.append("exit") else: commands.append("%slag %s %s id %s" % ('no ' if w['state'] == 'absent' else '', w['name'], w['mode'], w['group'])) if(w.get('members') is not None and w['state'] == 'present'): for m in have[w['group']]['members']: if not is_member(m, w['members']): commands.append("no ports %s" % (m)) for m in w['members']: sm = range_to_members(ranges=m) for smm in sm: if smm not in have[w['group']]['members']: commands.append("ports %s" % (smm)) if w['state'] == 'present': commands.append("exit") if purge: for h in have: if search_obj_in_list(have[h]['group'], want) is None: commands.append("no lag %s %s id %s" % (have[h]['name'], have[h]['mode'], have[h]['group'])) return commands def main(): element_spec = dict( group=dict(type='int'), name=dict(type='str'), mode=dict(choices=['dynamic', 'static']), members=dict(type='list'), state=dict(default='present', choices=['present', 'absent']), check_running_config=dict(default=True, type='bool', fallback=(env_fallback, ['ANSIBLE_CHECK_ICX_RUNNING_CONFIG'])) ) aggregate_spec = deepcopy(element_spec) aggregate_spec['group'] = dict(required=True, type='int') required_one_of = [['group', 'aggregate']] required_together = [['name', 'group']] mutually_exclusive = [['group', 'aggregate']] remove_default_spec(aggregate_spec) argument_spec = dict( aggregate=dict(type='list', elements='dict', options=aggregate_spec, required_together=required_together), purge=dict(default=False, type='bool') ) argument_spec.update(element_spec) module = AnsibleModule(argument_spec=argument_spec, required_one_of=required_one_of, required_together=required_together, mutually_exclusive=mutually_exclusive, supports_check_mode=True) warnings = list() result = {'changed': False} exec_command(module, 'skip') if warnings: result['warnings'] = warnings want = map_params_to_obj(module) have = map_config_to_obj(module) commands = map_obj_to_commands((want, have), module) result["commands"] = commands if commands: if not module.check_mode: load_config(module, commands) result['changed'] = True module.exit_json(**result) if __name__ == '__main__': main()
31.503049
130
0.594697
7deb667920a923ac182cb42d859bb0ae9070aef2
3,853
py
Python
project/api/recycling_street/schemas.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
null
null
null
project/api/recycling_street/schemas.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
35
2022-01-24T22:15:59.000Z
2022-03-31T15:01:35.000Z
project/api/recycling_street/schemas.py
DanielGrams/cityservice
c487c34b5ba6541dcb441fe903ab2012c2256893
[ "MIT" ]
null
null
null
from flask_security import current_user from marshmallow import fields from project.api import marshmallow from project.api.recycling_event.schemas import ( RecyclingEventListRequestSchema, RecyclingEventListResponseSchema, ) from project.api.schemas import ( IdSchemaMixin, PaginationRequestSchema, PaginationResponseSchema, SQLAlchemyBaseSchema, ) from project.models import RecyclingStreet, RecyclingStreetsUsers class RecyclingStreetModelSchema(SQLAlchemyBaseSchema): class Meta: model = RecyclingStreet load_instance = True class RecyclingStreetIdSchema(RecyclingStreetModelSchema, IdSchemaMixin): pass class RecyclingStreetBaseSchemaMixin(object): name = marshmallow.auto_field() class RecyclingStreetCurrentUserFavoriteMixin(object): is_favored = fields.Method( "get_is_favored", metadata={ "description": "True, if recycling street is favored by current user" }, ) def get_is_favored(self, event): if not current_user or not current_user.is_authenticated: return False from project.services.user import has_user_recycling_street return has_user_recycling_street(current_user.id, event.id) class RecyclingStreetCurrentUserNotificationsMixin(object): notifications_active = fields.Method( "get_notifications_active", metadata={"description": "True, if notifications are active for current user"}, ) def get_notifications_active(self, event): if not current_user or not current_user.is_authenticated: return False from project.services.user import get_user_recycling_street_notifications_active return get_user_recycling_street_notifications_active(current_user.id, event.id) class RecyclingStreetSchema( RecyclingStreetIdSchema, RecyclingStreetBaseSchemaMixin, RecyclingStreetCurrentUserFavoriteMixin, RecyclingStreetCurrentUserNotificationsMixin, ): pass class RecyclingStreetRefSchema(RecyclingStreetIdSchema): name = marshmallow.auto_field() class PlaceRecyclingStreetListRequestSchema(PaginationRequestSchema): keyword = fields.Str() class PlaceRecyclingStreetListItemSchema( RecyclingStreetRefSchema, RecyclingStreetCurrentUserFavoriteMixin, RecyclingStreetCurrentUserNotificationsMixin, ): pass class PlaceRecyclingStreetListResponseSchema(PaginationResponseSchema): items = fields.List( fields.Nested(PlaceRecyclingStreetListItemSchema), metadata={"description": "Recycling streets"}, ) class UserRecyclingStreetListRequestSchema(PaginationRequestSchema): pass class UserRecyclingStreetListItemSchema( RecyclingStreetRefSchema, RecyclingStreetCurrentUserNotificationsMixin, ): pass class UserRecyclingStreetListResponseSchema(PaginationResponseSchema): items = fields.List( fields.Nested(UserRecyclingStreetListItemSchema), metadata={"description": "Recycling streets"}, ) class RecyclingStreetEventListRequestSchema(RecyclingEventListRequestSchema): pass class RecyclingStreetEventListResponseSchema(RecyclingEventListResponseSchema): pass class UserRecyclingStreetModelSchema(SQLAlchemyBaseSchema): class Meta: model = RecyclingStreetsUsers load_instance = True class UserRecyclingStreetBaseSchemaMixin(object): pass class UserRecyclingStreetWriteSchemaMixin(object): notifications_active = marshmallow.auto_field( required=False, default=False, ) class UserRecyclingStreetPatchRequestSchema( UserRecyclingStreetModelSchema, UserRecyclingStreetBaseSchemaMixin, UserRecyclingStreetWriteSchemaMixin, ): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.make_patch_schema()
26.210884
88
0.770049
815034a5e92e8cf1e5ee0f471595f333ede10ef8
3,196
py
Python
official/cv/yolov4/ascend310_quant_infer/post_quant.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/yolov4/ascend310_quant_infer/post_quant.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/yolov4/ascend310_quant_infer/post_quant.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """do post training quantization for Ascend310""" import os import sys import numpy as np from amct_mindspore.quantize_tool import create_quant_config from amct_mindspore.quantize_tool import quantize_model from amct_mindspore.quantize_tool import save_model import mindspore as ms from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net def quant_yolov4(network, dataset, input_data): """ Export post training quantization model of AIR format. Args: network: the origin network for inference.YOLOV3DarkNet53 dataset: the data for inference. input_data: the data used for constructing network. The shape and format of input data should be the same as actual data for inference. """ # step2: create the quant config json file create_quant_config("./config.json", network, input_data) # step3: do some network modification and return the modified network calibration_network = quantize_model("./config.json", network, input_data) calibration_network.set_train(False) # step4: perform the evaluation of network to do activation calibration for _, data in enumerate(dataset.create_dict_iterator(num_epochs=1)): image = data["image"] _ = calibration_network(image) # step5: export the air file save_model("results/yolov4_quant", calibration_network, input_data) print("[INFO] the quantized AIR file has been stored at: \n {}".format("results/yolov4_quant.air")) if __name__ == "__main__": sys.path.append("..") from src.yolo import YOLOV4CspDarkNet53 from src.yolo_dataset import create_yolo_dataset from model_utils.config import config context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = YOLOV4CspDarkNet53() param_dict = load_checkpoint(config.ckpt_file) load_param_into_net(net, param_dict) net.set_train(False) config.batch_size = 1 data_path = os.path.join(config.data_dir, "val2017") ann_file = os.path.join(config.data_dir, "annotations/instances_val2017.json") datasets, data_size = create_yolo_dataset(data_path, ann_file, is_training=False, batch_size=config.batch_size, max_epoch=1, device_num=1, rank=0, shuffle=False, default_config=config) ds = datasets.take(1) shape = [config.batch_size, 3] + config.test_img_shape inputs = Tensor(np.zeros(shape), ms.float32) quant_yolov4(net, ds, inputs)
40.974359
118
0.721527
c4a6c90e2fd76ddc71b16aaab643ac3ad4615ad2
266
py
Python
busigyo/welcomepage/forms.py
chieteia/akemines
243e84a782ef7d26295100eeb33aa7e2e2879a08
[ "MIT" ]
null
null
null
busigyo/welcomepage/forms.py
chieteia/akemines
243e84a782ef7d26295100eeb33aa7e2e2879a08
[ "MIT" ]
null
null
null
busigyo/welcomepage/forms.py
chieteia/akemines
243e84a782ef7d26295100eeb33aa7e2e2879a08
[ "MIT" ]
null
null
null
from django import forms class TestForm(forms.Form): num = forms.IntegerField(label='天気コード') class Form(forms.Form): loc = forms.CharField(label = '', max_length='100', required=True) #lat = forms.FloatField(label='緯度') #lon = forms.FloatField(label='経度')
24.181818
67
0.706767
f216d7c9118cf366a451ccb7a9baa2adc58f4b5d
13,283
py
Python
src/xrt/ipc/shared/proto.py
leviathanch/monado
36a540a764fd5529018dfceb28e10804db9596bf
[ "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "BSL-1.0", "BSD-3-Clause" ]
null
null
null
src/xrt/ipc/shared/proto.py
leviathanch/monado
36a540a764fd5529018dfceb28e10804db9596bf
[ "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "BSL-1.0", "BSD-3-Clause" ]
null
null
null
src/xrt/ipc/shared/proto.py
leviathanch/monado
36a540a764fd5529018dfceb28e10804db9596bf
[ "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "BSL-1.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2020, Collabora, Ltd. # SPDX-License-Identifier: BSL-1.0 """Generate code from a JSON file describing the IPC protocol.""" import argparse from ipcproto.common import (Proto, write_decl, write_invocation, write_result_handler) header = '''// Copyright 2020, Collabora, Ltd. // SPDX-License-Identifier: BSL-1.0 /*! * @file * @brief {brief}. * @author Jakob Bornecrantz <[email protected]> * @ingroup ipc{suffix} */ ''' def generate_h(file, p): """Generate protocol header. Defines command enum, utility functions, and command and reply structures. """ f = open(file, "w") f.write(header.format(brief='Generated IPC protocol header', suffix='')) f.write(''' #pragma once struct ipc_connection; ''') f.write(''' typedef enum ipc_command { \tIPC_ERR = 0,''') for call in p.calls: f.write("\n\t" + call.id + ",") f.write("\n} ipc_command_t;\n") f.write(''' struct ipc_command_msg { \tenum ipc_command cmd; }; struct ipc_result_reply { \txrt_result_t result; }; ''') f.write(''' static inline const char * ipc_cmd_to_str(ipc_command_t id) { \tswitch (id) { \tcase IPC_ERR: return "IPC_ERR";''') for call in p.calls: f.write("\n\tcase " + call.id + ": return \"" + call.id + "\";") f.write("\n\tdefault: return \"IPC_UNKNOWN\";") f.write("\n\t}\n}\n") f.write("#pragma pack (push, 1)") for call in p.calls: # Should we emit a msg struct. if call.needs_msg_struct: f.write("\nstruct ipc_" + call.name + "_msg\n") f.write("{\n") f.write("\tenum ipc_command cmd;\n") for arg in call.in_args: f.write("\t" + arg.get_struct_field() + ";\n") if call.in_handles: f.write("\t%s %s;\n" % (call.in_handles.count_arg_type, call.in_handles.count_arg_name)) f.write("};\n") # Should we emit a reply struct. if call.out_args: f.write("\nstruct ipc_" + call.name + "_reply\n") f.write("{\n") f.write("\txrt_result_t result;\n") for arg in call.out_args: f.write("\t" + arg.get_struct_field() + ";\n") f.write("};\n") f.write("#pragma pack (pop)\n") f.close() def generate_client_c(file, p): """Generate IPC client proxy source.""" f = open(file, "w") f.write(header.format(brief='Generated IPC client code', suffix='_client')) f.write(''' #include "client/ipc_client.h" #include "ipc_protocol_generated.h" \n''') # Loop over all of the calls. for call in p.calls: call.write_call_decl(f) f.write("\n{\n") f.write("\tIPC_TRACE(ipc_c, \"Calling " + call.name + "\");\n\n") # Message struct if call.needs_msg_struct: f.write("\tstruct ipc_" + call.name + "_msg _msg = {\n") else: f.write("\tstruct ipc_command_msg _msg = {\n") f.write("\t .cmd = " + str(call.id) + ",\n") for arg in call.in_args: if arg.is_aggregate: f.write("\t ." + arg.name + " = *" + arg.name + ",\n") else: f.write("\t ." + arg.name + " = " + arg.name + ",\n") if call.in_handles: f.write("\t ." + call.in_handles.count_arg_name + " = " + call.in_handles.count_arg_name + ",\n") f.write("\t};\n") # Reply struct if call.out_args: f.write("\tstruct ipc_" + call.name + "_reply _reply;\n") else: f.write("\tstruct ipc_result_reply _reply = {0};\n") if call.in_handles: f.write("\tstruct ipc_result_reply _sync = {0};\n") f.write(""" \t// Other threads must not read/write the fd while we wait for reply \tos_mutex_lock(&ipc_c->mutex); """) cleanup = "os_mutex_unlock(&ipc_c->mutex);" # Prepare initial sending func = 'ipc_send' args = ['&ipc_c->imc', '&_msg', 'sizeof(_msg)'] f.write("\n\t// Send our request") write_invocation(f, 'xrt_result_t ret', func, args, indent="\t") f.write(';') write_result_handler(f, 'ret', cleanup, indent="\t") if call.in_handles: f.write("\n\t// Send our handles separately\n") f.write("\n\t// Wait for server sync") # Must sync with the server so it's expecting the next message. write_invocation( f, 'ret', 'ipc_receive', ( '&ipc_c->imc', '&_sync', 'sizeof(_sync)' ), indent="\t" ) f.write(';') write_result_handler(f, 'ret', cleanup, indent="\t") # Must send these in a second message # since the server doesn't know how many to expect. f.write("\n\t// We need this message data as filler only\n") f.write("\tstruct ipc_command_msg _handle_msg = {\n") f.write("\t .cmd = " + str(call.id) + ",\n") f.write("\t};\n") write_invocation( f, 'ret', 'ipc_send_handles_' + call.in_handles.stem, ( '&ipc_c->imc', "&_handle_msg", "sizeof(_handle_msg)", call.in_handles.arg_name, call.in_handles.count_arg_name ), indent="\t" ) f.write(';') write_result_handler(f, 'ret', cleanup, indent="\t") f.write("\n\t// Await the reply") func = 'ipc_receive' args = ['&ipc_c->imc', '&_reply', 'sizeof(_reply)'] if call.out_handles: func += '_handles_' + call.out_handles.stem args.extend(call.out_handles.arg_names) write_invocation(f, 'ret', func, args, indent="\t") f.write(';') write_result_handler(f, 'ret', cleanup, indent="\t") for arg in call.out_args: f.write("\t*out_" + arg.name + " = _reply." + arg.name + ";\n") f.write("\n\t" + cleanup) f.write("\n\treturn _reply.result;\n}\n") f.close() def generate_client_h(file, p): """Generate IPC client header. Contains prototypes for generated IPC proxy call functions. """ f = open(file, "w") f.write(header.format(brief='Generated IPC client code', suffix='_client')) f.write(''' #pragma once #include "shared/ipc_protocol.h" #include "ipc_protocol_generated.h" #include "client/ipc_client.h" ''') for call in p.calls: call.write_call_decl(f) f.write(";\n") f.close() def generate_server_c(file, p): """Generate IPC server stub/dispatch source.""" f = open(file, "w") f.write(header.format(brief='Generated IPC server code', suffix='_server')) f.write(''' #include "ipc_server_generated.h" #include "shared/ipc_protocol.h" #include "shared/ipc_utils.h" #include "server/ipc_server.h" #define MAX_HANDLES 16 ''') f.write(''' xrt_result_t ipc_dispatch(volatile struct ipc_client_state *ics, ipc_command_t *ipc_command) { \tswitch (*ipc_command) { ''') for call in p.calls: f.write("\tcase " + call.id + ": {\n") f.write("\t\tIPC_TRACE(ics->server, \"Dispatching " + call.name + "\");\n\n") if call.needs_msg_struct: f.write( "\t\tstruct ipc_{}_msg *msg =\n".format(call.name)) f.write( "\t\t (struct ipc_{}_msg *)ipc_command;\n".format( call.name)) if call.out_args: f.write("\t\tstruct ipc_%s_reply reply = {0};\n" % call.name) else: f.write("\t\tstruct ipc_result_reply reply = {0};\n") if call.in_handles: f.write("\tstruct ipc_result_reply _sync = {XRT_SUCCESS};\n") if call.out_handles: f.write("\t\t%s %s[MAX_HANDLES] = {0};\n" % ( call.out_handles.typename, call.out_handles.arg_name)) f.write("\t\t%s %s = {0};\n" % ( call.out_handles.count_arg_type, call.out_handles.count_arg_name)) f.write("\n") if call.in_handles: # We need to fetch these handles separately f.write("\t\t%s in_%s[MAX_HANDLES] = {0};\n" % ( call.in_handles.typename, call.in_handles.arg_name)) f.write("\t\tstruct ipc_command_msg _handle_msg = {0};\n") # Let the client know we are ready to receive the handles. write_invocation( f, 'xrt_result_t sync_result', 'ipc_send', ( "(struct ipc_message_channel *)&ics->imc", "&_sync", "sizeof(_sync)" ), indent="\t\t" ) f.write(";") write_result_handler(f, "sync_result", indent="\t\t") write_invocation( f, 'xrt_result_t receive_handle_result', 'ipc_receive_handles_' + call.in_handles.stem, ( "(struct ipc_message_channel *)&ics->imc", "&_handle_msg", "sizeof(_handle_msg)", "in_" + call.in_handles.arg_name, "msg->"+call.in_handles.count_arg_name ), indent="\t\t" ) f.write(";") write_result_handler(f, "receive_handle_result", indent="\t\t") f.write("\t\tif (_handle_msg.cmd != %s) {\n" % str(call.id)) f.write("\t\t\treturn XRT_ERROR_IPC_FAILURE;\n") f.write("\t\t}\n") # Write call to ipc_handle_CALLNAME args = ["ics"] for arg in call.in_args: args.append(("&msg->" + arg.name) if arg.is_aggregate else ("msg->" + arg.name)) args.extend("&reply." + arg.name for arg in call.out_args) if call.out_handles: args.extend(("MAX_HANDLES", call.out_handles.arg_name, "&" + call.out_handles.count_arg_name)) if call.in_handles: args.extend(("&in_%s[0]" % call.in_handles.arg_name, "msg->"+call.in_handles.count_arg_name)) write_invocation(f, 'reply.result', 'ipc_handle_' + call.name, args, indent="\t\t") f.write(";\n") # TODO do we check reply.result and # error out before replying if it's not success? func = 'ipc_send' args = ["(struct ipc_message_channel *)&ics->imc", "&reply", "sizeof(reply)"] if call.out_handles: func += '_handles_' + call.out_handles.stem args.extend(call.out_handles.arg_names) write_invocation(f, 'xrt_result_t ret', func, args, indent="\t\t") f.write(";") f.write("\n\t\treturn ret;\n") f.write("\t}\n") f.write('''\tdefault: \t\tU_LOG_E("UNHANDLED IPC MESSAGE! %d", *ipc_command); \t\treturn XRT_ERROR_IPC_FAILURE; \t} } ''') f.close() def generate_server_header(file, p): """Generate IPC server header. Declares handler prototypes to implement, as well as the prototype for the generated dispatch function. """ f = open(file, "w") f.write(header.format(brief='Generated IPC server code', suffix='_server')) f.write(''' #pragma once #include "shared/ipc_protocol.h" #include "ipc_protocol_generated.h" #include "server/ipc_server.h" ''') # This decl is constant, but we must write it here # because it depends on a generated enum. write_decl( f, "xrt_result_t", "ipc_dispatch", [ "volatile struct ipc_client_state *ics", "ipc_command_t *ipc_command" ] ) f.write(";\n") for call in p.calls: call.write_handler_decl(f) f.write(";\n") f.close() def main(): """Handle command line and generate a file.""" parser = argparse.ArgumentParser(description='Protocol generator.') parser.add_argument( 'proto', help='Protocol file to use') parser.add_argument( 'output', type=str, nargs='+', help='Output file, uses the name to choose output type') args = parser.parse_args() p = Proto.load_and_parse(args.proto) for output in args.output: if output.endswith("ipc_protocol_generated.h"): generate_h(output, p) if output.endswith("ipc_client_generated.c"): generate_client_c(output, p) if output.endswith("ipc_client_generated.h"): generate_client_h(output, p) if output.endswith("ipc_server_generated.c"): generate_server_c(output, p) if output.endswith("ipc_server_generated.h"): generate_server_header(output, p) if __name__ == "__main__": main()
30.819026
79
0.534066
6ffe8a183561256d1f648294460c2def7c537ba5
1,346
py
Python
VoiceControl/aws_lambda/lambda.py
lociii/symcon-voicecontrol
40be8c879e9fd2209e484323df6cb32246f67b71
[ "MIT" ]
null
null
null
VoiceControl/aws_lambda/lambda.py
lociii/symcon-voicecontrol
40be8c879e9fd2209e484323df6cb32246f67b71
[ "MIT" ]
null
null
null
VoiceControl/aws_lambda/lambda.py
lociii/symcon-voicecontrol
40be8c879e9fd2209e484323df6cb32246f67b71
[ "MIT" ]
null
null
null
import json import urllib2 import httplib from uuid import uuid4 import logging logger = logging.getLogger('lambda') def build_error_response(reason): return { 'header': { 'namespace': 'Alexa.ConnectedHome.Control', 'name': reason, 'payloadVersion': '2', 'messageId': str(uuid4()) }, 'payload': {} } def lambda_handler(event, context): request = urllib2.Request('https://oauth.ipmagic.de/forward') request.add_header('Content-Type', 'application/json') request.add_header('Authorization', event['payload']['accessToken']) try: response = urllib2.urlopen(request, json.dumps(event)) except (urllib2.HTTPError, urllib2.URLError, httplib.HTTPException), e: logger.exception(e) return build_error_response('TargetConnectivityUnstableError') except Exception, e: logger.exception(e) return build_error_response('DriverInternalError') if response.getcode() != 200: logger.error('invalid response %s' % response.getcode()) return build_error_response('DriverInternalError') try: response = json.loads(response.read()) except ValueError: logger.error('failed to decode response') return build_error_response('DriverInternalError') return response
29.911111
75
0.663447
73a3a2995b1aeb060291d8aa6f129e5ef6ccfb96
860
py
Python
Project1/lib.py
veronikadim99/Wissenschaftliches-Rechnen
3b7c86e9488bf434f3ad1d590f5b9bb9b4cdf218
[ "Apache-2.0" ]
null
null
null
Project1/lib.py
veronikadim99/Wissenschaftliches-Rechnen
3b7c86e9488bf434f3ad1d590f5b9bb9b4cdf218
[ "Apache-2.0" ]
null
null
null
Project1/lib.py
veronikadim99/Wissenschaftliches-Rechnen
3b7c86e9488bf434f3ad1d590f5b9bb9b4cdf218
[ "Apache-2.0" ]
null
null
null
import time import matplotlib.pyplot as plt def timedcall(fn, *args): """ Run a function and measure execution time. Arguments: fn : function to be executed args : arguments to function fn Return: dt : execution time result : result of function Usage example: You want to time the function call "C = foo(A,B)". --> "T, C = timedcall(foo, A, B)" """ t0 = time.time() result = fn(*args) t1 = time.time() dt = t1 - t0 return dt, result def plot_2d(x_data, y_data, labels, title, x_axis, y_axis, x_range): plt.figure() for i, label in enumerate(labels): plt.loglog(x_data, y_data[i], label=label) plt.grid() plt.legend(loc='upper left') plt.title(title) plt.xlabel(x_axis) plt.xlim(x_range[0], x_range[1]) plt.ylabel(y_axis) plt.show()
20
68
0.60814
79028f363aec5299347603f6c4801f13319c7e79
1,165
py
Python
Codeforces_problems/Reverse Binary Strings/solution.py
KAHund/CompetitiveCode
6ed211a2f795569f5c2f18c2f660520d99d41ca0
[ "MIT" ]
165
2020-10-03T08:01:11.000Z
2022-03-31T02:42:08.000Z
Codeforces_problems/Reverse Binary Strings/solution.py
KAHund/CompetitiveCode
6ed211a2f795569f5c2f18c2f660520d99d41ca0
[ "MIT" ]
383
2020-10-03T07:39:11.000Z
2021-11-20T07:06:35.000Z
Codeforces_problems/Reverse Binary Strings/solution.py
KAHund/CompetitiveCode
6ed211a2f795569f5c2f18c2f660520d99d41ca0
[ "MIT" ]
380
2020-10-03T08:05:04.000Z
2022-03-19T06:56:59.000Z
# We need to make our string alternating, i. e. si≠si+1. When we reverse substring sl…sr, # we change no more than two pairs sl−1,sl and sr,sr+1. Moreover, one pair should be a # consecutive pair 00 and other — 11. So, we can find lower bound to our answer as maximum # between number of pairs of 00 and number of pairs of 11. And we can always reach this # lower bound, by pairing 00 with 11 or with left/right border of s. for _ in range(int(input())): n = int(input()) s = input() z, o = 0, 0 # will store total number of pairs zeros, ones = 0, 0 # will store no of pairs in one streak for el in s: if el == '1': ones += 1 # streak of zeros are broken by one so no of pairs of zeros are added to z z += max(zeros-1, 0) zeros = 0 if el == '0': zeros += 1 # streak of ones are broken by one so no of pairs of ones are added to o o += max(ones-1, 0) ones = 0 # we count pairs only when it the streak is broken. So to count the final unbroken streak o += max(ones-1, 0) z += max(zeros-1, 0) print(max(o, z))
36.40625
93
0.593133
f768d46f66b6b97f24f78dfd1b6bc540af553b94
162
py
Python
Shivani/leap year.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
Shivani/leap year.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
Shivani/leap year.py
63Shivani/Python-BootCamp
2ed0ef95af35d35c0602031670fecfc92d8cea0a
[ "MIT" ]
null
null
null
n=int(input("enter year\n")) if(n%400==0 and n%100==0): print("leap year") elif(n%4==0 and n%100!=0): print("leap year") else: print("not leap year")
20.25
28
0.58642
586428275f3b29e74ff970b0acd5d57b3c302f28
1,290
py
Python
app/models/user.py
zucc-acm-devteam/zuccacm-sso
9c7d2f0b9cc069962f32b555152732a98bf2e94a
[ "Apache-2.0" ]
null
null
null
app/models/user.py
zucc-acm-devteam/zuccacm-sso
9c7d2f0b9cc069962f32b555152732a98bf2e94a
[ "Apache-2.0" ]
null
null
null
app/models/user.py
zucc-acm-devteam/zuccacm-sso
9c7d2f0b9cc069962f32b555152732a98bf2e94a
[ "Apache-2.0" ]
null
null
null
import datetime from flask_login import UserMixin from sqlalchemy import Column, String, Enum from werkzeug.security import check_password_hash, generate_password_hash from app import login_manager from app.libs.enumerate import UserPermission from app.libs.error_code import AuthFailed from app.models.base import Base class User(UserMixin, Base): fields = ['username', 'nickname', 'permission'] username = Column(String(100), primary_key=True, nullable=False) nickname = Column(String(100), nullable=False) password_ = Column('password', String(1000), nullable=False) permission = Column(Enum(UserPermission), default=UserPermission.Normal) @property def id(self): return self.username @staticmethod @login_manager.user_loader def load_user(id_): return User.get_by_id(id_) @staticmethod @login_manager.unauthorized_handler def unauthorized_handler(): return AuthFailed() @property def password(self): return self.password_ @password.setter def password(self, raw): self.password_ = generate_password_hash(raw) def check_password(self, raw): if not self.password_ or not raw: return False return check_password_hash(self.password_, raw)
27.446809
76
0.721705
54975dd40b2c8606432908f492f3c453698f2239
3,790
py
Python
src/visuanalytics/analytics/processing/audio/parts/part.py
Biebertal-mach-mit-TV/Data-Analytics
70cda2393e61f7ca0a1a4a5965646e908bd0faa9
[ "MIT" ]
1
2020-11-27T17:26:27.000Z
2020-11-27T17:26:27.000Z
src/visuanalytics/analytics/processing/audio/parts/part.py
Biebertal-mach-mit-TV/Data-Analytics
70cda2393e61f7ca0a1a4a5965646e908bd0faa9
[ "MIT" ]
85
2021-01-02T11:38:59.000Z
2021-07-26T07:13:47.000Z
src/visuanalytics/analytics/processing/audio/parts/part.py
Biebertal-mach-mit-TV/Data-Analytics
70cda2393e61f7ca0a1a4a5965646e908bd0faa9
[ "MIT" ]
1
2021-04-19T06:50:53.000Z
2021-04-19T06:50:53.000Z
""" Modul, welches die grundlegenden Funktionen der verschiedenen Arten zur Textgenerierung für die Text-to-Speech-Umwandlung beeinhaltet. """ from random import randint from visuanalytics.analytics.util.step_errors import AudioError, raise_step_error from visuanalytics.analytics.util.step_utils import execute_type_option, execute_type_compare from visuanalytics.analytics.util.type_utils import get_type_func, register_type_func AUDIO_PARTS_TYPES = {} """Ein Dictionary bestehend aus allen Audio-Parts-Typ-Methoden. """ @raise_step_error(AudioError) def audio_parts(values, data): return_string = "" for value in values: return_value = get_type_func(value, AUDIO_PARTS_TYPES)(value, data) if not return_value[1]: return "", False return_string = return_string + return_value[0] return return_string, True def register_audio_parts(func): """Registriert die übergebene Funktion und versieht sie mit einem `"try/except"`-Block. Fügt eine Typ-Funktion dem Dictionary AUDIO_PARTS_TYPES hinzu. :param func: die zu registrierende Funktion :return: Funktion mit try/except-Block """ return register_type_func(AUDIO_PARTS_TYPES, AudioError, func) @register_audio_parts def file(values, data): """ Gibt an, dass eine bereits vorhandene Audio Teil der Audio ist :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ return "", False @register_audio_parts def text(values, data): """Gibt den Text unter pattern aus. Gibt den Text unter pattern aus. Wenn dieser Ersetzungen erwartet, werden diese durchgeführt. :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ return data.format(values["pattern"], values), True @register_audio_parts def compare(values, data): """Vergleicht zwei Werte miteinander und führt je nachdem, ob =, !=, < oder >, die danach aufgeführten `"audio_parts"`-Funktionen aus. Wenn `value_left` gleich `value_right`, führe "transform"-Typen aus on_equal durch. Wenn `value_left` ungleich `value_right`, führe "transform"-Typen aus on_not_equal durch. Wenn `value_left` größer `value_right`, führe "transform"-Typen aus on_higher durch. Wenn `value_left` kleiner `value_right`, führe "transform"-Typen aus on_lower durch. :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ return audio_parts(execute_type_compare(values, data), data) @register_audio_parts def option(values, data): """Führt die aufgeführten `"audio_parts"`-Funktionen aus, je nachdem ob ein bestimmter Wert `"true"` oder `"false"` ist. Wenn der Wert, der in `"check"` steht `"true"` ist, werden die `"audio_parts"`-Funktionen ausgeführt, die unter `"on_true"` stehen. Wenn der Wert, der in `"check"` steht `"false"` ist, werden die `"audio_parts"`-Funktionen ausgeführt, die unter `"on_false"` stehen. :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ return audio_parts(execute_type_option(values, data), data) @register_audio_parts def random_text(values, data): """Sucht aus mehreren Strings (Array in pattern) zufällig einen aus. :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ len_pattern = len(values["pattern"]) if len_pattern == 1: return data.format(values["pattern"][0], values), True else: rand = randint(0, len_pattern - 1) return data.format(values["pattern"][rand], values), True @register_audio_parts def silent(values, data): """ Gibt an, dass eine lautlose Audio Teil der Audio ist :param values: Werte aus der JSON-Datei :param data: Daten aus der API """ return "", False
