hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
738da3aafd326eac7396f2d8597a9ed6a5308ef2
6,677
py
Python
tests/rbac/common/assertions/key.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
75
2018-04-06T09:13:34.000Z
2020-05-18T18:59:47.000Z
tests/rbac/common/assertions/key.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
989
2018-04-18T21:01:56.000Z
2019-10-23T15:37:09.000Z
tests/rbac/common/assertions/key.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
72
2018-04-13T18:29:12.000Z
2020-05-29T06:00:33.000Z
# Copyright 2019 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- """Key assertion helpers""" # pylint: disable=invalid-name,no-member import binascii import sawtooth_signing from sawtooth_signing.secp256k1 import Secp256k1PublicKey from sawtooth_signing.secp256k1 import Secp256k1PrivateKey from sawtooth_signing.core import ParseError from rbac.common.crypto.keys import ELLIPTIC_CURVE_ALGORITHM from rbac.common.crypto.keys import PRIVATE_KEY_LENGTH from rbac.common.crypto.keys import PUBLIC_KEY_LENGTH from rbac.common.crypto.keys import PRIVATE_KEY_PATTERN from rbac.common.crypto.keys import PUBLIC_KEY_PATTERN from rbac.common.logs import get_default_logger from tests.rbac.common.assertions.common import CommonAssertions LOGGER = get_default_logger(__name__) class KeyAssertions(CommonAssertions): """Key assertion helpers""" def assertIsPrivateKey(self, key): """Sanity checks a private key key: hex string, bytes, or Secp256k1PrivateKey returns: Secp256k1PrivateKey""" self.assertIsNotNone(key) if isinstance(key, Secp256k1PrivateKey): return self.assertIsPrivateKeySecp256k1(key) if isinstance(key, str): return self.assertIsPrivateKeyHex(key) if isinstance(key, bytes): return self.assertIsPrivateKeyBytes(key) raise ParseError("Unable to parse private key: {}".format(type(key))) def assertIsPublicKey(self, key): """Sanity checks a public key key -- hex string, bytes, or Secp256k1PublicKey returns -- Secp256k1PublicKey""" self.assertIsNotNone(key) if isinstance(key, Secp256k1PublicKey): return self.assertIsPublicKeySecp256k1(key) if isinstance(key, str): return self.assertIsPublicKeyHex(key) if isinstance(key, bytes): return self.assertIsPublicKeyBytes(key) raise ParseError("Unable to parse public key: {}".format(type(key))) def assertIsKeyPair(self, public_key, private_key): """Sanity checks public & private key and verifies they are a matching key pair public_key -- hex string, bytes, or Secp256k1PublicKey private_key -- hex string, bytes, or Secp256k1PrivateKey returns -- Secp256k1PublicKey, Secp256k1PrivateKey""" public_key = self.assertIsPublicKey(public_key) private_key = self.assertIsPrivateKey(private_key) self.assertIsKeyPairSecp256k1(public_key, private_key) return public_key, private_key def assertIsPrivateKeySecp256k1(self, key): """Sanity checks a Secp256k1PrivateKey private key""" self.assertIsInstance(key, Secp256k1PrivateKey) self.assertIsInstance(key.as_hex(), str) self.assertEqual(len(key.as_hex()), PRIVATE_KEY_LENGTH * 2) self.assertTrue(PRIVATE_KEY_PATTERN.match(key.as_hex())) self.assertIsInstance(key.as_bytes(), bytes) self.assertEqual(len(key.as_bytes()), PRIVATE_KEY_LENGTH) self.assertEqual(key.as_hex(), str(binascii.hexlify(key.as_bytes()), "ascii")) self.assertEqual(binascii.unhexlify(key.as_hex()), key.as_bytes()) return key def assertIsPublicKeySecp256k1(self, key): """Sanity checks a Secp256k1PublicKey public key""" self.assertIsInstance(key, Secp256k1PublicKey) self.assertIsInstance(key.as_hex(), str) self.assertEqual(len(key.as_hex()), PUBLIC_KEY_LENGTH * 2) self.assertTrue(PUBLIC_KEY_PATTERN.match(key.as_hex())) self.assertIsInstance(key.as_bytes(), bytes) self.assertEqual(len(key.as_bytes()), PUBLIC_KEY_LENGTH) self.assertEqual(key.as_hex(), str(binascii.hexlify(key.as_bytes()), "ascii")) self.assertEqual(binascii.unhexlify(key.as_hex()), key.as_bytes()) return key def assertIsPrivateKeyHex(self, key): """Sanity checks a hexidecimal string private key""" self.assertIsInstance(key, str) self.assertTrue(PRIVATE_KEY_PATTERN.match(key)) key = Secp256k1PrivateKey.from_hex(key) self.assertIsPrivateKeySecp256k1(key) return key def assertIsPublicKeyHex(self, key): """Sanity checks a hexidecimal string public key""" self.assertIsInstance(key, str) self.assertTrue(PUBLIC_KEY_PATTERN.match(key)) key = Secp256k1PublicKey.from_hex(key) self.assertIsPublicKeySecp256k1(key) return key def assertIsPrivateKeyBytes(self, key): """Sanity checks a private key in bytes""" self.assertIsInstance(key, bytes) self.assertEqual(len(key), PRIVATE_KEY_LENGTH) key = Secp256k1PrivateKey.from_hex(str(binascii.hexlify(key), "ascii")) self.assertIsPrivateKeySecp256k1(key) return key def assertIsPublicKeyBytes(self, key): """Sanity checks a public key in bytes""" self.assertIsInstance(key, bytes) self.assertEqual(len(key), PUBLIC_KEY_LENGTH) key = Secp256k1PublicKey.from_hex(str(binascii.hexlify(key), "ascii")) self.assertIsPublicKeySecp256k1(key) return key def assertIsKeyPairSecp256k1(self, public_key, private_key): """Test that a given public_key and a given private_key are a matched keypair""" self.assertIsPublicKeySecp256k1(public_key) self.assertIsPrivateKeySecp256k1(private_key) context = sawtooth_signing.create_context(ELLIPTIC_CURVE_ALGORITHM) self.assertEqual( public_key.as_bytes(), context.get_public_key(private_key).as_bytes() ) def assertIsKeyPairHex(self, public_key, private_key): """Test that a given public_key and a given private_key are a matched keypair""" self.assertIsInstance(public_key, Secp256k1PublicKey) self.assertIsInstance(private_key, Secp256k1PrivateKey) context = sawtooth_signing.create_context(ELLIPTIC_CURVE_ALGORITHM) self.assertEqual( public_key.as_bytes(), context.get_public_key(private_key).as_bytes() )
42.801282
86
0.702711
8384c7dc83ddb4e7c8ed76df8619f0b612ea928a
370
py
Python
exercises/pt/solution_02_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/pt/solution_02_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/pt/solution_02_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
import spacy nlp = spacy.load("en_core_web_sm") doc = nlp("Berlin is a nice city") # Iterar nos tokens for token in doc: # Verifica se o token atual é um substantivo próprio. if token.pos_ == "PROPN": # Verifica se o próximo token é um verbo if doc[token.i + 1].pos_ == "VERB": print("Found proper noun before a verb:", token.text)
28.461538
65
0.640541
83c6133d5ab28e0457c672ccdadcee4994046af1
682
py
Python
linear_data_structure/best_time_to_buy_and_sell_stock.py
daesookimds/Algorithm
76f4cbfe9000e8c1736f470138499e7c735fecaa
[ "MIT" ]
null
null
null
linear_data_structure/best_time_to_buy_and_sell_stock.py
daesookimds/Algorithm
76f4cbfe9000e8c1736f470138499e7c735fecaa
[ "MIT" ]
null
null
null
linear_data_structure/best_time_to_buy_and_sell_stock.py
daesookimds/Algorithm
76f4cbfe9000e8c1736f470138499e7c735fecaa
[ "MIT" ]
null
null
null
import sys from typing import List def maxProfit_brute_force(prices: List[int]) -> int: max_price = 0 for i, price in enumerate(prices): for j in range(i, len(prices)): max_price = max(prices[j] - price, max_price) return max_price def maxProfit_Kadanes(prices: List[int]) -> int: max_profit = 0 min_price = sys.maxsize for price in prices: min_price = min(min_price, price) max_profit = max(max_profit, price - min_price) return max_profit def test_case(): case1 = [7, 1, 5, 3, 6, 4] result1 = maxProfit_brute_force(case1) print(result1) result2 = maxProfit_Kadanes(case1) print(result2)
22
57
0.651026
79134acaa833a965bf2edf94b06847d2f288049a
2,923
py
Python
test/test_npu/test_network_ops/test_tril.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_tril.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_tril.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020 Huawei Technologies Co., Ltd # Copyright (c) 2019, Facebook CORPORATION. # All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestTril(TestCase): def test_tril(self, device): dtype_list = [np.float32, np.float16] format_list = [0, 3, 4] shape_list = [[5, 5],[4, 5, 6]] diagonal_list = [-1, 0, 1] shape_format = [ [i, j, k, l] for i in dtype_list for j in format_list for k in shape_list for l in diagonal_list ] for item in shape_format: cpu_input, npu_input = create_common_tensor(item[:-1], 0, 100) cpu_output = self.cpu_op_exec(cpu_input, item[-1]) npu_output = self.npu_op_exec(npu_input, item[-1]) self.assertRtolEqual(cpu_output, npu_output) def test_tril_inplace(self, device): dtype_list = [np.float32, np.float16] format_list = [0, 3, 4] shape_list = [[5, 5], [4, 5, 6]] diagonal_list = [-1, 0, 1] shape_format = [ [i, j, k, l] for i in dtype_list for j in format_list for k in shape_list for l in diagonal_list ] for item in shape_format: cpu_input, npu_input = create_common_tensor(item[:-1], 0, 100) cpu_output = self.cpu_op_inplace_exec(cpu_input, item[-1]) npu_output = self.npu_op_inplace_exec(npu_input, item[-1]) self.assertRtolEqual(cpu_output, npu_output) def cpu_op_exec(self, input, diagonal=0): output = torch.tril(input, diagonal) output = output.numpy() return output def npu_op_exec(self, input, diagonal=0): output = torch.tril(input, diagonal) output = output.to("cpu") output = output.numpy() return output def cpu_op_inplace_exec(self, input, diagonal=0): output = input.tril_(diagonal) output = output.numpy() return output def npu_op_inplace_exec(self, input, diagonal=0): output = input.tril_(diagonal) output = output.to("cpu") output = output.numpy() return output instantiate_device_type_tests(TestTril, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
37.474359
108
0.660965
5837df7ae8b3b0619f927476c91a7d0f28561ac5
3,397
py
Python
snake/hadOG.py
Bertik23/spg
f6449f1ca8f3a869f0f493f3988b3d84901c1be0
[ "MIT" ]
null
null
null
snake/hadOG.py
Bertik23/spg
f6449f1ca8f3a869f0f493f3988b3d84901c1be0
[ "MIT" ]
null
null
null
snake/hadOG.py
Bertik23/spg
f6449f1ca8f3a869f0f493f3988b3d84901c1be0
[ "MIT" ]
null
null
null
from tkinter import Tk, Canvas from random import randint class Bunka: def __init__(self, x,y): self.vzhled = platno.create_rectangle(x*VEL,y*VEL+50, (x+1)*VEL, (y+1)*VEL + 50, fill="white",width=0) self.cislo = 0 #self.text = platno.create_text(x*VEL+VEL/2, y*VEL+VEL/2 + 50, text = "0", anchor = "c", fill="#888") class Had: def __init__(self,x,y,delka,smer,barva,jmeno = "Anonym",hrac = False,nahoru = "",doprava="",dolu="",doleva=""): self.x = x self.y = y self.delka = delka self.smer = smer self.barva = barva self.jmeno = jmeno self.hrac = hrac self.nahoru = nahoru self.dolu = dolu self.doprava = doprava self.doleva = doleva def logika(self): #Vaše práce... #self.smer = nový směr self.smer = randint(1,4) def pohyb(): for had in hadi: #Volání počítačem ovládaných hadů if not had.hrac: had.logika() if had.smer == 1: had.y -= 1 if had.smer == 2: had.x += 1 if had.smer == 3: had.y += 1 if had.smer == 4: had.x -= 1 if had.x<0: had.x = POCET-1 if had.y<0: had.y = POCET-1 if had.x==POCET: had.x = 0 if had.y==POCET: had.y = 0 if sit[had.x][had.y].cislo > 0: hadi.remove(had) continue if sit[had.x][had.y].cislo == -1: had.delka += 1 drobek() sit[had.x][had.y].cislo = had.delka + 1 platno.itemconfig(sit[had.x][had.y].vzhled, fill = had.barva) for i in range(POCET): for j in range(POCET): if sit[i][j].cislo>0: sit[i][j].cislo -= 1 #platno.itemconfig(sit[i][j].text, text = sit[i][j].cislo) if sit[i][j].cislo == 0: platno.itemconfig(sit[i][j].vzhled, fill = "white") okno.after(1000//FPS, pohyb) def drobek(): x = randint(0,POCET-1) y = randint(0,POCET-1) while sit[x][y].cislo!=0: x = randint(0,POCET-1) y = randint(0,POCET-1) sit[x][y].cislo = -1 platno.itemconfig(sit[x][y].vzhled, fill = "orange") def stisk(e): k = e.keysym for had in hadi: if had.hrac: if k == had.nahoru and had.smer!=3: had.smer = 1 if k == had.doprava and had.smer!=4: had.smer = 2 if k == had.dolu and had.smer!=1: had.smer = 3 if k == had.doleva and had.smer!=2: had.smer = 4 POCET = 40 VEL = 500/POCET FPS = 20 DROBKY = 10 okno = Tk() platno = Canvas(okno, height = 550, width=500) platno.pack() sit = [] for i in range(POCET): sit.append([]) for j in range(POCET): sit[i].append(Bunka(i,j)) hadi = [ Had(x = 10, y = 10, delka = 1, smer = 1, barva = "red", jmeno = "Jarda", hrac = True, nahoru = "Up", doprava = "Right", dolu = "Down", doleva = "Left"), Had(x = 5, y = 5, delka = 20, smer = 3, barva = "blue", jmeno = "Pepa", hrac = True, nahoru = "w", doprava = "d", dolu = "s", doleva = "a"), Had(x = 20, y = 20, delka = 1, smer = 1, barva = "black", jmeno = "Komp", hrac = False) ] for i in range(DROBKY): drobek() okno.bind("<Key>",stisk) pohyb() okno.mainloop()
30.061947
115
0.499558
54bf5f5c9e4281becf7b4687643faf8d21849474
1,198
py
Python
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/count_words.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/count_words.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/count_words.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Dec 29 19:46:42 2017 @author: root """ # -count_words.py *- coding: utf-8 -*- import sys filename = sys.argv[1] # print("\n",filename,"\n") # You can check that the filename is correct text_file = open(filename) # open the file for reading # Set up an empty dictionary to start a standard design pattern loop words_dic = {} # This loop adds each word to the dictionary and updates its count. Change # all words to lower case so Horse and horse are seen as the same word. for line in text_file: # step through each line in the text file for word in line.lower().split(): # split into a list of words word = word.strip("'?,.;!-/\"") # strip out the stuff we ignore if word not in words_dic: words_dic[word] = 0 # add word to words with 0 count words_dic[word] = words_dic[word] + 1 # add 1 to the count text_file.close() # Sorts the dictionary words into a list and then print them out print("List of words in the file with number of times each appears.") word_list = sorted(words_dic) for word in word_list: print(words_dic[word], word)
33.277778
75
0.661102
3fb97c881c85959537b8a2aaf4c90f6a3db9f93e
36
py
Python
lib/python3.5/tempfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
1
2020-08-16T04:04:23.000Z
2020-08-16T04:04:23.000Z
lib/python3.5/tempfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
5
2020-06-05T18:53:24.000Z
2021-12-13T19:49:15.000Z
lib/python3.5/tempfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
null
null
null
/usr/local/lib/python3.5/tempfile.py
36
36
0.805556
3fc2ecdc29177b616df5342cd72fee12b0128df5
157
py
Python
python/deep_learning/FUNCTIONAL/1.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/deep_learning/FUNCTIONAL/1.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/deep_learning/FUNCTIONAL/1.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
def running_sum(numbers, start=0): if len(numbers) == 0: print() return total = numbers[0] + start print(total,end="") running_sum(numbers[1:],total)
19.625
34
0.675159
b77e564f01912cedaa7b35edeafdfb0ff59fb34c
28,052
py
Python
python/oneflow/utils/vision/transforms/functional.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/utils/vision/transforms/functional.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/utils/vision/transforms/functional.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings import numbers from enum import Enum from typing import List, Any, Tuple, Optional import numpy as np from PIL import Image import math try: import accimage except ImportError: accimage = None import oneflow as flow from oneflow.framework.tensor import Tensor from . import functional_pil as F_pil from . import functional_tensor as F_t class InterpolationMode(Enum): r"""Interpolation modes """ NEAREST = "nearest" BILINEAR = "bilinear" BICUBIC = "bicubic" # For PIL compatibility BOX = "box" HAMMING = "hamming" LANCZOS = "lanczos" def _interpolation_modes_from_int(i: int) -> InterpolationMode: inverse_modes_mapping = { 0: InterpolationMode.NEAREST, 2: InterpolationMode.BILINEAR, 3: InterpolationMode.BICUBIC, 4: InterpolationMode.BOX, 5: InterpolationMode.HAMMING, 1: InterpolationMode.LANCZOS, } return inverse_modes_mapping[i] pil_modes_mapping = { InterpolationMode.NEAREST: 0, InterpolationMode.BILINEAR: 2, InterpolationMode.BICUBIC: 3, InterpolationMode.BOX: 4, InterpolationMode.HAMMING: 5, InterpolationMode.LANCZOS: 1, } def _get_image_size(img: Tensor) -> List[int]: """Returns image size as [w, h] """ if isinstance(img, flow.Tensor): return F_t._get_image_size(img) return F_pil._get_image_size(img) def _get_image_num_channels(img: Tensor) -> int: """Returns number of image channels """ if isinstance(img, flow.Tensor): return F_t._get_image_num_channels(img) return F_pil._get_image_num_channels(img) def _is_pil_image(img: Any) -> bool: if accimage is not None: return isinstance(img, (Image.Image, accimage.Image)) else: return isinstance(img, Image.Image) def _is_numpy(img: Any) -> bool: return isinstance(img, np.ndarray) def _is_numpy_image(img: Any) -> bool: return img.ndim in {2, 3} def to_tensor(pic): """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. See :class:`~transforms.ToTensor` for more details. Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if not (_is_pil_image(pic) or _is_numpy(pic)): raise TypeError("pic should be PIL Image or ndarray. Got {}".format(type(pic))) if _is_numpy(pic) and not _is_numpy_image(pic): raise ValueError( "pic should be 2/3 dimensional. Got {} dimensions.".format(pic.ndim) ) # default_float_dtype = flow.get_default_dtype() default_float_dtype = flow.float32 if isinstance(pic, np.ndarray): # handle numpy array if pic.ndim == 2: pic = pic[:, :, None] img = flow.Tensor(pic.transpose((2, 0, 1))) # backward compatibility if img.dtype == flow.int: return img.to(dtype=default_float_dtype).div(255) else: return img if accimage is not None and isinstance(pic, accimage.Image): nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32) pic.copyto(nppic) return flow.Tensor(nppic).to(dtype=default_float_dtype) # handle PIL Image mode_to_nptype = {"I": np.int32, "I;16": np.int16, "F": np.float32} if mode_to_nptype.get(pic.mode, np.uint8) == np.uint8: dtype = flow.int32 else: dtype = flow.float32 img = flow.Tensor( np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True), dtype=dtype, ) if pic.mode == "1": img = 255 * img img = flow.reshape(img, shape=(pic.size[1], pic.size[0], len(pic.getbands()))) # put it from HWC to CHW format res = img.permute(2, 0, 1) if img.dtype == flow.int: res = res.to(dtype=default_float_dtype).div(255) return res def pil_to_tensor(pic): """Convert a ``PIL Image`` to a tensor of the same type. See :class:`~vision.transforms.PILToTensor` for more details. Args: pic (PIL Image): Image to be converted to tensor. Returns: Tensor: Converted image. """ if not F_pil._is_pil_image(pic): raise TypeError("pic should be PIL Image. Got {}".format(type(pic))) if accimage is not None and isinstance(pic, accimage.Image): # accimage format is always uint8 internally, so always return uint8 here nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8) pic.copyto(nppic) return flow.tensor(nppic) # handle PIL Image img = flow.tensor(np.asarray(pic)) img = img.view(pic.size[1], pic.size[0], len(pic.getbands())) # put it from HWC to CHW format img = img.permute((2, 0, 1)) return img def convert_image_dtype( image: flow.Tensor, dtype: flow.dtype = flow.float ) -> flow.Tensor: """Convert a tensor image to the given ``dtype`` and scale the values accordingly This function does not support PIL Image. Args: image (flow.Tensor): Image to be converted dtype (flow.dtype): Desired data type of the output Returns: Tensor: Converted image .. note:: When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly. If converted back and forth, this mismatch has no effect. Raises: RuntimeError: When trying to cast :class:`flow.float32` to :class:`flow.int32` or :class:`flow.int64` as well as for trying to cast :class:`flow.float64` to :class:`flow.int64`. These conversions might lead to overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range of the integer ``dtype``. """ if not isinstance(image, flow.Tensor): raise TypeError("Input img should be Tensor Image") return F_t.convert_image_dtype(image, dtype) def normalize( tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False ) -> Tensor: """Normalize a float tensor image with mean and standard deviation. This transform does not support PIL Image. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~transforms.Normalize` for more details. Args: tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image. """ if not isinstance(tensor, flow.Tensor): raise TypeError( "Input tensor should be a oneflow tensor. Got {}.".format(type(tensor)) ) if not tensor.dtype == flow.float: raise TypeError( "Input tensor should be a float tensor. Got {}.".format(tensor.dtype) ) if tensor.ndim < 3: raise ValueError( "Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = " "{}.".format(tensor.size()) ) if not inplace: tensor = tensor.clone() dtype = tensor.dtype mean = flow.tensor(mean, dtype=dtype, device=tensor.device) std = flow.tensor(std, dtype=dtype, device=tensor.device) # TODO: use tensor.any() # if (std == 0).any(): if std.eq(0).sum().numpy() > 0: raise ValueError( "std evaluated to zero after conversion to {}, leading to division by zero.".format( dtype ) ) if mean.ndim == 1: mean = mean.reshape(-1, 1, 1) if std.ndim == 1: std = std.reshape(-1, 1, 1) tensor = tensor.sub(mean).div(std) # tensor.sub_(mean).div_(std) return tensor def resize( img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> Tensor: r"""Resize the input image to the given size. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions Args: img (PIL Image or Tensor): Image to be resized. size (sequence or int): Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio. i.e, if height > width, then image will be rescaled to :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`flow.utils.vision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. Returns: PIL Image or Tensor: Resized image. """ # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( "Argument interpolation should be of type InterpolationMode instead of int. " "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) if not isinstance(interpolation, InterpolationMode): raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, (flow.Tensor, flow._oneflow_internal.Tensor)): pil_interpolation = pil_modes_mapping[interpolation] return F_pil.resize(img, size=size, interpolation=pil_interpolation) return F_t.resize(img, size=size, interpolation=interpolation.value) def scale(*args, **kwargs): warnings.warn( "The use of the transforms.Scale transform is deprecated, " + "please use transforms.Resize instead." ) return resize(*args, **kwargs) def pad( img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant" ) -> Tensor: r"""Pad the given image on all sides with the given "pad" value. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric, at most 3 leading dimensions for mode edge, and an arbitrary number of leading dimensions for mode constant Args: img (PIL Image or Tensor): Image to be padded. padding (int or sequence): Padding on each border. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for oneflow Tensor. Only int or str or tuple value is supported for PIL Image. padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value at the edge of the image. If input a 5D oneflow Tensor, the last 3 dimensions will be padded instead of the last 2 - reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] Returns: PIL Image or Tensor: Padded image. """ if not isinstance(img, flow.Tensor): return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode) return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode) def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor: """Crop the given image at specified location and output size. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then cropped. Args: img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image. top (int): Vertical component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box. height (int): Height of the crop box. width (int): Width of the crop box. Returns: PIL Image or Tensor: Cropped image. """ if not isinstance(img, flow.Tensor): return F_pil.crop(img, top, left, height, width) return F_t.crop(img, top, left, height, width) def center_crop(img: Tensor, output_size: List[int]) -> Tensor: """Crops the given image at the center. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: img (PIL Image or Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, it is used for both directions. Returns: PIL Image or Tensor: Cropped image. """ if isinstance(output_size, numbers.Number): output_size = (int(output_size), int(output_size)) elif isinstance(output_size, (tuple, list)) and len(output_size) == 1: output_size = (output_size[0], output_size[0]) image_width, image_height = _get_image_size(img) crop_height, crop_width = output_size if crop_width > image_width or crop_height > image_height: padding_ltrb = [ (crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, ] img = pad(img, padding_ltrb, fill=0) # PIL uses fill value 0 image_width, image_height = _get_image_size(img) if crop_width == image_width and crop_height == image_height: return img crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop(img, crop_top, crop_left, crop_height, crop_width) def resized_crop( img: Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> Tensor: """Crop the given image and resize it to desired size. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions Notably used in :class:`~vision.transforms.RandomResizedCrop`. Args: img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image. top (int): Vertical component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box. height (int): Height of the crop box. width (int): Width of the crop box. size (sequence or int): Desired output size. Same semantics as ``resize``. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`vision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. Returns: PIL Image or Tensor: Cropped image. """ img = crop(img, top, left, height, width) img = resize(img, size, interpolation) return img def hflip(img: Tensor) -> Tensor: """Horizontally flip the given image. Args: img (PIL Image or Tensor): Image to be flipped. If img is a Tensor, it is expected to be in [..., H, W] format, where ... means it can have an arbitrary number of leading dimensions. Returns: PIL Image or Tensor: Horizontally flipped image. """ if not isinstance(img, flow.Tensor): return F_pil.hflip(img) return F_t.hflip(img) def vflip(img: Tensor) -> Tensor: """Vertically flip the given image. Args: img (PIL Image or Tensor): Image to be flipped. If img is a Tensor, it is expected to be in [..., H, W] format, where ... means it can have an arbitrary number of leading dimensions. Returns: PIL Image or Tensor: Vertically flipped image. """ if not isinstance(img, flow.Tensor): return F_pil.vflip(img) return F_t.vflip(img) def five_crop( img: Tensor, size: List[int] ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: """Crop the given image into four corners and the central crop. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions .. Note:: This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your ``Dataset`` returns. Args: img (PIL Image or Tensor): Image to be cropped. size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). Returns: tuple: tuple (tl, tr, bl, br, center) Corresponding top left, top right, bottom left, bottom right and center crop. """ if isinstance(size, numbers.Number): size = (int(size), int(size)) elif isinstance(size, (tuple, list)) and len(size) == 1: size = (size[0], size[0]) if len(size) != 2: raise ValueError("Please provide only two dimensions (h, w) for size.") image_width, image_height = _get_image_size(img) crop_height, crop_width = size if crop_width > image_width or crop_height > image_height: msg = "Requested crop size {} is bigger than input size {}" raise ValueError(msg.format(size, (image_height, image_width))) tl = crop(img, 0, 0, crop_height, crop_width) tr = crop(img, 0, image_width - crop_width, crop_height, crop_width) bl = crop(img, image_height - crop_height, 0, crop_height, crop_width) br = crop( img, image_height - crop_height, image_width - crop_width, crop_height, crop_width, ) center = center_crop(img, [crop_height, crop_width]) return tl, tr, bl, br, center def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]: """Generate ten cropped images from the given image. Crop the given image into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default). If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions .. Note:: This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your ``Dataset`` returns. Args: img (PIL Image or Tensor): Image to be cropped. size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). vertical_flip (bool): Use vertical flipping instead of horizontal Returns: tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip) Corresponding top left, top right, bottom left, bottom right and center crop and same for the flipped image. """ if isinstance(size, numbers.Number): size = (int(size), int(size)) elif isinstance(size, (tuple, list)) and len(size) == 1: size = (size[0], size[0]) if len(size) != 2: raise ValueError("Please provide only two dimensions (h, w) for size.") first_five = five_crop(img, size) if vertical_flip: img = vflip(img) else: img = hflip(img) second_five = five_crop(img, size) return first_five + second_five def _get_inverse_affine_matrix( center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], ) -> List[float]: # Helper method to compute inverse matrix for affine transformation # As it is explained in PIL.Image.rotate # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1 # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RSS is rotation with scale and shear matrix # RSS(a, s, (sx, sy)) = # = R(a) * S(s) * SHy(sy) * SHx(sx) # = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ] # [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ] # [ 0 , 0 , 1 ] # # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears: # SHx(s) = [1, -tan(s)] and SHy(s) = [1 , 0] # [0, 1 ] [-tan(s), 1] # # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1 rot = math.radians(angle) sx, sy = [math.radians(s) for s in shear] cx, cy = center tx, ty = translate # RSS without scaling a = math.cos(rot - sy) / math.cos(sy) b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot) c = math.sin(rot - sy) / math.cos(sy) d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot) # Inverted rotation matrix with scale and shear # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1 matrix = [d, -b, 0.0, -c, a, 0.0] matrix = [x / scale for x in matrix] # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty) matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty) # Apply center translation: C * RSS^-1 * C^-1 * T^-1 matrix[2] += cx matrix[5] += cy return matrix def rotate( img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[int]] = None, fill: Optional[List[float]] = None, resample: Optional[int] = None, ) -> Tensor: """Rotate the image by angle. If the image is oneflow Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. Args: img (PIL Image or Tensor): image to be rotated. angle (number): rotation angle value in degrees, counter-clockwise. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`flow.utils.vision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (sequence, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. fill (sequence or number, optional): Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively. Returns: PIL Image or Tensor: Rotated image. .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters """ if resample is not None: warnings.warn( "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead" ) interpolation = _interpolation_modes_from_int(resample) # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( "Argument interpolation should be of type InterpolationMode instead of int. " "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) if not isinstance(angle, (int, float)): raise TypeError("Argument angle should be int or float") if center is not None and not isinstance(center, (list, tuple)): raise TypeError("Argument center should be a sequence") if not isinstance(interpolation, InterpolationMode): raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, flow.Tensor): pil_interpolation = pil_modes_mapping[interpolation] return F_pil.rotate( img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill, ) center_f = [0.0, 0.0] if center is not None: img_size = _get_image_size(img) # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center. center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)] # due to current incoherence of rotation angle direction between affine and rotate implementations # we need to set -angle. matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0]) raise NotImplementedError("Tensor rotate is not implemented yet!") return F_t.rotate( img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill )
38.165986
117
0.645409
b7a915028c6ddb65e436ca5cdd25b368728be6d1
405
py
Python
ebenezer/atencion/migrations/0010_level_orden.py
davrv93/ebenezer-backend
d3db4dafd9a8c35bea9f32afe2be1dd451f64298
[ "Apache-2.0" ]
null
null
null
ebenezer/atencion/migrations/0010_level_orden.py
davrv93/ebenezer-backend
d3db4dafd9a8c35bea9f32afe2be1dd451f64298
[ "Apache-2.0" ]
3
2020-02-11T23:15:00.000Z
2021-06-10T20:52:17.000Z
ebenezer/atencion/migrations/0010_level_orden.py
