code
stringlengths 5
1M
| repo_name
stringlengths 5
109
| path
stringlengths 6
208
| language
stringclasses 1
value | license
stringclasses 15
values | size
int64 5
1M
|
---|---|---|---|---|---|
/*
* Copyright 2013 Krisztian Lachata
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.kaloz.datafeed.processorrest.infrastructure.acl
import org.apache.camel.Header
import org.kaloz.datafeed.processor.api.instrument.{InstrumentPriceListRequestMessage, InstrumentPriceRequestMessage}
import org.springframework.stereotype.Component
@Component
class ProcessorRestConverter {
def toInstrumentPriceRequestMessage(@Header("provider") provider: String, @Header("instrument") instrument: String) = new InstrumentPriceRequestMessage( provider, instrument)
def toInstrumentPriceListRequestMessage(@Header("provider") provider: String) = new InstrumentPriceListRequestMessage( provider )
}
|
lachatak/market-data-feed
|
market-data-processor-rest/src/main/scala/org/kaloz/datafeed/processorrest/infrastructure/acl/ProcessorRestConverter.scala
|
Scala
|
apache-2.0
| 1,213 |
package scaudio
import scala.math.*
import scutil.math.functions.*
/** math utilities */
object math {
// NOTE unboxed newtypes could be useful here
val zeroGain = 0.0
val unitGain = 1.0
val unitDb = 0.0
val zeroFrequency = 0.0
val unitFrequency = 1.0
val secondsPerMinute = 60
//------------------------------------------------------------------------------
/** convert from an amplitude multiplication factor to a dB value */
inline def gain2db(gain:Double):Double = 20 * log10(gain)
// roughly Math.log(gain) * 6.0 / Math.log(2);
/** convert from a dB value to an amplitude multiplication factor */
inline def db2gain(dB:Double):Double = exp10(dB / 20)
// roughly Math.exp(dB * Math.log(2) / 6.0);
//------------------------------------------------------------------------------
/** convert from an amplitude multiplication factor to a dBi value */
inline def gain2dbi(gain:Double):Double = 10 * log10(gain)
/** convert from a dBi value to an amplitude multiplication factor */
inline def dbi2gain(dB:Double):Double = exp10(dB / 10)
//------------------------------------------------------------------------------
/** convert from a frequency factor to a linear 1-per-octave value */
inline def frequency2octave(frequency:Double):Double = log2(frequency)
/** convert from a linear 1-per-octave value to a frequency factor */
inline def octave2frequency(octave:Double):Double = exp2(octave)
//------------------------------------------------------------------------------
/** negative: first slow, then fast; positive: first fast, then slow */
def gammaFade(form:Double):Double=>Double = {
val scale = exp(form)
it => exp(log(it) * scale)
}
def cosineFade(it:Double):Double =
(1 - cos(it * Pi)) / 2
}
|
ritschwumm/scaudio
|
src/main/scala/math.scala
|
Scala
|
bsd-2-clause
| 1,763 |
package me.liamdawson.firefighter.http.resources
import me.liamdawson.firefighter.http.routing.Route
import scala.language.implicitConversions
object dsl {
implicit def routeToEnhancedRoute(route: Route): EnhancedRoute = EnhancedRoute(route)
implicit def resourceRoutingToResourceRoutings(routing: ResourceRouting): Seq[ResourceRouting] = Seq(routing)
implicit def resourceRoutingsToResourceMatcher(routings: Seq[ResourceRouting]): ResourceMatcher = ResourceMatcher(routings)
}
case class EnhancedRoute(route: Route) {
def ->(resource: Resource) = ResourceRouting(route, resource)
}
|
liamdawson/firefighter
|
src/main/scala/me/liamdawson/firefighter/http/resources/dsl.scala
|
Scala
|
mit
| 596 |
package defw.webapp
import org.scalatra._
import scalate.ScalateSupport
class WebAppServlet extends ScalatraWebAppStack {
get("/") {
<html>
<body>
<h1>Hello, world!</h1>
Say <a href="hello-scalate">hello to Scalate</a>.
</body>
</html>
}
/**
* Accessing scalatra web service GET parameters
* To use a named parameters approch
*/
get("/hello/:name/") {
<p>Hello, {params("name")}</p>
}
/**
* Accessing scalatra web service GET parameters
* To use wildcard charactors
*/
get("/file/*.*") {
val data = multiParams("splat")
<p>{data.mkString("[", ",", "]")}</p>
}
}
|
takahish0306/scala-defw
|
webapp/src/main/scala/defw/webapp/WebAppServlet.scala
|
Scala
|
apache-2.0
| 650 |
/*
* Copyright 2013 TeamNexus
*
* TeamNexus Licenses this file to you under the MIT License (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://opensource.org/licenses/mit-license.php
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License
*/
package com.nexus.webserver.handlers
import com.nexus.webserver.{WebServerUtils, SslContextProvider, TWebServerHandler}
import io.netty.channel._
import io.netty.handler.codec.http._
import com.nexus.util.Utils
import java.io.{FileNotFoundException, RandomAccessFile, File}
import java.util.Locale
import java.text.SimpleDateFormat
import io.netty.handler.stream.ChunkedFile
/**
* No description given
*
* @author jk-5
*/
class WebServerHandlerHtml extends TWebServerHandler {
private final val useSendFile = SslContextProvider.isValid
private final val htdocs = System.getProperty("nexus.webserver.htdocslocation", "htdocs")
private final val htdocsLocation = if(htdocs.endsWith("/")) htdocs.substring(0,htdocs.length -1) else htdocs
override def handleRequest(ctx: ChannelHandlerContext, req: FullHttpRequest){
if(req.getMethod != HttpMethod.GET){
WebServerUtils.sendError(ctx, HttpResponseStatus.BAD_REQUEST)
return
}
val uri = req.getUri.split("\\?", 2)(0)
val path = htdocsLocation + Utils.sanitizeURI(uri)
if(path == null){
WebServerUtils.sendError(ctx, HttpResponseStatus.FORBIDDEN)
return
}
var file = new File(path)
if(file.isDirectory){
val index = new File(file, "index.html")
if(index.exists() && index.isFile) file = index
}
if(file.isHidden || !file.exists){
WebServerUtils.sendError(ctx, HttpResponseStatus.NOT_FOUND)
return
}
if(file.isDirectory){
if(uri.endsWith("/")) {
//this.sendFileList(ctx, file) //TODO: file list?
}else WebServerUtils.sendRedirect(ctx, uri + "/")
return
}
if(!file.isFile){
WebServerUtils.sendError(ctx, HttpResponseStatus.FORBIDDEN)
return
}
val ifModifiedSince = req.headers().get(HttpHeaders.Names.IF_MODIFIED_SINCE)
if(ifModifiedSince != null && !ifModifiedSince.isEmpty){
val dateFormatter = new SimpleDateFormat(WebServerUtils.HTTP_DATE_FORMAT, Locale.US)
val ifModifiedSinceDate = dateFormatter.parse(ifModifiedSince)
val ifModifiedSinceDateSeconds = ifModifiedSinceDate.getTime / 1000
val fileLastModifiedSeconds = file.lastModified() / 1000
if(ifModifiedSinceDateSeconds == fileLastModifiedSeconds){
WebServerUtils.sendNotModified(ctx)
return
}
}
var raf:RandomAccessFile = null
try{
raf = new RandomAccessFile(file, "r")
}catch{
case e: FileNotFoundException => {
WebServerUtils.sendError(ctx, HttpResponseStatus.NOT_FOUND)
return
}
}
val fileLength = raf.length()
val response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK)
WebServerUtils.setContentLength(response, fileLength)
WebServerUtils.setContentType(response, file)
WebServerUtils.setDateAndCacheHeaders(response, file)
if(HttpHeaders.isKeepAlive(req)) response.headers().set(HttpHeaders.Names.CONNECTION, HttpHeaders.Values.KEEP_ALIVE)
ctx.write(response)
var sendFileFuture: ChannelFuture = null
if(this.useSendFile) sendFileFuture = ctx.write(new DefaultFileRegion(raf.getChannel, 0, fileLength), ctx.newProgressivePromise())
else sendFileFuture = ctx.write(new ChunkedFile(raf, 0, fileLength, 8192), ctx.newProgressivePromise())
val lastContentFuture = ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT)
if(!HttpHeaders.isKeepAlive(req)) lastContentFuture.addListener(ChannelFutureListener.CLOSE)
}
}
|
crvidya/nexus-scala
|
src/main/scala/com/nexus/webserver/handlers/WebServerHandlerHtml.scala
|
Scala
|
mit
| 4,078 |
package reactivemongo.api.commands.bson
import reactivemongo.api.BSONSerializationPack
import reactivemongo.api.commands._
import reactivemongo.bson._
object BSONIsMasterCommand extends IsMasterCommand[BSONSerializationPack.type]
object BSONIsMasterCommandImplicits {
import BSONIsMasterCommand._
implicit object IsMasterWriter extends BSONDocumentWriter[IsMaster.type] {
def write(im: IsMaster.type) = BSONDocument("ismaster" -> 1)
}
implicit object IsMasterResultReader extends DealingWithGenericCommandErrorsReader[IsMasterResult] {
def readResult(doc: BSONDocument): IsMasterResult = {
def rs = doc.getAs[String]("me").map { me =>
new ReplicaSet(
setName = doc.getAs[String]("setName").get,
setVersion = doc.getAs[BSONNumberLike]("setVersion").
fold(-1)(_.toInt),
me = me,
primary = doc.getAs[String]("primary"),
hosts = doc.getAs[Seq[String]]("hosts").getOrElse(Seq.empty),
passives = doc.getAs[Seq[String]]("passives").getOrElse(Seq.empty),
arbiters = doc.getAs[Seq[String]]("arbiters").getOrElse(Seq.empty),
isSecondary = doc.getAs[BSONBooleanLike](
"secondary"
).fold(false)(_.toBoolean),
isArbiterOnly = doc.getAs[BSONBooleanLike](
"arbiterOnly"
).fold(false)(_.toBoolean),
isPassive = doc.getAs[BSONBooleanLike](
"passive"
).fold(false)(_.toBoolean),
isHidden = doc.getAs[BSONBooleanLike]("hidden").
fold(false)(_.toBoolean),
tags = doc.getAs[BSONDocument]("tags"),
electionId = doc.getAs[BSONNumberLike]("electionId").fold(-1)(_.toInt)
)
}
IsMasterResult(
isMaster = doc.getAs[BSONBooleanLike](
"ismaster"
).fold(false)(_.toBoolean), // `ismaster`
maxBsonObjectSize = doc.getAs[BSONNumberLike]("maxBsonObjectSize").
fold[Int](16777216)(_.toInt), // default = 16 * 1024 * 1024
maxMessageSizeBytes = doc.getAs[BSONNumberLike]("maxMessageSizeBytes").
fold[Int](48000000)(_.toInt), // default = 48000000, mongod >= 2.4
maxWriteBatchSize = doc.getAs[BSONNumberLike]("maxWriteBatchSize").
fold[Int](1000)(_.toInt),
localTime = doc.getAs[BSONDateTime]("localTime").map(_.value), // date? mongod >= 2.2
minWireVersion = doc.getAs[BSONNumberLike]("minWireVersion").
fold[Int](0)(_.toInt), // int? mongod >= 2.6
maxWireVersion = doc.getAs[BSONNumberLike]("maxWireVersion").
fold[Int](0)(_.toInt), // int? mongod >= 2.6
replicaSet = rs, // flattened in the result
msg = doc.getAs[String]("msg") // Contains the value isdbgrid when isMaster returns from a mongos instance.
)
}
}
}
|
maxime-gautre/ReactiveMongo
|
driver/src/main/scala/api/commands/bson/ismaster.scala
|
Scala
|
apache-2.0
| 2,808 |
package com.github.diegopacheco.scalaplayground.caliban
import ExampleData._
import ExampleService.ExampleService
import caliban.{GraphQL, RootResolver}
import caliban.GraphQL.graphQL
import caliban.schema.Annotations.{GQLDeprecated, GQLDescription}
import caliban.schema.GenericSchema
import caliban.wrappers.ApolloTracing.apolloTracing
import caliban.wrappers.Wrappers._
import zio.URIO
import zio.clock.Clock
import zio.console.Console
import zio.duration._
import zio.stream.ZStream
import scala.language.postfixOps
object ExampleApi extends GenericSchema[ExampleService] {
case class Queries(
@GQLDescription("Return all characters from a given origin")
characters: CharactersArgs => URIO[ExampleService, List[Character]],
@GQLDeprecated("Use `characters`")
character: CharacterArgs => URIO[ExampleService, Option[Character]]
)
case class Mutations(deleteCharacter: CharacterArgs => URIO[ExampleService, Boolean])
case class Subscriptions(characterDeleted: ZStream[ExampleService, Nothing, String])
implicit val roleSchema = gen[Role]
implicit val characterSchema = gen[Character]
implicit val characterArgsSchema = gen[CharacterArgs]
implicit val charactersArgsSchema = gen[CharactersArgs]
val api: GraphQL[Console with Clock with ExampleService] =
graphQL(
RootResolver(
Queries(
args => ExampleService.getCharacters(args.origin),
args => ExampleService.findCharacter(args.name)
),
Mutations(args => ExampleService.deleteCharacter(args.name)),
Subscriptions(ExampleService.deletedEvents)
)
) @@
maxFields(200) @@ // query analyzer that limit query fields
maxDepth(30) @@ // query analyzer that limit query depth
timeout(3 seconds) @@ // wrapper that fails slow queries
printSlowQueries(500 millis) @@ // wrapper that logs slow queries
printErrors @@ // wrapper that logs errors
apolloTracing // wrapper for https://github.com/apollographql/apollo-tracing
}
|
diegopacheco/scala-playground
|
caliban-graphql-fun/src/main/scala/com/github/diegopacheco/scalaplayground/caliban/ExampleApi.scala
|
Scala
|
unlicense
| 2,194 |
///////////////////////////////////////////////////////////////////////////////
// CellDist.scala
//
// Copyright (C) 2010-2014 Ben Wing, The University of Texas at Austin
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////////////
package opennlp.textgrounder
package gridlocate
import collection.mutable
import util.error.warning
import util.print.errprint
import langmodel.{Gram,LangModel}
/**
* Probability distribution over cells. Instances of this class are normally
* generated by `CellDistFactory`.
* @param cellprobs List of cells and associated probabilities
* @param normalized Whether the probability distribution is normalized
*/
class CellDist[Co](
val cellprobs: Iterable[(GridCell[Co], Double)],
val normalized: Boolean,
val empty: Boolean
) {
/**
* Return a ranked list of all the cells. We may need to add the
* specified correct cell to the list. See `Ranker.evaluate`.
*/
def get_ranked_cells(correct: Option[GridCell[Co]],
include_correct: Boolean): IndexedSeq[(GridCell[Co], Double)] = {
val probs =
if (!include_correct)
cellprobs
else
// Elements on right override those on left
Map(correct.get -> 0.0) ++ cellprobs.toMap
// sort by second element of tuple, in reverse order
probs.toIndexedSeq sortWith (_._2 > _._2)
}
}
/**
* Factory object for creating CellDists, i.e. objects describing a
* probability distribution over cells.
*/
class CellDistFactory[Co] {
/**
* Create normalized cell dist from unnormalized dist.
*/
def create_normalized_cell_dist(cellprobs: Iterable[(GridCell[Co], Double)],
normalize: Boolean = true
) = {
// Normalize the probabilities; but if all probabilities are 0, then
// we can't normalize, so leave as-is. This will happen, for example,
// for words never seen in the entire corpus.
val totalprob = cellprobs.map(_._2).sum
val (normalized, empty, norm_cellprobs) =
if (totalprob == 0)
(false, true, cellprobs)
else if (!normalize)
(false, false, cellprobs)
else
(true, false, cellprobs.map {
case (cell, prob) => (cell, prob / totalprob)
})
new CellDist[Co](norm_cellprobs, normalized, empty)
}
/**
* Create a distribution over cells from the number of documents in
* each cell.
*/
def get_cell_dist_from_doc_count(grid: Grid[Co],
normalize: Boolean = true) = {
create_normalized_cell_dist(grid.iter_nonempty_cells.map { cell =>
(cell, cell.num_docs.toDouble)
}, normalize)
}
/**
* Create a distribution over cells that is associated with a gram,
* based on the relative probabilities of the gram in the language models
* of the various cells. That is, if we have a set of cells, each with a
* language model, then we can imagine conceptually inverting the process
* to generate a cell distribution over grams. Basically, for a given gram,
* look to see what its probability is in all cells; normalize, and we have
* a cell distribution.
*/
def get_cell_dist(grid: Grid[Co], gram: Gram) = {
create_normalized_cell_dist(grid.iter_nonempty_cells.map { cell =>
(cell, cell.grid_lm.gram_prob(gram))
})
}
/**
* Return a cell distribution over a language model, in the form of a
* list of pairs of cells and probabilities. This works
* by adding up the language models of the individual grams,
* weighting by the count of the each gram.
*/
def get_cell_dist_for_lang_model[Co](grid: Grid[Co],
lang_model: LangModel) = {
val base_cells = grid.iter_nonempty_cells
val parallel = !grid.driver.params.no_parallel
val cells =
if (parallel)
base_cells.par
else
base_cells
val norm_factors = lang_model.iter_grams.map { case (gram, count) =>
val raw_factor =
cells.map(cell => cell.grid_lm.gram_prob(gram)).sum
val norm_factor =
if (raw_factor == 0)
1.0
else
1.0/raw_factor
(gram, count * norm_factor)
}
val cellprobs = cells.map { cell =>
val cellprob = norm_factors.map { case (gram, factor) =>
factor * cell.grid_lm.gram_prob(gram)
}.sum
(cell, cellprob)
}
// Renormalize to produce a probability distribution; but if all
// probabilities are 0, then we can't normalize, so leave as-is.
// This will happen, for example, for words never seen in the entire
// corpus.
val totalprob = cellprobs.map(_._2).sum
val (normalized, total_norm_factor) =
if (totalprob == 0)
(false, 1.0)
else
(true, 1.0/totalprob)
val normed_cell_probs =
cellprobs.map { case (cell, cellprob) =>
(cell, total_norm_factor * cellprob)
}
new CellDist[Co](normed_cell_probs.toIndexedSeq, normalized, normalized)
}
}
|
utcompling/textgrounder
|
src/main/scala/opennlp/textgrounder/gridlocate/CellDist.scala
|
Scala
|
apache-2.0
| 5,454 |
/*
* Copyright 2001-2013 Artima, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.scalatest.examples.refspec.composingbeforeandaftereach
import org.scalatest._
import refspec.RefSpec
import collection.mutable.ListBuffer
trait Builder extends BeforeAndAfterEach { this: Suite =>
val builder = new StringBuilder
override def beforeEach() {
builder.append("ScalaTest is ")
super.beforeEach() // To be stackable, must call super.beforeEach
}
override def afterEach() {
try super.afterEach() // To be stackable, must call super.afterEach
finally builder.clear()
}
}
trait Buffer extends BeforeAndAfterEach { this: Suite =>
val buffer = new ListBuffer[String]
override def afterEach() {
try super.afterEach() // To be stackable, must call super.afterEach
finally buffer.clear()
}
}
class ExampleSpec extends RefSpec with Builder with Buffer {
object `Testing ` {
def `should be easy` {
builder.append("easy!")
assert(builder.toString === "ScalaTest is easy!")
assert(buffer.isEmpty)
buffer += "sweet"
}
def `should be fun` {
builder.append("fun!")
assert(builder.toString === "ScalaTest is fun!")
assert(buffer.isEmpty)
buffer += "clear"
}
}
}
|
dotty-staging/scalatest
|
examples/src/test/scala/org/scalatest/examples/refspec/composingbeforeandaftereach/ExampleSpec.scala
|
Scala
|
apache-2.0
| 1,798 |
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark
import scala.collection.mutable
import org.scalatest.{BeforeAndAfter, Ignore, PrivateMethodTester}
import org.apache.spark.executor.TaskMetrics
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.ExternalClusterManager
import org.apache.spark.scheduler.cluster.ExecutorInfo
import org.apache.spark.scheduler.local.LocalSchedulerBackend
import org.apache.spark.util.ManualClock
/**
* Test add and remove behavior of ExecutorAllocationManager.
*/
@Ignore class ExecutorAllocationManagerSuite
extends SparkFunSuite
with LocalSparkContext
with BeforeAndAfter {
import ExecutorAllocationManager._
import ExecutorAllocationManagerSuite._
private val contexts = new mutable.ListBuffer[SparkContext]()
before {
contexts.clear()
}
after {
contexts.foreach(_.stop())
}
test("verify min/max executors") {
val conf = new SparkConf()
.setMaster("myDummyLocalExternalClusterManager")
.setAppName("test-executor-allocation-manager")
.set("spark.dynamicAllocation.enabled", "true")
.set("spark.dynamicAllocation.testing", "true")
val sc0 = new SparkContext(conf)
contexts += sc0
assert(sc0.executorAllocationManager.isDefined)
sc0.stop()
// Min < 0
val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "-1")
intercept[SparkException] { contexts += new SparkContext(conf1) }
// Max < 0
val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "-1")
intercept[SparkException] { contexts += new SparkContext(conf2) }
// Both min and max, but min > max
intercept[SparkException] { createSparkContext(2, 1) }
// Both min and max, and min == max
val sc1 = createSparkContext(1, 1)
assert(sc1.executorAllocationManager.isDefined)
sc1.stop()
// Both min and max, and min < max
val sc2 = createSparkContext(1, 2)
assert(sc2.executorAllocationManager.isDefined)
sc2.stop()
}
test("starting state") {
sc = createSparkContext()
val manager = sc.executorAllocationManager.get
assert(numExecutorsTarget(manager) === 1)
assert(executorsPendingToRemove(manager).isEmpty)
assert(executorIds(manager).isEmpty)
assert(addTime(manager) === ExecutorAllocationManager.NOT_SET)
assert(removeTimes(manager).isEmpty)
}
test("add executors") {
sc = createSparkContext(1, 10, 1)
val manager = sc.executorAllocationManager.get
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 1000)))
// Keep adding until the limit is reached
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 2)
assert(numExecutorsToAdd(manager) === 2)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 4)
assert(numExecutorsToAdd(manager) === 4)
assert(addExecutors(manager) === 4)
assert(numExecutorsTarget(manager) === 8)
assert(numExecutorsToAdd(manager) === 8)
assert(addExecutors(manager) === 2) // reached the limit of 10
assert(numExecutorsTarget(manager) === 10)
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 0)
assert(numExecutorsTarget(manager) === 10)
assert(numExecutorsToAdd(manager) === 1)
// Register previously requested executors
onExecutorAdded(manager, "first")
assert(numExecutorsTarget(manager) === 10)
onExecutorAdded(manager, "second")
onExecutorAdded(manager, "third")
onExecutorAdded(manager, "fourth")
assert(numExecutorsTarget(manager) === 10)
onExecutorAdded(manager, "first") // duplicates should not count
onExecutorAdded(manager, "second")
assert(numExecutorsTarget(manager) === 10)
// Try adding again
// This should still fail because the number pending + running is still at the limit
assert(addExecutors(manager) === 0)
assert(numExecutorsTarget(manager) === 10)
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 0)
assert(numExecutorsTarget(manager) === 10)
assert(numExecutorsToAdd(manager) === 1)
}
test("add executors capped by num pending tasks") {
sc = createSparkContext(0, 10, 0)
val manager = sc.executorAllocationManager.get
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 5)))
// Verify that we're capped at number of tasks in the stage
assert(numExecutorsTarget(manager) === 0)
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 2)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 3)
assert(numExecutorsToAdd(manager) === 4)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 5)
assert(numExecutorsToAdd(manager) === 1)
// Verify that running a task doesn't affect the target
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(1, 3)))
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-1", new ExecutorInfo("host1", 1, Map.empty)))
sc.listenerBus.postToAll(SparkListenerTaskStart(1, 0, createTaskInfo(0, 0, "executor-1")))
assert(numExecutorsTarget(manager) === 5)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 6)
assert(numExecutorsToAdd(manager) === 2)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 8)
assert(numExecutorsToAdd(manager) === 4)
assert(addExecutors(manager) === 0)
assert(numExecutorsTarget(manager) === 8)
assert(numExecutorsToAdd(manager) === 1)
// Verify that re-running a task doesn't blow things up
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(2, 3)))
sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, createTaskInfo(0, 0, "executor-1")))
sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, createTaskInfo(1, 0, "executor-1")))
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 9)
assert(numExecutorsToAdd(manager) === 2)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 10)
assert(numExecutorsToAdd(manager) === 1)
// Verify that running a task once we're at our limit doesn't blow things up
sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, createTaskInfo(0, 1, "executor-1")))
assert(addExecutors(manager) === 0)
assert(numExecutorsTarget(manager) === 10)
}
test("cancel pending executors when no longer needed") {
sc = createSparkContext(0, 10, 0)
val manager = sc.executorAllocationManager.get
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(2, 5)))
assert(numExecutorsTarget(manager) === 0)
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 2)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 3)
val task1Info = createTaskInfo(0, 0, "executor-1")
sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, task1Info))
assert(numExecutorsToAdd(manager) === 4)
assert(addExecutors(manager) === 2)
val task2Info = createTaskInfo(1, 0, "executor-1")
sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, task2Info))
sc.listenerBus.postToAll(SparkListenerTaskEnd(2, 0, null, Success, task1Info, null))
sc.listenerBus.postToAll(SparkListenerTaskEnd(2, 0, null, Success, task2Info, null))
assert(adjustRequestedExecutors(manager) === -1)
}
test("remove executors") {
sc = createSparkContext(5, 10, 5)
val manager = sc.executorAllocationManager.get
(1 to 10).map(_.toString).foreach { id => onExecutorAdded(manager, id) }
// Keep removing until the limit is reached
assert(executorsPendingToRemove(manager).isEmpty)
assert(removeExecutor(manager, "1"))
assert(executorsPendingToRemove(manager).size === 1)
assert(executorsPendingToRemove(manager).contains("1"))
assert(removeExecutor(manager, "2"))
assert(removeExecutor(manager, "3"))
assert(executorsPendingToRemove(manager).size === 3)
assert(executorsPendingToRemove(manager).contains("2"))
assert(executorsPendingToRemove(manager).contains("3"))
assert(!removeExecutor(manager, "100")) // remove non-existent executors
assert(!removeExecutor(manager, "101"))
assert(executorsPendingToRemove(manager).size === 3)
assert(removeExecutor(manager, "4"))
assert(removeExecutor(manager, "5"))
assert(!removeExecutor(manager, "6")) // reached the limit of 5
assert(executorsPendingToRemove(manager).size === 5)
assert(executorsPendingToRemove(manager).contains("4"))
assert(executorsPendingToRemove(manager).contains("5"))
assert(!executorsPendingToRemove(manager).contains("6"))
// Kill executors previously requested to remove
onExecutorRemoved(manager, "1")
assert(executorsPendingToRemove(manager).size === 4)
assert(!executorsPendingToRemove(manager).contains("1"))
onExecutorRemoved(manager, "2")
onExecutorRemoved(manager, "3")
assert(executorsPendingToRemove(manager).size === 2)
assert(!executorsPendingToRemove(manager).contains("2"))
assert(!executorsPendingToRemove(manager).contains("3"))
onExecutorRemoved(manager, "2") // duplicates should not count
onExecutorRemoved(manager, "3")
assert(executorsPendingToRemove(manager).size === 2)
onExecutorRemoved(manager, "4")
onExecutorRemoved(manager, "5")
assert(executorsPendingToRemove(manager).isEmpty)
// Try removing again
// This should still fail because the number pending + running is still at the limit
assert(!removeExecutor(manager, "7"))
assert(executorsPendingToRemove(manager).isEmpty)
assert(!removeExecutor(manager, "8"))
assert(executorsPendingToRemove(manager).isEmpty)
}
test("remove multiple executors") {
sc = createSparkContext(5, 10, 5)
val manager = sc.executorAllocationManager.get
(1 to 10).map(_.toString).foreach { id => onExecutorAdded(manager, id) }
// Keep removing until the limit is reached
assert(executorsPendingToRemove(manager).isEmpty)
assert(removeExecutors(manager, Seq("1")) === Seq("1"))
assert(executorsPendingToRemove(manager).size === 1)
assert(executorsPendingToRemove(manager).contains("1"))
assert(removeExecutors(manager, Seq("2", "3")) === Seq("2", "3"))
assert(executorsPendingToRemove(manager).size === 3)
assert(executorsPendingToRemove(manager).contains("2"))
assert(executorsPendingToRemove(manager).contains("3"))
assert(!removeExecutor(manager, "100")) // remove non-existent executors
assert(removeExecutors(manager, Seq("101", "102")) !== Seq("101", "102"))
assert(executorsPendingToRemove(manager).size === 3)
assert(removeExecutor(manager, "4"))
assert(removeExecutors(manager, Seq("5")) === Seq("5"))
assert(!removeExecutor(manager, "6")) // reached the limit of 5
assert(executorsPendingToRemove(manager).size === 5)
assert(executorsPendingToRemove(manager).contains("4"))
assert(executorsPendingToRemove(manager).contains("5"))
assert(!executorsPendingToRemove(manager).contains("6"))
// Kill executors previously requested to remove
onExecutorRemoved(manager, "1")
assert(executorsPendingToRemove(manager).size === 4)
assert(!executorsPendingToRemove(manager).contains("1"))
onExecutorRemoved(manager, "2")
onExecutorRemoved(manager, "3")
assert(executorsPendingToRemove(manager).size === 2)
assert(!executorsPendingToRemove(manager).contains("2"))
assert(!executorsPendingToRemove(manager).contains("3"))
onExecutorRemoved(manager, "2") // duplicates should not count
onExecutorRemoved(manager, "3")
assert(executorsPendingToRemove(manager).size === 2)
onExecutorRemoved(manager, "4")
onExecutorRemoved(manager, "5")
assert(executorsPendingToRemove(manager).isEmpty)
// Try removing again
// This should still fail because the number pending + running is still at the limit
assert(!removeExecutor(manager, "7"))
assert(executorsPendingToRemove(manager).isEmpty)
assert(removeExecutors(manager, Seq("8")) !== Seq("8"))
assert(executorsPendingToRemove(manager).isEmpty)
}
test ("interleaving add and remove") {
sc = createSparkContext(5, 10, 5)
val manager = sc.executorAllocationManager.get
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 1000)))
// Add a few executors
assert(addExecutors(manager) === 1)
assert(addExecutors(manager) === 2)
onExecutorAdded(manager, "1")
onExecutorAdded(manager, "2")
onExecutorAdded(manager, "3")
onExecutorAdded(manager, "4")
onExecutorAdded(manager, "5")
onExecutorAdded(manager, "6")
onExecutorAdded(manager, "7")
onExecutorAdded(manager, "8")
assert(executorIds(manager).size === 8)
// Remove until limit
assert(removeExecutor(manager, "1"))
assert(removeExecutors(manager, Seq("2", "3")) === Seq("2", "3"))
assert(!removeExecutor(manager, "4")) // lower limit reached
assert(!removeExecutor(manager, "5"))
onExecutorRemoved(manager, "1")
onExecutorRemoved(manager, "2")
onExecutorRemoved(manager, "3")
assert(executorIds(manager).size === 5)
// Add until limit
assert(addExecutors(manager) === 2) // upper limit reached
assert(addExecutors(manager) === 0)
assert(!removeExecutor(manager, "4")) // still at lower limit
assert((manager, Seq("5")) !== Seq("5"))
onExecutorAdded(manager, "9")
onExecutorAdded(manager, "10")
onExecutorAdded(manager, "11")
onExecutorAdded(manager, "12")
onExecutorAdded(manager, "13")
assert(executorIds(manager).size === 10)
// Remove succeeds again, now that we are no longer at the lower limit
assert(removeExecutors(manager, Seq("4", "5", "6")) === Seq("4", "5", "6"))
assert(removeExecutor(manager, "7"))
assert(executorIds(manager).size === 10)
assert(addExecutors(manager) === 0)
onExecutorRemoved(manager, "4")
onExecutorRemoved(manager, "5")
assert(executorIds(manager).size === 8)
// Number of executors pending restarts at 1
assert(numExecutorsToAdd(manager) === 1)
assert(addExecutors(manager) === 0)
assert(executorIds(manager).size === 8)
onExecutorRemoved(manager, "6")
onExecutorRemoved(manager, "7")
onExecutorAdded(manager, "14")
onExecutorAdded(manager, "15")
assert(executorIds(manager).size === 8)
assert(addExecutors(manager) === 0) // still at upper limit
onExecutorAdded(manager, "16")
onExecutorAdded(manager, "17")
assert(executorIds(manager).size === 10)
assert(numExecutorsTarget(manager) === 10)
}
test("starting/canceling add timer") {
sc = createSparkContext(2, 10, 2)
val clock = new ManualClock(8888L)
val manager = sc.executorAllocationManager.get
manager.setClock(clock)
// Starting add timer is idempotent
assert(addTime(manager) === NOT_SET)
onSchedulerBacklogged(manager)
val firstAddTime = addTime(manager)
assert(firstAddTime === clock.getTimeMillis + schedulerBacklogTimeout * 1000)
clock.advance(100L)
onSchedulerBacklogged(manager)
assert(addTime(manager) === firstAddTime) // timer is already started
clock.advance(200L)
onSchedulerBacklogged(manager)
assert(addTime(manager) === firstAddTime)
onSchedulerQueueEmpty(manager)
// Restart add timer
clock.advance(1000L)
assert(addTime(manager) === NOT_SET)
onSchedulerBacklogged(manager)
val secondAddTime = addTime(manager)
assert(secondAddTime === clock.getTimeMillis + schedulerBacklogTimeout * 1000)