33.839286
138
0.715303
b7a81d2dc6c5fb849d41361fefa7c28e9b8b16ed
1,122
py
Python
weibo/test/testReCompile.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
weibo/test/testReCompile.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
weibo/test/testReCompile.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
#encoding:utf8 ''' Created on 2016年4月12日 @author: wb-zhaohaibo ''' import re from bs4 import BeautifulSoup html_cont = open("text.html","r").read() soup = BeautifulSoup(html_cont,"html.parser",from_encoding="utf-8") # sss = "/u/5888088457?refer_flag=1005050008_" # pattern = re.compile(r"/u/[0-9]+\?refer_flag=[0-9]+_") #/u/3738760754?refer_flag=1005050008_ #\/u\/3738760754?refer_flag=1005050008_\ links = soup.find_all("script") for link in links: text = link.get_text() text = text.replace('\/', '\\') # print text # links = soup.find_all("a",href=re.compile(r"\/u\/3738760754\?refer_flag=1005050008_")) # print links # strinfo = re.compile('href="\/u\/') # b = strinfo.sub('href="/u/',a) # print "b="+b # b = re.compile(r"/u/[0-9]+\?refer_flag=[0-9]+_") # href="/u/2515950453?refer_flag=1005050005_" class="S_txt1">段晓阳session</a> a = ' href="/u/2515950453?refer_flag=1005050005_" class="S_txt1">段晓阳session</a> ' # print "a="+a patten = re.compile(r'href="(\\/u\\/[0-9]+\?refer_flag=[0-9]+_)"') b = patten.findall(a) print b bb = b[0].replace("\\","") print bb
28.05
89
0.637255
4d10985a2b796d551cb3b521b635f3fd15d7848d
658
py
Python
backend/migrations/versions/712fec4b34b0_.py
davidoesch/platform
1eb6f98568cab82e28bd5350beab2042b22d99ed
[ "MIT" ]
null
null
null
backend/migrations/versions/712fec4b34b0_.py
davidoesch/platform
1eb6f98568cab82e28bd5350beab2042b22d99ed
[ "MIT" ]
null
null
null
backend/migrations/versions/712fec4b34b0_.py
davidoesch/platform
1eb6f98568cab82e28bd5350beab2042b22d99ed
[ "MIT" ]
null
null
null
"""empty message Revision ID: 712fec4b34b0 Revises: 523e4c992f6b Create Date: 2018-08-30 15:43:38.687542 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '712fec4b34b0' down_revision = '523e4c992f6b' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('resource', sa.Column('notes', sa.UnicodeText(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('resource', 'notes') # ### end Alembic commands ###
22.689655
82
0.693009
4206177f4105ea34a996e3e6e54823a220493ded
3,031
py
Python
demo.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
null
null
null
demo.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
16
2020-01-28T23:04:13.000Z
2022-03-12T00:02:40.000Z
demo.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
null
null
null
""" Function of demo.py This script allows you to easily test the functionality of the solution using images stored in the income directory. The image stored there is transferred to an instance of the scanner, processed and then returned as a new image and stored in the outcome directory. The application of the auto function of the scanner class will also be demonstrated. """ import cv2 import constant as const from annotation_constants.eval_annotation_constants import EVAL_ANNOTATION_CONTANTS from annotation_constants.neg_annotation_constants import NEG_ANNOTATION_CONTANTS from annotation_constants.pos_annotation_constants import POS_ANNOTATION_CONTANTS from scanner import Scanner def auto(input, output): """Examines the image defined as input (path + file name) and generates an output image at the location defined as output (path + file name). :param input:Path to the input image :param output:Path to the output image """ try: scanner = Scanner() scanner.auto_scann(input, output, pos_annotation_constants=POS_ANNOTATION_CONTANTS, neg_annotation_constants=NEG_ANNOTATION_CONTANTS, eval_annotation_constants=EVAL_ANNOTATION_CONTANTS) except: print('Error in method {0} in module {1}'.format('auto', 'demo.py')) if __name__ == '__main__': """Is executed when the file is executed directly. The function performs a text detection and recognition with the image stored in the variable in_file and stores the result under the name defined in the variable out_file. Version 1 takes over the loading and saving. Only the paths are to be specified. In Version2, the loading and saving processes must be performed manually. Detail screens are output during processing """ # Controls the program run version = 2 # Input file (from the income directory) in_file = 'test.jpg' # Output file (from the outcome directory) out_file = '001.jpg' try: if version == 1: auto(const.INPUT_DIR + '/' + in_file, const.OUTPUT_DIR + '/' + out_file) exit(0) elif version == 2: scanner = Scanner() img_in = cv2.imread(const.INPUT_DIR + '/' + in_file)[:, :, ::-1] if img_in is not None: img_out = scanner.scann(img=img_in, print_detail=True, pos_annotation_constants=POS_ANNOTATION_CONTANTS, neg_annotation_constants=NEG_ANNOTATION_CONTANTS, eval_annotation_constants=EVAL_ANNOTATION_CONTANTS) cv2.imwrite(const.OUTPUT_DIR + '/' + out_file, img_out) print('Finished') else: print('Image not readable') except: print('Error in method {0} in module {1}'.format('main', 'demo.py'))
40.413333
100
0.646321
425e7db076c0e09054a0a98f3e180e19a885d306
2,006
py
Python
2019/quals/pwn-secureboot/healthcheck/healthcheck.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
2,757
2018-04-28T21:41:36.000Z
2022-03-29T06:33:36.000Z
2019/quals/pwn-secureboot/healthcheck/healthcheck.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
20
2019-07-23T15:29:32.000Z
2022-01-21T12:53:04.000Z
2019/quals/pwn-secureboot/healthcheck/healthcheck.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
449
2018-05-09T05:54:05.000Z
2022-03-30T14:54:18.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import subprocess import nameko from nameko.web.handlers import HttpRequestHandler from nameko.timer import timer logger = logging.getLogger('healthcheck') http = HttpRequestHandler.decorator state = { 'healthy': None } class HealthcheckService: name = 'healthcheck' @http('GET', '/') def healthcheck_handler(self, request): if state['healthy']: return 200, 'healthy\n' else: return 503, 'unhealthy\n' @timer(interval=60) def healtcheck(self): address = os.environ.get('ADDRESS', '127.0.0.1') port = int(os.environ.get('PORT', '1337')) retries = 5 while retries > 0: health = False try: health = healthcheck_challenge(address, port) except Exception as e: logger.warning('Healthcheck exception: {}'.format(e)) if health: break logger.info('Retrying...') retries -= 1 if health != state['healthy']: if health: logger.info('Challenge became healthy.') else: logger.info('Challenge became unhealthy.') state['healthy'] = health # Implement your healthchecking here. # Beware, this framework uses eventlet - third party I/O libraries might not # work. Also, this is Python3. def healthcheck_challenge(address, port): result = subprocess.run(['./solve.py', 'r', address, str(port)], stdout=subprocess.PIPE) return "CTF{" in str(result.stdout)
26.746667
90
0.688933
220c2684af594a57dc51144cd540b6a6d406a4f4
394
py
Python
Chapter5_DNN/Chapter5_2_BostonRegression/bostonVisualization.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
11
2020-10-12T14:06:31.000Z
2022-02-22T09:16:32.000Z
Chapter5_DNN/Chapter5_2_BostonRegression/bostonVisualization.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
null
null
null
Chapter5_DNN/Chapter5_2_BostonRegression/bostonVisualization.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
8
2020-10-29T07:53:49.000Z
2022-03-17T11:01:20.000Z
import matplotlib.pyplot as plt import pandas as pd from sklearn.datasets import load_boston if __name__ == "__main__": dataset = load_boston() x = dataset.data y = dataset.target df = pd.DataFrame(x, columns=dataset.feature_names) df["y"] = y print(df.head(n=10)) print(df.info()) print(df.describe()) df.hist(bins=30, figsize=(15, 15)) plt.show()
19.7
55
0.649746
221076f3e4174dbf40154858347cc60f8940a7d3
11,647
py
Python
hyperts/experiment.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
hyperts/experiment.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
hyperts/experiment.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
import copy import numpy as np import pandas as pd from hypernets.core import set_random_state from hypernets.experiment.compete import SteppedExperiment, ExperimentStep, \ EnsembleStep, FinalTrainStep from hypernets.utils import logging from hypernets.tabular import get_tool_box from hypernets.tabular.data_cleaner import DataCleaner from hyperts.utils import data_ops as dp, consts logger = logging.get_logger(__name__) DEFAULT_EVAL_SIZE = 0.2 def _set_log_level(log_level): logging.set_level(log_level) class TSDataPreprocessStep(ExperimentStep): def __init__(self, experiment, name, timestamp_col=None, freq=None, covariate_cols=None, covariate_data_clean_args=None): super().__init__(experiment, name) timestamp_col = [timestamp_col] if isinstance(timestamp_col, str) else timestamp_col covariate_cols = [covariate_cols] if isinstance(covariate_cols, str) else covariate_cols self.freq = freq self.timestamp_col = timestamp_col if timestamp_col is not None else consts.TIMESTAMP self.covariate_cols = covariate_cols self.covariate_data_clean_args = covariate_data_clean_args if covariate_data_clean_args is not None else {} self.covariate_data_clean_args.update({'correct_object_dtype': False}) # fitted self.covariate_data_cleaner = DataCleaner(**self.covariate_data_clean_args) def fit_transform(self, hyper_model, X_train, y_train, X_test=None, X_eval=None, y_eval=None, **kwargs): super().fit_transform(hyper_model, X_train, y_train, X_test=X_test, X_eval=X_eval, y_eval=y_eval) # 1. covariate variables data clean procsss if self.covariate_cols is not None and len(self.covariate_cols) > 0: X_train = self.covariate_transform(X_train, training=True) # 2. target plus covariable process train_Xy = pd.concat([X_train, y_train], axis=1) variable_cols = dp.list_diff(train_Xy.columns, self.timestamp_col) target_variable_cols = dp.list_diff(variable_cols, self.covariate_cols) excluded_cols = dp.list_diff(train_Xy.columns, target_variable_cols) train_Xy = self.series_transform(train_Xy, target_variable_cols) X_train, y_train = train_Xy[excluded_cols], train_Xy[target_variable_cols] # 3. eval variables data process if X_eval is None or y_eval is None: eval_size = self.experiment.eval_size if self.task in [consts.TASK_FORECAST, consts.TASK_UNIVARIABLE_FORECAST, consts.TASK_MULTIVARIABLE_FORECAST]: X_train, X_eval, y_train, y_eval = \ dp.temporal_train_test_split(X_train, y_train, test_size=eval_size) else: if self.covariate_cols is not None and len(self.covariate_cols) > 0: X_eval = self.covariate_transform(X_eval, training=False) eval_Xy = pd.concat([X_eval, y_eval], axis=1) eval_Xy = self.series_transform(eval_Xy, target_variable_cols) X_eval, y_eval = eval_Xy[excluded_cols], eval_Xy[target_variable_cols] # 4. compute new data shape data_shapes = {'X_train.shape': X_train.shape, 'y_train.shape': y_train.shape, 'X_eval.shape': None if X_eval is None else X_eval.shape, 'y_eval.shape': None if y_eval is None else y_eval.shape, 'X_test.shape': None if X_test is None else X_test.shape } # 5. reset part parameters self.data_shapes = data_shapes return hyper_model, X_train, y_train, X_test, X_eval, y_eval def transform(self, X, y=None, **kwargs): if self.covariate_cols is not None and len(self.covariate_cols) > 0: X_transform = self.covariate_transform(X, training=False) X_transform = self.series_transform(X_transform) else: X_transform = self.series_transform(X) return X_transform def covariate_transform(self, X, training=False): df_timestamp = X[self.timestamp_col] if training: df_covariate, _ = self.covariate_data_cleaner.fit_transform(X[self.covariate_cols]) else: df_covariate = self.covariate_data_cleaner.transform(X[self.covariate_cols]) assert df_covariate.shape[0] == X.shape[0], \ 'The row of clearned covariable is not equal the row of X_train.' X = pd.concat([df_timestamp, df_covariate], axis=1) return X def series_transform(self, X, target_variable_cols=None): covar_object_names, covar_float_names = [], [] if self.covariate_cols is not None and len(self.covariate_cols) > 0: for col in self.covariate_cols: if X[col].dtypes == consts.DATATYPE_OBJECT: covar_object_names.append(col) elif X[col].dtypes == consts.DATATYPE_FLOAT: covar_float_names.append(col) if target_variable_cols is not None: impute_col_names = target_variable_cols + covar_float_names else: impute_col_names = covar_float_names self.freq = self.freq if self.freq is not None else \ dp.infer_ts_freq(X[self.timestamp_col], ts_name=self.timestamp_col[0]) X = dp.drop_duplicated_ts_rows(X, ts_name=self.timestamp_col[0]) X = dp.smooth_missed_ts_rows(X, freq=self.freq, ts_name=self.timestamp_col[0]) if target_variable_cols is not None and len(target_variable_cols) > 0: X[target_variable_cols] = dp.nan_to_outliers(X[target_variable_cols]) if impute_col_names is not None and len(impute_col_names) > 0: X[impute_col_names] = dp.multi_period_loop_imputer(X[impute_col_names], freq=self.freq) if covar_object_names is not None and len(covar_object_names) > 0: X[covar_object_names] = X[covar_object_names].fillna(method='ffill').fillna(method='bfill') return X def get_params(self, deep=True): params = super(TSDataPreprocessStep, self).get_params() params['covariate_data_clean_args'] = self.covariate_data_cleaner.get_params() return params def get_fitted_params(self): freq = self.freq if self.freq is not None else None data_shapes = self.data_shapes if self.data_shapes is not None else {} return {**super(TSDataPreprocessStep, self).get_fitted_params(), **data_shapes, 'freq': freq} class TSSpaceSearchStep(ExperimentStep): def __init__(self, experiment, name): super().__init__(experiment, name) # fitted self.dataset_id = None self.model = None self.history_ = None self.best_reward_ = None def fit_transform(self, hyper_model, X_train, y_train, X_test=None, X_eval=None, y_eval=None, **kwargs): super().fit_transform(hyper_model, X_train, y_train, X_test=X_test, X_eval=X_eval, y_eval=y_eval) if X_eval is not None: kwargs['eval_set'] = (X_eval, y_eval) model = copy.deepcopy(self.experiment.hyper_model) # copy from original hyper_model instance model.search(X_train, y_train, X_eval, y_eval, **kwargs) if model.get_best_trial() is None or model.get_best_trial().reward == 0: raise RuntimeError('Not found available trial, change experiment settings and try again pls.') self.dataset_id = 'abc' # fixme self.model = model self.history_ = model.history self.best_reward_ = model.get_best_trial().reward logger.info(f'{self.name} best_reward: {self.best_reward_}') return self.model, X_train, y_train, X_test, X_eval, y_eval def transform(self, X, y=None, **kwargs): return X def is_transform_skipped(self): return True def get_fitted_params(self): return {**super().get_fitted_params(), 'best_reward': self.best_reward_, 'history': self.history_, } class TSEnsembleStep(EnsembleStep): def get_ensemble(self, estimators, X_train, y_train): # return GreedyEnsemble(self.task, estimators, scoring=self.scorer, ensemble_size=self.ensemble_size) tb = get_tool_box(X_train, y_train) if self.task in ['forecast', "multivariate-forecast"]: ensemble_task = 'regression' else: ensemble_task = self.task return tb.greedy_ensemble(ensemble_task, estimators, scoring=self.scorer, ensemble_size=self.ensemble_size) class TSExperiment(SteppedExperiment): def __init__(self, hyper_model, X_train, y_train, X_eval=None, y_eval=None, X_test=None, eval_size=0.2, freq=None, timestamp_col=None, covariate_cols=None, covariate_data_clean_args=None, cv=True, num_folds=3, task=None, callbacks=None, log_level=None, random_state=None, ensemble_size=3, **kwargs): """ Parameters ---------- Return """ if random_state is None: random_state = np.random.randint(0, 65535) set_random_state(random_state) task = hyper_model.task # todo: check task # todo: check scorer steps = [] # data clean if task in [consts.TASK_FORECAST, consts.TASK_UNIVARIABLE_FORECAST, consts.TASK_MULTIVARIABLE_FORECAST]: steps.append(TSDataPreprocessStep(self, consts.StepName_DATA_PREPROCESSING, freq=freq, timestamp_col=timestamp_col, covariate_cols=covariate_cols, covariate_data_clean_args=covariate_data_clean_args)) # search step steps.append(TSSpaceSearchStep(self, consts.StepName_SPACE_SEARCHING)) # ensemble step, # steps.append(TSEnsembleStep(self, StepNames.FINAL_ENSEMBLE, scorer=scorer, ensemble_size=ensemble_size)) steps.append(FinalTrainStep(self, consts.StepName_FINAL_TRAINING, retrain_on_wholedata=False)) # ignore warnings import warnings warnings.filterwarnings('ignore') if log_level is not None: _set_log_level(log_level) self.run_kwargs = kwargs super(TSExperiment, self).__init__(steps, hyper_model, X_train, y_train, X_eval=X_eval, y_eval=y_eval, X_test=X_test, eval_size=eval_size, task=task, id=id, callbacks=callbacks, random_state=random_state) def run(self, **kwargs): run_kwargs = {**self.run_kwargs, **kwargs} return super().run(**run_kwargs) def _repr_html_(self): try: from hypernets.hn_widget.hn_widget.widget import ExperimentSummary from IPython.display import display display(ExperimentSummary(self)) except: return self.__repr__()
43.137037
122
0.626599
227bbd6ac7fa871b720a32599c74f87a9867fcc7
1,074
py
Python
rating/contact_link.py
thegreenwebfoundation/green-spider
68f22886178bbe5b476a4591a6812ee25cb5651b
[ "Apache-2.0" ]
19
2018-04-20T11:03:41.000Z
2022-01-12T20:58:56.000Z
rating/contact_link.py
thegreenwebfoundation/green-spider
68f22886178bbe5b476a4591a6812ee25cb5651b
[ "Apache-2.0" ]
160
2018-04-05T16:12:59.000Z
2022-03-01T13:01:27.000Z
rating/contact_link.py
thegreenwebfoundation/green-spider
68f22886178bbe5b476a4591a6812ee25cb5651b
[ "Apache-2.0" ]
8
2018-11-05T13:07:57.000Z
2021-06-11T11:46:43.000Z
""" Checks whether the pages has a link "Kontakt" """ from rating.abstract_rater import AbstractRater class Rater(AbstractRater): rating_type = 'boolean' default_value = False depends_on_checks = ['hyperlinks'] max_score = 1 def __init__(self, check_results): super().__init__(check_results) def rate(self): value = self.default_value score = 0 urls = 0 urls_with_contact_link = 0 for url in self.check_results['hyperlinks']: urls += 1 for link in self.check_results['hyperlinks'][url]['links']: if link['text'].lower() == 'kontakt': urls_with_contact_link += 1 # make sure we only count 1 for this url break if urls > 0 and urls_with_contact_link == urls: score = self.max_score value = True return { 'type': self.rating_type, 'value': value, 'score': score, 'max_score': self.max_score, }
24.409091
71
0.549348
e1c9db7b17e34a6d8d78423ca393b4dc77997b03
23,802
py
Python
oldp/apps/cases/processing/processing_steps/extract_refs.py
ImgBotApp/oldp
575dc6f711dde3470d910e21c9440ee9b79a69ed
[ "MIT" ]
3
2020-06-27T08:19:35.000Z
2020-12-27T17:46:02.000Z
oldp/apps/cases/processing/processing_steps/extract_refs.py
ImgBotApp/oldp
575dc6f711dde3470d910e21c9440ee9b79a69ed
[ "MIT" ]
null
null
null
oldp/apps/cases/processing/processing_steps/extract_refs.py
ImgBotApp/oldp
575dc6f711dde3470d910e21c9440ee9b79a69ed
[ "MIT" ]
null
null
null
import logging import re import nltk from django.utils.text import slugify from oldp.apps.backend.processing import ProcessingError, AmbiguousReferenceError from oldp.apps.cases.models import Case from oldp.apps.cases.processing.processing_steps import CaseProcessingStep from oldp.apps.laws.models import LawBook from oldp.apps.references.models import CaseReferenceMarker, ReferenceMarker logger = logging.getLogger(__name__) class ExtractRefs(CaseProcessingStep): description = 'Extract references' law_book_codes = None def __init__(self, law_refs=True, case_refs=True): super(ExtractRefs, self).__init__() self.law_refs = law_refs self.case_refs = case_refs def process(self, case: Case) -> Case: """ Read case.content, search for references, add ref marker (e.g. [ref=1]xy[/ref]) to text, add ref data to case: case.refs { 1: { section: ??, line: 1, word: 2, id: ecli://..., } 2: { line: 2, word: 123, id: law://de/bgb/123 } } Ref data should contain position information, for CPA computations ... :param case_refs: :param law_refs: :param case: :return: """ all_refs = [] # print(case.get_sections()) content = ReferenceMarker.remove_markers(case.content) if self.law_refs: content, refs = self.extract_law_refs(case, content, key=len(all_refs)) all_refs.extend(refs) logger.debug('Extracted law refs: %i' % len(refs)) if self.case_refs: content, refs = self.extract_case_refs(case, content, key=len(all_refs)) all_refs.extend(refs) logger.debug('Extracted case refs: %i' % len(refs)) case.content = content case.reference_markers = all_refs if not case._state.adding: case.save_reference_markers() else: logger.warning('Reference markers not saved (case is not saved)') # print(case.references) # if len(not_found_refs) > 0: # raise ValueError('Some refs still in the content...') return case def test_ref_extraction(self, value): # (.+?)\\[/ref\\] value = re.sub(r'\[ref=([0-9]+)\](.+?)\[/ref\]', '______', value) if re.search(r'§', value, re.IGNORECASE): return value else: return None def get_law_book_codes(self): if self.law_book_codes is None: # Fetch codes from db # State.objects.values_list( self.law_book_codes = list(LawBook.objects.values_list('code', flat=True)) logger.debug('Loaded law book codes from db: %i' % len(self.law_book_codes)) # Extend with pre-defined codes self.law_book_codes.extend(['AsylG', 'VwGO', 'GkG', 'stbstg', 'lbo', 'ZPO', 'LVwG', 'AGVwGO SH', 'BauGB', 'BauNVO', 'ZWStS', 'SbStG', 'StPO', 'TKG']) return self.law_book_codes # Returns regex for law book part in reference markers def get_law_book_ref_regex(self, optional=True, group_name=True, lower=False): # law_book_codes = list(json.loads(open(self.law_book_codes_path).read()).keys()) law_book_codes = self.get_law_book_codes() law_book_regex = None for code in law_book_codes: if lower: code = code.lower() if law_book_regex is None: # if optional: # law_book_regex = '(' # else: # law_book_regex = '(' law_book_regex = '' # if group_name: # law_book_regex += '?P<book>' law_book_regex += code else: law_book_regex += '|' + code # law_book_regex += ')' # if optional: # law_book_regex += '?' return law_book_regex def get_law_ref_regex(self): # TODO Regex builder tool? http://regexr.com/ # https://www.debuggex.com/ # ((,|und)\s*((?P<nos>[0-9]+)+)* # regex += '(\s?([0-9]+|[a-z]{1,2}|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|f\.|ff\.|und|bis|\,|'\ #regex = r'(§|§§|Art.) (?P<sect>[0-9]+)\s?(?P<sect_az>[a-z]*)\s?(?:Abs.\s?(?:[0-9]{1,2})|Abs\s?(?:[0-9]{1,2}))?\s?(?:Satz\s[0-9]{1,2})?\s' + law_book_regex regex = r'(§|§§|Art\.)\s' regex += '(\s|[0-9]+|[a-z]|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|f\.|ff\.|und|bis|\,|' \ + self.get_law_book_ref_regex(optional=False, group_name=False) + ')+' regex += '\s(' + self.get_law_book_ref_regex(optional=False, group_name=False) + ')' regex_abs = '((Abs.|Abs)\s?([0-9]+)((,|und|bis)\s([0-9]+))*)*' regex_a = '(([0-9]+)\s?([a-z])?)' regex_a += '((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*' # f. ff. regex_a += '\s?((Abs.|Abs)\s?([0-9]+))*' # regex_a += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' # regex_a += '\s?((Satz|S\.)\s[0-9]{1,2})?' # regex_a += '\s?(((Nr|Nr\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' # regex_a += '\s?(((Alt|Alt\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' regex_a += '\s' regex_a += '(' + self.get_law_book_ref_regex(optional=True, group_name=False) + ')' # regex += regex_a # regex += '(\s?(,|und)\s' + regex_a + ')*' # # logger.debug('Law Regex=%s' % regex) return regex def get_law_ref_match_single(self, ref_str): # Single ref regex_a = '(Art\.|§)\s' regex_a += '((?P<sect>[0-9]+)\s?(?P<sect_az>[a-z])?)' # f. ff. regex_a += '(\s?([0-9]+|[a-z]{1,2}|Abs\.|Abs|Satz|S\.|Nr|Nr\.|Alt|Alt\.|und|bis|,))*' # regex_a += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' # regex_a += '\s?((Satz|S\.)\s[0-9]{1,2})?' # regex_a += '\s?(((Nr|Nr\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' # regex_a += '\s?(((Alt|Alt\.)\s[0-9]+)' + '(\s?(,|und|bis)\s[0-9]+)*' + ')?' regex_a += '\s(?P<book>' + self.get_law_book_ref_regex(optional=False) + ')' return re.search(regex_a, ref_str) def get_law_ref_match_multi(self, ref_str): pattern = r'(?P<delimiter>§§|,|und|bis)\s?' pattern += '((?P<sect>[0-9]+)\s?' # pattern += '(?P<sect_az>[a-z])?)' # (?!.*?bis).*([a-z]).*) # pattern += '(?P<sect_az>(?!.*?bis).*([a-z]).*)?)' # (?!(moscow|outside)) # pattern += '(?P<sect_az>(([a-z])(?!(und|bis))))?)' pattern += '((?P<sect_az>[a-z])(\s|,))?)' # Use \s|, to avoid matching "bis" and "Abs", ... pattern += '(\s?(Abs\.|Abs)\s?([0-9]+))*' pattern += '(\s?(S\.|Satz)\s?([0-9]+))*' # pattern += '(?:\s(Nr\.|Nr)\s([0-9]+))' # pattern += '(?:\s(S\.|Satz)\s([0-9]+))' # pattern += '(?:\s(f\.|ff\.))?' pattern += '(\s?(f\.|ff\.))*' # pattern += '(\s(Abs.|Abs)\s?([0-9]+)((,|und|bis)\s([0-9]+))*)*' # pattern += '\s?(?:(Abs.|Abs)\s?(?:[0-9]{1,2})\s?((,|und|bis)\s*(([0-9]+)\s?([a-z])?)+)*)?' pattern += '\s?(?:(?P<book>' + self.get_law_book_ref_regex() + '))?' # print('MULTI: ' + ref_str) # print(pattern) # logger.debug('Multi ref regex: %s' % pattern) return re.finditer(pattern, ref_str) def get_law_id_from_match(self, match): # print(match.groups()) return 'ecli://de/%s/%s%s' % ( match.group('book').lower(), int(match.group('sect')), match.group('sect_az').lower() ) def extract_law_refs(self, referenced_by: Case, content: str, key: int=0): """ § 3d AsylG § 123 VwGO §§ 3, 3b AsylG § 77 Abs. 1 Satz 1, 1. Halbsatz AsylG § 3 Abs. 1 AsylG § 77 Abs. 2 AsylG § 113 Abs. 5 Satz 1 VwGO § 3 Abs. 1 Nr. 1 i.V.m. § 3b AsylG § 3a Abs. 1 und 2 AsylG §§ 154 Abs. 1 VwGO § 83 b AsylG § 167 VwGO iVm §§ 708 Nr. 11, 711 ZPO § 167 VwGO i.V.m. §§ 708 Nr. 11, 711 ZPO §§ 167 Abs. 2 VwGO, 708 Nr. 11, 711 ZPO §§ 52 Abs. 1; 53 Abs. 2 Nr. 1; 63 Abs. 2 GKG § 6 Abs. 5 Satz 1 LBO §§ 80 a Abs. 3, 80 Abs. 5 VwGO § 1 Satz 2 SbStG § 2 ZWStS § 6 Abs. 2 S. 2 ZWStS TODO all law-book jurabk :param referenced_by: :param key: :link https://www.easy-coding.de/Thread/5536-RegExp-f%C3%BCr-Gesetze/ :param content: :return: """ logger.debug('Extracting law references') refs = [] results = list(re.finditer(self.get_law_ref_regex(), content)) marker_offset = 0 logger.debug('Current content value: %s' % content) logger.debug('Law refs found: %i' % len(results)) for ref_m in results: ref_str = str(ref_m.group(0)).strip() law_ids = [] # Handle single and multi refs separately if re.match(r'^(Art\.|§)\s', ref_str): law_ids = self.handle_single_law_ref(ref_str, law_ids) elif re.match(r'^§§\s', ref_str): law_ids = self.handle_multiple_law_refs(ref_str, law_ids) else: raise ProcessingError('Unsupported ref beginning: %s' % ref_str) ref = CaseReferenceMarker(referenced_by=referenced_by, text=ref_str, start=ref_m.start(), end=ref_m.end(), line=0) # TODO ref.set_uuid() ref.set_references(law_ids) refs.append(ref) content, marker_offset = ref.replace_content(content, marker_offset, key + len(refs)) return content, refs def handle_multiple_law_refs(self, ref_str, law_ids): # Search for multiple refs mms = self.get_law_ref_match_multi(ref_str) ids_tmp = [] prev_sect = None prev_book = None logger.debug('Multi refs found in: %s' % ref_str) # Loop over all results for m in mms: # If book is not set, use __placeholder__ and replace later if m.group('book') is not None: book = m.group('book').lower() else: book = '__book__' # Section must exist if m.group('sect') is not None: sect = str(m.group('sect')) else: raise ProcessingError('Ref sect is not set') if m.group('sect_az') is not None: sect += m.group('sect_az').lower() law_id = { 'book': book, 'sect': sect, 'type': 'law' } logger.debug('Law ID found: %s' % law_id) # Check for section ranges if m.group('delimiter') == 'bis': logger.debug('Handle section range - Add ids from ' + prev_sect + ' to ' + sect) # TODO how to handle az sects prev_sect = re.sub('[^0-9]', '', prev_sect) sect = re.sub('[^0-9]', '', sect) for between_sect in range(int(prev_sect)+1, int(sect)): # print(between_sect) ids_tmp.append({ 'book': prev_book, 'sect': between_sect, 'type': 'law' }) else: prev_sect = sect prev_book = book ids_tmp.append(law_id) # law_ids.append('multi = ' + ref_str) # handle __book__ logger.debug('All law ids found: %s' % ids_tmp) ids_tmp.reverse() book = None for id_tmp in ids_tmp: if id_tmp['book'] != '__book__': book = id_tmp['book'] elif book is not None: id_tmp['book'] = book else: raise ProcessingError('Cannot determine law book (Should never happen): %s' % ref_str) law_ids.append(id_tmp) return law_ids def handle_single_law_ref(self, ref_str, law_ids): logger.debug('Single ref found in: %s' % ref_str) # Single ref mm = self.get_law_ref_match_single(ref_str) # Find book and section (only single result possible) if mm is not None: # mm.groupdict() if mm.group('book') is not None: # Found book book = mm.group('book').lower() else: raise ProcessingError('Ref book is not set: %s ' % ref_str) if mm.group('sect') is not None: # Found section sect = str(mm.group('sect')) else: raise ProcessingError('Ref sect is not set') if mm.group('sect_az') is not None: # Found section addon sect += mm.group('sect_az').lower() law_id = { 'book': book, 'sect': sect, 'type': 'law' } logger.debug('Law ID: %s' % law_id) law_ids.append(law_id) else: law_ids.append({'book': 'not matched', 'sect': 'NOT MATCHED (single) %s ' % ref_str}) logger.warning('Law ID could not be matched.') return law_ids def clean_text_for_tokenizer(self, text): """ Remove elements from text that can make the tokenizer fail. :param text: :return: """ def repl(m): return '_' * (len(m.group())) def repl2(m): # print(m.group(2)) return m.group(1) + ('_' * (len(m.group(2)) + 1)) # (...) and [...] text = re.sub(r'\((.