davrv93/ebenezer-backend
d3db4dafd9a8c35bea9f32afe2be1dd451f64298
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.1.2 on 2018-10-05 17:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('atencion', '0009_level'), ] operations = [ migrations.AddField( model_name='level', name='orden', field=models.IntegerField(default=1), preserve_default=False, ), ]
20.25
49
0.580247
4d2a3b1d6f0ad35aaed7ffb5e1ea9fabff02990f
4,115
py
Python
canopy.py
lizhanlian/CanopyByPython
89f94f7b2713c536afbcbded43534b28977cfb24
[ "MIT" ]
37
2018-06-06T05:58:54.000Z
2022-02-21T04:49:54.000Z
Canopy/canopy.py
YYangjlu/MachineLearningNote
d34a9b57af3b2c6f276d14c2a7a3dccadb585421
[ "MIT" ]
null
null
null
Canopy/canopy.py
YYangjlu/MachineLearningNote
d34a9b57af3b2c6f276d14c2a7a3dccadb585421
[ "MIT" ]
35
2018-10-01T16:12:34.000Z
2022-02-21T03:35:33.000Z
# -*- coding: utf-8 -*- # @Author: Alan Lau # @Date: 2017-09-05 22:56:16 # @Last Modified by: Alan Lau # @Last Modified time: 2017-09-05 22:56:16 import math import random import numpy as np from datetime import datetime from pprint import pprint as p import matplotlib.pyplot as plt # 随机生成500个二维[0,1)平面点 dataset = np.random.rand(500, 2) class Canopy: def __init__(self, dataset): self.dataset = dataset self.t1 = 0 self.t2 = 0 # 设置初始阈值 def setThreshold(self, t1, t2): if t1 > t2: self.t1 = t1 self.t2 = t2 else: print('t1 needs to be larger than t2!') # 使用欧式距离进行距离的计算 def euclideanDistance(self, vec1, vec2): return math.sqrt(((vec1 - vec2)**2).sum()) # 根据当前dataset的长度随机选择一个下标 def getRandIndex(self): return random.randint(0, len(self.dataset) - 1) def clustering(self): if self.t1 == 0: print('Please set the threshold.') else: canopies = [] # 用于存放最终归类结果 # while len(self.dataset) != 0: # 20180324修改 while len(self.dataset) > 1: rand_index = self.getRandIndex() current_center = self.dataset[rand_index] # 随机获取一个中心点,定为P点 current_center_list = [] # 初始化P点的canopy类容器 delete_list = [] # 初始化P点的删除容器 self.dataset = np.delete(self.dataset, rand_index, 0) # 删除随机选择的中心点P for datum_j in range(len(self.dataset)): datum = self.dataset[datum_j] distance = self.euclideanDistance( current_center, datum) # 计算选取的中心点P到每个点之间的距离 if distance < self.t1: # 若距离小于t1,则将点归入P点的canopy类 current_center_list.append(datum) if distance < self.t2: delete_list.append(datum_j) # 若小于t2则归入删除容器 # 根据删除容器的下标,将元素从数据集中删除 self.dataset = np.delete(self.dataset, delete_list, 0) canopies.append((current_center, current_center_list)) return canopies def showCanopy(canopies, dataset, t1, t2): fig = plt.figure() sc = fig.add_subplot(111) colors = [ 'brown', 'green', 'blue', 'y', 'r', 'tan', 'dodgerblue', 'deeppink', 'orangered', 'peru', 'blue', 'y', 'r', 'gold', 'dimgray', 'darkorange', 'peru', 'blue', 'y', 'r', 'cyan', 'tan', 'orchid', 'peru', 'blue', 'y', 'r', 'sienna' ] markers = [ '*', 'h', 'H', '+', 'o', '1', '2', '3', ',', 'v', 'H', '+', '1', '2', '^', '<', '>', '.', '4', 'H', '+', '1', '2', 's', 'p', 'x', 'D', 'd', '|', '_' ] for i in range(len(canopies)): canopy = canopies[i] center = canopy[0] components = canopy[1] sc.plot( center[0], center[1], marker=markers[i], color=colors[i], markersize=10) t1_circle = plt.Circle( xy=(center[0], center[1]), radius=t1, color='dodgerblue', fill=False) t2_circle = plt.Circle( xy=(center[0], center[1]), radius=t2, color='skyblue', alpha=0.2) sc.add_artist(t1_circle) sc.add_artist(t2_circle) for component in components: sc.plot( component[0], component[1], marker=markers[i], color=colors[i], markersize=1.5) maxvalue = np.amax(dataset) minvalue = np.amin(dataset) plt.xlim(minvalue - t1, maxvalue + t1) plt.ylim(minvalue - t1, maxvalue + t1) plt.show() def main(): t1 = 0.6 t2 = 0.4 gc = Canopy(dataset) gc.setThreshold(t1, t2) canopies = gc.clustering() print('Get %s initial centers.' % len(canopies)) showCanopy(canopies, dataset, t1, t2) if __name__ == '__main__': t_s = datetime.now() main() t_e = datetime.now() usedtime = t_e - t_s print('[%s]' % usedtime)
31.174242
79
0.513487
4d58cac56450dac5968ed2736596681fdac1a542
2,389
py
Python
src/doc/tutorials/tutorial_examples/scripting/listing_8_extracting_aggregate_values.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/doc/tutorials/tutorial_examples/scripting/listing_8_extracting_aggregate_values.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/doc/tutorials/tutorial_examples/scripting/listing_8_extracting_aggregate_values.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
########################################### # file: VisIt Scripting Tutorial Listing 8 ########################################### # # 1) Run visit from the CLI as described below. # #################### # Example that demonstrates looping over a dataset # to extract an aggregate value at each timestep. # # visit -nowin -cli -s listing_8_extracting_aggregate_values.py wave.visit pressure wave_pressure_out #################### import sys from visit_utils import * def setup_plot(dbname,varname, materials = None): """ Create a plot to query. """ OpenDatabase(dbname) AddPlot("Pseudocolor",varname) if not materials is None: TurnMaterialsOff() # select the materials (by id ) # example # materials = [ "1", "2", "4"] for material in materials: TurnMaterialsOn(materials) DrawPlots() def extract_curve(varname,obase,stride=1): """ Loop over all time steps and extract a value at each one. """ f = open(obase + ".ult","w") f.write("# %s vs time\n" % varname) nts = TimeSliderGetNStates() for ts in range(0,nts,stride): print("processing timestate: %d" % ts) TimeSliderSetState(ts) tval = query("Time") # sums plotted variable scaled by # area (2D mesh), # revolved_volume (2D RZ mesh, or # volume (3D mesh) rval = query("Weighted Variable Sum") # or you can use other queries, such as max: # mval = query("Maximum") res = "%s %s\n" % (str(tval),str(rval)) print(res) f.write(res) f.close() def open_engine(): # to open an parallel engine # inside of an mxterm or batch script use: engine.open(method="slurm") # outside of an mxterm or batch script # engine.open(nprocs=21) def main(): nargs = len(sys.argv) if nargs < 4: usage_msg = "usage: visit -nowin -cli -s visit_extract_curve.py " usage_msg += "{databsase_name} {variable_name} {output_file_base}" print(usage_msg) sys.exit(-1) # get our args dbname = sys.argv[1] varname = sys.argv[2] obase = sys.argv[3] # if you need a parallel engine: # open_engine() setup_plot(dbname,varname) extract_curve(varname,obase) if __visit_script_file__ == __visit_source_file__: main() sys.exit(0)
27.77907
102
0.583089
4db6fb4ee5c0300f7aef13f6f4f783c3cb480226
254
py
Python
Curso_Python/Secao4-Python-introducao-a-programacao-orientada-a-objetos-POO/092_classes-POO/treinando/main.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso_Python/Secao4-Python-introducao-a-programacao-orientada-a-objetos-POO/092_classes-POO/treinando/main.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso_Python/Secao4-Python-introducao-a-programacao-orientada-a-objetos-POO/092_classes-POO/treinando/main.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
from treinando import IndoShow p1 = IndoShow() # Ingresso acabou p1.fila() p1.fila() p1.acabou() p1.comprando_ingresso() print('#' * 30) # Tem o ingresso p1.fila() p1.fila() p1.comprando_ingresso() p1.transporte('719') p1.durante_show('foda'.upper())
14.111111
31
0.708661
422213a77508b25409e7cf9fd8e17698faf731df
377
py
Python
DeepRTS/python/test/test_deeprts.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
144
2018-07-13T07:47:50.000Z
2022-03-31T06:29:50.000Z
DeepRTS/python/test/test_deeprts.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
18
2019-03-29T10:37:01.000Z
2022-03-02T12:47:34.000Z
DeepRTS/python/test/test_deeprts.py
Yigit-Arisoy/deep-rts
a5ed2c29b76789830df9f7075480c7229ccf0f4d
[ "MIT" ]
23
2018-11-02T18:12:51.000Z
2022-02-15T20:32:18.000Z
import unittest from DeepRTS import python from DeepRTS import Engine class TestDeepRTSGame(unittest.TestCase): def setUp(self) -> None: self.game = python.Game( python.Config.Map.FIFTEEN, n_players=1, engine_config=None, gui_config=None, ) def test_1(self): self.assertTrue(self.game.players)
22.176471
42
0.623342
35f64e5ea885dff7a24fde0bb4e276d16b71487a
373
py
Python
leetcode/141-Linked-List-Cycle/LinkedListCycle_002.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
leetcode/141-Linked-List-Cycle/LinkedListCycle_002.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
leetcode/141-Linked-List-Cycle/LinkedListCycle_002.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
class Solution: # @param head, a ListNode # @return a boolean def hasCycle(self, head): if head == None or head.next == None: return False slow = fast = head while fast and fast.next: slow = slow.next fast = fast.next.next if slow == fast: return True return False
26.642857
45
0.509383
6792ab9177e5f849432e7e1487362888318a09f4
92
py
Python
2014/11/student-debt/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
14
2015-05-08T13:41:51.000Z
2021-02-24T12:34:55.000Z
2014/11/student-debt/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
null
null
null
2014/11/student-debt/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
7
2015-04-04T04:45:54.000Z
2021-02-18T11:12:48.000Z
#!/usr/bin/env python COPY_GOOGLE_DOC_KEY = '14muD-D_AKwFCTeXRSoWx8pmbFXwQRdQjUFC6S0Uu_FA'
23
68
0.836957
67a17be4cb65404aae1822aa913066e8852c12de
14,425
py
Python
Solver.py
timwuu/SokobanSolver
ae6d73516efa70fbf56ed4ca920b5ddc427d095d
[ "MIT" ]
null
null
null
Solver.py
timwuu/SokobanSolver
ae6d73516efa70fbf56ed4ca920b5ddc427d095d
[ "MIT" ]
null
null
null
Solver.py
timwuu/SokobanSolver
ae6d73516efa70fbf56ed4ca920b5ddc427d095d
[ "MIT" ]
null
null
null
import numpy as np import hashlib import copy import datetime import threading # Notation: [ROW][COL] # Note: Add Forbidden Cells to improve the efficiency # Check duplicate state in the search tree, keep DEPTH info # Add Progress Monitoring # ?Store Search Nodes for next batch # ?Add Heuristic Move # ?Multithreading # ?Save Node while max steps/depths exceeded # DEFINE: # map[][]: # -1: WALL # -2: BOX # -3: PLAYER # -9: BLANK MAP_BLANK = -9 MAX_STEP_COUNT_LST_SIZE = 256 MAX_STEPS = 28 MAX_DEPTH = 6 MAP_ROW = 8 MAP_COL = 8 FORBIDDEN = [[1,4],[1,5],[2,1],[3,1],[4,6],[5,6],[7,2],[7,3]] g_para_total_state_searched = 0 g_para_max_exceeded = 0 g_para_duplicate_state_count = 0 g_para_duplicate_state_count2 = 0 g_progress = 0.0 g_progress_prv_time = datetime.datetime.now() g_tm_CountSteps2 = datetime.timedelta(0) g_lst_1 = np.empty((MAX_STEP_COUNT_LST_SIZE, 2),dtype='u2') g_lst_2 = np.empty((MAX_STEP_COUNT_LST_SIZE, 2),dtype='u2') g_para_tm_start = datetime.datetime.now() g_para_tm_diff = datetime.timedelta(0) def isNotForbidden( pos): return ( pos not in FORBIDDEN ) def g_tm_start(): global g_para_tm_start g_para_tm_start = datetime.datetime.now() def g_tm_add(): global g_para_tm_start global g_para_tm_diff g_para_tm_diff += datetime.datetime.now() - g_para_tm_start def g_tm_print( func_name): global g_para_tm_diff print( "Time Diff ({}): {}".format(func_name, g_para_tm_diff)) class STATE: def __init__( self): pass def setup( self, mapstr): i=-1 j=0 box=[] wall=[] for c in mapstr: if( c=='#'): i=i+1 j=0 continue if( c=='P'): player = [i,j] j=j+1 continue if( c=='W'): wall.append([i,j]) j=j+1 continue if( c=='B'): box.append([i,j]) j=j+1 continue j=j+1 self.set_wall( wall) self.set_box( box) self.set_player( player) #print( self._player) #print( self._wall) #print( self._box) def set_goal( self, lst): self._goal = np.array( lst, dtype='b') def set_box( self, lst): self._box = np.array( lst, dtype='b') def set_player( self, pos): self._player = np.array( pos, dtype='b') def set_wall( self, lst): self._wall = np.array( lst, dtype='b') def get_hexdigest( self): m = hashlib.sha256() m.update( self._player.tobytes()) #TODO: possible different orders for same positions of boxes m.update( self._box.tobytes()) return m.hexdigest() # print( "Move Box:", box_no, "Steps:", steps, "Dir:", mov_dir) def moveBox( self, box_no, mov_dir): self._player[0] = self._box[box_no][0] self._player[1] = self._box[box_no][1] self._box[box_no,0] += mov_dir[0] self._box[box_no,1] += mov_dir[1] def matchGoal( self, goal): for elem in self._box: if( [elem[0],elem[1]] not in goal): return False return True def CountSteps2( map, state): global g_tm_CountSteps2 tm_tmp = datetime.datetime.now() i=1 lst = [[state._player[0],state._player[1]]] while( len(lst) ): next_lst = [] #print("step:", i) for x,y in lst: if( map[x-1,y]== MAP_BLANK): #UP map[x-1,y] = i next_lst.append([x-1,y]) if( map[x+1,y]== MAP_BLANK): #DOWN map[x+1,y] = i next_lst.append([x+1,y]) if( map[x,y-1]== MAP_BLANK): #LEFT map[x,y-1] = i next_lst.append([x,y-1]) if( map[x,y+1]== MAP_BLANK): #RIGHT map[x,y+1] = i next_lst.append([x,y+1]) lst = next_lst #print( lst) i=i+1 pass map[state._player[0],state._player[1]] = 0 g_tm_CountSteps2 += datetime.datetime.now() - tm_tmp pass def CountSteps( map, state): #print( state.get_hexdigest()) #map2 = map.copy() # Add BOX, PLAYER to map for val in state._box: map[val[0],val[1]]= -2 map[state._player[0],state._player[1]] = -3 #print( map) CountSteps2( map, state) pass def SearchEligibleMoves( map, state, moves, log): i= -1 # Try to move the same box first if(len(log)): i = log[-1][0] # last moved box_no #lst_mov_dir = log[-1][2] x, y = state._box[i] _U = map[x-1,y] _D = map[x+1,y] _L = map[x,y-1] _R = map[x,y+1] if( _U>=0 and _D>=0 ): #UP/DOWN if( isNotForbidden([x-1,y])): moves.append([[x+1,y],[-1,0],_D, i]) if( isNotForbidden([x+1,y])): moves.append([[x-1,y],[1,0],_U, i]) else: if( _U== MAP_BLANK and _D>=0 ): #UP if( isNotForbidden([x-1,y])): moves.append([[x+1,y],[-1,0],_D, i]) if( _U>=0 and _D== MAP_BLANK ): #DOWN if( isNotForbidden([x+1,y])): moves.append([[x-1,y],[1,0],_U, i]) if( _L>=0 and _R>=0): #LEFT/RIGHT if( isNotForbidden([x,y-1])): moves.append([[x,y+1],[0,-1],_R, i]) if( isNotForbidden([x,y+1])): moves.append([[x,y-1],[0,1],_L, i]) else: if( _L== MAP_BLANK and _R>=0): #LEFT if( isNotForbidden([x,y-1])): moves.append([[x,y+1],[0,-1],_R, i]) if( _L>=0 and _R== MAP_BLANK): #RIGHT if( isNotForbidden([x,y+1])): moves.append([[x,y-1],[0,1],_L, i]) j=i for i, elem in enumerate( state._box): if(j==i): continue x, y = elem _U = map[x-1,y] _D = map[x+1,y] _L = map[x,y-1] _R = map[x,y+1] if( _U>=0 and _D>=0 ): #UP/DOWN if( isNotForbidden([x-1,y])): moves.append([[x+1,y],[-1,0],_D, i]) if( isNotForbidden([x+1,y])): moves.append([[x-1,y],[1,0],_U, i]) else: if( _U== MAP_BLANK and _D>=0 ): #UP if( isNotForbidden([x-1,y])): moves.append([[x+1,y],[-1,0],_D, i]) if( _U>=0 and _D== MAP_BLANK ): #DOWN if( isNotForbidden([x+1,y])): moves.append([[x-1,y],[1,0],_U, i]) if( _L>=0 and _R>=0): #LEFT/RIGHT if( isNotForbidden([x,y-1])): moves.append([[x,y+1],[0,-1],_R, i]) if( isNotForbidden([x,y+1])): moves.append([[x,y-1],[0,1],_L, i]) else: if( _L== MAP_BLANK and _R>=0): #LEFT if( isNotForbidden([x,y-1])): moves.append([[x,y+1],[0,-1],_R, i]) if( _L>=0 and _R== MAP_BLANK): #RIGHT if( isNotForbidden([x,y+1])): moves.append([[x,y-1],[0,1],_L, i]) pass def Solve( state, goal): # map : WALLS ONLY # map = np.zeros((MAP_ROW, MAP_COL),dtype='b') map = np.full((MAP_ROW, MAP_COL), fill_value=MAP_BLANK, dtype='b') for val in state._wall: map[val[0],val[1]]= -1 trace = {} log = [] if( not Solve2( map, state, goal, 0, 0, trace, log, 100.0)): print( "Cannot Solve!") global g_para_total_state_searched g_para_total_state_searched = len(trace) def Solve2( map, state, goal, depth, total_steps, trace, log, progress_slot): if( total_steps> MAX_STEPS or depth> MAX_DEPTH): global g_para_max_exceeded g_para_max_exceeded += 1 output_progress( progress_slot) # END_NODE return False # map2 : WALLS plus STEP COUNT map2 = map.copy() #Count steps to reachable blank squares CountSteps( map2, state) #print( map2) #Remove illegible moves for the BOX moves=[] # list of [ targetPlayerPosition, moveDirection, steps, box no] SearchEligibleMoves( map2, state, moves, log) #print(moves) if( len(moves)): mv_progress_slot = progress_slot/len(moves) else: output_progress( progress_slot) # END_NODE #Try each possible move for i_mov, mov in enumerate(moves): #if( depth<2): print( depth, mov, mv_progress_slot) steps = mov[2] box_no = mov[3] mov_dir = mov[1] g_tm_start() new_state = copy.deepcopy(state) g_tm_add() new_state.moveBox( box_no, mov_dir) #print( box_no, mov_dir) #check if meet goal if( new_state.matchGoal(goal)): print( "Reach Goals!") print( "Depth:", depth+1) print( "Total Steps:", total_steps+steps+1) log.append([box_no, steps, mov_dir, i_mov]) for l in log: print( " Move Box: {:d} Steps: {:d} Dir: {} i: {}".format(l[0],l[1],l[2],l[3])) return True #check if new_state is duplicate key = new_state.get_hexdigest() if( key in trace): #print( "duplicate state!") global g_para_duplicate_state_count global g_para_duplicate_state_count2 g_para_duplicate_state_count += 1 if( trace[key] < depth+1): g_para_duplicate_state_count2 += 1 output_progress( mv_progress_slot) # END_NODE continue log.append([box_no, steps, mov_dir, i_mov]) trace[key] = depth+1 #print( new_state.get_hexdigest()) #start a new node for search if( Solve2( map, new_state, goal, depth+1, total_steps+steps+1, trace, log, mv_progress_slot)): return True #log.pop() #continue #Find next alternative solution else: log.pop() #output_progress( mv_progress_slot) #trace.pop(key) continue return False def output_progress( progress): global g_progress global g_progress_prv_time g_progress += progress tmp = datetime.datetime.now() if( tmp - g_progress_prv_time > datetime.timedelta(seconds=2.0)): print( "progress: {:.4f}%".format(g_progress)) g_progress_prv_time = tmp s = STATE() mapstr = "#---WWWW-"+"#WWWW PW-"+"#W B W-"+"#W B WW"+"#WWB B W"+"#-W B W"+"#-W WWWW"+"#-WWWW---" goal = [[3,3],[3,4],[3,5],[4,4],[4,5]] goal = [[3,4],[3,2],[4,2],[4,4],[5,4]] # one step MAX_STEPS = 21 MAX_DEPTH = 5 goal = [[2,5],[3,2],[4,2],[4,4],[5,4]] # one step # goal = [[3,5],[3,2],[4,2],[4,4],[5,4]] # two steps # goal = [[3,5],[3,2],[4,2],[4,4],[5,3]] # two steps # MAX_STEPS = 21 # MAX_DEPTH = 4 # goal = [[3,5],[3,3],[4,2],[4,4],[5,3]] # goal = [[3,4],[3,3],[4,2],[4,4],[5,5]] # two steps # goal = [[3,4],[3,3],[4,2],[4,3],[5,5]] # two steps # goal = [[3,4],[3,3],[3,2],[4,3],[5,5]] # two steps # Time Used:0:00:01.915810 # MAX_STEPS = 28 # MAX_DEPTH = 6 # goal = [[3,4],[3,3],[2,2],[4,3],[5,5]] # Time Used: 0:00:17.317066 # Time Used (g_tm_CountSteps2): 0:00:05.415582 # Total State Searched: 18628 # Total Max Exceeded: 111053 # Duplicate Key Count : 156954 # Duplicate Key Count2: 26714 MAX_STEPS = 31 MAX_DEPTH = 8 goal = [[3,4],[3,3],[2,4],[4,3],[5,5]] # Time Used: 0:00:46.802952 # Time Used (g_tm_CountSteps2): 0:00:15.552429 # Total State Searched: 33324 # Total Max Exceeded: 276172 # Duplicate Key Count : 426214 # Duplicate Key Count2: 79402 # MAX_STEPS = 32 # MAX_DEPTH = 9 # goal = [[3,4],[3,3],[2,5],[4,3],[5,5]] # Time Used: 0:01:46.428706 # Time Used (g_tm_CountSteps2): 0:00:34.125447 # Total State Searched: 53777 # Total Max Exceeded: 553840 # Duplicate Key Count : 941157 # Duplicate Key Count2: 202331 # Time Diff (STATE Copy): 0:00:15.649496 MAX_STEPS = 33 MAX_DEPTH = 10 goal = [[4,4],[3,3],[2,5],[4,3],[5,5]] # Time Used: 0:21:59.884430 # Time Used (g_tm_CountSteps2): 0:07:51.087651 # Total State Searched: 184658 # Total Max Exceeded: 4987044 # Duplicate Key Count : 11314176 # Duplicate Key Count2: 3603415 # MAX_STEPS = 40 # MAX_DEPTH = 13 # goal = [[4,4],[3,3],[2,5],[4,3],[5,2]] # # Time Used: # MAX_STEPS = 45 # MAX_DEPTH = 16 # goal = [[4,4],[3,3],[2,5],[4,3],[2,2]] # # Time Used: # MAX_STEPS = 46 # MAX_DEPTH = 17 # goal = [[4,4],[3,4],[2,5],[4,3],[2,2]] # # Time Used: # MAX_STEPS = 52 # MAX_DEPTH = 19 # goal = [[4,4],[3,4],[4,5],[4,3],[2,2]] # # Time Used: # MAX_STEPS = 61 # MAX_DEPTH = 20 # goal = [[4,4],[3,4],[4,5],[3,3],[2,2]] # # Time Used: # MAX_STEPS = 71 # MAX_DEPTH = 24 # goal = [[4,4],[3,4],[4,5],[3,3],[3,5]] s.setup( mapstr) g_progress_prv_time = datetime.datetime.now() start_time = datetime.datetime.now() if True: Solve( s, goal) else: x = threading.Thread( target=Solve, args=(s,goal)) x.start() x.join() diff_time = datetime.datetime.now() - start_time print( "Time Used: {}".format(diff_time)) print( "Time Used (g_tm_CountSteps2): {}".format(g_tm_CountSteps2)) print( "Total State Searched: {}".format(g_para_total_state_searched)) print( "Total Max Exceeded: {}".format(g_para_max_exceeded)) print( "Duplicate Key Count : {}".format(g_para_duplicate_state_count)) print( "Duplicate Key Count2: {}".format(g_para_duplicate_state_count2)) g_tm_print("STATE Copy") # Setup Map and State:{ Goal, Box, Player, Wall } # Logs: # Time Used:0:29:37.108837 # Total State Searched: 184,658 # Duplicate Key Count : 11,319,687 # Duplicate Key Count2: 3,602,166 # MAX_STEPS = 40 # MAX_DEPTH = 13 # goal = [[4,4],[3,3],[2,5],[4,3],[5,2]] # Depth: 13 # Total Steps: 40 # Move Box: 0 Steps: 1 Dir: [1, 0] i: 0 # Move Box: 4 Steps: 4 Dir: [0, 1] i: 6 # Move Box: 1 Steps: 7 Dir: [0, 1] i: 3 # Move Box: 3 Steps: 6 Dir: [0, -1] i: 2 # Move Box: 2 Steps: 3 Dir: [-1, 0] i: 2 # Move Box: 2 Steps: 0 Dir: [-1, 0] i: 0 # Move Box: 2 Steps: 2 Dir: [0, 1] i: 0 # Move Box: 2 Steps: 0 Dir: [0, 1] i: 1 # Move Box: 2 Steps: 0 Dir: [0, 1] i: 1 # Move Box: 0 Steps: 0 Dir: [1, 0] i: 2 # Move Box: 4 Steps: 4 Dir: [0, -1] i: 5 # Move Box: 4 Steps: 0 Dir: [0, -1] i: 0 # Move Box: 4 Steps: 0 Dir: [0, -1] i: 0
25.530973
104
0.538094
fbf2982b96cd59bdb1694db2faea05735a1f8913
227
py
Python
Contests/CCC/CCC '18 J1 - Telemarketer or not.py
MastaCoder/Projects
ebb0a3134522b12f052fec8d753005f384adf1b1
[ "MIT" ]
5
2018-10-11T01:55:40.000Z
2021-12-25T23:38:22.000Z
Contests/CCC/CCC '18 J1 - Telemarketer or not.py
MastaCoder/mini_projects
ebb0a3134522b12f052fec8d753005f384adf1b1
[ "MIT" ]
null
null
null
Contests/CCC/CCC '18 J1 - Telemarketer or not.py
MastaCoder/mini_projects
ebb0a3134522b12f052fec8d753005f384adf1b1
[ "MIT" ]
1
2019-02-22T14:42:50.000Z
2019-02-22T14:42:50.000Z
num = [0 for n in range(4)] for i in range(4): num[i] = int(input("")) failed = False if (num[0] == 8 or num[0] == 9) and (num[3] == 8 or num[3] == 9) and (num[1] == num[2]): print("ignore") else: print("answer")
20.636364
88
0.515419
2225ca05574efa4c5b8f771ee48a67c6618094e5
846
py
Python
python/pyqt/LearnPyQt/q_list_box.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pyqt/LearnPyQt/q_list_box.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pyqt/LearnPyQt/q_list_box.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import sys from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication, QMainWindow, QListWidget class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.setWindowTitle("Jayone's Awesome App") widget = QListWidget() widget.addItems(['One', 'Two', 'Three']) # In QListWidget there are two separate signals for the item, # and str widget.currentItemChanged.connect(self.index_changed) widget.currentTextChanged.connect(self.text_changed) self.setCentralWidget(widget) def index_changed(self, i): # Not an index, i is a QListItem print(i.text()) def text_changed(self, s): print(s) app = QApplication(sys.argv) window = MainWindow() window.show() app.exec_()
24.882353
69
0.670213
97eae9962de314f43d1518f7a3879454790ab9ac
1,221
py
Python
tests/test_rec.py
supcik/pymdown-include
fe426425e646d9111d230885b96d605fa78a62c0
[ "Apache-2.0" ]
null
null
null
tests/test_rec.py
supcik/pymdown-include
fe426425e646d9111d230885b96d605fa78a62c0
[ "Apache-2.0" ]
null
null
null
tests/test_rec.py
supcik/pymdown-include
fe426425e646d9111d230885b96d605fa78a62c0
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Jacques Supcik # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from pathlib import Path import markdown from pymdown_include import PymdownInclude class RecursiveTests(unittest.TestCase): def setUp(self): self.md = markdown.Markdown( extensions=[PymdownInclude(SEARCH_PATH=[Path(__file__).parent])] ) def test_rec(self): MD = """ A {!rec.md!} B """ HTML = """ <p>A X line 1 line 2 line 3 Y B</p> """ self.assertEqual(self.md.convert( inspect.cleandoc(MD)), inspect.cleandoc(HTML)) if __name__ == '__main__': unittest.main()
25.4375
76
0.661753
3f26aa0f6c35a62ad963ac41005256780bd39a53
612
py
Python
TEDx/Titles_starting_0_to_9/parse.py
gt-big-data/TEDVis
328a4c62e3a05c943b2a303817601aebf198c1aa
[ "MIT" ]
null
null
null
TEDx/Titles_starting_0_to_9/parse.py
gt-big-data/TEDVis
328a4c62e3a05c943b2a303817601aebf198c1aa
[ "MIT" ]
null
null
null
TEDx/Titles_starting_0_to_9/parse.py
gt-big-data/TEDVis
328a4c62e3a05c943b2a303817601aebf198c1aa
[ "MIT" ]
2
2018-02-06T00:00:44.000Z
2019-06-04T12:43:41.000Z
from os import listdir import os from os.path import isfile, join from operator import itemgetter, attrgetter def getWords() onlyfiles = [f for f in listdir(".") if isfile(join(".", f))] #print(onlyfiles) #wordDict = {} for file in onlyfiles: with open(file) as f: lines = f.readlines() for line in lines: line = line.split() for word in line: if word not in wordDict: wordDict[word] = 0 wordDict[word] += 1 wordList = [] for key in wordDict: wordList.append((wordDict[key], key)) wordList = sorted(wordList, key=itemgetter(0), reverse = True) print(wordList)
19.125
63
0.661765
e1468d99ac818a6e67f218ca7a52aea9dae60a7e
3,040
py
Python
source/pkgsrc/lang/python27/patches/patch-Lib_ctypes_test_test__parameters.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-11-20T22:46:39.000Z
2021-11-20T22:46:39.000Z
source/pkgsrc/lang/python27/patches/patch-Lib_ctypes_test_test__parameters.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
source/pkgsrc/lang/python27/patches/patch-Lib_ctypes_test_test__parameters.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
$NetBSD: patch-Lib_ctypes_test_test__parameters.py,v 1.1.2.2 2021/10/13 21:04:01 tm Exp $ Fix CVE-2021-3177: Replace snprintf with Python unicode formatting in ctypes param reprs Via Fedora: https://src.fedoraproject.org/rpms/python2.7/blob/rawhide/f/00357-CVE-2021-3177.patch --- Lib/ctypes/test/test_parameters.py.orig 2020-04-19 21:13:39.000000000 +0000 +++ Lib/ctypes/test/test_parameters.py @@ -206,6 +206,49 @@ class SimpleTypesTestCase(unittest.TestC with self.assertRaises(ZeroDivisionError): WorseStruct().__setstate__({}, b'foo') + def test_parameter_repr(self): + from ctypes import ( + c_bool, + c_char, + c_wchar, + c_byte, + c_ubyte, + c_short, + c_ushort, + c_int, + c_uint, + c_long, + c_ulong, + c_longlong, + c_ulonglong, + c_float, + c_double, + c_longdouble, + c_char_p, + c_wchar_p, + c_void_p, + ) + self.assertRegexpMatches(repr(c_bool.from_param(True)), r"^<cparam '\?' at 0x[A-Fa-f0-9]+>$") + self.assertEqual(repr(c_char.from_param('a')), "<cparam 'c' ('a')>") + self.assertRegexpMatches(repr(c_wchar.from_param('a')), r"^<cparam 'u' at 0x[A-Fa-f0-9]+>$") + self.assertEqual(repr(c_byte.from_param(98)), "<cparam 'b' (98)>") + self.assertEqual(repr(c_ubyte.from_param(98)), "<cparam 'B' (98)>") + self.assertEqual(repr(c_short.from_param(511)), "<cparam 'h' (511)>") + self.assertEqual(repr(c_ushort.from_param(511)), "<cparam 'H' (511)>") + self.assertRegexpMatches(repr(c_int.from_param(20000)), r"^<cparam '[li]' \(20000\)>$") + self.assertRegexpMatches(repr(c_uint.from_param(20000)), r"^<cparam '[LI]' \(20000\)>$") + self.assertRegexpMatches(repr(c_long.from_param(20000)), r"^<cparam '[li]' \(20000\)>$") + self.assertRegexpMatches(repr(c_ulong.from_param(20000)), r"^<cparam '[LI]' \(20000\)>$") + self.assertRegexpMatches(repr(c_longlong.from_param(20000)), r"^<cparam '[liq]' \(20000\)>$") + self.assertRegexpMatches(repr(c_ulonglong.from_param(20000)), r"^<cparam '[LIQ]' \(20000\)>$") + self.assertEqual(repr(c_float.from_param(1.5)), "<cparam 'f' (1.5)>") + self.assertEqual(repr(c_double.from_param(1.5)), "<cparam 'd' (1.5)>") + self.assertEqual(repr(c_double.from_param(1e300)), "<cparam 'd' (1e+300)>") + self.assertRegexpMatches(repr(c_longdouble.from_param(1.5)), r"^<cparam ('d' \(1.5\)|'g' at 0x[A-Fa-f0-9]+)>$") + self.assertRegexpMatches(repr(c_char_p.from_param(b'hihi')), "^<cparam 'z' \(0x[A-Fa-f0-9]+\)>$") + self.assertRegexpMatches(repr(c_wchar_p.from_param('hihi')), "^<cparam 'Z' \(0x[A-Fa-f0-9]+\)>$") + self.assertRegexpMatches(repr(c_void_p.from_param(0x12)), r"^<cparam 'P' \(0x0*12\)>$") + ################################################################ if __name__ == '__main__':
51.525424
120
0.587171
e1c1bbfefae2fb9a99ece53845e322214f25de58
963
py
Python
src/onegov/wtfs/forms/daily_list.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/wtfs/forms/daily_list.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/wtfs/forms/daily_list.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from datetime import date from onegov.form import Form from onegov.wtfs import _ from onegov.wtfs.models import DailyListBoxes from onegov.wtfs.models import DailyListBoxesAndForms from wtforms import RadioField from wtforms.fields.html5 import DateField from wtforms.validators import InputRequired class DailyListSelectionForm(Form): date = DateField( label=_("Date"), validators=[InputRequired()], default=date.today ) type = RadioField( label=_("Daily list"), choices=[ ('boxes', _("Boxes")), ('boxes_and_forms', _("Boxes and forms")), ], validators=[InputRequired()], default='boxes' ) def get_model(self): if self.type.data == 'boxes': return DailyListBoxes(self.request.session, self.date.data) if self.type.data == 'boxes_and_forms': return DailyListBoxesAndForms(self.request.session, self.date.data)
28.323529
79
0.659398
3d5174f2a4cfda47eefc6a675bad3294c304b4a9
4,130
py
Python
Session01_MLOPs_Introduction_and_Version_Control/train.py
garima-mahato/TSAI_EMLO1.0
f1478572a20988296831e70d6cf1dac9b36e7573
[ "Apache-2.0" ]
null
null
null
Session01_MLOPs_Introduction_and_Version_Control/train.py
garima-mahato/TSAI_EMLO1.0
f1478572a20988296831e70d6cf1dac9b36e7573
[ "Apache-2.0" ]
null
null
null
Session01_MLOPs_Introduction_and_Version_Control/train.py
garima-mahato/TSAI_EMLO1.0
f1478572a20988296831e70d6cf1dac9b36e7573
[ "Apache-2.0" ]
null
null
null
'''This script goes along the blog post "Building powerful image classification models using very little data" from blog.keras.io. In our example we will be using data that can be downloaded at: https://www.kaggle.com/tongpython/cat-and-dog In our setup, it expects: - a data/ folder - train/ and validation/ subfolders inside data/ - cats/ and dogs/ subfolders inside train/ and validation/ - put the cat pictures index 0-X in data/train/cats - put the cat pictures index 1000-1400 in data/validation/cats - put the dogs pictures index 0-X in data/train/dogs - put the dog pictures index 1000-1400 in data/validation/dogs We have X training examples for each class, and 400 validation examples for each class. In summary, this is our directory structure: ``` data/ train/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... validation/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... ``` ''' import numpy as np import sys import os from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dropout, Flatten, Dense from tensorflow.keras import applications from tensorflow.keras.callbacks import CSVLogger from tqdm.keras import TqdmCallback pathname = os.path.dirname(sys.argv[0]) path = os.path.abspath(pathname) # dimensions of our images. img_width, img_height = 150, 150 top_model_weights_path = 'model.h5' train_data_dir = os.path.join('data', 'train') validation_data_dir = os.path.join('data', 'validation') cats_train_path = os.path.join(path, train_data_dir, 'cats') nb_train_samples = 2 * len([name for name in os.listdir(cats_train_path) if os.path.isfile( os.path.join(cats_train_path, name))]) nb_validation_samples = 800 epochs = 10 batch_size = 10 def save_bottlebeck_features(): datagen = ImageDataGenerator(rescale=1. / 255) # build the VGG16 network model = applications.VGG16(include_top=False, weights='imagenet') generator = datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) bottleneck_features_train = model.predict_generator( generator, nb_train_samples // batch_size) np.save(open('bottleneck_features_train.npy', 'wb'), bottleneck_features_train) generator = datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) bottleneck_features_validation = model.predict_generator( generator, nb_validation_samples // batch_size) np.save(open('bottleneck_features_validation.npy', 'wb'), bottleneck_features_validation) def train_top_model(): train_data = np.load(open('bottleneck_features_train.npy', 'rb')) train_labels = np.array( [0] * (int(nb_train_samples / 2)) + [1] * (int(nb_train_samples / 2))) validation_data = np.load(open('bottleneck_features_validation.npy', 'rb')) validation_labels = np.array( [0] * (int(nb_validation_samples / 2)) + [1] * (int(nb_validation_samples / 2))) model = Sequential() model.add(Flatten(input_shape=train_data.shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(validation_data, validation_labels), verbose=0, callbacks=[TqdmCallback(), CSVLogger("metrics.csv")]) model.save_weights(top_model_weights_path) save_bottlebeck_features() train_top_model()
32.015504
79
0.676513
62ec2f94cbcbdd78f620bbef2daa3608432ad829
29,618
py
Python
Contrib-Inspur/openbmc/poky/scripts/lib/devtool/upgrade.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
5
2019-11-11T07:57:26.000Z
2022-03-28T08:26:53.000Z
Contrib-Inspur/openbmc/poky/scripts/lib/devtool/upgrade.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
3
2019-09-05T21:47:07.000Z
2019-09-17T18:10:45.000Z
Contrib-Inspur/openbmc/poky/scripts/lib/devtool/upgrade.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
11
2019-07-20T00:16:32.000Z
2022-01-11T14:17:48.000Z