clock.advance(100L)
onSchedulerBacklogged(manager)
assert(addTime(manager) === secondAddTime) // timer is already started
assert(addTime(manager) !== firstAddTime)
assert(firstAddTime !== secondAddTime)
}
test("starting/canceling remove timers") {
sc = createSparkContext(2, 10, 2)
val clock = new ManualClock(14444L)
val manager = sc.executorAllocationManager.get
manager.setClock(clock)
executorIds(manager).asInstanceOf[mutable.Set[String]] ++= List("1", "2", "3")
// Starting remove timer is idempotent for each executor
assert(removeTimes(manager).isEmpty)
onExecutorIdle(manager, "1")
assert(removeTimes(manager).size === 1)
assert(removeTimes(manager).contains("1"))
val firstRemoveTime = removeTimes(manager)("1")
assert(firstRemoveTime === clock.getTimeMillis + executorIdleTimeout * 1000)
clock.advance(100L)
onExecutorIdle(manager, "1")
assert(removeTimes(manager)("1") === firstRemoveTime) // timer is already started
clock.advance(200L)
onExecutorIdle(manager, "1")
assert(removeTimes(manager)("1") === firstRemoveTime)
clock.advance(300L)
onExecutorIdle(manager, "2")
assert(removeTimes(manager)("2") !== firstRemoveTime) // different executor
assert(removeTimes(manager)("2") === clock.getTimeMillis + executorIdleTimeout * 1000)
clock.advance(400L)
onExecutorIdle(manager, "3")
assert(removeTimes(manager)("3") !== firstRemoveTime)
assert(removeTimes(manager)("3") === clock.getTimeMillis + executorIdleTimeout * 1000)
assert(removeTimes(manager).size === 3)
assert(removeTimes(manager).contains("2"))
assert(removeTimes(manager).contains("3"))
// Restart remove timer
clock.advance(1000L)
onExecutorBusy(manager, "1")
assert(removeTimes(manager).size === 2)
onExecutorIdle(manager, "1")
assert(removeTimes(manager).size === 3)
assert(removeTimes(manager).contains("1"))
val secondRemoveTime = removeTimes(manager)("1")
assert(secondRemoveTime === clock.getTimeMillis + executorIdleTimeout * 1000)
assert(removeTimes(manager)("1") === secondRemoveTime) // timer is already started
assert(removeTimes(manager)("1") !== firstRemoveTime)
assert(firstRemoveTime !== secondRemoveTime)
}
test("mock polling loop with no events") {
sc = createSparkContext(0, 20, 0)
val manager = sc.executorAllocationManager.get
val clock = new ManualClock(2020L)
manager.setClock(clock)
// No events - we should not be adding or removing
assert(numExecutorsTarget(manager) === 0)
assert(executorsPendingToRemove(manager).isEmpty)
schedule(manager)
assert(numExecutorsTarget(manager) === 0)
assert(executorsPendingToRemove(manager).isEmpty)
clock.advance(100L)
schedule(manager)
assert(numExecutorsTarget(manager) === 0)
assert(executorsPendingToRemove(manager).isEmpty)
clock.advance(1000L)
schedule(manager)
assert(numExecutorsTarget(manager) === 0)
assert(executorsPendingToRemove(manager).isEmpty)
clock.advance(10000L)
schedule(manager)
assert(numExecutorsTarget(manager) === 0)
assert(executorsPendingToRemove(manager).isEmpty)
}
test("mock polling loop add behavior") {
sc = createSparkContext(0, 20, 0)
val clock = new ManualClock(2020L)
val manager = sc.executorAllocationManager.get
manager.setClock(clock)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 1000)))
// Scheduler queue backlogged
onSchedulerBacklogged(manager)
clock.advance(schedulerBacklogTimeout * 1000 / 2)
schedule(manager)
assert(numExecutorsTarget(manager) === 0) // timer not exceeded yet
clock.advance(schedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 1) // first timer exceeded
clock.advance(sustainedSchedulerBacklogTimeout * 1000 / 2)
schedule(manager)
assert(numExecutorsTarget(manager) === 1) // second timer not exceeded yet
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 1 + 2) // second timer exceeded
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 1 + 2 + 4) // third timer exceeded
// Scheduler queue drained
onSchedulerQueueEmpty(manager)
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 7) // timer is canceled
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 7)
// Scheduler queue backlogged again
onSchedulerBacklogged(manager)
clock.advance(schedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 7 + 1) // timer restarted
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 7 + 1 + 2)
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 7 + 1 + 2 + 4)
clock.advance(sustainedSchedulerBacklogTimeout * 1000)
schedule(manager)
assert(numExecutorsTarget(manager) === 20) // limit reached
}
test("mock polling loop remove behavior") {
sc = createSparkContext(1, 20, 1)
val clock = new ManualClock(2020L)
val manager = sc.executorAllocationManager.get
manager.setClock(clock)
// Remove idle executors on timeout
onExecutorAdded(manager, "executor-1")
onExecutorAdded(manager, "executor-2")
onExecutorAdded(manager, "executor-3")
assert(removeTimes(manager).size === 3)
assert(executorsPendingToRemove(manager).isEmpty)
clock.advance(executorIdleTimeout * 1000 / 2)
schedule(manager)
assert(removeTimes(manager).size === 3) // idle threshold not reached yet
assert(executorsPendingToRemove(manager).isEmpty)
clock.advance(executorIdleTimeout * 1000)
schedule(manager)
assert(removeTimes(manager).isEmpty) // idle threshold exceeded
assert(executorsPendingToRemove(manager).size === 2) // limit reached (1 executor remaining)
// Mark a subset as busy - only idle executors should be removed
onExecutorAdded(manager, "executor-4")
onExecutorAdded(manager, "executor-5")
onExecutorAdded(manager, "executor-6")
onExecutorAdded(manager, "executor-7")
assert(removeTimes(manager).size === 5) // 5 active executors
assert(executorsPendingToRemove(manager).size === 2) // 2 pending to be removed
onExecutorBusy(manager, "executor-4")
onExecutorBusy(manager, "executor-5")
onExecutorBusy(manager, "executor-6") // 3 busy and 2 idle (of the 5 active ones)
schedule(manager)
assert(removeTimes(manager).size === 2) // remove only idle executors
assert(!removeTimes(manager).contains("executor-4"))
assert(!removeTimes(manager).contains("executor-5"))
assert(!removeTimes(manager).contains("executor-6"))
assert(executorsPendingToRemove(manager).size === 2)
clock.advance(executorIdleTimeout * 1000)
schedule(manager)
assert(removeTimes(manager).isEmpty) // idle executors are removed
assert(executorsPendingToRemove(manager).size === 4)
assert(!executorsPendingToRemove(manager).contains("executor-4"))
assert(!executorsPendingToRemove(manager).contains("executor-5"))
assert(!executorsPendingToRemove(manager).contains("executor-6"))
// Busy executors are now idle and should be removed
onExecutorIdle(manager, "executor-4")
onExecutorIdle(manager, "executor-5")
onExecutorIdle(manager, "executor-6")
schedule(manager)
assert(removeTimes(manager).size === 3) // 0 busy and 3 idle
assert(removeTimes(manager).contains("executor-4"))
assert(removeTimes(manager).contains("executor-5"))
assert(removeTimes(manager).contains("executor-6"))
assert(executorsPendingToRemove(manager).size === 4)
clock.advance(executorIdleTimeout * 1000)
schedule(manager)
assert(removeTimes(manager).isEmpty)
assert(executorsPendingToRemove(manager).size === 6) // limit reached (1 executor remaining)
}
test("listeners trigger add executors correctly") {
sc = createSparkContext(2, 10, 2)
val manager = sc.executorAllocationManager.get
assert(addTime(manager) === NOT_SET)
// Starting a stage should start the add timer
val numTasks = 10
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, numTasks)))
assert(addTime(manager) !== NOT_SET)
// Starting a subset of the tasks should not cancel the add timer
val taskInfos = (0 to numTasks - 1).map { i => createTaskInfo(i, i, "executor-1") }
taskInfos.tail.foreach { info => sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, info)) }
assert(addTime(manager) !== NOT_SET)
// Starting all remaining tasks should cancel the add timer
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, taskInfos.head))
assert(addTime(manager) === NOT_SET)
// Start two different stages
// The add timer should be canceled only if all tasks in both stages start running
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(1, numTasks)))
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(2, numTasks)))
assert(addTime(manager) !== NOT_SET)
taskInfos.foreach { info => sc.listenerBus.postToAll(SparkListenerTaskStart(1, 0, info)) }
assert(addTime(manager) !== NOT_SET)
taskInfos.foreach { info => sc.listenerBus.postToAll(SparkListenerTaskStart(2, 0, info)) }
assert(addTime(manager) === NOT_SET)
}
test("listeners trigger remove executors correctly") {
sc = createSparkContext(2, 10, 2)
val manager = sc.executorAllocationManager.get
assert(removeTimes(manager).isEmpty)
// Added executors should start the remove timers for each executor
(1 to 5).map("executor-" + _).foreach { id => onExecutorAdded(manager, id) }
assert(removeTimes(manager).size === 5)
// Starting a task cancel the remove timer for that executor
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, createTaskInfo(0, 0, "executor-1")))
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, createTaskInfo(1, 1, "executor-1")))
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, createTaskInfo(2, 2, "executor-2")))
assert(removeTimes(manager).size === 3)
assert(!removeTimes(manager).contains("executor-1"))
assert(!removeTimes(manager).contains("executor-2"))
// Finishing all tasks running on an executor should start the remove timer for that executor
sc.listenerBus.postToAll(SparkListenerTaskEnd(
0, 0, "task-type", Success, createTaskInfo(0, 0, "executor-1"), new TaskMetrics))
sc.listenerBus.postToAll(SparkListenerTaskEnd(
0, 0, "task-type", Success, createTaskInfo(2, 2, "executor-2"), new TaskMetrics))
assert(removeTimes(manager).size === 4)
assert(!removeTimes(manager).contains("executor-1")) // executor-1 has not finished yet
assert(removeTimes(manager).contains("executor-2"))
sc.listenerBus.postToAll(SparkListenerTaskEnd(
0, 0, "task-type", Success, createTaskInfo(1, 1, "executor-1"), new TaskMetrics))
assert(removeTimes(manager).size === 5)
assert(removeTimes(manager).contains("executor-1")) // executor-1 has now finished
}
test("listeners trigger add and remove executor callbacks correctly") {
sc = createSparkContext(2, 10, 2)
val manager = sc.executorAllocationManager.get
assert(executorIds(manager).isEmpty)
assert(removeTimes(manager).isEmpty)
// New executors have registered
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-1", new ExecutorInfo("host1", 1, Map.empty)))
assert(executorIds(manager).size === 1)
assert(executorIds(manager).contains("executor-1"))
assert(removeTimes(manager).size === 1)
assert(removeTimes(manager).contains("executor-1"))
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-2", new ExecutorInfo("host2", 1, Map.empty)))
assert(executorIds(manager).size === 2)
assert(executorIds(manager).contains("executor-2"))
assert(removeTimes(manager).size === 2)
assert(removeTimes(manager).contains("executor-2"))
// Existing executors have disconnected
sc.listenerBus.postToAll(SparkListenerExecutorRemoved(0L, "executor-1", ""))
assert(executorIds(manager).size === 1)
assert(!executorIds(manager).contains("executor-1"))
assert(removeTimes(manager).size === 1)
assert(!removeTimes(manager).contains("executor-1"))
// Unknown executor has disconnected
sc.listenerBus.postToAll(SparkListenerExecutorRemoved(0L, "executor-3", ""))
assert(executorIds(manager).size === 1)
assert(removeTimes(manager).size === 1)
}
test("SPARK-4951: call onTaskStart before onBlockManagerAdded") {
sc = createSparkContext(2, 10, 2)
val manager = sc.executorAllocationManager.get
assert(executorIds(manager).isEmpty)
assert(removeTimes(manager).isEmpty)
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, createTaskInfo(0, 0, "executor-1")))
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-1", new ExecutorInfo("host1", 1, Map.empty)))
assert(executorIds(manager).size === 1)
assert(executorIds(manager).contains("executor-1"))
assert(removeTimes(manager).size === 0)
}
test("SPARK-4951: onExecutorAdded should not add a busy executor to removeTimes") {
sc = createSparkContext(2, 10)
val manager = sc.executorAllocationManager.get
assert(executorIds(manager).isEmpty)
assert(removeTimes(manager).isEmpty)
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-1", new ExecutorInfo("host1", 1, Map.empty)))
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, createTaskInfo(0, 0, "executor-1")))
assert(executorIds(manager).size === 1)
assert(executorIds(manager).contains("executor-1"))
assert(removeTimes(manager).size === 0)
sc.listenerBus.postToAll(SparkListenerExecutorAdded(
0L, "executor-2", new ExecutorInfo("host1", 1, Map.empty)))
assert(executorIds(manager).size === 2)
assert(executorIds(manager).contains("executor-2"))
assert(removeTimes(manager).size === 1)
assert(removeTimes(manager).contains("executor-2"))
assert(!removeTimes(manager).contains("executor-1"))
}
test("avoid ramp up when target < running executors") {
sc = createSparkContext(0, 100000, 0)
val manager = sc.executorAllocationManager.get
val stage1 = createStageInfo(0, 1000)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(stage1))
assert(addExecutors(manager) === 1)
assert(addExecutors(manager) === 2)
assert(addExecutors(manager) === 4)
assert(addExecutors(manager) === 8)
assert(numExecutorsTarget(manager) === 15)
(0 until 15).foreach { i =>
onExecutorAdded(manager, s"executor-$i")
}
assert(executorIds(manager).size === 15)
sc.listenerBus.postToAll(SparkListenerStageCompleted(stage1))
adjustRequestedExecutors(manager)
assert(numExecutorsTarget(manager) === 0)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(1, 1000)))
addExecutors(manager)
assert(numExecutorsTarget(manager) === 16)
}
test("avoid ramp down initial executors until first job is submitted") {
sc = createSparkContext(2, 5, 3)
val manager = sc.executorAllocationManager.get
val clock = new ManualClock(10000L)
manager.setClock(clock)
// Verify the initial number of executors
assert(numExecutorsTarget(manager) === 3)
schedule(manager)
// Verify whether the initial number of executors is kept with no pending tasks
assert(numExecutorsTarget(manager) === 3)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(1, 2)))
clock.advance(100L)
assert(maxNumExecutorsNeeded(manager) === 2)
schedule(manager)
// Verify that current number of executors should be ramp down when first job is submitted
assert(numExecutorsTarget(manager) === 2)
}
test("avoid ramp down initial executors until idle executor is timeout") {
sc = createSparkContext(2, 5, 3)
val manager = sc.executorAllocationManager.get
val clock = new ManualClock(10000L)
manager.setClock(clock)
// Verify the initial number of executors
assert(numExecutorsTarget(manager) === 3)
schedule(manager)
// Verify the initial number of executors is kept when no pending tasks
assert(numExecutorsTarget(manager) === 3)
(0 until 3).foreach { i =>
onExecutorAdded(manager, s"executor-$i")
}
clock.advance(executorIdleTimeout * 1000)
assert(maxNumExecutorsNeeded(manager) === 0)
schedule(manager)
// Verify executor is timeout but numExecutorsTarget is not recalculated
assert(numExecutorsTarget(manager) === 3)
// Schedule again to recalculate the numExecutorsTarget after executor is timeout
schedule(manager)
// Verify that current number of executors should be ramp down when executor is timeout
assert(numExecutorsTarget(manager) === 2)
}
test("get pending task number and related locality preference") {
sc = createSparkContext(2, 5, 3)
val manager = sc.executorAllocationManager.get
val localityPreferences1 = Seq(
Seq(TaskLocation("host1"), TaskLocation("host2"), TaskLocation("host3")),
Seq(TaskLocation("host1"), TaskLocation("host2"), TaskLocation("host4")),
Seq(TaskLocation("host2"), TaskLocation("host3"), TaskLocation("host4")),
Seq.empty,
Seq.empty
)
val stageInfo1 = createStageInfo(1, 5, localityPreferences1)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(stageInfo1))
assert(localityAwareTasks(manager) === 3)
assert(hostToLocalTaskCount(manager) ===
Map("host1" -> 2, "host2" -> 3, "host3" -> 2, "host4" -> 2))
val localityPreferences2 = Seq(
Seq(TaskLocation("host2"), TaskLocation("host3"), TaskLocation("host5")),
Seq(TaskLocation("host3"), TaskLocation("host4"), TaskLocation("host5")),
Seq.empty
)
val stageInfo2 = createStageInfo(2, 3, localityPreferences2)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(stageInfo2))
assert(localityAwareTasks(manager) === 5)
assert(hostToLocalTaskCount(manager) ===
Map("host1" -> 2, "host2" -> 4, "host3" -> 4, "host4" -> 3, "host5" -> 2))
sc.listenerBus.postToAll(SparkListenerStageCompleted(stageInfo1))
assert(localityAwareTasks(manager) === 2)
assert(hostToLocalTaskCount(manager) ===
Map("host2" -> 1, "host3" -> 2, "host4" -> 1, "host5" -> 2))
}
test("SPARK-8366: maxNumExecutorsNeeded should properly handle failed tasks") {
sc = createSparkContext()
val manager = sc.executorAllocationManager.get
assert(maxNumExecutorsNeeded(manager) === 0)
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 1)))
assert(maxNumExecutorsNeeded(manager) === 1)
val taskInfo = createTaskInfo(1, 1, "executor-1")
sc.listenerBus.postToAll(SparkListenerTaskStart(0, 0, taskInfo))
assert(maxNumExecutorsNeeded(manager) === 1)
// If the task is failed, we expect it to be resubmitted later.
val taskEndReason = ExceptionFailure(null, null, null, null, None)
sc.listenerBus.postToAll(SparkListenerTaskEnd(0, 0, null, taskEndReason, taskInfo, null))
assert(maxNumExecutorsNeeded(manager) === 1)
}
test("reset the state of allocation manager") {
sc = createSparkContext()
val manager = sc.executorAllocationManager.get
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 1)
// Allocation manager is reset when adding executor requests are sent without reporting back
// executor added.
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 10)))
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 2)
assert(addExecutors(manager) === 2)
assert(numExecutorsTarget(manager) === 4)
assert(addExecutors(manager) === 1)
assert(numExecutorsTarget(manager) === 5)
manager.reset()
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 1)
assert(executorIds(manager) === Set.empty)
// Allocation manager is reset when executors are added.
sc.listenerBus.postToAll(SparkListenerStageSubmitted(createStageInfo(0, 10)))
addExecutors(manager)
addExecutors(manager)
addExecutors(manager)
assert(numExecutorsTarget(manager) === 5)
onExecutorAdded(manager, "first")
onExecutorAdded(manager, "second")
onExecutorAdded(manager, "third")
onExecutorAdded(manager, "fourth")
onExecutorAdded(manager, "fifth")
assert(executorIds(manager) === Set("first", "second", "third", "fourth", "fifth"))
// Cluster manager lost will make all the live executors lost, so here simulate this behavior
onExecutorRemoved(manager, "first")
onExecutorRemoved(manager, "second")
onExecutorRemoved(manager, "third")
onExecutorRemoved(manager, "fourth")
onExecutorRemoved(manager, "fifth")
manager.reset()
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 1)
assert(executorIds(manager) === Set.empty)
assert(removeTimes(manager) === Map.empty)
// Allocation manager is reset when executors are pending to remove
addExecutors(manager)
addExecutors(manager)
addExecutors(manager)
assert(numExecutorsTarget(manager) === 5)
onExecutorAdded(manager, "first")
onExecutorAdded(manager, "second")
onExecutorAdded(manager, "third")
onExecutorAdded(manager, "fourth")
onExecutorAdded(manager, "fifth")
assert(executorIds(manager) === Set("first", "second", "third", "fourth", "fifth"))
removeExecutor(manager, "first")
removeExecutors(manager, Seq("second", "third"))
assert(executorsPendingToRemove(manager) === Set("first", "second", "third"))
assert(executorIds(manager) === Set("first", "second", "third", "fourth", "fifth"))
// Cluster manager lost will make all the live executors lost, so here simulate this behavior
onExecutorRemoved(manager, "first")
onExecutorRemoved(manager, "second")
onExecutorRemoved(manager, "third")
onExecutorRemoved(manager, "fourth")
onExecutorRemoved(manager, "fifth")
manager.reset()
assert(numExecutorsTarget(manager) === 1)
assert(numExecutorsToAdd(manager) === 1)
assert(executorsPendingToRemove(manager) === Set.empty)
assert(removeTimes(manager) === Map.empty)
}
private def createSparkContext(
minExecutors: Int = 1,
maxExecutors: Int = 5,
initialExecutors: Int = 1): SparkContext = {
val conf = new SparkConf()
.setMaster("myDummyLocalExternalClusterManager")
.setAppName("test-executor-allocation-manager")
.set("spark.dynamicAllocation.enabled", "true")
.set("spark.dynamicAllocation.minExecutors", minExecutors.toString)
.set("spark.dynamicAllocation.maxExecutors", maxExecutors.toString)
.set("spark.dynamicAllocation.initialExecutors", initialExecutors.toString)
.set("spark.dynamicAllocation.schedulerBacklogTimeout",
s"${schedulerBacklogTimeout.toString}s")
.set("spark.dynamicAllocation.sustainedSchedulerBacklogTimeout",
s"${sustainedSchedulerBacklogTimeout.toString}s")
.set("spark.dynamicAllocation.executorIdleTimeout", s"${executorIdleTimeout.toString}s")
.set("spark.dynamicAllocation.testing", "true")
val sc = new SparkContext(conf)
contexts += sc
sc
}
}
/**
* Helper methods for testing ExecutorAllocationManager.
* This includes methods to access private methods and fields in ExecutorAllocationManager.
*/
private object ExecutorAllocationManagerSuite extends PrivateMethodTester {
private val schedulerBacklogTimeout = 1L
private val sustainedSchedulerBacklogTimeout = 2L
private val executorIdleTimeout = 3L
private def createStageInfo(
stageId: Int,
numTasks: Int,
taskLocalityPreferences: Seq[Seq[TaskLocation]] = Seq.empty
): StageInfo = {
new StageInfo(stageId, 0, "name", numTasks, Seq.empty, Seq.empty, "no details",
taskLocalityPreferences = taskLocalityPreferences)
}
private def createTaskInfo(taskId: Int, taskIndex: Int, executorId: String): TaskInfo = {
new TaskInfo(taskId, taskIndex, 0, 0, executorId, "", TaskLocality.ANY, speculative = false)
}
/* ------------------------------------------------------- *
| Helper methods for accessing private methods and fields |
* ------------------------------------------------------- */
private val _numExecutorsToAdd = PrivateMethod[Int]('numExecutorsToAdd)
private val _numExecutorsTarget = PrivateMethod[Int]('numExecutorsTarget)
private val _maxNumExecutorsNeeded = PrivateMethod[Int]('maxNumExecutorsNeeded)
private val _executorsPendingToRemove =
PrivateMethod[collection.Set[String]]('executorsPendingToRemove)
private val _executorIds = PrivateMethod[collection.Set[String]]('executorIds)
private val _addTime = PrivateMethod[Long]('addTime)
private val _removeTimes = PrivateMethod[collection.Map[String, Long]]('removeTimes)
private val _schedule = PrivateMethod[Unit]('schedule)
private val _addExecutors = PrivateMethod[Int]('addExecutors)
private val _updateAndSyncNumExecutorsTarget =
PrivateMethod[Int]('updateAndSyncNumExecutorsTarget)
private val _removeExecutor = PrivateMethod[Boolean]('removeExecutor)
private val _removeExecutors = PrivateMethod[Seq[String]]('removeExecutors)
private val _onExecutorAdded = PrivateMethod[Unit]('onExecutorAdded)
private val _onExecutorRemoved = PrivateMethod[Unit]('onExecutorRemoved)
private val _onSchedulerBacklogged = PrivateMethod[Unit]('onSchedulerBacklogged)
private val _onSchedulerQueueEmpty = PrivateMethod[Unit]('onSchedulerQueueEmpty)
private val _onExecutorIdle = PrivateMethod[Unit]('onExecutorIdle)
private val _onExecutorBusy = PrivateMethod[Unit]('onExecutorBusy)
private val _localityAwareTasks = PrivateMethod[Int]('localityAwareTasks)
private val _hostToLocalTaskCount = PrivateMethod[Map[String, Int]]('hostToLocalTaskCount)
private def numExecutorsToAdd(manager: ExecutorAllocationManager): Int = {
manager invokePrivate _numExecutorsToAdd()
}
private def numExecutorsTarget(manager: ExecutorAllocationManager): Int = {
manager invokePrivate _numExecutorsTarget()
}
private def executorsPendingToRemove(
manager: ExecutorAllocationManager): collection.Set[String] = {
manager invokePrivate _executorsPendingToRemove()
}
private def executorIds(manager: ExecutorAllocationManager): collection.Set[String] = {
manager invokePrivate _executorIds()
}
private def addTime(manager: ExecutorAllocationManager): Long = {
manager invokePrivate _addTime()
}
private def removeTimes(manager: ExecutorAllocationManager): collection.Map[String, Long] = {
manager invokePrivate _removeTimes()
}
private def schedule(manager: ExecutorAllocationManager): Unit = {
manager invokePrivate _schedule()
}
private def maxNumExecutorsNeeded(manager: ExecutorAllocationManager): Int = {
manager invokePrivate _maxNumExecutorsNeeded()
}
private def addExecutors(manager: ExecutorAllocationManager): Int = {
val maxNumExecutorsNeeded = manager invokePrivate _maxNumExecutorsNeeded()
manager invokePrivate _addExecutors(maxNumExecutorsNeeded)
}
private def adjustRequestedExecutors(manager: ExecutorAllocationManager): Int = {
manager invokePrivate _updateAndSyncNumExecutorsTarget(0L)
}
private def removeExecutor(manager: ExecutorAllocationManager, id: String): Boolean = {
manager invokePrivate _removeExecutor(id)
}
private def removeExecutors(manager: ExecutorAllocationManager, ids: Seq[String]): Seq[String] = {
manager invokePrivate _removeExecutors(ids)
}
private def onExecutorAdded(manager: ExecutorAllocationManager, id: String): Unit = {
manager invokePrivate _onExecutorAdded(id)
}
private def onExecutorRemoved(manager: ExecutorAllocationManager, id: String): Unit = {
manager invokePrivate _onExecutorRemoved(id)
}
private def onSchedulerBacklogged(manager: ExecutorAllocationManager): Unit = {
manager invokePrivate _onSchedulerBacklogged()
}
private def onSchedulerQueueEmpty(manager: ExecutorAllocationManager): Unit = {
manager invokePrivate _onSchedulerQueueEmpty()
}
private def onExecutorIdle(manager: ExecutorAllocationManager, id: String): Unit = {
manager invokePrivate _onExecutorIdle(id)
}
private def onExecutorBusy(manager: ExecutorAllocationManager, id: String): Unit = {
manager invokePrivate _onExecutorBusy(id)
}
private def localityAwareTasks(manager: ExecutorAllocationManager): Int = {
manager invokePrivate _localityAwareTasks()
}
private def hostToLocalTaskCount(manager: ExecutorAllocationManager): Map[String, Int] = {
manager invokePrivate _hostToLocalTaskCount()
}
}
/**
* A cluster manager which wraps around the scheduler and backend for local mode. It is used for
* testing the dynamic allocation policy.
*/
private class DummyLocalExternalClusterManager extends ExternalClusterManager {
def canCreate(masterURL: String): Boolean = masterURL == "myDummyLocalExternalClusterManager"
override def createTaskScheduler(
sc: SparkContext,
masterURL: String): TaskScheduler = new TaskSchedulerImpl(sc, 1, isLocal = true)
override def createSchedulerBackend(
sc: SparkContext,
masterURL: String,
scheduler: TaskScheduler): SchedulerBackend = {
val sb = new LocalSchedulerBackend(sc.getConf, scheduler.asInstanceOf[TaskSchedulerImpl], 1)
new DummyLocalSchedulerBackend(sc, sb)
}
override def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit = {
val sc = scheduler.asInstanceOf[TaskSchedulerImpl]
sc.initialize(backend)
}
}
/**
* A scheduler backend which wraps around local scheduler backend and exposes the executor
* allocation client interface for testing dynamic allocation.
*/
private class DummyLocalSchedulerBackend (sc: SparkContext, sb: SchedulerBackend)
extends SchedulerBackend with ExecutorAllocationClient {
override private[spark] def getExecutorIds(): Seq[String] = sc.getExecutorIds()
override private[spark] def requestTotalExecutors(
numExecutors: Int,
localityAwareTasks: Int,
hostToLocalTaskCount: Map[String, Int]): Boolean =
sc.requestTotalExecutors(numExecutors, localityAwareTasks, hostToLocalTaskCount)
override def requestExecutors(numAdditionalExecutors: Int): Boolean =
sc.requestExecutors(numAdditionalExecutors)
override def killExecutors(executorIds: Seq[String]): Seq[String] = {
val response = sc.killExecutors(executorIds)
if (response) {
executorIds
} else {
Seq.empty[String]
}
}
override def start(): Unit = sb.start()
override def stop(): Unit = sb.stop()
override def reviveOffers(): Unit = sb.reviveOffers()
override def defaultParallelism(): Int = sb.defaultParallelism()
}
|
metamx/spark
|
core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala
|
Scala
|
apache-2.0
| 48,173 |
package io.gustavoamigo.quill.pgsql.encoding.jodatime
import java.sql.{Types, PreparedStatement}
import io.getquill.source.jdbc.JdbcSource
import org.joda.time._
trait Encoders {
this: JdbcSource[_, _] =>
import Formatters._
private def genericEncoder[T](valueToString: (T => String) = (r: T) => r.toString): Encoder[T] =
new Encoder[T] {
override def apply(index: Int, value: T, row: PreparedStatement) = {
val sqlLiteral = s"'${valueToString(value)}'"
row.setObject(index + 1, sqlLiteral, Types.OTHER)
row
}
}
implicit val jodaDateTimeEncoder: Encoder[DateTime] = genericEncoder(_.toString(jodaTzDateTimeFormatter))
implicit val jodaLocalDateEncoder: Encoder[LocalDate] = genericEncoder(_.toString(jodaDateFormatter))
implicit val jodaLocalTimeEncoder: Encoder[LocalTime] = genericEncoder(_.toString(jodaTimeFormatter))
}
|
gustavoamigo/quill-pgsql
|
src/main/scala/io/gustavoamigo/quill/pgsql/encoding/jodatime/Encoders.scala
|
Scala
|
apache-2.0
| 886 |
package sri.relay
import sri.universal.router.UniversalRouterComponentJS
import scala.scalajs.js.annotation.ScalaJSDefined
@ScalaJSDefined
abstract class UniversalRouterRelayComponent[P <: RelayComponentProps, S] extends UniversalRouterComponentJS[P, S] {}
|
chandu0101/sri-relay
|
relay/src/main/scala/sri/relay/UniversalRouterRelayComponent.scala
|
Scala
|
apache-2.0
| 260 |
package com.gigaspaces.csvwriter
import scala.util.Random
/**
* A mixin for generating random strings.
*/
trait RandomStrings {
private val rand = new Random(System.currentTimeMillis())
/**
* @return an alphabetic character
*/
def randChar(): Character = {
(rand.nextInt(26) + 65).toChar
}
/**
* @param len length of returned string
* @return a random string, length len, comprised of alphabetic characters
*/
def randString(len: Int): String = {
val builder = new StringBuilder
for (i <- 1 to len ) builder.append(randChar())
builder.toString()
}
}
|
jasonnerothin/gs-csvwriter
|
src/main/scala/com/gigaspaces/csvwriter/RandomStrings.scala
|
Scala
|
apache-2.0
| 609 |
package org.elasticmq.performance
import com.amazonaws.services.sqs.AmazonSQSClient
import com.amazonaws.auth.BasicAWSCredentials
import com.amazonaws.services.sqs.model.{CreateQueueRequest, DeleteMessageRequest, ReceiveMessageRequest, SendMessageRequest}
import org.elasticmq.rest.sqs.{SQSRestServer, SQSRestServerBuilder}
import org.elasticmq.test._
import scala.collection.JavaConversions._
import akka.actor.{Props, ActorSystem, ActorRef}
import org.elasticmq.actor.QueueManagerActor
import org.elasticmq.util.NowProvider
import org.elasticmq.actor.reply._
import org.elasticmq.msg._
import org.elasticmq._
import scala.concurrent.Await
import scala.concurrent.duration._
import org.joda.time.DateTime
import org.elasticmq.msg.ReceiveMessages
import org.elasticmq.QueueData
import org.elasticmq.NewMessageData
import org.elasticmq.msg.SendMessage
import org.elasticmq.msg.CreateQueue
import akka.util.Timeout
object LocalPerformanceTest extends App {
testAll()
def testAll() {
val iterations = 10
val msgsInIteration = 100000
testWithMq(new ActorBasedMQ, 3, 100000, "in-memory warmup", 1)
//testWithMq(new ActorBasedMQ, iterations, msgsInIteration, "in-memory", 1)
//testWithMq(new ActorBasedMQ, iterations, msgsInIteration, "in-memory", 2)
//testWithMq(new ActorBasedMQ, iterations, msgsInIteration, "in-memory", 3)
testWithMq(new RestSQSMQ, iterations, msgsInIteration, "rest-sqs + in-memory", 1)
}
def testWithMq(mq: MQ, iterations: Int, msgsInIteration: Int, name: String, threadCount: Int) {
println("Running test for [%s], iterations: %d, msgs in iteration: %d, thread count: %d."