*?)\)', repl, text) # Dates text = re.sub(r'(([0-9]+)\.([0-9]+)\.([0-9]+)|i\.S\.d\.)', repl, text) # Abbr. text = re.sub(r'(\s|\(|\[)([0-9]+|[IVX]+|[a-zA-Z]|sog|ca|Urt|Abs|Nr|lfd|vgl|Rn|Rspr|std|ff|bzw|Art)\.', repl2, text) # Schl.-Holst. text = re.sub(r'([a-z]+)\.-([a-z]+)\.', repl, text, flags=re.IGNORECASE) return text def get_court_name_regex(self): """ Regular expression for finding court names :return: regex """ # TODO Fetch from DB # TODO generate only once federal_courts = [ 'Bundesverfassungsgericht', 'BVerfG', 'Bundesverwaltungsgericht', 'BVerwG', 'Bundesgerichtshof', 'BGH', 'Bundesarbeitsgericht', 'BAG', 'Bundesfinanzhof', 'BFH', 'Bundessozialgericht', 'BSG', 'Bundespatentgericht', 'BPatG', 'Truppendienstgericht Nord', 'TDG Nord', 'Truppendienstgericht Süd', 'TDG Süd', 'EUGH', ] states = [ 'Berlin', 'Baden-Württemberg', 'BW', 'Brandenburg', 'Brandenburgisches', 'Bremen', 'Hamburg', 'Hessen', 'Niedersachsen', 'Hamburg', 'Mecklenburg-Vorpommern', 'Nordrhein-Westfalen', 'NRW', 'Rheinland-Pfalz', 'Saarland', 'Sachsen', 'Sachsen-Anhalt', 'Schleswig-Holstein', 'Schl.-Holst.', 'SH', 'Thüringen' ] state_courts = [ 'OVG', 'VGH' ] cities = [ 'Baden-Baden', 'Berlin-Brbg.' 'Wedding', 'Schleswig' ] city_courts = [ 'Amtsgericht', 'AG', 'Landgericht', 'LG', 'Oberlandesgericht', 'OLG', 'OVG' ] pattern = None for court in federal_courts: if pattern is None: pattern = r'(' else: pattern += '|' pattern += court for court in state_courts: for state in states: pattern += '|' + court + ' ' + state pattern += '|' + state + ' ' + court for c in city_courts: for s in cities: pattern += '|' + c + ' ' + s pattern += '|' + s + ' ' + c pattern += ')' # logger.debug('Court regex: %s' % pattern) return pattern def get_file_number_regex(self): return r'([0-9]+)\s([a-zA-Z]{,3})\s([0-9]+)/([0-9]+)' def extract_case_refs(self, referenced_by: Case, content: str, key: int=0): """ BVerwG, Urteil vom 20. Februar 2013, - 10 C 23.12 - BVerwG, Urteil vom 27. April 2010 - 10 C 5.09 - BVerfG, Beschluss vom 10.07.1989, - 2 BvR 502, 1000, 961/86 - BVerwG, Urteil vom 20.02.2013, - 10 C 23.12 - OVG Nordrhein-Westfalen, Urteil vom 21.2.2017, - 14 A 2316/16.A - OVG Nordrhein-Westfalen, Urteil vom 29.10.2012 – 2 A 723/11 - OVG NRW, Urteil vom 14.08.2013 – 1 A 1481/10, Rn. 81 – OVG Saarland, Urteil vom 2.2.2017, - 2 A 515/16 - OVG Rheinland-Pfalz, Urteil vom 16.12.2016, -1A 10922/16 - Bayrischer VGH, Urteil vom 12.12.16, - 21 B 16.30364 OVG Nordrhein-Westfalen, Urteil vom 21.2.2017, - 14 A 2316/16.A - Bayrischer VGH, Urteil vom 12.12.2016, - 21 B 16.30372 - OVG Saarland, Urteil vom 2.2.2017, - 2 A 515/16 - OVG Rheinland-Pfalz, Urteil vom 16.12.2016, -1A 10922/16 - VG Minden, Urteil vom 22.12.2016, - 1 K 5137/16.A - VG Gießen, Urteil vom 23.11.2016, - 2 K 969/16.GI.A VG Düsseldorf, Urteil vom 24.1.2017, - 17 K 9400/16.A VG Köln, Beschluss vom 25.03.2013 – 23 L 287/12 - OVG Schleswig, Beschluss vom 20.07.2006 – 1 MB 13/06 - Schleswig-Holsteinisches Verwaltungsgericht, Urteil vom 05.082014 – 11 A 7/14, Rn. 37 – Entscheidung des Bundesverwaltungsgerichts vom 24.01.2012 (2 C 24/10) EuGH Urteil vom 25.07.2002 – C-459/99 - TODO all court codes + case types - look for (Entscheidung|Bechluss|Urteil) - +/- 50 chars - find VG|OVG|Verwaltungsgericht|BVerwG|... - find location - find file number - ... - or (...) TODO Sentence tokenzier - remove all "special endings" \s([0-9]+|[a-zA-Z]|sog|Abs)\. - remove all dates :param key: :param content: :return: """ refs = [] original = content text = content # print('Before = %s' % text) # Clean up text; replacing all chars that can lead to wrong sentences text = self.clean_text_for_tokenizer(text) # TODO from nltk.tokenize.punkt import PunktParameters punkt_param = PunktParameters() abbreviation = ['1', 'e', 'i'] punkt_param.abbrev_types = set(abbreviation) # tokenizer = PunktSentenceTokenizer(punkt_param) offset = 0 marker_offset = 0 for start, end in nltk.PunktSentenceTokenizer().span_tokenize(text): length = end - start sentence = text[start:end] original_sentence = original[start:end] matches = list(re.finditer(r'\((.*?)\)', original_sentence)) logger.debug('Sentence (matches: %i): %s' % (len(matches), sentence)) logger.debug('Sentence (orignal): %s' % (original_sentence)) for m in matches: # pass # print('offset = %i, len = %i' % (offset, len(sentence))) # # print('MANGLED: ' + sentence) logger.debug('Full sentence // UNMANGLED: ' + original_sentence) # focus_all = original[start+m.start(1):start+m.end(1)].split(',') focus_all = original_sentence[m.start(1):m.end(1)].split(',') # print(m.group(1)) logger.debug('In parenthesis = %s' % focus_all) # Split for focus in focus_all: # Search for file number fns_matches = list(re.finditer(self.get_file_number_regex(), focus)) if len(fns_matches) == 1: fn = fns_matches[0].group(0) pos = fns_matches[0].start(0) logger.debug('File number found: %s' % fn) # Find court court_name = None court_pos = 999999 court_matches = list(re.finditer(self.get_court_name_regex(), original_sentence)) if len(court_matches) == 1: # Yeah everything is fine court_name = court_matches[0].group(0) elif len(court_matches) > 0: # Multiple results, choose the one that is closest to file number for cm in court_matches: if court_name is None or abs(pos - cm.start()) < court_pos: court_name = cm.group(0) court_pos = abs(pos - cm.start()) else: # no court found, guess by search query # probably the court of the current case? test for "die kammer" pass # Find date # TODO logger.debug('Filename = %s' % fn) logger.debug('Courtname = %s' % court_name) ref_start = start + m.start(1) + pos ref_end = ref_start + len(fn) if court_name is None: # raise ) # TODO Probably same court as current case (use case validation) logger.error(AmbiguousReferenceError('No court name found - FN: %s' % fn)) # logger.debug('Sentence: %s' % (fn, original_sentence))) continue ref_ids = [ { 'type': 'case', 'ecli': 'ecli://de/' + slugify(court_name) + '/' + slugify(fn.replace('/', '-')) } ] # TODO maintain order for case+law refs ref = CaseReferenceMarker(referenced_by=referenced_by, text=focus, start=ref_start, end=ref_end, line=0) # TODO line number ref.set_uuid() ref.set_references(ref_ids) refs.append( ref ) content, marker_offset = ref.replace_content(content, marker_offset, key + len(refs)) pass elif len(fns_matches) > 1: logger.warning('More file numbers found: %s' % fns_matches) pass else: logger.debug('No file number found') return content, refs
34.696793
163
0.479245
bed101cb50e67e664cfce00e4f5d3b98b401ee2d
1,423
py
Python
oneflow/python/ops/transpose_util.py
wanghongsheng01/framework_enflame
debf613e05e3f5ea8084c3e79b60d0dd9e349526
[ "Apache-2.0" ]
2
2021-09-10T00:19:49.000Z
2021-11-16T11:27:20.000Z
oneflow/python/ops/transpose_util.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
1
2021-06-16T08:37:50.000Z
2021-06-16T08:37:50.000Z
oneflow/python/ops/transpose_util.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
1
2021-11-10T07:57:01.000Z
2021-11-10T07:57:01.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import from typing import Sequence def is_perm(perm: Sequence[int],) -> bool: return list(range(len(perm))) == sorted(list(perm)) # get the perm when you want to transpose specified axis to the last dimension def get_perm_when_transpose_axis_to_last_dim(num_axes: int, axis: int,) -> tuple: axis = axis if axis >= 0 else axis + num_axes assert 0 <= axis < num_axes, "axis out of range" perm = [dim if dim < axis else dim + 1 for dim in range(num_axes - 1)] perm.append(axis) return tuple(perm) # x == transpose(transpose(x, perm), get_inversed_perm(perm)) def get_inversed_perm(perm: Sequence[int],) -> tuple: assert is_perm(perm) inversed_perm = [-1] * len(perm) for i in range(len(perm)): inversed_perm[perm[i]] = i return tuple(inversed_perm)
34.707317
81
0.730148
bedf8e929db12d88cc3efac45c3b428ee3fcffa7
1,088
py
Python
python/en/_matplotlib/gallery/lines_bars_and_markers/plotting_coherence_of_two_signals.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_matplotlib/gallery/lines_bars_and_markers/plotting_coherence_of_two_signals.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_matplotlib/gallery/lines_bars_and_markers/plotting_coherence_of_two_signals.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ lines_bars_and_markers/plotting_coherence_of_two_signals.py Matplotlib > Gallery > Lines, bars and markers > Plotting the coherence of two signals https://matplotlib.org/gallery/lines_bars_and_markers/cohere.html#sphx-glr-gallery-lines-bars-and-markers-cohere-py """ import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) dt = 0.01 # 10ms, sampling interval fs = 1 / dt # 100Hz, sampling frequency t = np.arange(0, 30, dt) nse1 = np.random.randn(len(t)) # white noise 1 nse2 = np.random.randn(len(t)) # white noise 2 # Two signals with a coherent part at 10Hz and a random part s1 = np.sin(2 * np.pi * 10 * t) + nse1 s2 = np.sin(2 * np.pi * 10 * t) + nse2 # Plot fig, axs = plt.subplots(2, 1) axs[0].plot(t, s1, t, s2) axs[0].set_xlim(0, 2) axs[0].set_xlabel('time') axs[0].set_ylabel('s1 and s2') axs[0].grid(True) cxy, f = axs[1].cohere(s1, s2, 256, 1. / dt) axs[1].set_ylabel('coherence') fig.tight_layout() plt.show()
27.897436
115
0.672794
367126969a4a48f727aa1045f7e7edc7106073ed
7,925
py
Python
sdks/pysdk/pyevtsdk/base.py
Laighno/evt
90b94e831aebb62c6ad19ce59c9089e9f51cfd77
[ "MIT" ]
1,411
2018-04-23T03:57:30.000Z
2022-02-13T10:34:22.000Z
sdks/pysdk/pyevtsdk/base.py
Zhang-Zexi/evt
e90fe4dbab4b9512d120c79f33ecc62791e088bd
[ "Apache-2.0" ]
27
2018-06-11T10:34:42.000Z
2019-07-27T08:50:02.000Z
sdks/pysdk/pyevtsdk/base.py
Zhang-Zexi/evt
e90fe4dbab4b9512d120c79f33ecc62791e088bd
[ "Apache-2.0" ]
364
2018-06-09T12:11:53.000Z
2020-12-15T03:26:48.000Z
import json from pyevt import abi, address, ecc, libevt libevt.init_lib() # Type and Structures class BaseType: def __init__(self, **kwargs): self.kwargs = kwargs def dict(self): return self.kwargs def dumps(self): return json.dumps(self.kwargs) class User: def __init__(self): self.pub_key, self.priv_key = ecc.generate_new_pair() @staticmethod def from_string(pub, priv): user = User() user.pub_key = ecc.PublicKey.from_string(pub) user.priv_key = ecc.PrivateKey.from_string(priv) return user class AuthorizerRef: def __init__(self, _type, key): self.key = key self.type = _type def value(self): return '[%s] %s' % (self.type, self.key) class Receiver(BaseType): def __init__(self, _type, key): self.key = key self.type = _type def value(self): return '%d,S#%d' % (self.precision, self.id) class Address: def __init__(self, from_string=None): if from_string == None: self.addr = address.Address.reserved() else: self.addr = address.Address.from_string(from_string) def set_public_key(self, pub_key): self.addr = address.Address.public_key(pub_key) return self.addr def set_generated(self, prefix, key, nonce): self.addr = address.Address.generated(prefix, key, nonce) return self.addr def get_type(self): return self.addr.get_type() def __str__(self): return self.addr.to_string() class SymbolArgsErrorException(Exception): def __init__(self): err = 'Symobl_Args_Error' super().__init__(self, err) class Symbol: def __init__(self, sym_name, sym_id, precision=5): if precision > 17 or precision < 0: raise SymbolArgsErrorException if len(sym_name) > 7 or (not sym_name.isupper()): raise SymbolArgsErrorException self.name = sym_name self.id = sym_id self.precision = precision def value(self): return '%d,S#%d' % (self.precision, self.id) def new_asset(symbol): def value(num): fmt = '%%.%df S#%d' % (symbol.precision, symbol.id) return fmt % (num) return value EvtSymbol = Symbol(sym_name='EVT', sym_id=1, precision=5) EvtAsset = new_asset(EvtSymbol) class AuthorizerWeight(BaseType): def __init__(self, ref, weight): super().__init__(ref=ref.value(), weight=weight) class PermissionDef(BaseType): # name: permission_name # threshold: uint32 # authorizers: authorizer_weight[] def __init__(self, name, threshold, authorizers=[]): super().__init__(name=name, threshold=threshold, authorizers=[auth.dict() for auth in authorizers]) def add_authorizer(self, auth, weight): self.kwargs['authorizers'].append( AuthorizerWeight(auth, weight).dict()) # Special Type: group class Node(BaseType): def __init__(self, **kwargs): super().__init__(**kwargs) class NodeTypeException(Exception): def __init__(self): err = 'Group_Node_Type_Error' super().__init__(self, err) class NodeArgsExcetion(Exception): def __init__(self): err = 'Group_Node_Arguments_Error' super().__init__(self, err) def add_child(self, Node): if 'key' in self.kwargs: # Leaf Node raise NodeTypeException if 'nodes' not in self.kwargs: # Error in parent node raise NodeArgsException self.kwargs['nodes'].append(Node.dict()) class RootNode(Node): def __init__(self, threshold, nodes): super().__init__(threshold=threshold, nodes=[node.dict() for node in nodes]) class NonLeafNode(Node): def __init__(self, threshold, weight, nodes): super().__init__(threshold=threshold, weight=weight, nodes=[node.dict() for node in nodes]) class LeafNode(Node): def __init__(self, key, weight): super().__init__(key=key, weight=weight) class Group(BaseType): def __init__(self, name, key, root): super().__init__(name=name, key=key, root=root) # Abi jsons of Actions class NewDomainAbi(BaseType): def __init__(self, name, creator, issue, transfer, manage): super().__init__(name=name, creator=creator, issue=issue.dict(), transfer=transfer.dict(), manage=manage.dict()) class UpdateDomainAbi(BaseType): def __init__(self, name, issue, transfer, manage): super().__init__(name=name, issue=None if issue == None else issue.dict(), transfer=None if transfer == None else transfer.dict(), manage=None if manage == None else manage.dict()) class IssueTokenAbi(BaseType): def __init__(self, domain, names, owner): super().__init__(domain=domain, names=names, owner=owner) class TransferAbi(BaseType): def __init__(self, domain, name, to, memo): super().__init__(domain=domain, name=name, to=to, memo=memo) class DestroyTokenAbi(BaseType): def __init__(self, domain, name): super().__init__(domain=domain, name=name) class NewGroupAbi(BaseType): def __init__(self, name, group): super().__init__(name=name, group=group) class UpdateGroupAbi(BaseType): def __init__(self, name, group): super().__init__(name=name, group=group) class AddMetaAbi(BaseType): def __init__(self, key, value, creator): super().__init__(key=key, value=value, creator=creator) class NewFungibleAbi(BaseType): def __init__(self, name, sym_name, sym, creator, issue, manage, total_supply): super().__init__(name=name, sym_name=sym_name, sym=sym, creator=creator, issue=issue.dict(), manage=manage.dict(), total_supply=total_supply) class UpdFungibleAbi(BaseType): def __init__(self, sym_id, issue, manage): super().__init__(sym_id=sym_id, issue=None if issue == None else issue.dict(), manage=None if manage == None else manage.dict()) class IssueFungibleAbi(BaseType): def __init__(self, address, number, memo): super().__init__(address=address, number=number, memo=memo) class TransferFtAbi(BaseType): def __init__(self, _from, to, number, memo): args = {'from': _from, 'to': to, 'number': number, 'memo': memo} super().__init__(**args) class EVT2PEVTAbi(BaseType): def __init__(self, _from, to, number, memo): args = {'from': _from, 'to': to, 'number': number, 'memo': memo} super().__init__(**args) class NewSuspendAbi(BaseType): def __init__(self, name, proposer, trx): super().__init__(name=name, proposer=proposer, trx=trx) class AprvSuspendAbi(BaseType): def __init__(self, name, signatures): super().__init__(name=name, signatures=signatures) class CancelSuspendAbi(BaseType): def __init__(self, name): super().__init__(name=name) class ExecSuspendAbi(BaseType): def __init__(self, name, executor): super().__init__(name=name, executor=executor) class EveripassAbi(BaseType): def __init__(self, link): super().__init__(link=link) class EveripayAbi(BaseType): def __init__(self,payee, number, link): super().__init__(payee=payee, number=number, link=link) class ProdvoteAbi(BaseType): def __init__(self, producer, key, value): super().__init__(producer=producer, key=key, value=value)
28.102837
93
0.614006
3d598b2423d1ed1482449026604af7fc10ae1f71
1,400
py
Python
task/bert_base.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
task/bert_base.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
task/bert_base.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
import torch import task.common as util from util.utils import timestamp def import_model(): model = torch.hub.load('huggingface/pytorch-transformers:v2.5.0', 'model', 'bert-base-cased') util.set_fullname(model, 'bert_base') #hook for start up time #need to output the result somewhere else '''for name, layer in model.named_children(): layer.__name__ = name layer.register_forward_hook( lambda layer, _, output: timestamp('first_layer', 'forward_computed') ) break #only the first layer''' return model def import_data(batch_size): data_0 = torch.randint(5000, size=[batch_size, 251]) data_1 = torch.randint(low=0, high=2, size=[batch_size, 251]) data = torch.cat((data_0.view(-1), data_1.view(-1))) target_0 = torch.rand(batch_size, 251, 768) target_1 = torch.rand(batch_size, 768) target = (target_0, target_1) return data, target def partition_model(model): group_list = [] childs = list(model.children()) group_list.append([childs[0]]) for c in childs[1].children(): for sc in c.children(): for ssc in sc.children(): group_list.append([ssc]) for c in childs[2].children(): group_list.append([c]) assert len(childs) == 3 return group_list
29.166667
82
0.610714
1823597198c3561b7a515bdedceca880ca3144ad
571
py
Python
top/clearlight/base/runoob/print/percent_oper.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
1
2020-01-16T09:23:43.000Z
2020-01-16T09:23:43.000Z
top/clearlight/base/runoob/print/percent_oper.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
top/clearlight/base/runoob/print/percent_oper.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
''' 第一个 % 后面的内容为显示的格式说明,6 为显示宽度,3 为小数点位数,f 为浮点数类型 第二个 % 后面为显示的内容来源,输出结果右对齐,2.300 长度为 5,故前面有一空格 ''' print("%6.3f" % 2.3) # 2.300 ''' x 为表示 16 进制,显示宽度为 10,前面有 8 个空格。 ''' print("%+10x" % 10) # +a ''' %s 字符串 (采用str()的显示) %r 字符串 (采用repr()的显示) %c 单个字符 %b 二进制整数 %d 十进制整数 %i 十进制整数 %o 八进制整数 %x 十六进制整数 %e 指数 (基底写为e) %E 指数 (基底写为E) %f 浮点数 %F 浮点数,与上相同%g 指数(e)或浮点数 (根据显示长度) %G 指数(E)或浮点数 (根据显示长度) %% 字符"%" ''' print("%-5x" % -10) # -a pi = 3.1415 print("pi的值是%s" % pi) print("pi的值是%.8f" % pi) # pi的值是3.1415 # pi的值是3.14150000
14.641026
46
0.534151
62ca481b929979c6b203219b94afc72421886bd5
915
py
Python
rev/rev-optimizeme/solve.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
2
2021-08-09T17:08:12.000Z
2021-08-09T17:08:17.000Z
rev/rev-optimizeme/solve.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
rev/rev-optimizeme/solve.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
1
2021-10-09T16:51:56.000Z
2021-10-09T16:51:56.000Z
from Crypto.Util.number import long_to_bytes def optimizedlcg(b, p, state, rounds): # optimized LCG where a = 2 state = pow(2,rounds,p) * state + b * (pow(2,rounds,p) - 1) return state p = 48569718278242303506230209619975923780743060131772701186017298107559924284242635979759825505782161830376129653325924722665978898131985179210937191151223888128070809835310745199785794930057364029265229452480206055255713317889077410854999087437697415991657128058495524746236464800864688806069056279502078609163 a = 2 b = 3 rounds = p >> 3 state = 21168651249892365486136418125726362865327546384637160303310624426991883020070096339748008613139669972987435197171828010807801735363313790068442787546235698438618519181810304746021912309785611083417111013075787209062958230479598507954803956586021189590329762702913302100337042009595481240883581225904761204891 print(long_to_bytes(optimizedlcg(b,p,state,rounds) % p).decode())
70.384615
316
0.89071
c5081669b032f058e7973d4092f171de22b88ee5
1,566
py
Python
examples/Introduction/recompile_grammar.py
jecki/DHParser
c6c1bd7db2de85b5997a3640242f4f444532304e
[ "Apache-2.0" ]
2
2020-12-25T19:37:42.000Z
2021-03-26T04:59:12.000Z
examples/Introduction/recompile_grammar.py
jecki/DHParser
c6c1bd7db2de85b5997a3640242f4f444532304e
[ "Apache-2.0" ]
6
2018-08-07T22:48:52.000Z
2021-10-07T18:38:20.000Z
examples/Introduction/recompile_grammar.py
jecki/DHParser
c6c1bd7db2de85b5997a3640242f4f444532304e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """recompile_grammar.py - recompiles any .ebnf files in the current directory if necessary Author: Eckhart Arnold <[email protected]> Copyright 2017 Bavarian Academy of Sciences and Humanities Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import sys sys.path.extend([os.path.join('..', '..'), '..', '.']) flag = os.path.exists('LyrikParser.py') from DHParser.dsl import recompile_grammar if not recompile_grammar('Lyrik.ebnf', force=True): with open('Lyrik_ebnf_ERRORS.txt') as f: print(f.read()) sys.exit(1) # Not needed if DHParser was installed on the system. Just a little # service for those who have merely checked out the git repository, # in particular for those reading the Tutorial in the Introduction if not flag: with open('LyrikParser.py', 'r') as f: script = f.read() i = script.find('import sys') + 10 script = script[:i] + "\nsys.path.extend([os.path.join('..', '..'), '..', '.'])\n" + script [i:] with open('LyrikParser.py', 'w') as f: f.write(script)
33.319149
100
0.698595
c522964a4aea77fb16681473a187333b6dc6dfdd
6,982
py
Python
packages/watchmen-pipeline-kernel/src/watchmen_pipeline_kernel/pipeline_schema/distributed_compiled_unit.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-pipeline-kernel/src/watchmen_pipeline_kernel/pipeline_schema/distributed_compiled_unit.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-pipeline-kernel/src/watchmen_pipeline_kernel/pipeline_schema/distributed_compiled_unit.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
from __future__ import annotations from copy import deepcopy from logging import getLogger from typing import Any, List, Optional, Tuple, Union from dask import config from distributed import Client from watchmen_auth import PrincipalService from watchmen_data_kernel.meta import TopicService from watchmen_data_kernel.storage import TopicTrigger from watchmen_data_kernel.storage_bridge import PipelineVariables from watchmen_data_kernel.topic_schema import TopicSchema from watchmen_model.admin import Pipeline, PipelineStage, PipelineUnit, Topic, User from watchmen_model.common import DataModel, TopicId from watchmen_model.pipeline_kernel import MonitorLogStage, MonitorLogUnit from watchmen_model.pipeline_kernel.pipeline_monitor_log import construct_unit from watchmen_pipeline_kernel.common import ask_parallel_actions_count, ask_parallel_actions_dask_temp_dir, \ ask_parallel_actions_dask_use_process, PipelineKernelException from watchmen_pipeline_kernel.pipeline_schema_interface import CreateQueuePipeline from watchmen_pipeline_kernel.topic import RuntimeTopicStorages from watchmen_utilities import ArrayHelper from .compiled_single_unit import CompiledSingleUnit logger = getLogger(__name__) class DistributedUnitLoop: pipeline: Pipeline stage: PipelineStage unit: PipelineUnit principalService: PrincipalService pipelineVariables: PipelineVariables loopVariableName: str loopVariableValues: List[Any] def with_unit(self, pipeline: Pipeline, stage: PipelineStage, unit: PipelineUnit) -> DistributedUnitLoop: self.pipeline = pipeline self.stage = stage self.unit = unit return self def with_principal_service(self, principal_service: PrincipalService) -> DistributedUnitLoop: self.principalService = principal_service return self def with_pipeline_variables(self, pipeline_variables: PipelineVariables) -> DistributedUnitLoop: self.pipelineVariables = pipeline_variables return self def with_loop_variable_values( self, loop_variable_name: str, loop_variable_values: List[Any]) -> DistributedUnitLoop: self.loopVariableName = loop_variable_name self.loopVariableValues = loop_variable_values return self def distribute(self, stage_monitor_log: MonitorLogStage, new_pipeline: CreateQueuePipeline) -> bool: result = distribute_unit_loop(self) return ArrayHelper(result.items) \ .map(lambda x: handle_loop_item_result(x, stage_monitor_log, new_pipeline, self.principalService)) \ .every(lambda x: x) class DistributedUnitLoopItemResult(DataModel): log: MonitorLogUnit triggered: List[Tuple[TopicId, TopicTrigger]] success: bool def __getstate__(self): return self.to_dict() def __setstate__(self, state): for key, value in state.items(): self.__setattr__(key, value) def __setattr__(self, name, value): if name == 'log': super().__setattr__(name, construct_unit(value)) if name == 'triggered': super().__setattr__(name, construct_triggers(value)) else: super().__setattr__(name, value) def construct_triggers(triggered: Optional[list] = None) -> Optional[List[Tuple[TopicId, TopicTrigger]]]: if triggered is None: return None else: return ArrayHelper(triggered).map(lambda x: construct_trigger(x)).to_list() def construct_trigger( trigger: Optional[Tuple[TopicId, Union[dict, TopicTrigger]]] = None ) -> Optional[Tuple[TopicId, TopicTrigger]]: if trigger is None: return None else: if isinstance(trigger[1], dict): topic_id = trigger[0] topic_trigger = TopicTrigger(**trigger[1]) return topic_id, topic_trigger else: return trigger class DistributedUnitLoopResult(DataModel): items: List[DistributedUnitLoopItemResult] def get_topic_service(principal_service: PrincipalService) -> TopicService: return TopicService(principal_service) # noinspection DuplicatedCode def find_topic_schema(topic_id: TopicId, principal_service: PrincipalService) -> TopicSchema: topic_service = get_topic_service(principal_service) topic: Optional[Topic] = topic_service.find_by_id(topic_id) if topic is None: raise PipelineKernelException(f'Topic[id={topic_id}] not found.') schema = topic_service.find_schema_by_name(topic.name, principal_service.get_tenant_id()) if schema is None: raise PipelineKernelException(f'Topic schema[id={topic_id}] not found.') return schema def handle_loop_item_result( result: DistributedUnitLoopItemResult, stage_monitor_log: MonitorLogStage, new_pipeline: CreateQueuePipeline, principal_service: PrincipalService ) -> bool: stage_monitor_log.units.append(result.log) ArrayHelper(result.triggered).each(lambda x: new_pipeline(find_topic_schema(x[0], principal_service), x[1])) return result.success class DaskClientHolder: initialized: bool = False client: Optional[Client] = None def initialize(self) -> Client: if not self.initialized: config.set(temporary_directory=ask_parallel_actions_dask_temp_dir()) self.client = Client( processes=ask_parallel_actions_dask_use_process(), threads_per_worker=1, n_workers=ask_parallel_actions_count(), ) self.initialized = True return self.client def ask_client(self) -> Client: return self.initialize() dask_client_holder = DaskClientHolder() def to_dask_args(loop: DistributedUnitLoop, variableValue: Any) -> List[Any]: cloned = loop.pipelineVariables.clone() cloned.put(loop.loopVariableName, deepcopy(variableValue)) return [ loop.pipeline, loop.stage, loop.unit, User( userId=loop.principalService.get_user_id(), name=loop.principalService.get_user_name(), tenantId=loop.principalService.get_tenant_id(), role=loop.principalService.get_user_role() ), cloned ] def distribute_single_unit( pipeline: Pipeline, stage: PipelineStage, unit: PipelineUnit, user: User, pipeline_variables: PipelineVariables ) -> DistributedUnitLoopItemResult: principal_service = PrincipalService(user) compiled_unit = CompiledSingleUnit( pipeline=pipeline, stage=stage, unit=unit, principal_service=principal_service) stage_monitor_log = MonitorLogStage(units=[]) triggered: List[Tuple[TopicId, TopicTrigger]] = [] def new_pipeline(schema: TopicSchema, trigger: TopicTrigger) -> None: triggered.append((schema.get_topic().topicId, trigger)) success = compiled_unit.run( variables=pipeline_variables, new_pipeline=new_pipeline, stage_monitor_log=stage_monitor_log, storages=RuntimeTopicStorages(principal_service), principal_service=principal_service ) return DistributedUnitLoopItemResult(log=stage_monitor_log.units[0], triggered=triggered, success=success) def distribute_unit_loop(loop: DistributedUnitLoop) -> DistributedUnitLoopResult: dask_client = dask_client_holder.ask_client() futures = ArrayHelper(loop.loopVariableValues) \ .map(lambda variableValue: to_dask_args(loop, variableValue)) \ .map(lambda x: dask_client.submit(distribute_single_unit, *x, pure=False)) \ .to_list() results = dask_client.gather(futures) return DistributedUnitLoopResult(items=results)
33.729469
109
0.804354
770479aa701daa02e80467347cebb4bb227afc99
764
py
Python
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 98/98.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
101
2021-12-20T11:57:11.000Z
2022-03-23T09:49:13.000Z
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 98/98.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
4
2022-01-12T11:55:56.000Z
2022-02-12T04:53:33.000Z
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 98/98.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
38
2022-01-12T11:56:16.000Z
2022-03-23T10:07:52.000Z
#Create a program that asks the user to submit text through a GUI from tkinter import * window = Tk() file = open("user_gui.txt", "a+") def add(): file.write(user_value.get() + "\n") entry.delete(0, END) def save(): global file file.close() file = open("user_gui.txt", "a+") def close(): file.close window.destroy() user_value = StringVar() entry = Entry(window, textvariable=user_value) entry.grid(row=0, column=0) button_add = Button(window, text="Add line", command=add) button_add.grid(row=0, column=1) button_save = Button(window, text="Save changes", command=save) button_save.grid(row=0, column=2) button_close = Button(window, text="Save and Close", command=close) button_close.grid(row=0,column=3) window.mainloop()