# Development tool - upgrade command plugin # # Copyright (C) 2014-2017 Intel Corporation # # SPDX-License-Identifier: GPL-2.0-only # """Devtool upgrade plugin""" import os import sys import re import shutil import tempfile import logging import argparse import scriptutils import errno import bb devtool_path = os.path.dirname(os.path.realpath(__file__)) + '/../../../meta/lib' sys.path = sys.path + [devtool_path] import oe.recipeutils from devtool import standard from devtool import exec_build_env_command, setup_tinfoil, DevtoolError, parse_recipe, use_external_build, update_unlockedsigs, check_prerelease_version logger = logging.getLogger('devtool') def _run(cmd, cwd=''): logger.debug("Running command %s> %s" % (cwd,cmd)) return bb.process.run('%s' % cmd, cwd=cwd) def _get_srctree(tmpdir): srctree = tmpdir dirs = os.listdir(tmpdir) if len(dirs) == 1: srctree = os.path.join(tmpdir, dirs[0]) return srctree def _copy_source_code(orig, dest): for path in standard._ls_tree(orig): dest_dir = os.path.join(dest, os.path.dirname(path)) bb.utils.mkdirhier(dest_dir) dest_path = os.path.join(dest, path) shutil.move(os.path.join(orig, path), dest_path) def _remove_patch_dirs(recipefolder): for root, dirs, files in os.walk(recipefolder): for d in dirs: shutil.rmtree(os.path.join(root,d)) def _recipe_contains(rd, var): rf = rd.getVar('FILE') varfiles = oe.recipeutils.get_var_files(rf, [var], rd) for var, fn in varfiles.items(): if fn and fn.startswith(os.path.dirname(rf) + os.sep): return True return False def _rename_recipe_dirs(oldpv, newpv, path): for root, dirs, files in os.walk(path): # Rename directories with the version in their name for olddir in dirs: if olddir.find(oldpv) != -1: newdir = olddir.replace(oldpv, newpv) if olddir != newdir: shutil.move(os.path.join(path, olddir), os.path.join(path, newdir)) # Rename any inc files with the version in their name (unusual, but possible) for oldfile in files: if oldfile.endswith('.inc'): if oldfile.find(oldpv) != -1: newfile = oldfile.replace(oldpv, newpv) if oldfile != newfile: os.rename(os.path.join(path, oldfile), os.path.join(path, newfile)) def _rename_recipe_file(oldrecipe, bpn, oldpv, newpv, path): oldrecipe = os.path.basename(oldrecipe) if oldrecipe.endswith('_%s.bb' % oldpv): newrecipe = '%s_%s.bb' % (bpn, newpv) if oldrecipe != newrecipe: shutil.move(os.path.join(path, oldrecipe), os.path.join(path, newrecipe)) else: newrecipe = oldrecipe return os.path.join(path, newrecipe) def _rename_recipe_files(oldrecipe, bpn, oldpv, newpv, path): _rename_recipe_dirs(oldpv, newpv, path) return _rename_recipe_file(oldrecipe, bpn, oldpv, newpv, path) def _write_append(rc, srctree, same_dir, no_same_dir, rev, copied, workspace, d): """Writes an append file""" if not os.path.exists(rc): raise DevtoolError("bbappend not created because %s does not exist" % rc) appendpath = os.path.join(workspace, 'appends') if not os.path.exists(appendpath): bb.utils.mkdirhier(appendpath) brf = os.path.basename(os.path.splitext(rc)[0]) # rc basename srctree = os.path.abspath(srctree) pn = d.getVar('PN') af = os.path.join(appendpath, '%s.bbappend' % brf) with open(af, 'w') as f: f.write('FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"\n\n') f.write('inherit externalsrc\n') f.write(('# NOTE: We use pn- overrides here to avoid affecting' 'multiple variants in the case where the recipe uses BBCLASSEXTEND\n')) f.write('EXTERNALSRC_pn-%s = "%s"\n' % (pn, srctree)) b_is_s = use_external_build(same_dir, no_same_dir, d) if b_is_s: f.write('EXTERNALSRC_BUILD_pn-%s = "%s"\n' % (pn, srctree)) f.write('\n') if rev: f.write('# initial_rev: %s\n' % rev) if copied: f.write('# original_path: %s\n' % os.path.dirname(d.getVar('FILE'))) f.write('# original_files: %s\n' % ' '.join(copied)) return af def _cleanup_on_error(rf, srctree): rfp = os.path.split(rf)[0] # recipe folder rfpp = os.path.split(rfp)[0] # recipes folder if os.path.exists(rfp): shutil.rmtree(b) if not len(os.listdir(rfpp)): os.rmdir(rfpp) srctree = os.path.abspath(srctree) if os.path.exists(srctree): shutil.rmtree(srctree) def _upgrade_error(e, rf, srctree): if rf: cleanup_on_error(rf, srctree) logger.error(e) raise DevtoolError(e) def _get_uri(rd): srcuris = rd.getVar('SRC_URI').split() if not len(srcuris): raise DevtoolError('SRC_URI not found on recipe') # Get first non-local entry in SRC_URI - usually by convention it's # the first entry, but not always! srcuri = None for entry in srcuris: if not entry.startswith('file://'): srcuri = entry break if not srcuri: raise DevtoolError('Unable to find non-local entry in SRC_URI') srcrev = '${AUTOREV}' if '://' in srcuri: # Fetch a URL rev_re = re.compile(';rev=([^;]+)') res = rev_re.search(srcuri) if res: srcrev = res.group(1) srcuri = rev_re.sub('', srcuri) return srcuri, srcrev def _extract_new_source(newpv, srctree, no_patch, srcrev, srcbranch, branch, keep_temp, tinfoil, rd): """Extract sources of a recipe with a new version""" def __run(cmd): """Simple wrapper which calls _run with srctree as cwd""" return _run(cmd, srctree) crd = rd.createCopy() pv = crd.getVar('PV') crd.setVar('PV', newpv) tmpsrctree = None uri, rev = _get_uri(crd) if srcrev: rev = srcrev if uri.startswith('git://'): __run('git fetch') __run('git checkout %s' % rev) __run('git tag -f devtool-base-new') md5 = None sha256 = None _, _, _, _, _, params = bb.fetch2.decodeurl(uri) srcsubdir_rel = params.get('destsuffix', 'git') if not srcbranch: check_branch, check_branch_err = __run('git branch -r --contains %s' % srcrev) get_branch = [x.strip() for x in check_branch.splitlines()] # Remove HEAD reference point and drop remote prefix get_branch = [x.split('/', 1)[1] for x in get_branch if not x.startswith('origin/HEAD')] if 'master' in get_branch: # If it is master, we do not need to append 'branch=master' as this is default. # Even with the case where get_branch has multiple objects, if 'master' is one # of them, we should default take from 'master' srcbranch = '' elif len(get_branch) == 1: # If 'master' isn't in get_branch and get_branch contains only ONE object, then store result into 'srcbranch' srcbranch = get_branch[0] else: # If get_branch contains more than one objects, then display error and exit. mbrch = '\n ' + '\n '.join(get_branch) raise DevtoolError('Revision %s was found on multiple branches: %s\nPlease provide the correct branch in the devtool command with "--srcbranch" or "-B" option.' % (srcrev, mbrch)) else: __run('git checkout devtool-base -b devtool-%s' % newpv) tmpdir = tempfile.mkdtemp(prefix='devtool') try: checksums, ftmpdir = scriptutils.fetch_url(tinfoil, uri, rev, tmpdir, logger, preserve_tmp=keep_temp) except scriptutils.FetchUrlFailure as e: raise DevtoolError(e) if ftmpdir and keep_temp: logger.info('Fetch temp directory is %s' % ftmpdir) md5 = checksums['md5sum'] sha256 = checksums['sha256sum'] tmpsrctree = _get_srctree(tmpdir) srctree = os.path.abspath(srctree) srcsubdir_rel = os.path.relpath(tmpsrctree, tmpdir) # Delete all sources so we ensure no stray files are left over for item in os.listdir(srctree): if item in ['.git', 'oe-local-files']: continue itempath = os.path.join(srctree, item) if os.path.isdir(itempath): shutil.rmtree(itempath) else: os.remove(itempath) # Copy in new ones _copy_source_code(tmpsrctree, srctree) (stdout,_) = __run('git ls-files --modified --others --exclude-standard') filelist = stdout.splitlines() pbar = bb.ui.knotty.BBProgress('Adding changed files', len(filelist)) pbar.start() batchsize = 100 for i in range(0, len(filelist), batchsize): batch = filelist[i:i+batchsize] __run('git add -A %s' % ' '.join(['"%s"' % item for item in batch])) pbar.update(i) pbar.finish() useroptions = [] oe.patch.GitApplyTree.gitCommandUserOptions(useroptions, d=rd) __run('git %s commit -q -m "Commit of upstream changes at version %s" --allow-empty' % (' '.join(useroptions), newpv)) __run('git tag -f devtool-base-%s' % newpv) (stdout, _) = __run('git rev-parse HEAD') rev = stdout.rstrip() if no_patch: patches = oe.recipeutils.get_recipe_patches(crd) if patches: logger.warning('By user choice, the following patches will NOT be applied to the new source tree:\n %s' % '\n '.join([os.path.basename(patch) for patch in patches])) else: __run('git checkout devtool-patched -b %s' % branch) skiptag = False try: __run('git rebase %s' % rev) except bb.process.ExecutionError as e: skiptag = True if 'conflict' in e.stdout: logger.warning('Command \'%s\' failed:\n%s\n\nYou will need to resolve conflicts in order to complete the upgrade.' % (e.command, e.stdout.rstrip())) else: logger.warning('Command \'%s\' failed:\n%s' % (e.command, e.stdout)) if not skiptag: if uri.startswith('git://'): suffix = 'new' else: suffix = newpv __run('git tag -f devtool-patched-%s' % suffix) if tmpsrctree: if keep_temp: logger.info('Preserving temporary directory %s' % tmpsrctree) else: shutil.rmtree(tmpsrctree) return (rev, md5, sha256, srcbranch, srcsubdir_rel) def _add_license_diff_to_recipe(path, diff): notice_text = """# FIXME: the LIC_FILES_CHKSUM values have been updated by 'devtool upgrade'. # The following is the difference between the old and the new license text. # Please update the LICENSE value if needed, and summarize the changes in # the commit message via 'License-Update:' tag. # (example: 'License-Update: copyright years updated.') # # The changes: # """ commented_diff = "\n".join(["# {}".format(l) for l in diff.split('\n')]) with open(path, 'rb') as f: orig_content = f.read() with open(path, 'wb') as f: f.write(notice_text.encode()) f.write(commented_diff.encode()) f.write("\n#\n\n".encode()) f.write(orig_content) def _create_new_recipe(newpv, md5, sha256, srcrev, srcbranch, srcsubdir_old, srcsubdir_new, workspace, tinfoil, rd, license_diff, new_licenses): """Creates the new recipe under workspace""" bpn = rd.getVar('BPN') path = os.path.join(workspace, 'recipes', bpn) bb.utils.mkdirhier(path) copied, _ = oe.recipeutils.copy_recipe_files(rd, path, all_variants=True) if not copied: raise DevtoolError('Internal error - no files were copied for recipe %s' % bpn) logger.debug('Copied %s to %s' % (copied, path)) oldpv = rd.getVar('PV') if not newpv: newpv = oldpv origpath = rd.getVar('FILE') fullpath = _rename_recipe_files(origpath, bpn, oldpv, newpv, path) logger.debug('Upgraded %s => %s' % (origpath, fullpath)) newvalues = {} if _recipe_contains(rd, 'PV') and newpv != oldpv: newvalues['PV'] = newpv if srcrev: newvalues['SRCREV'] = srcrev if srcbranch: src_uri = oe.recipeutils.split_var_value(rd.getVar('SRC_URI', False) or '') changed = False replacing = True new_src_uri = [] for entry in src_uri: scheme, network, path, user, passwd, params = bb.fetch2.decodeurl(entry) if replacing and scheme in ['git', 'gitsm']: branch = params.get('branch', 'master') if rd.expand(branch) != srcbranch: # Handle case where branch is set through a variable res = re.match(r'\$\{([^}@]+)\}', branch) if res: newvalues[res.group(1)] = srcbranch # We know we won't change SRC_URI now, so break out break else: params['branch'] = srcbranch entry = bb.fetch2.encodeurl((scheme, network, path, user, passwd, params)) changed = True replacing = False new_src_uri.append(entry) if changed: newvalues['SRC_URI'] = ' '.join(new_src_uri) newvalues['PR'] = None # Work out which SRC_URI entries have changed in case the entry uses a name crd = rd.createCopy() crd.setVar('PV', newpv) for var, value in newvalues.items(): crd.setVar(var, value) old_src_uri = (rd.getVar('SRC_URI') or '').split() new_src_uri = (crd.getVar('SRC_URI') or '').split() newnames = [] addnames = [] for newentry in new_src_uri: _, _, _, _, _, params = bb.fetch2.decodeurl(newentry) if 'name' in params: newnames.append(params['name']) if newentry not in old_src_uri: addnames.append(params['name']) # Find what's been set in the original recipe oldnames = [] noname = False for varflag in rd.getVarFlags('SRC_URI'): if varflag.endswith(('.md5sum', '.sha256sum')): name = varflag.rsplit('.', 1)[0] if name not in oldnames: oldnames.append(name) elif varflag in ['md5sum', 'sha256sum']: noname = True # Even if SRC_URI has named entries it doesn't have to actually use the name if noname and addnames and addnames[0] not in oldnames: addnames = [] # Drop any old names (the name actually might include ${PV}) for name in oldnames: if name not in newnames: newvalues['SRC_URI[%s.md5sum]' % name] = None newvalues['SRC_URI[%s.sha256sum]' % name] = None if md5 and sha256: if addnames: nameprefix = '%s.' % addnames[0] else: nameprefix = '' newvalues['SRC_URI[%smd5sum]' % nameprefix] = md5 newvalues['SRC_URI[%ssha256sum]' % nameprefix] = sha256 if srcsubdir_new != srcsubdir_old: s_subdir_old = os.path.relpath(os.path.abspath(rd.getVar('S')), rd.getVar('WORKDIR')) s_subdir_new = os.path.relpath(os.path.abspath(crd.getVar('S')), crd.getVar('WORKDIR')) if srcsubdir_old == s_subdir_old and srcsubdir_new != s_subdir_new: # Subdir for old extracted source matches what S points to (it should!) # but subdir for new extracted source doesn't match what S will be newvalues['S'] = '${WORKDIR}/%s' % srcsubdir_new.replace(newpv, '${PV}') if crd.expand(newvalues['S']) == crd.expand('${WORKDIR}/${BP}'): # It's the default, drop it # FIXME what if S is being set in a .inc? newvalues['S'] = None logger.info('Source subdirectory has changed, dropping S value since it now matches the default ("${WORKDIR}/${BP}")') else: logger.info('Source subdirectory has changed, updating S value') if license_diff: newlicchksum = " ".join(["file://{}".format(l['path']) + (";beginline={}".format(l['beginline']) if l['beginline'] else "") + (";endline={}".format(l['endline']) if l['endline'] else "") + (";md5={}".format(l['actual_md5'])) for l in new_licenses]) newvalues["LIC_FILES_CHKSUM"] = newlicchksum _add_license_diff_to_recipe(fullpath, license_diff) rd = tinfoil.parse_recipe_file(fullpath, False) oe.recipeutils.patch_recipe(rd, fullpath, newvalues) return fullpath, copied def _check_git_config(): def getconfig(name): try: value = bb.process.run('git config --global %s' % name)[0].strip() except bb.process.ExecutionError as e: if e.exitcode == 1: value = None else: raise return value username = getconfig('user.name') useremail = getconfig('user.email') configerr = [] if not username: configerr.append('Please set your name using:\n git config --global user.name') if not useremail: configerr.append('Please set your email using:\n git config --global user.email') if configerr: raise DevtoolError('Your git configuration is incomplete which will prevent rebases from working:\n' + '\n'.join(configerr)) def _extract_licenses(srcpath, recipe_licenses): licenses = [] for url in recipe_licenses.split(): license = {} (type, host, path, user, pswd, parm) = bb.fetch.decodeurl(url) license['path'] = path license['md5'] = parm.get('md5', '') license['beginline'], license['endline'] = 0, 0 if 'beginline' in parm: license['beginline'] = int(parm['beginline']) if 'endline' in parm: license['endline'] = int(parm['endline']) license['text'] = [] with open(os.path.join(srcpath, path), 'rb') as f: import hashlib actual_md5 = hashlib.md5() lineno = 0 for line in f: lineno += 1 if (lineno >= license['beginline']) and ((lineno <= license['endline']) or not license['endline']): license['text'].append(line.decode(errors='ignore')) actual_md5.update(line) license['actual_md5'] = actual_md5.hexdigest() licenses.append(license) return licenses def _generate_license_diff(old_licenses, new_licenses): need_diff = False for l in new_licenses: if l['md5'] != l['actual_md5']: need_diff = True break if need_diff == False: return None import difflib diff = '' for old, new in zip(old_licenses, new_licenses): for line in difflib.unified_diff(old['text'], new['text'], old['path'], new['path']): diff = diff + line return diff def upgrade(args, config, basepath, workspace): """Entry point for the devtool 'upgrade' subcommand""" if args.recipename in workspace: raise DevtoolError("recipe %s is already in your workspace" % args.recipename) if args.srcbranch and not args.srcrev: raise DevtoolError("If you specify --srcbranch/-B then you must use --srcrev/-S to specify the revision" % args.recipename) _check_git_config() tinfoil = setup_tinfoil(basepath=basepath, tracking=True) try: rd = parse_recipe(config, tinfoil, args.recipename, True) if not rd: return 1 pn = rd.getVar('PN') if pn != args.recipename: logger.info('Mapping %s to %s' % (args.recipename, pn)) if pn in workspace: raise DevtoolError("recipe %s is already in your workspace" % pn) if args.srctree: srctree = os.path.abspath(args.srctree) else: srctree = standard.get_default_srctree(config, pn) # try to automatically discover latest version and revision if not provided on command line if not args.version and not args.srcrev: version_info = oe.recipeutils.get_recipe_upstream_version(rd) if version_info['version'] and not version_info['version'].endswith("new-commits-available"): args.version = version_info['version'] if version_info['revision']: args.srcrev = version_info['revision'] if not args.version and not args.srcrev: raise DevtoolError("Automatic discovery of latest version/revision failed - you must provide a version using the --version/-V option, or for recipes that fetch from an SCM such as git, the --srcrev/-S option.") standard._check_compatible_recipe(pn, rd) old_srcrev = rd.getVar('SRCREV') if old_srcrev == 'INVALID': old_srcrev = None if old_srcrev and not args.srcrev: raise DevtoolError("Recipe specifies a SRCREV value; you must specify a new one when upgrading") old_ver = rd.getVar('PV') if old_ver == args.version and old_srcrev == args.srcrev: raise DevtoolError("Current and upgrade versions are the same version") if args.version: if bb.utils.vercmp_string(args.version, old_ver) < 0: logger.warning('Upgrade version %s compares as less than the current version %s. If you are using a package feed for on-target upgrades or providing this recipe for general consumption, then you should increment PE in the recipe (or if there is no current PE value set, set it to "1")' % (args.version, old_ver)) check_prerelease_version(args.version, 'devtool upgrade') rf = None license_diff = None try: logger.info('Extracting current version source...') rev1, srcsubdir1 = standard._extract_source(srctree, False, 'devtool-orig', False, config, basepath, workspace, args.fixed_setup, rd, tinfoil, no_overrides=args.no_overrides) old_licenses = _extract_licenses(srctree, rd.getVar('LIC_FILES_CHKSUM')) logger.info('Extracting upgraded version source...') rev2, md5, sha256, srcbranch, srcsubdir2 = _extract_new_source(args.version, srctree, args.no_patch, args.srcrev, args.srcbranch, args.branch, args.keep_temp, tinfoil, rd) new_licenses = _extract_licenses(srctree, rd.getVar('LIC_FILES_CHKSUM')) license_diff = _generate_license_diff(old_licenses, new_licenses) rf, copied = _create_new_recipe(args.version, md5, sha256, args.srcrev, srcbranch, srcsubdir1, srcsubdir2, config.workspace_path, tinfoil, rd, license_diff, new_licenses) except bb.process.CmdError as e: _upgrade_error(e, rf, srctree) except DevtoolError as e: _upgrade_error(e, rf, srctree) standard._add_md5(config, pn, os.path.dirname(rf)) af = _write_append(rf, srctree, args.same_dir, args.no_same_dir, rev2, copied, config.workspace_path, rd) standard._add_md5(config, pn, af) update_unlockedsigs(basepath, workspace, args.fixed_setup, [pn]) logger.info('Upgraded source extracted to %s' % srctree) logger.info('New recipe is %s' % rf) if license_diff: logger.info('License checksums have been updated in the new recipe; please refer to it for the difference between the old and the new license texts.') finally: tinfoil.shutdown() return 0 def latest_version(args, config, basepath, workspace): """Entry point for the devtool 'latest_version' subcommand""" tinfoil = setup_tinfoil(basepath=basepath, tracking=True) try: rd = parse_recipe(config, tinfoil, args.recipename, True) if not rd: return 1 version_info = oe.recipeutils.get_recipe_upstream_version(rd) # "new-commits-available" is an indication that upstream never issues version tags if not version_info['version'].endswith("new-commits-available"): logger.info("Current version: {}".format(version_info['current_version'])) logger.info("Latest version: {}".format(version_info['version'])) if version_info['revision']: logger.info("Latest version's commit: {}".format(version_info['revision'])) else: logger.info("Latest commit: {}".format(version_info['revision'])) finally: tinfoil.shutdown() return 0 def check_upgrade_status(args, config, basepath, workspace): if not args.recipe: logger.info("Checking the upstream status for all recipes may take a few minutes") results = oe.recipeutils.get_recipe_upgrade_status(args.recipe) for result in results: # pn, update_status, current, latest, maintainer, latest_commit, no_update_reason if args.all or result[1] != 'MATCH': logger.info("{:25} {:15} {:15} {} {} {}".format( result[0], result[2], result[1] if result[1] != 'UPDATE' else (result[3] if not result[3].endswith("new-commits-available") else "new commits"), result[4], result[5] if result[5] != 'N/A' else "", "cannot be updated due to: %s" %(result[6]) if result[6] else "")) def register_commands(subparsers, context): """Register devtool subcommands from this plugin""" defsrctree = standard.get_default_srctree(context.config) parser_upgrade = subparsers.add_parser('upgrade', help='Upgrade an existing recipe', description='Upgrades an existing recipe to a new upstream version. Puts the upgraded recipe file into the workspace along with any associated files, and extracts the source tree to a specified location (in case patches need rebasing or adding to as a result of the upgrade).', group='starting') parser_upgrade.add_argument('recipename', help='Name of recipe to upgrade (just name - no version, path or extension)') parser_upgrade.add_argument('srctree', nargs='?', help='Path to where to extract the source tree. If not specified, a subdirectory of %s will be used.' % defsrctree) parser_upgrade.add_argument('--version', '-V', help='Version to upgrade to (PV). If omitted, latest upstream version will be determined and used, if possible.') parser_upgrade.add_argument('--srcrev', '-S', help='Source revision to upgrade to (useful when fetching from an SCM such as git)') parser_upgrade.add_argument('--srcbranch', '-B', help='Branch in source repository containing the revision to use (if fetching from an SCM such as git)') parser_upgrade.add_argument('--branch', '-b', default="devtool", help='Name for new development branch to checkout (default "%(default)s")') parser_upgrade.add_argument('--no-patch', action="store_true", help='Do not apply patches from the recipe to the new source code') parser_upgrade.add_argument('--no-overrides', '-O', action="store_true", help='Do not create branches for other override configurations') group = parser_upgrade.add_mutually_exclusive_group() group.add_argument('--same-dir', '-s', help='Build in same directory as source', action="store_true") group.add_argument('--no-same-dir', help='Force build in a separate build directory', action="store_true") parser_upgrade.add_argument('--keep-temp', action="store_true", help='Keep temporary directory (for debugging)') parser_upgrade.set_defaults(func=upgrade, fixed_setup=context.fixed_setup) parser_latest_version = subparsers.add_parser('latest-version', help='Report the latest version of an existing recipe', description='Queries the upstream server for what the latest upstream release is (for git, tags are checked, for tarballs, a list of them is obtained, and one with the highest version number is reported)', group='info') parser_latest_version.add_argument('recipename', help='Name of recipe to query (just name - no version, path or extension)') parser_latest_version.set_defaults(func=latest_version) parser_check_upgrade_status = subparsers.add_parser('check-upgrade-status', help="Report upgradability for multiple (or all) recipes", description="Prints a table of recipes together with versions currently provided by recipes, and latest upstream versions, when there is a later version available", group='info') parser_check_upgrade_status.add_argument('recipe', help='Name of the recipe to report (omit to report upgrade info for all recipes)', nargs='*') parser_check_upgrade_status.add_argument('--all', '-a', help='Show all recipes, not just recipes needing upgrade', action="store_true") parser_check_upgrade_status.set_defaults(func=check_upgrade_status)
46.278125
328
0.616112
9a7b4d402db24796ec56540c1cb6044fc9897249
568
py
Python
leetcode/047-Permutations-II/Perm2_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2017-05-18T06:11:02.000Z
2017-05-18T06:11:02.000Z
leetcode/047-Permutations-II/Perm2_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
leetcode/047-Permutations-II/Perm2_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
class Solution: # @param {integer[]} nums # @return {integer[][]} def permuteUnique(self, nums): if len(nums) == 0: return nums if len(nums) == 1: return [nums] res = [] bag = set() for i in range(len(nums)): if nums[i] not in bag: tmp = nums[:] head = tmp.pop(i) tail = self.permuteUnique(tmp) [t.insert(0, head) for t in tail] res.extend(tail) bag.add(nums[i]) return res
25.818182
49
0.431338
9adb33ebc25743fa7aa526d82eedcac7bf67689a
3,450
py
Python
RDS/circle3_central_services/research_manager/src/tests/test_port.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
10
2020-06-24T08:22:24.000Z
2022-01-13T16:17:36.000Z
RDS/circle3_central_services/research_manager/src/tests/test_port.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
78
2020-01-23T14:32:06.000Z
2022-03-07T14:11:16.000Z
RDS/circle3_central_services/research_manager/src/tests/test_port.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
1
2020-06-24T08:33:48.000Z
2020-06-24T08:33:48.000Z
import unittest from lib.Port import Port class Test_Port(unittest.TestCase): def test_port_init(self): portSmall = Port("port-owncloud") portOwncloud = Port("port-owncloud", fileStorage=True) portInvenio = Port("port-invenio", fileStorage=True, metadata=True) expected = { "port": "port-owncloud", "properties": [] } self.assertEqual(portSmall.getDict(), expected) expected = { "port": "port-owncloud", "properties": [ {"portType": "fileStorage", "value": True} ] } self.assertEqual(portOwncloud.getDict(), expected) expected = { "port": "port-invenio", "properties": [ {"portType": "fileStorage", "value": True}, {"portType": "metadata", "value": True}, ] } self.assertEqual(portInvenio.getDict(), expected) def test_port_change(self): portOwncloud = Port("port-owncloud") expected = { "port": "port-owncloud", "properties": [] } self.assertEqual(portOwncloud.getDict(), expected) self.assertEqual(portOwncloud, Port("port-owncloud")) with self.assertRaises(ValueError): portOwncloud.setProperty(1, True) portOwncloud.setProperty("fileStorage", 1) self.assertFalse(portOwncloud.setProperty("not-found", True)) self.assertTrue(portOwncloud.setProperty("fileStorage", True)) expected = { "port": "port-owncloud", "properties": [ {"portType": "fileStorage", "value": True} ] } self.assertEqual(portOwncloud.getDict(), expected) self.assertEqual(portOwncloud, Port("port-owncloud", fileStorage=True)) portOwncloud.setProperty("metadata", True) expected = { "port": "port-owncloud", "properties": [ {"portType": "fileStorage", "value": True}, {"portType": "metadata", "value": True} ] } self.assertEqual(portOwncloud.getDict(), expected) self.assertEqual(portOwncloud, Port( "port-owncloud", fileStorage=True, metadata=True)) def test_port_customProperties(self): custom = [ { "key": "serviceProjectId", "value": "12345" } ] expected = { "port": "port-owncloud", "properties": [ { "portType": "customProperties", "value": custom } ] } portOwncloud = Port("port-owncloud", customProperties=custom) self.assertEqual(portOwncloud.getDict(), expected) expected["port"] = "port-zenodo" portZenodo = Port("port-zenodo") portZenodo.setProperty("customProperties", custom) self.assertEqual(portZenodo.getDict(), expected) self.assertEqual(portZenodo, Port.fromDict(portZenodo.getDict())) self.assertNotEqual(portOwncloud, Port.fromDict(portZenodo.getDict())) self.assertNotEqual(Port("port-zenodo"), Port.fromDict(portZenodo.getDict()))
31.081081
79
0.522899
7738a2201c4cade1bc245480457c84ed590c0f74
4,353
py
Python
scripts/minimax_plain_depth_analysis.py
lschmidt2507/Facharbeit2022
a40cb76302d2e569f7714e3bf9472206a3eaa253
[ "CC0-1.0" ]
null
null
null
scripts/minimax_plain_depth_analysis.py
lschmidt2507/Facharbeit2022
a40cb76302d2e569f7714e3bf9472206a3eaa253
[ "CC0-1.0" ]
null
null
null
scripts/minimax_plain_depth_analysis.py
lschmidt2507/Facharbeit2022
a40cb76302d2e569f7714e3bf9472206a3eaa253
[ "CC0-1.0" ]
null
null
null
#minimax_plain_depth_analysis.py import threading import time import math from game_handler import printGame,generateTilesInfo,countPoints,readBoard,makeMove,undoMove,possibleMoves startdepth=1 maxTime=30 global delayRunning # funtion for stopping computation after a certain delay(is called using threading.timer) def stopComputation(): global delayRunning delayRunning=False print("done!") #actual minimax algorithm def minimax(depth,tilesInfo,player,secLastX,secLastY,lastX,lastY,initcall): global game global board global delayRunning moves=possibleMoves(secLastX,secLastY,lastX,lastY) totalEvaluations=0 # check if max depth reached or final game state and return evaluation if true if(depth==0 or len(moves)==0): # count point while adding decimal places to prefer longer games as the opponent has more opportunities to fail + return total evaluations 1 if(initcall): return countPoints(tilesInfo)+depth/100,0,1 else: return countPoints(tilesInfo)+depth/100,1 #check if delay running if(not delayRunning): if(initcall): return 0,0,0 else: return 0,0 else: # maximizing player's turn if(player=="max"): maxEval=-1000 #try every possible move for move in moves: # make move and evaluate by calling recursively makeMove(player,move) evalu, evaluationNum=minimax(depth-1,tilesInfo,"min",lastX,lastY,move[0],move[1],False) totalEvaluations+=evaluationNum # undo move undoMove(move) # update bestmove and best evaluation if(evalu>maxEval): maxEval=evalu bestmove=move # if initial call return recommended move and check if delayrunning if(initcall): if(delayRunning): return maxEval,bestmove, totalEvaluations else: return 0,0,0 else: return maxEval, totalEvaluations else: #min player's turn minEval=1000 #try every possible move for move in moves: # make move and evaluate by calling recursively makeMove(player,move) evalu,evaluationNum=minimax(depth-1,tilesInfo,"max",lastX,lastY,move[0],move[1],False) totalEvaluations+=evaluationNum # undo move undoMove(move) # update bestmove and best evaluation if(evalu<minEval): minEval=evalu bestmove=move # if initial call return recommended move check if delayRunning if(initcall): if(delayRunning): return minEval,bestmove, totalEvaluations else: return 0,0,0 else: return minEval, totalEvaluations # read .board file and intilize global board and game variable readBoard("./board.table") tilesInfo=generateTilesInfo() # make some arbitrary moves makeMove("min",(2,0)) makeMove("max",(2,3)) makeMove("min",(5,3)) makeMove("max",(5,0)) makeMove("min",(3,0)) # set last move data lastX=4 secLastX=4 lastY=3 secLastY=0 #start timer delayRunning=True threading.Timer(maxTime,stopComputation).start() depth=1 # run while time left while(delayRunning): # call minimax with current depth startTime = time.time() tempevalu,tempmove,totalEvaluations = minimax(depth,tilesInfo,"max",secLastX,secLastY,lastX,lastY,True) endTime = time.time() # check if was interrupted(returns 0) if(not tempmove==0): try: print(f"{depth} & {totalEvaluations} & {round(math.exp(math.log(totalEvaluations)/depth),2)} & {round(endTime-startTime,2)} & {round(totalEvaluations/round(endTime-startTime,2),2)}") except Exception as e: print(f"{depth} & {totalEvaluations} & {round(math.exp(math.log(totalEvaluations)/depth),2)} & {round(endTime-startTime,2)} & -") # increase depth depth+=1
35.390244
195
0.599586
f3228f2877394dfb94b3a165dcf99c3a6e3773b4
1,231
py
Python
INBa/2015/Shirlin_V_V/task_7_32.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/Shirlin_V_V/task_7_32.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/Shirlin_V_V/task_7_32.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
#Задание 3. Вариант 32 #Разработайте систему начисления очков для задачи 6, в соответствии с которой игрок получал бы большее количество баллов за меньшее количество попыток. #Ширлин Вячеслав Викторович #29.04.2016 import random print ("Компьютер загадывает рандомно название одного из шести раздновидностей тигров ( Амурский тигр, Бенгальский тигр, Индокитайский тигр, Малайский тигр, Суматранский тигр, Южно-Китайский тигр.") a = [" Амурский тигр", "Бенгальский тигр","Индокитайский тигр", "Малайский тигр", "Суматранский тиг","Южно-Китайский тигр"] b = random.randint(0, 6) i = 0 answer = '' while b != answer: i = i+1 answer = input('Назовите один из шести ?') if i==1 and b == answer: print ('Вы угадали!Ваш балл :100') else : print('К сожалению,Вы не угадали!У Вас осталось 2 попытки!Ваш балл:0') input ("Повторите попытку : ") if i==2 and b == answer: print ('Вы угадали!Ваш балл :50') else : print('К сожалению,Вы не угадали!У Вас осталась 1 попытка!Ваш балл:0') input ("Повторите попытку : ") if i==3 and b == answer: print ('Вы угадали!Ваш балл :25') else : print('К сожалению,Вы не угадали!У Вас больше не осталось попыток!Ваш балл:0') break input ("Нажмите Enter для выхода.")