.format(name, iterations, msgsInIteration, threadCount))
mq.start()
val took = timed {
val threads = for (i <- 1 to threadCount) yield {
val t = new Thread(new Runnable() {
def run() { runTest(mq, iterations, msgsInIteration, name + " " + i) }
})
t.start()
t
}
threads.foreach(_.join())
}
val count = msgsInIteration * iterations * threadCount
println("Overall %s throughput: %f".format(name, (count.toDouble / (took.toDouble / 1000.0))))
println()
mq.stop()
}
private def runTest(mq: MQ, iterations: Int, msgsInIteration: Int, name: String) {
var count = 0
val start = System.currentTimeMillis()
for (i <- 1 to iterations) {
val loopStart = System.currentTimeMillis()
for (j <- 1 to msgsInIteration) {
mq.sendMessage("Message" + (i*j))
}
for (j <- 1 to msgsInIteration) {
mq.receiveMessage()
}
count += msgsInIteration
val loopEnd = System.currentTimeMillis()
println("%-20s throughput: %f, %d".format(name, (count.toDouble / ((loopEnd-start).toDouble / 1000.0)), (loopEnd - loopStart)))
}
}
class ActorBasedMQ extends MQWithQueueManagerActor
class RestSQSMQ extends MQ {
private var currentSQSClient: AmazonSQSClient = _
private var currentQueueUrl: String = _
private var currentRestServer: SQSRestServer = _
override def start() = {
val queueManagerActor = super.start()
currentRestServer = SQSRestServerBuilder
.withActorSystem(actorSystem)
.withQueueManagerActor(queueManagerActor)
.start()
currentSQSClient = new AmazonSQSClient(new BasicAWSCredentials("x", "x"))
currentSQSClient.setEndpoint("http://localhost:9324")
currentQueueUrl = currentSQSClient.createQueue(
new CreateQueueRequest("testQueue").withAttributes(Map("VisibilityTimeout" -> "1")))
.getQueueUrl
queueManagerActor
}
override def stop() {
currentRestServer.stopAndGetFuture
currentSQSClient.shutdown()
super.stop()
}
def sendMessage(m: String) {
currentSQSClient.sendMessage(new SendMessageRequest(currentQueueUrl, m))
}
def receiveMessage() = {
val msgs = currentSQSClient.receiveMessage(new ReceiveMessageRequest(currentQueueUrl)).getMessages
if (msgs.size != 1) {
throw new Exception(msgs.toString)
}
currentSQSClient.deleteMessage(new DeleteMessageRequest(currentQueueUrl, msgs.get(0).getReceiptHandle))
msgs.get(0).getBody
}
}
trait MQ {
var actorSystem: ActorSystem = _
def start(): ActorRef = {
actorSystem = ActorSystem("performance-tests")
val queueManagerActor = actorSystem.actorOf(Props(new QueueManagerActor(new NowProvider())))
queueManagerActor
}
def stop() {
actorSystem.shutdown()
actorSystem.awaitTermination()
}
def sendMessage(m: String)
def receiveMessage(): String
}
trait MQWithQueueManagerActor extends MQ {
private var currentQueue: ActorRef = _
implicit val timeout = Timeout(10000L)
override def start() = {
val queueManagerActor = super.start()
currentQueue = Await.result(queueManagerActor ? CreateQueue(QueueData("testQueue", MillisVisibilityTimeout(1000),
org.joda.time.Duration.ZERO, org.joda.time.Duration.ZERO, new DateTime(), new DateTime())), 10.seconds).right.get
queueManagerActor
}
def sendMessage(m: String) {
Await.result(currentQueue ? SendMessage(NewMessageData(None, m, Map.empty, ImmediateNextDelivery)), 10.seconds)
}
def receiveMessage() = {
val messages = Await.result(currentQueue ? ReceiveMessages(DefaultVisibilityTimeout, 1, None), 10.seconds)
val message = messages.head
Await.result(currentQueue ? DeleteMessage(message.deliveryReceipt.get), 10.seconds)
message.content
}
}
}
|
everyonce/elasticmq
|
performance-tests/src/test/scala/org/elasticmq/performance/LocalPerformanceTest.scala
|
Scala
|
apache-2.0
| 5,598 |
/*
* Copyright (c) 2014-2021 by The Monix Project Developers.
* See the project homepage at: https://monix.io
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
package monix.benchmarks
import java.util.concurrent.TimeUnit
import monix.eval.Task
import org.openjdk.jmh.annotations._
import scala.concurrent.Await
import scala.concurrent.duration.Duration
/** To do comparative benchmarks between versions:
*
* benchmarks/run-benchmark TaskAttemptBenchmark
*
* This will generate results in `benchmarks/results`.
*
* Or to run the benchmark from within SBT:
*
* jmh:run -i 10 -wi 10 -f 2 -t 1 monix.benchmarks.TaskAttemptBenchmark
*
* Which means "10 iterations", "10 warm-up iterations", "2 forks", "1 thread".
* Please note that benchmarks should be usually executed at least in
* 10 iterations (as a rule of thumb), but more is better.
*/
@State(Scope.Thread)
@BenchmarkMode(Array(Mode.Throughput))
@OutputTimeUnit(TimeUnit.SECONDS)
class TaskAttemptBenchmark {
@Param(Array("10000"))
var size: Int = _
@Benchmark
def happyPath(): Int = {
def loop(i: Int): Task[Int] =
if (i < size) Task.pure(i + 1).attempt.flatMap(_.fold(Task.raiseError, loop))
else Task.pure(i)
Await.result(loop(0).runAsync, Duration.Inf)
}
@Benchmark
def errorRaised(): Int = {
val dummy = new RuntimeException("dummy")
val id = Task.pure[Int] _
def loop(i: Int): Task[Int] =
if (i < size)
Task.raiseError[Int](dummy)
.flatMap(x => Task.pure(x + 1))
.attempt
.flatMap(_.fold(_ => loop(i + 1), id))
else
Task.pure(i)
Await.result(loop(0).runAsync, Duration.Inf)
}
}
*/
|
monix/monix
|
benchmarks/shared/src/main/scala/monix/benchmarks/TaskAttemptBenchmark.scala
|
Scala
|
apache-2.0
| 2,209 |
/***********************************************************************
* Copyright (c) 2013-2016 Commonwealth Computer Research, Inc.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Apache License, Version 2.0
* which accompanies this distribution and is available at
* http://www.opensource.org/licenses/apache2.0.php.
*************************************************************************/
package org.locationtech.geomesa.process
import org.geotools.process.factory.AnnotatedBeanProcessFactory
import org.geotools.text.Text
import org.locationtech.geomesa.accumulo.process._
import org.locationtech.geomesa.accumulo.process.knn.KNearestNeighborSearchProcess
import org.locationtech.geomesa.accumulo.process.proximity.ProximitySearchProcess
import org.locationtech.geomesa.accumulo.process.query.QueryProcess
import org.locationtech.geomesa.accumulo.process.stats.StatsIteratorProcess
import org.locationtech.geomesa.accumulo.process.tube.TubeSelectProcess
import org.locationtech.geomesa.accumulo.process.unique.UniqueProcess
class ProcessFactory
extends AnnotatedBeanProcessFactory(
Text.text("GeoMesa Process Factory"),
"geomesa",
classOf[DensityProcess],
classOf[Point2PointProcess],
classOf[StatsIteratorProcess],
classOf[TubeSelectProcess],
classOf[ProximitySearchProcess],
classOf[QueryProcess],
classOf[KNearestNeighborSearchProcess],
classOf[UniqueProcess],
classOf[HashAttributeProcess],
classOf[HashAttributeColorProcess],
classOf[SamplingProcess],
classOf[JoinProcess],
classOf[RouteSearchProcess],
classOf[BinConversionProcess]
)
|
MutahirKazmi/geomesa
|
geomesa-process/src/main/scala/org/locationtech/geomesa/process/ProcessFactory.scala
|
Scala
|
apache-2.0
| 1,685 |
package com.fustigatedcat.heystk.agent.common.normalization
import akka.actor.{ActorRef, Actor}
import com.fustigatedcat.heystk.common.normalization.Log
import com.typesafe.config.Config
import org.slf4j.LoggerFactory
class NormalizerActor(config : Config, system : NormalizerSystem, engine : ActorRef) extends Actor {
val logger = LoggerFactory.getLogger(this.getClass)
override def receive = {
case log : Log => {
logger.debug("Handling message [{}]", log)
val norm = system.process(log)
logger.debug("Created normalization [{}]", norm)
engine ! norm
}
}
}
|
fustigatedcat/heystk
|
agent-common/src/main/scala/com/fustigatedcat/heystk/agent/common/normalization/NormalizerActor.scala
|
Scala
|
gpl-3.0
| 602 |
/*
* Scala.js (https://www.scala-js.org/)
*
* Copyright EPFL.
*
* Licensed under Apache License 2.0
* (https://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package java.lang
import scala.annotation.{switch, tailrec}
import java.util.Comparator
import scala.scalajs.js
import scala.scalajs.js.annotation._
import scala.scalajs.runtime.linkingInfo
import scala.scalajs.LinkingInfo.ESVersion
import java.lang.constant.{Constable, ConstantDesc}
import java.nio.ByteBuffer
import java.nio.charset.Charset
import java.util.Locale
import java.util.regex._
import Utils.Implicits.enableJSStringOps
/* This is the implementation of java.lang.String, which is a hijacked class.
* Its instances are primitive strings. Constructors are not emitted.
*
* It should be declared as `class String`, but scalac really does not like
* being forced to compile java.lang.String, so we call it `_String` instead.
* The Scala.js compiler back-end applies some magic to rename it into `String`
* when emitting the IR.
*/
final class _String private () // scalastyle:ignore
extends AnyRef with java.io.Serializable with Comparable[String]
with CharSequence with Constable with ConstantDesc {
import _String._
@inline
private def thisString: String =
this.asInstanceOf[String]
@inline
def charAt(index: Int): Char = {
this.asInstanceOf[js.Dynamic]
.charCodeAt(index.asInstanceOf[js.Dynamic])
.asInstanceOf[Int]
.toChar
}
def codePointAt(index: Int): Int = {
if (linkingInfo.esVersion >= ESVersion.ES2015) {
this.asInstanceOf[js.Dynamic]
.codePointAt(index.asInstanceOf[js.Dynamic])
.asInstanceOf[Int]
} else {
val high = charAt(index)
if (index+1 < length()) {
val low = charAt(index+1)
if (Character.isSurrogatePair(high, low))
Character.toCodePoint(high, low)
else
high.toInt
} else {
high.toInt
}
}
}
def codePointBefore(index: Int): Int = {
val low = charAt(index - 1)
if (index > 1) {
val high = charAt(index - 2)
if (Character.isSurrogatePair(high, low))
Character.toCodePoint(high, low)
else
low.toInt
} else {
low.toInt
}
}
def codePointCount(beginIndex: Int, endIndex: Int): Int =
Character.codePointCount(this, beginIndex, endIndex)
def offsetByCodePoints(index: Int, codePointOffset: Int): Int = {
val len = length()
if (index < 0 || index > len)
throw new StringIndexOutOfBoundsException(index)
if (codePointOffset >= 0) {
var i = 0
var result = index
while (i != codePointOffset) {
if (result >= len)
throw new StringIndexOutOfBoundsException
if ((result < len - 1) &&
Character.isHighSurrogate(charAt(result)) &&
Character.isLowSurrogate(charAt(result + 1))) {
result += 2
} else {
result += 1
}
i += 1
}
result
} else {
var i = 0
var result = index
while (i != codePointOffset) {
if (result <= 0)
throw new StringIndexOutOfBoundsException
if ((result > 1) && Character.isLowSurrogate(charAt(result - 1)) &&
Character.isHighSurrogate(charAt(result - 2))) {
result -= 2
} else {
result -= 1
}
i -= 1
}
result
}
}
override def hashCode(): Int = {
var res = 0
var mul = 1 // holds pow(31, length-i-1)
var i = length() - 1
while (i >= 0) {
res += charAt(i) * mul
mul *= 31
i -= 1
}
res
}
@inline
override def equals(that: Any): scala.Boolean =
this eq that.asInstanceOf[AnyRef]
def compareTo(anotherString: String): Int = {
// scalastyle:off return
val thisLength = this.length()
val strLength = anotherString.length()
val minLength = Math.min(thisLength, strLength)
var i = 0
while (i != minLength) {
val cmp = this.charAt(i) - anotherString.charAt(i)
if (cmp != 0)
return cmp
i += 1
}
thisLength - strLength
// scalastyle:on return
}
def compareToIgnoreCase(str: String): Int = {
// scalastyle:off return
val thisLength = this.length()
val strLength = str.length()
val minLength = Math.min(thisLength, strLength)
var i = 0
while (i != minLength) {
val cmp = caseFold(this.charAt(i)) - caseFold(str.charAt(i))
if (cmp != 0)
return cmp
i += 1
}
thisLength - strLength
// scalastyle:on return
}
@inline
def equalsIgnoreCase(anotherString: String): scala.Boolean = {
// scalastyle:off return
val len = length()
if (anotherString == null || anotherString.length() != len) {
false
} else {
var i = 0
while (i != len) {
if (caseFold(this.charAt(i)) != caseFold(anotherString.charAt(i)))
return false
i += 1
}
true
}
// scalastyle:on return
}
/** Performs case folding of a single character for use by `equalsIgnoreCase`
* and `compareToIgnoreCase`.
*
* This implementation respects the specification of those two methods,
* although that behavior does not generally conform to Unicode Case
* Folding.
*/
@inline private def caseFold(c: Char): Char =
Character.toLowerCase(Character.toUpperCase(c))
@inline
def concat(s: String): String =
thisString + s
@inline
def contains(s: CharSequence): scala.Boolean =
indexOf(s.toString) != -1
def endsWith(suffix: String): scala.Boolean =
thisString.jsSubstring(this.length() - suffix.length()) == suffix
def getBytes(): Array[scala.Byte] =
getBytes(Charset.defaultCharset)
def getBytes(charsetName: String): Array[scala.Byte] =
getBytes(Charset.forName(charsetName))
def getBytes(charset: Charset): Array[scala.Byte] = {
val buf = charset.encode(thisString)
val res = new Array[scala.Byte](buf.remaining)
buf.get(res)
res
}
def getChars(srcBegin: Int, srcEnd: Int, dst: Array[Char],
dstBegin: Int): Unit = {
if (srcEnd > length() || srcBegin < 0 || srcEnd < 0 || srcBegin > srcEnd)
throw new StringIndexOutOfBoundsException("Index out of Bound")
val offset = dstBegin - srcBegin
var i = srcBegin
while (i < srcEnd) {
dst(i + offset) = charAt(i)
i += 1
}
}
def indexOf(ch: Int): Int =
indexOf(Character.toString(ch))
def indexOf(ch: Int, fromIndex: Int): Int =
indexOf(Character.toString(ch), fromIndex)
@inline
def indexOf(str: String): Int =
thisString.jsIndexOf(str)
@inline
def indexOf(str: String, fromIndex: Int): Int =
thisString.jsIndexOf(str, fromIndex)
/* Just returning this string is a valid implementation for `intern` in
* JavaScript, since strings are primitive values. Therefore, value equality
* and reference equality is the same.
*/
@inline
def intern(): String = thisString
@inline
def isEmpty(): scala.Boolean = (this: AnyRef) eq ("": AnyRef)
def lastIndexOf(ch: Int): Int =
lastIndexOf(Character.toString(ch))
def lastIndexOf(ch: Int, fromIndex: Int): Int =
if (fromIndex < 0) -1
else lastIndexOf(Character.toString(ch), fromIndex)
@inline
def lastIndexOf(str: String): Int =
thisString.jsLastIndexOf(str)
@inline
def lastIndexOf(str: String, fromIndex: Int): Int =
if (fromIndex < 0) -1
else thisString.jsLastIndexOf(str, fromIndex)
@inline
def length(): Int =
this.asInstanceOf[js.Dynamic].length.asInstanceOf[Int]
@inline
def matches(regex: String): scala.Boolean =
Pattern.matches(regex, thisString)
/* Both regionMatches ported from
* https://github.com/gwtproject/gwt/blob/master/user/super/com/google/gwt/emul/java/lang/String.java
*/
def regionMatches(ignoreCase: scala.Boolean, toffset: Int, other: String,
ooffset: Int, len: Int): scala.Boolean = {
if (other == null) {
throw new NullPointerException()
} else if (toffset < 0 || ooffset < 0 || toffset + len > this.length() ||
ooffset + len > other.length()) {
false
} else if (len <= 0) {
true
} else {
val left = this.substring(toffset, toffset + len)
val right = other.substring(ooffset, ooffset + len)
if (ignoreCase) left.equalsIgnoreCase(right) else left == right
}
}
@inline
def regionMatches(toffset: Int, other: String, ooffset: Int,
len: Int): scala.Boolean = {
regionMatches(false, toffset, other, ooffset, len)
}
def repeat(count: Int): String = {
if (count < 0) {
throw new IllegalArgumentException
} else if (thisString == "" || count == 0) {
""
} else if (thisString.length > (Int.MaxValue / count)) {
throw new OutOfMemoryError
} else {
var str = thisString
val resultLength = thisString.length * count
var remainingIters = 31 - Integer.numberOfLeadingZeros(count)
while (remainingIters > 0) {
str += str
remainingIters -= 1
}
str += str.jsSubstring(0, resultLength - str.length)
str
}
}
@inline
def replace(oldChar: Char, newChar: Char): String =
replace(oldChar.toString, newChar.toString)
@inline
def replace(target: CharSequence, replacement: CharSequence): String =
thisString.jsSplit(target.toString).join(replacement.toString)
def replaceAll(regex: String, replacement: String): String =
Pattern.compile(regex).matcher(thisString).replaceAll(replacement)
def replaceFirst(regex: String, replacement: String): String =
Pattern.compile(regex).matcher(thisString).replaceFirst(replacement)
@inline
def split(regex: String): Array[String] =
split(regex, 0)
def split(regex: String, limit: Int): Array[String] =
Pattern.compile(regex).split(thisString, limit)
@inline
def startsWith(prefix: String): scala.Boolean =
startsWith(prefix, 0)
@inline
def startsWith(prefix: String, toffset: Int): scala.Boolean = {
(toffset <= length() && toffset >= 0 &&
thisString.jsSubstring(toffset, toffset + prefix.length()) == prefix)
}
@inline
def subSequence(beginIndex: Int, endIndex: Int): CharSequence =
substring(beginIndex, endIndex)
@inline
def substring(beginIndex: Int): String =
thisString.jsSubstring(beginIndex)
@inline
def substring(beginIndex: Int, endIndex: Int): String = {
this.asInstanceOf[js.Dynamic]
.substring(beginIndex.asInstanceOf[js.Dynamic], endIndex.asInstanceOf[js.Dynamic])
.asInstanceOf[String]
}
def toCharArray(): Array[Char] = {
val len = length()
val result = new Array[Char](len)
var i = 0
while (i < len) {
result(i) = charAt(i)
i += 1
}
result
}
/* toLowerCase() and toUpperCase()
*
* The overloads without an explicit locale use the default locale, which is
* the root locale by specification. They are implemented by direct
* delegation to ECMAScript's `toLowerCase()` and `toUpperCase()`, which are
* specified as locale-insensitive, therefore equivalent to the root locale.
*
* It turns out virtually every locale behaves in the same way as the root
* locale for default case algorithms. Only Lithuanian (lt), Turkish (tr)
* and Azeri (az) have different behaviors.
*
* The overloads with a `Locale` specifically test for those three languages
* and delegate to dedicated methods to handle them. Those methods start by
* handling their respective special cases, then delegate to the locale-
* insensitive version. The special cases are specified in the Unicode
* reference file at
*
* https://unicode.org/Public/13.0.0/ucd/SpecialCasing.txt
*
* That file first contains a bunch of locale-insensitive special cases,
* which we do not need to handle. Only the last two sections about locale-
* sensitive special-cases are important for us.
*
* Some of the rules are further context-sensitive, using predicates that are
* defined in Section 3.13 "Default Case Algorithms" of the Unicode Standard,
* available at
*
* http://www.unicode.org/versions/Unicode13.0.0/
*
* We based the implementations on Unicode 13.0.0. It is worth noting that
* there has been no non-comment changes in the SpecialCasing.txt file
* between Unicode 4.1.0 and 13.0.0 (perhaps even earlier; the version 4.1.0
* is the earliest that is easily accessible).
*/
def toLowerCase(locale: Locale): String = {
locale.getLanguage() match {
case "lt" => toLowerCaseLithuanian()
case "tr" | "az" => toLowerCaseTurkishAndAzeri()
case _ => toLowerCase()
}
}
private def toLowerCaseLithuanian(): String = {
/* Relevant excerpt from SpecialCasing.txt
*
* # Lithuanian
*
* # Lithuanian retains the dot in a lowercase i when followed by accents.
*
* [...]
*
* # Introduce an explicit dot above when lowercasing capital I's and J's
* # whenever there are more accents above.
* # (of the accents used in Lithuanian: grave, acute, tilde above, and ogonek)
*
* 0049; 0069 0307; 0049; 0049; lt More_Above; # LATIN CAPITAL LETTER I
* 004A; 006A 0307; 004A; 004A; lt More_Above; # LATIN CAPITAL LETTER J
* 012E; 012F 0307; 012E; 012E; lt More_Above; # LATIN CAPITAL LETTER I WITH OGONEK
* 00CC; 0069 0307 0300; 00CC; 00CC; lt; # LATIN CAPITAL LETTER I WITH GRAVE
* 00CD; 0069 0307 0301; 00CD; 00CD; lt; # LATIN CAPITAL LETTER I WITH ACUTE
* 0128; 0069 0307 0303; 0128; 0128; lt; # LATIN CAPITAL LETTER I WITH TILDE
*/
/* Tests whether we are in an `More_Above` context.
* From Table 3.17 in the Unicode standard:
* - Description: C is followed by a character of combining class
* 230 (Above) with no intervening character of combining class 0 or
* 230 (Above).
* - Regex, after C: [^\\p{ccc=230}\\p{ccc=0}]*[\\p{ccc=230}]
*/
def moreAbove(i: Int): scala.Boolean = {
import Character._
val len = length()
@tailrec def loop(j: Int): scala.Boolean = {
if (j == len) {
false
} else {
val cp = this.codePointAt(j)
combiningClassNoneOrAboveOrOther(cp) match {
case CombiningClassIsNone => false
case CombiningClassIsAbove => true
case _ => loop(j + charCount(cp))
}
}
}
loop(i + 1)
}
val preprocessed = replaceCharsAtIndex { i =>
(this.charAt(i): @switch) match {
case '\\u0049' if moreAbove(i) => "\\u0069\\u0307"
case '\\u004A' if moreAbove(i) => "\\u006A\\u0307"
case '\\u012E' if moreAbove(i) => "\\u012F\\u0307"
case '\\u00CC' => "\\u0069\\u0307\\u0300"
case '\\u00CD' => "\\u0069\\u0307\\u0301"
case '\\u0128' => "\\u0069\\u0307\\u0303"
case _ => null
}
}
preprocessed.toLowerCase()
}
private def toLowerCaseTurkishAndAzeri(): String = {
/* Relevant excerpt from SpecialCasing.txt
*
* # Turkish and Azeri
*
* # I and i-dotless; I-dot and i are case pairs in Turkish and Azeri
* # The following rules handle those cases.
*
* 0130; 0069; 0130; 0130; tr; # LATIN CAPITAL LETTER I WITH DOT ABOVE
* 0130; 0069; 0130; 0130; az; # LATIN CAPITAL LETTER I WITH DOT ABOVE
*
* # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i.
* # This matches the behavior of the canonically equivalent I-dot_above
*
* 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE
* 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE
*
* # When lowercasing, unless an I is before a dot_above, it turns into a dotless i.
*
* 0049; 0131; 0049; 0049; tr Not_Before_Dot; # LATIN CAPITAL LETTER I
* 0049; 0131; 0049; 0049; az Not_Before_Dot; # LATIN CAPITAL LETTER I
*/
/* Tests whether we are in an `After_I` context.
* From Table 3.17 in the Unicode standard:
* - Description: There is an uppercase I before C, and there is no
* intervening combining character class 230 (Above) or 0.
* - Regex, before C: [I]([^\\p{ccc=230}\\p{ccc=0}])*
*/
def afterI(i: Int): scala.Boolean = {
val j = skipCharsWithCombiningClassOtherThanNoneOrAboveBackwards(i)
j > 0 && charAt(j - 1) == 'I'
}
/* Tests whether we are in an `Before_Dot` context.
* From Table 3.17 in the Unicode standard:
* - Description: C is followed by combining dot above (U+0307). Any
* sequence of characters with a combining class that is neither 0 nor
* 230 may intervene between the current character and the combining dot
* above.
* - Regex, after C: ([^\\p{ccc=230}\\p{ccc=0}])*[\\u0307]
*/
def beforeDot(i: Int): scala.Boolean = {
val j = skipCharsWithCombiningClassOtherThanNoneOrAboveForwards(i + 1)
j != length() && charAt(j) == '\\u0307'
}
val preprocessed = replaceCharsAtIndex { i =>
(this.charAt(i): @switch) match {
case '\\u0130' => "\\u0069"
case '\\u0307' if afterI(i) => ""
case '\\u0049' if !beforeDot(i) => "\\u0131"
case _ => null
}
}
preprocessed.toLowerCase()
}
@inline
def toLowerCase(): String =
this.asInstanceOf[js.Dynamic].toLowerCase().asInstanceOf[String]
def toUpperCase(locale: Locale): String = {
locale.getLanguage() match {
case "lt" => toUpperCaseLithuanian()
case "tr" | "az" => toUpperCaseTurkishAndAzeri()
case _ => toUpperCase()
}
}
private def toUpperCaseLithuanian(): String = {
/* Relevant excerpt from SpecialCasing.txt
*
* # Lithuanian
*
* # Lithuanian retains the dot in a lowercase i when followed by accents.
*
* # Remove DOT ABOVE after "i" with upper or titlecase
*
* 0307; 0307; ; ; lt After_Soft_Dotted; # COMBINING DOT ABOVE
*/
/* Tests whether we are in an `After_Soft_Dotted` context.
* From Table 3.17 in the Unicode standard:
* - Description: There is a Soft_Dotted character before C, with no
* intervening character of combining class 0 or 230 (Above).
* - Regex, before C: [\\p{Soft_Dotted}]([^\\p{ccc=230} \\p{ccc=0}])*
*
* According to https://unicode.org/Public/13.0.0/ucd/PropList.txt, there
* are 44 code points with the Soft_Dotted property. However,
* experimentation on the JVM reveals that the JDK (8 and 14 were tested)
* only recognizes 8 code points when deciding whether to remove the 0x0307
* code points. The following script reproduces the list:
for (cp <- 0 to Character.MAX_CODE_POINT) {
val input = new String(Array(cp, 0x0307, 0x0301), 0, 3)
val output = input.toUpperCase(new java.util.Locale("lt"))
if (!output.contains('\\u0307'))
println(cp.toHexString)
}
*/
def afterSoftDotted(i: Int): scala.Boolean = {
val j = skipCharsWithCombiningClassOtherThanNoneOrAboveBackwards(i)
j > 0 && (codePointBefore(j) match {
case 0x0069 | 0x006a | 0x012f | 0x0268 | 0x0456 | 0x0458 | 0x1e2d | 0x1ecb => true
case _ => false
})
}
val preprocessed = replaceCharsAtIndex { i =>
(this.charAt(i): @switch) match {
case '\\u0307' if afterSoftDotted(i) => ""
case _ => null
}
}
preprocessed.toUpperCase()
}
private def toUpperCaseTurkishAndAzeri(): String = {
/* Relevant excerpt from SpecialCasing.txt
*
* # Turkish and Azeri
*
* # When uppercasing, i turns into a dotted capital I
*
* 0069; 0069; 0130; 0130; tr; # LATIN SMALL LETTER I
* 0069; 0069; 0130; 0130; az; # LATIN SMALL LETTER I
*/
val preprocessed = replaceCharsAtIndex { i =>
(this.charAt(i): @switch) match {
case '\\u0069' => "\\u0130"
case _ => null
}
}
preprocessed.toUpperCase()
}
@inline
def toUpperCase(): String =
this.asInstanceOf[js.Dynamic].toUpperCase().asInstanceOf[String]
/** Replaces special characters in this string (possibly in special contexts)
* by dedicated strings.
*
* This method encodes the general pattern of
*
* - `toLowerCaseLithuanian()`
* - `toLowerCaseTurkishAndAzeri()`
* - `toUpperCaseLithuanian()`
* - `toUpperCaseTurkishAndAzeri()`
*
* @param replacementAtIndex
* A function from index to `String | Null`, which should return a special
* replacement string for the character at the given index, or `null` if
* the character at the given index is not special.
*/
@inline
private def replaceCharsAtIndex(
replacementAtIndex: js.Function1[Int, String]): String = {
var prep = ""
val len = this.length()
var i = 0
var startOfSegment = 0
while (i != len) {
val replacement = replacementAtIndex(i)
if (replacement != null) {
prep += this.substring(startOfSegment, i)
prep += replacement
startOfSegment = i + 1
}
i += 1
}
if (startOfSegment == 0)
thisString // opt: no character needed replacing, directly return the original string
else
prep + this.substring(startOfSegment, i)
}
private def skipCharsWithCombiningClassOtherThanNoneOrAboveForwards(i: Int): Int = {
// scalastyle:off return
import Character._
val len = length()
var j = i
while (j != len) {
val cp = codePointAt(j)
if (combiningClassNoneOrAboveOrOther(cp) != CombiningClassIsOther)
return j
j += charCount(cp)
}
j
// scalastyle:on return
}
private def skipCharsWithCombiningClassOtherThanNoneOrAboveBackwards(i: Int): Int = {
// scalastyle:off return
import Character._
var j = i
while (j > 0) {
val cp = codePointBefore(j)
if (combiningClassNoneOrAboveOrOther(cp) != CombiningClassIsOther)
return j
j -= charCount(cp)
}
0
// scalastyle:on return
}
def trim(): String = {
val len = length()
var start = 0
while (start != len && charAt(start) <= ' ')
start += 1
if (start == len) {
""
} else {
/* If we get here, 0 <= start < len, so the original string is not empty.
* We also know that charAt(start) > ' '.
*/
var end = len
while (charAt(end - 1) <= ' ') // no need for a bounds check here since charAt(start) > ' '
end -= 1
if (start == 0 && end == len) thisString
else substring(start, end)
}
}
@inline
override def toString(): String =
thisString
}
object _String { // scalastyle:ignore
final lazy val CASE_INSENSITIVE_ORDER: Comparator[String] = {
new Comparator[String] with Serializable {
def compare(o1: String, o2: String): Int = o1.compareToIgnoreCase(o2)
}
}
// Constructors
def `new`(): String = ""
def `new`(value: Array[Char]): String =
`new`(value, 0, value.length)
def `new`(value: Array[Char], offset: Int, count: Int): String = {
val end = offset + count
if (offset < 0 || end < offset || end > value.length)
throw new StringIndexOutOfBoundsException
var result = ""
var i = offset
while (i != end) {
result += value(i).toString
i += 1
}
result
}
def `new`(bytes: Array[scala.Byte]): String =
`new`(bytes, Charset.defaultCharset)
def `new`(bytes: Array[scala.Byte], charsetName: String): String =
`new`(bytes, Charset.forName(charsetName))
def `new`(bytes: Array[scala.Byte], charset: Charset): String =
charset.decode(ByteBuffer.wrap(bytes)).toString()
def `new`(bytes: Array[scala.Byte], offset: Int, length: Int): String =
`new`(bytes, offset, length, Charset.defaultCharset)
def `new`(bytes: Array[scala.Byte], offset: Int, length: Int,
charsetName: String): String =
`new`(bytes, offset, length, Charset.forName(charsetName))
def `new`(bytes: Array[scala.Byte], offset: Int, length: Int,
charset: Charset): String =
charset.decode(ByteBuffer.wrap(bytes, offset, length)).toString()
def `new`(codePoints: Array[Int], offset: Int, count: Int): String = {
val end = offset + count
if (offset < 0 || end < offset || end > codePoints.length)
throw new StringIndexOutOfBoundsException
var result = ""
var i = offset
while (i != end) {
result += Character.toString(codePoints(i))
i += 1
}
result
}
def `new`(original: String): String = {
if (original == null)
throw new NullPointerException
original
}
def `new`(buffer: java.lang.StringBuffer): String =
buffer.toString
def `new`(builder: java.lang.StringBuilder): String =
builder.toString
// Static methods (aka methods on the companion object)
def valueOf(b: scala.Boolean): String = b.toString()
def valueOf(c: scala.Char): String = c.toString()
def valueOf(i: scala.Int): String = i.toString()
def valueOf(l: scala.Long): String = l.toString()
def valueOf(f: scala.Float): String = f.toString()
def valueOf(d: scala.Double): String = d.toString()
@inline def valueOf(obj: Object): String =
"" + obj // if (obj eq null), returns "null"
def valueOf(data: Array[Char]): String =
valueOf(data, 0, data.length)
def valueOf(data: Array[Char], offset: Int, count: Int): String =
`new`(data, offset, count)
def format(format: String, args: Array[AnyRef]): String =
new java.util.Formatter().format(format, args: _*).toString()
def format(l: Locale, format: String, args: Array[AnyRef]): String =
new java.util.Formatter(l).format(format, args: _*).toString()
}
|
gzm0/scala-js
|
javalanglib/src/main/scala/java/lang/_String.scala
|
Scala
|
apache-2.0
| 26,063 |
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.io.Closeable
import java.util.concurrent.atomic.AtomicReference
import scala.collection.JavaConverters._
import scala.reflect.runtime.universe.TypeTag
import scala.util.control.NonFatal
import org.apache.spark.{SPARK_VERSION, SparkConf, SparkContext, TaskContext}
import org.apache.spark.annotation.{DeveloperApi, Evolving, Experimental, Stable, Unstable}
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.scheduler.{SparkListener, SparkListenerApplicationEnd}
import org.apache.spark.sql.catalog.Catalog
import org.apache.spark.sql.catalyst._
import org.apache.spark.sql.catalyst.analysis.UnresolvedRelation
import org.apache.spark.sql.catalyst.encoders._
import org.apache.spark.sql.catalyst.expressions.AttributeReference
import org.apache.spark.sql.catalyst.plans.logical.{LocalRelation, Range}
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.datasources.LogicalRelation
import org.apache.spark.sql.internal._
import org.apache.spark.sql.internal.StaticSQLConf.CATALOG_IMPLEMENTATION
import org.apache.spark.sql.sources.BaseRelation
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.types.{DataType, StructType}
import org.apache.spark.sql.util.ExecutionListenerManager
import org.apache.spark.util.{CallSite, Utils}
/**
* The entry point to programming Spark with the Dataset and DataFrame API.