21.222222
67
0.693717
774a6b50cee68a0aa0d378c50037c731e744d729
154
py
Python
Kirk Byers - Python for Network Engineers/Lesson 1/Exercise 1.py
Caradawg/HBS
467b73c52bbba7b43f37a62e4302a4ff84ff0684
[ "MIT" ]
null
null
null
Kirk Byers - Python for Network Engineers/Lesson 1/Exercise 1.py
Caradawg/HBS
467b73c52bbba7b43f37a62e4302a4ff84ff0684
[ "MIT" ]
null
null
null
Kirk Byers - Python for Network Engineers/Lesson 1/Exercise 1.py
Caradawg/HBS
467b73c52bbba7b43f37a62e4302a4ff84ff0684
[ "MIT" ]
null
null
null
from __future__ import print_function ip_addr1 = '192.168.16.1' ip_addr2 = '10.10.1.1' ip_addr3 = '172.16.31.17' print(ip_addr1,ip_addr2,ip_addr3)
22
38
0.720779
b27b9e614f3fb3036e8d4587d028456d7675dc31
1,430
py
Python
seq2.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
seq2.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
seq2.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python ''' Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not). Here is an example: S = "rabbbit", T = "rabbit" 0 1 2 3 4 5 6 r a b b b i t r a b b i t r a b b i t r a b b i t Return 3. ''' class Solution: # @param {string} s # @param {string} t # @return {integer} result=0 def numDistinct(self, s, t): list_s=' '.join(s).split(' ')#r a b b b i t list_t=' '.join(t).split(' ')#r a b b i t self.rec_search(0,0,list_s,list_t) print self.result return self.result def rec_search(self,index_t,index_s,list_s,list_t): while index_s < len(list_s): target=list_t[index_t] if list_s[index_s] == target: #print index_s,list_t[index_t] if index_t+1<len(list_t): self.rec_search(index_t+1,index_s+1,list_s,list_t) else: #print 'found finally a match' self.result=self.result+1 index_s = index_s+1 return 1 S = "BABCDABCA" T = "ABC" S = "rabbbit" T = "rabbit" S="aabdbaabeeadcbbdedacbbeecbabebaeeecaeabaedadcbdbcdaabebdadbbaeabdadeaabbabbecebbebcaddaacccebeaeedababedeacdeaaaeeaecbe" T="bddabdcae" solution = Solution() solution.numDistinct(S,T)
23.833333
262
0.691608
a73f3a6d589e37cbfa96660cb3a174536d13635f
1,819
py
Python
ImagePyramid.py
saikat-d/DIP2018-Midterm
06c3a74ae4fefc2ec6d47d970bf86ab8062df1bf
[ "BSD-2-Clause" ]
null
null
null
ImagePyramid.py
saikat-d/DIP2018-Midterm
06c3a74ae4fefc2ec6d47d970bf86ab8062df1bf
[ "BSD-2-Clause" ]
null
null
null
ImagePyramid.py
saikat-d/DIP2018-Midterm
06c3a74ae4fefc2ec6d47d970bf86ab8062df1bf
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Sep 30 20:07:42 2018 @author: Saikat """ import numpy as np import cv2 from cv2 import ml from matplotlib import pyplot as plt from sklearn.metrics import roc_curve, auc from os.path import isfile,join DB_path = 'images\\Pyramid\\' RES_path = 'images\\Pyramid\\res\\' BOW_path = 'images\\SVM\\bow\\' siftdata = [] datalabel = [] for i in range(2,5): dbimname = str(i) + '.jpg' #testimname = str(i) + '.jpg' dbimgpath = join(DB_path,dbimname) #testimgpath = join(TEST_path,testimname) if isfile(dbimgpath) : img2 = cv2.imread(dbimgpath,cv2.IMREAD_COLOR) # queryImage #img1 = cv2.imread(testimgpath,cv2.IMREAD_COLOR) # trainImage #cv2.cvtColor(img1,cv2.COLOR_BGR2RGB,img1) #cv2.cvtColor(img2,cv2.COLOR_BGR2RGB,img2) else : print("Worng Path : " + dbimgpath) imgg = img2 imgl = img2 for j in range(0,5): imgg = cv2.GaussianBlur(imgg,(5,5),0) imggt = np.uint8(imgg) ret2,th2 = cv2.threshold(imggt[:,:,0],0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.imwrite(join(RES_path,"gaussian\\"+str(i)+"_"+str(j)+"_t.jpg"),th2) cv2.imwrite(join(RES_path,"gaussian\\"+str(i)+"_"+str(j)+".jpg"),imgg) imgl = cv2.Laplacian(imgl,cv2.CV_32F,ksize=5) cv2.imwrite(join(RES_path,"laplacian\\"+str(i)+"_"+str(j)+".jpg"),imgl) imgl_ = np.array(imgl) imgl_ *= 255.0/imgl_.max() #cv2.imwrite(join(RES_path,"laplacian\\"+str(i)+"_"+str(j)+"_c.jpg"),imgl_) imglt = np.uint8(imgl_) ret1,th1 = cv2.threshold(imglt[:,:,1],0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.imwrite(join(RES_path,"laplacian\\"+str(i)+"_"+str(j)+"_t.jpg"),th1)
30.830508
86
0.59978
a7d5d185324a1cc56c12cf84274cd09c06b3df22
1,153
py
Python
chapter6/trainninganalysis.py
yangzhijiang/GeektimeTensorflow
80479426a216d1d27fc78e53c581008ccec46cbe
[ "MIT" ]
1
2020-02-16T13:31:42.000Z
2020-02-16T13:31:42.000Z
chapter6/trainninganalysis.py
yangzhijiang/GeektimeTensorflow
80479426a216d1d27fc78e53c581008ccec46cbe
[ "MIT" ]
null
null
null
chapter6/trainninganalysis.py
yangzhijiang/GeektimeTensorflow
80479426a216d1d27fc78e53c581008ccec46cbe
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2019/3/13 21:49 # @Author : LunaFire # @Email : [email protected] # @File : trainninganalysis.py import glob import pickle import matplotlib.pyplot as plt HISTORY_DIR = '../history/captcha/' # 训练记录文件路径 def plot_training(history=None, metric='acc', title='Model Accuracy', loc='lower right'): model_list = [] fig = plt.figure(figsize=(10, 8)) for key, val in history.items(): model_list.append(key.split('\\')[-1].rstrip('.history')) plt.plot(val[metric]) plt.title(title) plt.ylabel(metric) plt.xlabel('epoch') plt.legend(model_list, loc=loc) plt.show() if __name__ == '__main__': history = {} for filename in glob.glob(HISTORY_DIR + '*.history'): with open(filename, 'rb') as f: print(filename) history[filename] = pickle.load(f) plot_training(history) plot_training(history, metric='loss', title='Model Loss', loc='upper right') plot_training(history, metric='val_acc', title='Model Accuracy(val)') plot_training(history, metric='val_loss', title='Model Loss(val)', loc='upper right')
28.825
89
0.640937
38fe6f07d73718a136466c655babdda74ad2401f
90,776
py
Python
_Dist/NeuralNetworks/DistBase.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
1,107
2016-09-21T02:18:36.000Z
2022-03-29T02:52:12.000Z
_Dist/NeuralNetworks/DistBase.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
18
2016-12-22T10:24:47.000Z
2022-03-11T23:18:43.000Z
_Dist/NeuralNetworks/DistBase.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
776
2016-12-21T12:08:08.000Z
2022-03-21T06:12:08.000Z
import os import sys root_path = os.path.abspath("../../") if root_path not in sys.path: sys.path.append(root_path) import time import math import random import pickle import shutil import logging import itertools import collections import numpy as np import tensorflow as tf import matplotlib.pyplot as plt tf.logging.set_verbosity(tf.logging.FATAL) from copy import deepcopy from mpl_toolkits.mplot3d import Axes3D from Util.ProgressBar import ProgressBar from _Dist.NeuralNetworks.NNUtil import * from _Dist.NeuralNetworks.Base import Generator class DataCacheMixin: @property def data_folder(self): return self.data_info.get("data_folder", "_Data") @property def data_cache_folder(self): folder = os.path.join(self.data_folder, "_Cache", self._name) if not os.path.isdir(folder): os.makedirs(folder) return folder @property def data_info_folder(self): folder = os.path.join(self.data_folder, "_DataInfo") if not os.path.isdir(folder): os.makedirs(folder) return folder @property def data_info_file(self): return os.path.join(self.data_info_folder, "{}.info".format(self._name)) @property def train_data_file(self): return os.path.join(self.data_cache_folder, "train.npy") @property def test_data_file(self): return os.path.join(self.data_cache_folder, "test.npy") class LoggingMixin: logger = logging.getLogger("") initialized_log_file = set() @property def logging_folder_name(self): folder = os.path.join(os.getcwd(), "_Tmp", "_Logging", self.name) if not os.path.isdir(folder): os.makedirs(folder) return folder def _init_logging(self): if self.loggers is not None: return console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter("%(name)20s - %(levelname)8s - %(message)s") console.setFormatter(formatter) root_logger = logging.getLogger("") root_logger.handlers.clear() root_logger.setLevel(logging.DEBUG) root_logger.addHandler(console) self.loggers = {} def get_logger(self, name, file): if name in self.loggers: return self.loggers[name] folder = self.logging_folder_name log_file = os.path.join(folder, file) if log_file not in self.initialized_log_file: with open(log_file, "w"): pass self.initialized_log_file.add(log_file) log_file = logging.FileHandler(log_file, "a") log_file.setLevel(logging.DEBUG) formatter = logging.Formatter( "%(asctime)s - %(name)20s - %(levelname)8s - %(message)s", "%Y-%m-%d %H:%M:%S" ) log_file.setFormatter(formatter) logger = logging.getLogger(name) logger.addHandler(log_file) self.loggers[name] = logger return logger def log_msg(self, msg, level=logging.DEBUG, logger=None): logger = self.logger if logger is None else logger print(msg) if logger is print else logger.log(level, msg) def log_block_msg(self, title="Done", header="Result", body="", level=logging.DEBUG, logger=None): msg = title + "\n" + "\n".join(["=" * 100, header, "-" * 100]) if body: msg += "\n{}\n".format(body) + "-" * 100 self.log_msg(msg, level, logger) class Base(LoggingMixin): signature = "Base" def __init__(self, name=None, model_param_settings=None, model_structure_settings=None): self.log = {} self._name = name self._name_appendix = "" self._settings_initialized = False self._generator_base = Generator self._train_generator = self._test_generator = None self._sample_weights = self._tf_sample_weights = None self.n_dim = self.n_class = None self.n_random_train_subset = self.n_random_test_subset = None if model_param_settings is None: self.model_param_settings = {} else: assert_msg = "model_param_settings should be a dictionary" assert isinstance(model_param_settings, dict), assert_msg self.model_param_settings = model_param_settings self.lr = None self._loss = self._loss_name = self._metric_name = None self._optimizer_name = self._optimizer = None self.n_epoch = self.max_epoch = self.n_iter = self.batch_size = None if model_structure_settings is None: self.model_structure_settings = {} else: assert_msg = "model_structure_settings should be a dictionary" assert isinstance(model_structure_settings, dict), assert_msg self.model_structure_settings = model_structure_settings self._model_built = False self.py_collections = self.tf_collections = None self._define_py_collections() self._define_tf_collections() self._ws, self._bs = [], [] self._is_training = None self._loss = self._train_step = None self._tfx = self._tfy = self._output = self._prob_output = None self._sess = None self._graph = tf.Graph() self._sess_config = self.model_param_settings.pop("sess_config", None) self.loggers = None self._init_logging() def __str__(self): return self.model_saving_name __repr__ = __str__ @property def name(self): return "Base" if self._name is None else self._name @property def metric(self): return getattr(Metrics, self._metric_name) @property def model_saving_name(self): return "{}_{}".format(self.name, self._name_appendix) @property def model_saving_path(self): return os.path.join(os.getcwd(), "_Models", self.model_saving_name) # Settings def init_from_data(self, x, y, x_test, y_test, sample_weights, names): self._sample_weights = sample_weights if self._sample_weights is None: self._tf_sample_weights = None else: self._tf_sample_weights = tf.placeholder(tf.float32, name="sample_weights") self._train_generator = self._generator_base(x, y, "TrainGenerator", self._sample_weights, self.n_class) if x_test is not None and y_test is not None: self._test_generator = self._generator_base(x_test, y_test, "TestGenerator", n_class=self.n_class) else: self._test_generator = None self.n_random_train_subset = int(len(self._train_generator) * 0.1) if self._test_generator is None: self.n_random_test_subset = -1 else: self.n_random_test_subset = len(self._test_generator) self.n_dim = self._train_generator.shape[-1] self.n_class = self._train_generator.n_class batch_size = self.model_param_settings.setdefault("batch_size", 128) self.model_param_settings["batch_size"] = min(batch_size, len(self._train_generator)) n_iter = self.model_param_settings.setdefault("n_iter", -1) if n_iter < 0: self.model_param_settings["n_iter"] = int(len(self._train_generator) / batch_size) def init_all_settings(self): self.init_model_param_settings() self.init_model_structure_settings() def init_model_param_settings(self): loss = self.model_param_settings.get("loss", None) if loss is None: self._loss_name = "correlation" if self.n_class == 1 else "cross_entropy" else: self._loss_name = loss metric = self.model_param_settings.get("metric", None) if metric is None: if self.n_class == 1: self._metric_name = "correlation" elif self.n_class == 2: self._metric_name = "auc" else: self._metric_name = "multi_auc" else: self._metric_name = metric self.n_epoch = self.model_param_settings.get("n_epoch", 32) self.max_epoch = self.model_param_settings.get("max_epoch", 256) self.max_epoch = max(self.max_epoch, self.n_epoch) self.batch_size = self.model_param_settings["batch_size"] self.n_iter = self.model_param_settings["n_iter"] self._optimizer_name = self.model_param_settings.get("optimizer", "Adam") self.lr = self.model_param_settings.get("lr", 1e-3) self._optimizer = getattr(tf.train, "{}Optimizer".format(self._optimizer_name))(self.lr) def init_model_structure_settings(self): pass # Core def _fully_connected_linear(self, net, shape, appendix): with tf.name_scope("Linear{}".format(appendix)): w = init_w(shape, "W{}".format(appendix)) b = init_b([shape[1]], "b{}".format(appendix)) self._ws.append(w) self._bs.append(b) return tf.add(tf.matmul(net, w), b, name="Linear{}_Output".format(appendix)) def _build_model(self, net=None): pass def _gen_batch(self, generator, n_batch, gen_random_subset=False, one_hot=False): if gen_random_subset: data, weights = generator.gen_random_subset(n_batch) else: data, weights = generator.gen_batch(n_batch) x, y = data[..., :-1], data[..., -1] if not one_hot: return x, y, weights if self.n_class == 1: y = y.reshape([-1, 1]) else: y = Toolbox.get_one_hot(y, self.n_class) return x, y, weights def _get_feed_dict(self, x, y=None, weights=None, is_training=False): feed_dict = {self._tfx: x, self._is_training: is_training} if y is not None: feed_dict[self._tfy] = y if self._tf_sample_weights is not None: if weights is None: weights = np.ones(len(x)) feed_dict[self._tf_sample_weights] = weights return feed_dict def _define_loss_and_train_step(self): self._loss = getattr(Losses, self._loss_name)(self._tfy, self._output, False, self._tf_sample_weights) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): self._train_step = self._optimizer.minimize(self._loss) def _initialize_session(self): self._sess = tf.Session(graph=self._graph, config=self._sess_config) def _initialize_variables(self): self._sess.run(tf.global_variables_initializer()) def _snapshot(self, i_epoch, i_iter, snapshot_cursor): x_train, y_train, sw_train = self._gen_batch( self._train_generator, self.n_random_train_subset, gen_random_subset=True ) if self._test_generator is not None: x_test, y_test, sw_test = self._gen_batch( self._test_generator, self.n_random_test_subset, gen_random_subset=True ) if self.n_class == 1: y_test = y_test.reshape([-1, 1]) else: y_test = Toolbox.get_one_hot(y_test, self.n_class) else: x_test = y_test = sw_test = None y_train_pred = self._predict(x_train) if x_test is not None: tensor = self._output if self.n_class == 1 else self._prob_output y_test_pred, test_snapshot_loss = self._calculate( x_test, y_test, sw_test, [tensor, self._loss], is_training=False ) y_test_pred, test_snapshot_loss = y_test_pred[0], test_snapshot_loss[0] else: y_test_pred = test_snapshot_loss = None train_metric = self.metric(y_train, y_train_pred) if y_test is not None and y_test_pred is not None: test_metric = self.metric(y_test, y_test_pred) if i_epoch >= 0 and i_iter >= 0 and snapshot_cursor >= 0: self.log["test_snapshot_loss"].append(test_snapshot_loss) self.log["test_{}".format(self._metric_name)].append(test_metric) self.log["train_{}".format(self._metric_name)].append(train_metric) else: test_metric = None msg = ( "Epoch {:6} Iter {:8} Snapshot {:6} ({}) - " "Train : {:8.6f} Test : {}".format( i_epoch, i_iter, snapshot_cursor, self._metric_name, train_metric, "None" if test_metric is None else "{:8.6f}".format(test_metric) ) ) logger = self.get_logger("_snapshot", "general.log") self.log_msg(msg, logger=logger) return train_metric, test_metric def _calculate(self, x, y=None, weights=None, tensor=None, n_elem=1e7, is_training=False): n_batch = int(n_elem / x.shape[1]) n_repeat = int(len(x) / n_batch) if n_repeat * n_batch < len(x): n_repeat += 1 cursors = [0] if tensor is None: target = self._prob_output elif isinstance(tensor, list): target = [] for t in tensor: if isinstance(t, str): t = getattr(self, t) if isinstance(t, list): target += t cursors.append(len(t)) else: target.append(t) cursors.append(cursors[-1] + 1) else: target = getattr(self, tensor) if isinstance(tensor, str) else tensor results = [self._sess.run( target, self._get_feed_dict( x[i * n_batch:(i + 1) * n_batch], None if y is None else y[i * n_batch:(i + 1) * n_batch], None if weights is None else weights[i * n_batch:(i + 1) * n_batch], is_training=is_training ) ) for i in range(n_repeat)] if not isinstance(target, list): if len(results) == 1: return results[0] return np.vstack(results) if n_repeat > 1: results = [ np.vstack([result[i] for result in results]) if target[i].shape.ndims else np.mean([result[i] for result in results]) for i in range(len(target)) ] else: results = results[0] if len(cursors) == 1: return results return [results[cursor:cursors[i + 1]] for i, cursor in enumerate(cursors[:-1])] def _predict(self, x): tensor = self._output if self.n_class == 1 else self._prob_output output = self._calculate(x, tensor=tensor, is_training=False) if self.n_class == 1: return output.ravel() return output def _evaluate(self, x=None, y=None, x_cv=None, y_cv=None, x_test=None, y_test=None, metric=None): if isinstance(metric, str): metric_name, metric = metric, getattr(Metrics, metric) else: metric_name, metric = self._metric_name, self.metric pred = self._predict(x) if x is not None else None cv_pred = self._predict(x_cv) if x_cv is not None else None test_pred = self._predict(x_test) if x_test is not None else None train_metric = None if y is None else metric(y, pred) cv_metric = None if y_cv is None else metric(y_cv, cv_pred) test_metric = None if y_test is None else metric(y_test, test_pred) self._print_metrics(metric_name, train_metric, cv_metric, test_metric) return train_metric, cv_metric, test_metric @staticmethod def _print_metrics(metric_name, train_metric=None, cv_metric=None, test_metric=None, only_return=False): msg = "{} - Train : {} CV : {} Test : {}".format( metric_name, "None" if train_metric is None else "{:10.8f}".format(train_metric), "None" if cv_metric is None else "{:10.8f}".format(cv_metric), "None" if test_metric is None else "{:10.8f}".format(test_metric) ) return msg if only_return else print(msg) def _define_input_and_placeholder(self): self._is_training = tf.placeholder(tf.bool, name="is_training") self._tfx = tf.placeholder(tf.float32, [None, self.n_dim], name="X") self._tfy = tf.placeholder(tf.float32, [None, self.n_class], name="Y") def _define_py_collections(self): self.py_collections = [ "_name", "n_class", "model_param_settings", "model_structure_settings" ] def _define_tf_collections(self): self.tf_collections = [ "_tfx", "_tfy", "_output", "_prob_output", "_loss", "_train_step", "_is_training" ] # Save & Load def add_tf_collections(self): for tensor in self.tf_collections: target = getattr(self, tensor) if target is not None: tf.add_to_collection(tensor, target) def clear_tf_collections(self): for key in self.tf_collections: tf.get_collection_ref(key).clear() def save_collections(self, folder): with open(os.path.join(folder, "py.core"), "wb") as file: param_dict = {name: getattr(self, name) for name in self.py_collections} pickle.dump(param_dict, file) self.add_tf_collections() def restore_collections(self, folder): with open(os.path.join(folder, "py.core"), "rb") as file: param_dict = pickle.load(file) for name, value in param_dict.items(): setattr(self, name, value) for tensor in self.tf_collections: target = tf.get_collection(tensor) if target is None: continue assert len(target) == 1, "{} available '{}' found".format(len(target), tensor) setattr(self, tensor, target[0]) self.clear_tf_collections() @staticmethod def get_model_name(path, idx): targets = os.listdir(path) if idx is None: idx = max([int(target) for target in targets if target.isnumeric()]) return os.path.join(path, "{:06}".format(idx)) def save(self, run_id=0, path=None): if path is None: path = self.model_saving_path folder = os.path.join(path, "{:06}".format(run_id)) while os.path.isdir(folder): run_id += 1 folder = os.path.join(path, "{:06}".format(run_id)) if not os.path.isdir(folder): os.makedirs(folder) logger = self.get_logger("save", "general.log") self.log_msg("Saving model", logger=logger) with self._graph.as_default(): saver = tf.train.Saver() self.save_collections(folder) saver.save(self._sess, os.path.join(folder, "Model")) self.log_msg("Model saved to " + folder, logger=logger) return self def load(self, run_id=None, clear_devices=False, path=None): self._model_built = True if path is None: path = self.model_saving_path folder = self.get_model_name(path, run_id) path = os.path.join(folder, "Model") logger = self.get_logger("save", "general.log") self.log_msg("Restoring model", logger=logger) with self._graph.as_default(): if self._sess is None: self._initialize_session() saver = tf.train.import_meta_graph("{}.meta".format(path), clear_devices) saver.restore(self._sess, tf.train.latest_checkpoint(folder)) self.restore_collections(folder) self.init_all_settings() self.log_msg("Model restored from " + folder, logger=logger) return self def save_checkpoint(self, folder): if not os.path.exists(folder): os.makedirs(folder) with self._graph.as_default(): tf.train.Saver().save(self._sess, os.path.join(folder, "Model")) def restore_checkpoint(self, folder): with self._graph.as_default(): tf.train.Saver().restore(self._sess, os.path.join(folder, "Model")) # API def print_settings(self, only_return=False): pass def fit(self, x, y, x_test=None, y_test=None, sample_weights=None, names=("train", "test"), timeit=True, time_limit=-1, snapshot_ratio=3, print_settings=True, verbose=1): t = time.time() self.init_from_data(x, y, x_test, y_test, sample_weights, names) if not self._settings_initialized: self.init_all_settings() self._settings_initialized = True if not self._model_built: with self._graph.as_default(): self._initialize_session() with tf.name_scope("Input"): self._define_input_and_placeholder() with tf.name_scope("Model"): self._build_model() self._prob_output = tf.nn.softmax(self._output, name="Prob_Output") with tf.name_scope("LossAndTrainStep"): self._define_loss_and_train_step() with tf.name_scope("InitializeVariables"): self._initialize_variables() i_epoch = i_iter = j = snapshot_cursor = 0 if snapshot_ratio == 0 or x_test is None or y_test is None: use_monitor = False snapshot_step = self.n_iter else: use_monitor = True snapshot_ratio = min(snapshot_ratio, self.n_iter) snapshot_step = int(self.n_iter / snapshot_ratio) logger = self.get_logger("fit", "general.log") terminate = False over_fitting_flag = 0 n_epoch = self.n_epoch tmp_checkpoint_folder = os.path.join(self.model_saving_path, "tmp") if time_limit > 0: time_limit -= time.time() - t if time_limit <= 0: self.log_msg( "Time limit exceeded before training process started", level=logging.INFO, logger=logger ) return self monitor = TrainMonitor(Metrics.sign_dict[self._metric_name], snapshot_ratio) if verbose >= 2: prepare_tensorboard_verbose(self._sess) if print_settings: self.print_settings() self.log["iter_loss"] = [] self.log["epoch_loss"] = [] self.log["test_snapshot_loss"] = [] self.log["train_{}".format(self._metric_name)] = [] self.log["test_{}".format(self._metric_name)] = [] self._snapshot(0, 0, 0) bar = ProgressBar(max_value=n_epoch, name="Epoch") while i_epoch < n_epoch: i_epoch += 1 epoch_loss = 0 for j in range(self.n_iter): i_iter += 1 x_batch, y_batch, sw_batch = self._gen_batch(self._train_generator, self.batch_size, one_hot=True) iter_loss = self._sess.run( [self._loss, self._train_step], self._get_feed_dict(x_batch, y_batch, sw_batch, is_training=True) )[0] self.log["iter_loss"].append(iter_loss) epoch_loss += iter_loss if i_iter % snapshot_step == 0 and verbose >= 1: snapshot_cursor += 1 train_metric, test_metric = self._snapshot(i_epoch, i_iter, snapshot_cursor) if use_monitor: check_rs = monitor.check(test_metric) over_fitting_flag = monitor.over_fitting_flag if check_rs["terminate"]: n_epoch = i_epoch self.log_msg("Early stopped at n_epoch={} due to '{}'".format( n_epoch, check_rs["info"] ), level=logging.INFO, logger=logger) terminate = True break if check_rs["save_checkpoint"]: self.log_msg(check_rs["info"], logger=logger) self.save_checkpoint(tmp_checkpoint_folder) if 0 < time_limit <= time.time() - t: self.log_msg( "Early stopped at n_epoch={} due to 'Time limit exceeded'".format(i_epoch), level=logging.INFO, logger=logger ) terminate = True break self.log["epoch_loss"].append(epoch_loss / (j + 1)) if use_monitor: if i_epoch == n_epoch and i_epoch < self.max_epoch and not monitor.info["terminate"]: monitor.flat_flag = True monitor.punish_extension() n_epoch = min(n_epoch + monitor.extension, self.max_epoch) self.log_msg("Extending n_epoch to {}".format(n_epoch), logger=logger) bar.set_max(n_epoch) if i_epoch == self.max_epoch: terminate = True if not monitor.info["terminate"]: if not over_fitting_flag: self.log_msg( "Model seems to be under-fitting but max_epoch reached. " "Increasing max_epoch may improve performance", level=logging.INFO, logger=logger ) else: self.log_msg("max_epoch reached", level=logging.INFO, logger=logger) elif i_epoch == n_epoch: terminate = True if terminate: bar.terminate() if os.path.exists(tmp_checkpoint_folder): self.log_msg("Rolling back to the best checkpoint", logger=logger) self.restore_checkpoint(tmp_checkpoint_folder) shutil.rmtree(tmp_checkpoint_folder) break bar.update() self._snapshot(-1, -1, -1) if timeit: self.log_msg("Time Cost: {}".format(time.time() - t), level=logging.INFO, logger=logger) return self def predict(self, x): return self._predict(x) def predict_classes(self, x): if self.n_class == 1: raise ValueError("Predicting classes is not permitted in regression problem") return self._predict(x).argmax(1).astype(np.int32) def evaluate(self, x, y, x_cv=None, y_cv=None, x_test=None, y_test=None, metric=None): return self._evaluate(x, y, x_cv, y_cv, x_test, y_test, metric) # Visualization def draw_losses(self): el, il = self.log["epoch_loss"], self.log["iter_loss"] ee_base = np.arange(len(el)) ie_base = np.linspace(0, len(el) - 1, len(il)) plt.figure() plt.plot(ie_base, il, label="Iter loss") plt.plot(ee_base, el, linewidth=3, label="Epoch loss") plt.legend() plt.show() return self def scatter2d(self, x, y, padding=0.5, title=None): axis, labels = np.asarray(x).T, np.asarray(y) print("=" * 30 + "\n" + str(self)) x_min, x_max = np.min(axis[0]), np.max(axis[0]) y_min, y_max = np.min(axis[1]), np.max(axis[1]) x_padding = max(abs(x_min), abs(x_max)) * padding y_padding = max(abs(y_min), abs(y_max)) * padding x_min -= x_padding x_max += x_padding y_min -= y_padding y_max += y_padding if labels.ndim == 1: plot_label_dict = {c: i for i, c in enumerate(set(labels))} n_label = len(plot_label_dict) labels = np.array([plot_label_dict[label] for label in labels]) else: n_label = labels.shape[1] labels = np.argmax(labels, axis=1) colors = plt.cm.rainbow([i / n_label for i in range(n_label)])[labels] if title is None: title = self.model_saving_name indices = [labels == i for i in range(np.max(labels) + 1)] scatters = [] plt.figure() plt.title(title) for idx in indices: scatters.append(plt.scatter(axis[0][idx], axis[1][idx], c=colors[idx])) plt.legend(scatters, ["$c_{}$".format("{" + str(i) + "}") for i in range(len(scatters))], ncol=math.ceil(math.sqrt(len(scatters))), fontsize=8) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show() return self def scatter3d(self, x, y, padding=0.1, title=None): axis, labels = np.asarray(x).T, np.asarray(y) print("=" * 30 + "\n" + str(self)) x_min, x_max = np.min(axis[0]), np.max(axis[0]) y_min, y_max = np.min(axis[1]), np.max(axis[1]) z_min, z_max = np.min(axis[2]), np.max(axis[2]) x_padding = max(abs(x_min), abs(x_max)) * padding y_padding = max(abs(y_min), abs(y_max)) * padding z_padding = max(abs(z_min), abs(z_max)) * padding x_min -= x_padding x_max += x_padding y_min -= y_padding y_max += y_padding z_min -= z_padding z_max += z_padding def transform_arr(arr): if arr.ndim == 1: dic = {c: i for i, c in enumerate(set(arr))} n_dim = len(dic) arr = np.array([dic[label] for label in arr]) else: n_dim = arr.shape[1] arr = np.argmax(arr, axis=1) return arr, n_dim if title is None: title = self.model_saving_name labels, n_label = transform_arr(labels) colors = plt.cm.rainbow([i / n_label for i in range(n_label)])[labels] indices = [labels == i for i in range(n_label)] scatters = [] fig = plt.figure() plt.title(title) ax = fig.add_subplot(111, projection='3d') for _index in indices: scatters.append(ax.scatter(axis[0][_index], axis[1][_index], axis[2][_index], c=colors[_index])) ax.legend(scatters, ["$c_{}$".format("{" + str(i) + "}") for i in range(len(scatters))], ncol=math.ceil(math.sqrt(len(scatters))), fontsize=8) plt.show() return self def visualize2d(self, x, y, padding=0.1, dense=200, title=None, scatter=True, show_org=False, draw_background=True, emphasize=None, extra=None): axis, labels = np.asarray(x).T, np.asarray(y) print("=" * 30 + "\n" + str(self)) nx, ny, padding = dense, dense, padding x_min, x_max = np.min(axis[0]), np.max(axis[0]) y_min, y_max = np.min(axis[1]), np.max(axis[1]) x_padding = max(abs(x_min), abs(x_max)) * padding y_padding = max(abs(y_min), abs(y_max)) * padding x_min -= x_padding x_max += x_padding y_min -= y_padding y_max += y_padding def get_base(_nx, _ny): _xf = np.linspace(x_min, x_max, _nx) _yf = np.linspace(y_min, y_max, _ny) n_xf, n_yf = np.meshgrid(_xf, _yf) return _xf, _yf, np.c_[n_xf.ravel(), n_yf.ravel()] xf, yf, base_matrix = get_base(nx, ny) t = time.time() z = self.predict_classes(base_matrix).reshape((nx, ny)) print("Decision Time: {:8.6f} s".format(time.time() - t)) print("Drawing figures...") xy_xf, xy_yf = np.meshgrid(xf, yf, sparse=True) if labels.ndim == 1: plot_label_dict = {c: i for i, c in enumerate(set(labels))} n_label = len(plot_label_dict) labels = np.array([plot_label_dict[label] for label in labels]) else: n_label = labels.shape[1] labels = np.argmax(labels, axis=1) colors = plt.cm.rainbow([i / n_label for i in range(n_label)])[labels] if title is None: title = self.model_saving_name if show_org: plt.figure() plt.scatter(axis[0], axis[1], c=colors) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show() plt.figure() plt.title(title) if draw_background: plt.pcolormesh(xy_xf, xy_yf, z, cmap=plt.cm.Pastel1) else: plt.contour(xf, yf, z, c='k-', levels=[0]) if scatter: plt.scatter(axis[0], axis[1], c=colors) if emphasize is not None: indices = np.array([False] * len(axis[0])) indices[np.asarray(emphasize)] = True plt.scatter(axis[0][indices], axis[1][indices], s=80, facecolors="None", zorder=10) if extra is not None: plt.scatter(*np.asarray(extra).T, s=80, zorder=25, facecolors="red") plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show() print("Done.") return self def visualize3d(self, x, y, padding=0.1, dense=100, title=None, show_org=False, draw_background=True, emphasize=None, extra=None): if False: print(Axes3D.add_artist) axis, labels = np.asarray(x).T, np.asarray(y) print("=" * 30 + "\n" + str(self)) nx, ny, nz, padding = dense, dense, dense, padding x_min, x_max = np.min(axis[0]), np.max(axis[0]) y_min, y_max = np.min(axis[1]), np.max(axis[1]) z_min, z_max = np.min(axis[2]), np.max(axis[2]) x_padding = max(abs(x_min), abs(x_max)) * padding y_padding = max(abs(y_min), abs(y_max)) * padding z_padding = max(abs(z_min), abs(z_max)) * padding x_min -= x_padding x_max += x_padding y_min -= y_padding y_max += y_padding z_min -= z_padding z_max += z_padding def get_base(_nx, _ny, _nz): _xf = np.linspace(x_min, x_max, _nx) _yf = np.linspace(y_min, y_max, _ny) _zf = np.linspace(z_min, z_max, _nz) n_xf, n_yf, n_zf = np.meshgrid(_xf, _yf, _zf) return _xf, _yf, _zf, np.c_[n_xf.ravel(), n_yf.ravel(), n_zf.ravel()] xf, yf, zf, base_matrix = get_base(nx, ny, nz) t = time.time() z_xyz = self.predict_classes(base_matrix).reshape((nx, ny, nz)) p_classes = self.predict_classes(x).astype(np.int8) _, _, _, base_matrix = get_base(10, 10, 10) z_classes = self.predict_classes(base_matrix).astype(np.int8) print("Decision Time: {:8.6f} s".format(time.time() - t)) print("Drawing figures...") z_xy = np.average(z_xyz, axis=2) z_yz = np.average(z_xyz, axis=1) z_xz = np.average(z_xyz, axis=0) xy_xf, xy_yf = np.meshgrid(xf, yf, sparse=True) yz_xf, yz_yf = np.meshgrid(yf, zf, sparse=True) xz_xf, xz_yf = np.meshgrid(xf, zf, sparse=True) def transform_arr(arr): if arr.ndim == 1: dic = {c: i for i, c in enumerate(set(arr))} n_dim = len(dic) arr = np.array([dic[label] for label in arr]) else: n_dim = arr.shape[1] arr = np.argmax(arr, axis=1) return arr, n_dim labels, n_label = transform_arr(labels) p_classes, _ = transform_arr(p_classes) z_classes, _ = transform_arr(z_classes) colors = plt.cm.rainbow([i / n_label for i in range(n_label)]) if extra is not None: ex0, ex1, ex2 = np.asarray(extra).T else: ex0 = ex1 = ex2 = None if title is None: title = self.model_saving_name if show_org: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(axis[0], axis[1], axis[2], c=colors[labels]) plt.show() fig = plt.figure(figsize=(16, 4), dpi=100) plt.title(title) ax1 = fig.add_subplot(131, projection='3d') ax2 = fig.add_subplot(132, projection='3d') ax3 = fig.add_subplot(133, projection='3d') ax1.set_title("Org") ax2.set_title("Pred") ax3.set_title("Boundary") ax1.scatter(axis[0], axis[1], axis[2], c=colors[labels]) ax2.scatter(axis[0], axis[1], axis[2], c=colors[p_classes], s=15) if extra is not None: ax2.scatter(ex0, ex1, ex2, s=80, zorder=25, facecolors="red") xyz_xf, xyz_yf, xyz_zf = base_matrix[..., 0], base_matrix[..., 1], base_matrix[..., 2] ax3.scatter(xyz_xf, xyz_yf, xyz_zf, c=colors[z_classes], s=15) plt.show() plt.close() fig = plt.figure(figsize=(16, 4), dpi=100) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) def _draw(_ax, _x, _xf, _y, _yf, _z): if draw_background: _ax.pcolormesh(_x, _y, _z > 0, cmap=plt.cm.Pastel1) else: _ax.contour(_xf, _yf, _z, c='k-', levels=[0]) def _emphasize(_ax, axis0, axis1, _c): _ax.scatter(axis0, axis1, c=_c) if emphasize is not None: indices = np.array([False] * len(axis[0])) indices[np.asarray(emphasize)] = True _ax.scatter(axis0[indices], axis1[indices], s=80, facecolors="None", zorder=10) def _extra(_ax, axis0, axis1, _c, _ex0, _ex1): _emphasize(_ax, axis0, axis1, _c) if extra is not None: _ax.scatter(_ex0, _ex1, s=80, zorder=25, facecolors="red") colors = colors[labels] ax1.set_title("xy figure") _draw(ax1, xy_xf, xf, xy_yf, yf, z_xy) _extra(ax1, axis[0], axis[1], colors, ex0, ex1) ax2.set_title("yz figure") _draw(ax2, yz_xf, yf, yz_yf, zf, z_yz) _extra(ax2, axis[1], axis[2], colors, ex1, ex2) ax3.set_title("xz figure") _draw(ax3, xz_xf, xf, xz_yf, zf, z_xz) _extra(ax3, axis[0], axis[2], colors, ex0, ex2) plt.show() print("Done.") return self class AutoBase(LoggingMixin, DataCacheMixin): # noinspection PyUnusedLocal def __init__(self, name=None, data_info=None, pre_process_settings=None, nan_handler_settings=None, *args, **kwargs): if name is None: raise ValueError("name should be provided when using AutoBase") self._name = name self.whether_redundant = None self.feature_sets = self.sparsity = self.class_prior = None self.n_features = self.all_num_idx = self.transform_dicts = None self.py_collections = [] if data_info is None: data_info = {} else: assert_msg = "data_info should be a dictionary" assert isinstance(data_info, dict), assert_msg self.data_info = data_info self._data_info_initialized = False self.numerical_idx = self.categorical_columns = None if pre_process_settings is None: pre_process_settings = {} else: assert_msg = "pre_process_settings should be a dictionary" assert isinstance(pre_process_settings, dict), assert_msg self.pre_process_settings = pre_process_settings self._pre_processors = None self.pre_process_method = self.scale_method = self.reuse_mean_and_std = None if nan_handler_settings is None: nan_handler_settings = {} else: assert_msg = "nan_handler_settings should be a dictionary" assert isinstance(nan_handler_settings, dict), assert_msg self.nan_handler_settings = nan_handler_settings self._nan_handler = None self.nan_handler_method = self.reuse_nan_handler_values = None self.init_pre_process_settings() self.init_nan_handler_settings() @property def label2num_dict(self): return None if not self.transform_dicts[-1] else self.transform_dicts[-1] @property def num2label_dict(self): label2num_dict = self.label2num_dict if label2num_dict is None: return num_label_list = sorted([(i, c) for c, i in label2num_dict.items()]) return np.array([label for _, label in num_label_list]) @property def valid_numerical_idx(self): return np.array([ is_numerical for is_numerical in self.numerical_idx if is_numerical is not None ]) @property def valid_n_features(self): return np.array([ n_feature for i, n_feature in enumerate(self.n_features) if self.numerical_idx[i] is not None ]) def init_data_info(self): if self._data_info_initialized: return self._data_info_initialized = True self.numerical_idx = self.data_info.get("numerical_idx", None) self.categorical_columns = self.data_info.get("categorical_columns", None) self.feature_sets = self.data_info.get("feature_sets", None) self.sparsity = self.data_info.get("sparsity", None) self.class_prior = self.data_info.get("class_prior", None) if self.feature_sets is not None and self.numerical_idx is not None: self.n_features = [len(feature_set) for feature_set in self.feature_sets] self._gen_categorical_columns() self.data_info.setdefault("file_type", "txt") self.data_info.setdefault("shuffle", True) self.data_info.setdefault("test_rate", 0.1) self.data_info.setdefault("stage", 3) def init_pre_process_settings(self): self.pre_process_method = self.pre_process_settings.setdefault("pre_process_method", "normalize") self.scale_method = self.pre_process_settings.setdefault("scale_method", "truncate") self.reuse_mean_and_std = self.pre_process_settings.setdefault("reuse_mean_and_std", False) if self.pre_process_method is not None and self._pre_processors is None: self._pre_processors = {} def init_nan_handler_settings(self): self.nan_handler_method = self.nan_handler_settings.setdefault("nan_handler_method", "median") self.reuse_nan_handler_values = self.nan_handler_settings.setdefault("reuse_nan_handler_values", True) def _auto_init_from_data(self, x, y, x_test, y_test, names): stage = self.data_info["stage"] shuffle = self.data_info["shuffle"] file_type = self.data_info["file_type"] test_rate = self.data_info["test_rate"] args = (self.numerical_idx, file_type, names, shuffle, test_rate, stage) if x is None or y is None: x, y, x_test, y_test = self._load_data(None, *args) else: data = np.hstack([x, y.reshape([-1, 1])]) if x_test is not None and y_test is not None: data = (data, np.hstack([x_test, y_test.reshape([-1, 1])])) x, y, x_test, y_test = self._load_data(data, *args) self._handle_unbalance(y) self._handle_sparsity() return x, y, x_test, y_test def _handle_unbalance(self, y): if self.n_class == 1: return class_ratio = self.class_prior.min() / self.class_prior.max() logger = self.get_logger("_handle_unbalance", "general.log") if class_ratio < 0.1: warn_msg = "Sample weights will be used since class_ratio < 0.1 ({:8.6f})".format(class_ratio) self.log_msg(warn_msg, logger=logger) if self._sample_weights is None: self.log_msg( "Sample weights are not provided, they'll be generated automatically", logger=logger ) self._sample_weights = np.ones(len(y)) / self.class_prior[y.astype(np.int)] self._sample_weights /= self._sample_weights.sum() self._sample_weights *= len(y) def _handle_sparsity(self): if self.sparsity >= 0.75: warn_msg = "Dropout will be disabled since data sparsity >= 0.75 ({:8.6f})".format(self.sparsity) self.log_msg(warn_msg, logger=self.get_logger("_handle_sparsity", "general.log")) self.dropout_keep_prob = 1. def _gen_categorical_columns(self): self.categorical_columns = [ (i, value) for i, value in enumerate(self.valid_n_features) if not self.valid_numerical_idx[i] and self.valid_numerical_idx[i] is not None ] if not self.valid_numerical_idx[-1]: self.categorical_columns.pop() def _transform_data(self, data, name, train_name="train", include_label=False, refresh_redundant_info=False, stage=3): logger = self.get_logger("_transform_data", "general.log") self.log_msg("Transforming {0}data{2} at stage {1}".format( "{} ".format(name), stage, "" if name == train_name or not self.reuse_mean_and_std else " with {} data".format(train_name), ), logger=logger) is_ndarray = isinstance(data, np.ndarray) if refresh_redundant_info or self.whether_redundant is None: self.whether_redundant = np.array([ True if local_dict is None else False for local_dict in self.transform_dicts ]) targets = [ (i, local_dict) for i, (idx, local_dict) in enumerate( zip(self.numerical_idx, self.transform_dicts) ) if not idx and local_dict and not self.whether_redundant[i] ] if targets and targets[-1][0] == len(self.numerical_idx) - 1 and not include_label: targets = targets[:-1] if stage == 1 or stage == 3: # Transform data & Handle redundant n_redundant = np.sum(self.whether_redundant) if n_redundant == 0: whether_redundant = None else: whether_redundant = self.whether_redundant if not include_label: whether_redundant = whether_redundant[:-1] if refresh_redundant_info: warn_msg = "{} redundant: {}{}".format( "These {} columns are".format(n_redundant) if n_redundant > 1 else "One column is", [i for i, redundant in enumerate(whether_redundant) if redundant], ", {} will be removed".format("it" if n_redundant == 1 else "they") ) self.log_msg(warn_msg, logger=logger) valid_indices = [ i for i, redundant in enumerate(self.whether_redundant) if not redundant ] if not include_label: valid_indices = valid_indices[:-1] for i, line in enumerate(data): for j, local_dict in targets: elem = line[j] if isinstance(elem, str): line[j] = local_dict.get(elem, local_dict.get("nan", len(local_dict))) elif math.isnan(elem): line[j] = local_dict["nan"] else: line[j] = local_dict.get(elem, local_dict.get("nan", len(local_dict))) if not is_ndarray and whether_redundant is not None: data[i] = [line[j] for j in valid_indices] if is_ndarray and whether_redundant is not None: data = data[..., valid_indices].astype(np.float32) else: data = np.array(data, dtype=np.float32) if stage == 2 or stage == 3: data = np.asarray(data, dtype=np.float32) # Handle nan if self._nan_handler is None: self._nan_handler = NanHandler( method=self.nan_handler_method, reuse_values=self.reuse_nan_handler_values ) data = self._nan_handler.transform(data, self.valid_numerical_idx[:-1]) # Pre-process data if self._pre_processors is not None: pre_processor_name = train_name if self.reuse_mean_and_std else name pre_processor = self._pre_processors.setdefault( pre_processor_name, PreProcessor( self.pre_process_method, self.scale_method ) ) if not include_label: data = pre_processor.transform(data, self.valid_numerical_idx[:-1]) else: data[..., :-1] = pre_processor.transform(data[..., :-1], self.valid_numerical_idx[:-1]) return data def _get_label_dict(self): labels = self.feature_sets[-1] sorted_labels = sorted(labels) if not all(Toolbox.is_number(str(label)) for label in labels): return {key: i for i, key in enumerate(sorted_labels)} if not sorted_labels: return {} numerical_labels = np.array(sorted_labels, np.float32) if numerical_labels.max() - numerical_labels.min() != self.n_class - 1: return {key: i for i, key in enumerate(sorted_labels)} return {} def _get_transform_dicts(self): self.transform_dicts = [ None if is_numerical is None else {key: i for i, key in enumerate(sorted(feature_set))} if not is_numerical and (not all_num or not np.allclose( np.sort(np.array(list(feature_set), np.float32).astype(np.int32)), np.arange(0, len(feature_set)) )) else {} for is_numerical, feature_set, all_num in zip( self.numerical_idx[:-1], self.feature_sets[:-1], self.all_num_idx[:-1] ) ] if self.n_class == 1: self.transform_dicts.append({}) else: self.transform_dicts.append(self._get_label_dict()) def _get_data_from_file(self, file_type, test_rate, target=None): if file_type == "txt": sep, include_header = " ", False elif file_type == "csv": sep, include_header = ",", True else: raise NotImplementedError("File type '{}' not recognized".format(file_type)) logger = self.get_logger("_get_data_from_file", "general.log") if target is None: target = os.path.join(self.data_folder, self._name) if not os.path.isdir(target): with open(target + ".{}".format(file_type), "r") as file: data = Toolbox.get_data(file, sep, include_header, logger) else: with open(os.path.join(target, "train.{}".format(file_type)), "r") as file: train_data = Toolbox.get_data(file, sep, include_header, logger) test_rate = 0 test_file = os.path.join(target, "test.{}".format(file_type)) if not os.path.isfile(test_file): data = train_data else: with open(test_file, "r") as file: test_data = Toolbox.get_data(file, sep, include_header, logger) data = (train_data, test_data) return data, test_rate def _load_data(self, data=None, numerical_idx=None, file_type="txt", names=("train", "test"), shuffle=True, test_rate=0.1, stage=3): use_cached_data = False train_data = test_data = None logger = self.get_logger("_load_data", "general.log") if data is None and stage >= 2 and os.path.isfile(self.train_data_file): self.log_msg("Restoring data", logger=logger) use_cached_data = True train_data = np.load(self.train_data_file) if not os.path.isfile(self.test_data_file): test_data = None data = train_data else: test_data = np.load(self.test_data_file) data = (train_data, test_data) if use_cached_data: n_train = None else: if data is None: is_ndarray = False data, test_rate = self._get_data_from_file(file_type, test_rate) else: is_ndarray = True if not isinstance(data, tuple): test_rate = 0 data = np.asarray(data, dtype=np.float32) else: data = tuple( arr if isinstance(arr, list) else np.asarray(arr, np.float32) for arr in data ) if isinstance(data, tuple): if shuffle: np.random.shuffle(data[0]) if is_ndarray else random.shuffle(data[0]) n_train = len(data[0]) data = np.vstack(data) if is_ndarray else data[0] + data[1] else: if shuffle: np.random.shuffle(data) if is_ndarray else random.shuffle(data) n_train = int(len(data) * (1 - test_rate)) if test_rate > 0 else -1 if not os.path.isdir(self.data_info_folder): os.makedirs(self.data_info_folder) if not os.path.isfile(self.data_info_file) or stage == 1: self.log_msg("Generating data info", logger=logger) if numerical_idx is not None: self.numerical_idx = numerical_idx elif self.numerical_idx is not None: numerical_idx = self.numerical_idx if not self.feature_sets or not self.n_features or not self.all_num_idx: is_regression = self.data_info.pop( "is_regression", numerical_idx is not None and numerical_idx[-1] ) self.feature_sets, self.n_features, self.all_num_idx, self.numerical_idx = ( Toolbox.get_feature_info(data, numerical_idx, is_regression, logger) ) self.n_class = 1 if self.numerical_idx[-1] else self.n_features[-1] self._get_transform_dicts() with open(self.data_info_file, "wb") as file: pickle.dump([ self.n_features, self.numerical_idx, self.transform_dicts ], file) elif stage == 3: self.log_msg("Restoring data info", logger=logger) with open(self.data_info_file, "rb") as file: info = pickle.load(file) self.n_features, self.numerical_idx, self.transform_dicts = info self.n_class = 1 if self.numerical_idx[-1] else self.n_features[-1] if not use_cached_data: if n_train > 0: train_data, test_data = data[:n_train], data[n_train:] else: train_data, test_data = data, None train_name, test_name = names train_data = self._transform_data(train_data, train_name, train_name, True, True, stage) if test_data is not None: test_data = self._transform_data(test_data, test_name, train_name, True, stage=stage) self._gen_categorical_columns() if not use_cached_data and stage == 3: self.log_msg("Caching data...", logger=logger) if not os.path.exists(self.data_cache_folder): os.makedirs(self.data_cache_folder) np.save(self.train_data_file, train_data) if test_data is not None: np.save(self.test_data_file, test_data) x, y = train_data[..., :-1], train_data[..., -1] if test_data is not None: x_test, y_test = test_data[..., :-1], test_data[..., -1] else: x_test = y_test = None self.sparsity = ((x == 0).sum() + np.isnan(x).sum()) / np.prod(x.shape) _, class_counts = np.unique(y, return_counts=True) self.class_prior = class_counts / class_counts.sum() self.data_info["numerical_idx"] = self.numerical_idx self.data_info["categorical_columns"] = self.categorical_columns return x, y, x_test, y_test def _pop_preprocessor(self, name): if isinstance(self._pre_processors, dict) and name in self._pre_processors: self._pre_processors.pop(name) def get_transformed_data_from_file(self, file, file_type="txt", include_label=False): x, _ = self._get_data_from_file(file_type, 0, file) x = self._transform_data(x, "new", include_label=include_label) self._pop_preprocessor("new") return x def get_labels_from_classes(self, classes): num2label_dict = self.num2label_dict if num2label_dict is None: return classes return num2label_dict[classes] def predict_labels(self, x): return self.get_labels_from_classes(self.predict_classes(x)) # Signatures def fit(self, x=None, y=None, x_test=None, y_test=None, sample_weights=None, names=("train", "test"), timeit=True, time_limit=-1, snapshot_ratio=3, print_settings=True, verbose=1): raise ValueError def predict_classes(self, x): raise ValueError def predict_from_file(self, file, file_type="txt", include_label=False): raise ValueError def predict_classes_from_file(self, file, file_type="txt", include_label=False): raise ValueError def predict_labels_from_file(self, file, file_type="txt", include_label=False): raise ValueError def evaluate_from_file(self, file, file_type="txt"): raise ValueError class AutoMeta(type): def __new__(mcs, *args, **kwargs): name_, bases, attr = args[:3] auto_base, model = bases def __init__(self, name=None, data_info=None, model_param_settings=None, model_structure_settings=None, pre_process_settings=None, nan_handler_settings=None): auto_base.__init__(self, name, data_info, pre_process_settings, nan_handler_settings) if model.signature != "Advanced": model.__init__(self, name, model_param_settings, model_structure_settings) else: model.__init__(self, name, data_info, model_param_settings, model_structure_settings) def _define_py_collections(self): model._define_py_collections(self) self.py_collections += [ "pre_process_settings", "nan_handler_settings", "_pre_processors", "_nan_handler", "transform_dicts", "numerical_idx", "categorical_columns", "transform_dicts" ] def init_data_info(self): auto_base.init_data_info(self) def init_from_data(self, x, y, x_test, y_test, sample_weights, names): self.init_data_info() x, y, x_test, y_test = self._auto_init_from_data(x, y, x_test, y_test, names) model.init_from_data(self, x, y, x_test, y_test, sample_weights, names) def fit(self, x=None, y=None, x_test=None, y_test=None, sample_weights=None, names=("train", "test"), timeit=True, time_limit=-1, snapshot_ratio=3, print_settings=True, verbose=1): return model.fit( self, x, y, x_test, y_test, sample_weights, names, timeit, time_limit, snapshot_ratio, print_settings, verbose ) def predict(self, x): rs = self._predict(self._transform_data(x, "new", include_label=False)) self._pop_preprocessor("new") return rs def predict_classes(self, x): if self.n_class == 1: raise ValueError("Predicting classes is not permitted in regression problem") return self.predict(x).argmax(1).astype(np.int32) def predict_target_prob(self, x, target): prob = self.predict(x) label2num_dict = self.label2num_dict if label2num_dict is not None: target = label2num_dict[target] return prob[..., target] def predict_from_file(self, file, file_type="txt", include_label=False): x = self.get_transformed_data_from_file(file, file_type, include_label) if include_label: x = x[..., :-1] return self._predict(x) def predict_classes_from_file(self, file, file_type="txt", include_label=False): if self.numerical_idx[-1]: raise ValueError("Predicting classes is not permitted in regression problem") x = self.get_transformed_data_from_file(file, file_type, include_label) if include_label: x = x[..., :-1] return self._predict(x).argmax(1).astype(np.int32) def predict_labels_from_file(self, file, file_type="txt", include_label=False): classes = self.predict_classes_from_file(file, file_type, include_label) return self.get_labels_from_classes(classes) def evaluate(self, x, y, x_cv=None, y_cv=None, x_test=None, y_test=None, metric=None): x = self._transform_data(x, "train") cv_name = "cv" if "cv" in self._pre_processors else "tmp_cv" test_name = "test" if "test" in self._pre_processors else "tmp_test" if x_cv is not None: x_cv = self._transform_data(x_cv, cv_name) if x_test is not None: x_test = self._transform_data(x_test, test_name) if cv_name == "tmp_cv": self._pop_preprocessor("tmp_cv") if test_name == "tmp_test": self._pop_preprocessor("tmp_test") return self._evaluate(x, y, x_cv, y_cv, x_test, y_test, metric) def print_settings(self): msg = model.print_settings(self, only_return=True) if msg is None: msg = "" msg += "\nNanHandler : {}".format("None" if not self._nan_handler else "") + "\n" if self._nan_handler: msg += "\n".join("-> {:14}: {}".format(k, v) for k, v in sorted( self.nan_handler_settings.items() )) + "\n" msg += "-" * 100 + "\n\n" msg += "PreProcessor : {}".format("None" if not self._pre_processors else "") + "\n" if self._pre_processors: msg += "\n".join("-> {:14}: {}".format(k, v) for k, v in sorted( self.pre_process_settings.items() )) + "\n" msg += "-" * 100 self.log_msg("\n" + msg, logger=self.get_logger("print_settings", "general.log")) for key, value in locals().items(): if str(value).find("function") >= 0: attr[key] = value return type(name_, bases, attr) class DistMixin(LoggingMixin, DataCacheMixin): @property def k_series_time_delta(self): return time.time() - self._k_series_t @property def param_search_time_delta(self): return time.time() - self._param_search_t @property def data_cache_folder_name(self): folder = os.path.join(os.getcwd(), "_Tmp", "_Cache") if not os.path.isdir(folder): os.makedirs(folder) return folder @property def k_series_logger(self): name = "{}_k_series".format(self.name) if name not in self.loggers: self.get_logger(name, "{}.log".format(name)) return self.loggers[name] @property def param_search_logger(self): name = "{}_param_search".format(self.name) if name not in self.loggers: self.get_logger(name, "{}.log".format(name)) return self.loggers[name] # noinspection PyAttributeOutsideInit def reset_graph(self, i): del self._graph self._sess = None self._graph = tf.Graph() self._search_cursor = i def reset_all_variables(self): with self._graph.as_default(): self._sess.run(tf.global_variables_initializer()) def _handle_param_search_time_limit(self, time_limit): if self.param_search_time_limit is None: time_limit -= self.k_series_time_delta else: time_limit = min( time_limit, self.param_search_time_limit - self.k_series_time_delta ) self._k_series_t = time.time() return time_limit def _k_series_initialization(self, k, data, test_rate): self._k_series_t = time.time() self.data_info.setdefault("test_rate", test_rate) self.init_data_info() self._k_performances = [] self._k_performances_mean = self._k_performances_std = None kwargs = { "numerical_idx": self.numerical_idx, "shuffle": self.data_info["shuffle"], "file_type": self.data_info["file_type"] } x_1, y_1, x_test_1, y_test_1 = self._load_data( data, test_rate=self.data_info["test_rate"], stage=1, **kwargs) if not self._searching_params: train_1 = np.hstack([x_1, y_1.reshape([-1, 1])]) test_1 = np.hstack([x_test_1, y_test_1.reshape([-1, 1])]) np.save(self.train_data_file, train_1) np.save(self.test_data_file, test_1) self._load_data( np.hstack([x_1, y_1.reshape([-1, 1])]), names=("train", None), test_rate=0, stage=2, **kwargs ) if x_test_1 is None or y_test_1 is None: x_test_2 = y_test_2 = None else: x_test_2, y_test_2, *_ = self._load_data( np.hstack([x_test_1, y_test_1.reshape([-1, 1])]), names=("test", None), test_rate=0, stage=2, **kwargs ) names = [("train{}".format(i), "cv{}".format(i)) for i in range(k)] return x_1, y_1, x_test_2, y_test_2, names def _k_series_evaluation(self, i, x_test, y_test, time_limit): if i == -1: if x_test is None or y_test is None: valid_performances = [performance[:2] for performance in self._k_performances] else: valid_performances = self._k_performances performances_mean = np.mean(valid_performances, axis=0) performances_std = np.std(valid_performances, axis=0) msg = " - Mean | {}\n".format( self._print_metrics(self._metric_name, *performances_mean, only_return=True)) msg += " - Std | {}".format( self._print_metrics(self._metric_name, *performances_std, only_return=True)) if self._searching_params: level = logging.DEBUG logger = self.param_search_logger else: level = logging.INFO logger = self.k_series_logger self.log_block_msg( "Generating performance summary", body=msg, level=level, logger=logger ) return performances_mean, performances_std train_data = self._train_generator.get_all_data(return_weights=False) cv_data = self._test_generator.get_all_data(return_weights=False) x, y = train_data[..., :-1], train_data[..., -1] x_cv, y_cv = cv_data[..., :-1], cv_data[..., -1] msg = "Performance of run {:2} | ".format(i + 1) print(" - " + msg, end="") self._k_performances.append(self._evaluate(x, y, x_cv, y_cv, x_test, y_test)) msg += self._print_metrics(self._metric_name, *self._k_performances[-1], only_return=True) self.log_msg( msg, logging.DEBUG, self.param_search_logger if self._searching_params else self.k_series_logger ) return self.k_series_time_delta >= time_limit > 0 def _k_series_completion(self, x_test, y_test, names, sample_weights_store): performance_info = self._k_series_evaluation(-1, x_test, y_test, None) self._k_performances_mean, self._k_performances_std = performance_info self.data_info["stage"] = 3 for name in names: self._pop_preprocessor(name) self._sample_weights = sample_weights_store def _k_series_process(self, k, data, cv_rate, test_rate, sample_weights, msg, cv_method, kwargs): x_1, y_1, x_test_2, y_test_2, names = self._k_series_initialization(k, data, test_rate) time_limit = kwargs.pop("time_limit", -1) logger = self.get_logger("_k_series_process", "general.log") if 0 < time_limit <= self.k_series_time_delta: self.log_msg("Time limit exceeded before k_series started", logger=logger) return time_limit = self._handle_param_search_time_limit(time_limit) n_cv = int(cv_rate * len(x_1)) print_settings = True if sample_weights is not None: self._sample_weights = np.asarray(sample_weights, np.float32) sample_weights_store = self._sample_weights self.log_msg(msg, logger=logger) all_idx = np.random.permutation(len(x_1)) for i in range(k): if self._sess is not None: self.reset_all_variables() skip = False while True: rs = cv_method(x_1, y_1, n_cv, i, k, all_idx) if rs["success"]: x_train, y_train, x_cv, y_cv, train_idx = rs["info"] break if rs["info"] == "retry": continue x_train = y_train = x_cv = y_cv = train_idx = None skip = True break if skip: self.log_msg( "{}th fold was skipped since labels in train set and cv set are not identical".format(i + 1), level=logging.INFO, logger=logger ) continue if sample_weights is not None: self._sample_weights = sample_weights_store[train_idx] else: self._sample_weights = None kwargs["print_settings"] = print_settings kwargs["names"] = names[i] self.data_info["stage"] = 2 self.fit(x_train, y_train, x_cv, y_cv, timeit=False, time_limit=time_limit, **kwargs) if self._k_series_evaluation(i, x_test_2, y_test_2, time_limit): break print_settings = False self._k_series_completion(x_test_2, y_test_2, names, sample_weights_store) return self def _cv_sanity_check(self, rs, handler, train_idx, x_train, y_train, x_cv, y_cv): if self.n_class == 1: rs["info"] = (x_train, y_train, x_cv, y_cv, train_idx) else: y_train_unique, y_cv_unique = np.unique(y_train), np.unique(y_cv) if len(y_train_unique) == len(y_cv_unique) and np.allclose(y_train_unique, y_cv_unique): rs["info"] = (x_train, y_train, x_cv, y_cv, train_idx) else: rs["success"] = False rs["info"] = handler def _k_fold_method(self, x_1, y_1, *args): _, i, k, all_idx = args rs = {"success": True} n_batch = int(len(x_1) / k) cv_idx = all_idx[np.arange(i * n_batch, (i + 1) * n_batch)] train_idx = all_idx[[ j for j in range(len(all_idx)) if j < i * n_batch or j >= (i + 1) * n_batch ]] x_cv, y_cv = x_1[cv_idx], y_1[cv_idx] x_train, y_train = x_1[train_idx], y_1[train_idx] self._cv_sanity_check(rs, "skip", train_idx, x_train, y_train, x_cv, y_cv) return rs def _k_random_method(self, x_1, y_1, *args): n_cv, *_ = args rs = {"success": True} all_idx = np.random.permutation(len(x_1)) cv_idx, train_idx = all_idx[:n_cv], all_idx[n_cv:] x_cv, y_cv = x_1[cv_idx], y_1[cv_idx] x_train, y_train = x_1[train_idx], y_1[train_idx] self._cv_sanity_check(rs, "retry", train_idx, x_train, y_train, x_cv, y_cv) return rs def k_fold(self, k=10, data=None, test_rate=0., sample_weights=None, **kwargs): return self._k_series_process( k, data, -1, test_rate, sample_weights, cv_method=self._k_fold_method, kwargs=kwargs, msg="Training k-fold with k={} and test_rate={}".format(k, test_rate) ) def k_random(self, k=3, data=None, cv_rate=0.1, test_rate=0., sample_weights=None, **kwargs): return self._k_series_process( k, data, cv_rate, test_rate, sample_weights, cv_method=self._k_random_method, kwargs=kwargs, msg="Training k-random with k={}, cv_rate={} and test_rate={}".format(k, cv_rate, test_rate) ) def _log_param_msg(self, i, param): msg = "" for j, (key, setting) in enumerate(param.items()): msg += "\n".join([key, "-" * 100]) + "\n" msg += "\n".join([ " -> {:32} : {}".format( name, value if not isinstance(value, dict) else "\n{}".format( "\n".join([" -> {:28} : {}".format( local_name, local_value ) for local_name, local_value in value.items()]) ) ) for name, value in sorted(setting.items()) ]) if j != len(param) - 1: msg += "\n" + "-" * 100 + "\n" if i >= 0: title = "Generating parameter setting {:3}".format(i + 1) else: title = "Generating best parameter setting" self.log_block_msg( title=title, body=msg, level=logging.DEBUG, logger=self.param_search_logger ) @staticmethod def _get_score(mean, std, sign): if sign > 0: return mean - std return mean + std @staticmethod def _extract_param_from_info(dtype, info): if dtype == "choice": return info[0][random.randint(0, len(info[0]) - 1)] if len(info) == 2: floor, ceiling = info distribution = "linear" else: floor, ceiling, distribution = info if ceiling <= floor: raise ValueError("ceiling should be greater than floor") if dtype == "int": return random.randint(floor, ceiling) if dtype == "float": linear_target = floor + random.random() * (ceiling - floor) distribution_error_msg = "distribution '{}' not supported in range_search".format(distribution) if distribution == "linear": return linear_target if distribution[:3] == "log": sign, log = int(linear_target > 0), math.log(math.fabs(linear_target)) if distribution == "log": return sign * math.exp(log) if distribution == "log2": return sign * 2 ** log if distribution == "log10": return sign * 10 ** log raise NotImplementedError(distribution_error_msg) raise NotImplementedError(distribution_error_msg) raise NotImplementedError("dtype '{}' not supported in range_search".format(dtype)) def _update_param(self, param): self._model_built = False self._settings_initialized = False self.model_param_settings = deepcopy(self._settings_base["model_param_settings"]) self.model_structure_settings = deepcopy(self._settings_base["model_structure_settings"]) new_model_param_settings = param.get("model_param_settings", {}) new_model_structure_settings = param.get("model_structure_settings", {}) self.model_param_settings.update(new_model_param_settings) self.model_structure_settings.update(new_model_structure_settings) if not self.model_structure_settings.get("use_pruner", True): self._pruner = None if not self.model_structure_settings.get("use_dndf", True): self._dndf = None if not self.model_structure_settings.get("use_dndf_pruner", False): self._dndf_pruner = None if self._nan_handler is not None: self._nan_handler.reset() if self._pre_processors: self._pre_processors = {} def _select_param(self, params, search_with_test_set): scores = [] sign = Metrics.sign_dict[self._metric_name] assert len(self.mean_record) == len(self.std_record) for mean, std in zip(self.mean_record, self.std_record): if len(mean) == 2 or not search_with_test_set: train_mean, cv_mean = mean train_std, cv_std = std weighted_mean = 0.05 * train_mean + 0.95 * cv_mean weighted_std = 0.05 * train_std + 0.95 * cv_std else: train_mean, cv_mean, test_mean = mean train_std, cv_std, test_std = std weighted_mean = 0.05 * train_mean + 0.1 * cv_mean + 0.85 * test_mean weighted_std = 0.05 * train_std + 0.1 * cv_std + 0.85 * test_std scores.append(self._get_score(weighted_mean, weighted_std, sign)) scores = np.array(scores, np.float32) scores[np.isnan(scores)] = -np.inf best_idx = np.argmax(scores) return best_idx, params[best_idx] def _prepare_param_search_data(self, data, test_rate): file_type = self.data_info.setdefault("file_type", "txt") data_folder = self.data_info.setdefault("data_folder", "_Data") self._file_type_store = file_type self._data_folder_store = data_folder if data is not None: return data cache_folder = self.data_cache_folder_name target = os.path.join(data_folder, self._name) data, test_rate = self._get_data_from_file(file_type, test_rate, target) if isinstance(data, tuple): train_data, test_data = data else: if test_rate > 0: random.shuffle(data) n_train = int(len(data) * (1 - test_rate)) train_data, test_data = data[:n_train], data[n_train:] else: train_data, test_data = data, None cache_target = os.path.join(cache_folder, self._name) if not os.path.isdir(cache_target): os.makedirs(cache_target) self.log_msg("Writing tmp data for param searching", level=logging.INFO, logger=self.param_search_logger) with open(os.path.join(cache_target, "train.txt"), "w") as file: file.write("\n".join([" ".join(line) for line in train_data])) if test_data is not None: with open(os.path.join(cache_target, "test.txt"), "w") as file: file.write("\n".join([" ".join(line) for line in test_data])) self.data_info["file_type"] = "txt" self.data_info["data_folder"] = cache_folder def _param_search_completion(self): self._searching_params = False self.param_search_time_limit = None self._data_info_initialized = False self.data_info["file_type"] = self._file_type_store self.data_info["data_folder"] = self._data_folder_store def get_param_by_range(self, param): if isinstance(param, dict): return {key: self.get_param_by_range(value) for key, value in param.items()} dtype, *info = param if not isinstance(dtype, str) and isinstance(dtype, collections.Iterable): local_param_list = [] for local_dtype, local_info in zip(dtype, info): local_param_list.append(self._extract_param_from_info(local_dtype, local_info)) return local_param_list return self._extract_param_from_info(dtype, info) # noinspection PyAttributeOutsideInit def param_search(self, params, search_with_test_set=True, switch_to_best_param=True, single_search_time_limit=None, param_search_time_limit=3600, k=3, data=None, cv_rate=0.1, test_rate=0.1, sample_weights=None, **kwargs): self._param_search_t = time.time() self.param_search_time_limit = param_search_time_limit logger = self.param_search_logger self._searching_params = True self._settings_base = { "model_param_settings": deepcopy(self.model_param_settings), "model_structure_settings": deepcopy(self.model_structure_settings) } self.mean_record, self.std_record = [], [] self.log_msg( "Searching best parameter setting (time_limit: {}s per run, {}s in total)".format( "default" if single_search_time_limit is None else single_search_time_limit, param_search_time_limit ), logging.DEBUG, logger ) self._prepare_param_search_data(data, test_rate) n_param = len(params) for i, param in enumerate(params): self.reset_graph(i) self._log_param_msg(i, param) self._update_param(param) time_left = param_search_time_limit - self.param_search_time_delta if single_search_time_limit is None: local_time_limit = time_left / (n_param - i) else: local_time_limit = single_search_time_limit kwargs["time_limit"] = min(local_time_limit, time_left) if self.k_random(k, data, cv_rate, test_rate, sample_weights, **kwargs) is not None: self.save() self.mean_record.append(self._k_performances_mean) self.std_record.append(self._k_performances_std) if self.param_search_time_delta >= param_search_time_limit: self.log_msg("Search interrupted due to 'Time limit exceeded'", level=logging.INFO, logger=logger) break self.log_msg("Search complete", level=logging.DEBUG, logger=logger) best_idx, best_param = self._select_param(params, search_with_test_set) self._log_param_msg(-1, best_param) msg = "" for i, (mean, std) in enumerate(zip(self.mean_record, self.std_record)): msg += " -{} Mean | ".format(">" if i == best_idx else " ") msg += self._print_metrics(self._metric_name, *mean, only_return=True) + "\n" msg += " -{} Std | ".format(">" if i == best_idx else " ") msg += self._print_metrics(self._metric_name, *std, only_return=True) if i != len(self.mean_record) - 1: msg += "\n" + "-" * 100 + "\n" self.log_block_msg("Generating performances", body=msg, level=logging.DEBUG, logger=logger) if switch_to_best_param: self.reset_graph(-1) self._update_param(best_param) self._param_search_completion() return self def random_search(self, n, grid_params, grid_order="list_first", search_with_test_set=True, switch_to_best_params=True, single_search_time_limit=None, param_search_time_limit=3600, k=3, data=None, cv_rate=0.1, test_rate=0.1, sample_weights=None, **kwargs): if grid_order == "list_first": param_types = sorted(grid_params) n_param_base = [ np.arange(len(grid_params[param_type])) for param_type in param_types ] params = [ { param_type: grid_params[param_type][indices[i]] for i, param_type in enumerate(param_types) } for indices in itertools.product(*n_param_base) ] elif grid_order == "dict_first": param_types = sorted(grid_params) params_names = [sorted(grid_params[param_type]) for param_type in param_types] params_names_cumsum = np.cumsum([0] + [len(params_name) for params_name in params_names]) n_param_base = sum([ [np.arange(len(grid_params[param_type][param_name])) for param_name in params_name] for param_type, params_name in zip(param_types, params_names) ], []) params = [ { param_type: { local_params: grid_params[param_type][local_params][indices[cumsum + j]] for j, local_params in enumerate(params_names[i]) } for i, (param_type, cumsum) in enumerate(zip(param_types, params_names_cumsum)) } for indices in itertools.product(*n_param_base) ] else: raise NotImplementedError("grid_sort_type '{}' not implemented".format(grid_order)) if n > 0: params = [params[i] for i in np.random.permutation(len(params))[:n]] return self.param_search( params, search_with_test_set, switch_to_best_params, single_search_time_limit, param_search_time_limit, k, data, cv_rate, test_rate, sample_weights, **kwargs ) def grid_search(self, grid_params, grid_order="list_first", search_with_test_set=True, switch_to_best_params=True, single_search_time_limit=None, param_search_time_limit=3600, k=3, data=None, cv_rate=0.1, test_rate=0.1, sample_weights=None, **kwargs): return self.random_search( -1, grid_params, grid_order, search_with_test_set, switch_to_best_params, single_search_time_limit, param_search_time_limit, k, data, cv_rate, test_rate, sample_weights, **kwargs ) def range_search(self, n, grid_params, search_with_test_set=True, switch_to_best_params=True, single_search_time_limit=None, param_search_time_limit=3600, k=3, data=None, cv_rate=0.1, test_rate=0.1, sample_weights=None, **kwargs): params = [] for _ in range(n): local_params = { param_type: { param_name: self.get_param_by_range(param_value) for param_name, param_value in param_values.items() } for param_type, param_values in grid_params.items() } params.append(local_params) return self.param_search( params, search_with_test_set, switch_to_best_params, single_search_time_limit, param_search_time_limit, k, data, cv_rate, test_rate, sample_weights, **kwargs ) def empirical_search(self, search_with_test_set=True, switch_to_best_params=True, level=3, single_search_time_limit=None, param_search_time_limit=3600, k=3, data=None, cv_rate=0.1, test_rate=0.1, sample_weights=None, **kwargs): grid_params = { "model_structure_settings": [ {"use_wide_network": False, "use_pruner": False, "use_dndf_pruner": False}, {"use_wide_network": False, "use_pruner": True, "use_dndf_pruner": False}, {"use_wide_network": True, "use_pruner": True, "use_dndf_pruner": False}, ] } if level >= 2: grid_params["model_structure_settings"] += [ {"use_wide_network": True, "use_pruner": True, "use_dndf_pruner": True}, {"use_wide_network": True, "use_pruner": False, "use_dndf_pruner": True}, {"use_wide_network": True, "use_pruner": False, "use_dndf_pruner": False} ] if level >= 3: grid_params["pre_process_settings"] = [ {"reuse_mean_and_std": False}, {"reuse_mean_and_std": True} ] if level >= 4: grid_params["model_param_settings"] = [ {"use_batch_norm": False}, {"use_batch_norm": True} ] if level >= 5: grid_params["model_param_settings"] = [ {"use_batch_norm": False, "batch_size": 64}, {"use_batch_norm": False, "batch_size": 128}, {"use_batch_norm": False, "batch_size": 256}, {"use_batch_norm": True, "batch_size": 64}, {"use_batch_norm": True, "batch_size": 128}, {"use_batch_norm": True, "batch_size": 256} ] return self.grid_search( grid_params, "list_first", search_with_test_set, switch_to_best_params, single_search_time_limit, param_search_time_limit, k, data, cv_rate, test_rate, sample_weights, **kwargs ) # Signatures @staticmethod def _print_metrics(metric_name, train_metric=None, cv_metric=None, test_metric=None, only_return=False): raise ValueError def _gen_batch(self, generator, n_batch, gen_random_subset=False, one_hot=False): raise ValueError def _load_data(self, data=None, numerical_idx=None, file_type="txt", names=("train", "test"), shuffle=True, test_rate=0.1, stage=3): raise ValueError def _handle_unbalance(self, y): raise ValueError def _handle_sparsity(self): raise ValueError def _get_data_from_file(self, file_type, test_rate, target=None): raise ValueError def _evaluate(self, x=None, y=None, x_cv=None, y_cv=None, x_test=None, y_test=None, metric=None): raise ValueError def _pop_preprocessor(self, name): raise ValueError def init_data_info(self): raise ValueError def save(self, run_id=0, path=None): raise ValueError def fit(self, x=None, y=None, x_test=None, y_test=None, sample_weights=None, names=("train", "test"), timeit=True, time_limit=-1, snapshot_ratio=3, print_settings=True, verbose=1): raise ValueError def evaluate(self, x=None, y=None, x_cv=None, y_cv=None, x_test=None, y_test=None, metric=None): raise ValueError class DistMeta(type): def __new__(mcs, *args, **kwargs): name_, bases, attr = args[:3] model, dist_mixin = bases def __init__(self, name=None, data_info=None, model_param_settings=None, model_structure_settings=None, pre_process_settings=None, nan_handler_settings=None): self._search_cursor = None self._param_search_t = None self.param_search_time_limit = None self.mean_record = self.std_record = None self._searching_params = self._settings_base = None dist_mixin.__init__(self) model.__init__( self, name, data_info, model_param_settings, model_structure_settings, pre_process_settings, nan_handler_settings ) attr["__init__"] = __init__ return type(name_, bases, attr)
42.981061
114
0.588691
ce33095d639f433a869a59cf8b5064b41dae7b53
159
py
Python
tests/test_p_7_satz_von_pick.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
tests/test_p_7_satz_von_pick.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
tests/test_p_7_satz_von_pick.py
techrabbit58/uebung_informatik_vorkurs
e99312ae66ccccd6bfe45bfd3c3f43c01690659c
[ "Unlicense" ]
null
null
null
""" Teste die 'pick()' funktion. """ from tag_2.p_7_satz_von_pick import pick def test_satz_von_pick(): assert pick(innenpunkte=37, randpunkte=42) == 57
17.666667
52
0.716981
5a7627a1fe051975fcfc3d64d8e12a10d27962c1
804
py
Python
orgnummer_generator/generator.py
navikt/testnorge-ereg-mapper
936afa2dd08baa2d7d242f61d231438b7f8ddf4d
[ "MIT" ]
null
null
null
orgnummer_generator/generator.py
navikt/testnorge-ereg-mapper
936afa2dd08baa2d7d242f61d231438b7f8ddf4d
[ "MIT" ]
1
2020-05-20T12:45:32.000Z
2020-05-20T12:45:32.000Z
orgnummer_generator/generator.py
navikt/testnorge-ereg-mapper
936afa2dd08baa2d7d242f61d231438b7f8ddf4d
[ "MIT" ]
1
2019-09-07T16:06:22.000Z
2019-09-07T16:06:22.000Z
import random import requests def make_orgnummer(): r = random.randint(80000000, 99999999) r_str = str(r) w = "32765432" sum = 0 for i, c in enumerate(r_str): sum += (int(c) * int(w[i])) control_digit = 11 - (sum % 11) final = r_str + str(control_digit) req = requests.get( "https://modapp-q2.adeo.no/ereg/api/v1/organisasjon/" + final + "?inkluderHierarki=false&inkluderHistorikk=false") req2 = requests.get( "https://modapp-q0.adeo.no/ereg/api/v1/organisasjon/" + final + "?inkluderHierarki=false&inkluderHistorikk=false") if control_digit == 1 or control_digit < 0 or req.status_code == 200 or req2.status_code == 200: return make_orgnummer() return final print(make_orgnummer())
21.72973
100
0.621891
cec5837c5ce2ece44c9c18ede781d3a57534daa3
489
py
Python
books/PythonAutomate/pdf_word_documents/reading_word.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonAutomate/pdf_word_documents/reading_word.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonAutomate/pdf_word_documents/reading_word.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
"""reading_word.py 워드 문서 읽기 """ import docx doc = docx.Document("demo.docx") print(len(doc.paragraphs)) # paragraph 갯수 print(doc.paragraphs[0].text) # 첫번째 paragraph 문자열 print(doc.paragraphs[1].text) # 두번째 paragraph 문자열 print(len(doc.paragraphs[1].runs)) # 두번쨰 paragraph의 run 갯수 print(doc.paragraphs[1].runs[0].text) # 두번쨰 paragraph의 첫번째 run 문자열 print(doc.paragraphs[1].runs[1].text) # 두번쨰 paragraph의 두번째 run 문자열 print(doc.paragraphs[1].runs[2].text) # 두번쨰 paragraph의 세번째 run 문자열
30.5625
67
0.725971
6502dd254712848e7e901a4bd68509a0933c8184
4,582
py
Python
Server/JsonWriter.py
EiS94/Bewaesserungsanlage
8edc0c8b5113219724b13c56fb296a003e83aad0
[ "MIT" ]
null
null
null
Server/JsonWriter.py
EiS94/Bewaesserungsanlage
8edc0c8b5113219724b13c56fb296a003e83aad0
[ "MIT" ]
null
null
null
Server/JsonWriter.py
EiS94/Bewaesserungsanlage
8edc0c8b5113219724b13c56fb296a003e83aad0
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- import json import random import DHT as dht import Adafruit_GPIO.SPI as SPI import Adafruit_MCP3008 import RPi.GPIO as GPIO import time import calendar import smbus #sets the wiring from the pi GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(12, GPIO.IN) GPIO.setup(11, GPIO.IN) GPIO.setup(22, GPIO.OUT) #setup for the MCP3008 Analog digital converter SPI_PORT = 0 SPI_DEVICE = 0 mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE)) #safes the platform for temperatur sensor pf = dht.common.get_platform() #setup for the light sensor DEVICE = 0x23 POWER_DOWN = 0x00 POWER_ON = 0x01 RESET = 0x07 # Start measurement at 4lx resolution. Time typically 16ms. CONTINUOUS_LOW_RES_MODE = 0x13 # Start measurement at 1lx resolution. Time typically 120ms CONTINUOUS_HIGH_RES_MODE_1 = 0x10 # Start measurement at 0.5lx resolution. Time typically 120ms CONTINUOUS_HIGH_RES_MODE_2 = 0x11 # Start measurement at 1lx resolution. Time typically 120ms # Device is automatically set to Power Down after measurement. ONE_TIME_HIGH_RES_MODE_1 = 0x20 # Start measurement at 0.5lx resolution. Time typically 120ms # Device is automatically set to Power Down after measurement. ONE_TIME_HIGH_RES_MODE_2 = 0x21 # Start measurement at 1lx resolution. Time typically 120ms # Device is automatically set to Power Down after measurement. ONE_TIME_LOW_RES_MODE = 0x23 bus = smbus.SMBus(1) def convertToNumber(data): result = (data[1] + (256 * data[0])) / 1.2 return result def readLight(addr=DEVICE): data = bus.read_i2c_block_data(addr, ONE_TIME_HIGH_RES_MODE_1) return convertToNumber(data) #writes the sensor data to data.json file def run(): data = {} data['data'] = [] data['data'].append({ 'wetness': getHumidityAir(), 'rain': getAnalogRainStatus(), 'temperatur': getTemperatur(), 'plant1': getAnalogPlantStatus(1), 'plant2': getAnalogPlantStatus(2), 'plant3': getAnalogPlantStatus(3), 'plant4': getAnalogPlantStatus(4), 'plant5': getAnalogPlantStatus(5), 'illuminance' : getIlluminance(), 'p1Value' : getAnalogPlantValue(1), 'p2Value' : getAnalogPlantValue(2), 'p3Value' : getAnalogPlantValue(3), 'p4Value' : getAnalogPlantValue(4), 'p5Value' : getAnalogPlantValue(5), 'timestamp': getTimestamp(), 'valve': getValveStatus() }) with open('/home/pi/Bewaesserung/data.json', 'w') as outfile: json.dump(data, outfile) def getAnalogPlantStatus(i): plant1Status = getAnalogSignal(i) if (plant1Status < 500): return "ausgezeichnet bewässert" elif (plant1Status < 750): return "ausreichend bewässert" else: return "braucht Wasser" def getAnalogRainStatus(): rainStatus = getAnalogSignal(0) if (rainStatus < 600): return "starker Regen" elif (rainStatus < 800): return "Regen" elif (rainStatus < 950): return "leichter Regen" else: return "kein Regen" def getAnalogBrightnessValue(): return getAnalogSignal(7) def getAnalogRainValue(): return getAnalogSignal(0) def getAnalogPlantValue(i): return getAnalogSignal(i) def getTimestamp(): return calendar.timegm(time.gmtime()) def getTemperatur(): h, t = dht.read_retry(dht.DHT22, 4, 15, 2, pf) if (t != None): return float("{0:.1f}".format(t)) else: return 199.9 def getHumidityAir(): h, t = dht.read_retry(dht.DHT22, 4, 15, 2, pf) if (h != None): return float("{0:.1f}".format(h)) else: return 199.9 def getRain(): rain = GPIO.input(12) rain = ("%ld" % rain) if (rain == "1"): return("Nein") else: return("Ja") def getHumidityPlant1(): wet = GPIO.input(11) wet = ("%ld" % wet) if (wet == "1"): return("braucht Wasser") else: return("ausreichend bewässert") def openValve(): GPIO.output(22, GPIO.LOW) def closeValve(): GPIO.output(22, GPIO.HIGH) def getValveStatus(): if GPIO.input(22) == GPIO.HIGH: return "aus" else: return "an" def getAnalogSignal(i): if (i < 8 and i >= 0): return mcp.read_adc(i) else: return "select Channel-number between 0 and 7" def getAllAnalogSignals(): values = [0]*8 for i in range(8): values[i] = mcp.read_adc(i) return values def getIlluminance(): return format(readLight(),'.2f') def cleanExit(): GPIO.cleanup() def writeTemperatur(): while (True): print("bla")
25.597765
68
0.665212
651a54e75f0c07c0181a8708ac38016cb9cd9c4b
4,729
py
Python
src/server/handlers/metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
156
2021-11-19T18:50:14.000Z
2022-03-31T19:48:59.000Z
src/server/handlers/metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
30
2021-12-27T19:30:56.000Z
2022-03-30T17:49:00.000Z
src/server/handlers/metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
14
2022-01-17T23:24:34.000Z
2022-03-29T09:27:47.000Z
import logging from flask_restful import Resource, abort, request from sqlalchemy import func from server.models import Metric, ZScore from server.middleware.db import db from .monitors import MonitorResource # class MetricListResource(Resource): # def _validate(self, req): # pass # # return self.resource.validate(req) # def get(self, **kwargs): # try: # database = kwargs['database'] # schema = kwargs['schema'] # table = kwargs['table'] # except: # abort(404) # obj = self._retrieve_by_kwargs(table, database, schema) # return {self.key: obj} class MetricListResource(Resource): @property def key(self): return "metrics" def _transform(self, objs): return [ { 'metric': obj[0], 'column_name': obj[1], 'count': obj[2], 'error': obj[3] } for obj in objs ] # def _retrieve_by_kwargs(self, table_name, database, schema): try: obj = db.session.query( Metric.metric, Metric.column_name, func.count(Metric.id), ZScore.error, Metric.table_name, Metric.database, Metric.schema, func.max(Metric.created_at), ).join( ZScore, Metric.id == ZScore.metric_id, ).filter( table_name == Metric.table_name, database == Metric.database, schema == Metric.schema, ).group_by( Metric.table_name, Metric.database, Metric.schema, Metric.column_name, Metric.metric, ZScore.error, ).all() except Exception as e: import traceback traceback.print_exc() abort(404) return {'table_name': table_name, 'database': database, 'schema': schema, 'type': 'table_health', 'metrics': obj} def _retrieve_detailed(self, table_name, database, schema, column_name, metric): try: objs = db.session.query(Metric, ZScore).outerjoin(ZScore, ZScore.metric_id == Metric.id).filter( Metric.table_name==table_name, Metric.database==database, Metric.schema==schema, Metric.metric == metric, Metric.column_name == column_name ).order_by(Metric.time_window_end).all() # TODO: ORDER BY metrics = [(lambda d: (d.update(obj[1].to_dict()) or d) if obj[1] else d)(obj[0].to_dict()) for obj in objs] except Exception as e: logging.warn(e) abort(404) return metrics # Entrypoint def get(self, monitor_id): monitor_resource = MonitorResource() monitor = monitor_resource.get(obj_id=monitor_id)['monitor'] if 'column_name' in request.args and 'metric' in request.args: return self.get_detail(monitor['table_name'], monitor['database'], monitor['schema'], request.args) obj_list = self._retrieve_by_kwargs(monitor['table_name'], monitor['database'], monitor['schema']) transformed_obj_list = self._transform(obj_list['metrics']) return {self.key: transformed_obj_list} def get_detail(self, table_name, database, schema, args): column_name = args.get('column_name') metric = args.get('metric') metrics = self._retrieve_detailed(table_name, database, schema, column_name, metric) return {'metrics': metrics} # class MetricResource(Resource): # @property # def key(self): # return "metrics" # def _retrieve_by_monitor_and_name(self, monitor, name): # try: # obj = db.session.query(Metric).filter( # Metric.table_name == ".".join([monitor['database'], monitor['schema'], monitor['table_name']]), # Metric.metric == name, # ) # except Exception as e: # logging.warn(e) # abort(404) # return obj # def get(self, **kwargs): # obj_id = kwargs['obj_id'] # metric_name = kwargs['metric_name'] # monitor_resource = MonitorResource() # monitor = monitor_resource.get(obj_id=obj_id)['monitor'] # obj_list = self._retrieve_by_monitor_and_name(monitor, metric_name) # obj_dict_list = [obj.to_dict() for obj in obj_list] # return {self.key: obj_dict_list}
32.840278
121
0.550433
6536b18b80a0674c73f4767a84b77dcd2adc41a6
6,039
py
Python