37.30303
198
0.713241
b260d1bfbe283492c5b38264a3c0ee3b3f52d332
444
py
Python
config.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
config.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
config.py
galyeshua/Index
96e1630efc51d2c03f2d80889dfa1d117155e2ee
[ "MIT" ]
null
null
null
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False BOOTSTRAP_SERVE_LOCAL = True DATA_FILENAME = "data.json" MAX_CONTENT_LENGTH = 100 * 1024 * 1024 # max 100MB UPLOAD_EXTENSIONS = ['.pdf', '.zip'] # Extentions with . before
31.714286
76
0.698198
b26c92e6cded8be8848e5349576722b9c32a73fb
30,130
py
Python
fence/resources/google/validity.py
scottyellis/fence
012ba76a58853169e9ee8e3f44a0dc510f4b2543
[ "Apache-2.0" ]
31
2018-01-05T22:49:33.000Z
2022-02-02T10:30:23.000Z
fence/resources/google/validity.py
scottyellis/fence
012ba76a58853169e9ee8e3f44a0dc510f4b2543
[ "Apache-2.0" ]
737
2017-12-11T17:42:11.000Z
2022-03-29T22:42:52.000Z
fence/resources/google/validity.py
scottyellis/fence
012ba76a58853169e9ee8e3f44a0dc510f4b2543
[ "Apache-2.0" ]
46
2018-02-23T09:04:23.000Z
2022-02-09T18:29:51.000Z
""" Objects with validity checking for Google service account registration. """ from collections import Mapping from fence.errors import NotFound from fence.resources.google.utils import ( get_registered_service_accounts_with_access, get_project_access_from_service_accounts, get_users_from_google_members, get_service_account_ids_from_google_members, is_google_managed_service_account, ) from fence.resources.google.access_utils import ( is_valid_service_account_type, service_account_has_external_access, is_service_account_from_google_project, get_google_project_membership, get_google_project_parent_org, get_google_project_valid_users_and_service_accounts, do_all_users_have_access_to_project, get_project_from_auth_id, get_google_project_number, get_service_account_policy, remove_white_listed_service_account_ids, is_org_whitelisted, is_user_member_of_google_project, is_user_member_of_all_google_projects, ) from cirrus.google_cloud import GoogleCloudManager from cdislogging import get_logger logger = get_logger(__name__) class ValidityInfo(Mapping): """ A representation of validity of an item along with information about the validity. It's a dict-like object which can be evaulated as a boolean value. If the info is false-y, the validity of this object will evaluate to False. CAVEAT: None is allowed and will not make the validity False, this represents a validity check that was NOT run (e.g. we have no information) This means that you can nest ValidityInfo objects and the "valid" status of the parent object will always be updated when adding new validity information. """ def __init__(self, default_validity=True): # innocent until proven guilty, default validity is True self._valid = default_validity self._info = {} def get(self, key, *args): return self._info.get(key, *args) def set(self, key, value): if not value and value is not None: self._valid = False self._info.__setitem__(key, value) def __setitem__(self, key, value): if not value and value is not None: self._valid = False self._info.__setitem__(key, value) def __contains__(self, key): return key in self._info def __iter__(self): for key, value in self._info.items(): yield key, value def __getitem__(self, key): return self._info[key] def __delitem__(self, key): del self._info[key] def __len__(self): return len(self._info) def __bool__(self): return self._valid def __repr__(self): return str(self._info) def __str__(self): return str(self._info) def get_info(self): return self._info class GoogleProjectValidity(ValidityInfo): """ A representation of a Google Project's validity regarding service account registration for access to data. Example Usage and Information: project_validity = ( GoogleProjectValidity( google_project_id='abc123', new_service_account='[email protected]', new_service_account_access=['projectA', 'ProjectB'] ) ) project_validity.check_validity(early_return=False) NOTE: project_validity can be evaluated as if it's a boolean and will be False if ANY of the values in the dict-like structure are False. In other words, a single invalid item will make the whole project invalid. An example of the dict-like structure with validity info is: { 'monitor_has_access': True, 'valid_parent_org': True, 'valid_membership': True, 'new_service_account': { '[email protected]': { 'valid_type': True, 'no_external_access': True, 'owned_by_project': True, 'exists': True }, } 'service_accounts': { '[email protected]': { 'valid_type': None, 'no_external_access': True, 'owned_by_project': True, 'exists': True }, '[email protected]': { 'valid_type': None, 'no_external_access': True, 'owned_by_project': True, 'exists': True } }, 'access': { 'ProjectA': { 'exists': True, 'all_users_have_access': True }, 'ProjectB': { 'exists': True, 'all_users_have_access': True }, } } """ def __init__( self, google_project_id, new_service_account=None, new_service_account_access=None, user_id=None, google_cloud_manager=None, *args, **kwargs ): """ Initialize Args: google_project_id (str): Google project identifier new_service_account (str, optional): an additional service account identifier (ex: email) to include when checking access. You can provide this without actually giving it access to check if access will be valid new_service_account_access (List(str), optional): List of Project.auth_ids to attempt to provide the new service account access to user_id (None, optional): User requesting validation. ONLY pass this if you want to check if the user is a member of this project. """ self.google_project_id = google_project_id self.new_service_account = new_service_account self.new_service_account_access = new_service_account_access or [] self.user_id = user_id self.google_cloud_manager = google_cloud_manager or GoogleCloudManager( google_project_id ) super(GoogleProjectValidity, self).__init__(*args, **kwargs) # setup default values for error information, will get updated in # check_validity self._info["user_has_access"] = None self._info["monitor_has_access"] = None self._info["valid_parent_org"] = None self._info["valid_member_types"] = None self._info["members_exist_in_fence"] = None self._info["new_service_account"] = {} self._info["service_accounts"] = {} self._info["access"] = {} def check_validity(self, early_return=True, db=None): """ Determine whether or not project is valid for registration. If early_return is False, this object will store information about the failure. Args: early_return (bool, optional): Description """ self.google_cloud_manager.open() logger.debug( "Google Project with id: {}, " "new service account requested: {}, project access requested: {}, " "user requesting: {}".format( self.google_project_id, self.new_service_account, self.new_service_account_access, self.user_id, ) ) logger.debug( "Attempting to get project number " "for project id {}".format(self.google_project_id) ) google_project_number = get_google_project_number( self.google_project_id, self.google_cloud_manager ) has_access = bool(google_project_number) self.set("monitor_has_access", has_access) # always early return if we can't access the project if not has_access: logger.warning( "INVALID Fence's Monitoring service account does " "NOT have access in project id {}. Monitor needs access to continue " "checking project validity. Exiting early and determining invalid.".format( self.google_project_id ) ) return logger.debug( "Retrieving project membership " "for project id {}".format(self.google_project_id) ) membership = get_google_project_membership( self.google_project_id, self.google_cloud_manager ) logger.debug( "Project Members: {}".format( str( [ getattr(member, "email_id", "unknown_member_email") for member in membership ] ) ) ) if self.user_id is not None: logger.debug( "Checking that user requesting, {}, is part of " "the Google Project with id {}".format( self.user_id, self.google_project_id ) ) user_has_access = is_user_member_of_google_project( self.user_id, self.google_cloud_manager, membership=membership, db=db ) self.set("user_has_access", user_has_access) if not user_has_access: # always early return if user isn't a member on the project logger.warning( "INVALID User {} " "for project id {}. User is not a member of the project so does not " "have permission on the project.".format( self.user_id, self.google_project_id ) ) return logger.debug( "Retrieving Parent Organization " "for project id {} to make sure it's valid".format(self.google_project_id) ) parent_org = get_google_project_parent_org(self.google_cloud_manager) valid_parent_org = True if parent_org: valid_parent_org = is_org_whitelisted(parent_org) self.set("valid_parent_org", valid_parent_org) if not valid_parent_org: logger.warning( "INVALID Parent Organization {} " "for project id {}. No parent org is allowed unless it's explicitly " "whitelisted in cfg.".format(parent_org, self.google_project_id) ) if early_return: return logger.debug( "Determining if other users and service accounts on " "project id {} are valid.".format(self.google_project_id) ) user_members = None service_account_members = [] try: ( user_members, service_account_members, ) = get_google_project_valid_users_and_service_accounts( self.google_project_id, self.google_cloud_manager, membership=membership ) self.set("valid_member_types", True) except Exception: self.set("valid_member_types", False) logger.warning( "INVALID users and/or service accounts (SAs) on " "project id {}.".format(self.google_project_id) ) if early_return: return logger.debug("Determining if valid users exist in fence.") # if we have valid members, we can check if they exist in fence users_in_project = None if user_members is not None: try: users_in_project = get_users_from_google_members(user_members, db=db) self.set("members_exist_in_fence", True) except Exception as e: self.set("members_exist_in_fence", False) logger.warning( "INVALID user(s) do not exist in fence and thus, " "we cannot determine their authZ info: {}.".format(e) ) if early_return: return # use a generic validityinfo object to hold all the service accounts # validity. then check all the service accounts. Top level will be # invalid if any service accounts are invalid new_service_account_validity = ValidityInfo() if self.new_service_account: service_account_validity_info = GoogleServiceAccountValidity( self.new_service_account, self.google_project_id, google_project_number=google_project_number, google_cloud_manager=self.google_cloud_manager, ) service_account_id = str(self.new_service_account) logger.debug( "Google Project with id: {} and number: {}. " "Beginning validation on service account for registration {}".format( self.google_project_id, google_project_number, service_account_id ) ) logger.debug( "Determining if the service account {} is google-managed.".format( service_account_id ) ) # we do NOT need to check the service account type and external access # for google-managed accounts. if is_google_managed_service_account(service_account_id): logger.debug( "GCP SA Validity -Service account {} IS google-managed. Therefore, " "we do NOT need to check the SA Type or if it has external access.".format( service_account_id ) ) service_account_validity_info.check_validity( early_return=early_return, check_type=True, check_policy_accessible=True, check_external_access=False, ) else: logger.debug( "GCP SA Validity -Service account {} is NOT google-managed. Therefore, " "we need to run all validation checks against it.".format( service_account_id ) ) service_account_validity_info.check_validity( early_return=early_return, check_type=True, check_policy_accessible=True, check_external_access=True, ) # update project with error info from the service accounts new_service_account_validity.set( service_account_id, service_account_validity_info ) if not service_account_validity_info: logger.warning("INVALID service account {}.".format(service_account_id)) # if we need to return early for invalid SA, make sure to include # error details and invalidate the overall validity if early_return: self.set("new_service_account", new_service_account_validity) return self.set("new_service_account", new_service_account_validity) logger.debug( "Google Project with id: {} and number: {}. " "Beginning validation on project service accounts not requested for " "registration.".format(self.google_project_id, google_project_number) ) service_accounts = get_service_account_ids_from_google_members( service_account_members ) logger.debug("SAs on the project {}.".format(service_accounts)) remove_white_listed_service_account_ids(service_accounts) # don't double check service account being registered if self.new_service_account: try: service_accounts.remove(self.new_service_account) except ValueError: logger.debug( "Service Account requested for registration is not a " "member of the Google project." ) # use a generic validityinfo object to hold all the service accounts # validity. then check all the service accounts. Top level will be # invalid if any service accounts are invalid service_accounts_validity = ValidityInfo() for service_account in service_accounts: service_account_validity_info = self._get_project_sa_validity_info( service_account, google_project_number, early_return ) # update project with error info from the service accounts service_accounts_validity.set( service_account, service_account_validity_info ) if not service_account_validity_info and early_return: # if we need to return early for invalid SA, make sure to include # error details and invalidate the overall validity self.set("service_accounts", service_accounts_validity) return self.set("service_accounts", service_accounts_validity) logger.debug( "Checking data access for Google Project {}...".format( self.google_project_id ) ) # get the service accounts for the project to determine all the data # the project can access through the service accounts service_accounts = get_registered_service_accounts_with_access( self.google_project_id, db=db ) # don't double check service account being updated if it was previously registered # in other words, this may be an update of existing access (from A&B to just A) # so we need to ONLY validate the new access (which happens below when the project # access list is extended with new access requested) if self.new_service_account: logger.debug( "Removing new/updated SA {} from list of existing SAs in order " "to only validate the newly requested access.".format( self.new_service_account ) ) service_accounts = [ sa for sa in service_accounts if sa.email.lower() != str(self.new_service_account).lower() ] service_account_project_access = get_project_access_from_service_accounts( service_accounts, db=db ) logger.debug( "Registered SAs {} current have project access: {}".format( [sa.email for sa in service_accounts], service_account_project_access ) ) # use a generic validityinfo object to hold all the projects validity project_access_validities = ValidityInfo() # extend list with any provided access to test for provided_access in self.new_service_account_access: project = get_project_from_auth_id(provided_access) # if provided access doesn't exist, set error in project_validity if not project: logger.warning( "INVALID project access requested. " "Data Access with auth_id {} does not exist.".format( provided_access ) ) project_validity = ValidityInfo() project_validity.set("exists", False) project_validity.set("all_users_have_access", None) project_access_validities.set(str(provided_access), project_validity) else: service_account_project_access.append(project) logger.debug( "New project access requested (in addition to " "previous access): {}.".format(service_account_project_access) ) # make sure all the users of the project actually have access to all # the data the service accounts have access to for project in service_account_project_access: project_validity = ValidityInfo() project_validity.set("exists", True) # if all the users exist in our db, we can check if they have valid # access logger.debug( "Checking that all users in project have " "access to project with id {}".format( getattr(project, "id", "ERROR-could-not-get-project-id") ) ) valid_access = None if users_in_project: valid_access = do_all_users_have_access_to_project( users_in_project, project.id, db=db ) if not valid_access: logger.warning( "INVALID Some users do NOT have " "access to project with id {}. users in project: {}".format( getattr(project, "id", "ERROR-could-not-get-project-id"), [ getattr(user, "username", "unknown_user") for user in users_in_project ], ) ) project_validity.set("all_users_have_access", valid_access) project_access_validities.set(str(project.auth_id), project_validity) self.set("access", project_access_validities) self.google_cloud_manager.close() return def _get_project_sa_validity_info( self, service_account, google_project_number, early_return ): service_account_id = str(service_account) service_account_validity_info = GoogleServiceAccountValidity( service_account, self.google_project_id, google_project_number=google_project_number, google_cloud_manager=self.google_cloud_manager, ) logger.debug( "Google Project with id: {} and number: {}. " "Beginning validation on project service account {}".format( self.google_project_id, google_project_number, service_account_id ) ) logger.debug( "Determining if the service account {} is google-managed.".format( service_account_id ) ) # we do NOT need to check the service account type and external access # for google-managed accounts. if is_google_managed_service_account(service_account_id): logger.debug( "Service account {} IS google-managed. Therefore, " "we only need to detemine if it belongs.".format(service_account_id) ) service_account_validity_info.check_validity( early_return=early_return, check_type=False, check_policy_accessible=False, check_external_access=False, ) else: logger.debug( "Service account {} is NOT google-managed. Therefore, " "we need to run all validation checks against it.".format( service_account_id ) ) service_account_validity_info.check_validity( early_return=early_return, check_type=True, check_policy_accessible=True, check_external_access=True, ) return service_account_validity_info class GoogleServiceAccountValidity(ValidityInfo): """ A representation of a Google Service Accounts's validity regarding registration for access to data. Example Usage and Information: sa_validity = ( GoogleServiceAccountValidity( account_id='[email protected]' google_project_id='abc123', google_project_number='123456789' ) ) sa_validity.check_validity(early_return=False) NOTE: sa_validity can be evaluated as if it's a boolean and will be False if ANY of the values in the dict-like structure are False. In other words, a single invalid item will make the whole project invalid. An example of the dict-like structure with validity info is: { 'valid_type': True, 'no_external_access': True, 'owned_by_project': True, 'exists': True } """ def __init__( self, account_id, google_project_id, google_cloud_manager=None, google_project_number=None, *args, **kwargs ): self.account_id = account_id self.google_project_id = google_project_id # default to the given project id if not provided self.google_project_number = google_project_number or google_project_id self.google_cloud_manager = google_cloud_manager or GoogleCloudManager( google_project_id ) super(GoogleServiceAccountValidity, self).__init__(*args, **kwargs) # setup default values for error information, will get updated in # check_validity self._info["owned_by_project"] = None self._info["valid_type"] = None self._info["no_external_access"] = None self._info["policy_accessible"] = None def check_validity( self, early_return=True, check_type=True, check_external_access=True, check_policy_accessible=True, ): logger.debug( "Validating Google Service Account {} for Google Project {}.".format( self.account_id, self.google_project_id ) ) self.google_cloud_manager.open() # check ownership logger.debug( "Determining if {} is owned by the Google Project.".format(self.account_id) ) is_owned_by_google_project = is_service_account_from_google_project( self.account_id, self.google_project_id, self.google_project_number ) self.set("owned_by_project", is_owned_by_google_project) if not is_owned_by_google_project: logger.warning( "INVALID SA {}, it is NOT owned by the Google Project {}.".format( self.account_id, self.google_project_id ) ) if early_return: self.google_cloud_manager.close() return # select the GCM to use for the remainder of the checks # if the account is not owned by the google project then # it is invalid, however, if Fence has access to the SA's # project, we can still check the other conditions if is_owned_by_google_project: gcm = self.google_cloud_manager else: self.google_cloud_manager.close() try: # check to see if we can access the project the SA belongs to project_id = self.account_id.split("@")[-1].split(".")[0] gcm = GoogleCloudManager(project_id) gcm.open() except Exception: logger.debug( "Could not access the Google Project for Service " "Account {}. Unable to continue validity " "checkingwithout access to the project, " "early exit.".format(self.account_id) ) return # check if the SA's policy is accessible policy_accessible = None sa_policy = None if check_policy_accessible: try: policy_accessible = True sa_policy = get_service_account_policy(self.account_id, gcm) except Exception: policy_accessible = False gcm.close() return finally: self.set("policy_accessible", policy_accessible) if check_external_access: if not policy_accessible: logger.warning( "Invalid function use. External Access check requires " "Service Account Policy & may fail if policy is not " "accessible. If you want to check external access, make " "sure you are also checking policy_accessible. " ) gcm.close() return no_external_access = not ( service_account_has_external_access(self.account_id, gcm, sa_policy) ) self.set("no_external_access", no_external_access) if not no_external_access: logger.warning( "INVALID SA {}, it has external access " "(keys generated or roles on it).".format(self.account_id) ) if early_return: gcm.close() return # check if the SA is an allowed type if check_type: if not policy_accessible: logger.warning( "Policy access was not checked. If the service account's " "policy is not accessible or the service account does not " "exist, this check may fail." ) # don't return early, we can still check type without checking # policy, however, if the SA doesn't exist, this will fail valid_type = is_valid_service_account_type(self.account_id, gcm) self.set("valid_type", valid_type) if not valid_type: logger.warning( "INVALID SA {}, it is not a valid SA type.".format(self.account_id) ) if early_return: gcm.close() return gcm.close()
37.382134
95
0.580916
b2869f264e5ec055d354b7221146603060adb850
1,059
py
Python
tests/unittests.py
MarkusWET/secure_password_website
257d0e7d463dea4777d5d92f7f56499f2a4b5044
[ "MIT" ]
null
null
null
tests/unittests.py
MarkusWET/secure_password_website
257d0e7d463dea4777d5d92f7f56499f2a4b5044
[ "MIT" ]
null
null
null
tests/unittests.py
MarkusWET/secure_password_website
257d0e7d463dea4777d5d92f7f56499f2a4b5044
[ "MIT" ]
null
null
null
import unittest from app import app class LoginTests(unittest.TestCase): # initialization logic for the test suite declared in the test module # code that is executed before all tests in one test run @classmethod def setUpClass(cls): pass # clean up logic for the test suite declared in the test module # code that is executed after all tests in one test run @classmethod def tearDownClass(cls): pass # initialization logic # code that is executed before each test def setUp(self): # create test client self.app = app.test_client() # set to testing self.app.testing = True # clean up logic # code that is executed after each test def tearDown(self): pass # test method def test_startpage(self): result = self.app.get("/") self.assertEqual(result.status_code, 200) # test method def login_test_md5(self): pass # runs the unit tests in the module if __name__ == '__main__': unittest.main()
23.021739
73
0.647781
ac302097036ee59eacad5e760cb4e23573204574
2,559
py
Python
Plugins/CharakterAssistent/ChoicePopup.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
15
2017-11-09T12:49:52.000Z
2022-03-06T12:18:48.000Z
Plugins/CharakterAssistent/ChoicePopup.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
40
2018-02-01T21:32:01.000Z
2022-03-22T11:35:28.000Z
Plugins/CharakterAssistent/ChoicePopup.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
13
2018-03-12T17:50:42.000Z
2022-03-06T12:21:41.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ChoicePopup.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_formMain(object): def setupUi(self, formMain): formMain.setObjectName("formMain") formMain.setWindowModality(QtCore.Qt.ApplicationModal) formMain.resize(335, 238) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(formMain.sizePolicy().hasHeightForWidth()) formMain.setSizePolicy(sizePolicy) formMain.setModal(True) self.gridLayout = QtWidgets.QGridLayout(formMain) self.gridLayout.setObjectName("gridLayout") self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem) self.buttonBox = QtWidgets.QDialogButtonBox(formMain) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.horizontalLayout_3.addWidget(self.buttonBox) self.gridLayout.addLayout(self.horizontalLayout_3, 5, 0, 1, 1) spacerItem1 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem1, 1, 0, 1, 1) self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.gridLayout.addLayout(self.verticalLayout, 0, 0, 1, 1) self.retranslateUi(formMain) self.buttonBox.accepted.connect(formMain.accept) QtCore.QMetaObject.connectSlotsByName(formMain) def retranslateUi(self, formMain): _translate = QtCore.QCoreApplication.translate formMain.setWindowTitle(_translate("formMain", "Triff deine Auswahl")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) formMain = QtWidgets.QDialog() ui = Ui_formMain() ui.setupUi(formMain) formMain.show() sys.exit(app.exec_())
42.65
115
0.726846
5a3e17f7daaec820e968699d573c3d946fc4ce53
305
py
Python
python/advanced_sw/KALO/VERSION 0.01/SAFE1AUG/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/advanced_sw/KALO/VERSION 0.01/SAFE1AUG/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/advanced_sw/KALO/VERSION 0.01/SAFE1AUG/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
from AppOperations import AppOperations as ao from AppOperations import Rec from MISman import MIS_calculations #ao.update_Sl(3,'2018-07-30T20:15:54') #ao.reset_slno() #k = Rec.timestmp() #print("Type of k : ",type(k)) #print(Rec.timestmp()) val = "T-93" MIS_calculations.separate_data("recpt_fees",7800)
27.727273
49
0.757377
5a6931d58b8671b50665f886f638591bf11ede91
1,141
py
Python
apps/profile/forms.py
IT-PM-OpenAdaptronik/Webapp
c3bdde0ca56b6d77f49bc830fa2b8bb41a26bae4
[ "MIT" ]
2
2017-12-17T21:28:22.000Z
2018-02-02T14:44:58.000Z
apps/profile/forms.py
IT-PM-OpenAdaptronik/Webapp
c3bdde0ca56b6d77f49bc830fa2b8bb41a26bae4
[ "MIT" ]
118
2017-10-31T13:45:09.000Z
2018-02-24T20:51:42.000Z
apps/profile/forms.py
OpenAdaptronik/Rattler
c3bdde0ca56b6d77f49bc830fa2b8bb41a26bae4
[ "MIT" ]
null
null
null
from django import forms from . import models from apps.user.models import User class ProfileForm(forms.ModelForm): class Meta: model = models.Profile fields = ['company', 'info', 'expert', 'visibility_mail', 'visibility_company', 'visibility_info', 'visibility_first_name','visibility_last_name'] class ProfileImageForm(forms.ModelForm): class Meta: model = models.ProfileImage fields = ['path'] class UserForm(forms.ModelForm): class Meta: model= User fields = ['first_name','last_name'] ProfileImageFormSet = forms.inlineformset_factory( models.Profile, models.ProfileImage, fk_name='profile', form=ProfileImageForm, extra=1, max_num=1, fields=('path',) ) ProfileFormSet = forms.inlineformset_factory( model=models.Profile, parent_model=User, fk_name='user', form=ProfileForm, extra=1, max_num=1, fields=('company', 'info', 'expert', 'visibility_mail', 'visibility_company', 'visibility_info', 'visibility_first_name','visibility_last_name',) )
26.534884
66
0.64943
5a7e89ea99485fdfe11232f18d5f2e849a57de5d
511
py
Python
exercises/zh/test_02_10_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/zh/test_02_10_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/zh/test_02_10_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
def test(): assert ( "span1.similarity(span2)" in __solution__ or "span2.similarity(span1)" in __solution__ ), "你有计算两个span之间的相似度吗?" assert span1.text == "不错的餐厅", "你有正确生成span1吗?" assert span2.text == "很好的酒吧", "你有正确生成span2吗?" assert ( 0 <= float(similarity) <= 1 ), "相似度分数是一个浮点数。你确定你计算正确了吗?" __msg__.good( "做得好!如果愿意的话你可以随便再做些比对其它实例的实验。" "这些相似度并不*一定*是绝对正确的。一旦你要开始认真开发一些自然语言处理" "的应用并且用到语义相似度的话,你可能需要在自己的数据上先训练词向量,或者" "再去改进一下相似度的算法。" )
31.9375
94
0.634051
ce82cdf35ef59afa5f450a19c5787aa7f88c7de1
474
py
Python
src/onegov/user/forms/group.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/forms/group.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/forms/group.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.form import Form from onegov.user import _ from wtforms import StringField from wtforms.validators import InputRequired class UserGroupForm(Form): """ A generic user group form for onegov.user """ name = StringField( label=_("Name"), validators=[ InputRequired() ] ) def update_model(self, model): model.name = self.name.data def apply_model(self, model): self.name.data = model.name
20.608696
53
0.64557
f01349868e6457e0582c7d0d91e3e5669f7e8783
1,737
py
Python
official/cv/ADNet/src/utils/get_train_videos.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/ADNet/src/utils/get_train_videos.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/ADNet/src/utils/get_train_videos.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # matlab code: # https://github.com/hellbell/ADNet/blob/3a7955587b5d395401ebc94a5ab067759340680d/utils/get_train_videos.m import numpy as np from src.utils.get_benchmark_path import get_benchmark_path from src.utils.get_benchmark_info import get_benchmark_info def get_train_videos(opts, args): train_db_names = opts['train_dbs'] test_db_names = opts['test_db'] video_names = [] video_paths = [] bench_names = [] for dbidx in range(len(train_db_names)): bench_name = train_db_names[dbidx] path_ = get_benchmark_path(bench_name, args) video_names_ = get_benchmark_info(train_db_names[dbidx] + '-' + test_db_names) video_paths_ = np.tile(path_, (1, len(video_names_))) video_names.extend(video_names_) video_paths.extend(list(video_paths_[0])) #np.tile( bench_names.extend(list(np.tile(bench_name, (1, len(video_names_)))[0])) train_db = { 'video_names': video_names, 'video_paths': video_paths, 'bench_names': bench_names } return train_db
36.1875
106
0.690271
f03131d13835998178c7387f1b8862b539905b72
1,006
py
Python
comp/microsoft/000_missinteger.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
comp/microsoft/000_missinteger.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
comp/microsoft/000_missinteger.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
''' https://app.codility.com/demo/results/demoHZEZJ5-D8X/ This is a demo task. Write a function: def solution(A) that, given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A. For example, given A = [1, 3, 6, 4, 1, 2], the function should return 5. Given A = [1, 2, 3], the function should return 4. Given A = [−1, −3], the function should return 1. Write an efficient algorithm for the following assumptions: N is an integer within the range [1..100,000]; each element of array A is an integer within the range [−1,000,000..1,000,000]. ''' # you can write to stdout for debugging purposes, e.g. # print("this is a debug message") def solution(A): # write your code in Python 3.6 pos_set = set() for a in A: if a > 0: pos_set.add(a) pos = list(pos_set) pos.sort() res = 1 for num in pos: if res < num: break else: res = num + 1 return res
21.869565
118
0.626243
e8de0a5350f0eb2bba79c4cfc6c1b4b6f0111a26
3,454
py
Python
official/gnn/bgcf/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/gnn/bgcf/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/gnn/bgcf/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ postprocess. """ import os import argparse import numpy as np from src.metrics import BGCFEvaluate from src.dataset import load_graph parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, default="Beauty", help="choose which dataset") parser.add_argument("--datapath", type=str, default="./scripts/data_mr", help="minddata path") parser.add_argument('--input_dim', type=int, default=64, choices=[64, 128], help="user and item embedding dimension") parser.add_argument('--Ks', type=list, default=[5, 10, 20, 100], help="top K") parser.add_argument('--workers', type=int, default=8, help="number of process to generate data") parser.add_argument("--result_path", type=str, default="./result_Files", help="result path") args = parser.parse_args() def get_acc(): """calculate accuracy""" train_graph, test_graph, _ = load_graph(args.datapath) num_user = train_graph.graph_info()["node_num"][0] num_item = train_graph.graph_info()["node_num"][1] input_dim = args.input_dim user_reps = np.zeros([num_user, input_dim * 3]) item_reps = np.zeros([num_item, input_dim * 3]) for i in range(50): sub_folder = os.path.join(args.result_path, 'result_Files_' + str(i)) user_rep = np.fromfile(os.path.join(sub_folder, 'amazon-beauty_0.bin'), np.float16) user_rep = user_rep.reshape(num_user, input_dim * 3) item_rep = np.fromfile(os.path.join(sub_folder, 'amazon-beauty_1.bin'), np.float16) item_rep = item_rep.reshape(num_item, input_dim * 3) user_reps += user_rep item_reps += item_rep user_reps /= 50 item_reps /= 50 eval_class = BGCFEvaluate(args, train_graph, test_graph, args.Ks) test_recall_bgcf, test_ndcg_bgcf, \ test_sedp, test_nov = eval_class.eval_with_rep(user_reps, item_reps, args) print('recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, ' 'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (test_recall_bgcf[1], test_recall_bgcf[2], test_ndcg_bgcf[1], test_ndcg_bgcf[2], test_sedp[0], test_sedp[1], test_nov[1], test_nov[2])) if __name__ == "__main__": get_acc()
45.447368
104
0.563984
9bf4c32944555678c0be8c28962fc849b5a956b9
484
py
Python
src/onegov/feriennet/views/userprofile.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/feriennet/views/userprofile.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/feriennet/views/userprofile.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.security import Personal from onegov.feriennet import FeriennetApp from onegov.feriennet.forms import UserProfileForm from onegov.org.models import Organisation from onegov.org.views.userprofile import handle_user_profile @FeriennetApp.form( model=Organisation, name='userprofile', template='userprofile.pt', permission=Personal, form=UserProfileForm) def handle_custom_user_profile(self, request, form): return handle_user_profile(self, request, form)
37.230769
70
0.82438
c5afc372c05e400d4752b1d45d198e8ddd4705c6
2,349
py
Python
crypto/PsychECC/src/server.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
crypto/PsychECC/src/server.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
crypto/PsychECC/src/server.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
from collections import namedtuple import random from secret import flag from Crypto.Util.number import inverse def moddiv(x,y,p): return (x * inverse(y,p)) %p Point = namedtuple("Point","x y") class EllipticCurve: INF = Point(0,0) def __init__(self, a, b, p): self.a = a self.b = b self.p = p def add(self,P,Q): if P == self.INF: return Q elif Q == self.INF: return P if P.x == Q.x and P.y == (-Q.y % self.p): return self.INF if P != Q: Lambda = moddiv(Q.y - P.y, Q.x - P.x, self.p) else: Lambda = moddiv(3 * P.x**2 + self.a,2 * P.y , self.p) Rx = (Lambda**2 - P.x - Q.x) % self.p Ry = (Lambda * (P.x - Rx) - P.y) % self.p return Point(Rx,Ry) def multiply(self,P,n): n %= self.p if n != abs(n): ans = self.multiply(P,abs(n)) return Point(ans.x, -ans.y % p) R = self.INF while n > 0: if n % 2 == 1: R = self.add(R,P) P = self.add(P,P) n = n // 2 return R # P256 parameters, secure. p = 115792089210356248762697446949407573530086143415290314195533631308867097853951 order = 115792089210356248762697446949407573529996955224135760342422259061068512044369 a = -3 b = 41058363725152142129326129780047268409114441015993725554835256314039467401291 E = EllipticCurve(a,b,p) print("Welcome to my prediction centre!") print("We're always looking out for psychics!") print("We're gonna choose a random number. You get to choose a point. We'll multiply that point by our random number.") print("Since this curve is of perfect and prime order, it'll be impossible to break this test.") print("Only a psychic could know!") print("Be psychic, get the flag.") x = int(input("Enter point x: ")) y = int(input("Enter point y: ")) P = Point(x,y) n = random.randint(1,order) Q = E.multiply(P,n) print("Ok, where do you think the point will go?") px = int(input("Enter point x: ")) py = int(input("Enter point y: ")) prediction = Point(px,py) if prediction == E.INF or prediction == P: print("Psychics don't use dirty tricks.") quit() if prediction == Q: print("Wow! You're truly psychic!") print(flag) quit() print("Better luck next time.") print(f"Point was {Q}")
33.557143
119
0.60281
7684a56cfccea3087f6327413a98d6b00995719f
469
py
Python
tests/test_all.py
simonhodder/spark
1062e3092996f82f7bc2c852d6444c2be2a1e296
[ "MIT" ]
null
null
null
tests/test_all.py
simonhodder/spark
1062e3092996f82f7bc2c852d6444c2be2a1e296
[ "MIT" ]
null
null
null