*
* In environments that this has been created upfront (e.g. REPL, notebooks), use the builder
* to get an existing session:
*
* {{{
* SparkSession.builder().getOrCreate()
* }}}
*
* The builder can also be used to create a new session:
*
* {{{
* SparkSession.builder
* .master("local")
* .appName("Word Count")
* .config("spark.some.config.option", "some-value")
* .getOrCreate()
* }}}
*
* @param sparkContext The Spark context associated with this Spark session.
* @param existingSharedState If supplied, use the existing shared state
* instead of creating a new one.
* @param parentSessionState If supplied, inherit all session state (i.e. temporary
* views, SQL config, UDFs etc) from parent.
*/
@Stable
class SparkSession private(
@transient val sparkContext: SparkContext,
@transient private val existingSharedState: Option[SharedState],
@transient private val parentSessionState: Option[SessionState],
@transient private[sql] val extensions: SparkSessionExtensions)
extends Serializable with Closeable with Logging { self =>
// The call site where this SparkSession was constructed.
private val creationSite: CallSite = Utils.getCallSite()
/**
* Constructor used in Pyspark. Contains explicit application of Spark Session Extensions
* which otherwise only occurs during getOrCreate. We cannot add this to the default constructor
* since that would cause every new session to reinvoke Spark Session Extensions on the currently
* running extensions.
*/
private[sql] def this(sc: SparkContext) {
this(sc, None, None,
SparkSession.applyExtensions(
sc.getConf.get(StaticSQLConf.SPARK_SESSION_EXTENSIONS),
new SparkSessionExtensions))
}
sparkContext.assertNotStopped()
// If there is no active SparkSession, uses the default SQL conf. Otherwise, use the session's.
SQLConf.setSQLConfGetter(() => {
SparkSession.getActiveSession.filterNot(_.sparkContext.isStopped).map(_.sessionState.conf)
.getOrElse(SQLConf.getFallbackConf)
})
/**
* The version of Spark on which this application is running.
*
* @since 2.0.0
*/
def version: String = SPARK_VERSION
/* ----------------------- *
| Session-related state |
* ----------------------- */
/**
* State shared across sessions, including the `SparkContext`, cached data, listener,
* and a catalog that interacts with external systems.
*
* This is internal to Spark and there is no guarantee on interface stability.
*
* @since 2.2.0
*/
@Unstable
@transient
lazy val sharedState: SharedState = {
existingSharedState.getOrElse(new SharedState(sparkContext))
}
/**
* Initial options for session. This options are applied once when sessionState is created.
*/
@transient
private[sql] val initialSessionOptions = new scala.collection.mutable.HashMap[String, String]
/**
* State isolated across sessions, including SQL configurations, temporary tables, registered
* functions, and everything else that accepts a [[org.apache.spark.sql.internal.SQLConf]].
* If `parentSessionState` is not null, the `SessionState` will be a copy of the parent.
*
* This is internal to Spark and there is no guarantee on interface stability.
*
* @since 2.2.0
*/
@Unstable
@transient
lazy val sessionState: SessionState = {
parentSessionState
.map(_.clone(this))
.getOrElse {
val state = SparkSession.instantiateSessionState(
SparkSession.sessionStateClassName(sparkContext.conf),
self)
initialSessionOptions.foreach { case (k, v) => state.conf.setConfString(k, v) }
state
}
}
/**
* A wrapped version of this session in the form of a [[SQLContext]], for backward compatibility.
*
* @since 2.0.0
*/
@transient
val sqlContext: SQLContext = new SQLContext(this)
/**
* Runtime configuration interface for Spark.
*
* This is the interface through which the user can get and set all Spark and Hadoop
* configurations that are relevant to Spark SQL. When getting the value of a config,
* this defaults to the value set in the underlying `SparkContext`, if any.
*
* @since 2.0.0
*/
@transient lazy val conf: RuntimeConfig = new RuntimeConfig(sessionState.conf)
/**
* :: Experimental ::
* An interface to register custom [[org.apache.spark.sql.util.QueryExecutionListener]]s
* that listen for execution metrics.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def listenerManager: ExecutionListenerManager = sessionState.listenerManager
/**
* :: Experimental ::
* A collection of methods that are considered experimental, but can be used to hook into
* the query planner for advanced functionality.
*
* @since 2.0.0
*/
@Experimental
@Unstable
def experimental: ExperimentalMethods = sessionState.experimentalMethods
/**
* A collection of methods for registering user-defined functions (UDF).
*
* The following example registers a Scala closure as UDF:
* {{{
* sparkSession.udf.register("myUDF", (arg1: Int, arg2: String) => arg2 + arg1)
* }}}
*
* The following example registers a UDF in Java:
* {{{
* sparkSession.udf().register("myUDF",
* (Integer arg1, String arg2) -> arg2 + arg1,
* DataTypes.StringType);
* }}}
*
* @note The user-defined functions must be deterministic. Due to optimization,
* duplicate invocations may be eliminated or the function may even be invoked more times than
* it is present in the query.
*
* @since 2.0.0
*/
def udf: UDFRegistration = sessionState.udfRegistration
/**
* :: Experimental ::
* Returns a `StreamingQueryManager` that allows managing all the
* `StreamingQuery`s active on `this`.
*
* @since 2.0.0
*/
@Experimental
@Unstable
def streams: StreamingQueryManager = sessionState.streamingQueryManager
/**
* Start a new session with isolated SQL configurations, temporary tables, registered
* functions are isolated, but sharing the underlying `SparkContext` and cached data.
*
* @note Other than the `SparkContext`, all shared state is initialized lazily.
* This method will force the initialization of the shared state to ensure that parent
* and child sessions are set up with the same shared state. If the underlying catalog
* implementation is Hive, this will initialize the metastore, which may take some time.
*
* @since 2.0.0
*/
def newSession(): SparkSession = {
new SparkSession(sparkContext, Some(sharedState), parentSessionState = None, extensions)
}
/**
* Create an identical copy of this `SparkSession`, sharing the underlying `SparkContext`
* and shared state. All the state of this session (i.e. SQL configurations, temporary tables,
* registered functions) is copied over, and the cloned session is set up with the same shared
* state as this session. The cloned session is independent of this session, that is, any
* non-global change in either session is not reflected in the other.
*
* @note Other than the `SparkContext`, all shared state is initialized lazily.
* This method will force the initialization of the shared state to ensure that parent
* and child sessions are set up with the same shared state. If the underlying catalog
* implementation is Hive, this will initialize the metastore, which may take some time.
*/
private[sql] def cloneSession(): SparkSession = {
val result = new SparkSession(sparkContext, Some(sharedState), Some(sessionState), extensions)
result.sessionState // force copy of SessionState
result
}
/* --------------------------------- *
| Methods for creating DataFrames |
* --------------------------------- */
/**
* Returns a `DataFrame` with no rows or columns.
*
* @since 2.0.0
*/
@transient
lazy val emptyDataFrame: DataFrame = {
createDataFrame(sparkContext.emptyRDD[Row].setName("empty"), StructType(Nil))
}
/**
* :: Experimental ::
* Creates a new [[Dataset]] of type T containing zero elements.
*
* @return 2.0.0
*/
@Experimental
@Evolving
def emptyDataset[T: Encoder]: Dataset[T] = {
val encoder = implicitly[Encoder[T]]
new Dataset(self, LocalRelation(encoder.schema.toAttributes), encoder)
}
/**
* :: Experimental ::
* Creates a `DataFrame` from an RDD of Product (e.g. case classes, tuples).
*
* @since 2.0.0
*/
@Experimental
@Evolving
def createDataFrame[A <: Product : TypeTag](rdd: RDD[A]): DataFrame = {
SparkSession.setActiveSession(this)
val encoder = Encoders.product[A]
Dataset.ofRows(self, ExternalRDD(rdd, self)(encoder))
}
/**
* :: Experimental ::
* Creates a `DataFrame` from a local Seq of Product.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def createDataFrame[A <: Product : TypeTag](data: Seq[A]): DataFrame = {
SparkSession.setActiveSession(this)
val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType]
val attributeSeq = schema.toAttributes
Dataset.ofRows(self, LocalRelation.fromProduct(attributeSeq, data))
}
/**
* :: DeveloperApi ::
* Creates a `DataFrame` from an `RDD` containing [[Row]]s using the given schema.
* It is important to make sure that the structure of every [[Row]] of the provided RDD matches
* the provided schema. Otherwise, there will be runtime exception.
* Example:
* {{{
* import org.apache.spark.sql._
* import org.apache.spark.sql.types._
* val sparkSession = new org.apache.spark.sql.SparkSession(sc)
*
* val schema =
* StructType(
* StructField("name", StringType, false) ::
* StructField("age", IntegerType, true) :: Nil)
*
* val people =
* sc.textFile("examples/src/main/resources/people.txt").map(
* _.split(",")).map(p => Row(p(0), p(1).trim.toInt))
* val dataFrame = sparkSession.createDataFrame(people, schema)
* dataFrame.printSchema
* // root
* // |-- name: string (nullable = false)
* // |-- age: integer (nullable = true)
*
* dataFrame.createOrReplaceTempView("people")
* sparkSession.sql("select name from people").collect.foreach(println)
* }}}
*
* @since 2.0.0
*/
@DeveloperApi
@Evolving
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
createDataFrame(rowRDD, schema, needsConversion = true)
}
/**
* :: DeveloperApi ::
* Creates a `DataFrame` from a `JavaRDD` containing [[Row]]s using the given schema.
* It is important to make sure that the structure of every [[Row]] of the provided RDD matches
* the provided schema. Otherwise, there will be runtime exception.
*
* @since 2.0.0
*/
@DeveloperApi
@Evolving
def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame = {
createDataFrame(rowRDD.rdd, schema)
}
/**
* :: DeveloperApi ::
* Creates a `DataFrame` from a `java.util.List` containing [[Row]]s using the given schema.
* It is important to make sure that the structure of every [[Row]] of the provided List matches
* the provided schema. Otherwise, there will be runtime exception.
*
* @since 2.0.0
*/
@DeveloperApi
@Evolving
def createDataFrame(rows: java.util.List[Row], schema: StructType): DataFrame = {
Dataset.ofRows(self, LocalRelation.fromExternalRows(schema.toAttributes, rows.asScala))
}
/**
* Applies a schema to an RDD of Java Beans.
*
* WARNING: Since there is no guaranteed ordering for fields in a Java Bean,
* SELECT * queries will return the columns in an undefined order.
*
* @since 2.0.0
*/
def createDataFrame(rdd: RDD[_], beanClass: Class[_]): DataFrame = {
val attributeSeq: Seq[AttributeReference] = getSchema(beanClass)
val className = beanClass.getName
val rowRdd = rdd.mapPartitions { iter =>
// BeanInfo is not serializable so we must rediscover it remotely for each partition.
SQLContext.beansToRows(iter, Utils.classForName(className), attributeSeq)
}
Dataset.ofRows(self, LogicalRDD(attributeSeq, rowRdd.setName(rdd.name))(self))
}
/**
* Applies a schema to an RDD of Java Beans.
*
* WARNING: Since there is no guaranteed ordering for fields in a Java Bean,
* SELECT * queries will return the columns in an undefined order.
*
* @since 2.0.0
*/
def createDataFrame(rdd: JavaRDD[_], beanClass: Class[_]): DataFrame = {
createDataFrame(rdd.rdd, beanClass)
}
/**
* Applies a schema to a List of Java Beans.
*
* WARNING: Since there is no guaranteed ordering for fields in a Java Bean,
* SELECT * queries will return the columns in an undefined order.
* @since 1.6.0
*/
def createDataFrame(data: java.util.List[_], beanClass: Class[_]): DataFrame = {
val attrSeq = getSchema(beanClass)
val rows = SQLContext.beansToRows(data.asScala.iterator, beanClass, attrSeq)
Dataset.ofRows(self, LocalRelation(attrSeq, rows.toSeq))
}
/**
* Convert a `BaseRelation` created for external data sources into a `DataFrame`.
*
* @since 2.0.0
*/
def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame = {
Dataset.ofRows(self, LogicalRelation(baseRelation))
}
/* ------------------------------- *
| Methods for creating DataSets |
* ------------------------------- */
/**
* :: Experimental ::
* Creates a [[Dataset]] from a local Seq of data of a given type. This method requires an
* encoder (to convert a JVM object of type `T` to and from the internal Spark SQL representation)
* that is generally created automatically through implicits from a `SparkSession`, or can be
* created explicitly by calling static methods on [[Encoders]].
*
* == Example ==
*
* {{{
*
* import spark.implicits._
* case class Person(name: String, age: Long)
* val data = Seq(Person("Michael", 29), Person("Andy", 30), Person("Justin", 19))
* val ds = spark.createDataset(data)
*
* ds.show()
* // +-------+---+
* // | name|age|
* // +-------+---+
* // |Michael| 29|
* // | Andy| 30|
* // | Justin| 19|
* // +-------+---+
* }}}
*
* @since 2.0.0
*/
@Experimental
@Evolving
def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = {
val enc = encoderFor[T]
val attributes = enc.schema.toAttributes
val encoded = data.map(d => enc.toRow(d).copy())
val plan = new LocalRelation(attributes, encoded)
Dataset[T](self, plan)
}
/**
* :: Experimental ::
* Creates a [[Dataset]] from an RDD of a given type. This method requires an
* encoder (to convert a JVM object of type `T` to and from the internal Spark SQL representation)
* that is generally created automatically through implicits from a `SparkSession`, or can be
* created explicitly by calling static methods on [[Encoders]].
*
* @since 2.0.0
*/
@Experimental
@Evolving
def createDataset[T : Encoder](data: RDD[T]): Dataset[T] = {
Dataset[T](self, ExternalRDD(data, self))
}
/**
* :: Experimental ::
* Creates a [[Dataset]] from a `java.util.List` of a given type. This method requires an
* encoder (to convert a JVM object of type `T` to and from the internal Spark SQL representation)
* that is generally created automatically through implicits from a `SparkSession`, or can be
* created explicitly by calling static methods on [[Encoders]].
*
* == Java Example ==
*
* {{{
* List<String> data = Arrays.asList("hello", "world");
* Dataset<String> ds = spark.createDataset(data, Encoders.STRING());
* }}}
*
* @since 2.0.0
*/
@Experimental
@Evolving
def createDataset[T : Encoder](data: java.util.List[T]): Dataset[T] = {
createDataset(data.asScala)
}
/**
* :: Experimental ::
* Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
* in a range from 0 to `end` (exclusive) with step value 1.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def range(end: Long): Dataset[java.lang.Long] = range(0, end)
/**
* :: Experimental ::
* Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
* in a range from `start` to `end` (exclusive) with step value 1.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def range(start: Long, end: Long): Dataset[java.lang.Long] = {
range(start, end, step = 1, numPartitions = sparkContext.defaultParallelism)
}
/**
* :: Experimental ::
* Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
* in a range from `start` to `end` (exclusive) with a step value.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def range(start: Long, end: Long, step: Long): Dataset[java.lang.Long] = {
range(start, end, step, numPartitions = sparkContext.defaultParallelism)
}
/**
* :: Experimental ::
* Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
* in a range from `start` to `end` (exclusive) with a step value, with partition number
* specified.
*
* @since 2.0.0
*/
@Experimental
@Evolving
def range(start: Long, end: Long, step: Long, numPartitions: Int): Dataset[java.lang.Long] = {
new Dataset(self, Range(start, end, step, numPartitions), Encoders.LONG)
}
/**
* Creates a `DataFrame` from an `RDD[InternalRow]`.
*/
private[sql] def internalCreateDataFrame(
catalystRows: RDD[InternalRow],
schema: StructType,
isStreaming: Boolean = false): DataFrame = {
// TODO: use MutableProjection when rowRDD is another DataFrame and the applied
// schema differs from the existing schema on any field data type.
val logicalPlan = LogicalRDD(
schema.toAttributes,
catalystRows,
isStreaming = isStreaming)(self)
Dataset.ofRows(self, logicalPlan)
}
/**
* Creates a `DataFrame` from an `RDD[Row]`.
* User can specify whether the input rows should be converted to Catalyst rows.
*/
private[sql] def createDataFrame(
rowRDD: RDD[Row],
schema: StructType,
needsConversion: Boolean) = {
// TODO: use MutableProjection when rowRDD is another DataFrame and the applied
// schema differs from the existing schema on any field data type.
val catalystRows = if (needsConversion) {
val encoder = RowEncoder(schema)
rowRDD.map(encoder.toRow)
} else {
rowRDD.map { r: Row => InternalRow.fromSeq(r.toSeq) }
}
internalCreateDataFrame(catalystRows.setName(rowRDD.name), schema)
}
/* ------------------------- *
| Catalog-related methods |
* ------------------------- */
/**
* Interface through which the user may create, drop, alter or query underlying
* databases, tables, functions etc.
*
* @since 2.0.0
*/
@transient lazy val catalog: Catalog = new CatalogImpl(self)
/**
* Returns the specified table/view as a `DataFrame`.
*
* @param tableName is either a qualified or unqualified name that designates a table or view.
* If a database is specified, it identifies the table/view from the database.
* Otherwise, it first attempts to find a temporary view with the given name
* and then match the table/view from the current database.
* Note that, the global temporary view database is also valid here.
* @since 2.0.0
*/
def table(tableName: String): DataFrame = {
table(sessionState.sqlParser.parseTableIdentifier(tableName))
}
private[sql] def table(tableIdent: TableIdentifier): DataFrame = {
Dataset.ofRows(self, UnresolvedRelation(tableIdent))
}
/* ----------------- *
| Everything else |
* ----------------- */
/**
* Executes a SQL query using Spark, returning the result as a `DataFrame`.
* The dialect that is used for SQL parsing can be configured with 'spark.sql.dialect'.
*
* @since 2.0.0
*/
def sql(sqlText: String): DataFrame = {
val tracker = new QueryPlanningTracker
val plan = tracker.measurePhase(QueryPlanningTracker.PARSING) {
sessionState.sqlParser.parsePlan(sqlText)
}
Dataset.ofRows(self, plan, tracker)
}
/**
* Returns a [[DataFrameReader]] that can be used to read non-streaming data in as a
* `DataFrame`.
* {{{
* sparkSession.read.parquet("/path/to/file.parquet")
* sparkSession.read.schema(schema).json("/path/to/file.json")
* }}}
*
* @since 2.0.0
*/
def read: DataFrameReader = new DataFrameReader(self)
/**
* Returns a `DataStreamReader` that can be used to read streaming data in as a `DataFrame`.
* {{{
* sparkSession.readStream.parquet("/path/to/directory/of/parquet/files")
* sparkSession.readStream.schema(schema).json("/path/to/directory/of/json/files")
* }}}
*
* @since 2.0.0
*/
@Evolving
def readStream: DataStreamReader = new DataStreamReader(self)
/**
* Executes some code block and prints to stdout the time taken to execute the block. This is
* available in Scala only and is used primarily for interactive testing and debugging.
*
* @since 2.1.0
*/
def time[T](f: => T): T = {
val start = System.nanoTime()
val ret = f
val end = System.nanoTime()
// scalastyle:off println
println(s"Time taken: ${(end - start) / 1000 / 1000} ms")
// scalastyle:on println
ret
}
// scalastyle:off
// Disable style checker so "implicits" object can start with lowercase i
/**
* :: Experimental ::
* (Scala-specific) Implicit methods available in Scala for converting
* common Scala objects into `DataFrame`s.
*
* {{{
* val sparkSession = SparkSession.builder.getOrCreate()
* import sparkSession.implicits._
* }}}
*
* @since 2.0.0
*/
@Experimental
@Evolving
object implicits extends SQLImplicits with Serializable {
protected override def _sqlContext: SQLContext = SparkSession.this.sqlContext
}
// scalastyle:on
/**
* Stop the underlying `SparkContext`.
*
* @since 2.0.0
*/
def stop(): Unit = {
sparkContext.stop()
}
/**
* Synonym for `stop()`.
*
* @since 2.1.0
*/
override def close(): Unit = stop()
/**
* Parses the data type in our internal string representation. The data type string should
* have the same format as the one generated by `toString` in scala.
* It is only used by PySpark.
*/
protected[sql] def parseDataType(dataTypeString: String): DataType = {
DataType.fromJson(dataTypeString)
}
/**
* Apply a schema defined by the schemaString to an RDD. It is only used by PySpark.
*/
private[sql] def applySchemaToPythonRDD(
rdd: RDD[Array[Any]],
schemaString: String): DataFrame = {
val schema = DataType.fromJson(schemaString).asInstanceOf[StructType]
applySchemaToPythonRDD(rdd, schema)
}
/**
* Apply `schema` to an RDD.
*
* @note Used by PySpark only
*/
private[sql] def applySchemaToPythonRDD(
rdd: RDD[Array[Any]],
schema: StructType): DataFrame = {
val rowRdd = rdd.mapPartitions { iter =>
val fromJava = python.EvaluatePython.makeFromJava(schema)
iter.map(r => fromJava(r).asInstanceOf[InternalRow])
}
internalCreateDataFrame(rowRdd, schema)
}
/**
* Returns a Catalyst Schema for the given java bean class.
*/
private def getSchema(beanClass: Class[_]): Seq[AttributeReference] = {
val (dataType, _) = JavaTypeInference.inferDataType(beanClass)
dataType.asInstanceOf[StructType].fields.map { f =>
AttributeReference(f.name, f.dataType, f.nullable)()
}
}
}
@Stable
object SparkSession extends Logging {
/**
* Builder for [[SparkSession]].
*/
@Stable
class Builder extends Logging {
private[this] val options = new scala.collection.mutable.HashMap[String, String]
private[this] val extensions = new SparkSessionExtensions
private[this] var userSuppliedContext: Option[SparkContext] = None
private[spark] def sparkContext(sparkContext: SparkContext): Builder = synchronized {
userSuppliedContext = Option(sparkContext)
this
}
/**
* Sets a name for the application, which will be shown in the Spark web UI.
* If no application name is set, a randomly generated name will be used.
*
* @since 2.0.0
*/
def appName(name: String): Builder = config("spark.app.name", name)
/**
* Sets a config option. Options set using this method are automatically propagated to
* both `SparkConf` and SparkSession's own configuration.
*
* @since 2.0.0
*/
def config(key: String, value: String): Builder = synchronized {
options += key -> value
this
}
/**
* Sets a config option. Options set using this method are automatically propagated to
* both `SparkConf` and SparkSession's own configuration.
*
* @since 2.0.0
*/
def config(key: String, value: Long): Builder = synchronized {
options += key -> value.toString
this
}
/**
* Sets a config option. Options set using this method are automatically propagated to
* both `SparkConf` and SparkSession's own configuration.
*
* @since 2.0.0
*/
def config(key: String, value: Double): Builder = synchronized {
options += key -> value.toString
this
}
/**
* Sets a config option. Options set using this method are automatically propagated to
* both `SparkConf` and SparkSession's own configuration.
*
* @since 2.0.0
*/
def config(key: String, value: Boolean): Builder = synchronized {
options += key -> value.toString
this
}
/**
* Sets a list of config options based on the given `SparkConf`.
*
* @since 2.0.0
*/
def config(conf: SparkConf): Builder = synchronized {
conf.getAll.foreach { case (k, v) => options += k -> v }
this
}
/**
* Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to
* run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster.
*
* @since 2.0.0
*/
def master(master: String): Builder = config("spark.master", master)
/**
* Enables Hive support, including connectivity to a persistent Hive metastore, support for
* Hive serdes, and Hive user-defined functions.
*
* @since 2.0.0
*/
def enableHiveSupport(): Builder = synchronized {
if (hiveClassesArePresent) {
config(CATALOG_IMPLEMENTATION.key, "hive")
} else {
throw new IllegalArgumentException(
"Unable to instantiate SparkSession with Hive support because " +
"Hive classes are not found.")
}
}
/**
* Inject extensions into the [[SparkSession]]. This allows a user to add Analyzer rules,
* Optimizer rules, Planning Strategies or a customized parser.
*
* @since 2.2.0
*/
def withExtensions(f: SparkSessionExtensions => Unit): Builder = synchronized {
f(extensions)
this
}
/**
* Gets an existing [[SparkSession]] or, if there is no existing one, creates a new
* one based on the options set in this builder.
*
* This method first checks whether there is a valid thread-local SparkSession,
* and if yes, return that one. It then checks whether there is a valid global
* default SparkSession, and if yes, return that one. If no valid global default
* SparkSession exists, the method creates a new SparkSession and assigns the
* newly created SparkSession as the global default.
*
* In case an existing SparkSession is returned, the config options specified in
* this builder will be applied to the existing SparkSession.
*
* @since 2.0.0
*/
def getOrCreate(): SparkSession = synchronized {
assertOnDriver()
// Get the session from current thread's active session.
var session = activeThreadSession.get()
if ((session ne null) && !session.sparkContext.isStopped) {
options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
if (options.nonEmpty) {
logWarning("Using an existing SparkSession; some configuration may not take effect.")
}
return session
}
// Global synchronization so we will only set the default session once.
SparkSession.synchronized {
// If the current thread does not have an active session, get it from the global session.
session = defaultSession.get()
if ((session ne null) && !session.sparkContext.isStopped) {
options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
if (options.nonEmpty) {
logWarning("Using an existing SparkSession; some configuration may not take effect.")
}
return session
}
// No active nor global default session. Create a new one.
val sparkContext = userSuppliedContext.getOrElse {
val sparkConf = new SparkConf()
options.foreach { case (k, v) => sparkConf.set(k, v) }
// set a random app name if not given.
if (!sparkConf.contains("spark.app.name")) {
sparkConf.setAppName(java.util.UUID.randomUUID().toString)
}
SparkContext.getOrCreate(sparkConf)
// Do not update `SparkConf` for existing `SparkContext`, as it's shared by all sessions.
}
applyExtensions(
sparkContext.getConf.get(StaticSQLConf.SPARK_SESSION_EXTENSIONS),
extensions)
session = new SparkSession(sparkContext, None, None, extensions)
options.foreach { case (k, v) => session.initialSessionOptions.put(k, v) }
setDefaultSession(session)
setActiveSession(session)
// Register a successfully instantiated context to the singleton. This should be at the
// end of the class definition so that the singleton is updated only if there is no
// exception in the construction of the instance.
sparkContext.addSparkListener(new SparkListener {
override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = {
defaultSession.set(null)
}
})
}
return session
}
}
/**
* Creates a [[SparkSession.Builder]] for constructing a [[SparkSession]].
*
* @since 2.0.0
*/
def builder(): Builder = new Builder
/**
* Changes the SparkSession that will be returned in this thread and its children when
* SparkSession.getOrCreate() is called. This can be used to ensure that a given thread receives
* a SparkSession with an isolated session, instead of the global (first created) context.
*
* @since 2.0.0
*/
def setActiveSession(session: SparkSession): Unit = {
activeThreadSession.set(session)
}
/**
* Clears the active SparkSession for current thread. Subsequent calls to getOrCreate will
* return the first created context instead of a thread-local override.
*
* @since 2.0.0
*/
def clearActiveSession(): Unit = {
activeThreadSession.remove()
}
/**
* Sets the default SparkSession that is returned by the builder.
*
* @since 2.0.0
*/
def setDefaultSession(session: SparkSession): Unit = {
defaultSession.set(session)
}
/**
* Clears the default SparkSession that is returned by the builder.
*
* @since 2.0.0
*/
def clearDefaultSession(): Unit = {
defaultSession.set(null)
}
/**
* Returns the active SparkSession for the current thread, returned by the builder.
*
* @note Return None, when calling this function on executors
*
* @since 2.2.0
*/
def getActiveSession: Option[SparkSession] = {
if (TaskContext.get != null) {
// Return None when running on executors.
None
} else {
Option(activeThreadSession.get)
}
}
/**
* Returns the default SparkSession that is returned by the builder.
*
* @note Return None, when calling this function on executors
*
* @since 2.2.0
*/
def getDefaultSession: Option[SparkSession] = {
if (TaskContext.get != null) {
// Return None when running on executors.
None
} else {
Option(defaultSession.get)
}
}
/**
* Returns the currently active SparkSession, otherwise the default one. If there is no default
* SparkSession, throws an exception.
*
* @since 2.4.0
*/
def active: SparkSession = {
getActiveSession.getOrElse(getDefaultSession.getOrElse(
throw new IllegalStateException("No active or default Spark session found")))
}
////////////////////////////////////////////////////////////////////////////////////////
// Private methods from now on
////////////////////////////////////////////////////////////////////////////////////////
/** The active SparkSession for the current thread. */
private val activeThreadSession = new InheritableThreadLocal[SparkSession]
/** Reference to the root SparkSession. */
private val defaultSession = new AtomicReference[SparkSession]
private val HIVE_SESSION_STATE_BUILDER_CLASS_NAME =
"org.apache.spark.sql.hive.HiveSessionStateBuilder"
private def sessionStateClassName(conf: SparkConf): String = {
conf.get(CATALOG_IMPLEMENTATION) match {
case "hive" => HIVE_SESSION_STATE_BUILDER_CLASS_NAME
case "in-memory" => classOf[SessionStateBuilder].getCanonicalName
}
}
private def assertOnDriver(): Unit = {
if (Utils.isTesting && TaskContext.get != null) {
// we're accessing it during task execution, fail.
throw new IllegalStateException(
"SparkSession should only be created and accessed on the driver.")
}
}
/**
* Helper method to create an instance of `SessionState` based on `className` from conf.
* The result is either `SessionState` or a Hive based `SessionState`.
*/
private def instantiateSessionState(
className: String,
sparkSession: SparkSession): SessionState = {
try {
// invoke `new [Hive]SessionStateBuilder(SparkSession, Option[SessionState])`
val clazz = Utils.classForName(className)
val ctor = clazz.getConstructors.head
ctor.newInstance(sparkSession, None).asInstanceOf[BaseSessionStateBuilder].build()
} catch {
case NonFatal(e) =>
throw new IllegalArgumentException(s"Error while instantiating '$className':", e)
}
}
/**
* @return true if Hive classes can be loaded, otherwise false.
*/
private[spark] def hiveClassesArePresent: Boolean = {
try {
Utils.classForName(HIVE_SESSION_STATE_BUILDER_CLASS_NAME)
Utils.classForName("org.apache.hadoop.hive.conf.HiveConf")
true
} catch {
case _: ClassNotFoundException | _: NoClassDefFoundError => false
}
}
private[spark] def cleanupAnyExistingSession(): Unit = {
val session = getActiveSession.orElse(getDefaultSession)
if (session.isDefined) {
logWarning(
s"""An existing Spark session exists as the active or default session.
|This probably means another suite leaked it. Attempting to stop it before continuing.
|This existing Spark session was created at:
|
|${session.get.creationSite.longForm}
|
""".stripMargin)
session.get.stop()
SparkSession.clearActiveSession()
SparkSession.clearDefaultSession()
}
}
/**
* Initialize extensions for given extension classname. This class will be applied to the
* extensions passed into this function.
*/
private def applyExtensions(
extensionOption: Option[String],
extensions: SparkSessionExtensions): SparkSessionExtensions = {
if (extensionOption.isDefined) {
val extensionConfClassName = extensionOption.get
try {
val extensionConfClass = Utils.classForName(extensionConfClassName)
val extensionConf = extensionConfClass.getConstructor().newInstance()
.asInstanceOf[SparkSessionExtensions => Unit]
extensionConf(extensions)
} catch {
// Ignore the error if we cannot find the class or when the class has the wrong type.
case e@(_: ClassCastException |
_: ClassNotFoundException |
_: NoClassDefFoundError) =>
logWarning(s"Cannot use $extensionConfClassName to configure session extensions.", e)
}
}
extensions
}
}
|
guoxiaolongzte/spark
|
sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala
|
Scala
|
apache-2.0
| 39,062 |
/*
* (C) Copyright IBM Corp. 2015
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package src.main.scala;
import org.apache.log4j.Logger
import org.apache.log4j.Level
import scala.language.postfixOps
import scala.util.Random
import org.jblas.DoubleMatrix
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{ SparkContext, SparkConf}
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import java.io._
/**
* Generate RDD(s) containing data for Matrix Factorization.
*
* This method samples training entries according to the oversampling factor
* 'trainSampFact', which is a multiplicative factor of the number of
* degrees of freedom of the matrix: rank*(m+n-rank).
*
* It optionally samples entries for a testing matrix using
* 'testSampFact', the percentage of the number of training entries
* to use for testing.
*
* This method takes the following inputs:
* outputPath (String) Directory to save output.
* m (Int) Number of rows in data matrix.
* n (Int) Number of columns in data matrix.
* rank (Int) Underlying rank of data matrix.
* trainSampFact (Double) Oversampling factor.
* noise (Boolean) Whether to add gaussian noise to training data.
* sigma (Double) Standard deviation of added gaussian noise.
* test (Boolean) Whether to create testing RDD.
* testSampFact (Double) Percentage of training data to use as test data.