src/test/tests/operators/moveoperators.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/test/tests/operators/moveoperators.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/test/tests/operators/moveoperators.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: moveoperators.py # # Tests: plots - Pseudocolor, Mesh, FilledBoundary # operators - Erase, Isosurface, Reflect, Slice, Transform # # Defect ID: '1837 # # Programmer: Brad Whitlock # Date: Thu Apr 17 16:45:46 PST 2003 # # Modifications: # Eric Brugger, Thu May 8 12:57:56 PDT 2003 # Remove a call to ToggleAutoCenterMode since it no longer exists. # # Kathleen Bonnell, Thu Aug 28 14:34:57 PDT 2003 # Remove compound var name from subset plots. # # Kathleen Bonnell, Wed Mar 17 07:33:40 PST 2004 # Set default Slice atts, as these have changed. # # Kathleen Bonnell, Wed May 5 08:13:22 PDT 2004 # Modified Slice atts to get same picture as defaults have changed. # # Brad Whitlock, Tue Jan 17 12:14:21 PDT 2006 # Added runTest4. # # Mark C. Miller, Wed Jan 20 07:37:11 PST 2010 # Added ability to swtich between Silo's HDF5 and PDB data. # # Kathleen Biagas, Thu Jul 11 08:18:42 PDT 2013 # Removed legacy sytle annotation setting. # # Kathleen Biagas, Mon Dec 19 15:45:38 PST 2016 # Use FilledBoundary plot for materials instead of Subset. # # ---------------------------------------------------------------------------- def InitAnnotation(): # Turn off all annotation except for the bounding box. a = AnnotationAttributes() TurnOffAllAnnotations(a) a.axes2D.visible = 1 a.axes2D.xAxis.label.visible = 0 a.axes2D.yAxis.label.visible = 0 a.axes2D.xAxis.title.visible = 0 a.axes2D.yAxis.title.visible = 0 a.axes3D.bboxFlag = 1 SetAnnotationAttributes(a) def InitDefaults(): # Set the default reflect operator attributes. reflect = ReflectAttributes() reflect.SetReflections(1, 1, 0, 0, 0, 0, 0, 0) SetDefaultOperatorOptions(reflect) slice = SliceAttributes() slice.project2d = 0 slice.SetAxisType(slice.XAxis) slice.SetFlip(1) SetDefaultOperatorOptions(slice) def setTheFirstView(): # Set the view v = View3DAttributes() v.viewNormal = (-0.695118, 0.351385, 0.627168) v.focus = (-10, 0, 0) v.viewUp = (0.22962, 0.935229, -0.269484) v.viewAngle = 30 v.parallelScale = 17.3205 v.nearPlane = -70 v.farPlane = 70 v.perspective = 1 SetView3D(v) # # Test operator promotion, demotion, and removal. # def runTest1(): OpenDatabase(silo_data_path("noise.silo")) # Set up a plot with a few operators. AddPlot("Pseudocolor", "hardyglobal") AddOperator("Isosurface") AddOperator("Slice") AddOperator("Reflect") DrawPlots() setTheFirstView() # Take a picture of the initial setup. Test("moveoperator_0") # Move the reflect so that it is before the slice in the pipeline. # The pipeline will be: Isosurface, Reflect, Slice DemoteOperator(2) DrawPlots() Test("moveoperator_1") # Move the reflect operator back so that the pipeline matches the # initial configuration: Isosurface, Slice, Reflect PromoteOperator(1) DrawPlots() Test("moveoperator_2") # Remove the slice operator from the middle, resulting in: # Isosurface, Reflect RemoveOperator(1) DrawPlots() Test("moveoperator_3") # Remove the Isosurface operator, resulting in: Reflect RemoveOperator(0) DrawPlots() Test("moveoperator_4") # Remove the Reflect operator RemoveOperator(0) DrawPlots() Test("moveoperator_5") DeleteAllPlots() # # Test removing an operator from more than one plot at the same time. # def runTest2(): all = 1 # Set up a couple plots of globe OpenDatabase(silo_data_path("globe.silo")) AddPlot("Pseudocolor", "u") AddPlot("Mesh", "mesh1") # Add a reflect operator to both plots. AddOperator("Reflect", all) DrawPlots() Test("moveoperator_6") # Remove the operator from both plots. RemoveOperator(0, all) DrawPlots() Test("moveoperator_7") DeleteAllPlots() # # Test setting attributes for multiple operators of the same type. # def runTest3(): # Set up a couple plots of globe OpenDatabase(silo_data_path("globe.silo")) AddPlot("Pseudocolor", "u") pc = PseudocolorAttributes() pc.SetOpacityType(pc.Constant) pc.opacity = 0.2 SetPlotOptions(pc) AddPlot("FilledBoundary", "mat1") # The subset plot is the active plot, add a couple transform # operators to it. AddOperator("Transform") AddOperator("Transform") # Set the attributes for the *first* transform operator. # This results in a full size globe translated up in Y. t0 = TransformAttributes() t0.doTranslate = 1 t0.translateY = 15 SetOperatorOptions(t0, 0) DrawPlots() Test("moveoperator_8") # Set the attributes for the *second* transform operator. # The plot has been translated, now scale it. Since it has already # been translated, this will also translate it a little in Y. t1 = TransformAttributes() t1.doScale = 1 t1.scaleX = 0.5 t1.scaleY = 0.5 t1.scaleZ = 0.5 SetOperatorOptions(t1, 1) Test("moveoperator_9") # Demote the last operator to reverse the order of the transformations. DemoteOperator(1) # Make the pc plot opaque again SetActivePlots(0) pc.SetOpacityType(pc.FullyOpaque) SetPlotOptions(pc) DrawPlots() Test("moveoperator_10") DeleteAllPlots() # # Test that removing an operator using the RemoveOperator(i) method causes # the vis window to get redrawn. # def runTest4(): OpenDatabase(silo_data_path("curv2d.silo")) AddPlot("Pseudocolor", "d") AddOperator("Isosurface") DrawPlots() Test("moveoperator_11") RemoveOperator(0) Test("moveoperator_12") DeleteAllPlots() # # Set up the environment and run all of the tests. # def runTests(): InitAnnotation() InitDefaults() runTest1() runTest2() runTest3() runTest4() # Run the tests. runTests() Exit()
26.721239
78
0.656897
0be7b2204441a9a284657f32102fe27e90db3c14
234
py
Python
1323-maximum-69-number/1323-maximum-69-number.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
2
2021-12-05T14:29:06.000Z
2022-01-01T05:46:13.000Z
1323-maximum-69-number/1323-maximum-69-number.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
1323-maximum-69-number/1323-maximum-69-number.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
class Solution: def maximum69Number (self, num: int) -> int: try: numstr = list(str(num)) numstr[numstr.index('6')]='9' return int("".join(numstr)) except: return num
29.25
48
0.495726
043e1df3fcc62ca14be719c44d897ca00b52ed86
231
py
Python
Exercicios/ex09-3e.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
Exercicios/ex09-3e.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
Exercicios/ex09-3e.py
BoltzBit/LP
f84d36d1bdee9a20c197cebec2810234c5311fb8
[ "MIT" ]
null
null
null
#calculo da area do losango diagonal1 = float(input('Insira a primeira diagonal: ')) diagonal2 = float(input('Insira a segunda diagonal: ')) area = (diagonal1*diagonal2)/2 msg = 'A area do losango é {}' print(msg.format(area))
21
56
0.709957
ac8e575d2629002261a978c87e3f8844ff7e1132
354
py
Python
PYTHON/Regex_and_Parsing/findall.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
PYTHON/Regex_and_Parsing/findall.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
PYTHON/Regex_and_Parsing/findall.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys import re if __name__ == '__main__': input_str = input() ret = ([r.group(0) for r in re.finditer(r'([aeiou])+', input_str, re.I) if len(r.group(0)) > 1]) if len(ret) == 0: print(-1) else: if ret[-1] == input_str[(-1 * len(ret[-1])):]: ret.pop() print('\n'.join(ret))
25.285714
100
0.516949
acd516c116f068c0b5e1561eb1397b219090fc81
182
py
Python
sources/stage03/enten.py
kantel/pythonschulung2
b13fb24770dd7789f3845aeb147a720dff272951
[ "MIT" ]
null
null
null
sources/stage03/enten.py
kantel/pythonschulung2
b13fb24770dd7789f3845aeb147a720dff272951
[ "MIT" ]
null
null
null
sources/stage03/enten.py
kantel/pythonschulung2
b13fb24770dd7789f3845aeb147a720dff272951
[ "MIT" ]
null
null
null
suffix = "ack" praefixe = "JKLMNOPQ" for praefix in praefixe: if praefix == "O" or praefix == "Q": print(praefix + "u" + suffix) else: print(praefix + suffix)
26
40
0.582418
76b1a0c398c6cbf56adab19ef011b95aa0a8bab9
12,696
py
Python
src/onegov/election_day/formats/election/internal_proporz.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/election_day/formats/election/internal_proporz.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/election_day/formats/election/internal_proporz.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.ballot import Candidate from onegov.ballot import CandidateResult from onegov.ballot import ElectionResult from onegov.ballot import List from onegov.ballot import ListConnection from onegov.ballot import ListResult from onegov.ballot import PanachageResult from onegov.election_day import _ from onegov.election_day.formats.common import EXPATS, validate_integer, \ validate_list_id from onegov.election_day.formats.common import FileImportError from onegov.election_day.formats.common import load_csv from onegov.election_day.formats.common import STATI from sqlalchemy.orm import object_session from uuid import uuid4 from onegov.election_day.import_export.mappings import \ INTERNAL_PROPORZ_HEADERS def parse_election(line, errors): status = None try: status = line.election_status or 'unknown' except ValueError: errors.append(_("Invalid election values")) if status not in STATI: errors.append(_("Invalid status")) return status def parse_election_result(line, errors, entities, election_id): try: entity_id = validate_integer(line, 'entity_id') counted = line.entity_counted.strip().lower() == 'true' eligible_voters = validate_integer(line, 'entity_eligible_voters') received_ballots = validate_integer(line, 'entity_received_ballots') blank_ballots = validate_integer(line, 'entity_blank_ballots') invalid_ballots = validate_integer(line, 'entity_invalid_ballots') blank_votes = validate_integer(line, 'entity_blank_votes') invalid_votes = validate_integer(line, 'entity_invalid_votes') except ValueError as e: errors.append(e.args[0]) else: if entity_id not in entities and entity_id in EXPATS: entity_id = 0 if entity_id and entity_id not in entities: errors.append(_( "${name} is unknown", mapping={'name': entity_id} )) else: entity = entities.get(entity_id, {}) return dict( id=uuid4(), election_id=election_id, name=entity.get('name', ''), district=entity.get('district', ''), counted=counted, entity_id=entity_id, eligible_voters=eligible_voters, received_ballots=received_ballots, blank_ballots=blank_ballots, invalid_ballots=invalid_ballots, blank_votes=blank_votes, invalid_votes=invalid_votes, ) def parse_list(line, errors, election_id): try: id = validate_list_id(line, 'list_id', treat_empty_as_default=False) name = line.list_name mandates = validate_integer(line, 'list_number_of_mandates') except ValueError as e: errors.append(e.args[0]) else: return dict( id=uuid4(), election_id=election_id, list_id=id, number_of_mandates=mandates, name=name, ) def parse_list_result(line, errors): try: votes = validate_integer(line, 'list_votes') except ValueError as e: errors.append(e.args[0]) else: return dict( id=uuid4(), votes=votes ) def parse_panachage_headers(csv): headers = {} for header in csv.headers: if not header.startswith('panachage_votes_from_list_'): continue parts = header.split('panachage_votes_from_list_') if len(parts) > 1: try: source_list_id = parts[1] headers[csv.as_valid_identifier(header)] = source_list_id except ValueError: pass return headers def parse_panachage_results(line, errors, panachage, panachage_headers): try: target = validate_list_id( line, 'list_id', treat_empty_as_default=False) if target not in panachage: panachage[target] = {} for col_name, source in panachage_headers.items(): if source == target: continue panachage[target][source] = validate_integer( line, col_name, treat_none_as_default=False) except ValueError as e: errors.append(e.args[0]) except Exception: errors.append(_("Invalid list results")) def parse_candidate(line, errors, election_id): try: id = line.candidate_id family_name = line.candidate_family_name first_name = line.candidate_first_name elected = str(line.candidate_elected or '').lower() == 'true' party = line.candidate_party except ValueError: errors.append(_("Invalid candidate values")) else: return dict( id=uuid4(), election_id=election_id, candidate_id=id, family_name=family_name, first_name=first_name, elected=elected, party=party ) def parse_candidate_result(line, errors): try: votes = validate_integer(line, 'candidate_votes') except ValueError as e: errors.append(e.args[0]) else: return dict( id=uuid4(), votes=votes, ) def prefix_connection_id(connection_id, parent_connection_id): """Used to distinguish connection ids when they have the same id as a parent_connection. """ if not len(connection_id) > len(parent_connection_id): return parent_connection_id + connection_id return connection_id def parse_connection(line, errors, election_id): subconnection_id = None try: connection_id = line.list_connection parent_connection_id = line.list_connection_parent if parent_connection_id: subconnection_id = prefix_connection_id( connection_id, parent_connection_id ) connection_id = parent_connection_id except ValueError: errors.append(_("Invalid list connection values")) else: connection = dict( id=uuid4(), election_id=election_id, connection_id=connection_id, ) if connection_id else None subconnection = dict( id=uuid4(), election_id=election_id, connection_id=subconnection_id, ) if subconnection_id else None return connection, subconnection def import_election_internal_proporz(election, principal, file, mimetype): """ Tries to import the given file (internal format). This is the format used by onegov.ballot.Election.export(). This function is typically called automatically every few minutes during an election day - we use bulk inserts to speed up the import. :return: A list containing errors. """ filename = _("Results") csv, error = load_csv( file, mimetype, expected_headers=INTERNAL_PROPORZ_HEADERS, filename=filename, dialect='excel' ) if error: return [error] errors = [] candidates = {} candidate_results = [] lists = {} list_results = {} connections = {} subconnections = {} results = {} panachage = {} panachage_headers = parse_panachage_headers(csv) entities = principal.entities[election.date.year] election_id = election.id # This format has one candiate per entity per line status = None for line in csv.lines: line_errors = [] # Parse the line status = parse_election(line, line_errors) result = parse_election_result( line, line_errors, entities, election_id ) candidate = parse_candidate(line, line_errors, election_id) candidate_result = parse_candidate_result(line, line_errors) list_ = parse_list(line, line_errors, election_id) list_result = parse_list_result(line, line_errors) connection, subconnection = parse_connection( line, line_errors, election_id ) parse_panachage_results( line, line_errors, panachage, panachage_headers) # Skip expats if not enabled if result and result['entity_id'] == 0 and not election.expats: continue # Pass the errors and continue to next line if line_errors: errors.extend( FileImportError( error=err, line=line.rownumber, filename=filename ) for err in line_errors ) continue # Add the data result = results.setdefault(result['entity_id'], result) list_ = lists.setdefault(list_['list_id'], list_) if connection: connection = connections.setdefault( connection['connection_id'], connection ) list_['connection_id'] = connection['id'] if subconnection: subconnection = subconnections.setdefault( subconnection['connection_id'], subconnection ) subconnection['parent_id'] = connection['id'] list_['connection_id'] = subconnection['id'] list_results.setdefault(result['entity_id'], {}) list_result = list_results[result['entity_id']].setdefault( list_['list_id'], list_result ) list_result['list_id'] = list_['id'] candidate = candidates.setdefault(candidate['candidate_id'], candidate) candidate_result['candidate_id'] = candidate['id'] candidate_result['election_result_id'] = result['id'] candidate_results.append(candidate_result) candidate['list_id'] = list_['id'] if not errors and not results: errors.append(FileImportError(_("No data found"))) if panachage_headers: for list_id in panachage_headers.values(): if not list_id == '999' and list_id not in lists.keys(): errors.append(FileImportError( _("Panachage results id ${id} not in list_id's", mapping={'id': list_id}))) break # Check if all results are from the same district if regional election districts = set([result['district'] for result in results.values()]) if election.domain == 'region' and election.distinct: if principal.has_districts: if len(districts) != 1: errors.append(FileImportError(_("No clear district"))) else: if len(results) != 1: errors.append(FileImportError(_("No clear district"))) if errors: return errors # Add the missing entities remaining = set(entities.keys()) if election.expats: remaining.add(0) remaining -= set(results.keys()) for entity_id in remaining: entity = entities.get(entity_id, {}) district = entity.get('district', '') if election.domain == 'region': if not election.distinct: continue if not principal.has_districts: continue if district not in districts: continue results[entity_id] = dict( id=uuid4(), election_id=election_id, name=entity.get('name', ''), district=district, entity_id=entity_id, counted=False ) # Add the results to the DB election.clear_results() election.status = status result_uids = {r['entity_id']: r['id'] for r in results.values()} list_uids = {r['list_id']: r['id'] for r in lists.values()} session = object_session(election) # FIXME: Sub-Sublists are also possible session.bulk_insert_mappings(ListConnection, connections.values()) session.bulk_insert_mappings(ListConnection, subconnections.values()) session.bulk_insert_mappings(List, lists.values()) session.bulk_insert_mappings(PanachageResult, ( dict( id=uuid4(), source=source, target=str(list_uids[list_id]), votes=votes, ) for list_id in panachage for source, votes in panachage[list_id].items() )) session.bulk_insert_mappings(Candidate, candidates.values()) session.bulk_insert_mappings(ElectionResult, results.values()) session.bulk_insert_mappings(ListResult, ( dict(**list_result, election_result_id=result_uids[entity_id]) for entity_id, values in list_results.items() for list_result in values.values() )) session.bulk_insert_mappings(CandidateResult, candidate_results) return []
33.410526
79
0.624921
4fb9d8fc7d4533ef8f4fd9fa273b9faacccf348e
1,958
py
Python
python_gui_tkinter/KALU/GARBAGE1/ALLOUTDATED/TESTING2/TEST/nextTest.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python_gui_tkinter/KALU/GARBAGE1/ALLOUTDATED/TESTING2/TEST/nextTest.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python_gui_tkinter/KALU/GARBAGE1/ALLOUTDATED/TESTING2/TEST/nextTest.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
from tkinter import * info = [ ("Name (TEXT):",1), ("e-mail (TEXT):",2), ("Flat no. (TEXT):",3), ("Tower no. (TEXT):",4), ("Area (NUMBER):",5), ("Parking (TEXT):",6), ("Recpt. Fess (NUMBER):",7), ("Address (TEXT):",8), ("Contact number (TEXT):",9) ] e=["","","","","","","","","",""] # entries class Page(Frame): """Page is the Frame that will be added/removed at will""" def __init__(self, root, id): Frame.__init__(self, root) Label(self, text="Frame %d" % id).pack() class insert(Frame): """Main application where everything is done""" def __init__(self, root): Frame.__init__(self, root) self.root = root for data,num in info: self.row = root self.lab = Label(self.row, width=25, padx =10, pady = 10, text=data,font=font.Font(family='Helvetica', size=12, weight='bold'), anchor='w') self.ent = Entry(self.row) e[num] = ent self.row.pack(side=TOP, fill=X, padx=5, pady=5) self.lab.pack(side=LEFT) self.ent.pack(side=RIGHT, expand=YES, fill=X) Button(self, text='Show'#, command=CommandsGUI.show_entry_fields ).pack(side=LEFT, padx=5, pady=5) Button(self, text='Insert to database'#, command=DBOperations.insert_into_db ).pack(side=LEFT, padx=5, pady=5) Button(self, text='Reset'#, command=DBOperations.reset_val ).pack(side=RIGHT, padx=5, pady=5) Button(self, text="Next", command=self.next).pack(side=BOTTOM) def next(self): """changes the current page. I've only done next here, but you could do backwards, skip pages, etc""" self.pages[self.page].pack_forget() #remove the current page self.page += 1 if self.page >= 5: #checking haven't gone past the end of self.page self.page = 0 self.pages[self.page].pack(side=TOP) #add the next one if __name__ == "__main__": root = Tk() app = insert(root) app.pack() root.mainloop()
33.758621
148
0.600613
e880c76bba866f062de0d0d63aac62a9bb9e1286
1,289
py
Python
Packs/Confluera/Scripts/IqHubLog/IqHubLog.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Confluera/Scripts/IqHubLog/IqHubLog.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Confluera/Scripts/IqHubLog/IqHubLog.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
from CommonServerPython import * from CommonServerUserPython import * # Executes confluera-fetch-detections command/script detections_data = demisto.executeCommand('confluera-fetch-detections', {'hours': '72'}) if detections_data[0] and detections_data[0]['Contents'] and detections_data[0]['Contents']['Detections URL']: det_url = detections_data[0]['Contents']['Detections URL'] else: det_url = '' if detections_data[1] and detections_data[1]['Contents']: det_count = len(detections_data[1]['Contents']) else: det_count = 0 # Executes confluera-fetch-progressions command/script progressions_data = demisto.executeCommand('confluera-fetch-progressions', {'hours': '72'}) if progressions_data[0] and progressions_data[0]['Contents'] and progressions_data[0]['Contents']['Progressions URL']: prog_url = progressions_data[0]['Contents']['Progressions URL'] else: prog_url = '' if progressions_data[1] and progressions_data[1]['Contents']: prog_count = len(progressions_data[1]['Contents']) else: prog_count = 0 data = [ { 'Count': 'Detections: ' + str(det_count), 'URL': det_url }, { 'Count': 'Progressions:' + str(prog_count), 'URL': prog_url } ] return_results({ 'total': 2, 'data': data })
28.021739
118
0.692009
ad1b22685fb173bc89ee5114a91f4ea875e57d50
280
py
Python
new-docs/examples/python/getting-started/application/expenses-flask/tests/conftest.py
saschajullmann/oso
85d07c6a1825acba5ec043c917bff6e0f5c7128f
[ "Apache-2.0" ]
null
null
null
new-docs/examples/python/getting-started/application/expenses-flask/tests/conftest.py
saschajullmann/oso
85d07c6a1825acba5ec043c917bff6e0f5c7128f
[ "Apache-2.0" ]
2
2021-03-24T19:24:40.000Z
2021-03-24T19:54:46.000Z
new-docs/examples/python/getting-started/application/expenses-flask/tests/conftest.py
saschajullmann/oso
85d07c6a1825acba5ec043c917bff6e0f5c7128f
[ "Apache-2.0" ]
1
2021-03-24T19:51:45.000Z
2021-03-24T19:51:45.000Z
import pytest from app import create_app @pytest.fixture(scope="module") def test_client(): flask_app = create_app() flask_app.testing = True test_client = flask_app.test_client() ctx = flask_app.app_context() ctx.push() yield test_client ctx.pop()
18.666667
41
0.696429
7e7e5a5b174edec8a01206e1a4ec02ea683ae133
30
py
Python
Scripts/kim.py
kenanchristian/hacktoberfest
b55750bf4facb77abd532b66ed37101e2895c4d7
[ "MIT" ]
8
2020-10-26T06:51:06.000Z
2021-04-02T13:01:27.000Z
Scripts/kim.py
kenanchristian/hacktoberfest
b55750bf4facb77abd532b66ed37101e2895c4d7
[ "MIT" ]
71
2020-10-25T22:46:02.000Z
2021-10-14T06:47:39.000Z
Scripts/kim.py
kenanchristian/hacktoberfest
b55750bf4facb77abd532b66ed37101e2895c4d7
[ "MIT" ]
77
2020-10-24T01:53:46.000Z
2021-10-01T06:25:27.000Z
## print("Hello Kimbo!")
3.75
21
0.5
7d16e094d7bca22f2cd4702b2c9116984cb7e4dd
3,318
py
Python
Packs/ContentManagement/Scripts/CustomPackInstaller/CustomPackInstaller.py
PAM360/content
928aac9c586c6e593b2a452c402a37cb5df28dac
[ "MIT" ]
2
2021-12-06T21:38:24.000Z
2022-01-13T08:23:36.000Z
Packs/ContentManagement/Scripts/CustomPackInstaller/CustomPackInstaller.py
PAM360/content
928aac9c586c6e593b2a452c402a37cb5df28dac
[ "MIT" ]
87
2022-02-23T12:10:53.000Z
2022-03-31T11:29:05.000Z
Packs/ContentManagement/Scripts/CustomPackInstaller/CustomPackInstaller.py
PAM360/content
928aac9c586c6e593b2a452c402a37cb5df28dac
[ "MIT" ]
2
2022-01-05T15:27:01.000Z
2022-02-01T19:27:43.000Z
from typing import Tuple from urllib import parse import demistomock as demisto from CommonServerPython import * SCRIPT_NAME = 'CustomPackInstaller' def build_url_parameters(skip_verify: bool, skip_validation: bool) -> str: is_server_ge_to_6_5 = is_demisto_version_ge('6.5.0') is_server_ge_to_6_6 = is_demisto_version_ge('6.6.0') uri = '/contentpacks/installed/upload' params = {} if skip_verify == 'true' and is_server_ge_to_6_5: params['skipVerify'] = 'true' if skip_validation == 'true' and is_server_ge_to_6_6: params['skipValidation'] = 'true' params = parse.urlencode(params) return f'{uri}?{params}' if params else uri def install_custom_pack(pack_id: str, skip_verify: bool, skip_validation: bool) -> Tuple[bool, str]: """Installs a custom pack in the machine. Args: pack_id (str): The ID of the pack to install. skip_verify (bool): If true will skip pack signature validation. skip_validation (bool) if true will skip all pack validations. Returns: - bool. Whether the installation of the pack was successful or not. - str. In case of failure, the error message. Notes: Assumptions: The zipped file is in the war-room, and the context includes the data related to it. """ pack_file_entry_id = '' instance_context = demisto.context() context_files = instance_context.get('File', []) if not isinstance(context_files, list): context_files = [context_files] for file_in_context in context_files: if file_in_context['Name'] == f'{pack_id}.zip': pack_file_entry_id = file_in_context['EntryID'] break uri = build_url_parameters(skip_verify=skip_verify, skip_validation=skip_validation) if pack_file_entry_id: status, res = execute_command( 'demisto-api-multipart', {'uri': uri, 'entryID': pack_file_entry_id}, fail_on_error=False, ) if not status: error_message = f'{SCRIPT_NAME} - {res}' demisto.debug(error_message) return False, f'Issue occurred while installing the pack on the machine.\n{res}' else: error_message = 'Could not find file entry ID.' demisto.debug(f'{SCRIPT_NAME}, "{pack_id}" - {error_message}.') return False, error_message return True, '' def main(): args = demisto.args() pack_id = args.get('pack_id') skip_verify = args.get('skip_verify') skip_validation = args.get('skip_validation') try: installation_status, error_message = install_custom_pack(pack_id, skip_verify, skip_validation) return_results( CommandResults( outputs_prefix='ConfigurationSetup.CustomPacks', outputs_key_field='packid', outputs={ 'packid': pack_id, 'installationstatus': 'Success.' if installation_status else error_message, }, ) ) if not installation_status: return_error(error_message) except Exception as e: return_error(f'{SCRIPT_NAME} - Error occurred while installing custom pack "{pack_id}".\n{e}') if __name__ in ('__main__', '__builtin__', 'builtins'): main()
31.6
105
0.648885
cbce52c33c14f05b9ae6d491cdb2df97a7bebb53
518
py
Python
ffeKiosk/urls.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
null
null
null
ffeKiosk/urls.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
14
2018-09-12T06:59:55.000Z
2020-02-26T07:17:48.000Z
ffeKiosk/urls.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
null
null
null
from django.conf.urls import url, include from django.views.generic import RedirectView from django.contrib import admin from django.contrib.auth import views urlpatterns = [ url(r'^favicon\.ico$', RedirectView.as_view(url='/static/img/favicon.ico')), url(r'^admin/', admin.site.urls), url(r'', include('kiosk.urls')), url(r'', include('profil.urls')), url(r'^accounts/login/$', views.login, name='login'), url(r'^accounts/logout/$', views.logout, name='logout', kwargs={'next_page': '/'}), ]
37
87
0.681467
1dbc6f6a09f562bcb58345fb6cae76b92cf531eb
2,648
py
Python
test.py
LvanArkel/sbzwebsite
a26efbb050585312c53010f14f86c23616a8071f
[ "BSD-3-Clause" ]
1
2017-01-08T13:21:43.000Z
2017-01-08T13:21:43.000Z
test.py
LvanArkel/sbzwebsite
a26efbb050585312c53010f14f86c23616a8071f
[ "BSD-3-Clause" ]
17
2018-12-03T14:22:14.000Z
2021-07-14T15:15:12.000Z
test.py
LvanArkel/sbzwebsite
a26efbb050585312c53010f14f86c23616a8071f
[ "BSD-3-Clause" ]
2
2018-12-03T14:58:49.000Z
2019-12-01T13:24:42.000Z
from pprint import pprint import django from fractions import Fraction as frac if __name__ == "__main__": django.setup() from apps.multivers.tools import Multivers products = [ (12, frac(123348, 100), 2), (4, frac(29000, 100), 2), (5, frac(36470, 100), 2), (7, frac(6496, 100), 1), (1, frac(899, 100), 1), (1, frac(928, 100), 1), (1, frac(899, 100), 1), (1, frac(1199, 100), 1), (2, frac(3994, 100), 1), (1, frac(1831, 100), 1), (1, frac(1445, 100), 1), (4, frac(724, 100), 2), (6, frac(2370, 100), 2), (1, -frac(30, 100), 2), ] btw_tot = [frac(0), frac(0)] btw_per = [frac(6, 100), frac(21, 100)] for qnt, amount, cat in products: amount /= qnt btw_tot[cat-1] += qnt * round(amount * btw_per[cat-1], 2) print(btw_tot) # multivers = Multivers(None) # response = multivers._post("MVL48759/SupplierInvoice", data={ # "canChange": True, # "fiscalYear": 2018, # "invoiceDate": "01-01-2018", # "invoiceId": "18100063", # "journalId": "IC", # "journalSection": "1", # "journalTransaction": 25, # "paymentConditionId": "14", # "paymentReference": "0123456789012345", # "periodNumber": 1, # "processedBy": "Pieter Bos", # "processedById": "38", # "reference": "example description", # "supplierId": "2008008", # "supplierInvoiceLines": [{ # "accountId": "0", # "canChange": True, # "creditAmount": 0.0, # "creditAmountCur": 0.0, # "debitAmount": 7.24, # "debitAmountCur": 7.24, # "description": "Schoonmaakmiddelen", # "journalSection": 0, # "transactionDate": "01-01-2018", # "vatCodeId": 2, # "vatType": 0 # }], # "vatOnInvoice": True, # "vatScenarioId": 1, # "vatTransactionLines": [{ # "amountTurnoverCur": 176.91, # "canChange": True, # "currencyId": "", # "fiscalYear": 2018, # "vatAmountCur": 10.61, # "vatCodeId": 1, # "vatScenarioId": 1, # "vatType": 0 # }, { # "amountTurnoverCur": 1918.82, # "canChange": True, # "currencyId": "", # "fiscalYear": 2018, # "vatAmountCur": 402.96, # "vatCodeId": 2, # "vatScenarioId": 1, # "vatType": 0 # }] # }) # # pprint(response)
29.422222
67
0.4679
3865cea1b31a09ca887ee377b4aa61e5c6c64c08
1,877
py
Python
test/test_npu/test_softmax.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_softmax.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_softmax.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestSoftmax(TestCase): def cpu_op_exec(self, input, dim): m = torch.nn.Softmax(dim) output = m(input) output = output.numpy() return output def npu_op_exec(self, input, dim): m = torch.nn.Softmax(dim) output = m(input).to("cpu") output = output.numpy() return output def test_softmax_shape_format_fp32(self, device): shape_format = [ [[np.float32, 0, (1, 12, 5, 8)], 0], [[np.float32, 0, (2, 31, 53)], 0], [[np.float32, 0, (5, 20)], 0], [[np.float32, 0, (1)], 0] ] for item in shape_format: cpu_input, npu_input = create_common_tensor(item[0], -2, 2) dim = item[1] cpu_output = self.cpu_op_exec(cpu_input, item[1]) npu_output = self.npu_op_exec(npu_input, item[1]) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestSoftmax, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
36.803922
74
0.649973
2a67cec3ec3f9d6b13f24ec35a4d8ca69882112b
1,065
py
Python
lang-python/sandbox/build.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
lang-python/sandbox/build.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
lang-python/sandbox/build.py
xd23fe39/technical-notes
bb6348705a95db24d07b1081b1aa0265dda131ce
[ "MIT" ]
null
null
null
#!/usr/bin/python ## -*- coding: utf-8 -*- # Import basic modules import os import sys # Initialization I_WORKING_DIR = os.getcwd() I_GETENV_USER = os.getenv("USER") I_SYS_SCRIPTNAME = sys.argv[0] G_APPLICATION_NAME = "Generic" G_APPLICATION_VERSION = "1.0.1" G_APPLICATION_RELEASE = "19.12.130" ########################################################################## # Basic Operations def code(): pass def build(): pass def deploy(): pass ########################################################################## # MAIN Procedure if __name__ == "__main__": pass print("{:s}, {:s} ({:s})\n----".format(G_APPLICATION_NAME, G_APPLICATION_VERSION, G_APPLICATION_RELEASE)) print("Current working directory: {:s}".format(I_WORKING_DIR)) print("Current user name: {:s}".format(I_GETENV_USER)) try: oper = "" + sys.argv[1] + "()" print("Operation: {}".format(oper)) eval(oper) exit(0) except IndexError: pass except NameError: print("Operation nicht gefunden.".format(sys.argv[1])) finally: print("Completed.")