tests/test_all.py
simonhodder/spark
1062e3092996f82f7bc2c852d6444c2be2a1e296
[ "MIT" ]
null
null
null
import pytest from spark import Session from spark.model import User from spark.model import Address def test_all(): session = Session() a = Address( house_num=10, street='Baker Street', city='London') u = User( first_name='Sherlock', family_name='Holmes', age=77, address=a) session.add(u) session.flush() session.commit() a = Address.query.first() assert a is not None
15.129032
31
0.594883
4f2a92425277c903d75696c5a298df085cce0c21
1,602
py
Python
Organisation/Recherche/Wordcloud/history/tests_wordcloud_pil.py
mxsph/Data-Analytics
c82ff54b78f50b6660d7640bfee96ea68bef598f
[ "MIT" ]
3
2020-08-24T19:02:09.000Z
2021-05-27T20:22:41.000Z
Organisation/Recherche/Wordcloud/history/tests_wordcloud_pil.py
mxsph/Data-Analytics
c82ff54b78f50b6660d7640bfee96ea68bef598f
[ "MIT" ]
342
2020-08-13T10:24:23.000Z
2021-08-12T14:01:52.000Z
Organisation/Recherche/Wordcloud/history/tests_wordcloud_pil.py
visuanalytics/visuanalytics
f9cce7bc9e3227568939648ddd1dd6df02eac752
[ "MIT" ]
8
2020-09-01T07:11:18.000Z
2021-04-09T09:02:11.000Z
import numpy as np import PIL from PIL import Image # Quelle: https://stackoverflow.com/questions/30227466/combine-several-images-horizontally-with-python # Kombinieren von 4 Zahlen year = str(19) list_im = ['mask_0.jpg', 'mask_1.jpg', 'mask_2.jpg', 'mask_3.jpg', 'mask_4.jpg', 'mask_5.jpg', 'mask_6.jpg', 'mask_7.jpg', 'mask_8.jpg', 'mask_9.jpg'] list_use = [] len_year = len(year) print(len_year) for i in range(len_year): if int(year[i]) == 0: print("0") list_use.append(list_im[0]) elif int(year[i]) == 1: print("1") list_use.append(list_im[1]) elif int(year[i]) == 2: print("2") list_use.append(list_im[2]) elif int(year[i]) == 3: print("3") list_use.append(list_im[3]) elif int(year[i]) == 4: print("4") list_use.append(list_im[4]) elif int(year[i]) == 5: print("5") list_use.append(list_im[5]) elif int(year[i]) == 6: print("6") list_use.append(list_im[6]) elif int(year[i]) == 7: print("7") list_use.append(list_im[7]) elif int(year[i]) == 8: print("8") list_use.append(list_im[8]) elif int(year[i]) == 9: print("9") list_use.append(list_im[9]) imgs = [PIL.Image.open(i) for i in list_use] # pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here) imgs_comb = np.hstack(imgs) # sabspeichern des Bildes imgs_comb = PIL.Image.fromarray(imgs_comb) imgs_comb.save('year_mask.jpg')
30.807692
110
0.58427
96f3561c120d67b53ea714ac978d7f6ac7ee4115
2,537
py
Python
andinopy/base_devices/terminal.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
andinopy/base_devices/terminal.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
andinopy/base_devices/terminal.py
andino-systems/andinopy
28fc09fbdd67dd690b9b3f80f03a05c342c777e1
[ "Apache-2.0" ]
null
null
null
# _ _ _ # / \ _ __ __| (_)_ __ ___ _ __ _ _ # / _ \ | '_ \ / _` | | '_ \ / _ \| '_ \| | | | # / ___ \| | | | (_| | | | | | (_) | |_) | |_| | # /_/ \_\_| |_|\__,_|_|_| |_|\___/| .__/ \__, | # |_| |___/ # by Jakob Groß import sys from andinopy import andinopy_logger from andinopy.base_devices import andinoio from andinopy.base_devices.nextion_display import display from andinopy.interfaces.rfid_keyboard_interface import rfid_keyboard_interface class terminal: # Part instances andinoio_instance: andinoio.andinoio display_instance: 'display' rfid_keyboard_instance: 'rfid_keyboard_interface' def __init__(self, andinoio_instance: andinoio.andinoio = None, display_instance: 'display' = None, rfid_keyboard_instance: 'rfid_keyboard_interface' = None): """ Create a new Terminal instance Can be passed preconfigured handles """ if sys.platform == "linux": from andinopy.base_devices.rfid_keyboard.rfid_keyboard_i2c import rfid_keyboard_i2c self.rfid_keyboard_instance = rfid_keyboard_instance \ if rfid_keyboard_instance is not None else rfid_keyboard_i2c() else: from andinopy.base_devices.rfid_keyboard.rfid_keyboard_serial import rfid_keyboard_serial self.rfid_keyboard_instance = rfid_keyboard_instance \ if rfid_keyboard_instance is not None else rfid_keyboard_serial() andinopy_logger.debug("Terminal starting initialization") self.andinoio_instance = andinoio_instance if andinoio_instance is not None else andinoio.andinoio() self.display_instance = display_instance if display_instance is not None else display() andinopy_logger.debug("Terminal device initialized") def start(self): """ Start the terminal with the custom configuration :return: None """ andinopy_logger.debug("Terminal device started") self.andinoio_instance.start() self.display_instance.start() self.rfid_keyboard_instance.start() andinopy_logger.debug("Terminal - everything started") def stop(self): """ Stops and resets the terminal :return: """ andinopy_logger.debug("Terminal device stopped") self.andinoio_instance.stop() self.display_instance.stop() self.rfid_keyboard_instance.stop()
39.030769
108
0.638944
96fb170a7a6d9f10eaa8fe7068f29425d7106d74
931
py
Python
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P08_OnTimeForTheExam.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P08_OnTimeForTheExam.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P08_OnTimeForTheExam.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
1
2022-02-23T13:03:14.000Z
2022-02-23T13:03:14.000Z
hour_exam = int(input()) min_exam = int(input()) hour_arrival = int(input()) min_arrival = int(input()) status = 0 exam_time = (hour_exam * 60) + min_exam arrival_time = (hour_arrival * 60) + min_arrival difference = arrival_time - exam_time if difference > 0: status = "Late" elif difference < -30: status = "Early" elif -30 <= difference <= 0: status = "On time" print(status) if difference > 0: hour_late = difference // 60 min_late = difference % 60 if hour_late == 0: print(f'{min_late} minutes after the start') else: print(f'{hour_late}:{min_late:02d} hours after the start') elif difference == 0: print('') else: early = exam_time - arrival_time hour_early = early // 60 min_early = early % 60 if hour_early == 0: print(f'{min_early} minutes before the start') else: print(f'{hour_early}:{min_early:02d} hours before the start')
21.651163
69
0.640172
8c08eb958f63b96fead9449d21847b5bbe851075
3,879
py
Python
DIT/jazmin_settings.py
antonnifo/DIT
7c496f37bab70229cd84c4b33332708ea8cf278b
[ "MIT" ]
null
null
null
DIT/jazmin_settings.py
antonnifo/DIT
7c496f37bab70229cd84c4b33332708ea8cf278b
[ "MIT" ]
null
null
null
DIT/jazmin_settings.py
antonnifo/DIT
7c496f37bab70229cd84c4b33332708ea8cf278b
[ "MIT" ]
null
null
null
JAZZMIN_SETTINGS = { # title of the window 'site_title': 'DIT Admin', # Title on the brand, and the login screen (19 chars max) 'site_header': 'DIT', # square logo to use for your site, must be present in static files, used for favicon and brand on top left 'site_logo': 'data_log_sheet/img/logo.png', # Welcome text on the login screen 'welcome_sign': 'Welcome to DIT Data Log Sheet', # Copyright on the footer 'copyright': 'antonnifo', # The model admin to search from the search bar, search bar omitted if excluded # 'search_model': 'auth.User', 'search_model': 'data_log_sheet.DataLogSheet', # Field name on user model that contains avatar image 'user_avatar': None, ############ # Top Menu # ############ # Links to put along the top menu 'topmenu_links': [ # Url that gets reversed (Permissions can be added) {'name': 'Home', 'url': 'admin:index', 'permissions': ['auth.view_user']}, # external url that opens in a new window (Permissions can be added) # {'name': 'Support', 'url': 'https://github.com/farridav/django-jazzmin/issues', 'new_window': True}, # {'name': 'Site', 'url': 'https://www.citizenweekly.org/', 'new_window': True}, # model admin to link to (Permissions checked against model) {'model': 'data_log_sheet.DataLogSheet'}, {'model': 'auth.User'}, # App with dropdown menu to all its models pages (Permissions checked against models) {'app': 'data_log_sheet'}, ], ############# # User Menu # ############# # Additional links to include in the user menu on the top right ('app' url type is not allowed) 'usermenu_links': [ {'model': 'auth.user'} ], ############# # Side Menu # ############# # Whether to display the side menu 'show_sidebar': True, # Whether to aut expand the menu 'navigation_expanded': True, # Hide these apps when generating side menu e.g (auth) 'hide_apps': [], # Hide these models when generating side menu (e.g auth.user) 'hide_models': [], # List of apps to base side menu ordering off of (does not need to contain all apps) 'order_with_respect_to': ['data_log_sheet',], # Custom links to append to app groups, keyed on app name # 'custom_links': { # 'polls': [{ # 'name': 'Make Messages', # 'url': 'make_messages', # 'icon': 'fas fa-comments', # 'permissions': ['polls.view_poll'] # }] # }, # Custom icons for side menu apps/models See https://www.fontawesomecheatsheet.com/font-awesome-cheatsheet-5x/ # for a list of icon classes 'icons': { 'auth': 'fas fa-users-cog', 'auth.user': 'fas fa-user', 'auth.Group': 'fas fa-users', 'data_log_sheet.DataLogSheet': 'fas fa-file-alt', }, # Icons that are used when one is not manually specified 'default_icon_parents': 'fas fa-chevron-circle-right', 'default_icon_children': 'fab fa-pied-piper-alt', ############# # UI Tweaks # ############# # Relative paths to custom CSS/JS scripts (must be present in static files) "custom_css": None, "custom_js": None, # Whether to show the UI customizer on the sidebar "show_ui_builder": False, ############### # Change view # ############### # Render out the change view as a single form, or in tabs, current options are # - single # - horizontal_tabs (default) # - vertical_tabs # - collapsible # - carousel "changeform_format": "carousel", # override change forms on a per modeladmin basis "changeform_format_overrides": {"auth.user": "carousel", "auth.group": "carousel",}, # Add a language dropdown into the admin "language_chooser": False, }
31.795082
114
0.599123
d78484879a758531427928b0c252ba3e8a3160ed
3,102
py
Python
python/en/archive/topics/command_line_arguments/TODOs/02-cmd_line_args_parsing2.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/topics/command_line_arguments/TODOs/02-cmd_line_args_parsing2.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/topics/command_line_arguments/TODOs/02-cmd_line_args_parsing2.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys, getopt # 2019-03-01 (Fri) # TODO: Make this script work! def usage(): print("usage: python3 02-cmd_line_args_parsing2.py arg1 arg2 arg3") def print_opts(): print("file_name =", file_name ) print("argc =", argc ) print("argv =", argv ) print("opts =", opts ) print("args =", args ) print("input_file=", input_file ) print("output_file=", output_file ) def parse_arguments( argc, argv ): print("argv =", argv ) print("argc =", argc ) try: # opts, args = getopt.getopt( argv, "", []) # Input # argv is the (entire) argument list # "" is a short option starting with a hyphen -. Example: -h # An argument should be followed by a colon (:). # [] is a long option start with two hyphens --. Example: --help # An argument should be followed by an equal sign ('='). # Output # opts is a list of (option, value) pairs. # args is the list of program arguments left after the option list was stripped. short_options = "hc:i:o:" long_options = ["help", "config=", "input=", "output="] opts, args = getopt.getopt( argv, short_options, long_options) print("opts =", opts ) print("args =", args ) except getopt.GetoptError: usage() sys.exit(2) config_file = '' input_file = '' output_file = '' for option, value in opts: if option in ("-h", "--help"): usage() sys.exit() elif option in ("-c", "--config"): config_file = arg elif option in ("-i", "--input"): input_file = arg elif option in ("-o","--output"): output_file = arg else : usage() sys.exit(2) if __name__ == "__main__": # Process the command line arguments argc = len( sys.argv ) file_name = sys.argv[0] argv = sys.argv[1:] print("file_name =", file_name ) print("sys.argv =", sys.argv ) parse_arguments( argc, argv ) ''' Last Modified: 2019-03-01 (Fri) First Written: 2018-11-08 (Thu) Tae-Hyung "T" Kim, [email protected] There are a couple of popular packages to parse the command line arguments such as getopt, argparse, and docopt. My choice is getopt. Note optparse is obsolete. Ref: Python - Command Line Arguments https://www.tutorialspoint.com/python/python_command_line_arguments.htm Syntax of getopt getopt.getopt(argv, options, [long_options]) argv is the argument list options is a short option starting with a hyphen -. Example: -h An argument should be followed by a colon (:). long_options is a long option start with two hyphens --. Example: --help An argument should be followed by an equal sign ('='). This method returns value consisting of two elements: the first is a list of (option, value) pairs. The second is the list of program arguments left after the option list was stripped. Command Examples $ python3 02-cmd_line_args_parsing2.py arg1 arg2 arg3 $ python 02-cmd_line_args_parsing2.py arg1 arg2 arg3 '''
28.722222
88
0.626692
d1618676c96751aae62213eeddfc4719ddc88479
660
py
Python
haas_lib_bundles/python/docs/examples/smart_panel/esp32/code/main.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
haas_lib_bundles/python/docs/examples/smart_panel/esp32/code/main.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
haas_lib_bundles/python/docs/examples/smart_panel/esp32/code/main.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- ''' @File : main.py @Description: helloworld案例 - 周期性打印"helloworld"到console中 @Author : ethan.lcz @version : 1.0 ''' # import utime # 延时函数在utime库中 # if __name__ == '__main__': # while True: # 无限循环 # print("hellworld") # 打印"helloworld"字串到console中 # utime.sleep(1) # 打印完之后休眠1秒 from axp192 import * if __name__ == '__main__': axp = Axp192() # axp.powerAll() # axp.setLCDBrightness(80) # 设置背光亮度 0~100 axp.setSpkEnable(1) # 打开speaker # from smart_panel import * import smart_panel smart_panel.init() smart_panel.load_smart_panel()
22
58
0.619697
7e6298887a3a629ee0e03a11f571bf4451a16fc2
4,621
py
Python
tests/ingestion/transformers/monosi/test_metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
156
2021-11-19T18:50:14.000Z
2022-03-31T19:48:59.000Z
tests/ingestion/transformers/monosi/test_metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
30
2021-12-27T19:30:56.000Z
2022-03-30T17:49:00.000Z
tests/ingestion/transformers/monosi/test_metrics.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
14
2022-01-17T23:24:34.000Z
2022-03-29T09:27:47.000Z
from datetime import datetime from uuid import uuid4 import pytest import ingestion.transformers.monosi.metrics as metrics @pytest.fixture def metric(): return { "id": str(uuid4().hex), "table_name": "table", "schema": "schema", "database": "database", "column_name": "col_name", "metric": "metric-name", "value": "84848.9", "time_window_start": str(datetime.now()), "time_window_end": str(datetime.now()), "created_at": str(datetime.now()) } @pytest.fixture def metric_diff_col_and_type(): return { "id": str(uuid4().hex), "table_name": "table", "schema": "schema", "database": "database", "column_name": "another_col", "metric": "metric-name-2", "value": "84848.9", "time_window_start": str(datetime.now()), "time_window_end": str(datetime.now()), "created_at": str(datetime.now()) } @pytest.fixture def metrics_input(): return { 'columns': ['TIME_WINDOW_START', 'TIME_WINDOW_END'], 'rows': [ ] } @pytest.fixture def metrics_input_one(): return { 'columns': ['TIME_WINDOW_START', 'TIME_WINDOW_END'], 'rows': [ { 'WINDOW_START': '123', 'WINDOW_END': '123', 'TABLE_NAME': 'table', 'SCHEMA_NAME': 'schema', 'DATABASE_NAME': 'database', 'anything___else': 'value' } ] } @pytest.fixture def metrics_input_multiple(): return { 'columns': ['TIME_WINDOW_START', 'TIME_WINDOW_END'], 'rows': [ { 'WINDOW_START': '123', 'WINDOW_END': '123', 'TABLE_NAME': 'table', 'SCHEMA_NAME': 'schema', 'DATABASE_NAME': 'database', 'anything___else': 'value', 'one___more': 'value' } ] } def test__transform_empty_metrics(metrics_input): output_arr = metrics.MetricTransformer._transform(metrics_input) assert len(output_arr) == 0 def test__transform_one_metric(metrics_input_one): output_arr = metrics.MetricTransformer._transform(metrics_input_one) assert len(output_arr) == 1 def test__transform_multiple_metrics(metrics_input_multiple): output_arr = metrics.MetricTransformer._transform(metrics_input_multiple) assert len(output_arr) == 2 @pytest.fixture def normalized_schema(): return metrics.MetricTransformer._normalized_schema() def test__normalized_schema_correct(normalized_schema, metric): input_arr = [metric] is_correct = metrics.MetricTransformer.match(input_arr, normalized_schema) assert is_correct == True def test__normalized_schema_correct_multiple(normalized_schema, metric, metric_diff_col_and_type): input_arr = [metric, metric_diff_col_and_type] is_correct = metrics.MetricTransformer.match(input_arr, normalized_schema) assert is_correct == True def test__normalized_schema_incorrect_to_have_none(normalized_schema): input_arr = [] is_correct = metrics.MetricTransformer.match(input_arr, normalized_schema) assert is_correct == False def test__normalized_schema_incorrect(normalized_schema, metric): input_arr = [{'anything': 'atall'}] is_correct = metrics.MetricTransformer.match(input_arr, normalized_schema) assert is_correct == False def test__normalized_schema_incorrect_multiple(normalized_schema, metric): input_arr = [metric, {'anything': 'else'}] is_correct = metrics.MetricTransformer.match(input_arr, normalized_schema) assert is_correct == False # TODO OOOOOOOOOOOOOOOP @pytest.fixture def original_schema(): return metrics.MetricTransformer._original_schema() def test__original_schema_correct(original_schema, metrics_input_one): is_correct = metrics.MetricTransformer.match(metrics_input_one, original_schema) assert is_correct == True def test__original_schema_correct_multiple(original_schema, metrics_input_multiple): is_correct = metrics.MetricTransformer.match(metrics_input_multiple, original_schema) assert is_correct == True def test__original_schema_incorrect_to_have_none(original_schema, metrics_input): is_correct = metrics.MetricTransformer.match(metrics_input, original_schema) assert is_correct == False def test__original_schema_incorrect(original_schema): input_arr = [{'anything': 'goeshere'}] is_correct = metrics.MetricTransformer.match(input_arr, original_schema) assert is_correct == False
29.621795
98
0.675179
0eb131abaf4798bda047b122c8add371333f91a3
347
py
Python
2-resources/_Past-Projects/LambdaSQL-master/LambdaSQL-master/module2/titanic_exploration.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
2-resources/_Past-Projects/LambdaSQL-master/LambdaSQL-master/module2/titanic_exploration.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
2-resources/_Past-Projects/LambdaSQL-master/LambdaSQL-master/module2/titanic_exploration.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
""" Titanic Data """ import psycopg2 from module2.creds import cred cloud = psycopg2.connect( dbname=cred.dbname, user=cred.user, password=cred.password, host=cred.host, ) curs = cloud.cursor() curs.execute(""" SELECT name, age FROM Titanic WHERE Age < 18 and sex = 'female'; """) print("Kids:", *curs.fetchall(), sep='\n')
13.88
42
0.657061
7ebce8954edc68f34f0304cb662e16a466838526
400
py
Python
src/main/bootup.py
MBogert/ReminderCory
a687c70a12f49a807d9fb023d45f799292a37f26
[ "MIT" ]
null
null
null
src/main/bootup.py
MBogert/ReminderCory
a687c70a12f49a807d9fb023d45f799292a37f26
[ "MIT" ]
null
null
null
src/main/bootup.py
MBogert/ReminderCory
a687c70a12f49a807d9fb023d45f799292a37f26
[ "MIT" ]
null
null
null
def main(): # Pseudo-Implementation # TODO Implement logic in comment lines # Initialize Logger # Initialize db from data-file # Initialize cory # Health checks (if any) # Welcome message # Begin runtime (initialize at idle) if __name__ == "__main__": main() # TODO implementations def initialize_cory: def read_reminder_file(cory, filename): def run_health_checks(): def run_cory():
17.391304
40
0.7375
adf523b4f68706e9e2562370ca9d27049107c8ca
278
py
Python
backend/apps/iamstudent/migrations/0011_merge_20200404_2309.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
2
2020-03-28T13:56:39.000Z
2020-03-29T10:16:12.000Z
backend/apps/iamstudent/migrations/0011_merge_20200404_2309.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
76
2020-03-27T21:53:04.000Z
2020-03-30T20:27:43.000Z
backend/apps/iamstudent/migrations/0011_merge_20200404_2309.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
null
null
null
# Generated by Django 3.0.4 on 2020-04-02 23:09 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('iamstudent', '0010_custom_migration'), ('iamstudent', '0009_merge_20200402_2309'), ] operations = [ ]
18.533333
51
0.654676
adfe5d6ffd067abf150a81bc59a5b806061cdc34
3,365
py
Python
v302/python/mittelwert-kondensator.py
chrbeckm/anfaenger-praktikum
51764ff23901de1bc3d16dc935acfdc66bb2b2b7
[ "MIT" ]
2
2019-12-10T10:25:11.000Z
2021-01-26T13:59:40.000Z
v302/python/mittelwert-kondensator.py
chrbeckm/anfaenger-praktikum
51764ff23901de1bc3d16dc935acfdc66bb2b2b7
[ "MIT" ]
null
null
null
v302/python/mittelwert-kondensator.py
chrbeckm/anfaenger-praktikum
51764ff23901de1bc3d16dc935acfdc66bb2b2b7
[ "MIT" ]
1
2020-12-06T21:24:58.000Z
2020-12-06T21:24:58.000Z
import numpy as np import uncertainties.unumpy as unp from uncertainties import ufloat from scipy.stats import sem print('====================') print('Kondensator ANFANG') print('====================') print('Wert 1 ANFANG') cao2 = 994 * 10**(-9) pot1 = 6.03 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) ca1 = c2 / pot print('ca1', ca1) cao2 = 750 * 10**(-9) pot1 = 5.305 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cb1 = c2 / pot print('cb1', cb1) cao2 = 399 * 10**(-9) pot1 = 3.78 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cc1 = c2 / pot print('cc1', cc1) c = np.array([unp.nominal_values(ca1), unp.nominal_values(cb1), unp.nominal_values(cc1)]) d = np.array([unp.std_devs(ca1), unp.std_devs(cb1), unp.std_devs(cc1)]) np.savetxt('build/wert1.txt', np.column_stack([c, d]), header='c d') print('c-mean', c.mean()) print('c-std', sem(c)) print('Wert 1 ENDE') print('====================') print('Wert 3 ANFANG') cao2 = 994 * 10**(-9) pot1 = 7.05 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) ca1 = c2 / pot print('ca1', ca1) cao2 = 750 * 10**(-9) pot1 = 6.395 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cb1 = c2 / pot print('cb1', cb1) cao2 = 399 * 10**(-9) pot1 = 4.89 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cc1 = c2 / pot print('cc1', cc1) c = np.array([unp.nominal_values(ca1), unp.nominal_values(cb1), unp.nominal_values(cc1)]) d = np.array([unp.std_devs(ca1), unp.std_devs(cb1), unp.std_devs(cc1)]) np.savetxt('build/wert3.txt', np.column_stack([c, d]), header='c d') print('c-mean', c.mean()) print('c-std', sem(c)) print('Wert 3 ENDE') print('====================') print('Wert 8 ANFANG') cao2 = 994 * 10**(-9) pot1 = 1.175 rao2 = 5000 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) ca1 = c2 / pot r2 = ufloat(rao2, rao2 * 0.03) ra1 = r2 * pot print('ra1', ra1) print('ca1', ca1) print('.') cao2 = 750 * 10**(-9) pot1 = 4.35 rao2 = 875 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cb1 = c2 / pot r2 = ufloat(rao2, rao2 * 0.03) rb1 = r2 * pot print('rb1', rb1) print('cb1', cb1) print('.') cao2 = 399 * 10**(-9) pot1 = 5.78 rao2 = 410 c2 = ufloat(cao2, cao2 * 0.002) pot2 = 10 - pot1 pot3 = pot1 / pot2 pot = ufloat(pot3, pot3 * 0.005) cc1 = c2 / pot r2 = ufloat(rao2, rao2 * 0.03) rc1 = r2 * pot print('rc1', rc1) print('cc1', cc1) print('.') c = np.array([unp.nominal_values(ca1), unp.nominal_values(cb1), unp.nominal_values(cc1)]) dc = np.array([unp.std_devs(ca1), unp.std_devs(cb1), unp.std_devs(cc1)]) r = np.array([unp.nominal_values(ra1), unp.nominal_values(rb1), unp.nominal_values(rc1)]) dr = np.array([unp.std_devs(ra1), unp.std_devs(rb1), unp.std_devs(rc1)]) np.savetxt('build/wert8.txt', np.column_stack([c, dc, r, dr]), header='c stdc r stdr') c = c[1::] r = r[1::] print('c-mean', c.mean()) print('c-std', sem(c)) print('r-mean', r.mean()) print('r-std', sem(r)) print('Wert 8 ENDE') print('====================') print('Kondensator ENDE') print('====================')
23.368056
89
0.608024
70d5472dbe1d12ec14a16666a43deb4ff0e8ae72
1,218
py
Python
python/data_sutram/scraper/test_im.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/data_sutram/scraper/test_im.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/data_sutram/scraper/test_im.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
# Mechanize headless import mechanize from cookielib import CookieJar import urllib # Browser br = mechanize.Browser() # Cookie Jar cj = cookielib.LWPCookieJar() br.set_cookiejar(cj) # Browser options br.set_handle_equiv(True) br.set_handle_gzip(True) br.set_handle_redirect(True) br.set_handle_referer(True) br.set_handle_robots(False) # Follows refresh 0 but not hangs on refresh > 0 br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time=1) # Want debugging messages? #br.set_debug_http(True) #br.set_debug_redirects(True) #br.set_debug_responses(True) # User-Agent (this is cheating, ok?) br.addheaders = [('User-agent', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1')] r = br.open('http://www.example.com/html-page-with-dynamic-image-embedded.html') # Check if HTML content returned ok if br.response().info()['Content-Type'] == 'text/html; charset=iso-8859-1': # Now that the main page is loaded you can open the dynamic image r = br.open('http://www.example.com/images/image.php') # From here you just treat the image as you wish png = r.read() f = open('image-new-name.png', 'wb') f.write(png) f.close()
32.918919
137
0.731527
1ddf2922520f6aa4bfc3738376a3a0ecbbf5263e
855
py
Python
tests/integration/test_resource_groups.py
pcrete/skil-python
672a1aa9e8af020c960ab9ee280cbb6b194afc3f
[ "Apache-2.0" ]
23
2018-09-19T13:34:27.000Z
2022-02-14T09:49:35.000Z
tests/integration/test_resource_groups.py
pcrete/skil-python
672a1aa9e8af020c960ab9ee280cbb6b194afc3f
[ "Apache-2.0" ]
33
2018-10-18T07:58:05.000Z
2019-05-16T08:24:12.000Z
tests/integration/test_resource_groups.py
pcrete/skil-python
672a1aa9e8af020c960ab9ee280cbb6b194afc3f
[ "Apache-2.0" ]
11
2018-10-21T18:58:57.000Z
2022-02-14T09:49:36.000Z
import pytest import skil import uuid from skil.resources.groups import * _sk = None def _get_sk(): global _sk if _sk is None: _sk = skil.Skil() return _sk def test_group_add_and_deletion(): sk = _get_sk() res = skil.resources.storage.S3(sk, "s3" + str(uuid.uuid1())[:6], "test_bucket", "test_region", "test_credentials") group = ResourceGroup(sk, str(uuid.uuid1())[:6]) group.add_resource(res) groups = group.get_all_resources() assert len(groups) == 1 assert groups[0].resource_id == res.resource_id # TODO deletion does not seem to work. investigate why! # group.delete_resource(res) # groups = group.get_all_resources() # assert len(groups) == 0 res.delete() group.delete() if __name__ == '__main__': pytest.main([__file__])
20.357143
84
0.62924
38476eb7a96a95db3013a4cf28ef9c8b1792c0c4
1,766
py
Python
2-resources/_External-learning-resources/02-pyth/python-patterns-master/tests/creational/test_pool.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
2-resources/_External-learning-resources/02-pyth/python-patterns-master/tests/creational/test_pool.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
2-resources/_External-learning-resources/02-pyth/python-patterns-master/tests/creational/test_pool.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
1
2021-11-05T07:48:26.000Z
2021-11-05T07:48:26.000Z
import queue import unittest from patterns.creational.pool import ObjectPool class TestPool(unittest.TestCase): def setUp(self): self.sample_queue = queue.Queue() self.sample_queue.put("first") self.sample_queue.put("second") def test_items_recoil(self): with ObjectPool(self.sample_queue, True) as pool: self.assertEqual(pool, "first") self.assertTrue(self.sample_queue.get() == "second") self.assertFalse(self.sample_queue.empty()) self.assertTrue(self.sample_queue.get() == "first") self.assertTrue(self.sample_queue.empty()) def test_frozen_pool(self): with ObjectPool(self.sample_queue) as pool: self.assertEqual(pool, "first") self.assertEqual(pool, "first") self.assertTrue(self.sample_queue.get() == "second") self.assertFalse(self.sample_queue.empty()) self.assertTrue(self.sample_queue.get() == "first") self.assertTrue(self.sample_queue.empty()) class TestNaitivePool(unittest.TestCase): """def test_object(queue): queue_object = QueueObject(queue, True) print('Inside func: {}'.format(queue_object.object))""" def test_pool_behavior_with_single_object_inside(self): sample_queue = queue.Queue() sample_queue.put("yam") with ObjectPool(sample_queue) as obj: # print('Inside with: {}'.format(obj)) self.assertEqual(obj, "yam") self.assertFalse(sample_queue.empty()) self.assertTrue(sample_queue.get() == "yam") self.assertTrue(sample_queue.empty()) # sample_queue.put('sam') # test_object(sample_queue) # print('Outside func: {}'.format(sample_queue.get())) # if not sample_queue.empty():
33.961538
60
0.657984
38d12590f59234246f75d9aae0a5c6aa79e453a3
3,036
py
Python
year_2/prog_base_sem1_cw/app/api_1_0/users.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
null
null
null
year_2/prog_base_sem1_cw/app/api_1_0/users.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
21
2020-03-24T16:26:04.000Z
2022-02-18T15:56:16.000Z
year_2/prog_base_sem1_cw/app/api_1_0/users.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
null
null
null
from flask import jsonify, request, current_app, url_for from . import api from ..models import User, Post from .errors import bad_request @api.route('/users/') def get_users(): offset = request.args.get('offset') or 5 try: offset = int(offset) except: return bad_request('Bad offset argument.') users = User.query.order_by(User.id).slice(0, offset) # If request has args on /users/ if request.args: users_GotArg = [] users_all = User.query.all() if request.args.get('fn'): for user in users_all: if user.name == request.args.get('fn'): users_GotArg.append(user) if request.args.get('un'): for user in users_all: if user.username.startswith(request.args.get('un')): users_GotArg.append(user) return jsonify( { 'total': len(users_GotArg), 'users': [user.to_json() for user in users_GotArg] } ) # If it's just a regular request on /users/ return jsonify( { 'total': User.query.count(), 'offset': offset, 'users': [user.to_json() for user in users] } ) @api.route('/users/<int:id>') def get_user(id): user = User.query.get_or_404(id) return jsonify(user.to_json()) @api.route('/users/<int:id>/posts/') def get_user_posts(id): user = User.query.get_or_404(id) page = request.args.get('page', 1, type=int) pagination = user.posts.order_by(Post.timestamp.desc()).paginate( page, per_page=current_app.config['WIDT_POSTS_PER_PAGE'], ) posts = pagination.items prev_page = None if pagination.has_prev: prev_page = url_for('api.get_user_posts', id=id, page=page-1, _external=True) next_page = None if pagination.has_next: next_page = url_for('api.get_user_posts', id=id, page=page+1, _external=True) return jsonify( { 'count': pagination.total, 'posts': [post.to_json() for post in posts], 'prev_page': prev_page, 'next_page': next_page, } ) @api.route('/users/<int:id>/feed/') def get_user_followed_posts(id): user = User.query.get_or_404(id) page = request.args.get('page', 1, type=int) pagination = user.followed_posts.order_by(Post.timestamp.desc()).paginate( page, per_page=current_app.config['WIDT_POSTS_PER_PAGE'] ) posts = pagination.items prev_page = None if pagination.has_prev: prev_page = url_for('api.get_user_followed_posts', id=id, page=page-1, _external=True) next_page = None if pagination.has_next: next_page = url_for('api.get_user_followed_posts', id=id, page=page+1, _external=True) return jsonify( { 'posts': [post.to_json() for post in posts], 'count': pagination.total, 'prev_page': prev_page, 'next_page': next_page } )
30.979592
94
0.594203
aa749c417c666122123352558e10206592246cdc
2,889
py
Python
scripts/figA5.py
gavstrik/BC
2085872f1ff4241dcf4a5ef64eaa0601fb8ac454
[ "MIT" ]
null
null
null
scripts/figA5.py
gavstrik/BC
2085872f1ff4241dcf4a5ef64eaa0601fb8ac454
[ "MIT" ]
null
null
null
scripts/figA5.py
gavstrik/BC
2085872f1ff4241dcf4a5ef64eaa0601fb8ac454
[ "MIT" ]
null
null
null
import os import numpy as np import pandas as pd from scipy.stats import mode, ks_2samp, mannwhitneyu, shapiro, pearsonr import matplotlib.pyplot as plt plt.rcParams["font.family"] = "sans-serif" PLOTS_DIR = '../plots' """ histograms of guess distributions partitioned into groups and rounds. """ datafile_AMT = pd.read_csv('../data/amt.csv') def most_common_numbers(array): first = mode(array)[0][0] array = array[array != first] second = mode(array)[0][0] array = array[array != second] third = mode(array)[0][0] array = array[array != third] fourth = mode(array)[0][0] array = array[array != fourth] fifth = mode(array)[0][0] return first, second, third, fourth, fifth def plot_histograms(df_AMT): fig, axes = plt.subplots(nrows=4, ncols=2, sharex=True, sharey=True, figsize=(8,8)) axes = axes.flatten() bins = np.linspace(-0.5, 100.5, 102) colors = ['#4575b4', 'orange', 'red'] df_2 = df_AMT[df_AMT['name'] == 'GoR_'+str(2)] df_4 = df_AMT[df_AMT['name'] == 'GoR_'+str(4)] df_8 = df_AMT[df_AMT['name'] == 'GoR_'+str(8)] for i in range(1,len(axes)+1): data = df_AMT[df_AMT['round'] == i].guess.values.astype(int) data_2 = df_2[df_2['round'] == i].guess.values.astype(int) data_4 = df_4[df_4['round'] == i].guess.values.astype(int) data_8 = df_8[df_8['round'] == i].guess.values.astype(int) axes[i-1].hist([data_2, data_4, data_8], stacked=True, density=True, color=colors, bins=bins, label=['2 players', '4 players', '8 players']) # axes[i-1].hist(data, bins=bins, density=True, color=colors[0]) axes[i-1].set_title('round '+str(i), fontsize='smaller') avg = np.around(np.mean(data),2) first, second, third, fourth, fifth = most_common_numbers(data) N = len(data) axes[i-1].annotate("mean = "+str(avg)+'\nmode = '+str(first), xy=(0.7, 0.9), xycoords='axes fraction', fontsize=7, horizontalalignment='left', verticalalignment='top') # plotting paraphernalia # Set the ticks and ticklabels for all axes plt.setp(axes, xticks=[0, 22, 33, 50, 100], xticklabels=[0, 22, 33, 50, 100]) for ax in axes: ax.set_xticklabels([0, 22, 33, 50, 100], fontsize='x-small') ax.set_yticklabels([0,0.1,0.2], fontsize='x-small') ax.legend(fontsize='x-small', loc='upper left') fig.tight_layout() # Remember: save as pdf and transparent=True for Adobe Illustrator if not os.path.exists(PLOTS_DIR): os.makedirs(PLOTS_DIR) plt.savefig(os.path.join(PLOTS_DIR, 'figA5.png'), transparent=True, dpi=300) plt.savefig(os.path.join(PLOTS_DIR, 'figA5.pdf'), transparent=True, dpi=300) plt.show() # main code df_AMT = pd.DataFrame(datafile_AMT) plot_histograms(df_AMT)
36.56962
81
0.619592
2d55c635179769de07550c25a60f02140a27ba4a
750
py
Python
elements/python/7/6/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
11
2019-02-08T06:54:34.000Z
2021-08-07T18:57:39.000Z
elements/python/7/6/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
1
2019-05-21T08:14:10.000Z
2019-05-21T08:14:10.000Z
elements/python/7/6/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
null
null
null
def say(digits): cur = digits[0] run = 1 result = '' for digit in digits[1:]: if digit == cur: run += 1 continue result += str(run) + cur cur = digit run = 1 result += str(run) + cur return result def look_and_say(n): digits = '1' for _ in xrange(n): digits = say(digits) return digits def test(): expect = [ 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ] for n, digits in enumerate(expect): assert look_and_say(n) == str(digits) print 'pass' def main(): test() if __name__ == '__main__': main()
16.666667
45
0.449333
933ad89a120b4cce5b993027be90d01878672a18
1,804
py
Python
tests/data/test_load.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
2,706
2018-04-05T18:28:50.000Z
2022-03-29T16:56:59.000Z
tests/data/test_load.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
242
2018-04-05T22:30:42.000Z
2022-03-19T01:55:11.000Z
tests/data/test_load.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
464
2018-04-05T19:10:34.000Z
2022-03-28T13:33:32.000Z
import retro import pytest import gc import gzip import os import zlib from retro.testing import game, handle from concurrent.futures import ProcessPoolExecutor, TimeoutError from concurrent.futures.process import BrokenProcessPool pool = ProcessPoolExecutor(1) @pytest.fixture(scope="module") def processpool(): def run(fn, *args): global pool try: future = pool.submit(fn, *args) return future.result(2) except BrokenProcessPool: pool = ProcessPoolExecutor(1) return [], [(args[0], 'subprocess crashed')] except TimeoutError: return [], [(args[0], 'task timed out')] yield run pool.shutdown() def load(game, inttype): errors = [] rom = retro.data.get_romfile_path(game, inttype) emu = retro.RetroEmulator(rom) emu.step() del emu gc.collect() return [], errors def state(game, inttype): errors = [] states = retro.data.list_states(game, inttype) if not states: return [], [] rom = retro.data.get_romfile_path(game, inttype | retro.data.Integrations.STABLE) emu = retro.RetroEmulator(rom) for statefile in states: try: with gzip.open(retro.data.get_file_path(game, statefile + '.state', inttype), 'rb') as fh: state = fh.read() except (IOError, zlib.error): errors.append((game, 'state failed to decode: %s' % statefile)) continue emu.set_state(state) emu.step() del emu gc.collect() return [], errors def test_load(game, processpool): warnings, errors = processpool(load, *game) handle(warnings, errors) def test_state(game, processpool): warnings, errors = processpool(state, *game) handle(warnings, errors)