* numPar (Int) Number of partitions of input data file
*/
object MFDataGenerator {
def main(args: Array[String]) {
if (args.length < 1) {
println("Usage: MFDataGenerator " +
"<outputDir> [m] [n] [rank] [trainSampFact] [noise] [sigma] [test] [testSampFact] [numPar]")
System.exit(1)
}
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val outputPath: String = args(0)
val m: Int = if (args.length > 1) args(1).toInt else 100
val n: Int = if (args.length > 2) args(2).toInt else 100
val rank: Int = if (args.length > 3) args(3).toInt else 10
val trainSampFact: Double = if (args.length > 4) args(4).toDouble else 1.0
val noise: Boolean = if (args.length > 5) args(5).toBoolean else false
val sigma: Double = if (args.length > 6) args(6).toDouble else 0.1
val test: Boolean = if (args.length > 7) args(7).toBoolean else false
val testSampFact: Double = if (args.length > 8) args(8).toDouble else 0.1
val defPar = if (System.getProperty("spark.default.parallelism") == null) 2 else System.getProperty("spark.default.parallelism").toInt
val numPar: Int = if (args.length > 9) args(9).toInt else defPar
val conf = new SparkConf().setAppName("MFDataGenerator")
val sc = new SparkContext(conf)
val A = DoubleMatrix.randn(m, rank)
val B = DoubleMatrix.randn(rank, n)
val z = 1 / scala.math.sqrt(scala.math.sqrt(rank))
A.mmuli(z)
B.mmuli(z)
val fullData = A.mmul(B)
val df = rank * (m + n - rank)
val sampSize = scala.math.min(scala.math.round(trainSampFact * df),
scala.math.round(.99 * m * n)).toInt
val rand = new Random()
val mn = m * n
/*
val canonicalFilename="/mnt/nfs_dir/tmp_data/tmp"
val file = new File(canonicalFilename)
file.delete()
if(!file.exists()) {
file.createNewFile();
}
val bw = new BufferedWriter(new FileWriter(file))
1 to mn foreach {i=> bw.write(i.toString+"\\n");}
bw.flush()
bw.close()
*/
//val shuffled = rand.shuffle(1 to mn toList)
// val shuffled = 1 to mn toList
//val omega = shuffled.slice(0, sampSize)
//val ordered = omega.sortWith(_ < _).toArray
/* val my_rdd=sc.textFile("file://"+canonicalFilename,400) */
val my_rdd=sc.makeRDD(1 to mn, numPar)
my_rdd.persist(StorageLevel.MEMORY_AND_DISK)
val trainData: RDD[(Int, Int, Double)] = my_rdd
.map(x => (fullData.indexRows(x.toInt - 1), fullData.indexColumns(x.toInt - 1), fullData.get(x.toInt - 1)))
// trainData.persist(StorageLevel.MEMORY_AND_DISK)
//val trainData: RDD[(Int, Int, Double)] = sc.parallelize(ordered)
//.map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1)))
// optionally add gaussian noise
if (noise) {
trainData.map(x => (x._1, x._2, x._3 + rand.nextGaussian * sigma))
}
trainData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
// optionally generate testing data
/* if (test) {
val testSampSize = scala.math
.min(scala.math.round(sampSize * testSampFact),scala.math.round(mn - sampSize)).toInt
val testOmega = shuffled.slice(sampSize, sampSize + testSampSize)
val testOrdered = testOmega.sortWith(_ < _).toArray
val testData: RDD[(Int, Int, Double)] = sc.parallelize(testOrdered)
.map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1)))
testData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
}*/
sc.stop()
}
}
|
ElfoLiNk/spark-bench
|
MatrixFactorization/src/main/scala/MFDataGenerator.scala
|
Scala
|
apache-2.0
| 5,643 |
package core
import org.scalatest.{FunSpec, Matchers}
class UtilSpec extends FunSpec with Matchers {
it("namedParametersInPath") {
Util.namedParametersInPath("/users") should be(Seq.empty)
Util.namedParametersInPath("/users/:guid") should be(Seq("guid"))
Util.namedParametersInPath("/users/:guid.json") should be(Seq("guid"))
Util.namedParametersInPath("/:org/foo/:version") should be(Seq("org", "version"))
Util.namedParametersInPath("/:org/:service/:version") should be(Seq("org", "service", "version"))
}
it("isValidEnumValue") {
val service = TestHelper.parseFile(s"spec/apibuilder-api.json").service()
val visibilityEnum = service.enums.find(_.name == "visibility").getOrElse {
sys.error("No visibility enum found")
}
Util.isValidEnumValue(visibilityEnum, "user") should be(true)
Util.isValidEnumValue(visibilityEnum, "organization") should be(true)
Util.isValidEnumValue(visibilityEnum, "foobar") should be(false)
}
it("isValidUri") {
Seq(
"http://www.apidoc.me",
"https://www.apidoc.me",
" http://www.apidoc.me ",
" HTTPS://WWW.APIDOC.ME ",
"http://apidoc.me",
"https://api.apidoc.me",
"file:///tmp/foo.json"
).foreach { uri =>
Util.isValidUri(uri) should be(true)
}
Seq(
"www.apidoc.me",
"apidoc",
"bar baz"
).foreach { uri =>
Util.isValidUri(uri) should be(false)
}
}
}
|
apicollective/apibuilder
|
core/src/test/scala/core/UtilSpec.scala
|
Scala
|
mit
| 1,448 |
package clock
/*
+1>> This source code is licensed as GPLv3 if not stated otherwise.
>> NO responsibility taken for ANY harm, damage done
>> to you, your data, animals, etc.
>>
+2>>
>> Last modified: 2013-10-29 :: 20:37
>> Origin: patterns
>>
+3>>
>> Copyright (c) 2013:
>>
>> | | |
>> | ,---.,---|,---.|---.
>> | | || |`---.| |
>> `---'`---'`---'`---'`---'
>> // Niklas Klügel
>>
+4>>
>> Made in Bavaria by fat little elves - since 1983.
*/
import pattern._
abstract class Clock {
def defaultMusicalDuration : MusicalDuration
def accuracy : MusicalTime
def currentMusicalTime : MusicalTime
def start() : Unit
def kill() : Unit
def pause() : Unit
def schedulePlayer(player: BasePlayer) : Unit
}
abstract class BaseClock extends Clock {
protected var scheduled = Map[Double, Set[BasePlayer]]()
protected val monitor = new Object
protected var bpm = 120f
protected def clockTempoDurationMillis: Long = (bpm2Millis(bpm)*accuracy.toDouble).toLong
protected def bpm2Millis(bpm: Float): Float = {
60000.0f / bpm
}
def accuracy = MusicalDuration(1).d128 // == clock resolution
def defaultMusicalDuration = MusicalDuration(0.5)
protected var _currentMusicalTime = new MusicalTime(1)
// logical time
def currentMusicalTime = _currentMusicalTime
private def nextBeat = 1-(_currentMusicalTime.toDouble % 1.0)
/*
private val runningThread = new Thread(new Runnable {
def run() {
while (running) {
try {
Thread.sleep(clockTempoDurationMillis)
_currentMusicalTime = _currentMusicalTime + accuracy
clock(accuracy.toDouble)
} catch {
case e : Throwable => e.printStackTrace//running = false
}
}
}
})
override def start() = {
running = true
runningThread.start()
}
override def kill() = {
pause()
monitor.synchronized {
scheduled = Map()
}
}
override def pause() = {
running = false
runningThread.interrupt()
}
*/
//TODO: something to synchronize clocks, reset?
override def schedulePlayer(player: BasePlayer) {
// TODO: schedule on next beat
this.schedule(player, nextBeat)
}
protected def schedule(player: BasePlayer, duration: Double) = {
monitor.synchronized {
val s = scheduled.get(duration)
if (!s.isEmpty) {
var set = s.get
// dont permit double triggers
if (!set.contains(player)) {
set = set + player
scheduled = scheduled + (duration -> set)
}
} else {
scheduled = scheduled + (duration -> Set(player))
}
}
}
protected def clock(passedTime: Double) = {
scheduled = scheduled.map({
x => (x._1 - passedTime, x._2)
})
var done = false
while (!done && !scheduled.isEmpty) {
monitor.synchronized {
val currentMin = scheduled.minBy(_._1)
if (currentMin._1 <= accuracy.toDouble) {
scheduled = scheduled - currentMin._1
val set = currentMin._2
// could be dispatched to different threads... or every player
// has own thread/actor??
val nextSet = set.map({x =>
val ctx = x.next(); (ctx, x)
}).filter(! _._1.invalid)
//schedule new set
nextSet.foreach({ x =>
if(!x._1.invalid) {
schedule(x._2, x._1.time.duration.toDouble)
}
})
} else {
done = true
}
}
}
}
}
//TODO fix this mess
class RTClock extends BaseClock {
private var running = false;
private val runningThread = new Thread(new Runnable {
def run() {
while (running) {
try {
Thread.sleep(clockTempoDurationMillis)
_currentMusicalTime = _currentMusicalTime + accuracy
clock(accuracy.toDouble)
} catch {
case e : Throwable => e.printStackTrace//running = false
}
}
}
})
override def start() = {
running = true
runningThread.start()
}
override def kill() = {
pause()
monitor.synchronized {
scheduled = Map()
}
}
override def pause() = {
running = false
runningThread.interrupt()
}
}
class NRTClock extends BaseClock {
def start() {}
def kill() {}
def pause() {}
def render(start: MusicalTime, end: MusicalTime) = {
_currentMusicalTime = start
while(_currentMusicalTime <= end) {
_currentMusicalTime + accuracy
}
}
}
class FakeClock extends Clock{
def defaultMusicalDuration = MusicalDuration(0.5)
def currentMusicalTime = new MusicalTime(0)
def accuracy = new MusicalTime(0.1)
def start() {}
def kill() {}
def pause() {}
def schedulePlayer(player: BasePlayer) {}
}
object FakeClock extends FakeClock
|
lodsb/patterns
|
src/main/scala/pattern/Clock.scala
|
Scala
|
gpl-3.0
| 4,928 |
/* Copyright 2014, 2015 Richard Wiedenhöft <[email protected]>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package xyz.wiedenhoeft.scalacrypt
/* Exceptions MUST never be thrown in this project. They must be
* returned inside a failure.
*/
/** Occurs when invalid padding is encountered. */
class BadPaddingException(message: String) extends Exception("Bad padding: " + message)
/** Occurs when a block of illegal size is given to a block cipher. */
class IllegalBlockSizeException(message: String) extends Exception("Illegal block size: " + message)
/** Occurs when ciphertexts are invalid. */
class InvalidCiphertextException(message: String) extends Exception("Invalid ciphertext: " + message)
/** Occurs when during decryption problems are encountered. */
class DecryptionException(message: String) extends Exception("Decryption: " + message)
/** Occurs when during encryption problems are encountered. */
class EncryptionException(message: String) extends Exception("Encryption: " + message)
/** Occurs when problems are encountered during key creation. */
class KeyException(message: String) extends Exception("Key creation: " + message)
/** Occurs when an iteratee behaves erratically. */
class IterateeException(message: String) extends Exception("Iteratee: " + message)
/** Occurs when a keyed hash fails. */
class KeyedHashException(message: String) extends Exception("KeyedHash: " + message)
/** Occurs when something is wrong with the given parameters. */
class ParameterException(val symbol: Symbol, message: String) extends Exception("Parameters: " + message)
|
Richard-W/scalacrypt
|
src/main/scala/Exceptions.scala
|
Scala
|
apache-2.0
| 2,108 |
///////////////////////////////////////////////////////////////////////////////
// FeatureVector.scala
//
// Copyright (C) 2012-2014 Ben Wing, The University of Texas at Austin
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////////////
package opennlp.textgrounder
package learning
/**
* Feature vectors for machine learning.
*
* @author Ben Wing
*/
import collection.mutable
import util.collection.{doublemap, intmap}
import util.error._
import util.memoizer._
import util.print.errprint
/** Classification of the different types of values used for features.
* Currently this is only for features that will be rescaled to make
* them comparable across different query documents. Only features that
* do involve the query document are candidates for this, and even then
* only when the feature represents a score that differs dramatically
* in scale from one query to the other and where only the difference
* really matters (e.g. for KL-divergence). Currently only FeatRescale
* below will be rescaled.
*/
sealed abstract class FeatureValue
/** A feature value not to be scaled. */
case object FeatRaw extends FeatureValue
/** A feature value needing scaling. */
case object FeatRescale extends FeatureValue
case object FeatBinary extends FeatureValue
case object FeatProb extends FeatureValue
case object FeatLogProb extends FeatureValue
case object FeatCount extends FeatureValue
/**
* A more general classification of features, just into nominal vs.
* numeric.
*/
sealed abstract class FeatureClass
case object NominalFeature extends FeatureClass
case object NumericFeature extends FeatureClass
/**
* Mapping of features and labels into integers. In the context of a
* classifier, "features" need to be distinguished into "feature properties"
* and "combined features". The former, sometimes termed a "contextual
* predicate" in the context of binary features, is a semantic concept
* describing a property that may be found of data instances or combinations
* of instances and labels, while the latter describes the combination of
* a feature property and a given label. For instance, in the context of
* GridLocate where instances are documents and labels are cells, the
* binary feature property "london" has the value of 1 for a document
* containing the word "london" regardless of the cell it is paired with,
* and the corresponding combined feature "[email protected],2.5" having a value
* of 1 means that the document when paired with the cell centered at
* 53.5,2.5 has the value of 1. The same document will have a distinct
* combined feature "[email protected],-120.0" when combined with a different cell.
* In this case the identity of the label (i.e. cell) isn't needed to
* compute the feature value but in some cases it is, e.g. the matching
* feature "london$matching-unigram-binary" indicating that the word
* "london" occurred in both document and cell. Regardless, the
* separation of feature properties into distinct combined features is
* necessary so that different weights are computed in TADM.
*
* For a ranker, combined features do not include the identity of the
* cell, and thus all combined features with the same feature property
* will be treated as the same feature, and only a single weight will be
* assigned. This is correct in the context of a ranker, where the labels
* can be thought of as numbers 1 through N, which are not meaningfully
* distinguishable in the way that different labels of a classifier are.
*
* To combine a feature property and a label, we don't actually create
* a string like "[email protected],2.5"; instead, we map the feature property's
* name to an integer, and map the label to an integer, and combine them
* in a Long, which is then memoized to an Int. This is done to save
* memory.
*
* NOTE: This is *NOT* thread-safe! That means we can't parallelize
* feature generation currently. In any case it's not clear it helps.
* An experiment involving an attempt to do parallel feature generation
* for classification (see commented-out code in create_classifier_ranker())
* actually yielded slower times running on roller/learningcurve03
* (18 hours vs 15 hours) when classifying at 5 degrees/cell, as well as
* extremely incorrect results (mean 1869.60 km, median 1669.41 km,
* instead of mean 935.92 km, median 479.24 km). At this point the
* functions below were not synchronized but the basic memoizer functions
* were. This means that the majority of time was spent in memoization,
* and the synchronization clashes combined with the effort to split up
* the work of parallelizing a relatively small number of cells (c. 50)
* made the time grow. The way to fix this is to use feature hashing
* (see the Wikipedia article on this), where the hash code of the
* feature string (suitably modded) is directly used as an index. In this
* case there is no shared memoization table and hence no problems with
* parallelization. With a suitably large number of different hash items,
* there will be little or no accuracy degradation and dramatically
* increased performance.
*/
abstract class FeatureLabelMapper {
protected val label_mapper = new ToIntMemoizer[String]
protected val property_mapper = new ToIntMemoizer[String]
def feature_to_index(feature: String, label: LabelIndex): FeatIndex
def feature_to_index_if(feature: String, label: LabelIndex): Option[FeatIndex]
def feature_to_string(index: FeatIndex): String
def feature_vector_length: Int
def feature_property_label_index(index: FeatIndex): (FeatIndex, FeatIndex)
def feature_property_to_string(index: FeatIndex) =
property_mapper.to_raw(index)
val features_to_rescale = mutable.BitSet()
protected def add_feature_property(feattype: FeatureValue, prop: String) = {
val index = property_mapper.to_index(prop)
feattype match {
case FeatRescale => features_to_rescale += index
case _ => ()
}
index
}
def note_feature(feattype: FeatureValue, feature: String, label: LabelIndex
): FeatIndex
def label_to_index(label: String): LabelIndex =
label_mapper.to_index(label)
def label_to_index_if(label: String): Option[LabelIndex] =
label_mapper.to_index_if(label)
def label_to_string(index: LabelIndex): String =
label_mapper.to_raw(index)
def number_of_labels: Int = label_mapper.number_of_indices
}
/**
* The non-label-attached version of the feature mapper, which maps
* feature properties directly to integers.
*
* NOTE: This is *NOT* thread-safe! See above.
*/
class SimpleFeatureLabelMapper extends FeatureLabelMapper {
def feature_to_index(feature: String, label: LabelIndex) =
property_mapper.to_index(feature)
def feature_to_index_if(feature: String, label: LabelIndex) =
property_mapper.to_index_if(feature)
def feature_to_string(index: FeatIndex) = property_mapper.to_raw(index)
def feature_vector_length = property_mapper.number_of_indices
def feature_property_label_index(index: FeatIndex) = (index, -1)
def note_feature(feattype: FeatureValue, feature: String, label: LabelIndex
) = add_feature_property(feattype, feature)
}
/**
* The label-attached version of the feature mapper, which maps the
* combination of feature property and label to an integer.
*
* NOTE: This is *NOT* thread-safe! See above.
*/
class LabelAttachedFeatureLabelMapper extends FeatureLabelMapper {
val combined_mapper = new LongToIntMemoizer
private def combined_to_long(prop_index: FeatIndex, label: LabelIndex) = {
// If label could be negative, we need to and it with 0xFFFFFFFFL to
// convert it to an unsigned value, but that should never happen.
assert_>=(label, 0)
(prop_index.toLong << 32) + label
}
def feature_to_index(feature: String, label: LabelIndex) = {
val prop_index = property_mapper.to_index(feature)
combined_mapper.to_index(combined_to_long(prop_index, label))
}
def feature_to_index_if(feature: String, label: LabelIndex) = {
// Only map to Some(...) if both feature property and combined feature
// already exist.
property_mapper.to_index_if(feature).flatMap { prop_index =>
combined_mapper.to_index_if(combined_to_long(prop_index, label))
}
}
def feature_to_string(index: FeatIndex) = {
val longval = combined_mapper.to_raw(index)
val prop_index = (longval >> 32).toInt
val label_index = (longval & 0xFFFFFFFF).toInt
property_mapper.to_raw(prop_index) + "@" + label_mapper.to_raw(label_index)
}
def feature_vector_length = combined_mapper.number_of_indices
def note_feature(feattype: FeatureValue, feature: String, label: LabelIndex
) = {
val prop_index = add_feature_property(feattype, feature)
combined_mapper.to_index(combined_to_long(prop_index, label))
}
def feature_property_label_index(index: FeatIndex) = {
val longval = combined_mapper.to_raw(index)
val prop_index = (longval >> 32).toInt
val label_index = (longval & 0xFFFFFFFF).toInt
(prop_index, label_index)
}
}
/**
* A vector of real-valued features. In general, features are indexed
* both by a non-negative integer and by a class label (i.e. a label for
* the class that is associated with a particular instance by a classifier).
* Commonly, the class label is ignored when looking up a feature's value.
* Some implementations might want to evaluate the features on-the-fly
* rather than store an actual vector of values.
*/
trait FeatureVector extends DataInstance {
final def feature_vector = this
def mapper: FeatureLabelMapper
/** Return the length of the feature vector. This is the number of weights
* that need to be created -- not necessarily the actual number of items
* stored in the vector (which will be different especially in the case
* of sparse vectors). */
def length: Int = mapper.feature_vector_length
/** Return number of labels for which label-specific information is stored.
* For a simple feature vector that ignores the label, this will be 1.
* For an aggregate feature vector storing a separate set of features for
* each label, this will be the number of different sets of features stored.
* This is used only in a variable-depth linear classifier, where the
* number of possible labels may vary depending on the particular instance
* being classified. */
def depth: Int
/** Return maximum label index compatible with this feature vector. For
* feature vectors that ignore the label, return a large number, e.g.
* `Int.MaxValue`. */
def max_label: LabelIndex
/** Return the number of items stored in the vector. This will be different
* from the length in the case of sparse vectors. */
def stored_entries: Int
/** Return the value at index `i`, for class `label`. */
def apply(i: FeatIndex, label: LabelIndex): Double
/** Return the squared magnitude of the feature vector for class `label`,
* i.e. dot product of feature vector with itself */
def squared_magnitude(label: LabelIndex): Double
/** Return the squared magnitude of the difference between the values of
* this feature vector for the two labels `label1` and `label2`. */
def diff_squared_magnitude(label1: LabelIndex, label2: LabelIndex): Double
/** Return the squared magnitude of the difference between the values of
* this feature vector for `label1` and another feature vector for
* `label2`. */
def diff_squared_magnitude_2(label1: LabelIndex, other: FeatureVector,
label2: LabelIndex): Double
/** Return the dot product of the given weight vector with the feature
* vector for class `label`. */
def dot_product(weights: SimpleVector, label: LabelIndex): Double
/** Update a weight vector by adding a scaled version of the feature vector,
* with class `label`. */
def update_weights(weights: SimpleVector, scale: Double, label: LabelIndex)
/** Display the feature at the given index as a string. */
def format_feature(index: FeatIndex) = mapper.feature_to_string(index)
/** Display the label at the given index as a string. */
def format_label(index: FeatIndex) = mapper.label_to_string(index)
def pretty_format(prefix: String): String
def pretty_print_labeled(prefix: String, correct: LabelIndex) {
errprint("$prefix: Label: %s(%s)", correct, mapper.label_to_string(correct))
errprint("$prefix: Featvec: %s", pretty_format(prefix))
}
}
object FeatureVector {
/** Check that all feature vectors have the same mappers. */
def check_same_mappers(fvs: Iterable[FeatureVector]) {
val mapper = fvs.head.mapper
for (fv <- fvs) {
assert_==(fv.mapper, mapper)
}
}
}
/**
* A feature vector that ignores the class label.
*/
trait SimpleFeatureVector extends FeatureVector {
/** Return the value at index `i`. */
def apply(i: FeatIndex): Double
def apply(i: FeatIndex, label: LabelIndex) = apply(i)
/** Return the squared magnitude of the difference between the values of
* this feature vector for the two labels `label1` and `label2`. */
override def diff_squared_magnitude(label1: LabelIndex, label2: LabelIndex
) = 0
val depth = 1
val max_label = Int.MaxValue
}
object BasicFeatureVectorImpl {
def diff_squared_magnitude_2(fv1: FeatureVector, label1: LabelIndex,
fv2: FeatureVector, label2: LabelIndex) = {
assert_==(fv1.length, fv2.length)
(for (i <- 0 until fv1.length; va = fv1(i, label1) - fv2(i, label2))
yield va*va).sum
}
}
/**
* The most basic implementation of the feature vector operations, which
* should always work (although not necessarily efficiently).
*/
trait BasicFeatureVectorImpl extends FeatureVector {
def dot_product(weights: SimpleVector, label: LabelIndex) =
(for (i <- 0 until length) yield apply(i, label)*weights(i)).sum
def squared_magnitude(label: LabelIndex) =
(for (i <- 0 until length; va = apply(i, label)) yield va*va).sum
def diff_squared_magnitude(label1: LabelIndex, label2: LabelIndex) =
(for (i <- 0 until length; va = apply(i, label1) - apply(i, label2))
yield va*va).sum
def diff_squared_magnitude_2(label1: LabelIndex, other: FeatureVector,
label2: LabelIndex) =
BasicFeatureVectorImpl.diff_squared_magnitude_2(this, label1, other, label2)
def update_weights(weights: SimpleVector, scale: Double, label: LabelIndex) {
(0 until length).foreach { i => weights(i) += scale*apply(i, label) }
}
}
/**
* A vector of real-valued features, stored explicitly. If you want a "bias"
* or "intercept" weight, you need to add it yourself.
*/
case class ArrayFeatureVector(
values: SimpleVector,
mapper: FeatureLabelMapper
) extends BasicFeatureVectorImpl with SimpleFeatureVector {
assert_==(values.length, length)
def stored_entries = length
/** Return the value at index `i`. */
final def apply(i: FeatIndex) = values(i)
final def update(i: FeatIndex, value: Double) { values(i) = value }
def pretty_format(prefix: String) = " %s: %s" format (prefix, values)
}
trait SparseFeatureVector extends SimpleFeatureVector {
def include_displayed_feature: Boolean = true
def compute_toString(prefix: String,
feature_values: Iterable[(FeatIndex, Double)]) =
"%s(%s)" format (prefix,
feature_values.toSeq.sorted.map {
case (index, value) => {
if (include_displayed_feature)
"%s(%s)=%.2f" format (format_feature(index), index, value)
else
"%s=%.2f" format (index, value)
}
}.mkString(",")
)
def pretty_feature_string(prefix: String,
feature_values: Iterable[(FeatIndex, Double)]) =
feature_values.toSeq.sorted.map {
case (index, value) => {
val featstr =
if (include_displayed_feature)
"%s(%s)" format (format_feature(index), index)
else
"%s" format index
" %s: %-40s = %.2f" format (prefix, featstr, value)
}
}.mkString("\\n")
def toIterable: Iterable[(FeatIndex, Double)]
def string_prefix: String
override def toString = compute_toString(string_prefix, toIterable)
def pretty_format(prefix: String) = {
"%s: %s".format(prefix, string_prefix) + "\\n" +
pretty_feature_string(prefix, toIterable)
}
// Simple implementation of this to optimize in the common case
// where the other vector is sparse.
def diff_squared_magnitude_2(label1: LabelIndex, other: FeatureVector,
label2: LabelIndex) = {
other match {
// When the other vector is sparse, we need to handle: first, all
// the indices defined in this vector, and second, all the
// indices defined in the other vector but not in this one.
// We don't currently have an "is-defined-in" predicate, but we
// effectively have "is-defined-and-non-zero" by just checking
// the return value; so we deal with the possibility of indices
// defined in this vector with a zero value by skipping them.
// If the other vector has a value at that index, it will be
// handled when we loop over the other vector. (Otherwise, the
// index is 0 in both vectors and contributes nothing.)
case sp2: SparseFeatureVector => {
var res = 0.0
for ((ind, value) <- toIterable) {
if (value != 0.0) {
val va = value - sp2(ind)
res += va * va
}
}
for ((ind, value) <- sp2.toIterable) {
if (this(ind) == 0.0) {
res += value * value
}
}
res
}
case _ => BasicFeatureVectorImpl.diff_squared_magnitude_2(
this, label1, other, label2)
}
}
}
// abstract class CompressedSparseFeatureVector private[learning] (
// keys: Array[FeatIndex], values: Array[Double]
// ) extends SparseFeatureVector {
// (in FeatureVector.scala.template)
// }
// class BasicCompressedSparseFeatureVector private[learning] (
// keys: Array[FeatIndex], values: Array[Double], val length: Int
// ) extends CompressedSparseFeatureVector(keys, values) {
// (in FeatureVector.scala.template)
// }
/**
* A feature vector in which the features are stored sparsely, i.e. only
* the features with non-zero values are stored, using a hash table or
* similar. The features are indexed by integers. (Features indexed by
* other types, e.g. strings, should use a memoizer to convert to integers.)
*/
abstract class SimpleSparseFeatureVector(
feature_values: Iterable[(FeatIndex, Double)]
) extends SparseFeatureVector {
def stored_entries = feature_values.size
def squared_magnitude(label: LabelIndex) =
feature_values.map {
case (index, value) => value * value
}.sum
def dot_product(weights: SimpleVector, label: LabelIndex) =
feature_values.map {
case (index, value) => value * weights(index)
}.sum
def update_weights(weights: SimpleVector, scale: Double, label: LabelIndex) {
feature_values.map {
case (index, value) => weights(index) += scale * value
}
}
def toIterable = feature_values
}
/**
* An implementation of a sparse feature vector storing the non-zero
* features in a `Map`.
*/
class MapSparseFeatureVector(
feature_values: collection.Map[FeatIndex, Double],
val mapper: FeatureLabelMapper
) extends SimpleSparseFeatureVector(feature_values) {
def apply(index: FeatIndex) = feature_values.getOrElse(index, 0.0)
def string_prefix = "MapSparseFeatureVector"
}
class TupleArraySparseFeatureVector(
feature_values: mutable.Buffer[(FeatIndex, Double)],
val mapper: FeatureLabelMapper
) extends SimpleSparseFeatureVector(feature_values) {
// Use an O(n) algorithm to look up a value at a given index. Luckily,
// this operation isn't performed very often (if at all). We could
// speed it up by storing the items sorted and use binary search.
def apply(index: FeatIndex) = feature_values.find(_._1 == index) match {
case Some((index, value)) => value
case None => 0.0
}
def string_prefix = "TupleArraySparseFeatureVector"
}
/**
* An aggregate feature vector that stores a separate individual feature
* vector for each of a set of labels.
*/
case class AggregateFeatureVector(
fv: Array[FeatureVector]
) extends FeatureVector {
FeatureVector.check_same_mappers(fv)
def mapper = fv.head.mapper
def depth = fv.length
def max_label = depth - 1
def stored_entries = fv.map(_.stored_entries).sum
def apply(i: FeatIndex, label: LabelIndex) = fv(label)(i, label)
/** Return the squared magnitude of the feature vector for class `label`,
* i.e. dot product of feature vector with itself */
def squared_magnitude(label: LabelIndex) = fv(label).squared_magnitude(label)
/** Return the squared magnitude of the difference between the values of
* this feature vector for the two labels `label1` and `label2`. */
def diff_squared_magnitude(label1: LabelIndex, label2: LabelIndex) =
fv(label1).diff_squared_magnitude_2(label1, fv(label2), label2)
/** Return the squared magnitude of the difference between the values of
* this feature vector for the two labels `label1` and `label2`. */
def diff_squared_magnitude_2(label1: LabelIndex, other: FeatureVector, label2: LabelIndex) = {
val fv2 = other match {
case afv2: AggregateFeatureVector => afv2.fv(label2)
case _ => other
}
fv(label1).diff_squared_magnitude_2(label1, fv2, label2)
}
def dot_product(weights: SimpleVector, label: LabelIndex) =
fv(label).dot_product(weights, label)
def update_weights(weights: SimpleVector, scale: Double,
label: LabelIndex) = fv(label).update_weights(weights, scale, label)
/** Display the feature at the given index as a string. */
override def format_feature(index: FeatIndex) = fv.head.format_feature(index)
def pretty_format(prefix: String) = {
(for (d <- 0 until depth) yield
"Featvec at depth %s(%s): %s" format (
d, mapper.label_to_string(d),
fv(d).pretty_format(prefix))).mkString("\\n")
}
/**
* Return the component feature vectors as a lazy sequence of compressed
* sparse feature vectors, by casting each item. Will throw an error if
* the feature vectors are of the wrong type.
*/
def fetch_sparse_featvecs = {
// Retrieve as the appropriate type of compressed sparse feature vectors.
// This will be one of DoubleCompressedSparseFeatureVector,
// FloatCompressedSparseFeatureVector, etc.
fv.view map { x => x match {
case y:CompressedSparseFeatureVectorType => y
case _ => ???
} }
}
/**
* Return the set of all features found in the aggregate.
*/
def find_all_features = {
fetch_sparse_featvecs.foldLeft(Set[FeatIndex]()) { _ union _.keys.toSet }
}
/**
* Find the features that do not have the same value for every component
* feature vector. Return a set of such features.
*/
def find_diff_features = {
// OK, we do this in a purely iterative fashion to create as little
// garbage as possible, because we may be working with very large
// arrays. The basic idea, since there may be different features in
// different sparse feature vectors, is that we keep track of the
// number of times each feature has been seen and the max and min
// value of the feature. Then, a feature is the same across all
// feature vectors if either:
//
// 1. It hasn't been seen at all (its count is 0); or,
// 2. Its maxval and minval are the same and either
// a. both are 0, or
// b. both are non-zero and the feature was seen in every vector.
//
// We return a set of the features that aren't the same, because
// all unseen features by definition are the same across all
// feature vectors. Then, to compute the total set of features that
// aren't the same, we take the union of the individual results --
// something we can do incrementally to save memory.
val stats = new FeatureStats
stats.accumulate(this, do_minmax = true)
(
for ((k, count) <- stats.count;
same = stats.min(k) == stats.max(k) &&
(stats.min(k) == 0 || count == depth);
if !same)
yield k
).toSet
}
/**
* Destructively remove columns that are non-choice-specific, i.e.
* not listed among the list of choice-specific features passed in.
*/
def remove_non_choice_specific_columns(diff_features: Set[FeatIndex]) {
for (vec <- fetch_sparse_featvecs) {
val need_to_remove = vec.keys.exists(!diff_features.contains(_))
if (need_to_remove) {
val feats =
(vec.keys zip vec.values).filter(diff_features contains _._1)
vec.keys = feats.map(_._1).toArray
vec.values = feats.view.map(_._2).map(to_feat_value(_)).toArray
}
}
}
/**
* Destructively rescale the appropriate features in the given
* feature vectors by subtracting their mean and then dividing by their
* standard deviation. This only operates on features that have been
* marked as needing standardization. Standardization is done to make it
* easier to compare numeric feature values across different query
* documents, which otherwise may differ greatly in scale. (This is the
* case for KL-divergence scores, for example.) Whether standardization
* is done depends on the type of the feature's value. For example,
* binary features definitely don't need to be rescaled and
* probabilities aren't currently rescaled, either. Features of only
* a candidate also don't need to be rescaled as they don't suffer
* from the problem of being compared with different query documents.)
*/
def rescale_featvecs() {
val sparsevecs = fetch_sparse_featvecs
// Get the sum and count of all features seen in any of the keys.
// Here and below, when computing mean, std dev, etc., we ignore
// unseen features rather than counting them as 0's. This wouldn't
// work well for binary features, where we normally only store the
// features with a value of 1, but we don't adjust those features
// in any case. For other features, we assume that features that
// are meant to be present and happen to have a value of 0 will be
// noted as such. This means that we calculate mean and stddev
// only for features that are present, and likewise rescale
// only features that are present. Otherwise, we'd end up converting
// all the absent features to present features with some non-zero
// value, which seems non-sensical besides making the coding more
// difficult as we currently can't expand a sparse feature vector,
// only change the value of an existing feature.
val stats = new FeatureStats
stats.accumulate(this, do_sum = true)
// Compute the mean of all seen instances of a feature.