20.882353
105
0.578404
2ab3b47b940c269bc9dda2b2719f193b140e2cb1
5,508
py
Python
test/test_npu/test_network_ops/test_index_put.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_index_put.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_index_put.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestIndexPut(TestCase): def cpu_op_exec(self, input, indices, value): output = input.index_put(indices, value) output = output.numpy() return output def npu_op_exec(self, input, indices, value): output = input.index_put(indices, value) output = output.to("cpu") output = output.numpy() return output def cpu_op_inp_exec(self, input, indices, value): input.index_put_(indices, value) output = input.numpy() return output def npu_op_inp_exec(self, input, indices, value): input.index_put_(indices, value) input = input.to("cpu") output = input.numpy() return output def case_exec(self, shape): cpu_indices = [] npu_indices = [] for item in shape: cpu_input, npu_input = create_common_tensor(item[0], 1, 100) for i in range(1, 3): cpu_indices1, npu_indices1 = create_common_tensor( item[1], 1, 5) cpu_indices.append(cpu_indices1) npu_indices.append(npu_indices1) cpu_value, npu_value = create_common_tensor(item[2], 1, 100) cpu_output = self.cpu_op_exec(cpu_input, cpu_indices, cpu_value) npu_output = self.npu_op_exec(npu_input, npu_indices, npu_value) self.assertEqual(cpu_output, npu_output) def case_exec_fp16(self, shape): cpu_indices = [] npu_indices = [] for item in shape: cpu_input, npu_input = create_common_tensor(item[0], 1, 100) cpu_input = cpu_input.to(torch.float32) for i in range(1, 3): cpu_indices1, npu_indices1 = create_common_tensor( item[1], 1, 5) cpu_indices.append(cpu_indices1) npu_indices.append(npu_indices1) cpu_value, npu_value = create_common_tensor(item[2], 1, 100) cpu_value = cpu_value.to(torch.float32) cpu_output = self.cpu_op_exec(cpu_input, cpu_indices, cpu_value) npu_output = self.npu_op_exec(npu_input, npu_indices, npu_value) cpu_output = cpu_output.astype(np.float16) self.assertEqual(cpu_output, npu_output) def case_inp_exec(self, shape): cpu_indices = [] npu_indices = [] for item in shape: cpu_input, npu_input = create_common_tensor(item[0], 1, 100) for i in range(1, 3): cpu_indices1, npu_indices1 = create_common_tensor( item[1], 1, 5) cpu_indices.append(cpu_indices1) npu_indices.append(npu_indices1) cpu_value, npu_value = create_common_tensor(item[2], 1, 100) cpu_output = self.cpu_op_inp_exec( cpu_input, cpu_indices, cpu_value) npu_output = self.npu_op_inp_exec( npu_input, npu_indices, npu_value) self.assertEqual(cpu_output, npu_output) def case_inp_exec_fp16(self, shape): cpu_indices = [] npu_indices = [] for item in shape: cpu_input, npu_input = create_common_tensor(item[0], 1, 100) cpu_input = cpu_input.to(torch.float32) for i in range(1, 3): cpu_indices1, npu_indices1 = create_common_tensor( item[1], 1, 5) cpu_indices.append(cpu_indices1) npu_indices.append(npu_indices1) cpu_value, npu_value = create_common_tensor(item[2], 1, 100) cpu_value = cpu_value.to(torch.float32) cpu_output = self.cpu_op_inp_exec( cpu_input, cpu_indices, cpu_value) npu_output = self.npu_op_inp_exec( npu_input, npu_indices, npu_value) cpu_output = cpu_output.astype(np.float16) self.assertEqual(cpu_output, npu_output) def test_index_put_shape_format_fp32(self, device): format_list = [0] shape_list = [(5, 6)] shape_format = [[[np.float32, i, j], [np.int64, 0, [1, 2]], [ np.float32, 0, [1, 2]]] for i in format_list for j in shape_list] self.case_exec(shape_format) self.case_inp_exec(shape_format) def test_index_put_shape_format_fp16(self, device): format_list = [0] shape_list = [(5, 6)] shape_format = [[[np.float16, i, j], [np.int64, 0, [1, 2]], [ np.float16, 0, [1, 2]]] for i in format_list for j in shape_list] self.case_exec_fp16(shape_format) self.case_inp_exec_fp16(shape_format) instantiate_device_type_tests(TestIndexPut, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
40.8
77
0.628722
932b92dd4689005b070ebdb3822b43d75ae061e9
6,410
py
Python
HeuristicSummary.py
sdimitro/zfas
4116072225f71415105b70e12aa461fc7466617a
[ "MIT" ]
1
2019-12-21T02:32:07.000Z
2019-12-21T02:32:07.000Z
HeuristicSummary.py
sdimitro/zfas
4116072225f71415105b70e12aa461fc7466617a
[ "MIT" ]
null
null
null
HeuristicSummary.py
sdimitro/zfas
4116072225f71415105b70e12aa461fc7466617a
[ "MIT" ]
null
null
null
from Model import Pool, MetaslabGroup, LogSpaceMapGroup import math q = 100 class SummaryEntry(object): # # s - startTXG # e - endTXG # m - metaslabs needed to flush # b - blocks that would be freed # def __init__(self, s, m, b): self.s, self.e = s, s self.m, self.b = m, b def isObsolete(self): if self.m == 0: assert self.b == 0, "should be 0 but it is %r" % self.b return True assert self.m > 0 assert self.b > 0 return False def isFull(self): global q if self.b < q: return False return True def addToEntry(self, t, m, b): assert (self.e + 1) == t self.e += 1 self.m += m self.b += b def removeFromEntry(self, m, b): self.m -= m self.b -= b def toS(self): return "[{} - {}] M - {} B - {}".format(self.s, self.e, self.m, self.b) class Summary(object): def __init__(self, pool): self.p = pool self.tab = [] def addData(self, txg, mflushed, nblocks): if len(self.tab) == 0 or self.tab[-1].isFull(): self.tab.append(SummaryEntry(txg, mflushed, nblocks)) else: # # The thing to note here is that the entry can # be full after wards (i.e. not a hard limit). # self.tab[-1].addToEntry(txg, mflushed, nblocks) def trimData(self, mflushed, blkgone): assert blkgone >= 0 n = 0 for entry in self.tab: if entry.m >= mflushed: assert entry.b >= blkgone entry.removeFromEntry(mflushed, blkgone) if entry.isObsolete(): n += 1 break else: assert entry.b <= blkgone, "%r %r" % (entry.b, blkgone) mflushed -= entry.m blkgone -= entry.b entry.removeFromEntry(entry.m, entry.b) n += 1 for i in range(n): assert self.tab[i].isObsolete(), "about to delete entry %r which is not obsolete" % i self.tab = self.tab[n:] def adviceFlushing(self, incoming, blimit): print "=== DBG - PRINT FLUSH TAB - START ===" maxflush = 1 futureTXGs = 1 budget = blimit - self.p.logs.nblocks - incoming print "budget = {} , blks = {}, incom = {}".format(budget, self.p.logs.nblocks, incoming) deficit = 0 if budget > 0: futureTXGs += int(math.ceil(budget / incoming)) deficit = budget - (futureTXGs * incoming) else: deficit = budget print "deficit = {} futureTXG = {}".format(deficit, futureTXGs) assert deficit <= 0 accms = 0 accblks = deficit for e in self.tab: accms += e.m accblks += e.b print "b = {} m = {} - bsum = {} msum = {}".format(e.b, e.m, accms, accblks) if accblks < 0: continue toflush = int(math.ceil(accms / futureTXGs)) print "cmax = {} c = {}".format(maxflush, toflush) maxflush = max(maxflush, toflush) futureTXGs += int(math.floor(accblks / incoming)) print "futureTXGs = {}".format(futureTXGs) print "=== DBG - PRINT FLUSH TAB - END ===" return maxflush def printSummary(self): print "=== DBG - PRINT SUMMARY - START ===" for e in self.tab: print e.toS() print "=== DBG - PRINT SUMMARY - END ===" def crossVerifySummary(self): row, msum, bsum = 0, 0, 0 for log in self.p.logs.sms: e = self.tab[row] assert e.s <= log.txg and log.txg <= e.e msum += len(log.metaslabs_flushed) bsum += log.blocks assert e.m <= msum and e.b <= bsum if e.e == log.txg: row += 1 assert e.m == msum and e.b == bsum msum, bsum = 0, 0 class HeuristicSummary(object): def __init__(self, nmetaslabs, blimit): self.nmetaslabs = nmetaslabs self.pool = Pool(nmetaslabs) self.y_flushed, self.y_blocks, self.y_logs = [], [], [] self.summary = Summary(self.pool) self.blimit = blimit #XXX: Hack global q q = int(blimit / 10) def printLogs(self): print "=== DBG - PRINT LOGS - START ===" for log in self.pool.logs.sms: print "[{}] - M {} - B {}".format(log.txg, len(log.metaslabs_flushed), log.blocks) print "=== DBG - PRINT LOGS - END ===" def condition_satisfied(self): if self.pool.mss.nmetaslabs() >= self.pool.logs.nblocks: return True return False def addGraphEntry(self, nflushed): self.y_flushed.append(nflushed) self.y_blocks.append(self.pool.logs.nblocks) self.y_logs.append(self.pool.logs.nlogs()) def initializeState(self, incoming): all_metaslabs = self.pool.mss.ms_ordered_by_flushed self.pool.sync_new_changes(incoming, all_metaslabs) self.summary.addData(self.pool.syncing_txg, len(all_metaslabs), incoming) self.summary.trimData(0, self.pool.logs.nblocks - incoming) print "DBG - TXG: {} - Flushed: {} ".format(self.pool.syncing_txg, len(all_metaslabs)) self.summary.printSummary() self.pool.sync_done() self.addGraphEntry(len(all_metaslabs)) def sync_cycle(self, incoming_blocks): if self.pool.syncing_txg == 0: self.initializeState(incoming_blocks) return nflushed = self.summary.adviceFlushing(incoming_blocks, self.blimit) self.pool.flush_n_metaslabs(nflushed) ms_flushed_this_txg = self.pool.mss.ms_ordered_by_flushed[-nflushed:] self.pool.sync_new_changes(incoming_blocks, ms_flushed_this_txg) self.summary.addData(self.pool.syncing_txg, nflushed, incoming_blocks) self.summary.trimData(nflushed, self.y_blocks[-1] -self.pool.logs.nblocks +incoming_blocks) print "DBG - TXG: {} - Flushed: {} ".format(self.pool.syncing_txg, nflushed) self.summary.printSummary() self.pool.sync_done() self.addGraphEntry(nflushed) def simulate(self, y_incoming): for incoming in y_incoming: self.sync_cycle(incoming)
33.736842
99
0.551794
fae1b20c5c3fa4cde361c36faded37bf8e7e5df6
1,197
py
Python
03_Objektorientierung/properties_demo.py
Hananja/DQI19-Python
63749c49910b5be57d09bb98a5fe728c8fdd5280
[ "Unlicense" ]
null
null
null
03_Objektorientierung/properties_demo.py
Hananja/DQI19-Python
63749c49910b5be57d09bb98a5fe728c8fdd5280
[ "Unlicense" ]
null
null
null
03_Objektorientierung/properties_demo.py
Hananja/DQI19-Python
63749c49910b5be57d09bb98a5fe728c8fdd5280
[ "Unlicense" ]
null
null
null
# Demonstration von Properties class MyClassVanilla: """ Klasse mit einfachem Attribut (ohne Propertie) """ def __init__(self): self.value = 0 class MyClassProperties: """ Klasse mit Propertie, das im Setter überprüft wird. Entscheidendes Kriterium: Eine nachträgliche Abstraktion durch Datenkapselung (Geheimnisprinzip) ist ohne Veränderung der Schnittstelle möglich. """ def __init__(self): self.value = 0 @property def value(self): return self.__value # stark privat durch __ am Anfang # (vgl. https://www.python.org/dev/peps/pep-0008/#descriptive-naming-styles) @value.setter def value(self, value): if value < 0: raise ValueError("value parameter must not be <0") else: self.__value = value # Vanilla ohne Properties oop = MyClassVanilla() print(oop.value) oop.value = 1 print(oop.value) oop.value = -1 print(oop.value) # mit Properties und Wertekontrolle try: omp = MyClassProperties() print(omp.value) omp.value = 1 print(omp.value) omp.value = -1 # Bang! print(omp.value) except ValueError as e: print(f"Error: {e}")
23.470588
84
0.651629
87c52b3194e192d0797d5b91a3809cb3cd6eb95f
132
py
Python
app/models/__init__.py
zhiyong-lv/flask-login
d8bf0719bae19ba8f7f44ea6d6a8ca65ba22aa63
[ "MIT" ]
null
null
null
app/models/__init__.py
zhiyong-lv/flask-login
d8bf0719bae19ba8f7f44ea6d6a8ca65ba22aa63
[ "MIT" ]
null
null
null
app/models/__init__.py
zhiyong-lv/flask-login
d8bf0719bae19ba8f7f44ea6d6a8ca65ba22aa63
[ "MIT" ]
null
null
null
from .users import User from .documents import Document from .files import File from .tags import Tag from .file_tags import FileTag
26.4
31
0.818182
eaa03773285dfb7d0eacf3849611533d31441481
2,418
py
Python
twitoff/twitter.py
Pdugovich/TwitOff
9c06677ed763cf5d14fec53a10024126792681c4
[ "MIT" ]
null
null
null
twitoff/twitter.py
Pdugovich/TwitOff
9c06677ed763cf5d14fec53a10024126792681c4
[ "MIT" ]
1
2021-06-02T00:47:17.000Z
2021-06-02T00:47:17.000Z
twitoff/twitter.py
Pdugovich/TwitOff
9c06677ed763cf5d14fec53a10024126792681c4
[ "MIT" ]
null
null
null
"""Retreive tweets, embeddings, and persist in the database""" import basilica import tweepy from decouple import config from .models import DB, Tweet, User TWITTER_AUTH = tweepy.OAuthHandler(config('TWITTER_CONSUMER_KEY'), config('TWITTER_CONSUMER_SECRET')) TWITTER_AUTH.set_access_token(config('TWITTER_ACCESS_TOKEN'), config('TWITTER_ACCESS_TOKEN_SECRET')) TWITTER = tweepy.API(TWITTER_AUTH) BASILICA = basilica.Connection(config('BASILICA_KEY')) # OLD TERRIBLE CODE # def add_user_and_tweets(twitter_handle): # twitter_user = TWITTER.get_user(twitter_handle) # tweets=twitter_user.timeline( # count=200, # exclude_replies=True, # include_rts=False, # tweet_mode='extended' # ) # db_user = User( # id=twitter_user.id, # name=twitter_user.screen_name, # newest_tweet_id=tweets[0].id # ) # for tweet in tweets: # embedding = BASILICA.embed_sentence(tweet.full_text, model='twitter') # db_tweet = Tweet( # id=tweet.id, # text=tweet.full_text[:500], # embedding=embedding # ) # db_user.tweets.append(db_tweet) # DB.session.add(db_tweet) # DB.session.commit() def add_or_update_user(username): """Add or update a user and their tweets, or return error""" try: twitter_user = TWITTER.get_user(username) db_user=(User.query.get(twitter_user.id) or User(id=twitter_user.id, name=username)) DB.session.add(db_user) tweets=twitter_user.timeline(count=200, exclude_replies=True, include_rts=False, tweet_mode='extended', since_id=db_user.newest_tweet_id) if tweets: db_user.newest_tweet_id = tweets[0].id for tweet in tweets: # Calc embeedding on full tweet embedding = BASILICA.embed_sentence(tweet.full_text, model='twitter') db_tweet = Tweet(id=tweet.id, text=tweet.full_text[:500], embedding=embedding) db_user.tweets.append(db_tweet) DB.session.add(db_tweet) except Exception as e: print('Error processing {}: {}'.format(username,e)) raise e else: DB.session.commit()
37.78125
81
0.602564
577102893949329ef02e4700e4f6d577f7dc0594
2,918
py
Python
main.py
Peetee06/compilerbau_ws2122_hsbochum
9b71e33f7385ba946ce7f4d375b7ca68b21dd97f
[ "MIT" ]
null
null
null
main.py
Peetee06/compilerbau_ws2122_hsbochum
9b71e33f7385ba946ce7f4d375b7ca68b21dd97f
[ "MIT" ]
null
null
null
main.py
Peetee06/compilerbau_ws2122_hsbochum
9b71e33f7385ba946ce7f4d375b7ca68b21dd97f
[ "MIT" ]
2
2022-03-13T18:48:24.000Z
2022-03-20T16:45:19.000Z
########### # simple GUI for a compiler subject "Compilerbau WS21/22" # Firstly the code should be saved in a document or loaded before using run. # the code should be a one-liner # Func is a placeholder for the Backend. # The interface is to implement under line 69 Func.run. ########### from lexer_tokenizer import Tokenizer ########### from tkinter import * from tkinter.filedialog import asksaveasfilename, askopenfilename ########### # creating a Tk object ########### compiler = Tk() compiler.title('Compiler WS21/22') file_path = '' ########### # setting a global path for the saved code ########### def set_file_path(path): global file_path file_path = path ########### # possibility to open an existing file ########### def open_file(): path = askopenfilename(filetypes=[('All Files', '*')]) with open(path, 'r') as file: code = file.read() editor.delete('1.0', END) editor.insert('1.0', code) set_file_path(path) ########### # save file before run ########### def save_as(): if file_path == '': path = asksaveasfilename(filetypes=[('All Files', '*')]) else: path = file_path with open(path, 'w') as file: code = editor.get('1.0', 'end-1c') # alternative: use END instead 'end-1c', but beware of the new line caused by 'END' file.write(code) set_file_path(path) ########### # run the compiler using Func as source (Lexer, Parser etc.) ########### def run(): code_output.delete('1.0', END) # delete the output for the next run if file_path == '': # if the file isn't saved, don't allow to execute run save_prompt = Toplevel() text = Label(save_prompt, text='Please save your code') text.pack() return f = open(file_path, "r") # open the file and read the command command = f.read() # command = f'{file_path}' result, error = Tokenizer.run(file_path, command) # Func.run, interface between Frontend and Backend if error: # catch an error if occur code_output.insert('1.0', error.as_string()) elif result: code_output.insert('1.0', str(result)) ########### # Frontend of the TK-object ########### menu_bar = Menu(compiler) # categories in the menu bar file_menu = Menu(menu_bar, tearoff=0) file_menu.add_command(label='Open', command=open_file) file_menu.add_command(label='Save', command=save_as) # file_menu.add_command(label='Save As', command=save_as) file_menu.add_command(label='Exit', command=exit) menu_bar.add_cascade(label='File', menu=file_menu) run_bar = Menu(menu_bar, tearoff=0) menu_bar.add_cascade(label='Run', command=run) compiler.config(menu=menu_bar) # creating a Text()-object for input editor = Text() editor.pack() # creating a Text()-object for output code_output = Text(height=10) code_output.pack() compiler.mainloop()
28.607843
127
0.631254
57e2dbfd02cbf79ca0b5f697d8f799f329adff9e
238
py
Python
src/jmx.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
src/jmx.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
src/jmx.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
#!/usr/bin/python """ jmx.* scripts item Copyright (c) 2011 Vladimir Rusinov <[email protected]> License: GNU GPL3 This file is part of ZTC """ from ztc.java.jmx import JMXCheck j = JMXCheck() m = j.args[0] j.get(m, *j.args[1:])
15.866667
61
0.689076
5e0e5fca539da462da271668e65fa2c4eb9c11de
4,500
py
Python
gen_cs_proto_msg_ids.py
thanklzhang/Proto_Pre
e6d1998aa41b52f01b5244a59fbbbe700d6dd64c
[ "MIT" ]
null
null
null
gen_cs_proto_msg_ids.py
thanklzhang/Proto_Pre
e6d1998aa41b52f01b5244a59fbbbe700d6dd64c
[ "MIT" ]
null
null
null
gen_cs_proto_msg_ids.py
thanklzhang/Proto_Pre
e6d1998aa41b52f01b5244a59fbbbe700d6dd64c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #!usr/bin/python # coding=gbk import os import string import traceback import openpyxl import sys import time import re import shutil definestr = "" baseDir = os.getcwd() EnumName = "ProtoIDs" def get_proto_file_list(dir, flist): print("\n") print("start get proto files ...") print("\n") for root, dirs, files in os.walk(dir, True): for name in files: nm = os.path.splitext(name) if (nm[1] == ".proto"): flist.append(name) print("find file : " + name) # tmpCmd=('(copy %s %s /y)' %(os.path.join(root, name),baseDir)) # print(tmpCmd) # os.system(tmpCmd) def WriteToFile(f, str): file_part = open(f, 'wb') file_part.write(str.encode('UTF-8')) file_part.close() # 找到 proto 所有的消息 合并成一个自定义消息枚举 def GenMsgFile(dir, inputFiles, outFile): print("\n") optionStr = "" for currFile in inputFiles: fc = open(dir + "\\" + currFile, 'rb') print("currFile : " + currFile + "----------------------------------") line = fc.readline() content = [] while line: content.append(line) line = fc.readline() optionStr += "\t//" + currFile.split('.')[0] + "\n" lineNum = 0 start = -1 isFinish = False msdIdIndex = 0 rightIndex = -1 for c in content: realContent = c if(not isFinish): currContent = realContent.decode('utf-8') # 找到 枚举名称 msdIdIndex = currContent.find(EnumName) if(msdIdIndex > 0): start = lineNum if(start >= 0): rightIndex = currContent.find("}") if(rightIndex >= 0): isFinish = True else: currStrs = currContent.split('=') if(len(currStrs) > 1): # 消息 leftValue = currStrs[0].strip() # 过滤无用枚举值 if(leftValue != "First" and leftValue != "Begin" and leftValue != "End"): rightValue = currStrs[1].strip() # print(leftValue + " = " + rightValue) rightValue = rightValue.replace(";", ",") optionStr += "\t" + leftValue + " = " + rightValue + "\n" else: # 检查注释内容 describeStr = currContent.split('//') if(len(describeStr) > 1): optionStr += currContent # print(currContent) lineNum = lineNum + 1 # print("\n") optionStr += "\n" fc.close() allStr = "//gen by tool\npublic enum " + \ EnumName + "\n{\n" + optionStr + "}\n" WriteToFile(outFile, allStr) return def Copy(source_path,target_path): print('start to copy files ... : ' + source_path + " -> " + target_path) if not os.path.exists(target_path): os.makedirs(target_path) if os.path.exists(source_path): # root 所指的是当前正在遍历的这个文件夹的本身的地址 # dirs 是一个 list,内容是该文件夹中所有的目录的名字(不包括子目录) # files 同样是 list, 内容是该文件夹中所有的文件(不包括子目录) for root, dirs, files in os.walk(source_path): for file in files: src_file = os.path.join(root, file) shutil.copy(src_file, target_path) print(src_file) print('copy files finished!') def main(): try: inputPath = "proto" outFile = "" + EnumName + ".cs" # # 获取目录下所有 proto 文件 # fileProtoList = [] # get_proto_file_list(baseDir + "\\" + inputPath, fileProtoList) #proto cmd enum 转换成 cs , 这样业务不依靠 protoBuf 而是依靠生成的自定义格式的 enum fileProtoList = [] fileProtoList.append("Cmd" + ".proto") # 根据 proto 文件生成消息枚举文件 GenMsgFile(inputPath, fileProtoList, outFile) protoIdsPath = "..\\001_GameFramework_Client\\Assets\\Script\\Common" shutil.copy("ProtoIDs.cs", protoIdsPath) os.system("pause") except: print("!!!!!!catch exception!!!!!!") traceback.print_exc() os.system("pause") # os.system("pause") main() # print("------------------")
30.201342
101
0.483333
d83ba320f6f7d9ff9f17f7d422feff1893fca3e5
6,795
py
Python
research/nlp/dscnn/train.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/nlp/dscnn/train.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/nlp/dscnn/train.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """DSCNN train.""" import os import datetime import numpy as np from mindspore import context from mindspore import Tensor, Model from mindspore.context import ParallelMode from mindspore.nn.optim import Momentum from mindspore.common import dtype as mstype from mindspore.train.serialization import load_checkpoint from mindspore.communication.management import init from src.log import get_logger from src.dataset import audio_dataset from src.ds_cnn import DSCNN from src.loss import CrossEntropy from src.lr_scheduler import MultiStepLR, CosineAnnealingLR from src.callback import ProgressMonitor, callback_func from src.model_utils.config import config from src.model_utils.moxing_adapter import moxing_wrapper from src.model_utils.device_adapter import get_device_id, get_rank_id, get_device_num def get_top5_acc(top5_arg, gt_class): sub_count = 0 for top5, gt in zip(top5_arg, gt_class): if gt in top5: sub_count += 1 return sub_count def val(args, model, val_dataset): '''Eval.''' val_dataloader = val_dataset.create_tuple_iterator() img_tot = 0 top1_correct = 0 top5_correct = 0 if args.amp_level == 'O0': origin_mstype = mstype.float32 else: origin_mstype = mstype.float16 model.predict_network.to_float(mstype.float32) for data, gt_classes in val_dataloader: output = model.predict(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] gt_classes = gt_classes.asnumpy() t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += output.shape[0] model.predict_network.to_float(origin_mstype) results = [[top1_correct], [top5_correct], [img_tot]] results = np.array(results) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot if acc1 > args.best_acc: args.best_acc = acc1 args.best_epoch = args.epoch_cnt - 1 args.logger.info('Eval: top1_cor:{}, top5_cor:{}, tot:{}, acc@1={:.2f}%, acc@5={:.2f}%' \ .format(top1_correct, top5_correct, img_tot, acc1, acc5)) def trainval(args, model, train_dataset, val_dataset, cb, rank): callbacks = callback_func(args, cb, 'epoch{}'.format(args.epoch_cnt)) model.train(args.val_interval, train_dataset, callbacks=callbacks, dataset_sink_mode=args.dataset_sink_mode) if rank == 0: val(args, model, val_dataset) def modelarts_pre_process(): pass @moxing_wrapper(pre_process=modelarts_pre_process) def train(): '''Train.''' context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) config.rank_save_ckpt_flag = 1 # init distributed if config.is_distributed: if get_device_id(): context.set_context(device_id=get_device_id()) init() rank = get_rank_id() device_num = get_device_num() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=device_num, gradients_mean=True) else: rank = 0 device_num = 1 context.set_context(device_id=get_device_id()) # Logger config.outputs_dir = os.path.join(config.save_ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) config.logger = get_logger(config.outputs_dir) # Dataloader: train, val train_dataset = audio_dataset(config.train_feat_dir, 'training', config.model_setting_spectrogram_length, config.model_setting_dct_coefficient_count, config.per_batch_size, device_num, rank) config.steps_per_epoch = train_dataset.get_dataset_size() val_dataset = audio_dataset(config.train_feat_dir, 'validation', config.model_setting_spectrogram_length, config.model_setting_dct_coefficient_count, config.per_batch_size) # show args config.logger.save_args(config) # Network config.logger.important_info('start create network') network = DSCNN(config, config.model_size_info) # Load pretrain model if os.path.isfile(config.pretrained): load_checkpoint(config.pretrained, network) config.logger.info('load model %s success', config.pretrained) # Loss criterion = CrossEntropy(num_classes=config.model_setting_label_count) # LR scheduler if config.lr_scheduler == 'multistep': lr_scheduler = MultiStepLR(config.lr, config.lr_epochs, config.lr_gamma, config.steps_per_epoch, config.max_epoch, warmup_epochs=config.warmup_epochs) elif config.lr_scheduler == 'cosine_annealing': lr_scheduler = CosineAnnealingLR(config.lr, config.T_max, config.steps_per_epoch, config.max_epoch, warmup_epochs=config.warmup_epochs, eta_min=config.eta_min) else: raise NotImplementedError(config.lr_scheduler) lr_schedule = lr_scheduler.get_lr() # Optimizer opt = Momentum(params=network.trainable_params(), learning_rate=Tensor(lr_schedule), momentum=config.momentum, weight_decay=config.weight_decay) model = Model(network, loss_fn=criterion, optimizer=opt, amp_level=config.amp_level, keep_batchnorm_fp32=False) # Training config.epoch_cnt = 0 config.best_epoch = 0 config.best_acc = 0 progress_cb = ProgressMonitor(config) while config.epoch_cnt + config.val_interval < config.max_epoch: trainval(config, model, train_dataset, val_dataset, progress_cb, rank) rest_ep = config.max_epoch - config.epoch_cnt if rest_ep > 0: trainval(config, model, train_dataset, val_dataset, progress_cb, rank) config.logger.info('Best epoch:{} acc:{:.2f}%'.format(config.best_epoch, config.best_acc)) if __name__ == "__main__": train()
38.607955
120
0.700515
dc5070d0865bbc9f48d127fb5d572caf248b1ae1
4,260
py
Python
andinopy/base_devices/andino_io_oled.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
andinopy/base_devices/andino_io_oled.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
andinopy/base_devices/andino_io_oled.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
# _ _ _ # / \ _ __ __| (_)_ __ ___ _ __ _ _ # / _ \ | '_ \ / _` | | '_ \ / _ \| '_ \| | | | # / ___ \| | | | (_| | | | | | (_) | |_) | |_| | # /_/ \_\_| |_|\__,_|_|_| |_|\___/| .__/ \__, | # |_| |___/ # by Jakob Groß import sys from typing import Dict, Tuple, List from andinopy import base_config, save_base_config if sys.platform == "linux": import busio import adafruit_ssd1306 from PIL import Image from PIL import ImageFont from PIL import ImageDraw class andino_io_oled: def __init__(self): """ Initializes a new OLED instance The Images will be shown on windows but no i2c devices will be opened """ self.WIDTH = 128 self.HEIGHT = 64 self._rot = None if sys.platform == "linux": self.i2c = busio.I2C(3, 2) self.display = adafruit_ssd1306.SSD1306_I2C(self.WIDTH, self.HEIGHT, self.i2c) self.display.fill(0) self.display.show() self.padding = -2 self.config: (str, str) = ("21", None) self.text = [['AndinoPy', 'running']] if sys.platform == "linux": self.font_path = r"/usr/share/fonts/truetype/FIRACODE.TTF" else: self.font_path = r"C:\Windows\Fonts\Consolas\consola.ttf" self.fonts = {"default": ImageFont.load_default()} for i in [60, 30, 40, 21, 20, 16, 14, 8]: self.fonts[f"font{i}"] = ImageFont.truetype(self.font_path, i) self.modes: Dict[str, Tuple[List[int], str]] = { # top diffs,font "10": ([0], "font60"), # 1 Line, 3 Chars mode "11": ([20], "font30"), # 1 Line, 4 Chars mode "20": ([0, 35], "font30"), # 2 Line, 6 Chars "21": ([5, 40], "font21"), # 2 Line, 9 Chars "30": ([2, 24, 46], "font20"), # 3 Line, 9 Chars "31": ([2, 27, 52], "font16"), # 3 Line, 12 Chars "40": ([1, 17, 34, 51], "font14"), # 4 Line, 14 Chars "60": ([3, 13, 23, 33, 43, 53], "font8") # 6 Lines } # region send_counter @property def rotate(self) -> bool: if self._rot is None: self._rot = int(base_config["oled"]["rotate"]) return self._rot @rotate.setter def rotate(self, value: bool): self._rot = value base_config["oled"]["rotate"] = str(value) save_base_config() # endregion def set_mode(self, col1: str, col2: str = None): """ When using two columns beware only half the chars are avaiable "10": 1 Line, 3 Chars mode "11": 1 Line, 4 Chars mode "20": 2 Line, 6 Chars "21": 2 Line, 9 Chars "30": 3 Line, 9 Chars "31": 3 Line, 12 Chars "40": 4 Line, 14 Chars "60": 6 Line :param col1: see above :param col2: see above """ self.config = (col1, col2) def set_text(self, text: [[str]]): """ Set TExt on the display :param text: [["col1 row1","col1 row2"],["col2 row2"...]] """ self.text = text self.display_text() def display_text(self): """ Displays the text set in self.text """ if sys.platform == "linux": self.display.fill(0) self.display.show() my_image = Image.new('1', (self.WIDTH, self.HEIGHT)) draw = ImageDraw.Draw(my_image) for j in range(len(self.config)): if self.config[j] is not None: offset = 0.5*self.WIDTH*j row, font = self.modes[self.config[j]] font = self.fonts[font] for i in range(len(row)): text = text = self.text[j][i] draw.text(xy=(offset, self.padding + row[i]), font=font, text=text, fill=255) # print(my_image.tobytes()) if self.rotate == 1: my_image = my_image.rotate(180) if sys.platform == "linux": self.display.image(my_image) self.display.show() else: my_image.show() if __name__ == "__main__": display = andino_io_oled() display.display_text()
33.28125
97
0.504695