23.736842
102
0.632483
fac84c6b38588a5252beeb3fd5a41ce1849f6c94
2,851
py
Python
weibo/login/weiboLogin.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
weibo/login/weiboLogin.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
weibo/login/weiboLogin.py
haiboz/weiboSpider
517cae2ef3e7bccd9e1d328a40965406707f5362
[ "Apache-2.0" ]
null
null
null
#encoding:utf8 ''' Created on 2016年4月11日 @author: wb-zhaohaibo ''' import urllib2 import cookielib import WeiboEncode import WeiboSearch class WeiboLogin(object): def __init__(self, user, pwd, enableProxy = False): "初始化WeiboLogin,enableProxy表示是否使用代理服务器,默认关闭" print "初始化登录程序..." self.userName = user self.passWord = pwd self.enableProxy = enableProxy self.serverUrl = "http://login.sina.com.cn/sso/prelogin.php?entry=weibo&callback=sinaSSOController.preloginCallBack&su=&rsakt=mod&client=ssologin.js(v1.4.11)&_=1379834957683" self.loginUrl = "http://login.sina.com.cn/sso/login.php?client=ssologin.js(v1.4.11)" self.postHeader = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101 Firefox/24.0'} def Login(self): "登陆程序" self.EnableCookie(self.enableProxy)#cookie或代理服务器配置 serverTime, nonce, pubkey, rsakv = self.GetServerTime()#登陆的第一步 postData = WeiboEncode.PostEncode(self.userName, self.passWord, serverTime, nonce, pubkey, rsakv)#加密用户和密码 print "Post data length:\n", len(postData) req = urllib2.Request(self.loginUrl, postData, self.postHeader) print "Posting request..." result = urllib2.urlopen(req)#登陆的第二步——解析新浪微博的登录过程中3 text = result.read() try: loginUrl = WeiboSearch.sRedirectData(text)#解析重定位结果 urllib2.urlopen(loginUrl) except: print 'Login error!' return False print 'Login sucess!' return True def EnableCookie(self, enableProxy): "Enable cookie & proxy (if needed)." cookiejar = cookielib.LWPCookieJar()#建立cookie cookie_support = urllib2.HTTPCookieProcessor(cookiejar) if enableProxy: proxy_support = urllib2.ProxyHandler({'http':'http://xxxxx.pac'})#使用代理 opener = urllib2.build_opener(proxy_support, cookie_support, urllib2.HTTPHandler) print "Proxy enabled" else: opener = urllib2.build_opener(cookie_support, urllib2.HTTPHandler) urllib2.install_opener(opener)#构建cookie对应的opener def GetServerTime(self): "Get server time and nonce, which are used to encode the password" print "Getting server time and nonce..." serverData = urllib2.urlopen(self.serverUrl).read()#得到网页内容 print "serverData="+serverData try: serverTime, nonce, pubkey, rsakv = WeiboSearch.sServerData(serverData)#解析得到serverTime,nonce等 return serverTime, nonce, pubkey, rsakv except: print 'Get server time & nonce error!' return None
38.527027
183
0.617327
e21134e8d2914688a76a8130c25ea39f097db91e
3,018
py
Python
7_DeepLearning-GANs/04_Generative_Adversarial_Attacks/targeted_attack.py
felixdittrich92/DeepLearning-tensorflow-keras
2880d8ed28ba87f28851affa92b6fa99d2e47be9
[ "Apache-2.0" ]
null
null
null
7_DeepLearning-GANs/04_Generative_Adversarial_Attacks/targeted_attack.py
felixdittrich92/DeepLearning-tensorflow-keras
2880d8ed28ba87f28851affa92b6fa99d2e47be9
[ "Apache-2.0" ]
null
null
null
7_DeepLearning-GANs/04_Generative_Adversarial_Attacks/targeted_attack.py
felixdittrich92/DeepLearning-tensorflow-keras
2880d8ed28ba87f28851affa92b6fa99d2e47be9
[ "Apache-2.0" ]
null
null
null
''' Generative Adversarial Attacks - den Output des Netes beeinflussen (z.B. andere Klasse ausgeben als eigentlich ist) durch Noise über ganzes Bild was für das menschliche Auge nicht sichtbar ist, oder anbringen von Patches (kleine Bilder die dann im Vordergrund liegen) welche dann eine z.B. andere Klassifizierung bewirken. targeted - mit bestimmte "erzwungene" Klasse ''' import tensorflow as tf from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * import numpy as np import matplotlib.pyplot as plt from mnistCnn import * from mnistData import * from plotting import * mnist_data = MNIST() x_train, y_train = mnist_data.get_train_set() x_test, y_test = mnist_data.get_test_set() def adversarial_noise(model, image, label): with tf.GradientTape() as tape: tape.watch(image) prediction = model(image, training=False)[0] loss = tf.keras.losses.categorical_crossentropy(label, prediction) # Get the gradients of the loss w.r.t to the input image. gradient = tape.gradient(loss, image) # Get the sign of the gradients to create the noise signed_grad = tf.sign(gradient) return signed_grad if __name__ == "__main__": cnn = build_cnn() lr = 0.0005 optimizer = Adam(lr=lr) cnn.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) #cnn.fit(x_train, y_train, verbose=1, # batch_size=256, epochs=10, # validation_data=(x_test, y_test)) path = "/home/felix/Desktop/DeepLearning/7_DeepLearning-GANs/04_Generative_Adversarial_Attacks/weights/mnist_cnn.h5" #cnn.save_weights(path) cnn.load_weights(path) #score = cnn.evaluate(x_test, y_test, verbose=0) #print("Test accuracy: ", score[1]) sample_idx = np.random.randint(low=0, high=x_test.shape[0]) image = np.array([x_test[sample_idx]]) true_label = y_test[sample_idx] true_label_idx = np.argmax(true_label) y_pred = cnn.predict(image)[0] print("Right class: ", true_label_idx) print("Prob. right class: ", y_pred[true_label_idx]) eps = 0.001 # Stärke des Noise filters pro Schritt image_adv = tf.convert_to_tensor(image, dtype=tf.float32) # Bild in Tensor umwandeln target_label_idx = 9 target_label = tf.one_hot(target_label_idx, 10) while (np.argmax(y_pred) != target_label_idx): # image_adv = image_adv + eps * noise noise = adversarial_noise(cnn, image_adv, true_label) if np.sum(noise) == 0.0: break image_adv = image_adv - eps * noise image_adv = tf.clip_by_value(image_adv, 0, 1) y_pred = cnn.predict(image_adv)[0] print("Prob. right class: ", y_pred[true_label_idx]) print("Prob. target class: ", y_pred[target_label_idx], "\n") plot_img(image_adv.numpy(), cmap="gray") plot_img(noise.numpy(), cmap="gray")
37.725
127
0.678595
10645f967cb90505e0a8d95a0c49e24a7b4bbd9b
8,786
py
Python
research/cv/DDRNet/src/data/augment/transforms.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/DDRNet/src/data/augment/transforms.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/DDRNet/src/data/augment/transforms.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """image transformer""" import math import random import warnings import numpy as np from PIL import Image from PIL import ImageEnhance, ImageOps class ShearX: def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), Image.BICUBIC, fillcolor=self.fillcolor) class ShearY: def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0), Image.BICUBIC, fillcolor=self.fillcolor) class TranslateX: def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, magnitude * x.size[0] * random.choice([-1, 1]), 0, 1, 0), fillcolor=self.fillcolor) class TranslateY: def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * x.size[1] * random.choice([-1, 1])), fillcolor=self.fillcolor) class Rotate: # from https://stackoverflow.com/questions/ # 5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand def __call__(self, x, magnitude): rot = x.convert("RGBA").rotate(magnitude) return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert(x.mode) class Color: def __call__(self, x, magnitude): return ImageEnhance.Color(x).enhance(1 + magnitude * random.choice([-1, 1])) class Posterize: def __call__(self, x, magnitude): return ImageOps.posterize(x, magnitude) class Solarize: def __call__(self, x, magnitude): return ImageOps.solarize(x, magnitude) class Contrast: def __call__(self, x, magnitude): return ImageEnhance.Contrast(x).enhance(1 + magnitude * random.choice([-1, 1])) class Sharpness: def __call__(self, x, magnitude): return ImageEnhance.Sharpness(x).enhance(1 + magnitude * random.choice([-1, 1])) class Brightness: def __call__(self, x, magnitude): return ImageEnhance.Brightness(x).enhance(1 + magnitude * random.choice([-1, 1])) class AutoContrast: def __call__(self, x, magnitude): return ImageOps.autocontrast(x) class Equalize: def __call__(self, x, magnitude): return ImageOps.equalize(x) class Invert: def __call__(self, x, magnitude): return ImageOps.invert(x) class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _pil_interp(method): """_pil_interp""" if method == 'bicubic': output = Image.BICUBIC elif method == 'lanczos': output = Image.LANCZOS elif method == 'hamming': output = Image.HAMMING else: # default bilinear, do we want to allow nearest? output = Image.BILINEAR return output _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) class Resize: """Resize""" def __init__(self, size, interpolation='bilinear'): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) self.interpolation = _pil_interp(interpolation) def __call__(self, img): img = img.resize(self.size, self.interpolation) return img class RandomResizedCropAndInterpolation: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear'): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for _ in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return j, i, w, h # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return j, i, w, h def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ left, top, width, height = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation img = img.crop((left, top, left + width, top + height)) img = img.resize(self.size, interpolation) return img def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string
32.420664
98
0.6112
10a82b2d11be8d842a3706c5be82cc90600973cf
1,673
py
Python
TranspaGOOGLE-master/TanspaGOOGLE.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
TranspaGOOGLE-master/TanspaGOOGLE.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
TranspaGOOGLE-master/TanspaGOOGLE.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
#!/usr/bin/env python3 #github.com/AngelSecurityTeam/TranspaGOOGLE import optparse import sys import requests import json tmpDomainList=[] def lookup(domainName): nextLink='' url='https://transparencyreport.google.com/transparencyreport/api/v3/httpsreport/ct/certsearch?include_expired=true&include_subdomains=true&domain='+domainName content = requests.get(url) lines=(content.text).split("\n") contentStr="" for x in lines: x=x.strip() if x!=")]}'": contentStr+=x data = json.loads(contentStr) x=0 while x<len((data[0][1])): foundDomain=data[0][1][x][1] if foundDomain not in tmpDomainList: print(foundDomain) tmpDomainList.append(foundDomain) x+=1 nextLink=data[0][3][1] return nextLink def lookupNextPage(tmpLink): url='https://transparencyreport.google.com/transparencyreport/api/v3/httpsreport/ct/certsearch/page?p='+tmpLink content = requests.get(url) lines=(content.text).split("\n") contentStr="" for x in lines: x=x.strip() if x!=")]}'": contentStr+=x data = json.loads(contentStr) x=0 while x<len((data[0][1])): foundDomain=data[0][1][x][1] if foundDomain not in tmpDomainList: print(foundDomain) tmpDomainList.append(foundDomain) x+=1 nextLink=data[0][3][1] return nextLink parser = optparse.OptionParser() parser.add_option('-d', action="store", dest="domainName") options, remainder = parser.parse_args() if options.domainName: domainName=options.domainName nextLink=lookup(domainName) try: while len(nextLink)>0: if len(nextLink)>0: nextLink=lookupNextPage(nextLink) except TypeError: pass else: print("[!] Please provide a domain name using the -d argument") sys.exit()
24.602941
160
0.723849
52ec494954ac43a325093f841ee5efbe521270b6
3,942
py
Python
back-end/src/analysis/NeuralNet/655/nn_mapper.py
akshah/iodb
80fbad1cb639e2cad304d6565cf4918ee5b4e4c0
[ "Apache-2.0" ]
null
null
null
back-end/src/analysis/NeuralNet/655/nn_mapper.py
akshah/iodb
80fbad1cb639e2cad304d6565cf4918ee5b4e4c0
[ "Apache-2.0" ]
null
null
null
back-end/src/analysis/NeuralNet/655/nn_mapper.py
akshah/iodb
80fbad1cb639e2cad304d6565cf4918ee5b4e4c0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Adapted from an example by Michael G. Noll at: # # http://www.michael-noll.com/wiki/Writing_An_Hadoop_MapReduce_Program_In_Python # ''' import sys, urllib, re import numpy as np # Read pairs as lines of input from STDIN #for line in sys.stdin: # We assume that we are fed a series of URLs, one per line # url = line.strip() # Fetch the content and output the title (pairs are tab-delimited) dataOriginal= np.loadtxt('wine.data') print "Shah","\t", "Anant" ''' import hashlib import Image import sys data=list() imagelist=list() imgname=list() for line in sys.stdin: dataline = line.strip() imgname=dataline.split("\t") #imagelist.append(dataline) imagelist.append(imgname[1]) #print "Keyr1","\tThis is length",len(imagelist) #print "Keyr1","\t",name[1] def md5Checksum(filePath): fh = open(filePath, 'rb') m = hashlib.md5() while True: data = fh.read(8192) if not data: break m.update(data) return m.hexdigest() for z in range(len(imagelist)): #print 'The MD5 checksum of ',imagelist[i],'is ', md5Checksum(imagelist[i]) im = Image.open(imagelist[z]) pix= im.load() size= im.size #print 'Column: ',size[0],'Rows :',size[1] #print pix[100,100][1] #calculate row mean rowmeanR=list() rowmeanG=list() rowmeanB=list() csumr=0 csumg=0 csumb=0 for r in range(size[1]): csumr=0 csumg=0 csumb=0 for c in range(size[0]): csumr=csumr+pix[c,r][0] csumg=csumg+pix[c,r][1] csumb=csumb+pix[c,r][2] rowmeanR.append(csumr/size[0]) rowmeanG.append(csumg/size[0]) rowmeanB.append(csumb/size[0]) csumr=0 csumg=0 csumb=0 for i in range(len(rowmeanR)): csumr=csumr+rowmeanR[i] for i in range(len(rowmeanG)): csumg=csumg+rowmeanG[i] for i in range(len(rowmeanB)): csumb=csumb+rowmeanB[i] ROWMEAN_R=csumr/len(rowmeanR) ROWMEAN_G=csumg/len(rowmeanG) ROWMEAN_B=csumb/len(rowmeanB) #calculate column mean colmeanR=list() colmeanG=list() colmeanB=list() rsumr=0 rsumg=0 rsumb=0 for c in range(size[0]): rsumr=0 rsumg=0 rsumb=0 for r in range(size[1]): rsumr=rsumr+pix[c,r][0] rsumg=rsumg+pix[c,r][1] rsumb=rsumb+pix[c,r][2] colmeanR.append(rsumr/size[1]) colmeanG.append(rsumg/size[1]) colmeanB.append(rsumb/size[1]) rsumr=0 rsumg=0 rsumb=0 for i in range(len(colmeanR)): rsumr=rsumr+colmeanR[i] for i in range(len(colmeanG)): rsumg=rsumg+colmeanG[i] for i in range(len(colmeanB)): rsumb=rsumb+colmeanB[i] COLMEAN_R=rsumr/len(colmeanR) COLMEAN_G=rsumg/len(colmeanG) COLMEAN_B=rsumb/len(colmeanB) #calculate DCT Row mean dctrowmeanR=list() dctrowmeanG=list() dctrowmeanB=list() csumr=0 csumg=0 csumb=0 for r in range(size[1]): csumr=0 csumg=0 csumb=0 for c in range(size[0]): csumr=csumr+pix[c,r][0] csumg=csumg+pix[c,r][1] csumb=csumb+pix[c,r][2] dctrowmeanR.append(csumr/size[0]) dctrowmeanG.append(csumg/size[0]) dctrowmeanB.append(csumb/size[0]) csumr=0 csumg=0 csumb=0 for i in range(len(dctrowmeanR)): csumr=csumr+dctrowmeanR[i] for i in range(len(dctrowmeanG)): csumg=csumg+dctrowmeanG[i] for i in range(len(dctrowmeanB)): csumb=csumb+dctrowmeanB[i] DCT_ROWMEAN_R=csumr/len(dctrowmeanR) DCT_ROWMEAN_G=csumg/len(dctrowmeanG) DCT_ROWMEAN_B=csumb/len(dctrowmeanB) #select category category=1 tokens = imagelist[z].split('.') if int(tokens[0]) >= 1: if int(tokens[0]) < 6: category=1 if (int(tokens[0]) >= 6) and (int(tokens[0]) < 11): category=2 if (int(tokens[0]) >= 11) and (int(tokens[0]) < 16): category=3 #print features of this image #print category,"\t",category,",",ROWMEAN_R,",",ROWMEAN_G,",",ROWMEAN_B,",",COLMEAN_R,",",COLMEAN_G,",",COLMEAN_B outstr=str(category)+","+str(ROWMEAN_R)+","+str(ROWMEAN_G)+","+str(ROWMEAN_B)+","+str(COLMEAN_R)+","+str(COLMEAN_G)+","+str(COLMEAN_B) print "keyr1","\t",outstr print "keyr2","\t",outstr print "keyr3","\t",outstr
23.188235
135
0.676053
0dea3ae22e010767a2506547182f23b3b038a948
481
py
Python
Python/zzz_training_challenge/Python_Challenge/solutions/ch06_arrays/intro/intro_numpy_size.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch06_arrays/intro/intro_numpy_size.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch06_arrays/intro/intro_numpy_size.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden import numpy as np import sys numbers = [i for i in range(100_000)] print("Size of each element: ", sys.getsizeof(numbers[0])) print(numbers[99_999]) print("Size of the list: ", sys.getsizeof(numbers)) numbers_array = np.arange(100_000) print("Size of each element: ", numbers_array.itemsize) print(numbers_array[99_999]) print("Size of the Numpy array: ", sys.getsizeof(numbers_array))
22.904762
64
0.746362
33f43d8dd75183d8b94d8185574855e2f615c4a2
6,834
py
Python
isj_proj05.py
SnasiCze/ISJ
2284cb0d53aad5dd0bfc6230224700628be9e454
[ "MIT" ]
null
null
null
isj_proj05.py
SnasiCze/ISJ
2284cb0d53aad5dd0bfc6230224700628be9e454
[ "MIT" ]
null
null
null
isj_proj05.py
SnasiCze/ISJ
2284cb0d53aad5dd0bfc6230224700628be9e454
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # DEKLARACE ZÁSTUPNÝCH PROMNĚNÝCH NULA=0 JEDNA=1 DVA=2 # Konec deklarace ''' Třída Polynomial pro zpracování ruzných polynomů, dle zadání ''' class Polynomial: ''' Definife funkce __INIT__, uprava dat pro další operace/funkce ''' def __init__(self, *args, **arg): # Definitce funkce __INIT__ self.polynom = [] # Deklarace if args: # podmínka na zjistění jestli byl vložen list if len(args) != NULA and type(args[NULA]) == list: self.polynom = args[NULA].copy() # pokud to je list a není nulový Tak se skopíruje hlubokou kopii else: [self.polynom.append(i) for i in args] # projetí všech hodnot a přidání hodnoty self.polynom if arg: # jestli že to není list for i in list(arg): # projetí všech klíču if arg[i] != NULA: # když se nerovná nule while len(self.polynom) <= (int(i[JEDNA:])): self.polynom.append(NULA) # projetí všech položek přidání hodnot self.polynom[int(i[JEDNA:])] = arg[i] # přidání zbytku a kontrola def __str__(self): ''' Funkce pro tisk která upravu výstupní data ''' vysledek = "" # deklarace if not len(self.polynom): return "0" # jestliže je pole nulové vrátí nulu for i, koefi in enumerate(reversed(self.polynom)): # projetí všech hodnot if koefi: # koeficiont if koefi < NULA: znam, koefi = (' - ' if vysledek else '- '), -koefi # jestli že je konficient záporný elif koefi > NULA: znam = (' + ' if vysledek else '') #jestli že je kladný str_koefi = '' if koefi == JEDNA and (len(self.polynom) - (i + JEDNA)) != NULA else str(koefi) if (len(self.polynom) - (i + JEDNA)) == NULA: str_mocnina = '' # jestliže je mocnina rovná nule elif (len(self.polynom) - (i + JEDNA)) == JEDNA: str_mocnina = 'x' # jestliže je mocnina rovná 1 else: str_mocnina = ('x' + '^' + str((len(self.polynom) - (i + JEDNA)))) # výpočet vysledek += (znam + str_koefi + str_mocnina) # výpočet return vysledek def __eq__(self, dalsi): ''' porovnání na zjištění velkosti ''' if type(dalsi) == Polynomial and self.polynom == dalsi.polynom: return True # podmínka jestli je to Polynomial a zd podmínka zda-li se rovnají return False def __add__(self, dalsi): ''' Přídání jednoho polinomu do ruhého nebo opačně dle délky ''' list = [] # deklarace listu if len(self.polynom) > len(dalsi.polynom): [dalsi.polynom.append(NULA) for i in range((len(self.polynom) - len(dalsi.polynom)))] # podmínka na zjistění velikosti, přidání hodnot do else: [self.polynom.append(NULA) for i in range((len(dalsi.polynom) - len(self.polynom)))] # přidání hodnot do [list.append(self.polynom[i] + dalsi.polynom[i]) for i in range(len(self.polynom))] # projetí a sloužení do jedného return Polynomial(list) # návrat list def __mul__(self, dalsi): ''' násobení polynomu a návrat jeho nové hodnoty ''' list = ([NULA] * ((len(self.polynom) + len(dalsi.polynom)) - JEDNA)) # vyvtoření pole for i in range(len(self.polynom)): # projetí 2x cyklu for j in range(len(dalsi.polynom)): list[i + j] += (self.polynom[i] * dalsi.polynom[j]) # naplnění pole vypočtem return Polynomial(list) # návrat listu def __pow__(self, mocnina): ''' projíždí je je mocnina a podle toho vykoná operaci nad daty v polinomu ''' if mocnina == NULA: return Polynomial(JEDNA) # jestli je mocnina =0, return 1 elif mocnina >= JEDNA: # porovnání jestli je mocnina větší než 0 if mocnina == JEDNA: return self # jestli je mocnina = 1, return to co přišlo do funkce else: vysledek = self # první číslo mocnina += JEDNA # upravení mocniy for i in range(DVA, mocnina): vysledek = (vysledek * self) # naplnění zbytkem čísel return vysledek # návrat hodnoty return NULA def derivative(self): ''' Funcke pro derivaci polynomu ''' derivace = [] # Deklarace listu pro výsldek [derivace.append((self.polynom[i] * i)) for i in range(JEDNA, len(self.polynom))] # Projetí pole od druhého indexu a zdeerivace u všech položek a návrat do listu return Polynomial(derivace) # Návrat po derivaci def at_value(self, *arg): ''' Funkce pro přidání hodnoty ''' hodnota =NULA # deklarace hodnota1=NULA # deklarace if len(arg) == JEDNA: # velikost argumentu == 1 for i in range(len(self.polynom)): hodnota += (self.polynom[i] * (arg[NULA] ** i)) # přiřazení všechn hodnot do listu return hodnota # návrat honoty elif len(arg) == DVA: # velikost argumentu == 2 for i in range(len(self.polynom)): # projetí pole hodnota += (self.polynom[i] * (arg[NULA] ** i)) # přiřazení do první hodnota1 += (self.polynom[i] * (arg[(NULA+JEDNA)] ** i)) # přiřazení do druhé return (hodnota1 - hodnota) # návrat rodílu else: return NULA # nevyhovující stav def test(): ''' Funkce pro otestování všech funkcí ve tříde Polynomial ''' assert str(Polynomial(0,1,0,-1,4,-2,0,1,3,0)) == "3x^8 + x^7 - 2x^5 + 4x^4 - x^3 + x" assert str(Polynomial([-5,1,0,-1,4,-2,0,1,3,0])) == "3x^8 + x^7 - 2x^5 + 4x^4 - x^3 + x - 5" assert str(Polynomial(x7=1, x4=4, x8=3, x9=0, x0=0, x5=-2, x3= -1, x1=1)) == "3x^8 + x^7 - 2x^5 + 4x^4 - x^3 + x" assert str(Polynomial(x2=0)) == "0" assert str(Polynomial(x0=0)) == "0" assert Polynomial(x0=2, x1=0, x3=0, x2=3) == Polynomial(2,0,3) assert Polynomial(x2=0) == Polynomial(x0=0) assert str(Polynomial(x0=1)+Polynomial(x1=1)) == "x + 1" assert str(Polynomial([-1,1,1,0])+Polynomial(1,-1,1)) == "2x^2" pol1 = Polynomial(x2=3, x0=1) pol2 = Polynomial(x1=1, x3=0) assert str(pol1+pol2) == "3x^2 + x + 1" assert str(pol1+pol2) == "3x^2 + x + 1" assert str(Polynomial(x0=-1,x1=1)**1) == "x - 1" assert str(Polynomial(x0=-1,x1=1)**2) == "x^2 - 2x + 1" pol3 = Polynomial(x0=-1,x1=1) assert str(pol3**4) == "x^4 - 4x^3 + 6x^2 - 4x + 1" assert str(pol3**4) == "x^4 - 4x^3 + 6x^2 - 4x + 1" assert str(Polynomial(x0=2).derivative()) == "0" assert str(Polynomial(x3=2,x1=3,x0=2).derivative()) == "6x^2 + 3" assert str(Polynomial(x3=2,x1=3,x0=2).derivative().derivative()) == "12x" pol4 = Polynomial(x3=2,x1=3,x0=2) assert str(pol4.derivative()) == "6x^2 + 3" assert str(pol4.derivative()) == "6x^2 + 3" assert Polynomial(-2,3,4,-5).at_value(0) == -2 assert Polynomial(x2=3, x0=-1, x1=-2).at_value(3) == 20 assert Polynomial(x2=3, x0=-1, x1=-2).at_value(3,5) == 44 pol5 = Polynomial([1,0,-2]) assert pol5.at_value(-2.4) == -10.52 assert pol5.at_value(-2.4) == -10.52 assert pol5.at_value(-1,3.6) == -23.92 assert pol5.at_value(-1,3.6) == -23.92 if __name__ == '__main__': test()
54.238095
182
0.621598
d5433558712390b999d7237fe0aa37ae4a88e6d8
6,540
py
Python
03_SDN/ext/helper.py
kit-tm/Labs
8e5af3a76be6e17bdb62fd3175ecc545ed6e9147
[ "BSD-2-Clause" ]
null
null
null
03_SDN/ext/helper.py
kit-tm/Labs
8e5af3a76be6e17bdb62fd3175ecc545ed6e9147
[ "BSD-2-Clause" ]
null
null
null
03_SDN/ext/helper.py
kit-tm/Labs
8e5af3a76be6e17bdb62fd3175ecc545ed6e9147
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2014-2015 Robert Bauer ([email protected]) # # A small helper class providing some basic wrapper functions # for simple openflow control handling with the POX-Controller. # See aufgabe0.py for an simple example of how to use this file. # # Copyright (c) 2015, # Karlsruhe Institute of Technology, Institute of Telematics # Zirkel 2, 76131 Karlsruhe # Germany # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # IMPORTANT: This file uses the POX-Controller (https://github.com/noxrepo/pox) # which is published under the Apache License, Version 2.0. No modifications # to the POX-Controller were made, except for the additional files in the # pox/ext folder. # from pox.core import core import pox.openflow.libopenflow_01 as of from pox.lib.util import dpidToStr from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST from pox.lib.packet.ipv4 import ipv4 from pox.lib.packet.arp import arp from pox.lib.addresses import IPAddr, IPAddr6, EthAddr class MyPacket(): def __init__(self, event): self.event = event; self.dpid = event.connection.dpid; self.inport = event.port; def send_to_port(self, port): msg = of.ofp_packet_out() msg.actions.append(of.ofp_action_output(port = port)) msg.data = self.event.ofp msg.in_port = self.event.port self.event.connection.send(msg) def flood(self): self.send_to_port(of.OFPP_FLOOD) def get_inport(self): return self.event.port def is_arp(self): packet = self.event.parsed return isinstance(packet.next, arp) def get_arp_ip_source(self): """ Gibt die IP-Adresse des Systems zurueck, von dem der ARP-Request gestartet wurde. Gibt None zurueck, falls es sich nicht um ein ARP-Request Paket handelt. """ packet = self.event.parsed if not isinstance(packet.next, arp): return None return packet.next.protosrc def get_arp_ip_target(self): """ Gibt die aufzuloesende IP-Adresse eines ARP-Request Paketes zurueck. Gibt None zurueck, falls es sich nicht um ein ARP-Request Paket handelt. """ packet = self.event.parsed if not isinstance(packet.next, arp): return None return packet.next.protodst def answer_arp(self, mac): """ Erstellt fuer ein eingegangenes ARP-Request Paket ein Antwortpaket, dass fuer die angefragte IP-Adresse mac als Antwort zurueckgibt. """ packet = self.event.parsed if not isinstance(packet.next, arp): return a = packet.next if a.opcode == arp.REQUEST: r = arp() r.hwtype = a.hwtype r.prototype = a.prototype r.hwlen = a.hwlen r.protolen = a.protolen r.opcode = arp.REPLY r.hwdst = a.hwsrc r.protodst = a.protosrc r.protosrc = a.protodst r.hwsrc = mac e = ethernet(type=packet.type, src=mac, dst=a.hwsrc) e.set_payload(r) # log.debug("%i %i answering ARP for %s" % (dpid, inport,str(r.protosrc))) msg = of.ofp_packet_out() msg.data = e.pack() msg.actions.append(of.ofp_action_output(port = of.OFPP_IN_PORT)) msg.in_port = self.inport self.event.connection.send(msg) def get_mac_src(self): packet = self.event.parsed if isinstance(packet, ethernet): return packet.src return None; def get_mac_dst(self): packet = self.event.parsed if isinstance(packet, ethernet): return packet.dst return None; def get_ip_src(self): packet = self.event.parsed if isinstance(packet.next, ipv4): return packet.next.srcip return None; def get_ip_dst(self): packet = self.event.parsed if isinstance(packet.next, ipv4): return packet.next.dstip return None; class MyFlow(): def __init__(self, event): self.event = event self.msg = of.ofp_flow_mod() def program(self): self.event.connection.send(self.msg) def action_output(self, port): self.msg.actions.append(of.ofp_action_output(port = port)) def action_drop(self): pass def set_idle_timeout(self, t): self.msg.idle_timeout = t def set_hard_timeout(self, t): self.msg.hard_timeout = t def match_mac_src(self, addr): if isinstance(addr, basestring): addr = EthAddr(addr) self.msg.match.dl_src = addr def match_mac_dst(self, addr): if isinstance(addr, basestring): addr = EthAddr(addr) self.msg.match.dl_dst = addr def match_ip_src(self, addr): self.msg.match.dl_type = ethernet.IP_TYPE # required! self.msg.match.nw_src = addr def match_ip_dst(self, addr): self.msg.match.dl_type = ethernet.IP_TYPE # required! self.msg.match.nw_dst = addr def match_inport(self, port): self.msg.match.in_port = int(port)
35.351351
93
0.648471
6357b525697ac67d1628ddd407b9b8340c1c2bf2
828
py
Python
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_attribute/test_item_attribute.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_attribute/test_item_attribute.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_attribute/test_item_attribute.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors and Contributors # See license.txt import frappe import unittest test_records = frappe.get_test_records('Item Attribute') from erpnext.stock.doctype.item_attribute.item_attribute import ItemAttributeIncrementError class TestItemAttribute(unittest.TestCase): def setUp(self): if frappe.db.exists("Item Attribute", "_Test_Length"): frappe.delete_doc("Item Attribute", "_Test_Length") def test_numeric_item_attribute(self): item_attribute = frappe.get_doc({ "doctype": "Item Attribute", "attribute_name": "_Test_Length", "numeric_values": 1, "from_range": 0.0, "to_range": 100.0, "increment": 0 }) self.assertRaises(ItemAttributeIncrementError, item_attribute.save) item_attribute.increment = 0.5 item_attribute.save()
26.709677
91
0.76087
89ba83ff6545e409db5512ffcbd3f31f69799f4c
257
py
Python
connect/config.py
slaurianodev/msgraph
617e5e7d890a06757ef38871d9ddecfac2852c84
[ "MIT" ]
null
null
null
connect/config.py
slaurianodev/msgraph
617e5e7d890a06757ef38871d9ddecfac2852c84
[ "MIT" ]
null
null
null
connect/config.py
slaurianodev/msgraph
617e5e7d890a06757ef38871d9ddecfac2852c84
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license. # See LICENSE in the project root for license information. # Client ID and secret. client_id = '07c53e00-1adb-4fa7-8933-fd98f6a4da84' client_secret = '7CmTo1brGWMmh5RoFiTdO0n'
36.714286
79
0.789883
7f4272e05d8a6bd2802445187d9f4e91866441dc
2,514
py
Python
Packs/Troubleshoot/Scripts/TroubleshootAggregateResults/TroubleshootAggregateResults.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Troubleshoot/Scripts/TroubleshootAggregateResults/TroubleshootAggregateResults.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Troubleshoot/Scripts/TroubleshootAggregateResults/TroubleshootAggregateResults.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
""" Aggregating results into a single file """ from CommonServerPython import * def find_entry_id_by_name(doc_file_name: str) -> str: context = demisto.context() file_context = context.get('File', {}) if not file_context: return '' if isinstance(file_context, dict) and file_context['Name'] == doc_file_name: return file_context['EntryID'] # List of files for file_obj in file_context: if file_obj['Name'] == doc_file_name: return file_obj['EntryID'] return '' def main(): try: args = demisto.args() changed_succeeded = argToList(args.get('succeeded_changed_params')) file_names = argToList(args.get('file_names')) execute_command_errors = argToList(args.get('execute_command_errors')) configuration = args['configuration'] if not isinstance(configuration, dict): json.loads(configuration) raw_instance = configuration.get('RawInstance') brand = raw_instance.get('brand') errors = argToList(args.get('errors')) instance_name = configuration.get("instance_name") doc = f"""\ # Configuration Troubleshooting summary for {brand}. --- Instance name : {instance_name} {tableToMarkdown('Configuration Info:', configuration, ['proxy', 'system', 'isFetch', 'dockerImage', 'engine', 'deprecated'])} {tableToMarkdown('Errors encountered in test-module (Test button)', errors, ['Errors'])} {tableToMarkdown('Parameters changed resulted in test succeeded', changed_succeeded, ['Changed keys'])} {tableToMarkdown('Errors encountered in command running:', execute_command_errors, ['Errors'])} {tableToMarkdown('Files found in the investigation:', file_names, ['File Names'])} """ configuration_name = f'{instance_name}_configuration.md' demisto.results(fileResult( configuration_name, json.dumps(raw_instance, indent=4) )) doc_file_name = f'{instance_name}_summary.md' demisto.results(fileResult( doc_file_name, doc )) context = { 'TroubleshootAggregateResults': { 'configuration_file_name': configuration_name, 'summary_file_name': doc_file_name } } return_outputs(doc, context) except Exception as exc: demisto.error(traceback.format_exc()) # print the traceback return_error(str(exc)) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
35.914286
126
0.655529
7f72fa866d1035a1b976f384445893b67cde1218
1,054
py
Python
python/en/_packages/pillow/pillow_tutorial-using_the_image_class.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_packages/pillow/pillow_tutorial-using_the_image_class.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_packages/pillow/pillow_tutorial-using_the_image_class.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ pillow_tutorial-using_the_image_class.py Pillow Docs > Handbook > Tutorial > Using the Image class Pillow 6.0.0 https://pypi.org/project/Pillow/ Handbook https://pillow.readthedocs.io/en/latest/handbook/index.html Tutorial > Using the Image class https://pillow.readthedocs.io/en/latest/handbook/tutorial.html --- Pillow is the friendly PIL fork. PIL stands for Python Imaging Library. Installation $ sudo pip3 install Pillow """ from PIL import Image im = Image.open("surfing_couple.jpg") print( im.format, im.size, im.mode ) #JPEG (2048, 2048) RGB im.show() # The standard version of show() is not very efficient, # since it saves the image to a temporary file and # calls a utility to display the image. # If you don’t have an appropriate utility installed, it won’t even work. # When it does work though, it is very handy for debugging and tests. # Simple geometry transforms out = im.resize( (128,128) ) print( out.format, out.size, out.mode ) # None (128, 128) RGB
26.35
73
0.72296
7fbd095150136f2c8dd530546a565ce5be2d468f
523
py
Python
src/onegov/agency/theme/agency_theme.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/agency/theme/agency_theme.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/agency/theme/agency_theme.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.utils import module_path from onegov.org.theme import OrgTheme class AgencyTheme(OrgTheme): name = 'onegov.agency.foundation' @property def post_imports(self): return super().post_imports + [ 'agency', 'chosen', 'people', 'ticket', 'search' ] @property def extra_search_paths(self): base_paths = super().extra_search_paths return [module_path('onegov.agency.theme', 'styles')] + base_paths
23.772727
74
0.600382
89bf502bc07697f3ffa1d4e6953b3be3bebcb770
214
py
Python
python_gui_tkinter/KALU/GARBAGE1/TEST/sound.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python_gui_tkinter/KALU/GARBAGE1/TEST/sound.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python_gui_tkinter/KALU/GARBAGE1/TEST/sound.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
from tkinter import * import mp3play root = Tk() # create tkinter window f = mp3play.load('alrt1.mp3'); play = lambda: f.play() button = Button(root, text = 'Play', command = play) button.pack() root.mainloop()
19.454545
54
0.686916
61731e1c32580afccfd200f305d268739dad7651
607
py
Python
EM/src/EM.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
2
2018-04-25T18:00:28.000Z
2018-08-08T09:39:18.000Z
EM/src/EM.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
null
null
null
EM/src/EM.py
quqixun/MLAlgorithms
1ad46a899a6280a08c196fb4eb0931408c8636c7
[ "MIT" ]
2
2019-03-03T02:55:48.000Z
2021-01-21T04:50:46.000Z
# Conventional Machine Learning Algorithms # Class of "EM". # Author: Qixun Qu # Create on: 2018/06/20 # Modify on: 2018/06/20 # ,,, ,,, # ;" '; ;' ", # ; @.ss$$$$$$s.@ ; # `s$$$$$$$$$$$$$$$' # $$$$$$$$$$$$$$$$$$ # $$$$P""Y$$$Y""W$$$$$ # $$$$ p"$$$"q $$$$$ # $$$$ .$$$$$. $$$$' # $$$DaU$$O$$DaU$$$' # '$$$$'.^.'$$$$' # '&$$$$$&' from __future__ import division from __future__ import print_function import numpy as np class EM(object): def __init__(self): return def fit(X, y=None): return def predict(X): return
16.405405
42
0.418451
14ac0a301e00fbcea3a0ac0c3b3b977fca8f3b47
259
py
Python
Classes/Brick.py
EKaczmarek/BomberMan
a232d00ff0fe9be0a1276fba22c3f120e2bb4e5d
[ "MIT" ]
1
2018-04-30T15:46:47.000Z
2018-04-30T15:46:47.000Z
Classes/Brick.py
EKaczmarek/BomberMan
a232d00ff0fe9be0a1276fba22c3f120e2bb4e5d
[ "MIT" ]
1
2018-06-03T13:20:19.000Z
2018-06-03T20:19:25.000Z
Classes/Brick.py
EKaczmarek/BomberMan
a232d00ff0fe9be0a1276fba22c3f120e2bb4e5d
[ "MIT" ]
1
2018-06-03T12:59:11.000Z
2018-06-03T12:59:11.000Z
import pygame class Brick(object): x, y = '', '' desc = "brick" def __init__(self, pos): self.x = pos[0] self.y = pos[1] self.rect = pygame.Rect(self.x, self.y, 50, 50) def get_brick(self): return self
12.95
55
0.513514
1aedd8abf3998a6d6a7972cb7badb05cba3fbf51
580
py
Python
IVTp/2014/Grigoriev_A_O/task_3_2.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTp/2014/Grigoriev_A_O/task_3_2.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTp/2014/Grigoriev_A_O/task_3_2.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
#Задача 3. Вариант 2. #Напишите программу, которая выводит имя "Мария Луиза Чеччарелли", и запрашивает его псевдоним. Программа должна сцеплять две эти строки и выводить полученную строку, разделяя имя и псевдоним с помощью тире. #Григорьев А.О. #23.05.2016 print ("Герой нашей сегоднящней программы - Мария Луиза Чеччарелли") psev=input("Под каким же именем мы знаем этого человека? Ваш ответ:") if (psev)==("Моника Витти"): print ("Всё верно: Мария Луиза Чеччарелли - "+psev) else: print ("Вы ошиблись, это не её псевдоним.") input("нажмите Enter для выхода")
44.615385
208
0.737931
2142fc70b2a30c705dbae777b03c62a0de3c2d0c
6,660
py
Python