// Unseen features are ignored rather than counted as 0's.
val meanmap =
stats.sum map { case (key, sum) => (key, sum / stats.count(key)) }
// Compute the sum of squared differences from the mean of all seen
// instances of a feature.
// Unseen features are ignored rather than counted as 0's.
val sumsqmap = doublemap[FeatIndex]()
for (vec <- sparsevecs; i <- 0 until vec.keys.size) {
val k = vec.keys(i)
val v = vec.values(i)
val mean = meanmap(k)
sumsqmap(k) += (v - mean) * (v - mean)
}
// Compute the standard deviation of all features.
// Unseen features are ignored rather than counted as 0's.
val stddevmap =
sumsqmap map { case (key, sumsq) =>
(key, math.sqrt(sumsq / stats.count(key))) }
// Now rescale the features that need to be.
for (vec <- sparsevecs; i <- 0 until vec.keys.size) {
val key = vec.keys(i)
if (mapper.features_to_rescale contains key) {
val stddev = stddevmap(key)
// Must skip 0, NaN and infinity! Comparison between anything and
// NaN will be false and won't pass the > 0 check.
if (stddev > 0 && !stddev.isInfinite) {
vec.values(i) =
/*
to_feat_value((vec.values(i) - meanmap(key))/stddev)
// FIXME! We add 1 here somewhat arbitrarily because TADM ignores
// features that have a mean of 0 (don't know why).
to_feat_value((vec.values(i) - meanmap(key))/stddev + 1)
*/
// FIXME: Try just dividing by the standard deviation so the
// spread is at least scaled correctly. This also ensures that
// 0 values would remain as 0 so no problems arise due to
// ignoring them. An alternative that might work for KL-divergence
// and similar scores is to shift so that the minimum gets a value
// of 0, as well as scaling by the stddev.
// FIXME! In the case of the initial ranking, it's also rescaled
// and adjusted in `evaluate_with_initial_ranking`.
to_feat_value(vec.values(i)/stddev)
}
}
}
}
}
object AggregateFeatureVector {
def check_aggregate(di: DataInstance) = {
val fv = di.feature_vector
fv match {
case agg: AggregateFeatureVector => agg
case _ => internal_error("Only operates with AggregateFeatureVectors")
}
}
/**
* Destructively remove all features that have the same values among all
* components of each aggregate feature vector (even if they have different
* values among different aggregate feature vectors). Features that don't
* differ at all within any aggregate feature vector aren't useful for
* distinguishing one candidate from another and may cause singularity
* errors in R's mlogit() function, so need to be deleted.
*
* Return the set of removed features.
*/
def remove_all_non_choice_specific_columns(
featvecs: Iterable[(DataInstance, LabelIndex)]
) = {
val agg_featvecs = featvecs.view.map { x => check_aggregate(x._1) }
// Find the set of all features that have different values in at least
// one pair of component feature vectors in at least one aggregate
// feature vector.
val diff_features =
agg_featvecs.map(_.find_diff_features).reduce(_ union _)
val all_features =
agg_featvecs.map(_.find_all_features).reduce(_ union _)
val removed_features = all_features diff diff_features
val headfv = featvecs.head._1.feature_vector
errprint("Removing non-choice-specific features: %s",
removed_features.toSeq.sorted.map(headfv.format_feature(_)) mkString " ")
agg_featvecs.foreach(_.remove_non_choice_specific_columns(diff_features))
removed_features
}
}
/** Compute statistics over features, e.g. how many times they occur,
* what their sum and absolute sum is, what their min and max values are.
* The accumulate() function counts each combination of doc+cell separately.
*/
class FeatureStats {
// Count of features
val count = intmap[FeatIndex]()
// Count of feature vectors
var num_fv = 0
// Min value of features
val min = doublemap[FeatIndex]()
// Max value of features
val max = doublemap[FeatIndex]()
// Sum of features
val sum = doublemap[FeatIndex]()
// Sum of absolute value of features
val abssum = doublemap[FeatIndex]()
/**
* Accumulate statistics on features.
*/
def accumulate(agg: AggregateFeatureVector, do_minmax: Boolean = false,
do_sum: Boolean = false, do_abssum: Boolean = false) {
num_fv += agg.depth
// We do this in a purely iterative fashion to create as little
// garbage as possible, because we may be working with very large
// arrays. See find_diff_features.
for (vec <- agg.fetch_sparse_featvecs; i <- 0 until vec.keys.size) {
val k = vec.keys(i)
val v = vec.values(i)
count(k) += 1
if (do_minmax) {
if (!(min contains k) || v < min(k))
min(k) = v
if (!(max contains k) || v > max(k))
max(k) = v
}
if (do_sum)
sum(k) += v
if (do_abssum)
abssum(k) += v.abs
}
}
/**
* Accumulate statistics on features, at the document level rather than
* the doc+cell level.
*/
def accumulate_doc_level(agg: AggregateFeatureVector,
do_minmax: Boolean = false, do_sum: Boolean = false,
do_abssum: Boolean = false) {
num_fv += 1
// We do this in a purely iterative fashion to create as little
// garbage as possible; see accumuate().
//
// HACK! We assume that the features aren't really label-specific,
// that the difference in label-specificness is only due to the necessity
// of attaching labels to features for TADM. So we just look at the
// first one.
val vec = agg.fetch_sparse_featvecs.head
for (i <- 0 until vec.keys.size) {
val fk = vec.keys(i)
val (k, _) = vec.mapper.feature_property_label_index(fk)
val v = vec.values(i)
count(k) += 1
if (do_minmax) {
if (!(min contains k) || v < min(k))
min(k) = v
if (!(max contains k) || v > max(k))
max(k) = v
}
if (do_sum)
sum(k) += v
if (do_abssum)
abssum(k) += v.abs
}
}
}
/**
* For each aggregate, we compute the fraction of times a given feature
* in the correct label's feature vector is greater than, less than or
* equal to the value in the other feature vectors in the aggregate, and
* average over all aggregates. These three fraction will add up to 1
* for a given aggregate, and the averages will likewise add up to 1.
* Note that for any feature seen anywhere in the aggregate we process
* all feature vectors in the aggregate, treating unseen features as 0.
* However, for features seen nowhere in the aggregate, they won't be
* recorded, and hence we need to treat them as cases of all 100%
* "equal to". In practice, because the averages add up to 1, we don't
* need to keep track of the "equal to" fractions separately but instead
* compute them from the other two; the sums of those two fractions
* won't be affected by cases where a feature isn't seen in an aggregate.
*
* FIXME: Should we instead do this comparing the correct label to the
* second-best rather than all the others?
*/
class FeatureDiscriminationStats {
// Count of number of aggregates seen
var num_agg = 0
// Sum of fractions of fv's other than the correct one where the
// feature's value in the correct one is less than the value in the
// others. See above.
val less_than_other = doublemap[FeatIndex]()
// Same for "greater than".
val greater_than_other = doublemap[FeatIndex]()
/**
* Find the features that have different values from one component
* feature vector to another. Return a set of such features.
*/
def accumulate(agg: AggregateFeatureVector, corrlab: LabelIndex) {
num_agg += 1
for (feat <- agg.find_all_features) {
val corrval = agg(feat, corrlab)
var num_lto = 0
var num_gto = 0
for (lab <- 0 until agg.depth; if lab != corrlab) {
val othval = agg(feat, lab)
if (corrval < othval)
num_lto += 1
else if (corrval > othval)
num_gto += 1
}
less_than_other(feat) += num_lto.toDouble / (agg.depth - 1)
greater_than_other(feat) += num_gto.toDouble / (agg.depth - 1)
}
}
}
|
utcompling/textgrounder
|
src/main/scala/opennlp/textgrounder/learning/FeatureVector.scala
|
Scala
|
apache-2.0
| 35,858 |
package skinny.orm.feature
import scalikejdbc._
import skinny.orm.exception.OptimisticLockException
import org.joda.time.DateTime
import org.slf4j.LoggerFactory
/**
* Optimistic lock with timestamp.
*
* @tparam Entity entity
*/
trait OptimisticLockWithTimestampFeature[Entity] extends OptimisticLockWithTimestampFeatureWithId[Long, Entity]
trait OptimisticLockWithTimestampFeatureWithId[Id, Entity] extends CRUDFeatureWithId[Id, Entity] {
/**
* Lock timestamp field name.
*/
def lockTimestampFieldName = "lockTimestamp"
/**
* Returns where condition part which search by primary key and lock timestamp.
*
* @param id primary key
* @param timestamp lock timestamp
* @return query part
*/
protected def byIdAndTimestamp(id: Long, timestamp: Option[DateTime]): SQLSyntax =
timestamp
.map { t =>
sqls.eq(column.field(primaryKeyFieldName), id).and.eq(column.field(lockTimestampFieldName), t)
}
.getOrElse {
sqls.eq(column.field(primaryKeyFieldName), id).and.isNull(column.field(lockTimestampFieldName))
}
/**
* Returns update query builder which updates a single entity by primary key and lock timestamp.
*
* @param id primary key
* @param timestamp lock timestamp
* @return updated count
*/
def updateByIdAndTimestamp(id: Long, timestamp: Option[DateTime]): UpdateOperationBuilder = {
updateBy(byIdAndTimestamp(id, timestamp))
}
/**
* Returns update query builder which updates a single entity by primary key and lock timestamp.
*
* @param id primary key
* @param timestamp lock timestamp
* @return updated count
*/
def updateByIdAndTimestamp(id: Long, timestamp: DateTime): UpdateOperationBuilder = {
updateBy(byIdAndTimestamp(id, Option(timestamp)))
}
private[this] def updateByHandler(session: DBSession,
where: SQLSyntax,
namedValues: Seq[(SQLSyntax, Any)],
count: Int): Unit = {
if (count == 0) {
throw new OptimisticLockException(
s"Conflict ${lockTimestampFieldName} is detected (condition: '${where.value}', ${where.parameters.mkString(",")}})"
)
}
}
afterUpdateBy(updateByHandler _)
override def updateBy(where: SQLSyntax): UpdateOperationBuilder = new UpdateOperationBuilderWithVersion(this, where)
/**
* Update query builder/executor.
*
* @param mapper mapper
* @param where condition
*/
class UpdateOperationBuilderWithVersion(mapper: CRUDFeatureWithId[Id, Entity], where: SQLSyntax)
extends UpdateOperationBuilder(mapper = mapper,
where = where,
beforeHandlers = beforeUpdateByHandlers.toIndexedSeq,
afterHandlers = afterUpdateByHandlers.toIndexedSeq) {
// appends additional part of update query
private[this] val c = defaultAlias.support.column.field(lockTimestampFieldName)
addUpdateSQLPart(sqls"${c} = ${sqls.currentTimestamp}")
}
/**
* Deletes a single entity by primary key and lock timestamp.
*
* @param id primary key
* @param timestamp lock timestamp
* @param s db session
* @return deleted count
*/
def deleteByIdAndOptionalTimestamp(id: Long,
timestamp: Option[DateTime])(implicit s: DBSession = autoSession): Int = {
deleteBy(byIdAndTimestamp(id, timestamp))
}
/**
* Deletes a single entity by primary key and lock timestamp.
*
* @param id primary key
* @param timestamp lock timestamp
* @param s db session
* @return deleted count
*/
def deleteByIdAndTimestamp(id: Long, timestamp: DateTime)(implicit s: DBSession = autoSession): Int = {
deleteBy(byIdAndTimestamp(id, Option(timestamp)))
}
override def deleteBy(where: SQLSyntax)(implicit s: DBSession = autoSession): Int = {
val count = super.deleteBy(where)(s)
if (count == 0) {
throw new OptimisticLockException(
s"Conflict ${lockTimestampFieldName} is detected (condition: '${where.value}', ${where.parameters.mkString(",")}})"
)
} else {
count
}
}
override def updateById(id: Id): UpdateOperationBuilder = {
logger.info(
"#updateById ignore optimistic lock. If you need to lock with version in this case, use #updateBy instead."
)
super.updateBy(byId(id))
}
override def deleteById(id: Id)(implicit s: DBSession = autoSession): Int = {
logger.info(
"#deleteById ignore optimistic lock. If you need to lock with version in this case, use #deleteBy instead."
)
super.deleteBy(byId(id))
}
}
|
seratch/skinny-framework
|
orm/src/main/scala/skinny/orm/feature/OptimisticLockWithTimestampFeature.scala
|
Scala
|
mit
| 4,744 |
/*
* Copyright 2021 HM Revenue & Customs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package uk.gov.hmrc.ct.accounts.frs102.boxes
import uk.gov.hmrc.ct.accounts.frs102.retriever.Frs102AccountsBoxRetriever
import uk.gov.hmrc.ct.box._
case class AC161(value: Option[Int]) extends CtBoxIdentifier(name = "Creditors after one year - Other creditors (PY)")
with CtOptionalInteger
with Input
with ValidatableBox[Frs102AccountsBoxRetriever]
with Validators {
override def validate(boxRetriever: Frs102AccountsBoxRetriever): Set[CtValidation] = {
collectErrors(
validateMoney(value, min = 0)
)
}
}
|
hmrc/ct-calculations
|
src/main/scala/uk/gov/hmrc/ct/accounts/frs102/boxes/AC161.scala
|
Scala
|
apache-2.0
| 1,139 |
package org.pico.disposal
object Noop extends (() => Unit) {
override def apply(): Unit = ()
}
|
pico-works/pico-disposal
|
pico-disposal/src/main/scala/org/pico/disposal/Noop.scala
|
Scala
|
bsd-3-clause
| 98 |
/**
* Copyright (C) 2016-2017 Lightbend Inc. <http://www.lightbend.com>
*/
package akka
/**
* Typically used together with `Future` to signal completion
* but there is no actual value completed. More clearly signals intent
* than `Unit` and is available both from Scala and Java (which `Unit` is not).
*/
sealed abstract class Done
case object Done extends Done {
/**
* Java API: the singleton instance
*/
def getInstance(): Done = this
}
|
rorygraves/perf_tester
|
corpus/akka/akka-actor/src/main/scala/akka/Done.scala
|
Scala
|
apache-2.0
| 457 |
package ozmi.lambda_core.sql
import org.kiama.util.ParserUtilities
/**
* Created by attila on 4/20/2015.
*/
object SqlParser extends ParserUtilities {
def keyword = keywords ("""[^a-zA-Z0-9_]""".r, List ("SELECT"))
def literal : PackratParser[Literal] =
decimalLit | integerLit | stringLit
def integerLit : PackratParser[Literal] =
"""\\d+""".r ^^ {
case string => IntegerLit (BigInt (string))
}
def decimalLit : PackratParser[Literal] =
"""\\d+\\.\\d+""".r ^^ {
case string => DecimalLit (BigDecimal (string))
}
def stringLit : PackratParser[Literal] =
"""\\'([^\\'])*\\'""".r ^^ {
case string => StringLit (string.substring(1, string.length - 1))
}
def ident : PackratParser[String] =
not (keyword) ~> """\\w+""".r
def columnRef : PackratParser[ColumnRef] =
opt (ident <~ ".") ~ ident ^^ {
case objectName ~ columnName => ColumnRef (objectName, columnName)
}
def parensColumnExpr : PackratParser[ColumnExpr] = "(" ~> columnExpr <~ ")"
def unaryMinus : PackratParser[ColumnExpr] = "-" ~> term ^^ { UnaryOp("-", _) }
def term = literal | columnRef | parensColumnExpr | unaryMinus
def binaryOp (level:Int) : PackratParser[((ColumnExpr, ColumnExpr) => ColumnExpr)] = {
level match {
case 1 =>
"+" ^^^ { (a:ColumnExpr, b:ColumnExpr) => BinaryOp("+", a,b) } |
"-" ^^^ { (a:ColumnExpr, b:ColumnExpr) => BinaryOp("-", a,b) }
case 2 =>
"*" ^^^ { (a:ColumnExpr, b:ColumnExpr) => BinaryOp("*", a,b) } |
"/" ^^^ { (a:ColumnExpr, b:ColumnExpr) => BinaryOp("/", a,b) }
case _ => throw new RuntimeException("bad precedence level "+level)
}
}
val minPrec = 1
val maxPrec = 2
def binary (level : Int) : PackratParser[ColumnExpr] =
if (level > maxPrec) term
else binary (level+1) * binaryOp (level)
def columnExpr = binary (minPrec) | term
def parseColumnExpr (input : String) : Either[SqlExpr, String] = {
parseString (columnExpr, input)
}
def objectRef : PackratParser[ObjectRef] =
opt (ident <~ ".") ~ ident ^^ {
case schemaName ~ objectName => ObjectRef (schemaName, objectName)
}
def singleColumnSelector : PackratParser[SingleColumnSelector] =
columnExpr ~ opt (opt ("AS") ~> ident) ^^ {
case columnExpr ~ alias => SingleColumnSelector (columnExpr, alias)
}
def allColumnsSelector : PackratParser[AllColumnsSelector] =
opt (ident <~ ".") <~ "*" ^^ {
case objectName => AllColumnsSelector (objectName)
}
def selector = singleColumnSelector | allColumnsSelector
def select : PackratParser[Select] =
"SELECT" ~> rep1sep (selector, ",") ~ ("FROM" ~> relation) ^^ {
case selectors ~ baseRel => Select (baseRel, selectors)
}
def relation : PackratParser[Relation] =
objectRef
def parseRelationExpr (input : String) : Either[SqlExpr, String] = {
parseString (select, input)
}
}
|
ozmi/lambda_core
|
src/main/scala/ozmi/lambda_core/sql/SqlParser.scala
|
Scala
|
mit
| 3,180 |
package org.romeo.loveletter.cli.Main
import org.romeo.loveletter.game.GameManager
import org.romeo.loveletter.persistence.MemoryDataStore
import scala.io.StdIn
import scala.util.Random
/**
* Created by tylerromeo on 1/13/17.
*/
object Main extends App {
val gameId = "cli"
val gameManager = new GameManager(new MemoryDataStore(), new Random())
var gameStarted: Boolean = false
stdin foreach { command =>
processCommand(command)
if (gameStarted) {
val gameInfo = gameManager.getGameInfo(gameId)
val currentPlayer = gameManager.getCurrentPlayerName(gameId)
val playersHand = gameManager.getHandInfo(gameId, currentPlayer)
println(gameInfo)
println(s"Your hand:\\n$playersHand")
}
}
def stdin: Stream[String] = StdIn.readLine("----------\\nEnter Command:") match {
case s if s == null => Stream.empty
case s => s #:: stdin
}
def processCommand(s: String): Unit = {
val split = s.split("""\\s+""")
split.toList match {
case command :: cardName :: args if command == "play" || command == "discard" => {
val target = args.headOption
val guess = if (args.size >= 2) Some(args(1)) else None
playCard(card = cardName,
target = target,
guess = guess)
}
case command :: args if command == "start" => startGame(players = args)
case command :: _ if command == "quit" => sys.exit(0)
case command :: _ if command == "help" => printHelp()
case _ => printHelp()
}
}
def printHelp(): Unit = {
val help =
"""
|Rules are online at: http://www.alderac.com/tempest/files/2012/09/Love_Letter_Rules_Final.pdf
|`help` to get this help
|`start [player names]` to start a new game
|`quit` to end the game
|`play [card name] [?target] [?guess]` to play a card. (play can be omitted)
|`discard` is equivalent to `play`
|Source for bot at: https://github.com/tylerjromeo/love-letter-slack-commands
""".stripMargin
println(help)
}
def startGame(players: List[String]): Unit = {
gameManager.startGame(gameId, players) match {
case Left(m) => println(s"Could not start game: $m")
case Right(game) => {
gameStarted = true
println(s"Game started")
}
}
}
def playCard(card: String, target: Option[String], guess: Option[String]): Unit = {
gameManager.takeTurn(gameId, gameManager.getCurrentPlayerName(gameId), card, target, guess) match {
case Left(m) => println(s"Error: ${m.msg}")
case Right(m) => println(m.map(_.msg).mkString("\\n"))
}
}
}
|
tylerjromeo/love-letter-slack-commands
|
src/main/scala-2.11/org/romeo/loveletter/cli/Main/Main.scala
|
Scala
|
mit
| 2,628 |
package com.sunway.screen.gamescreen
import com.github.dunnololda.scage.support.Vec
/**
* Created by Mr_RexZ on 12/6/2016.
*/
trait MoveableObject {
protected var speed = 5.0f
protected var rotation = 0.0f
def step = Vec(-0.4f * speed * math.sin(math.toRadians(rotation)).toFloat,
0.4f * speed * math.cos(math.toRadians(rotation)).toFloat)
}
|
MrRexZ/DistributedSystemAssignment2
|
src/main/scala/com/sunway/screen/gamescreen/MoveableObject.scala
|
Scala
|
mit
| 358 |
package com.sksamuel.elastic4s
import org.slf4j.{Logger, LoggerFactory}
import scala.concurrent.duration.{Duration, _}
import scala.language.higherKinds
/**
* An [[ElasticClient]] is used to execute HTTP requests against an ElasticSearch cluster.
* This class delegates the actual HTTP calls to an instance of [[HttpClient]].
*
* Any third party HTTP client library can be made to work with elastic4s by creating an
* instance of the HttpClient typeclass wrapping the underlying client library and
* then creating the ElasticClient with it.
*
* @param client the HTTP client library to use
**/
case class ElasticClient(client: HttpClient) extends AutoCloseable {
protected val logger: Logger = LoggerFactory.getLogger(getClass.getName)
/**
* Returns a String containing the request details.
* The string will have the HTTP method, endpoint, params and if applicable the request body.
*/
def show[T](t: T)(implicit handler: Handler[T, _]): String = Show[ElasticRequest].show(handler.build(t))
// Executes the given request type T, and returns an effect of Response[U]
// where U is particular to the request type.
// For example a search request will return a Response[SearchResponse].
def execute[T, U, F[_]](t: T)(implicit
executor: Executor[F],
functor: Functor[F],
handler: Handler[T, U],
manifest: Manifest[U],
options: CommonRequestOptions): F[Response[U]] = {
val request = handler.build(t)
val request2 = if (options.timeout.toMillis > 0) {
request.addParameter("timeout", options.timeout.toMillis + "ms")
} else {
request
}
val request3 = if (options.masterNodeTimeout.toMillis > 0) {
request2.addParameter("master_timeout", options.masterNodeTimeout.toMillis + "ms")
} else {
request2
}
val f = executor.exec(client, request3)
functor.map(f) { resp =>
handler.responseHandler.handle(resp) match {
case Right(u) => RequestSuccess(resp.statusCode, resp.entity.map(_.content), resp.headers, u)
case Left(error) => RequestFailure(resp.statusCode, resp.entity.map(_.content), resp.headers, error)
}
}
}
def close(): Unit = client.close()
}
case class CommonRequestOptions(timeout: Duration, masterNodeTimeout: Duration)
object CommonRequestOptions {
implicit val defaults: CommonRequestOptions = CommonRequestOptions(0.seconds, 0.seconds)
}
|
sksamuel/elastic4s
|
elastic4s-core/src/main/scala/com/sksamuel/elastic4s/ElasticClient.scala
|
Scala
|
apache-2.0
| 2,560 |
/*
* Copyright (c) 2017 Magomed Abdurakhmanov, Hypertino
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
package com.hypertino.facade.filters.annotated
import com.hypertino.binders.annotations.fieldName
import com.hypertino.binders.value.Value
import com.hypertino.facade.filter.model._
import com.hypertino.facade.filter.parser.{ExpressionEvaluator, PreparedExpression}
import com.hypertino.facade.raml.RamlFieldAnnotation
import monix.eval.Task
case class SetFieldAnnotation(
@fieldName("if") predicate: Option[PreparedExpression],
source: PreparedExpression,
stages: Set[FieldFilterStage] = Set(FieldFilterStageRequest)
) extends RamlFieldAnnotation {
def name: String = "set"
}
class SetFieldFilter(annotation: SetFieldAnnotation, expressionEvaluator: ExpressionEvaluator) extends FieldFilter {
def apply(context: FieldFilterContext): Task[Option[Value]] = Task.now {
Some(expressionEvaluator.evaluate(context.expressionEvaluatorContext, annotation.source))
}
}
class SetFieldFilterFactory(protected val predicateEvaluator: ExpressionEvaluator) extends RamlFieldFilterFactory {
def createFieldFilter(fieldName: String, typeName: String, annotation: RamlFieldAnnotation): FieldFilter = {
new SetFieldFilter(annotation.asInstanceOf[SetFieldAnnotation], predicateEvaluator)
}
override def createRamlAnnotation(name: String, value: Value): RamlFieldAnnotation = {
value.to[SetFieldAnnotation]
}
}
|
hypertino/hyperfacade
|
src/main/scala/com/hypertino/facade/filters/annotated/SetFieldRequestFilter.scala
|
Scala
|
mpl-2.0
| 1,714 |
/*
* Copyright 2021 HM Revenue & Customs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package uk.gov.hmrc.play.audit.model
import uk.gov.hmrc.play.audit.http.connector.AuditConnector
import uk.gov.hmrc.http.HeaderCarrier
import scala.concurrent.Future
import scala.util.Try
import scala.language.implicitConversions
sealed trait AuditAsMagnet[A] {
import uk.gov.hmrc.play.audit.model.Audit.OutputTransformer
val txName: String
val inputs: Map[String, String]
val outputTransformer: OutputTransformer[A]
val eventTypes: (String, String)
def apply(f: (String, Map[String, String], OutputTransformer[A], (String, String)) => A): A =
f(txName, inputs, outputTransformer, eventTypes)
}
object AuditAsMagnet {
import uk.gov.hmrc.play.audit.model.Audit.{EventTypeFlowDescriptions, OutputTransformer, defaultEventTypes}
implicit def inputAsStringDefaultEventTypes[A](parms: (String, String, OutputTransformer[A])): AuditAsMagnet[A] =
auditAsMagnet(parms._1, Map("" -> parms._2), defaultEventTypes, parms._3)
implicit def inputAsString[A](parms: (String, String, EventTypeFlowDescriptions, OutputTransformer[A])): AuditAsMagnet[A] =
auditAsMagnet(parms._1, Map("" -> parms._2), parms._3, parms._4)
implicit def inputAsMapDefaultEventTypes[A](parms: (String, Map[String, String], OutputTransformer[A])): AuditAsMagnet[A] =
auditAsMagnet(parms._1, parms._2, defaultEventTypes, parms._3)
implicit def inputAsMap[A](parms: (String, Map[String, String], EventTypeFlowDescriptions, OutputTransformer[A])): AuditAsMagnet[A] =
auditAsMagnet(parms._1, parms._2, parms._3, parms._4)
private def auditAsMagnet[A](
txN: String,
ins: Map[String, String],
et: EventTypeFlowDescriptions,
ot: OutputTransformer[A]) =
new AuditAsMagnet[A] {
val txName = txN
val inputs = ins
val outputTransformer = ot
val eventTypes = et
}
}
object EventTypes {
val Succeeded = "TxSucceeded"
val Failed = "TxFailed"
}
object Audit {
import EventTypes._
type OutputTransformer[A] = (A => TransactionResult)
type Body[A] = () => A
type AsyncBody[A] = () => Future[A]
type EventTypeFlowDescriptions = (String, String)
val defaultEventTypes: EventTypeFlowDescriptions = (Succeeded, Failed)
def apply(applicationName: String, auditConnector: AuditConnector) = new Audit(applicationName, auditConnector)
}
trait AuditTags {
val xRequestId = "X-Request-ID"
val TransactionName = "transactionName"
}
class Audit(applicationName: String, auditConnector: AuditConnector) extends AuditTags {
import Audit._
import scala.concurrent.ExecutionContext.Implicits.global
def sendDataEvent: (DataEvent) => Unit = auditConnector.sendEvent(_)
def sendMergedDataEvent: (MergedDataEvent) => Unit = auditConnector.sendMergedEvent(_)
private def sendEvent[A](auditMagnet: AuditAsMagnet[A], eventType: String, outputs: Map[String, String])(implicit hc: HeaderCarrier): Unit = {
val requestId = hc.requestId.map(_.value).getOrElse("")
sendDataEvent(DataEvent(
auditSource = applicationName,
auditType = eventType,
tags = Map(xRequestId -> requestId, TransactionName -> auditMagnet.txName),
detail = auditMagnet.inputs.map(inputKeys) ++ outputs))
}
private def givenResultSendAuditEvent[A](auditMagnet: AuditAsMagnet[A])(implicit hc: HeaderCarrier): PartialFunction[TransactionResult, Unit] = {
case TransactionSuccess(m) => sendEvent(auditMagnet, auditMagnet.eventTypes._1, m.map(outputKeys))
case TransactionFailure(r, m) => sendEvent(auditMagnet, auditMagnet.eventTypes._2, r.map(reason => Map("transactionFailureReason" -> reason)).getOrElse(Map.empty) ++ m.map(outputKeys))
}
def asyncAs[A](auditMagnet: AuditAsMagnet[A])(body: AsyncBody[A])(implicit hc: HeaderCarrier): Future[A] = {
// import MdcLoggingExecutionContext._
val invokedBody: Future[A] =
try { body() }
catch { case e: Exception => Future.failed[A](e) }
invokedBody
.map ( auditMagnet.outputTransformer )
.recover { case e: Exception => TransactionFailure(s"Exception Generated: ${e.getMessage}") }
.map ( givenResultSendAuditEvent(auditMagnet) )
invokedBody
}
def as[A](auditMagnet: AuditAsMagnet[A])(body: Body[A])(implicit hc: HeaderCarrier): A = {
val result: Try[A] = Try(body())
result
.map ( auditMagnet.outputTransformer )
.recover { case e: Exception => TransactionFailure(s"Exception Generated: ${ e.getMessage }") }
.map ( givenResultSendAuditEvent(auditMagnet) )
result.get
}
private val inputKeys = prependKeysWith("input") _
private val outputKeys = prependKeysWith("output") _
private def prependKeysWith(prefix: String)(entry: (String, String)) = entry match {
case ("", value) => prefix -> value
case (key, value) => s"$prefix-$key" -> value
}
}
sealed trait TransactionResult {
def outputs: Map[String, String]
}
case class TransactionFailure(reason: Option[String] = None, outputs: Map[String, String] = Map()) extends TransactionResult
object TransactionFailure {
def apply(reason: String, outputs: (String, String)*): TransactionFailure = TransactionFailure(Some(reason), Map(outputs: _*))
def apply(outputs: (String, String)*): TransactionFailure = TransactionFailure(outputs = Map(outputs: _*))
}
case class TransactionSuccess(outputs: Map[String, String] = Map()) extends TransactionResult
object TransactionSuccess {
def apply(output: String): TransactionSuccess = TransactionSuccess(Map("" -> output))
def apply(outputs: (String, String)*): TransactionSuccess = TransactionSuccess(Map(outputs: _*))
}
|
hmrc/play-auditing
|
src-common/main/scala/uk/gov/hmrc/play/audit/model/Audit.scala
|
Scala
|
apache-2.0
| 6,176 |
/*
* Copyright 2017 Datamountaineer.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.datamountaineer.streamreactor.connect.coap.source
import com.datamountaineer.streamreactor.connect.coap.configs.CoapSetting
import com.datamountaineer.streamreactor.connect.coap.connection.CoapManager
import com.datamountaineer.streamreactor.connect.coap.domain.CoapMessageConverter
import com.typesafe.scalalogging.StrictLogging
import org.apache.kafka.connect.source.SourceRecord
import org.eclipse.californium.core.{CoapHandler, CoapObserveRelation, CoapResponse, WebLink}
import java.util
import java.util.concurrent.LinkedBlockingQueue
/**
* Created by [email protected] on 27/12/2016.
* stream-reactor
*/
object CoapReaderFactory {
def apply(settings: Set[CoapSetting], queue: LinkedBlockingQueue[SourceRecord]): Set[CoapReader] = {
settings.map(s => CoapReader(s, queue))
}
}
case class CoapReader(setting: CoapSetting, queue: LinkedBlockingQueue[SourceRecord]) extends CoapManager(setting) {
logger.info(s"Initialising COAP Reader for ${setting.kcql.getSource}")
val handler = new MessageHandler(setting.kcql.getSource, setting.kcql.getTarget, queue)
var observing = false
var relation : Option[CoapObserveRelation] = None
read
//start observing
def read(): Unit = {
observing = true
logger.info(s"Starting observation of resource ${setting.uri}/${setting.kcql.getSource} and writing to ${setting.kcql.getTarget}")
relation = Some(client.observe(handler))
}
def stop(): Unit = {
relation.foreach(r => r.proactiveCancel())
client.delete(handler)
client.shutdown()
observing = false
}
def discover: util.Set[WebLink] = client.discover()
}
/**
* A message handler class convert and add any responses
* to a blocking queue
* */
class MessageHandler(resource: String, topic: String, queue: LinkedBlockingQueue[SourceRecord]) extends CoapHandler with StrictLogging {
val converter = CoapMessageConverter()
override def onError(): Unit = {
logger.warn(s"Message dropped for $topic!")
}
override def onLoad(response: CoapResponse): Unit = {
val records = converter.convert(resource, topic, response.advanced())
logger.debug(s"Received ${response.advanced().toString} for $topic")
logger.debug(s"Records in queue ${queue.size()} for $topic")
queue.put(records)
}
}
|
datamountaineer/stream-reactor
|
kafka-connect-coap/src/main/scala/com/datamountaineer/streamreactor/connect/coap/source/CoapReaderFactory.scala
|
Scala
|
apache-2.0
| 2,894 |
package akka.persistence.jdbc.query
import akka.persistence.query.{ EventEnvelope, NoOffset, Sequence }
import akka.pattern._
import scala.concurrent.duration._
abstract class LogicalDeleteQueryTest(config: String) extends QueryTestSpec(config) {
implicit val askTimeout = 500.millis
it should "return logically deleted events when using CurrentEventsByTag (backward compatibility)" in withActorSystem { implicit system =>
val journalOps = new ScalaJdbcReadJournalOperations(system)
withTestActors(replyToMessages = true) { (actor1, _, _) =>
(actor1 ? withTags(1, "number")).futureValue
(actor1 ? withTags(2, "number")).futureValue
(actor1 ? withTags(3, "number")).futureValue
// delete and wait for confirmation
(actor1 ? DeleteCmd(1)).futureValue
journalOps.withCurrentEventsByTag()("number", NoOffset) { tp =>
tp.request(Int.MaxValue)
tp.expectNextPF { case EventEnvelope(Sequence(1), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(2), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(3), _, _, _) => }
tp.expectComplete()
}
}
}
it should "return logically deleted events when using EventsByTag (backward compatibility)" in withActorSystem { implicit system =>
val journalOps = new ScalaJdbcReadJournalOperations(system)
withTestActors(replyToMessages = true) { (actor1, _, _) =>
(actor1 ? withTags(1, "number")).futureValue
(actor1 ? withTags(2, "number")).futureValue
(actor1 ? withTags(3, "number")).futureValue
// delete and wait for confirmation
(actor1 ? DeleteCmd(1)).futureValue shouldBe "deleted-1"
journalOps.withEventsByTag()("number", NoOffset) { tp =>
tp.request(Int.MaxValue)
tp.expectNextPF { case EventEnvelope(Sequence(1), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(2), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(3), _, _, _) => }
tp.cancel()
}
}
}
it should "return logically deleted events when using CurrentEventsByPersistenceId (backward compatibility)" in withActorSystem { implicit system =>
val journalOps = new ScalaJdbcReadJournalOperations(system)
withTestActors(replyToMessages = true) { (actor1, _, _) =>
(actor1 ? withTags(1, "number")).futureValue
(actor1 ? withTags(2, "number")).futureValue
(actor1 ? withTags(3, "number")).futureValue
// delete and wait for confirmation
(actor1 ? DeleteCmd(1)).futureValue shouldBe "deleted-1"
journalOps.withCurrentEventsByPersistenceId()("my-1") { tp =>
tp.request(Int.MaxValue)
tp.expectNextPF { case EventEnvelope(Sequence(1), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(2), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(3), _, _, _) => }
tp.expectComplete()
}
}
}
it should "return logically deleted events when using EventsByPersistenceId (backward compatibility)" in withActorSystem { implicit system =>
val journalOps = new ScalaJdbcReadJournalOperations(system)
withTestActors(replyToMessages = true) { (actor1, _, _) =>
(actor1 ? withTags(1, "number")).futureValue
(actor1 ? withTags(2, "number")).futureValue
(actor1 ? withTags(3, "number")).futureValue
// delete and wait for confirmation
(actor1 ? DeleteCmd(1)).futureValue shouldBe "deleted-1"
journalOps.withEventsByPersistenceId()("my-1") { tp =>
tp.request(Int.MaxValue)
tp.expectNextPF { case EventEnvelope(Sequence(1), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(2), _, _, _) => }
tp.expectNextPF { case EventEnvelope(Sequence(3), _, _, _) => }
tp.cancel()
}
}
}
}
class PostgresLogicalDeleteQueryTest extends LogicalDeleteQueryTest("postgres-application.conf") with PostgresCleaner
class MySQLLogicalDeleteQueryTest extends LogicalDeleteQueryTest("mysql-application.conf") with MysqlCleaner
class OracleLogicalDeleteQueryTest extends LogicalDeleteQueryTest("oracle-application.conf") with OracleCleaner
class SqlServerLogicalDeleteQueryTest extends LogicalDeleteQueryTest("sqlserver-application.conf") with SqlServerCleaner
class H2LogicalDeleteQueryTest extends LogicalDeleteQueryTest("h2-application.conf") with H2Cleaner
|
gavares/akka-persistence-jdbc
|
src/test/scala/akka/persistence/jdbc/query/LogicalDeleteQueryTest.scala
|
Scala
|
apache-2.0
| 4,387 |
/*
* Copyright 2018 Vladimir Konstantinov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.illfaku.korro.internal.common
import akka.actor._
import io.netty.channel.Channel
private[internal] class HttpActor(channel: Channel) extends Actor {
override def receive = {
case msg => channel.writeAndFlush(msg, channel.voidPromise)
}
}
|
oxy-development/korro
|
src/main/scala/com/github/illfaku/korro/internal/common/HttpActor.scala
|
Scala
|
apache-2.0
| 874 |
package controllers
import entities.{AuthToken, UserId}
import scala.util.{Success, Failure}
import play.api.mvc.{Controller, RequestHeader}
import scala.concurrent.Future
import utils.Utils._
import scala.util.Success
import scala.util.Failure
import scala.Some
import service.RedisService
import play.api.libs.concurrent.Execution.Implicits._
import akka.event.slf4j.Logger
import utils.Logging
/**
* Controller handling REST API interactions
*/
object API extends Controller with Logging {
/**
* as an authenticated user, follow the user with UID to_follow. Idempotent.
*/
def follow(to_follow: String) = AuthenticatedAPI.async {
implicit request => {
val user_id = request.user
val r = for {
_ <- RedisService.follow_user(user_id, UserId(to_follow))
} yield Accepted
r.onComplete{
case Failure(t) => log.error(s"unfollow failed:\n$t")
case Success(_) =>
}
r
}
}
/**
* as an authenticated user, unfollow the user with UID to_unfollow. Idempotent.
*/
def unfollow(to_unfollow: String) = AuthenticatedAPI.async {
implicit request => {
val user_id = request.user
val r = for {
_ <- RedisService.unfollow_user(user_id, UserId(to_unfollow))
} yield Accepted
r.onComplete{
case Failure(t) => log.error(s"unfollow failed:\n$t")
case Success(_) =>
}
r
}
}
}
|
alanktwong/typesafe_activators
|
redis-twitter-clone/app/controllers/Api.scala
|
Scala
|
mit
| 1,433 |
package com.siftlogic.apps
import org.apache.spark.sql.SparkSession
object CachingExampleSparkApp {
def main(args: Array[String]): Unit = {
implicit val sparkSession = SparkSession.builder().appName("Caching Example").master("local").getOrCreate()
import sparkSession.implicits._
val words = sparkSession.createDataset(Seq("spark", "apache spark", "spark", "word", "count"))
.cache() //CACHED INPUT
//.persist(StorageLevel.DISK_ONLY)
//.persist(StorageLevel.MEMORY_AND_DISK)
// CHECK StorageLevel
val numberOfWordsWithSpark = words.filter(_.contains("spark")).count()
val numberOfWordsWithoutSpark = words.filter(!_.contains("spark")).count()
println(s"With: $numberOfWordsWithoutSpark Without: $numberOfWordsWithSpark")
}
}
|
przemek1990/introduction-to-spark
|
src/main/scala/com/siftlogic/apps/CachingExampleSparkApp.scala
|
Scala
|
gpl-3.0
| 786 |
package io.iohk.ethereum.testing
import akka.actor.ActorRef
import akka.testkit.TestActor.AutoPilot
object ActorsTesting {
def simpleAutoPilot(makeResponse: PartialFunction[Any, Any]): AutoPilot = {
new AutoPilot {
def run(sender: ActorRef, msg: Any) = {
val response = makeResponse.lift(msg)
response match {
case Some(value) => sender ! value
case _ => ()
}
this
}
}
}
}
|
input-output-hk/etc-client
|
src/test/scala/io/iohk/ethereum/testing/ActorsTesting.scala
|
Scala
|
mit
| 450 |
package controllers
import play.api.mvc._, Results._
import lila.app._
import views._
object Page extends LilaController {
private def page(bookmark: String) = Open { implicit ctx =>
OptionOk(Prismic oneShotBookmark bookmark) {
case (doc, resolver) => views.html.site.page(doc, resolver)
}
}
def thanks = page("thanks")
def tos = page("tos")
def helpLichess = page("help")
def streamHowTo = page("stream-howto")
def contact = page("contact")
def kingOfTheHill = page("king-of-the-hill")
def privacy = page("privacy")
}
|
r0k3/lila
|
app/controllers/Page.scala
|
Scala
|
mit
| 562 |
/*
* Copyright (c) 2014. Webtrends (http://www.webtrends.com)
* @author cuthbertm on 11/20/14 12:23 PM
*/
package com.webtrends.harness.component.spotifyapi
import akka.actor.ActorRef
import com.webtrends.harness.component.Component
trait SpotifyAPI { this: Component =>
var SpotifyAPIRef:Option[ActorRef] = None
def startSpotifyAPI : ActorRef = {
SpotifyAPIRef = Some(context.actorOf(SpotifyAPIActor.props, SpotifyAPI.SpotifyAPIName))
SpotifyAPIRef.get
}
}
object SpotifyAPI {
val SpotifyAPIName = "SpotifyAPI"
}
|
Crashfreak/SpotifyAPI
|
src/main/scala/com/webtrends/harness/component/spotifyapi/SpotifyAPI.scala
|
Scala
|
apache-2.0
| 537 |
package breeze.linalg
import breeze.generic.UFunc
import scala.reflect.ClassTag
import breeze.storage.DefaultArrayValue
/**
* returns a vector along the diagonal of v.
* Requires a square matrix?
* @param m the matrix
* @tparam V
*/
object diag extends UFunc with diagLowPrio2 {
implicit def diagDVDMImpl[V:ClassTag:DefaultArrayValue]:diag.Impl[DenseVector[V], DenseMatrix[V]] = new diag.Impl[DenseVector[V], DenseMatrix[V]] {
def apply(t: DenseVector[V]): DenseMatrix[V] = {
val r = DenseMatrix.zeros[V](t.length, t.length)
diag(r) := t
r
}
}
implicit def diagDMDVImpl[V]:diag.Impl[DenseMatrix[V], DenseVector[V]] = new diag.Impl[DenseMatrix[V], DenseVector[V]] {
def apply(m: DenseMatrix[V]): DenseVector[V] = {
require(m.rows == m.cols, "m must be square")
new DenseVector(m.data, m.offset, m.majorStride + 1, m.rows)
}
}
}
trait diagLowPrio extends UFunc { this: UFunc =>
}
trait diagLowPrio2 extends UFunc with diagLowPrio { this: UFunc =>
}
|
wavelets/breeze
|
src/main/scala/breeze/linalg/diag.scala
|
Scala
|
apache-2.0
| 1,016 |
package mesosphere.marathon.state
import org.apache.mesos.{ Protos => mesos }
case class Parameter(
key: String,
value: String) {
def toProto: mesos.Parameter =
mesos.Parameter.newBuilder
.setKey(key)
.setValue(value)
.build
}
object Parameter {
def apply(proto: mesos.Parameter): Parameter =
Parameter(
proto.getKey,
proto.getValue
)
}
|
timcharper/marathon
|
src/main/scala/mesosphere/marathon/state/Parameter.scala
|
Scala
|
apache-2.0
| 396 |
package unfiltered.request
import org.scalatest.{Matchers, WordSpec}
import unfiltered.response._
import test.AgentStrings
class AgentSpecJetty
extends AgentSpec
with unfiltered.scalatest.jetty.Planned
class AgentSpecNetty
extends AgentSpec
with unfiltered.scalatest.netty.Planned
trait AgentSpec extends WordSpec with Matchers with unfiltered.scalatest.Hosted {
def intent[A,B]: unfiltered.Cycle.Intent[A,B] = {
case GET(_) & AgentIs.Chrome(_) => ResponseString("chromium")
case GET(_) & AgentIs.Safari(_) & AgentIs.Mobile(_) => ResponseString("safari mobile")
case GET(_) & AgentIs.Safari(_) => ResponseString("safari")
case GET(_) & AgentIs.FireFox(_) => ResponseString("firefox")
case GET(_) & AgentIs.IE(_) => ResponseString("ie")
}
"AgentIs should" should {
"match chrome" in {
val resp = http(host / "test" <:< Map("User-Agent" -> AgentStrings.chrome.head) as_str)
resp should be("chromium")
}
"match safari" in {
val resp = http(host / "test" <:< Map("User-Agent" -> AgentStrings.safari.head) as_str)
resp should be("safari")
}
"match mobile safari" in {
val resp = http(host / "test" <:< Map("User-Agent" -> "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_1 like Mac OS X; en-us) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8B5097d Safari/6531.22.7") as_str)
resp should be("safari mobile")
}
"match firefox" in {
val resp = http(host / "test" <:< Map("User-Agent" -> AgentStrings.firefox.head) as_str)
resp should be("firefox")
}
"match ie" in {
val resp = http(host / "test" <:< Map("User-Agent" -> AgentStrings.ie.head) as_str)
resp should be("ie")
}
}
}
|
peel/unfiltered
|
agents/src/test/scala/AgentSpec.scala
|
Scala
|
mit
| 1,709 |
package chat.tox.antox.wrapper
import chat.tox.antox.utils.Hex
object ToxAddress {
val MAX_ADDRESS_LENGTH = 76
def isAddressValid(address: String): Boolean = {
if (address.length != MAX_ADDRESS_LENGTH || !address.matches("^[0-9A-F]+$")) {
return false
}
var x = 0
try {
var i = 0
while (i < address.length) {
x = x ^
java.lang.Integer.valueOf(address.substring(i, i + 4), 16)
i += 4
}
} catch {
case e: NumberFormatException => return false
}
x == 0
}
def removePrefix(address: String): String = {
val prefix = "tox:"
if (address.toLowerCase.contains(prefix)) {
address.substring(prefix.length)
} else {
address
}
}
}
case class ToxAddress(address: String) {
if (!ToxAddress.isAddressValid(address)) {
throw new IllegalArgumentException(s"address must be $ToxAddress.MAX_ADDRESS_LENGTH hex chars long")
}
def this(bytes: Array[Byte]) =
this(Hex.bytesToHexString(bytes))
def bytes: Array[Byte] = Hex.hexStringToBytes(address)
def key: FriendKey = new FriendKey(address.substring(0, ToxKey.MAX_KEY_LENGTH))
override def toString: String = address
}
|
wiiam/Antox
|
app/src/main/scala/chat/tox/antox/wrapper/ToxAddress.scala
|
Scala
|
gpl-3.0
| 1,201 |
package x7c1.linen.modern.display.unread
import android.support.v7.widget.RecyclerView.Adapter
import android.view.ViewGroup
import x7c1.linen.glue.res.layout.{MenuRow, MenuRowLabel, MenuRowSeparator, MenuRowTitle}
import x7c1.wheat.macros.logger.Log
import x7c1.wheat.modern.menu.{MenuItems, MenuText}
class DrawerMenuRowAdapter(
items: MenuItems[MenuRow]) extends Adapter[MenuRow]{
override def getItemCount: Int = items.length
override def onBindViewHolder(holder: MenuRow, position: Int): Unit = {
items.bind(holder, position){
case (row: MenuRowLabel, item: DrawerMenuLabel) =>
row.text setText item.text
row.itemView setOnClickListener item.onClick
case (row: MenuRowTitle, item: MenuText) =>
row.text setText item.text
case (row: MenuRowSeparator, _) =>
case (row, item) =>
Log error s"unknown row:$row, item:$item, position:$position"
}
}
override def getItemViewType(position: Int): Int = {
items.viewTypeAt(position)
}
override def onCreateViewHolder(parent: ViewGroup, viewType: Int): MenuRow = {
items.inflate(parent, viewType)
}
}
|
x7c1/Linen
|
linen-modern/src/main/scala/x7c1/linen/modern/display/unread/DrawerMenuRowAdapter.scala
|
Scala
|
mit
| 1,140 |
package helper.services
import scala.concurrent.Future
import org.elasticsearch.indices.IndexAlreadyExistsException
import org.elasticsearch.common.xcontent.XContentFactory._
import esclient.queries.{GetFillableIndexQuery, CreateFillableLogIndexQuery, DeleteFillableIndexQuery, IndexDocumentQuery}
import esclient.Elasticsearch
class LogIndexService(es: Elasticsearch) {
val esClient = es.client
implicit val context = scala.concurrent.ExecutionContext.Implicits.global
def deleteLogIndex(index: String): Future[Int] = {
DeleteFillableIndexQuery(esClient, index).execute map {
closeResponse => if (closeResponse.isAcknowledged) 200 else 404
} recover {
case e: Throwable => 404
case _ => 404
}
}
def createLogIndex(index: String, shards: Int, replicas: Int): Future[Int] = {
CreateFillableLogIndexQuery(esClient, index, shards, replicas).execute map {
createResponse => if (createResponse.isAcknowledged) 200 else 404
} recover {
case e: IndexAlreadyExistsException => 400
case _ => 404
}
}
def addLogEntry(indexName: String, typed: String, chosen: String): Future[Int] = {
GetFillableIndexQuery(esClient).execute flatMap {
index => {
if (index.getState.getMetaData.getIndices.containsKey(indexName)) {
val doc = jsonBuilder()
.startObject()
.field("timestamp", System.currentTimeMillis())
.field("typed", typed)
.field("chosen", chosen)
.endObject().string()
IndexDocumentQuery(esClient, indexName, doc).execute map {
indexResponse => 200
} recover {
case _ => 400
}
} else {
Future.successful(202)
}
}
} recover {
case _ => 400
}
}
}
|
MeiSign/Fillable
|
app/helper/services/LogIndexService.scala
|
Scala
|
apache-2.0
| 1,806 |
/*initLocally*/
class Test {
def foo() {
/*start*/1/*end*/
}
}
/*
/*initLocally*/
class Test {
var i: Int = _
def foo() {
/*start*/ i = 1
i/*end*/
}
}
*/
|
triggerNZ/intellij-scala
|
testdata/introduceField/SimpleFromMethodInitLocally.scala
|
Scala
|
apache-2.0
| 176 |
package org.jetbrains.plugins.scala
package lang
package surroundWith
package surrounders
package expression
/**
* author: Dmitry Krasilschikov
*/
import com.intellij.lang.ASTNode
import com.intellij.openapi.util.TextRange
import com.intellij.psi.PsiElement
import org.jetbrains.plugins.scala.lang.psi.api.expr.ScParenthesisedExpr
import org.jetbrains.plugins.scala.lang.psi.impl.expr._
/*
* Surrounds expression with while: while { <Cursor> } { Expression }
*/
class ScalaWithWhileSurrounder extends ScalaExpressionSurrounder {
override def getTemplateAsString(elements: Array[PsiElement]): String =
"while (true) {" + super.getTemplateAsString(elements) + "}"
override def getTemplateDescription = "while"
override def getSurroundSelectionRange(withWhileNode: ASTNode): TextRange = {
val element: PsiElement = withWhileNode.getPsi match {
case x: ScParenthesisedExpr => x.expr match {
case Some(y) => y
case _ => return x.getTextRange
}
case x => x
}
val whileStmt = element.asInstanceOf[ScWhileStmtImpl]
val conditionNode: ASTNode = (whileStmt.condition: @unchecked) match {
case Some(c) => c.getNode
}
val startOffset = conditionNode.getTextRange.getStartOffset
val endOffset = conditionNode.getTextRange.getEndOffset
new TextRange(startOffset, endOffset)
}
}
|
ilinum/intellij-scala
|
src/org/jetbrains/plugins/scala/lang/surroundWith/surrounders/expression/ScalaWithWhileSurrounder.scala
|
Scala
|
apache-2.0
| 1,362 |
package core.api
import com.lvxingpai.model.geo.GeoEntity
import com.lvxingpai.model.marketplace.product.Commodity
import com.lvxingpai.model.marketplace.seller.Seller
import core.model.misc.ApplySeller
import org.bson.types.ObjectId
import org.mongodb.morphia.Datastore
import scala.collection.JavaConversions._
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future
/**
*
* Created by topy on 2015/11/3.
*/
object SellerAPI {
def getSeller(id: Long)(implicit ds: Datastore): Future[Option[Seller]] = {
Future {
Option(ds.find(classOf[Seller], "sellerId", id).get)
}
}
def getSeller(id: Long, fields: Seq[String])(implicit ds: Datastore): Future[Option[Seller]] = {
Future {
Option(ds.find(classOf[Seller], "sellerId", id).retrievedFields(true, fields: _*).get)
}
}
def getSeller(sellers: Seq[Seller], fields: Seq[String])(implicit ds: Datastore): Future[Option[Seq[Seller]]] = {
Future {
Option(ds.createQuery(classOf[Seller]).field("sellerId").in(sellers.map(_.sellerId)).retrievedFields(true, fields: _*).order("-lastSalesVolume").asList())
}
}
def getSeller(commodity: Option[Commodity])(implicit ds: Datastore): Future[Option[Seller]] = {
Future {
commodity match {
case None => None
case c if c.get.seller == null => None
case _ => Option(ds.find(classOf[Seller], "sellerId", commodity.get.seller.sellerId).get)
}
}
}
def addSubLocalities(sellerId: Long, locality: Seq[GeoEntity])(implicit ds: Datastore): Future[Unit] = {
Future {
val statusQuery = ds.createQuery(classOf[Seller]) field "sellerId" equal sellerId
val statusOps = ds.createUpdateOperations(classOf[Seller]).set("subLocalities", seqAsJavaList(locality))
ds.update(statusQuery, statusOps)
}
}
def getSubLocalities(sellerId: Long)(implicit ds: Datastore): Future[Option[Seq[GeoEntity]]] = {
Future {
val seller = ds.find(classOf[Seller], "sellerId", sellerId).retrievedFields(true, Seq("subLocalities"): _*).get()
Option(seller.subLocalities)
}
}
def getSellers(locId: Seq[ObjectId])(implicit ds: Datastore): Future[Option[Seq[Long]]] = {
Future {
val query = ds.createQuery(classOf[Seller])
query.or(
query.criteria("serviceZones.id").in(locId),
query.criteria("subLocalities.id").in(locId)
)
query.retrievedFields(true, Seq("sellerId"): _*)
val sellers = query.asList()
Option(sellers.map(_.sellerId))
}
}
def addApplySeller(name: String, tel: String, province: String, city: String, travel: String, license: String, email: String, memo: String)(implicit ds: Datastore): Future[Unit] = {
Future {
val applySeller = new ApplySeller
applySeller.name = name
applySeller.tel = tel
applySeller.province = province
applySeller.city = city
applySeller.travel = travel
applySeller.license = license
applySeller.email = email
applySeller.memo = memo
ds.save[ApplySeller](applySeller)
}
}
}
|
Lvxingpai/Hanse
|
app/core/api/SellerAPI.scala
|
Scala
|
apache-2.0
| 3,093 |
package com.yoohaemin.hufsclassroom.http
import cats.effect.IO
import org.http4s.EntityBody
object ResponseBodyUtils {
implicit class ByteVector2String(body: EntityBody[IO]) {
def asString: String = {
val array = body.compile.toVector.unsafeRunSync().toArray
new String(array.map(_.toChar))
}
}
}
|
yoo-haemin/hufs-classroom
|
service/test/src/com/yoohaemin/hufsclassroom/http/ResponseBodyUtils.scala
|
Scala
|
agpl-3.0
| 325 |
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package kafka.perf
import java.util.concurrent.{CountDownLatch, Executors}
import java.util.concurrent.atomic.AtomicLong
import kafka.producer._
import org.apache.log4j.Logger
import kafka.message.{CompressionCodec, Message}
import java.text.SimpleDateFormat
import java.util.{Random, Properties}
import kafka.utils.Logging
/**
* Load test for the producer
*/
object ProducerPerformance extends Logging {
def main(args: Array[String]) {
val logger = Logger.getLogger(getClass)
val config = new ProducerPerfConfig(args)
if(!config.isFixSize)
logger.info("WARN: Throughput will be slower due to changing message size per request")
val totalBytesSent = new AtomicLong(0)
val totalMessagesSent = new AtomicLong(0)
val executor = Executors.newFixedThreadPool(config.numThreads)
val allDone = new CountDownLatch(config.numThreads)
val startMs = System.currentTimeMillis
val rand = new java.util.Random
if(!config.hideHeader) {
if(!config.showDetailedStats)
println("start.time, end.time, compression, message.size, batch.size, total.data.sent.in.MB, MB.sec, " +
"total.data.sent.in.nMsg, nMsg.sec")
else
println("time, compression, thread.id, message.size, batch.size, total.data.sent.in.MB, MB.sec, " +
"total.data.sent.in.nMsg, nMsg.sec")
}
for(i <- 0 until config.numThreads) {
executor.execute(new ProducerThread(i, config, totalBytesSent, totalMessagesSent, allDone, rand))
}
allDone.await()
val endMs = System.currentTimeMillis
val elapsedSecs = (endMs - startMs) / 1000.0
if(!config.showDetailedStats) {
val totalMBSent = (totalBytesSent.get * 1.0)/ (1024 * 1024)
println(("%s, %s, %d, %d, %d, %.2f, %.4f, %d, %.4f").format(config.dateFormat.format(startMs),
config.dateFormat.format(endMs), config.compressionCodec.codec, config.messageSize, config.batchSize,
totalMBSent, totalMBSent/elapsedSecs, totalMessagesSent.get, totalMessagesSent.get/elapsedSecs))
}
System.exit(0)
}
class ProducerPerfConfig(args: Array[String]) extends PerfConfig(args) {
val brokerInfoOpt = parser.accepts("brokerinfo", "REQUIRED: broker info (either from zookeeper or a list.")
.withRequiredArg
.describedAs("broker.list=brokerid:hostname:port or zk.connect=host:port")
.ofType(classOf[String])
val messageSizeOpt = parser.accepts("message-size", "The size of each message.")
.withRequiredArg
.describedAs("size")
.ofType(classOf[java.lang.Integer])
.defaultsTo(100)
val varyMessageSizeOpt = parser.accepts("vary-message-size", "If set, message size will vary up to the given maximum.")
val asyncOpt = parser.accepts("async", "If set, messages are sent asynchronously.")
val batchSizeOpt = parser.accepts("batch-size", "Number of messages to send in a single batch.")
.withRequiredArg
.describedAs("size")
.ofType(classOf[java.lang.Integer])
.defaultsTo(200)
val numThreadsOpt = parser.accepts("threads", "Number of sending threads.")
.withRequiredArg
.describedAs("count")
.ofType(classOf[java.lang.Integer])
.defaultsTo(10)
val compressionCodecOption = parser.accepts("compression-codec", "If set, messages are sent compressed")
.withRequiredArg
.describedAs("compression codec ")
.ofType(classOf[java.lang.Integer])
.defaultsTo(0)
val options = parser.parse(args : _*)
for(arg <- List(topicOpt, brokerInfoOpt, numMessagesOpt)) {
if(!options.has(arg)) {
System.err.println("Missing required argument \\"" + arg + "\\"")
parser.printHelpOn(System.err)
System.exit(1)
}
}
val topic = options.valueOf(topicOpt)
val numMessages = options.valueOf(numMessagesOpt).longValue
val reportingInterval = options.valueOf(reportingIntervalOpt).intValue
val showDetailedStats = options.has(showDetailedStatsOpt)
val dateFormat = new SimpleDateFormat(options.valueOf(dateFormatOpt))
val hideHeader = options.has(hideHeaderOpt)
val brokerInfo = options.valueOf(brokerInfoOpt)
val messageSize = options.valueOf(messageSizeOpt).intValue
val isFixSize = !options.has(varyMessageSizeOpt)
val isAsync = options.has(asyncOpt)
var batchSize = options.valueOf(batchSizeOpt).intValue
val numThreads = options.valueOf(numThreadsOpt).intValue
val compressionCodec = CompressionCodec.getCompressionCodec(options.valueOf(compressionCodecOption).intValue)
}
private def getStringOfLength(len: Int) : String = {
val strArray = new Array[Char](len)
for (i <- 0 until len)
strArray(i) = 'x'
return new String(strArray)
}
private def getByteArrayOfLength(len: Int): Array[Byte] = {
//new Array[Byte](len)
new Array[Byte]( if (len == 0) 5 else len )
}
class ProducerThread(val threadId: Int,
val config: ProducerPerfConfig,
val totalBytesSent: AtomicLong,
val totalMessagesSent: AtomicLong,
val allDone: CountDownLatch,
val rand: Random) extends Runnable {
val props = new Properties()
val brokerInfoList = config.brokerInfo.split("=")
if (brokerInfoList(0) == "zk.connect") {
props.put("zk.connect", brokerInfoList(1))
props.put("zk.sessiontimeout.ms", "300000")
}
else
props.put("broker.list", brokerInfoList(1))
props.put("compression.codec", config.compressionCodec.codec.toString)
props.put("reconnect.interval", Integer.MAX_VALUE.toString)
props.put("buffer.size", (64*1024).toString)
if(config.isAsync) {
props.put("producer.type","async")
props.put("batch.size", config.batchSize.toString)
props.put("queue.enqueueTimeout.ms", "-1")
}
val producerConfig = new ProducerConfig(props)
val producer = new Producer[Message, Message](producerConfig)
override def run {
var bytesSent = 0L
var lastBytesSent = 0L
var nSends = 0
var lastNSends = 0
val message = new Message(new Array[Byte](config.messageSize))
var reportTime = System.currentTimeMillis()
var lastReportTime = reportTime
val messagesPerThread = if(!config.isAsync) config.numMessages / config.numThreads / config.batchSize
else config.numMessages / config.numThreads
debug("Messages per thread = " + messagesPerThread)
var messageSet: List[Message] = Nil
if(config.isFixSize) {
for(k <- 0 until config.batchSize) {
messageSet ::= message
}
}
var j: Long = 0L
while(j < messagesPerThread) {
var strLength = config.messageSize
if (!config.isFixSize) {
for(k <- 0 until config.batchSize) {
strLength = rand.nextInt(config.messageSize)
val message = new Message(getByteArrayOfLength(strLength))
messageSet ::= message
bytesSent += message.payloadSize
}
}else if(!config.isAsync) {
bytesSent += config.batchSize*message.payloadSize
}
try {
if(!config.isAsync) {
producer.send(new ProducerData[Message,Message](config.topic, null, messageSet))
if(!config.isFixSize) messageSet = Nil
nSends += config.batchSize
}else {
if(!config.isFixSize) {
strLength = rand.nextInt(config.messageSize)
val messageBytes = getByteArrayOfLength(strLength)
rand.nextBytes(messageBytes)
val message = new Message(messageBytes)
producer.send(new ProducerData[Message,Message](config.topic, message))
debug(config.topic + "-checksum:" + message.checksum)
bytesSent += message.payloadSize
}else {
producer.send(new ProducerData[Message,Message](config.topic, message))
debug(config.topic + "-checksum:" + message.checksum)
bytesSent += message.payloadSize
}
nSends += 1
}
}catch {
case e: Exception => e.printStackTrace
}
if(nSends % config.reportingInterval == 0) {
reportTime = System.currentTimeMillis()
val elapsed = (reportTime - lastReportTime)/ 1000.0
val mbBytesSent = ((bytesSent - lastBytesSent) * 1.0)/(1024 * 1024)
val numMessagesPerSec = (nSends - lastNSends) / elapsed
val mbPerSec = mbBytesSent / elapsed
val formattedReportTime = config.dateFormat.format(reportTime)
if(config.showDetailedStats)
println(("%s, %d, %d, %d, %d, %.2f, %.4f, %d, %.4f").format(formattedReportTime, config.compressionCodec.codec,
threadId, config.messageSize, config.batchSize, (bytesSent*1.0)/(1024 * 1024), mbPerSec, nSends, numMessagesPerSec))
lastReportTime = reportTime
lastBytesSent = bytesSent
lastNSends = nSends
}
j += 1
}
producer.close()
totalBytesSent.addAndGet(bytesSent)
totalMessagesSent.addAndGet(nSends)
allDone.countDown()
}
}
}
|
piavlo/operations-debs-kafka
|
perf/src/main/scala/kafka/perf/ProducerPerformance.scala
|
Scala
|
apache-2.0
| 10,020 |
import akka.actor._
case class SpecialOrder(number : Integer, customer : ActorRef)
class SpecialCustomer(loadBalancer : ActorRef) extends Actor {
var currentOrder = 1
def receive = {
case Food =>
println(self.path.name + ": Thanks for that.")
currentOrder += 1
loadBalancer ! SpecialOrder(currentOrder, self)
case Initiate =>
loadBalancer ! SpecialOrder(currentOrder, self)
}
}
class SpecialWaiter extends Actor {
// 10 orders per person.
val limit = 5
def receive = {
case SpecialOrder(number : Integer, customer : ActorRef) =>
if(number > limit) customer ! PoisonPill
else {
println("Waiter: #" + self.path.name + " Here's order # " +
number + " " + customer.path.name)
customer ! Food
}
}
}
class LoadBalancer(numWaiters : Integer) extends Actor {
/*
* Load balancer for restaurant waiters.
* Will distribute load with equal probability
* to all the waiters. Good performance in expectation.
*/
val waitersList = (for(waiter <- 1 to numWaiters)
yield(context.actorOf(Props[SpecialWaiter], name = "waiter" + waiter)))
val waiters = waitersList.toArray
val r = scala.util.Random
def receive = {
case SpecialOrder(number : Integer, customer : ActorRef) =>
getRandomWaiter ! SpecialOrder(number, customer)
}
def getRandomWaiter = waiters(r.nextInt(waiters.size))
}
object ComplexWorkflow extends App {
val customerLimit = 2
val system = ActorSystem("RestaurantSystemLoadBalancer")
val loadBalancer = system.actorOf(Props(new LoadBalancer(5)), name = "loadbalancer")
val customers = for(i <- 1 to customerLimit)
yield system.actorOf(Props(new SpecialCustomer(loadBalancer)), name = "customer" + i)
customers.foreach { x => x ! Initiate }
}
|
adijo/parallelized-workflow-simulation
|
src/main/scala/MultipleWaiters.scala
|
Scala
|
apache-2.0
| 1,977 |
package com.github.jmcs.domain.unaryexpression
import com.github.jmcs.domain.Expression
import com.github.jmcs.domain.UnaryExpression
/**
* Created with IntelliJ IDEA.