frappe-bench/apps/erpnext/erpnext/config/hr.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/config/hr.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/config/hr.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "label": _("Employee and Attendance"), "items": [ { "type": "doctype", "name": "Employee", "description": _("Employee records."), }, { "type": "doctype", "name": "Employee Attendance Tool", "label": _("Employee Attendance Tool"), "description":_("Mark Attendance for multiple employees"), "hide_count": True }, { "type": "doctype", "name": "Attendance", "description": _("Attendance record."), }, { "type": "doctype", "name": "Upload Attendance", "description":_("Upload attendance from a .csv file"), "hide_count": True }, ] }, { "label": _("Recruitment"), "items": [ { "type": "doctype", "name": "Job Applicant", "description": _("Applicant for a Job."), }, { "type": "doctype", "name": "Job Opening", "description": _("Opening for a Job."), }, { "type": "doctype", "name": "Job Offer", "description": _("Offer candidate a Job."), }, ] }, { "label": _("Leaves and Holiday"), "items": [ { "type": "doctype", "name": "Leave Application", "description": _("Applications for leave."), }, { "type": "doctype", "name":"Leave Type", "description": _("Type of leaves like casual, sick etc."), }, { "type": "doctype", "name": "Holiday List", "description": _("Holiday master.") }, { "type": "doctype", "name": "Leave Allocation", "description": _("Allocate leaves for a period.") }, { "type": "doctype", "name": "Leave Control Panel", "label": _("Leave Allocation Tool"), "description":_("Allocate leaves for the year."), "hide_count": True }, { "type": "doctype", "name": "Leave Block List", "description": _("Block leave applications by department.") }, ] }, { "label": _("Payroll"), "items": [ { "type": "doctype", "name": "Salary Slip", "description": _("Monthly salary statement."), }, { "type": "doctype", "name": "Payroll Entry", "label": _("Payroll Entry"), "description":_("Generate Salary Slips"), "hide_count": True }, { "type": "doctype", "name": "Salary Structure", "description": _("Salary template master.") }, { "type": "doctype", "name": "Salary Component", "label": _("Salary Components"), "description": _("Earnings, Deductions and other Salary components") }, ] }, { "label": _("Expense Claims"), "items": [ { "type": "doctype", "name": "Employee Advance", "description": _("Manage advance amount given to the Employee"), }, { "type": "doctype", "name": "Expense Claim", "description": _("Claims for company expense."), }, { "type": "doctype", "name": "Expense Claim Type", "description": _("Types of Expense Claim.") }, ] }, { "label": _("Appraisals"), "items": [ { "type": "doctype", "name": "Appraisal", "description": _("Performance appraisal."), }, { "type": "doctype", "name": "Appraisal Template", "description": _("Template for performance appraisals.") }, { "type": "page", "name": "team-updates", "label": _("Team Updates") }, ] }, { "label": _("Employee Loan Management"), "icon": "icon-list", "items": [ { "type": "doctype", "name": "Loan Type", "description": _("Define various loan types") }, { "type": "doctype", "name": "Employee Loan Application", "description": _("Employee Loan Application") }, { "type": "doctype", "name": "Employee Loan" }, ] }, { "label": _("Training"), "items": [ { "type": "doctype", "name": "Training Program" }, { "type": "doctype", "name": "Training Event" }, { "type": "doctype", "name": "Training Result" }, { "type": "doctype", "name": "Training Feedback" }, ] }, { "label": _("Fleet Management"), "items": [ { "type": "doctype", "name": "Vehicle" }, { "type": "doctype", "name": "Vehicle Log" }, ] }, { "label": _("Setup"), "icon": "fa fa-cog", "items": [ { "type": "doctype", "name": "HR Settings", "description": _("Settings for HR Module") }, { "type": "doctype", "name": "Employment Type", "description": _("Types of employment (permanent, contract, intern etc.).") }, { "type": "doctype", "name": "Branch", "description": _("Organization branch master.") }, { "type": "doctype", "name": "Department", "description": _("Organization unit (department) master.") }, { "type": "doctype", "name": "Designation", "description": _("Employee designation (e.g. CEO, Director etc.).") }, { "type": "doctype", "name": "Daily Work Summary Settings" }, { "type": "doctype", "name": "Health Insurance" } ] }, { "label": _("Reports"), "icon": "fa fa-list", "items": [ { "type": "report", "is_query_report": True, "name": "Employee Leave Balance", "doctype": "Leave Application" }, { "type": "report", "is_query_report": True, "name": "Employee Birthday", "doctype": "Employee" }, { "type": "report", "is_query_report": True, "name": "Employees working on a holiday", "doctype": "Employee" }, { "type": "report", "name": "Employee Information", "doctype": "Employee" }, { "type": "report", "is_query_report": True, "name": "Salary Register", "doctype": "Salary Slip" }, { "type": "report", "is_query_report": True, "name": "Monthly Attendance Sheet", "doctype": "Attendance" }, { "type": "report", "is_query_report": True, "name": "Vehicle Expenses", "doctype": "Vehicle" }, ] }, { "label": _("Help"), "icon": "fa fa-facetime-video", "items": [ { "type": "help", "label": _("Setting up Employees"), "youtube_id": "USfIUdZlUhw" }, { "type": "help", "label": _("Leave Management"), "youtube_id": "fc0p_AXebc8" }, { "type": "help", "label": _("Expense Claims"), "youtube_id": "5SZHJF--ZFY" } ] } ]
20.492308
80
0.49955
0d2a350eb440e78278cb7c7fe2f288599b2eadcf
488
py
Python
Input_Gui.py
Snrsunny143/Taking-Input-In-Python-GUI
b98be4e784a0a307c84f57492d5ccb26b8bbc24d
[ "MIT" ]
1
2020-08-29T03:54:24.000Z
2020-08-29T03:54:24.000Z
Input_Gui.py
Snrsunny143/Taking-Input-In-Python-GUI
b98be4e784a0a307c84f57492d5ccb26b8bbc24d
[ "MIT" ]
null
null
null
Input_Gui.py
Snrsunny143/Taking-Input-In-Python-GUI
b98be4e784a0a307c84f57492d5ccb26b8bbc24d
[ "MIT" ]
null
null
null
from tkinter import* import sys root = Tk() root.title("Snr Tech And Tutorials") input =Entry(root) input.pack() def printout(): print("User Input :- "+input.get()) def quit(): print("User Input :- Bye. ") print(" Meet You Later. ") sys.exit() button = Button(root, text =" PrintOut ", command=printout , fg = "pink" ,bg = "green") button.pack() quit_button = Button(root, text = " Quit ",command=quit , fg = "grey", bg = "pink") quit_button.pack() root.mainloop()
19.52
87
0.633197
d3a98a72dff4f9eb164b86ee39ad16b58c883edb
1,722
py
Python
python_experiments/run_vldbj_experiments/run_reads_dynamic_update.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
8
2020-04-14T23:17:00.000Z
2021-06-21T12:34:04.000Z
python_experiments/run_vldbj_experiments/run_reads_dynamic_update.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
null
null
null
python_experiments/run_vldbj_experiments/run_reads_dynamic_update.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
1
2021-01-17T16:26:50.000Z
2021-01-17T16:26:50.000Z
from exec_utilities import time_out_util from exec_utilities.exec_utils import * def run_exp(): our_exec_path = '/homes/ywangby/workspace/yche/new-git-repos-yche/SimRank/SPS-Variants/READS/build' data_set_lst = [ # 'ca-GrQc', 'ca-HepTh', 'p2p-Gnutella06', 'wiki-Vote', # 'email-Enron', 'email-EuAll', 'web-NotreDame', 'web-Stanford', # 'web-BerkStan', 'web-Google', # 'cit-Patents', 'soc-LiveJournal1', # 'wiki-Link', 'digg-friends', 'flickr-growth', ] dynamic_exec_tag_lst = [ 'reads-rq-dynamic-del', 'reads-rq-dynamic-exp', # 'reads-d-dynamic-del', # 'reads-d-dynamic-exp', ] def one_round(): for exec_name in dynamic_exec_tag_lst: for data_set_name in data_set_lst: algorithm_path = our_exec_path + os.sep + exec_name statistics_file_path = 'exp_results/' + exec_name + '_dynamic_update_time_' + str( insert_edge_num) + '_0407.txt' params_lst = map(str, [algorithm_path, data_set_name, '>>', statistics_file_path]) cmd = ' '.join(params_lst) time_out = 72000 tle_flag, info, correct_info = time_out_util.run_with_timeout(cmd, timeout_sec=time_out) write_split(statistics_file_path) with open(statistics_file_path, 'a+') as ifs: ifs.write(correct_info) ifs.write(my_splitter + time.ctime() + my_splitter) ifs.write('is_time_out:' + str(tle_flag)) ifs.write('\n\n\n\n') insert_edge_num = 1000 one_round() if __name__ == '__main__': run_exp()
36.638298
104
0.583043
4ce484ecc38278ecea33be0cfb19f3c9f0983e12
18,650
py
Python
src/scripts/alchi-web.py
milahu/alchi
6484d4a877d47204e28cf1a32a5d9da8705aff25
[ "CC0-1.0" ]
3
2020-08-12T16:57:23.000Z
2021-03-15T18:39:48.000Z
src/scripts/alchi-web.py
milahu/alchi
6484d4a877d47204e28cf1a32a5d9da8705aff25
[ "CC0-1.0" ]
4
2020-09-22T19:25:43.000Z
2022-02-14T20:51:16.000Z
src/scripts/alchi-web.py
milahu/alchi
6484d4a877d47204e28cf1a32a5d9da8705aff25
[ "CC0-1.0" ]
1
2021-04-06T11:18:17.000Z
2021-04-06T11:18:17.000Z
#!/usr/bin/python3 """ the web of sixteen types the nunu matrix two power four latin square of order four """ # definitions names = [ None, 'F1', 'M2', 'M3', 'F4', # left = matriarchy None, 'M1', 'F2', 'F3', 'M4', # right = patriarchy ] names_long = [ None, # 0 'female fire', # 1 'male earth', # 2 'male air', # 3 'female water', # 4 None, # 5 'male fire', # 6 'female earth', # 7 'female air', # 8 'male water', # 9 ] # congruence of gender gl = [1, 2, 3, 4] # left = matriarchy gr = [6, 7, 8, 9] # right = patriarchy # gender gm = [2, 3, 6, 9] # male = penis gf = [1, 4, 7, 8] # female = vagina # tempo tp = [1, 4, 6, 9] # psychotic = phlegmatic tn = [2, 3, 7, 8] # neurotic = choleric # mood me = [1, 3, 6, 8] # extravert = sanguinic mi = [2, 4, 7, 9] # introvert = melancholic # class cc = [1, 2, 6, 7] # classic cr = [3, 4, 8, 9] # romantic # bond signs: first, second, third, last # convert to natlist later #B = ['I', 'U', 'E', 'A'] # 1 2 3 4, self is dott B = ['U', 'E', 'A', 'O'] # 2 3 4 5, first bond is to self = body # helper functions # string translation def tl(s, a, b): return s.translate(s.maketrans(a, b)) # list intersection def lx(*a): a = list(a) # convert tuple to list z = a.pop(0) for b in a: z = [c for c in z if c in b] if len(z) == 1: return z[0] return z # print without newline import sys def _print(*a): sys.stdout.write(*a) # natural list in python # first index is one # slice stop is inclusive # copy from https://stackoverflow.com/a/48873374/10440128 class natlist(dict): def __init__(self, *items: any) -> None: # two constructors: # natlist(1, 2, 3, 4) # natlist( [1, 2, 3, 4] ) # convert one list to natlist if len(items) == 1 and type(items[0]) == list: items = items[0] self.__dict__ = dict(zip( range(1, 1+len(items)), items)) def __repr__(self) -> str: return '{}({})'.format( self.__class__.__name__, repr(list(self.__dict__.values()))[1:-1]) def __contains__(self, item: any) -> bool: return item in self.__dict__.values() def __len__(self) -> int: return len(self.__dict__.values()) # note: key.stop is inclusive # so natlist(1, 2, 3, 4)[2:3] is [2, 3] def __getitem__(self, key: any) -> any: if type(key) == slice: a = key.start and key.start or 1 b = key.stop and key.stop or None # inclusive stop #b = key.stop and key.stop - 1 or None # exclusive stop return list(self.__dict__.values())[a-1:b:key.step] return self.__dict__[key] def __setitem__(self, key: int, value: any) -> None: self.__dict__[key] = value def __delitem__(self, key: int) -> None: del self.__dict__[key] def __iter__(self) -> iter: return iter(self.__dict__.values()) def items(self): return self.__dict__.items() # get slice as list of (key, value) tuples # left slice: sliceitems(None, key_stop) # right slice: sliceitems(key_start, None) # note: key.stop is inclusive def sliceitems(self, *key: slice) -> any: key = slice(*key) a = key.start and key.start or 1 b = key.stop and key.stop or len(self) # inclusive stop #b = key.stop and key.stop - 1 or len(self) # exclusive stop b = (b < 0) and len(self)+b return dict(zip( range(a, b+1), list(self.__dict__.values())[a-1:b:key.step] )).items() L = natlist B = L(B) # convert list to natlist matrix = {} """ matrix['null'] = [ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], ] 4 elements: 1. fire 2. earth 3. air 4. water 2 sides: left. F1 F4 M3 M2. fem psych + male neur right. M1 M4 F3 F2. male psych + fem neur 2 ages: old. top half = matrix[0:1] young. bottom half = matrix[2:3] first order: same class + other tempo + other sex. """ matrix['fire center + sanguinic center'] = [ [4, 3, 3, 4], [2, 1, 1, 2], [2, 1, 1, 2], [4, 3, 3, 4], ] matrix['web-rc-top-go-left'] = [ [2, 3, 4, 1], [1, 4, 3, 2], [3, 2, 1, 4], [4, 1, 2, 3], ] matrix['web-rc-left-go-top'] = [ [2, 1, 3, 4], [3, 4, 2, 1], [4, 3, 1, 2], [1, 2, 4, 3], ] gender = [ [None, 'F', 'M', 'M', 'F'], # left side [None, 'F', 'M', 'M', 'F'], # left side [None, 'M', 'F', 'F', 'M'], # right side [None, 'M', 'F', 'F', 'M'], # right side ] lines_x_16 = [ [' ', '─\u252C─', ' ', '─\u252C─'], [' ', '─\u2534─', ' │ ', '─\u2534─'], [' ', '─\u252C─', ' │ ', '─\u252C─'], [' ', '─\u2534─', ' ', '─\u2534─'], ] lines_y_16 = [ ' Old \n', ' \u251C────\u252C────\u2524 \n', 'L \u253C R\n', ' \u251C────\u2534────\u2524 \n', ' Young ' ] lines_x_8 = [ [' ', '─\u252C─', ' ', '─\u252C─'], [' ', '─\u2534─', ' ', '─\u2534─'], ] lines_y_8 = [ '', 'L \u251C─────────\u2524 R\n', '', ] lines_x_4 = [ ['', '─\u252C─'], ['', '─\u2534─'], ] lines_y_4 = [ '', ' │\n', '', ] # box drawing characters # --- = '─' # | = '│' # |- = '\u251C' # -| = '\u2524' # T = '\u252C' # _|_ = '\u2534' # + = '\u253C' # serialize 16 elements def str_16(matrix): s = '' for y in range(0, 4): s += lines_y_16[y] for x in range(0, 4): e = matrix[y][x] g = gender[x][e] s += lines_x_16[y][x] + g + str(e) s += '\n' s += lines_y_16[4] return s # serialize 8 elements def str_8(matrix): s = '' for y in range(0, 2): s += lines_y_8[y] for x in range(0, 4): e = matrix[y][x] g = gender[x][e] s += lines_x_8[y][x] + g + str(e) s += '\n' s += lines_y_8[2] return s # serialize 4 elements def str_4(matrix): s = '' for y in range(0, 2): s += lines_y_4[y] for x in range(0, 2): e = matrix[y][x] g = gender[x][e] s += lines_x_4[y][x] + g + str(e) s += '\n' s += lines_y_4[2] return s # web of types def web_16(matrix): s = '' L = [] # line buffer for y in range(-1, 5): y0 = y y = y % 4 for x in range(-1, 5): x = x % 4 L.append(str(matrix[y][x])) if y0 in [-1, 4]: s += '{0} {1} {2} {3} {4} {5}\n'.format(*L) else: s += '{0} │ {1} {2} {3} {4} │ {5}\n'.format(*L) if y == 1: s += ' │ │\n' # with center cross: #s += ' │ \u253C │\n' if y0 == -1: s += ' ┌' + '─'*11 + '┐\n' if y0 == 3: s += ' └' + '─'*11 + '┘\n' L = [] return s # verbose web of types #todo move gender outside of matrix, to left or top # left: # M: .... # F: .... # M: .... # F: .... # top: # M F M F # ¨ ¨ ¨ ¨ # : : : : # : : : : def web_16_v(matrix): s = '' L = [] # line buffer web_gender = ['M', 'F'] for y in range(-1, 5): y0 = y y = y % 4 g = web_gender[y % 2] # gender switch with every line for x in range(-1, 5): x = x % 4 L.append(g + str(matrix[y][x])) if y0 in [-1, 4]: s += '{0} {1} {2} {3} {4} {5}\n'.format(*L) else: s += '{0} │ {1} {2} {3} {4} │ {5}\n'.format(*L) if y == 1: s += ' │ │\n' # with center cross: #s += ' │ \u253C │\n' if y0 in [0, 2]: s += ' │ │ │ │ │ │\n' if y0 == -1: s += ' ┌' + '─'*15 + '┐\n' if y0 == 3: s += ' └' + '─'*15 + '┘\n' L = [] return s # web of 16 types, diagonal mirror def web_16_2_v(matrix): s = '' L = [] # line buffer web_gender = ['M', 'F'] for y in range(-1, 5): y0 = y y = y % 4 for x in range(-1, 5): g = web_gender[x % 2] # gender switch with every delta x x = x % 4 L.append(g + str(matrix[y][x])) if y0 in [-1, 4]: s += '{0} {1} {2} {3} {4} {5}\n'.format(*L) else: #s += '{0} │ {1} {2} {3} {4} │ {5}\n'.format(*L) s += '{0} │ {1}─{2} {3}─{4} │ {5}\n'.format(*L) if y == 1: s += ' │ │\n' # with center cross: #s += ' │ \u253C │\n' if y0 in [0, 2]: #s += ' │ │ │ │ │ │\n' s += ' │ │\n' if y0 == -1: s += ' ┌' + '─'*15 + '┐\n' if y0 == 3: s += ' └' + '─'*15 + '┘\n' L = [] return s #print(web_16(matrix['web-rc-top-go-left'])) #print(web_16_v(matrix['web-rc-top-go-left'])) ##print(web_16_2(matrix['web-rc-left-go-top'])) print(web_16_2_v(matrix['web-rc-left-go-top'])) #for key in matrix: if False: print('%s:' % key) print('16:') print(str_16(matrix[key])) print('8 top:') print(str_8(matrix[key][0:2])) print('8 bot:') print(str_8(matrix[key][2:4])) print('4 top left:') print(str_4(matrix[key])) """ view = construct one of sixteen views i = eye = top left number v = vertical "last bond" [age, time] True if "first bond" is horizontal False if "first bond" is vertical """ import copy def view(i, v=True): m = L( L(0, 0, 0, 0), L(0, 0, 0, 0), L(0, 0, 0, 0), L(0, 0, 0, 0), ) # it starts with eye m[1][1] = i # let us assume "v is True" for now, # and later transform the matrix, according to h. # so, for now, first bond is horizontal. # first bond to you m[1][2] = lx( (i in gl) and gl or gr, # same congruence (i in me) and mi or me, # other mood (i in tn) and tn or tp # same tempo ) # second bond to het m[2][1] = lx( (i in gl) and gl or gr, # same congruence (i in me) and mi or me, # other mood (i in tp) and tn or tp # other tempo ) # opposite type is "het of you" m[2][2] = lx( (i in gl) and gl or gr, # same congruence (i in mi) and mi or me, # same mood (i in tp) and tn or tp # other tempo ) # mirror to the right = other congruence d = (i in gl) and +5 or -5 m[2][4] = m[1][1] + d m[2][3] = m[1][2] + d m[1][4] = m[2][1] + d m[1][3] = m[2][2] + d # mirror to the bottom = other age m[3][1] = m[1][2] m[4][1] = m[2][2] m[3][2] = m[1][1] m[4][2] = m[2][1] m[3][3] = m[1][4] m[4][3] = m[2][4] m[3][4] = m[1][3] m[4][4] = m[2][3] # flip diagonal if v == False: t = copy.deepcopy(m) for y in range(1, 5): for x in range(1, 5): m[y][x] = t[x][y] return m ___lines_x_16_new = L( L('', '', '', ' ', ' ', ' ', '', ''), L('', '', '', ' ', ' ', ' ', '', ''), L('', '', '', ' U ', ' ', ' U ', '', ''), L('', '', '│', ' U ', ' │ ', ' U ', '│', '', ''), L('', '', '│', ' U ', ' │ ', ' U ', '│', '', ''), L('', '', '', ' U ', ' ', ' U ', '', ''), L('', '', '', ' ', ' ', ' ', '', ''), L('', '', '', ' ', ' ', ' ', '', ''), ) ___lines_y_16_new = L( '', '', ' ─────────\n', ' E───A───E \n', ' O\n', ' E───A───E \n', ' ─────────\n', '', '', '', ) __lines_x_16_new = L( L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' │ ', ' I ', ' ', ' I ', ' │ ', ' '), L('', ' ', ' │ ', ' I ', ' │ ', ' I ', ' │ ', ' '), L('', ' ', ' │ ', ' I ', ' │ ', ' I ', ' │ ', ' '), L('', ' ', ' │ ', ' I ', ' ', ' I ', ' │ ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), ) ____lines_y_16_new = L( '', '\n', ' ┌───────────────┐\n', ' │ U───E───U │\n', ' │ A │\n', ' │ U───E───U │\n', ' └───────────────┘\n', '\n', '', '', '', ) __lines_y_16_new = L( '', '\n', ' ╒═══════════════╕\n', ' │ U───E───U │\n', ' │ A │\n', ' │ U───E───U │\n', ' ╘═══════════════╛\n', '\n', '', '', '', ) __lines_x_16_new = L( L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' │ ', '───', ' │ ', '───', ' │ ', ' '), L('', ' ', ' │ ', '───', ' │ ', '───', ' │ ', ' '), L('', ' ', ' │ ', '───', ' │ ', '───', ' │ ', ' '), L('', ' ', ' │ ', '───', ' │ ', '───', ' │ ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), ) __lines_y_16_new = L( '', '\n', ' ╒═══════╤═══════╕\n', ' │ U E U │\n', ' ╞═══════A═══════╡\n', ' │ U E U │\n', ' ╘═══════╧═══════╛\n', '\n', '', '', '', ) lines_x_16_new = L( L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' │ ', ' U ', ' │ ', ' U ', ' │ ', ' '), L('', ' ', ' │ ', ' U ', ' │ ', ' U ', ' │ ', ' '), L('', ' ', ' │ ', ' U ', ' │ ', ' U ', ' │ ', ' '), L('', ' ', ' │ ', ' U ', ' │ ', ' U ', ' │ ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), ) lines_y_16_new = L( '', '\n', ' ╒═══════╤═══════╕\n', ' │ E A E │\n', ' ╞═══════O═══════╡\n', ' │ E A E │\n', ' ╘═══════╧═══════╛\n', '\n', '', '', '', ) __lines_y_16_new_v0 = L( '', '\n', ' ┌───────────────┐\n', ' │ I U I I U I │\n', ' │ E───A───E │\n', ' │ I U I I U I │\n', ' └───────────────┘\n', '\n', '', '', '', ) lines_x_16_new_v0 = L( L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ║ ', ' ', ' ║ ', ' ', ' ║ ', ' '), L('', ' ', ' ║ ', ' ', ' ║ ', ' ', ' ║ ', ' '), L('', ' ', ' ║ ', ' ', ' ║ ', ' ', ' ║ ', ' '), L('', ' ', ' ║ ', ' ', ' ║ ', ' ', ' ║ ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), L('', ' ', ' ', ' ', ' ', ' ', ' ', ' '), ) lines_y_16_new_v0 = L( '', '\n', ' ╓───────╥───────╖\n', ' ║ U E U ║ U E U ║\n', ' ╟───A───O───A───╢\n', ' ║ U E U ║ U E U ║\n', ' ╙───────╨───────╜\n', '\n', '', '', '', ) # serialize 16 elements # C: compact? print only 4x4 "core" of matrix, without near-field frame #todo: generalize to accept "frame size", fs=0 --> no frame # .... so we can produce larger fields, like fs=4 --> 1 core + 8 "next cores" # --> show "minor lines" as dash- / dot-lines ┈┊ ┄┆ ╌╎ def str_16_new(m, C=False): # detect the value of v # v is True, # if the "last bond" is vertical # = the "first bond" is horizontal i = m[1][1] # first bond to you v = (m[1][2] == lx( (i in gl) and gl or gr, # same congruence (i in me) and mi or me, # other mood (i in tn) and tn or tp # same tempo )) #print('v is '+str(v)) xy_min = C and 3 or 1 xy_max = C and 6 or 8 s = '' #todo write this shorter --> move the (v == True)? branch into the loops if v: #for y in range(1, 5): for y in range(xy_min, 1+xy_max): t = lines_y_16_new[y] if C: t = t.strip() + '\n' s += t #for x in range(1, 5): #for x in range(1, 9): for x in range(xy_min, 1+xy_max): #i = m[y][x] #i = m[(y-2)%4][(x-2)%4] i = m[(y-3)%4+1][(x-3)%4+1] if y in [1, 2, 7, 8] and x in [1, 2, 7, 8]: i = ' ' #g = (i in gm) and 'M' or 'F' #s += lines_x_16_new[y][x] + g + str(i) #s += lines_x_16_new[y][x] + str(i) t = lines_x_16_new[y][x] + str(i) if C and x == 3: t = t.lstrip() s += t if C and x == 6: s += lines_x_16_new[y][7] s += '\n' if C and y == 6: s += lines_y_16_new[7].strip() + '\n' #s += lines_y_16_new[5] else: #for y in range(1, 5): #for y in [-1, 0, 1, 2, 3, 4, 5, 6]: #for y in range(1, 9): # 8 lines for y in range(xy_min, 1+xy_max): t = lines_y_16_new_v0[y] if C: t = t.strip() + '\n' s += t #for x in range(1, 5): #for x in range(1, 9): for x in range(xy_min, 1+xy_max): #i = m[y][x] i = m[(y-3)%4+1][(x-3)%4+1] if y in [1, 2, 7, 8] and x in [1, 2, 7, 8]: i = ' ' #g = (i in gm) and 'M' or 'F' #s += lines_x_16_new[y][x] + g + str(i) #s += lines_x_16_new_v0[y][x] + str(i) t = lines_x_16_new_v0[y][x] + str(i) if C and x == 3: t = t.lstrip() s += t if C and x == 6: s += lines_x_16_new_v0[y][7] s += '\n' if C and y == 6: s += lines_y_16_new_v0[7].strip() + '\n' #s += lines_y_16_new_v0[5] # rename bonds. UEAO --> IUEA if v: s = tl(s, 'UEAO', '─UEA') else: s = tl(s, 'UEAO', 'IUEA') #replace('U', '─').replace('E', 'U').replace(' return s def str_cross(m): i = m[1][1] # detect the value of v v = (m[1][2] == lx( (i in gl) and gl or gr, # same congruence (i in me) and mi or me, # other mood (i in tn) and tn or tp # same tempo )) s = '' if v: t = (m[1][3], m[1][4], B[3], m[1][1], B[1], m[1][2], m[1][3]) s += ' %i\n' % m[3][1] s += '\n' s += ' %i\n' % m[4][1] s += ' %s\n' % B[4] s += '%i %i %s %i %s %i %i\n' % t s += ' %s\n' % B[2] s += ' %i\n' % m[2][1] s += '\n' s += ' %i\n' % m[3][1] return s def hide_gender(m): for y in range(1, 5): for x in range(1, 5): i = m[y][x] if i > 5: m[y][x] = i - 5 return m # main #for x in [1, 2, 3, 4, 6, 7, 8, 9]: for x in [1, 2, 3, 4]: for i in [True, False]: #for i in [True]: si = i and 'I' or 'H' m = view(x, i) m2 = hide_gender(copy.deepcopy(m)) #print('m = '+repr(m)) #print(str_16_new(m)) #print(str_16_new(m2)) #print('iter = '+repr(m.__iter__)) # serialize matrix to string sm = '' for y in m: sm += ''.join(map(str, y)) #sm += ' '.join(map(str, y)) + '\n' sm2 = '' for y in m2: sm2 += ''.join(map(str, y)) sma = tl(sm, '12346789', 'ABCDFGHI') sma2 = tl(sm2, '1234', 'ABCD') #print('%s%i = %s = %s' % (si, x, sm, sm2)) #print('%s%i:\n%s' % (si, x, sm)) #print('%s%i:\n%s\n%s' % (si, x, sm, sm2)) #print('%s%i:\n%s\n%s\n%s\n%s' % (si, x, sm, sm2, sma, sma2)) #print('%s%i:\n%s\n%s\n%s\n%s' % (si, x, sm, sm2, sma, sma2)) print(si + str(x) + 'N4 = ' + sm2) print(si + str(x) + 'L4 = ' + tl(sm2, '1234', 'ABCD')) print(si + str(x) + 'N8F = ' + sm) print(si + str(x) + 'L8F = ' + tl(sm, '12346789', 'ABCDFGHI')) print(si + str(x) + 'N8R = ' + tl(sm, '12346789', '67891234')) print(si + str(x) + 'L8R = ' + tl(sm, '12346789', 'FGHIABCD')) # print compact matrix if False: sm3 = '' for y in m: sm3 += ' '.join(map(str, y)) + '\n' print(si + str(x) + 'N8:\n' + sm3) print(si + str(x) + 'L8:\n' + tl(sm3, '12346789', 'ABCDFGHI')) sm4 = '' for y in m2: sm4 += ' '.join(map(str, y)) + '\n' print(si + str(x) + 'N4:\n' + sm4) print(si + str(x) + 'L4:\n' + tl(sm4, '1234', 'ABCD')) #print('%s%i = %s' % (si, x, sm)) #print(sm) #_print(sm + ' ') #print(str_16_new(m)) #print(str_16_new(m2)) #print(str_16_new(m2, C=True)) print(tl(str_16_new(m2, C=True), '─IUEA', 'BBDHP').replace('BBBBBBB', '───────').replace('BBB', '───')) #print(tl(str_16_new(m2, C=True), '─IUEA1234', 'BBDHPAAAA')) # with gender, coded as number #print(str_16_new(view(( x + 5 ), i), C=True)) #print(str_cross(m2)) print(tl(str_cross(m2), 'UEAO', 'BDHP'))
21.560694
105
0.418713
46d3db3255de71e377112203d843af0995fb6cf3
558
py
Python
Utils/py/exportEdgels/exportEdgels.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/exportEdgels/exportEdgels.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/exportEdgels/exportEdgels.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/python from naoth.LogReader import LogReader from naoth.LogReader import Parser def get_camera_matrix(frame): cm_bottom = frame["CameraMatrix"] cm_top = frame["CameraMatrixTop"] return [frame.number, cm_bottom, cm_top] def get_edgels(frame): edgel_percepts = frame["ScanLineEdgelPercept"] return [frame.number, edgel_percepts] if __name__ == "__main__": myParser = Parser() myParser.register("CameraMatrixTop", "CameraMatrix") for msg in LogReader("./game.log", myParser, get_edgels): print(msg)
24.26087
61
0.71147
03abdc9a12f16464373de3fba3cbb3a4ed2bbe85
247
py
Python
todo/admin.py
arkarhtethan/simple-django-todo-list
1d91ec11deb4bdcf9902206ddf754205e3d96447
[ "MIT" ]
null
null
null
todo/admin.py
arkarhtethan/simple-django-todo-list
1d91ec11deb4bdcf9902206ddf754205e3d96447
[ "MIT" ]
9
2019-12-04T22:33:07.000Z
2022-02-10T08:25:39.000Z
todo/admin.py
arkarhtethan/simple-django-todo-list
1d91ec11deb4bdcf9902206ddf754205e3d96447
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Todo class TodoAdmin(admin.ModelAdmin): list_display = ("title","due_date","done") list_filter = ("done","due_date",) list_editable = ("due_date",) admin.site.register(Todo, TodoAdmin)
17.642857
43
0.728745
03b9e54d2eb80c6a91a71d3b802ccc16b256d132
1,048
py
Python
cs/lambda_cs/03_data_structures/queue_and_stack/dll_queue.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
cs/lambda_cs/03_data_structures/queue_and_stack/dll_queue.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
8
2020-03-24T17:47:23.000Z
2022-03-12T00:33:21.000Z
cs/lambda_cs/03_data_structures/queue_and_stack/dll_queue.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
""" Data Structures :: Queue """ import sys sys.path.append("../doubly_linked_list") from doubly_linked_list import DoublyLinkedList class Queue: def __init__(self): """Implementation of a Queue (FIFO). A doubly-linked list is used as the underlying data structure because the methods for manipulating the two data structures are very similar.""" self.storage = DoublyLinkedList() def enqueue(self, value): """Adds an item to the back of the queue. :param value : Item to be added to the queue. """ self.storage.add_to_tail(value) def dequeue(self): """Removes an item from the front of the queue. :return value : Value of dequeued item or None. """ # Empty queue case is handled by DLL method value = self.storage.remove_from_head() return value def len(self): """Calls `len()` on the queue. :return length (int) : Length of queue. """ return len(self.storage)
26.2
69
0.614504
ff04392cc00e634cc57517c482b44f56af2fad62
4,292
py
Python
weeman-master/core/httpd.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
weeman-master/core/httpd.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
weeman-master/core/httpd.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
## ## httpd.py - the main httpd server ## ## Written by @Hypsurus ## import SimpleHTTPServer import SocketServer import urllib2 import cgi import os from socket import error as socerr from core.config import __version__ from core.config import __codename__ from core.misc import printt from bs4 import BeautifulSoup as bs class handler(SimpleHTTPServer.SimpleHTTPRequestHandler): ## Set server version server_version = "Weeman %s (%s)" %(__version__, __codename__) def do_POST(self): post_request = [] printt(3, "%s - sent POST request." %self.address_string()) form = cgi.FieldStorage(self.rfile, headers=self.headers, environ={'REQUEST_METHOD':'POST', 'CONTENT_TYPE':self.headers['Content-Type'],}) try: from core.shell import url logger = open("%s.log" %url.replace("https://", "").replace("http://", "").split("/")[0], "w+") logger.write("## Data for %s\n\n" %url) for tag in form.list: tmp = str(tag).split("(")[1] key,value = tmp.replace(")", "").replace("\'", "").replace(",", "").split() post_request.append("%s %s" %(key,value)) printt(2, "%s => %s" %(key,value)) logger.write("%s => %s\n" %(key,value)) logger.close() from core.shell import action_url create_post(url,action_url, post_request) SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self) except socerr as e: printt(3, "Something wrong: (%s) igonring ..." %str(e)) except Exception as e: printt(3, "Something wrong: (%s) igonring ..." %str(e)) def log_message(self, format, *args): printt(3, "Connected : %s" %(self.address_string())) arg = format%args if arg.split()[1] == "/": printt(3, "%s - sent GET request without parameters." %self.address_string()) else: if arg.split()[1].startswith("/") and "&" in arg.split()[1]: printt(3, "%s - sent GET request with parameters." %self.address_string()) printt(2, "%s" %arg.split()[1]) class weeman(object): def __init__(self, url,port): from core.shell import url from core.shell import port self.port = port self.httpd = None self.url = url self.form_url = None; def request(self,url): from core.shell import user_agent opener = urllib2.build_opener() opener.addheaders = [('User-Agent', user_agent)] return opener.open(self.url).read() def clone(self): printt(3, "Trying to get %s ..." %self.url) printt(3, "Downloadng wepage ...") data = self.request(self.url) data = bs(data, "html.parser") printt(3, "Modifying the HTML file ...") for tag in data.find_all("form"): tag['method'] = "post" tag['action'] = "ref.html" with open("index.html", "w") as index: index.write(data.prettify().encode('utf-8')) index.close() printt(3, "the HTML page will redirect to ref.html ...") def serve(self): printt(3, "\033[01;35mStarting Weeman %s server on 0.0.0.0:%d\033[00m" %(__version__, self.port)) self.httpd = SocketServer.TCPServer(("", self.port),handler) self.httpd.serve_forever() def cleanup(self): printt(3, "\n:: Running cleanup ...") ## In case weeman will not create ref.html, ## Remove each file in diffrent check. if os.path.exists("index.html"): os.remove("index.html") if os.path.exists("ref.html"): os.remove("ref.html") def create_post(url,action_url, post_request): printt(3, "Creating ref.html ...") red = open("ref.html","w") red.write("<body><form id=\"ff\" action=\"%s\" method=\"post\" >\n" %action_url) for post in post_request: key,value = post.split() red.write("<input name=\"%s\" value=\"%s\" type=\"hidden\" >\n" %(key,value)) red.write("<input name=\"login\" type=\"hidden\">") red.write("<script langauge=\"javascript\">document.forms[\"ff\"].submit();</script>") red.close()
37.982301
107
0.567568
2075cfb93479cc556ec79896863590c0fffb612c
2,080
py
Python
whereis-master/whereis-backend/database/database.py
jaakaappi/archived-projects
be1f754eca7c1434f3a363b0ea8ebcd190a42436
[ "MIT" ]
null
null
null
whereis-master/whereis-backend/database/database.py
jaakaappi/archived-projects
be1f754eca7c1434f3a363b0ea8ebcd190a42436
[ "MIT" ]
3
2021-03-10T13:18:31.000Z
2021-05-11T09:20:11.000Z
whereis-master/whereis-backend/database/database.py
jaakaappi/archived-projects
be1f754eca7c1434f3a363b0ea8ebcd190a42436
[ "MIT" ]
null
null
null
from pymongo import MongoClient from bson.objectid import ObjectId client = MongoClient('localhost', 27017) db = client['whereis_database'] def is_empty(): return db.locations.count_documents({}) <= 0 or db.items.count_documents({}) <= 0 def fill_test_db(): location_ids = db.locations.insert_many([{ "name": "Garage", "map": "map1.png" }, { "name": "Hangar", "map": "map2.png" }]).inserted_ids db.items.insert_many([{ "name": "Hammer1", "description": "Smashing", "image": "hammer.jpg", "location": location_ids[0] }, { "name": "Hammer2", "description": "Smashing", "image": "hammer.jpg", "location": location_ids[1] }, { "name": "Knife1", "description": "Sharp", "image": "knife.png", "location": location_ids[0] }, { "name": "Knife2", "description": "Sharp", "image": "knife.png", "location": location_ids[1] }]) print("== Filled test db ==") def get_locations(): locations = [] for location in db.locations.find({}): locations.append({ "id": str(location['_id']), "name": location['name'], "map": location['map'] }) return locations def get_items(count=None, name=None, location=None): items = [] internal_count = count query = {} if name: query['name'] = name if name: query['location'] = ObjectId(location) for item in db.items.find(query): items.append({ "id": str(item['_id']), "name": item['name'], "description": item['description'], "image": item['image'], "location": str(item['location']) }) if count: if internal_count > 0: internal_count -= 1 else: break return items
24.470588
85
0.482212
20f4fa304b382cb667e05f6fcec36fafee489bc5
8,378
py
Python
official/cv/ADNet/src/trainers/RL_tools.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/ADNet/src/trainers/RL_tools.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/ADNet/src/trainers/RL_tools.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import cv2 from src.utils.get_video_infos import get_video_infos from src.utils.do_action import do_action from src.utils.overlap_ratio import overlap_ratio from src.utils.augmentations import CropRegion from mindspore import ops, nn import mindspore class TrackingPolicyLoss(nn.Cell): def __init__(self): super(TrackingPolicyLoss, self).__init__() self.cast = ops.Cast() # https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py#L68 def construct(self, saved_log_probs, rewards): rewards = self.cast(rewards, mindspore.dtype.float32) saved_log_probs = self.cast(saved_log_probs, mindspore.dtype.float32) policy_loss = ops.ReduceSum(False)(-saved_log_probs * rewards) return policy_loss # TrackingEnvironment for all of the videos in one epoch # Number of steps can be set in opts['train']['RL_steps'] before initialize this environment class TrackingEnvironment: def __init__(self, train_videos, opts, transform, args): self.videos = [] # list of clips dict self.opts = opts self.transform = transform self.args = args self.RL_steps = self.opts['train']['RL_steps'] # clip length video_names = train_videos['video_names'] video_paths = train_videos['video_paths'] bench_names = train_videos['bench_names'] vid_idxs = np.random.permutation(len(video_names)) for vid_idx in vid_idxs: # dict consist of set of clips in ONE video clips = { 'img_path': [], 'frame_start': [], 'frame_end': [], 'init_bbox': [], 'end_bbox': [], 'vid_idx': [], } # Load current training video info video_name = video_names[vid_idx] video_path = video_paths[vid_idx] bench_name = bench_names[vid_idx] vid_info = get_video_infos(bench_name, video_path, video_name) if self.RL_steps is None: self.RL_steps = len(vid_info['gt'])-1 vid_clip_starts = [0] vid_clip_ends = [len(vid_info['gt'])-1] else: vid_clip_starts = np.array(range(len(vid_info['gt']) - self.RL_steps)) vid_clip_starts = np.random.permutation(vid_clip_starts) vid_clip_ends = vid_clip_starts + self.RL_steps # number of clips in one video num_train_clips = min(opts['train']['rl_num_batches'], len(vid_clip_starts)) print("num_train_clips of vid " + str(vid_idx) + ": ", str(num_train_clips)) for clipIdx in range(num_train_clips): frameStart = vid_clip_starts[clipIdx] frameEnd = vid_clip_ends[clipIdx] clips['img_path'].append(vid_info['img_files'][frameStart:frameEnd]) clips['frame_start'].append(frameStart) clips['frame_end'].append(frameEnd) clips['init_bbox'].append(vid_info['gt'][frameStart]) clips['end_bbox'].append(vid_info['gt'][frameEnd]) clips['vid_idx'].append(vid_idx) if num_train_clips > 0: # small hack self.videos.append(clips) self.clip_idx = -1 # hack for reset function self.vid_idx = 0 self.state = None # current bbox self.gt = None # end bbox self.current_img = None # current image frame self.current_patch = None # current patch (transformed) self.current_img_idx = 0 self.reset() # return state, reward, done, info. Also update the curr_patch based on the new bounding box # state: next bounding box # reward: the reward # done: True if finishing one clip. # info: a dictionary def step(self, action): info = { 'finish_epoch': False } # do action self.state = do_action(self.state, self.opts, action, self.current_img.shape) self.current_patch, _, _, _ = self.transform(self.current_img, self.state) if action == self.opts['stop_action']: reward, done, finish_epoch = self.go_to_next_frame() info['finish_epoch'] = finish_epoch else: # just go to the next patch (still same frame/current_img) reward = 0 done = False self.current_patch, _, _, _ = self.transform(self.current_img, self.state) return self.state, reward, done, info # reset environment to new clip. # Return finish_epoch status: False if finish the epoch. True if still have clips remain def reset(self): while True: self.clip_idx += 1 # if the clips in a video are finished... go to the next video if self.clip_idx >= len(self.videos[self.vid_idx]['frame_start']): self.vid_idx += 1 self.clip_idx = 0 if self.vid_idx >= len(self.videos): self.vid_idx = 0 # one epoch finish... need to reinitialize the class to use this again randomly return True # initialize state, gt, current_img_idx, current_img, and current_patch with new clip self.state = self.videos[self.vid_idx]['init_bbox'][self.clip_idx] self.gt = self.videos[self.vid_idx]['end_bbox'][self.clip_idx] # frameStart = self.videos[self.vid_idx]['frame_start'][self.clip_idx] self.current_img_idx = 1 # self.current_img_idx = frameStart + 1 self.current_img = cv2.imread(self.videos[self.vid_idx]['img_path'][self.clip_idx][self.current_img_idx]) self.current_patch, _, _, _ = self.transform(self.current_img, np.array(self.state)) if self.gt != '': # small hack break return False def get_current_patch(self): return self.current_patch def get_current_train_vid_idx(self): return self.videos[self.vid_idx]['vid_idx'][0] def get_current_patch_unprocessed(self): crop = CropRegion() state_int = [int(x) for x in self.state] current_patch_unprocessed, _, _, _ = crop(self.current_img, state_int) return current_patch_unprocessed.astype(np.uint8) def get_state(self): return self.state def get_current_img(self): return self.current_img def go_to_next_frame(self): self.current_img_idx += 1 finish_epoch = False # if already in the end of a clip... if self.current_img_idx >= len(self.videos[self.vid_idx]['img_path'][self.clip_idx]): # calculate reward before reset reward = reward_original(np.array(self.gt), np.array(self.state)) print("reward=" + str(reward)) # reset (reset state, gt, current_img_idx, current_img and current_img_patch) finish_epoch = self.reset() # go to the next clip (or video) done = True # done means one clip is finished # just go to the next frame (means new patch and new image) else: reward = 0 done = False # note: reset already read the current_img and current_img_patch self.current_img = cv2.imread(self.videos[self.vid_idx]['img_path'][self.clip_idx][self.current_img_idx]) self.current_patch, _, _, _ = self.transform(self.current_img, self.state) return reward, done, finish_epoch def reward_original(gt, box): iou = overlap_ratio(gt, box) if iou > 0.7: reward = 1 else: reward = -1 return reward
37.738739
117
0.619241
45b1f8256ecf807b0c9b4c5a0d47c3013c46a614
2,389
py
Python
src/onegov/swissvotes/fields/policy_area.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/fields/policy_area.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/fields/policy_area.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from copy import deepcopy from json import dumps from onegov.swissvotes import _ from onegov.swissvotes.models import PolicyArea from wtforms import SelectMultipleField from wtforms.widgets import Select class PolicyAreaWidget(Select): """ The widget for the React Dropdown Tree. """ def __call__(self, field, **kwargs): kwargs['class_'] = 'policy-selector' kwargs['data-tree'] = dumps(field.tree) kwargs['data-placehoder-text'] = field.gettext( _("Select Some Options") ) kwargs['data-no-matches-text'] = field.gettext(_("No results match")) return super().__call__(field, **kwargs) @classmethod def render_option(cls, value, label, selected, **kwargs): """ Adds a level specific class to each option. This allows to see the hierarchie in case the client has disabled javascript. """ kwargs['class'] = 'level-{}'.format(PolicyArea(value).level) return super(PolicyAreaWidget, cls).render_option( value, label, selected, **kwargs ) class PolicyAreaField(SelectMultipleField): """ A select field with React Dropdown Tree support. """ widget = PolicyAreaWidget(multiple=True) def __init__(self, *args, **kwargs): self.tree = kwargs.pop('tree', []) super().__init__(*args, **kwargs) @property def tree(self): """ Returns the tree data and automatically preselects the selected select options. """ tree = deepcopy(self._tree) def preselect(item): checked = item['value'] in self.data expanded = False for child in item['children']: expanded = True if preselect(child) else expanded item['checked'] = checked item['expanded'] = expanded return expanded or checked for item in tree: preselect(item) return tree @tree.setter def tree(self, value): """ Sets the tree data and automatically populates the select's choices. """ self._tree = value def add_choices(item): self.choices.append((item['value'], item['label'])) for child in item['children']: add_choices(child) self.choices = [] for item in value: add_choices(item)
28.783133
77
0.604018
b36234dcca716d2c05b5494e3faae0b458d9a979
3,265
py
Python
src/CalculateDistances.py
animucki/2mmn40
c54c0e4e9c801d63f048fbb5d9abd8fe9432cfdc
[ "Unlicense" ]
null
null
null
src/CalculateDistances.py
animucki/2mmn40
c54c0e4e9c801d63f048fbb5d9abd8fe9432cfdc
[ "Unlicense" ]
null
null
null
src/CalculateDistances.py
animucki/2mmn40
c54c0e4e9c801d63f048fbb5d9abd8fe9432cfdc
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def ReadTrajectory(trajFile): """This will read the WHOLE trajectory into memory. This will not be possible later very large trajectores. I'll let you worry about how to deal with that yourself...""" trajectory=[] with open(trajFile, "r") as tF: line = tF.readline() while line is not "": #first line is number of atoms N = int(line.strip()) tF.readline().strip() # second line is a comment that we throw away q = [] for i in range(N): line = tF.readline().strip().split(" ") for c in line[1:]: if c is not "": q.append(float(c)) trajectory.append(np.array(q)) line = tF.readline() return trajectory, N t, n = ReadTrajectory("Hydrogen.xyz") print("trajectory contains {} atoms and {} steps".format(n, len(t))) d_hists=[] for s,q in enumerate(t): print("Processing step {}".format(s)) # First I will reshape q into a an (n,3) matrix instead of # to begin with q is a vector of length 3*n q = q.reshape(n, 3) # compare this to your trajectory # make sure you have the same values # as in the trajectory file # Now I will calculate all pair-wise distances: # First I will do this the easy way # r1 = np.zeros((n,n)) # I will store the pair-wise distances # # in an n,n matrix # print("Start slow loop:") # for i in range(n): # for j in range(n): # r1[i,j] = np.linalg.norm(q[i]-q[j]) # what is 'norm' here? # print("Done slow loop") # Generally speaking, looping through a np.array # as above is VERY slow (much the same as looping matlab matrices) # So I will show you a trick that will calculate the same as above # much faster... print("start faster calculation:") dr = q - q[:, np.newaxis] # dr is in R^(nxnx3) # have a careful look at dr in # spyder's variable explorer # What do you think this tensor holds? # what does the np.newaxis mean? r2 = np.linalg.norm(dr, axis=2) # what does 'axis' mean here? print("done faster calculation") # r1 and r2 should be very similar (actually identical) # m = np.abs(r1-r2) > 1e-3 # try these operations individually in spyder # and understand what the output is print(m.sum()) # what does this mean? Why is this sum interesting? # hint: could it be some kind of norm? # You should notice that the same calculation without looping is # MUCH faster. # You may comment out the slow loop for your calculations. # don't forget to also comment out the equality check # Now I will calculate the histograms of the distances # and store it d_hists.append(np.histogram(r2.reshape((n*n)))) # I'm going to plot one of the histograms, you will need more for # your exercise x = d_hists[10][1] x = (x[1:] - x[:1])*0.5 y = d_hists[10][0] plt.plot(x, y) plt.xlabel('(nm)') plt.show()
34.368421
91
0.579479
b3783ccaa2bfb2dfb0e0d47859ce56110f870aa4
10,014
py
Python
yhh_recommend_text.py
sambabypapapa/CralwerSet
a76e0660c42ce7aac20b8d07ccc454b6636a8a2a
[ "Apache-2.0" ]
5
2020-08-17T08:37:16.000Z
2021-06-07T05:02:05.000Z
yhh_recommend_text.py
sambabypapapa/CralwerSet
a76e0660c42ce7aac20b8d07ccc454b6636a8a2a
[ "Apache-2.0" ]
null
null
null
yhh_recommend_text.py
sambabypapapa/CralwerSet
a76e0660c42ce7aac20b8d07ccc454b6636a8a2a
[ "Apache-2.0" ]
1
2021-06-07T05:02:10.000Z
2021-06-07T05:02:10.000Z
""" 爬取淘宝有好货推荐商品及所属类型 """ import time import datetime import json import requests import random import CralwerSet.connect_mysql as connect_mysql import re from urllib import parse import easygui as g import hashlib from requests.packages import urllib3 import traceback import pickle import pymysql urllib3.disable_warnings() class youHH(): def __init__(self): self.conn_T = connect_mysql.test() self.cur_T = self.conn_T.cursor() self.conn_W = connect_mysql.w_shark_erp() self.cur_W = self.conn_W.cursor() # 数据库已有的文章id列表 self.have_list = [] self.users_num = {} self.headers = { "Connection": "keep-alive", "User-Agent": "Mozilla/5.0 (Linux; Android 5.1.1; xiaomi mix Build/LMY47I; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/52.0.2743.100 Safari/537.36 AliApp(TB/9.1.0) TTID/600000@taobao_android_9.1.0 WindVane/8.5.0 900X1600 UT4Aplus/0.2.16", "Cookie": "_m_h5_tk=36b5227cd1a1e340e4d56bcc93555f2f_1587526955005; _m_h5_tk_enc=7385708053b9b4519913b71659d347aa;" } def get_cookies(self, response): _m_h5_tk = response.cookies._cookies['.taobao.com']['/']['_m_h5_tk'].value _m_h5_tk_enc = response.cookies._cookies['.taobao.com']['/']['_m_h5_tk_enc'].value cookies = f'_m_h5_tk={_m_h5_tk};_m_h5_tk_enc={_m_h5_tk_enc};' self.headers['Cookie'] = cookies return cookies def get_sign(self, t, token, page): """ 执行js,构造sign参数 :param data: :return: """ if page == 1: data = token + "&" + str( t) + "&12574478&{\"d\":\"{\\\"tce_sid\\\":\\\"1891397\\\",\\\"tce_vid\\\":\\\"0\\\",\\\"tid\\\":\\\"\\\",\\\"tab\\\":\\\"\\\",\\\"topic\\\":\\\"selected_new_0\\\",\\\"count\\\":\\\"\\\",\\\"env\\\":\\\"online\\\",\\\"pageNo\\\":\\\"1\\\",\\\"psId\\\":\\\"51817\\\",\\\"bizCode\\\":\\\"steins.goodItem\\\",\\\"type\\\":\\\"selected_v2\\\",\\\"page\\\":\\\"1\\\",\\\"pageSize\\\":\\\"20\\\",\\\"tabId\\\":\\\"0\\\",\\\"contentIds\\\":\\\"2500000222552474145%2C2500000213511536931\\\",\\\"viewTopicId\\\":\\\"\\\",\\\"line\\\":\\\"\\\",\\\"home_clickItemId\\\":\\\"590236412947\\\",\\\"src\\\":\\\"phone\\\"}\"}" # {"d":"{\"tce_sid\":\"1891397\",\"tce_vid\":\"0\",\"tid\":\"\",\"tab\":\"\",\"topic\":\"selected_new_0\",\"count\":\"\",\"env\":\"online\",\"pageNo\":\"1\",\"psId\":\"51817\",\"bizCode\":\"steins.goodItem\",\"type\":\"selected_v2\",\"page\":\"1\",\"pageSize\":\"20\",\"tabId\":\"0\",\"contentIds\":\"2500000211461002193%2C2500000207797210655\",\"viewTopicId\":\"\",\"line\":\"\",\"home_clickItemId\":\"570216112026\",\"src\":\"phone\"}"} else: data = token + "&" + str( t) + "&12574478&{\"d\":\"{\\\"tce_sid\\\":\\\"1891397\\\",\\\"tce_vid\\\":\\\"0\\\",\\\"tid\\\":\\\"\\\",\\\"tab\\\":\\\"\\\",\\\"topic\\\":\\\"selected_new\\\",\\\"count\\\":\\\"\\\",\\\"env\\\":\\\"online\\\",\\\"pageNo\\\":\\\"1\\\",\\\"psId\\\":\\\"51817\\\",\\\"bizCode\\\":\\\"steins.goodItem\\\",\\\"type\\\":\\\"selected_v2\\\",\\\"page\\\":\\\"%s\\\",\\\"pageSize\\\":\\\"20\\\",\\\"tabId\\\":\\\"0\\\",\\\"clickedIds\\\":\\\"\\\",\\\"src\\\":\\\"phone\\\"}\"}" % ( page) m = hashlib.md5(data.encode()) sign = m.hexdigest() return sign, parse.quote(data.split("&")[-1]) def get_content_sign(self, content_id, token, t): data = token + "&" + str( t) + "&12574478&{\"contentId\":\"%s\",\"source\":\"youhh_tuji\",\"type\":\"h5\",\"params\":\"\",\"business_spm\":\"\",\"track_params\":\"\"}" % ( content_id) m = hashlib.md5(data.encode()) sign = m.hexdigest() return sign, parse.quote(data.split("&")[-1]) def closeSql_T(self): """ 断开T数据库连接 :return: """ self.cur_T.close() self.conn_T.close() def closeSql_W(self): """ 断开W数据库连接 :return: """ self.cur_W.close() self.conn_W.close() def quchong(self, text, long, LIST): for each in LIST: if each[1] == long and text[0] == each[0][0] and text == each[0]: return False return True def getContent(self, content_id): """ :param content_id:文章编号 :return: 文章内容 """ while True: self.headers[ 'Referer'] = f'https://market.m.taobao.com/apps/market/content/index.html?contentId={content_id}&source=youhh_tuji' temp = int(time.time() * 1000) _m_h5_tk = re.findall('_m_h5_tk=[^;]*', self.headers['Cookie'])[0].split('=')[1] token = _m_h5_tk.split('_')[0] sign, data = self.get_content_sign(content_id, token, temp) url = f"https://h5api.m.taobao.com/h5/mtop.taobao.beehive.detail.contentservicenewv2/1.0/?jsv=2.5.1&appKey=12574478&t={temp}&sign={sign}&api=mtop.taobao.beehive.detail.contentservicenewv2&v=1.0&AntiCreep=true&AntiFlood=true&timeout=5000&type=jsonp&dataType=jsonp&callback=mtopjsonp2&data={data}" response = requests.get(url, headers=self.headers, verify=False) response_text = response.text[12:-1] if "令牌过期" in response_text: self.get_cookies(response) else: break info = json.loads(response_text) time.sleep(random.randint(0, 10)) text_list = [] if "photos" in info['data']['models']['content'].keys(): for photo in info['data']['models']['content']['photos']: if 'desc' in photo.keys(): text_list.append([photo['desc'], len(photo['desc'].encode())]) uniqe_text = [] while len(text_list): text, long = text_list.pop() if self.quchong(text, long, text_list): uniqe_text.append([text, long]) print(text, long) return uniqe_text def requestUrl(self, page): """ 请求页面 :param page: :return:返回页面json数据 """ while True: temp = int(time.time() * 1000) _m_h5_tk, _m_h5_tk_enc = (re.findall('_m_h5_tk=[^;]*', self.headers['Cookie'])[0].split('=')[1], re.findall('_m_h5_tk_enc=[^;]*', self.headers['Cookie'])[0].split('=')[1]) token = _m_h5_tk.split('_')[0] sign, data = self.get_sign(temp, token, page) url = f'https://h5api.m.taobao.com/h5/mtop.taobao.tceget.steins.gooditem.xget/1.0/?jsv=2.4.5&appKey=12574478&t={temp}&sign={sign}&AntiCreep=true&api=mtop.taobao.tceget.steins.gooditem.xget&v=1.0&dataType=jsonp&timeout=20000&H5Request=true&preventFallback=true&type=jsonp&callback=mtopjsonp2&data={data}' response = requests.get(url, headers=self.headers, verify=False) response_text = response.text[12:-1] if "令牌过期" in response_text: self.get_cookies(response) else: break info = json.loads(response_text) time.sleep(random.randint(5, 20)) return info def findClass(self, title): """ 判断该文章的类型 :param title: :return: 该文章最有可能的类型 """ sql = f"""SELECT t6.cat,t5.num FROM (select t4.MAIN_ID MAIN_ID,count(t4.MAIN_ID) num FROM (SELECT t2.CLASSIFY_ID CLASSIFY_ID FROM (select URL_ID, CONTENT from crawler_commodity_module_description where match(CONTENT) against('{title}') limit 100) t1, cm_commodity t2 where t1.URL_ID=t2.URL_ID ) t3, class_id t4 where t3.CLASSIFY_ID = t4.ID GROUP BY t4.MAIN_ID) t5, class_id t6 WHERE t6.ID=t5.MAIN_ID ORDER BY t5.num desc LIMIT 1;""" while True: try: self.cur_W.execute(sql) info = self.cur_W.fetchone() break except pymysql.err.OperationalError: print('由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。') self.conn_W.ping(True) except pymysql.err.ProgrammingError: print(sql) return '未知分类' if info: return info[0][0:-1] else: return '未知分类' def insertEssay(self, contentid, title, mainClass): """ 写入数据库 :param contentid: 文章编号 :param title: 文章标题 :param mainClass: 文章最可能的分类 :return: """ sql = f"""insert into yhh_essays(CONTENT_ID, TITLE, MAIN_CLASSIFY, UPDATE_TIME) values({contentid},'{title.replace("'", '')}','{mainClass}',now()); """ self.cur_T.execute(sql) def insertText(self, text_list, contentId): sql = "insert into cm_text_temp(TEXT,`LONG`) values(%s,%s);" self.cur_W.executemany(sql, text_list) self.cur_T.execute(f"update yhh_essays set GET_CONTENT=1 where ID={contentId};") self.conn_T.commit() def getHaveList(self): """ 获取已存在文章列表 :return: """ sql = """select CONTENT_ID from yhh_essays;""" self.cur_T.execute(sql) result = self.cur_T.fetchall() if result: for each in result: self.have_list.append(int(each[0])) return self.have_list def main(self, id, contentId): try: text_list = self.getContent(int(str(contentId)[7:])) self.insertText(text_list, id) except Exception as e: traceback.print_exc() return False return True def main(): yhh = youHH() # 查询没有文案的记录 havnt_text_essay_sql = "select ID, CONTENT_ID from yhh_essays where GET_CONTENT=0;" yhh.cur_T.execute(havnt_text_essay_sql) # 逐条记录查询文案 for id, content_id in yhh.cur_T.fetchall(): result = yhh.main(id, content_id) yhh.closeSql_T() yhh.closeSql_W() if __name__ == '__main__': main()
43.350649
625
0.546036
2b9fbdaff827a00d9a129888170532f40b7bc014
660
py
Python
tests/test_logik.py
fossabot/superstructure
f4ab5cac269fb3dedfbd3a54c441af23edf3840b
[ "MIT" ]
null
null
null
tests/test_logik.py
fossabot/superstructure
f4ab5cac269fb3dedfbd3a54c441af23edf3840b
[ "MIT" ]
null
null
null
tests/test_logik.py
fossabot/superstructure
f4ab5cac269fb3dedfbd3a54c441af23edf3840b
[ "MIT" ]
null
null
null
import unittest from superstructure.logik import Begriff from superstructure.grundbegriffe import Einzelheit from superstructure.geist import Bewusstsein class TestLogik(unittest.TestCase): def test_basic_logik(self): b = Bewusstsein(name="TestBewusstsein") i = Begriff(name="I") j = Begriff(name="J", allgemeinheit_id=i.id) i.einzelheit = j.id b.learn(i) b.learn(j) # self.assertEqual(i.allgemeinheit, Begriff().id) self.assertEqual(j.allgemeinheit, i.id) self.assertTrue(b.relation_applies(Einzelheit, [b.get(i.einzelheit), j])) if __name__ == "__main__": unittest.main()
27.5
81
0.683333
2bcbdbfe08769f4e09303ed4939454168cf6737e
2,159
py
Python
similaritycalculation/generalSimilarity.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
null
null
null
similaritycalculation/generalSimilarity.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
38
2018-10-24T08:51:58.000Z
2021-12-13T19:54:39.000Z
similaritycalculation/generalSimilarity.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
12
2018-10-24T08:20:13.000Z
2019-08-12T08:10:14.000Z
import math import logging LOGGER = logging.getLogger(__name__) def sameDatatype(fileEnding1, fileEnding2): """checks if two datatypes are the same or from same family :param fileEnding1 String for instance ".tiff" :param fileEnding2 String for instance ".geotiff" :returns: 1 if they are the same, otherwise 0 """ same1, same2 = -1,-1 same1 = fileEnding1.find(fileEnding2.replace(".", "")) # 2 in 1 same2 = fileEnding2.find(fileEnding1.replace(".", "")) # 1 in 2 LOGGER.info("Datatypes %s and %s" % (fileEnding1, fileEnding2)) return 1 if same1>=0 or same2>=0 else 0 def sameAuthor(author1, author2): """checks if two Authors are the same :param author1 String with Author :param author2 String with Author :returns: 1 if they are the same, otherwise 0 """ LOGGER.info("Authors %s and %s" % (author1, author2)) return 1 if author1 == author2 else 0 def similarTitle(title1, title2): """checks if two strings are similar in reference to an amount of same characters :param title1 String the first title :param title2 String the second title :returns: number between 1 and 0 """ LOGGER.info("Titles %s and %s" % (title1, title2)) countList = 0 if len(title1) >= len(title2): # searches for same caracters in both strings charList = [] for i in title2: # check if char has already been found if i not in charList: charList.append(i) # count how often the char appears in the other string countList += title1.count(i) LOGGER.info("List of same characters: " + str(charList)) percent = 0 if len(title1) != 0: percent = countList/len(title1) return percent else: charList = [] for i in title1: if i not in charList: charList.append(i) countList += title2.count(i) LOGGER.info("List of same characters: " + str(charList)) percent = 0 if len(title2) != 0: percent = countList/len(title2) return percent
34.269841
85
0.612784
47079df10a341d54724572c4f55fd5e3ba482151
2,413
py
Python
research/cv/dcgan/src/generator.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/dcgan/src/generator.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/dcgan/src/generator.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """dcgan generator""" from mindspore import nn from src.cell import Normal from src.config import dcgan_imagenet_cfg as cfg def convt(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="pad"): weight_init = Normal(mean=0, sigma=0.02) return nn.Conv2dTranspose(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight_init, has_bias=False, pad_mode=pad_mode) def bm(num_features): gamma_init = Normal(mean=1, sigma=0.02) return nn.BatchNorm2d(num_features=num_features, gamma_init=gamma_init) class Generator(nn.Cell): """ DCGAN Generator """ def __init__(self): super(Generator, self).__init__() self.generator = nn.SequentialCell() # input is Z, going into a convolution self.generator.append(convt(cfg.latent_size, cfg.feature_size * 8, 4, 1, 0)) self.generator.append(bm(cfg.feature_size * 8)) self.generator.append(nn.ReLU()) # state size. 512 x 4 x 4 self.generator.append(convt(cfg.feature_size * 8, cfg.feature_size * 4, 4, 2, 1)) self.generator.append(bm(cfg.feature_size * 4)) self.generator.append(nn.ReLU()) # state size. 256 x 8 x 8 self.generator.append(convt(cfg.feature_size * 4, cfg.feature_size * 2, 4, 2, 1)) self.generator.append(bm(cfg.feature_size * 2)) self.generator.append(nn.ReLU()) # state size. 128 x 16 x 16 self.generator.append(convt(cfg.feature_size * 2, cfg.channel_size, 4, 2, 1)) self.generator.append(nn.Tanh()) # state size. 3 x 32 x 32 def construct(self, x): return self.generator(x)
39.557377
89
0.656444
472b1fb39849210594f1d8132cbf1b5fce24375b
359
py
Python
exercises/pt/test_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/pt/test_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/pt/test_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
def test(): assert ( "doc1.similarity(doc2)" or "doc2.similarity(doc1)" in __solution__ ), "Você está comparando a similaridade entre os dois documentos?" assert ( 0 <= float(similarity) <= 1 ), "O valor da similaridade deve ser um número de ponto flutuante. Você fez este cálculo corretamente?" __msg__.good("Muito bem!")
39.888889
107
0.668524
1b61643193609c85bbaf600eb6fb729daf6a4097
1,928
py
Python
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/arrays_notes.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/arrays_notes.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
8
2020-03-24T17:47:23.000Z
2022-03-12T00:33:21.000Z
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/arrays_notes.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
""" Hash tables :: Day 1 Notes: Arrays An array: * Stores a sequence of elements * Each element must be the same data type * Occupies a contiguous block of memory * Can access data in constant time with this equation: `memory_address = starting_address + index * data_size` """ class DynamicArray: def __init__(self, capacity=1): self.count = 0 # Number of elements in the array self.capacity = capacity # Total amount of storage in array self.storage = [None] * capacity def insert(self, index, value): """Inserts a value into list at index. Complexity: O(n)""" # Check if we have enough capacity if self.count >= self.capacity: # If not, make more room self.resize() # Shift every item after index to right by 1 for i in range(self.count, index, -1): self.storage[i] = self.storage[i - 1] # Add new value at the index self.storage[index] = value # Increment count self.count += 1 def append(self, value): """Appends a value to the end of array. Complexity: O(1)""" # Check if array has enough capacity if self.count >= self.capacity: # If not, resize up self.resize() # Add value to the index of count self.storage[self.count] = value # Increment count self.count += 1 def resize(self): """Doubles the capacity of array.""" self.capacity *= 2 # Allocate a new storage array with double capacity new_storage = [None] * self.capacity # Copy all ements from old storage to new for i in range(self.count): new_storage[i] = self.storage[i] self.storage = new_storage a = DynamicArray(2) a.insert(0, 19) a.insert(0, 14) print(a.storage) a.append(9) a.append(8) print(a.storage) a.append(7) print(a.storage)
27.942029
68
0.605809
940fa25f5d2e638547e03c9cd9e16acdbea8cf89
9,547
py
Python
.github/tools/metrics/benchmark_capture.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
55
2021-05-11T16:01:59.000Z
2022-03-30T14:30:33.000Z
.github/tools/metrics/benchmark_capture.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
943
2021-05-10T14:00:02.000Z
2022-03-31T21:28:15.000Z
.github/tools/metrics/benchmark_capture.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
29
2021-05-10T11:33:16.000Z
2022-03-30T21:01:54.000Z
#!/usr/bin/env python3 import time import click import os import csv import requests import json import logging from pprint import pprint from datetime import timedelta from jinja2 import Environment, FileSystemLoader from google.api_core.exceptions import NotFound, InternalServerError from google.cloud import monitoring_v3 from google.cloud import monitoring_dashboard_v1 # Lable limit of 10 is a hard API limit GCP_LABEL_LIMIT = 10 # Dashboard limits, 10 is an organic floor, 40 is a hard API limit DASHBOARD_METRIC_FLOOR = 10 DASHBOARD_METRIC_CEILING = 40 # Setup logger logger = logging.getLogger("benchmark_capture") logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) # Capture time for metrics now = time.time() # Setup GCP clients monitoring_client = monitoring_v3.MetricServiceClient() dashboard_client = monitoring_dashboard_v1.DashboardsServiceClient() def record_metric(project_name, metric): """Create TS entry for captured metric""" global logger global now global monitoring_client series = monitoring_v3.TimeSeries() series.resource.type = "global" series.metric.type = f"custom.googleapis.com/{metric['Benchmark']}" # Required to maintain uniqueness of each permutation series.metric.labels["Run"] = metric["Run"] series.metric.labels["Iteration"] = metric["Iteration"] # Populate dynamic labels, GCP limit is 10 labels per descriptor for key in list(metric.keys()): if key not in ["Benchmark", "Run", "Iteration", "Score"]: series.metric.labels[key] = metric[key] if len(series.metric.labels) > GCP_LABEL_LIMIT: logger.warn( f"Exiting metric label loop, limit of {GCP_LABEL_LIMIT} labels." ) break # Break out, we have hit limit on labels seconds = int(now) nanos = int((now - seconds) * 10 ** 9) interval = monitoring_v3.TimeInterval( {"end_time": {"seconds": seconds, "nanos": nanos}} ) point = monitoring_v3.Point( {"interval": interval, "value": {"double_value": float(metric["Score"])}} ) series.points = [point] logger.info( f"Publishing {series.resource.type}/{series.metric.type}: {metric['Score']}" ) try: monitoring_client.create_time_series(name=project_name, time_series=[series]) except InternalServerError: logger.error( f"Failed to publish metric {series.metric.type}, this may be because the metric descriptor has been recently created. Will retry on the next run." ) def get_dashboard(project_name, title, index=1): """Attempt to retrieve a dashboard and return the JSON""" global logger dashboard_request = monitoring_dashboard_v1.types.GetDashboardRequest( name=f"{project_name}/dashboards/{title}-{index}" ) try: dashboard = dashboard_client.get_dashboard(request=dashboard_request) logger.info(f"Found dashboard {project_name}/dashboards/{title}-{index}.") return dashboard except NotFound: logger.info( f"Dashboard {project_name}/dashboards/{title}-{index} does not exist." ) return None def generate_dashboard( template_path, project_name, title, metrics, filter_keys, index=1 ): """Generate JSON template and return Python object representation of template for later processing.""" global logger logger.info( f"Generating dashboard template {project_name}/dashboards/{title}-{index} with {len(metrics)} metrics." ) file_loader = FileSystemLoader(template_path) env = Environment(loader=file_loader) template = env.get_template("benchmark_dashboard.json.j2") dashboard_template = json.loads( template.render( dashboard_path=f"{project_name}/dashboards/{title}-{index}", title=f"{title} ({index})", metrics=metrics, filter_keys=filter_keys, group_by_keys=["Iteration"], ) ) return dashboard_template def publish_dashboards(project_name, title, dashboard_templates): """Populate JSON dashboard template and use it to create/update a GCP Dashboard in project.""" global logger for idx, dashboard_template in enumerate(dashboard_templates): # Create Dashboard PB dashboard = monitoring_dashboard_v1.Dashboard(dashboard_template) # Fetch dashboard to see if we need to create or update in place existing_dashboard = get_dashboard(project_name, title, idx + 1) if existing_dashboard is None: # Create new dashboard dashboard_request = monitoring_dashboard_v1.types.CreateDashboardRequest( parent=project_name, dashboard=dashboard ) logger.info( f"Publishing new dashboard {project_name}/dashboards/{title}-{idx + 1}." ) dashboard_client.create_dashboard(dashboard_request) else: # Update existing dashboard # Ensure we target returned version of the dashboard dashboard.etag = existing_dashboard.etag # <-- Broke everything :( dashboard_request = monitoring_dashboard_v1.types.UpdateDashboardRequest( dashboard=dashboard ) logger.info( f"Updating dashboard {project_name}/dashboards/{title}-{idx + 1}." ) dashboard_client.update_dashboard(dashboard_request) def get_metadata(path): """Get GCP metadata object for requested path""" global logger logger.debug(f"Querying {path} from instance metadata service.") url = f"http://metadata.google.internal/{path}" headers = {"Metadata-Flavor": "Google"} r = requests.get(url, headers=headers) if r.status_code != 404: return r.text else: return None def get_project_id(): """Retrieve GCP project from the instance metadata""" global logger logger.info("Attempting to query project ID from instance metadata service.") return get_metadata("/computeMetadata/v1/project/numeric-project-id") @click.command( help="Read in provided glob of FILES and generate custom metrics for historical benchmark data capture." ) @click.option( "--project-id", envvar="GCP_PROJECT_ID", default=None, help="Numeric GCP project ID" ) @click.option( "--metrics-per-dashboard", default=40, help="Maximum number of metrics per dashboard", ) @click.option("--template-path", default="templates", help="Root of template path") @click.argument("files", nargs=-1) def main(project_id, metrics_per_dashboard, template_path, files): """Read in CSV and push custom metrics to project""" global logger logger.info("Starting metrics capture and dashboard creation.") if project_id is None: project_id = get_project_id() project_name = f"projects/{project_id}" logger.info(f'Targeting GCP project "{project_name}"') for f in files: metrics = [] metric_keys = [] with open(f, "r") as data: logger.info(f"Reading {f}...") for metric in csv.DictReader(data): # We only need a single iteration of each run to aggregate keys for widgets if metric["Iteration"] == "1": # Append keys to listing of keys to be used later in dashboard creation metric_keys += metric.keys() # Again don't need every iteration to create the widgets metrics.append(metric) # Commit the metric timeseries to GCP services record_metric(project_name, metric) # Extract Dashboard name from filename dashboard_title = os.path.basename(f).split("-")[0] # Squash key list metric_keys = set(metric_keys) # Remove keys that will NOT be used for creating metric filter in the dashboard genneration filter_keys = list( metric_keys - set(["Benchmark", "Run", "Iteration", "Score"]) )[ :9 ] # Limit to first 10 keys if metrics_per_dashboard > DASHBOARD_METRIC_CEILING: logger.warning( "Metrics per dashboard can not exceed 40 per GCP API limitations. Reset value to 40." ) metrics_per_dashboard = DASHBOARD_METRIC_CEILING elif metrics_per_dashboard < DASHBOARD_METRIC_FLOOR: logger.warning("Metrics per dashboard below 10. Reset value to 10.") metrics_per_dashboard = DASHBOARD_METRIC_FLOOR # Generate dashboard templates dashboard_templates = [] windows_size = len(metrics) + (metrics_per_dashboard - 1) windows = windows_size // metrics_per_dashboard for i in range(windows): metrics_slice = metrics[ (i * metrics_per_dashboard) : (i + 1) * metrics_per_dashboard ] dashboard_templates.append( generate_dashboard( template_path, project_name, dashboard_title, metrics_slice, filter_keys, index=i + 1, ) ) # Publish dashboards to GCP publish_dashboards(project_name, dashboard_title, dashboard_templates) logger.info("Completed metrics capture and dashboard creation.") if __name__ == "__main__": main()
30.89644
158
0.655808
ca2df16482429ebd5ccb3367c7ec22c43f589b3f
2,311
py
Python
deeplearning EX/Ex1.py
deliciousYSH/Misc.Code
5e957ca16b2a7b2a1dff5f0a1dec563dd4757d18
[ "MIT" ]
null
null
null
deeplearning EX/Ex1.py
deliciousYSH/Misc.Code
5e957ca16b2a7b2a1dff5f0a1dec563dd4757d18
[ "MIT" ]
null
null
null
deeplearning EX/Ex1.py
deliciousYSH/Misc.Code
5e957ca16b2a7b2a1dff5f0a1dec563dd4757d18
[ "MIT" ]
null
null
null
import numpy as np import torch import matplotlib.pyplot as plt from torch.autograd import Variable x_train = np.array([1.3, 2.4, 3.1, 4.32, 5.13, 6.15, 7.25, 8.92, 8.92, 3.12, 4.32, 8.52], dtype=np.float32) x_train = x_train.reshape(-1, 1) y_train = np.array([2.3, 1.13, 5.4, 6.1, 6.2, 6.85, 7.03, 8.18, 7.25, 6.82, 1.75, 6.2], dtype=np.float32) y_train = y_train.reshape(-1, 1) class linearRegression(torch.nn.Module): def __init__(self, inputSize, outputSize): super(linearRegression, self).__init__() self.linear = torch.nn.Linear(inputSize, outputSize) def forward(self, x): out = self.linear(x) return out inputDim = 1 # takes variable 'x' outputDim = 1 # takes variable 'y' learningRate = 0.01 epochs = 100 ##### For GPU ####### if torch.cuda.is_available(): model.cuda() model = linearRegression(inputDim, outputDim) criterion = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learningRate) for epoch in range(epochs): # Converting inputs and labels to Variable if torch.cuda.is_available(): inputs = Variable(torch.from_numpy(x_train).cuda()) labels = Variable(torch.from_numpy(y_train).cuda()) else: inputs = Variable(torch.from_numpy(x_train)) labels = Variable(torch.from_numpy(y_train)) # Clear gradient buffers because we don't want any gradient from previous epoch to carry forward, dont want to cummulate gradients optimizer.zero_grad() # get output from the model, given the inputs outputs = model(inputs) # get loss for the predicted output loss = criterion(outputs, labels) print(loss) # get gradients w.r.t to parameters loss.backward() # update parameters optimizer.step() print('epoch {}, loss {}'.format(epoch, loss.item())) with torch.no_grad(): # we don't need gradients in the testing phase if torch.cuda.is_available(): predicted = model(Variable(torch.from_numpy(x_train).cuda())).cpu().data.numpy() else: predicted = model(Variable(torch.from_numpy(x_train))).data.numpy() print(predicted) plt.clf() plt.plot(x_train, y_train, 'go', label='True data', alpha=0.5) plt.plot(x_train, predicted, '--', label='Predictions', alpha=0.5) plt.legend(loc='best') plt.show()
30.407895
134
0.672003
b6f0a22ecc404ebcdc051115a6062d013933a00a
518
py
Python
Algorithms/Strings/Weighted_Uniform_Strings.py
vinayvinu500/Hackerrank
e185ae9d3c7dc5cd661761142e436f5df6a3f0f1
[ "MIT" ]
null
null
null
Algorithms/Strings/Weighted_Uniform_Strings.py
vinayvinu500/Hackerrank
e185ae9d3c7dc5cd661761142e436f5df6a3f0f1
[ "MIT" ]
null
null
null
Algorithms/Strings/Weighted_Uniform_Strings.py
vinayvinu500/Hackerrank
e185ae9d3c7dc5cd661761142e436f5df6a3f0f1
[ "MIT" ]
null
null
null
# https://www.hackerrank.com/challenges/weighted-uniform-string/problem?h_r=internal-search import string from collections import Counter l = string.ascii_lowercase s = 'abccddde' d = {} for i,j in enumerate(l,1): d[j] = i e = Counter(s) w_c = [] w = [] for i,j in e.items(): for k in range(1,j+1): w_c.append(i*k) w.append(d[i]*k) print(d) print(l) print(s) print(e) print(w) print(w_c) q = [1, 3, 12, 5, 9, 10] for i in q: if i in w: print('Yes') else: print('No')
16.709677
91
0.596525
eda54ba1313b5f9760eb835e348d48e8549774b2
2,675
py
Python
src/onegov/town/views/settings.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/town/views/settings.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/town/views/settings.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
""" The settings view, defining things like the logo or color of the org. """ from onegov.core.security import Secret from onegov.form import Form, merge_forms, move_fields from onegov.org import _ from onegov.org.forms import HomepageSettingsForm from onegov.org.models import Organisation from onegov.org.views.settings import handle_homepage_settings from onegov.town.app import TownApp from wtforms import BooleanField, StringField, IntegerField def get_custom_settings_form(model, request, homepage_settings_form=None): class CustomFieldsForm(Form): online_counter_label = StringField( label=_("Online Counter Label"), description=_("Forms and applications")) reservations_label = StringField( label=_("Reservations Label"), description=_("Daypasses and rooms")) daypass_label = StringField( label=_("SBB Daypass Label"), description=_("Generalabonnement for Towns")) publications_label = StringField( label=_("Publications Label"), description=_("Official Documents")) e_move_label = StringField( label=_('E-Move Label'), description=_('E-Move') ) e_move_url = StringField( label=_('E-Move Url'), description=_('E-Move') ) hide_publications = BooleanField( label=_("Hide Publications on Homepage")) event_limit_homepage = IntegerField( label=_("Maximum number of events displayed on homepage") ) news_limit_homepage = IntegerField( label=_("Maximum number of news entries on homepage") ) return move_fields( form_class=merge_forms( homepage_settings_form or HomepageSettingsForm, CustomFieldsForm), fields=( 'online_counter_label', 'reservations_label', 'daypass_label', 'publications_label', 'e_move_label', 'e_move_url', 'hide_publications', 'event_limit_homepage', 'news_limit_homepage' ), after='homepage_image_6' ) @TownApp.form(model=Organisation, name='homepage-settings', template='form.pt', permission=Secret, form=get_custom_settings_form, setting=_("Homepage"), icon='fa-home', order=-900) def custom_handle_settings(self, request, form): form.delete_field('homepage_cover') form.delete_field('homepage_structure') form.delete_field('redirect_homepage_to') form.delete_field('redirect_path') return handle_homepage_settings(self, request, form)
32.621951
79
0.650841