* User: Marcelo
* Date: 30/07/13
* Time: 22:54
* To change this template use File | Settings | File Templates.
*/
class BinaryLogarithmExpression(override val expression: Expression) extends UnaryExpression(expression) {
def evaluate(): Any = useCache(() => BigDecimal(Math.log(expression.evaluate.asInstanceOf[BigDecimal].toDouble) / Math.log(2)))
def getOperationSymbol = "lb"
}
|
MarceloPortilho/jmc-scala
|
src/main/java/com/github/jmcs/domain/unaryexpression/BinaryLogarithmExpression.scala
|
Scala
|
apache-2.0
| 581 |
/*
* Copyright 2013 Maurício Linhares
*
* Maurício Linhares licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package com.github.mauricio.async.db
/**
*
* Represents the collection of rows that is returned from a statement inside a {@link QueryResult}. It's basically
* a collection of Array[Any]. Mutating fields in this array will not affect the database in any way
*
*/
trait ResultSet extends IndexedSeq[RowData] {
/**
*
* The names of the columns returned by the statement.
*
* @return
*/
def columnNames : IndexedSeq[String]
}
|
outbrain/postgresql-async
|
db-async-common/src/main/scala/com/github/mauricio/async/db/ResultSet.scala
|
Scala
|
apache-2.0
| 1,089 |
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.deploy.k8s.features.bindings
import scala.collection.JavaConverters._
import io.fabric8.kubernetes.api.model.{ContainerBuilder, EnvVarBuilder, HasMetadata}
import org.apache.spark.deploy.k8s.{KubernetesConf, KubernetesDriverSpecificConf, KubernetesUtils, SparkPod}
import org.apache.spark.deploy.k8s.Constants._
import org.apache.spark.deploy.k8s.features.KubernetesFeatureConfigStep
private[spark] class RDriverFeatureStep(
kubernetesConf: KubernetesConf[KubernetesDriverSpecificConf])
extends KubernetesFeatureConfigStep {
override def configurePod(pod: SparkPod): SparkPod = {
val roleConf = kubernetesConf.roleSpecificConf
require(roleConf.mainAppResource.isDefined, "R Main Resource must be defined")
val maybeRArgs = Option(roleConf.appArgs).filter(_.nonEmpty).map(
rArgs =>
new EnvVarBuilder()
.withName(ENV_R_ARGS)
.withValue(rArgs.mkString(","))
.build())
val envSeq =
Seq(new EnvVarBuilder()
.withName(ENV_R_PRIMARY)
.withValue(KubernetesUtils.resolveFileUri(kubernetesConf.sparkRMainResource().get))
.build())
val rEnvs = envSeq ++
maybeRArgs.toSeq
val withRPrimaryContainer = new ContainerBuilder(pod.container)
.addAllToEnv(rEnvs.asJava)
.addToArgs("driver-r")
.addToArgs("--properties-file", SPARK_CONF_PATH)
.addToArgs("--class", roleConf.mainClass)
.build()
SparkPod(pod.pod, withRPrimaryContainer)
}
override def getAdditionalPodSystemProperties(): Map[String, String] = Map.empty
override def getAdditionalKubernetesResources(): Seq[HasMetadata] = Seq.empty
}
|
rikima/spark
|
resource-managers/kubernetes/core/src/main/scala/org/apache/spark/deploy/k8s/features/bindings/RDriverFeatureStep.scala
|
Scala
|
apache-2.0
| 2,479 |
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.csv
import java.io.{ByteArrayOutputStream, EOFException, File, FileOutputStream}
import java.nio.charset.{Charset, StandardCharsets, UnsupportedCharsetException}
import java.nio.file.{Files, StandardOpenOption}
import java.sql.{Date, Timestamp}
import java.text.SimpleDateFormat
import java.util.Locale
import java.util.zip.GZIPOutputStream
import scala.collection.JavaConverters._
import scala.util.Properties
import com.univocity.parsers.common.TextParsingException
import org.apache.commons.lang3.time.FastDateFormat
import org.apache.hadoop.io.SequenceFile.CompressionType
import org.apache.hadoop.io.compress.GzipCodec
import org.apache.log4j.{AppenderSkeleton, LogManager}
import org.apache.log4j.spi.LoggingEvent
import org.apache.spark.{SparkException, TestUtils}
import org.apache.spark.sql.{AnalysisException, DataFrame, QueryTest, Row}
import org.apache.spark.sql.catalyst.util.DateTimeUtils
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.test.SharedSparkSession
import org.apache.spark.sql.types._
class CSVSuite extends QueryTest with SharedSparkSession with TestCsvData {
import testImplicits._
private val carsFile = "test-data/cars.csv"
private val carsMalformedFile = "test-data/cars-malformed.csv"
private val carsFile8859 = "test-data/cars_iso-8859-1.csv"
private val carsTsvFile = "test-data/cars.tsv"
private val carsAltFile = "test-data/cars-alternative.csv"
private val carsUnbalancedQuotesFile = "test-data/cars-unbalanced-quotes.csv"
private val carsNullFile = "test-data/cars-null.csv"
private val carsEmptyValueFile = "test-data/cars-empty-value.csv"
private val carsBlankColName = "test-data/cars-blank-column-name.csv"
private val carsCrlf = "test-data/cars-crlf.csv"
private val emptyFile = "test-data/empty.csv"
private val commentsFile = "test-data/comments.csv"
private val disableCommentsFile = "test-data/disable_comments.csv"
private val boolFile = "test-data/bool.csv"
private val decimalFile = "test-data/decimal.csv"
private val simpleSparseFile = "test-data/simple_sparse.csv"
private val numbersFile = "test-data/numbers.csv"
private val datesFile = "test-data/dates.csv"
private val unescapedQuotesFile = "test-data/unescaped-quotes.csv"
private val valueMalformedFile = "test-data/value-malformed.csv"
private val badAfterGoodFile = "test-data/bad_after_good.csv"
/** Verifies data and schema. */
private def verifyCars(
df: DataFrame,
withHeader: Boolean,
numCars: Int = 3,
numFields: Int = 5,
checkHeader: Boolean = true,
checkValues: Boolean = true,
checkTypes: Boolean = false): Unit = {
val numColumns = numFields
val numRows = if (withHeader) numCars else numCars + 1
// schema
assert(df.schema.fieldNames.length === numColumns)
assert(df.count === numRows)
if (checkHeader) {
if (withHeader) {
assert(df.schema.fieldNames === Array("year", "make", "model", "comment", "blank"))
} else {
assert(df.schema.fieldNames === Array("_c0", "_c1", "_c2", "_c3", "_c4"))
}
}
if (checkValues) {
val yearValues = List("2012", "1997", "2015")
val actualYears = if (!withHeader) "year" :: yearValues else yearValues
val years = if (withHeader) df.select("year").collect() else df.select("_c0").collect()
years.zipWithIndex.foreach { case (year, index) =>
if (checkTypes) {
assert(year === Row(actualYears(index).toInt))
} else {
assert(year === Row(actualYears(index)))
}
}
}
}
test("simple csv test") {
val cars = spark
.read
.format("csv")
.option("header", "false")
.load(testFile(carsFile))
verifyCars(cars, withHeader = false, checkTypes = false)
}
test("simple csv test with calling another function to load") {
val cars = spark
.read
.option("header", "false")
.csv(testFile(carsFile))
verifyCars(cars, withHeader = false, checkTypes = false)
}
test("simple csv test with type inference") {
val cars = spark
.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load(testFile(carsFile))
verifyCars(cars, withHeader = true, checkTypes = true)
}
test("simple csv test with string dataset") {
val csvDataset = spark.read.text(testFile(carsFile)).as[String]
val cars = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv(csvDataset)
verifyCars(cars, withHeader = true, checkTypes = true)
val carsWithoutHeader = spark.read
.option("header", "false")
.csv(csvDataset)
verifyCars(carsWithoutHeader, withHeader = false, checkTypes = false)
}
test("test inferring booleans") {
val result = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load(testFile(boolFile))
val expectedSchema = StructType(List(
StructField("bool", BooleanType, nullable = true)))
assert(result.schema === expectedSchema)
}
test("test inferring decimals") {
val result = spark.read
.format("csv")
.option("comment", "~")
.option("header", "true")
.option("inferSchema", "true")
.load(testFile(decimalFile))
val expectedSchema = StructType(List(
StructField("decimal", DecimalType(20, 0), nullable = true),
StructField("long", LongType, nullable = true),
StructField("double", DoubleType, nullable = true)))
assert(result.schema === expectedSchema)
}
test("test with alternative delimiter and quote") {
val cars = spark.read
.format("csv")
.options(Map("quote" -> "\\'", "delimiter" -> "|", "header" -> "true"))
.load(testFile(carsAltFile))
verifyCars(cars, withHeader = true)
}
test("parse unescaped quotes with maxCharsPerColumn") {
val rows = spark.read
.format("csv")
.option("maxCharsPerColumn", "4")
.load(testFile(unescapedQuotesFile))
val expectedRows = Seq(Row("\\"a\\"b", "ccc", "ddd"), Row("ab", "cc\\"c", "ddd\\""))
checkAnswer(rows, expectedRows)
}
test("bad encoding name") {
val exception = intercept[UnsupportedCharsetException] {
spark
.read
.format("csv")
.option("charset", "1-9588-osi")
.load(testFile(carsFile8859))
}
assert(exception.getMessage.contains("1-9588-osi"))
}
test("test different encoding") {
withView("carsTable") {
// scalastyle:off
spark.sql(
s"""
|CREATE TEMPORARY VIEW carsTable USING csv
|OPTIONS (path "${testFile(carsFile8859)}", header "true",
|charset "iso-8859-1", delimiter "þ")
""".stripMargin.replaceAll("\\n", " "))
// scalastyle:on
verifyCars(spark.table("carsTable"), withHeader = true)
}
}
test("crlf line separators in multiline mode") {
val cars = spark
.read
.format("csv")
.option("multiLine", "true")
.option("header", "true")
.load(testFile(carsCrlf))
verifyCars(cars, withHeader = true)
}
test("test aliases sep and encoding for delimiter and charset") {
// scalastyle:off
val cars = spark
.read
.format("csv")
.option("header", "true")
.option("encoding", "iso-8859-1")
.option("sep", "þ")
.load(testFile(carsFile8859))
// scalastyle:on
verifyCars(cars, withHeader = true)
}
test("DDL test with tab separated file") {
withView("carsTable") {
spark.sql(
s"""
|CREATE TEMPORARY VIEW carsTable USING csv
|OPTIONS (path "${testFile(carsTsvFile)}", header "true", delimiter "\\t")
""".stripMargin.replaceAll("\\n", " "))
verifyCars(spark.table("carsTable"), numFields = 6, withHeader = true, checkHeader = false)
}
}
test("DDL test parsing decimal type") {
withView("carsTable") {
spark.sql(
s"""
|CREATE TEMPORARY VIEW carsTable
|(yearMade double, makeName string, modelName string, priceTag decimal,
| comments string, grp string)
|USING csv
|OPTIONS (path "${testFile(carsTsvFile)}", header "true", delimiter "\\t")
""".stripMargin.replaceAll("\\n", " "))
assert(
spark.sql("SELECT makeName FROM carsTable where priceTag > 60000").collect().size === 1)
}
}
test("test for DROPMALFORMED parsing mode") {
withSQLConf(SQLConf.CSV_PARSER_COLUMN_PRUNING.key -> "false") {
Seq(false, true).foreach { multiLine =>
val cars = spark.read
.format("csv")
.option("multiLine", multiLine)
.options(Map("header" -> "true", "mode" -> "dropmalformed"))
.load(testFile(carsFile))
assert(cars.select("year").collect().size === 2)
}
}
}
test("test for blank column names on read and select columns") {
val cars = spark.read
.format("csv")
.options(Map("header" -> "true", "inferSchema" -> "true"))
.load(testFile(carsBlankColName))
assert(cars.select("customer").collect().size == 2)
assert(cars.select("_c0").collect().size == 2)
assert(cars.select("_c1").collect().size == 2)
}
test("test for FAILFAST parsing mode") {
Seq(false, true).foreach { multiLine =>
val exception = intercept[SparkException] {
spark.read
.format("csv")
.option("multiLine", multiLine)
.options(Map("header" -> "true", "mode" -> "failfast"))
.load(testFile(carsFile)).collect()
}
assert(exception.getMessage.contains("Malformed CSV record"))
}
}
test("test for tokens more than the fields in the schema") {
val cars = spark
.read
.format("csv")
.option("header", "false")
.option("comment", "~")
.load(testFile(carsMalformedFile))
verifyCars(cars, withHeader = false, checkTypes = false)
}
test("test with null quote character") {
val cars = spark.read
.format("csv")
.option("header", "true")
.option("quote", "")
.load(testFile(carsUnbalancedQuotesFile))
verifyCars(cars, withHeader = true, checkValues = false)
}
test("test with empty file and known schema") {
val result = spark.read
.format("csv")
.schema(StructType(List(StructField("column", StringType, false))))
.load(testFile(emptyFile))
assert(result.collect.size === 0)
assert(result.schema.fieldNames.size === 1)
}
test("DDL test with empty file") {
withView("carsTable") {
spark.sql(
s"""
|CREATE TEMPORARY VIEW carsTable
|(yearMade double, makeName string, modelName string, comments string, grp string)
|USING csv
|OPTIONS (path "${testFile(emptyFile)}", header "false")
""".stripMargin.replaceAll("\\n", " "))
assert(spark.sql("SELECT count(*) FROM carsTable").collect().head(0) === 0)
}
}
test("DDL test with schema") {
withView("carsTable") {
spark.sql(
s"""
|CREATE TEMPORARY VIEW carsTable
|(yearMade double, makeName string, modelName string, comments string, blank string)
|USING csv
|OPTIONS (path "${testFile(carsFile)}", header "true")
""".stripMargin.replaceAll("\\n", " "))
val cars = spark.table("carsTable")
verifyCars(cars, withHeader = true, checkHeader = false, checkValues = false)
assert(
cars.schema.fieldNames === Array("yearMade", "makeName", "modelName", "comments", "blank"))
}
}
test("save csv") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val cars = spark.read
.format("csv")
.option("header", "true")
.load(testFile(carsFile))
cars.coalesce(1).write
.option("header", "true")
.csv(csvDir)
val carsCopy = spark.read
.format("csv")
.option("header", "true")
.load(csvDir)
verifyCars(carsCopy, withHeader = true)
}
}
test("save csv with quote") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val cars = spark.read
.format("csv")
.option("header", "true")
.load(testFile(carsFile))
cars.coalesce(1).write
.format("csv")
.option("header", "true")
.option("quote", "\\"")
.save(csvDir)
val carsCopy = spark.read
.format("csv")
.option("header", "true")
.option("quote", "\\"")
.load(csvDir)
verifyCars(carsCopy, withHeader = true)
}
}
test("save csv with quoteAll enabled") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val data = Seq(("test \\"quote\\"", 123, "it \\"works\\"!", "\\"very\\" well"))
val df = spark.createDataFrame(data)
// escapeQuotes should be true by default
df.coalesce(1).write
.format("csv")
.option("quote", "\\"")
.option("escape", "\\"")
.option("quoteAll", "true")
.save(csvDir)
val results = spark.read
.format("text")
.load(csvDir)
.collect()
val expected = "\\"test \\"\\"quote\\"\\"\\",\\"123\\",\\"it \\"\\"works\\"\\"!\\",\\"\\"\\"very\\"\\" well\\""
assert(results.toSeq.map(_.toSeq) === Seq(Seq(expected)))
}
}
test("save csv with quote escaping enabled") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val data = Seq(("test \\"quote\\"", 123, "it \\"works\\"!", "\\"very\\" well"))
val df = spark.createDataFrame(data)
// escapeQuotes should be true by default
df.coalesce(1).write
.format("csv")
.option("quote", "\\"")
.option("escape", "\\"")
.save(csvDir)
val results = spark.read
.format("text")
.load(csvDir)
.collect()
val expected = "\\"test \\"\\"quote\\"\\"\\",123,\\"it \\"\\"works\\"\\"!\\",\\"\\"\\"very\\"\\" well\\""
assert(results.toSeq.map(_.toSeq) === Seq(Seq(expected)))
}
}
test("save csv with quote escaping disabled") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val data = Seq(("test \\"quote\\"", 123, "it \\"works\\"!", "\\"very\\" well"))
val df = spark.createDataFrame(data)
// escapeQuotes should be true by default
df.coalesce(1).write
.format("csv")
.option("quote", "\\"")
.option("escapeQuotes", "false")
.option("escape", "\\"")
.save(csvDir)
val results = spark.read
.format("text")
.load(csvDir)
.collect()
val expected = "test \\"quote\\",123,it \\"works\\"!,\\"\\"\\"very\\"\\" well\\""
assert(results.toSeq.map(_.toSeq) === Seq(Seq(expected)))
}
}
test("save csv with quote escaping, using charToEscapeQuoteEscaping option") {
withTempPath { path =>
// original text
val df1 = Seq(
"""You are "beautiful"""",
"""Yes, \\"in the inside"\\"""
).toDF()
// text written in CSV with following options:
// quote character: "
// escape character: \\
// character to escape quote escaping: #
val df2 = Seq(
""""You are \\"beautiful\\""""",
""""Yes, #\\\\"in the inside\\"#\\""""
).toDF()
df2.coalesce(1).write.text(path.getAbsolutePath)
val df3 = spark.read
.format("csv")
.option("quote", "\\"")
.option("escape", "\\\\")
.option("charToEscapeQuoteEscaping", "#")
.load(path.getAbsolutePath)
checkAnswer(df1, df3)
}
}
test("SPARK-19018: Save csv with custom charset") {
// scalastyle:off nonascii
val content = "µß áâä ÁÂÄ"
// scalastyle:on nonascii
Seq("iso-8859-1", "utf-8", "utf-16", "utf-32", "windows-1250").foreach { encoding =>
withTempPath { path =>
val csvDir = new File(path, "csv")
Seq(content).toDF().write
.option("encoding", encoding)
.csv(csvDir.getCanonicalPath)
csvDir.listFiles().filter(_.getName.endsWith("csv")).foreach({ csvFile =>
val readback = Files.readAllBytes(csvFile.toPath)
val expected = (content + Properties.lineSeparator).getBytes(Charset.forName(encoding))
assert(readback === expected)
})
}
}
}
test("SPARK-19018: error handling for unsupported charsets") {
val exception = intercept[SparkException] {
withTempPath { path =>
val csvDir = new File(path, "csv").getCanonicalPath
Seq("a,A,c,A,b,B").toDF().write
.option("encoding", "1-9588-osi")
.csv(csvDir)
}
}
assert(exception.getCause.getMessage.contains("1-9588-osi"))
}
test("commented lines in CSV data") {
Seq("false", "true").foreach { multiLine =>
val results = spark.read
.format("csv")
.options(Map("comment" -> "~", "header" -> "false", "multiLine" -> multiLine))
.load(testFile(commentsFile))
.collect()
val expected =
Seq(Seq("1", "2", "3", "4", "5.01", "2015-08-20 15:57:00"),
Seq("6", "7", "8", "9", "0", "2015-08-21 16:58:01"),
Seq("1", "2", "3", "4", "5", "2015-08-23 18:00:42"))
assert(results.toSeq.map(_.toSeq) === expected)
}
}
test("inferring schema with commented lines in CSV data") {
val results = spark.read
.format("csv")
.options(Map("comment" -> "~", "header" -> "false", "inferSchema" -> "true"))
.option("timestampFormat", "yyyy-MM-dd HH:mm:ss")
.load(testFile(commentsFile))
.collect()
val expected =
Seq(Seq(1, 2, 3, 4, 5.01D, Timestamp.valueOf("2015-08-20 15:57:00")),
Seq(6, 7, 8, 9, 0, Timestamp.valueOf("2015-08-21 16:58:01")),
Seq(1, 2, 3, 4, 5, Timestamp.valueOf("2015-08-23 18:00:42")))
assert(results.toSeq.map(_.toSeq) === expected)
}
test("inferring timestamp types via custom date format") {
val options = Map(
"header" -> "true",
"inferSchema" -> "true",
"timestampFormat" -> "dd/MM/yyyy HH:mm")
val results = spark.read
.format("csv")
.options(options)
.load(testFile(datesFile))
.select("date")
.collect()
val dateFormat = new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.US)
val expected =
Seq(Seq(new Timestamp(dateFormat.parse("26/08/2015 18:00").getTime)),
Seq(new Timestamp(dateFormat.parse("27/10/2014 18:30").getTime)),
Seq(new Timestamp(dateFormat.parse("28/01/2016 20:00").getTime)))
assert(results.toSeq.map(_.toSeq) === expected)
}
test("load date types via custom date format") {
val customSchema = new StructType(Array(StructField("date", DateType, true)))
val options = Map(
"header" -> "true",
"inferSchema" -> "false",
"dateFormat" -> "dd/MM/yyyy HH:mm")
val results = spark.read
.format("csv")
.options(options)
.option("timeZone", "UTC")
.schema(customSchema)
.load(testFile(datesFile))
.select("date")
.collect()
val dateFormat = new SimpleDateFormat("dd/MM/yyyy hh:mm", Locale.US)
val expected = Seq(
new Date(dateFormat.parse("26/08/2015 18:00").getTime),
new Date(dateFormat.parse("27/10/2014 18:30").getTime),
new Date(dateFormat.parse("28/01/2016 20:00").getTime))
val dates = results.toSeq.map(_.toSeq.head)
expected.zip(dates).foreach {
case (expectedDate, date) =>
// As it truncates the hours, minutes and etc., we only check
// if the dates (days, months and years) are the same via `toString()`.
assert(expectedDate.toString === date.toString)
}
}
test("setting comment to null disables comment support") {
val results = spark.read
.format("csv")
.options(Map("comment" -> "", "header" -> "false"))
.load(testFile(disableCommentsFile))
.collect()
val expected =
Seq(
Seq("#1", "2", "3"),
Seq("4", "5", "6"))
assert(results.toSeq.map(_.toSeq) === expected)
}
test("nullable fields with user defined null value of \\"null\\"") {
// year,make,model,comment,blank
val dataSchema = StructType(List(
StructField("year", IntegerType, nullable = true),
StructField("make", StringType, nullable = false),
StructField("model", StringType, nullable = false),
StructField("comment", StringType, nullable = true),
StructField("blank", StringType, nullable = true)))
val cars = spark.read
.format("csv")
.schema(dataSchema)
.options(Map("header" -> "true", "nullValue" -> "null"))
.load(testFile(carsNullFile))
verifyCars(cars, withHeader = true, checkValues = false)
val results = cars.collect()
assert(results(0).toSeq === Array(2012, "Tesla", "S", null, null))
assert(results(2).toSeq === Array(null, "Chevy", "Volt", null, null))
}
test("empty fields with user defined empty values") {
// year,make,model,comment,blank
val dataSchema = StructType(List(
StructField("year", IntegerType, nullable = true),
StructField("make", StringType, nullable = false),
StructField("model", StringType, nullable = false),
StructField("comment", StringType, nullable = true),
StructField("blank", StringType, nullable = true)))
val cars = spark.read
.format("csv")
.schema(dataSchema)
.option("header", "true")
.option("emptyValue", "empty")
.load(testFile(carsEmptyValueFile))
verifyCars(cars, withHeader = true, checkValues = false)
val results = cars.collect()
assert(results(0).toSeq === Array(2012, "Tesla", "S", "empty", "empty"))
assert(results(1).toSeq ===
Array(1997, "Ford", "E350", "Go get one now they are going fast", null))
assert(results(2).toSeq === Array(2015, "Chevy", "Volt", null, "empty"))
}
test("save csv with empty fields with user defined empty values") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
// year,make,model,comment,blank
val dataSchema = StructType(List(
StructField("year", IntegerType, nullable = true),
StructField("make", StringType, nullable = false),
StructField("model", StringType, nullable = false),
StructField("comment", StringType, nullable = true),
StructField("blank", StringType, nullable = true)))
val cars = spark.read
.format("csv")
.schema(dataSchema)
.option("header", "true")
.option("nullValue", "NULL")
.load(testFile(carsEmptyValueFile))
cars.coalesce(1).write
.format("csv")
.option("header", "true")
.option("emptyValue", "empty")
.option("nullValue", null)
.save(csvDir)
val carsCopy = spark.read
.format("csv")
.schema(dataSchema)
.option("header", "true")
.load(csvDir)
verifyCars(carsCopy, withHeader = true, checkValues = false)
val results = carsCopy.collect()
assert(results(0).toSeq === Array(2012, "Tesla", "S", "empty", "empty"))
assert(results(1).toSeq ===
Array(1997, "Ford", "E350", "Go get one now they are going fast", null))
assert(results(2).toSeq === Array(2015, "Chevy", "Volt", null, "empty"))
}
}
test("save csv with compression codec option") {
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val cars = spark.read
.format("csv")
.option("header", "true")
.load(testFile(carsFile))
cars.coalesce(1).write
.format("csv")
.option("header", "true")
.option("compression", "gZiP")
.save(csvDir)
val compressedFiles = new File(csvDir).listFiles()
assert(compressedFiles.exists(_.getName.endsWith(".csv.gz")))
val carsCopy = spark.read
.format("csv")
.option("header", "true")
.load(csvDir)
verifyCars(carsCopy, withHeader = true)
}
}
test("SPARK-13543 Write the output as uncompressed via option()") {
val extraOptions = Map(
"mapreduce.output.fileoutputformat.compress" -> "true",
"mapreduce.output.fileoutputformat.compress.type" -> CompressionType.BLOCK.toString,
"mapreduce.map.output.compress" -> "true",
"mapreduce.map.output.compress.codec" -> classOf[GzipCodec].getName
)
withTempDir { dir =>
val csvDir = new File(dir, "csv").getCanonicalPath
val cars = spark.read
.format("csv")
.option("header", "true")
.options(extraOptions)
.load(testFile(carsFile))
cars.coalesce(1).write
.format("csv")
.option("header", "true")
.option("compression", "none")
.options(extraOptions)
.save(csvDir)
val compressedFiles = new File(csvDir).listFiles()
assert(compressedFiles.exists(!_.getName.endsWith(".csv.gz")))
val carsCopy = spark.read
.format("csv")
.option("header", "true")
.options(extraOptions)
.load(csvDir)
verifyCars(carsCopy, withHeader = true)
}
}
test("Schema inference correctly identifies the datatype when data is sparse.") {
val df = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load(testFile(simpleSparseFile))
assert(
df.schema.fields.map(field => field.dataType).deep ==
Array(IntegerType, IntegerType, IntegerType, IntegerType).deep)
}
test("old csv data source name works") {
val cars = spark
.read
.format("com.databricks.spark.csv")
.option("header", "false")
.load(testFile(carsFile))
verifyCars(cars, withHeader = false, checkTypes = false)
}
test("nulls, NaNs and Infinity values can be parsed") {
val numbers = spark
.read
.format("csv")
.schema(StructType(List(
StructField("int", IntegerType, true),
StructField("long", LongType, true),
StructField("float", FloatType, true),
StructField("double", DoubleType, true)
)))
.options(Map(
"header" -> "true",
"mode" -> "DROPMALFORMED",
"nullValue" -> "--",
"nanValue" -> "NAN",
"negativeInf" -> "-INF",
"positiveInf" -> "INF"))
.load(testFile(numbersFile))
assert(numbers.count() == 8)
}
test("SPARK-15585 turn off quotations") {
val cars = spark.read
.format("csv")
.option("header", "true")
.option("quote", "")
.load(testFile(carsUnbalancedQuotesFile))
verifyCars(cars, withHeader = true, checkValues = false)
}
test("Write timestamps correctly in ISO8601 format by default") {
withTempDir { dir =>
val iso8601timestampsPath = s"${dir.getCanonicalPath}/iso8601timestamps.csv"
val timestamps = spark.read
.format("csv")
.option("inferSchema", "true")
.option("header", "true")
.option("timestampFormat", "dd/MM/yyyy HH:mm")
.load(testFile(datesFile))
timestamps.write
.format("csv")
.option("header", "true")
.save(iso8601timestampsPath)
// This will load back the timestamps as string.
val stringSchema = StructType(StructField("date", StringType, true) :: Nil)
val iso8601Timestamps = spark.read
.format("csv")
.schema(stringSchema)
.option("header", "true")
.load(iso8601timestampsPath)
val iso8501 = FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSXXX", Locale.US)
val expectedTimestamps = timestamps.collect().map { r =>
// This should be ISO8601 formatted string.
Row(iso8501.format(r.toSeq.head))
}
checkAnswer(iso8601Timestamps, expectedTimestamps)
}
}
test("Write dates correctly in ISO8601 format by default") {
withSQLConf(SQLConf.SESSION_LOCAL_TIMEZONE.key -> "UTC") {
withTempDir { dir =>
val customSchema = new StructType(Array(StructField("date", DateType, true)))
val iso8601datesPath = s"${dir.getCanonicalPath}/iso8601dates.csv"
val dates = spark.read
.format("csv")
.schema(customSchema)
.option("header", "true")
.option("inferSchema", "false")
.option("dateFormat", "dd/MM/yyyy HH:mm")
.load(testFile(datesFile))
dates.write
.format("csv")
.option("header", "true")
.save(iso8601datesPath)
// This will load back the dates as string.
val stringSchema = StructType(StructField("date", StringType, true) :: Nil)
val iso8601dates = spark.read
.format("csv")
.schema(stringSchema)
.option("header", "true")
.load(iso8601datesPath)
val iso8501 = FastDateFormat.getInstance("yyyy-MM-dd", Locale.US)
val expectedDates = dates.collect().map { r =>
// This should be ISO8601 formatted string.
Row(iso8501.format(r.toSeq.head))
}
checkAnswer(iso8601dates, expectedDates)
}
}
}
test("Roundtrip in reading and writing timestamps") {
withTempDir { dir =>
val iso8601timestampsPath = s"${dir.getCanonicalPath}/iso8601timestamps.csv"
val timestamps = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load(testFile(datesFile))
timestamps.write
.format("csv")
.option("header", "true")
.save(iso8601timestampsPath)
val iso8601timestamps = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load(iso8601timestampsPath)
checkAnswer(iso8601timestamps, timestamps)
}
}
test("Write dates correctly with dateFormat option") {
val customSchema = new StructType(Array(StructField("date", DateType, true)))
withTempDir { dir =>
// With dateFormat option.
val datesWithFormatPath = s"${dir.getCanonicalPath}/datesWithFormat.csv"
val datesWithFormat = spark.read
.format("csv")
.schema(customSchema)
.option("header", "true")
.option("dateFormat", "dd/MM/yyyy HH:mm")
.load(testFile(datesFile))
datesWithFormat.write
.format("csv")
.option("header", "true")
.option("dateFormat", "yyyy/MM/dd")
.save(datesWithFormatPath)
// This will load back the dates as string.
val stringSchema = StructType(StructField("date", StringType, true) :: Nil)
val stringDatesWithFormat = spark.read
.format("csv")
.schema(stringSchema)
.option("header", "true")
.load(datesWithFormatPath)
val expectedStringDatesWithFormat = Seq(
Row("2015/08/26"),
Row("2014/10/27"),
Row("2016/01/28"))
checkAnswer(stringDatesWithFormat, expectedStringDatesWithFormat)
}
}
test("Write timestamps correctly with timestampFormat option") {
withTempDir { dir =>
// With dateFormat option.
val timestampsWithFormatPath = s"${dir.getCanonicalPath}/timestampsWithFormat.csv"
val timestampsWithFormat = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.option("timestampFormat", "dd/MM/yyyy HH:mm")
.load(testFile(datesFile))
timestampsWithFormat.write
.format("csv")
.option("header", "true")
.option("timestampFormat", "yyyy/MM/dd HH:mm")
.save(timestampsWithFormatPath)
// This will load back the timestamps as string.
val stringSchema = StructType(StructField("date", StringType, true) :: Nil)
val stringTimestampsWithFormat = spark.read
.format("csv")
.schema(stringSchema)
.option("header", "true")
.load(timestampsWithFormatPath)
val expectedStringTimestampsWithFormat = Seq(
Row("2015/08/26 18:00"),
Row("2014/10/27 18:30"),
Row("2016/01/28 20:00"))
checkAnswer(stringTimestampsWithFormat, expectedStringTimestampsWithFormat)
}
}
test("Write timestamps correctly with timestampFormat option and timeZone option") {
withTempDir { dir =>
// With dateFormat option and timeZone option.
val timestampsWithFormatPath = s"${dir.getCanonicalPath}/timestampsWithFormat.csv"
val timestampsWithFormat = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.option("timestampFormat", "dd/MM/yyyy HH:mm")
.load(testFile(datesFile))
timestampsWithFormat.write
.format("csv")
.option("header", "true")
.option("timestampFormat", "yyyy/MM/dd HH:mm")
.option(DateTimeUtils.TIMEZONE_OPTION, "GMT")
.save(timestampsWithFormatPath)
// This will load back the timestamps as string.
val stringSchema = StructType(StructField("date", StringType, true) :: Nil)
val stringTimestampsWithFormat = spark.read
.format("csv")
.schema(stringSchema)
.option("header", "true")
.load(timestampsWithFormatPath)
val expectedStringTimestampsWithFormat = Seq(
Row("2015/08/27 01:00"),
Row("2014/10/28 01:30"),
Row("2016/01/29 04:00"))
checkAnswer(stringTimestampsWithFormat, expectedStringTimestampsWithFormat)
val readBack = spark.read
.format("csv")
.option("header", "true")
.option("inferSchema", "true")
.option("timestampFormat", "yyyy/MM/dd HH:mm")
.option(DateTimeUtils.TIMEZONE_OPTION, "GMT")
.load(timestampsWithFormatPath)
checkAnswer(readBack, timestampsWithFormat)
}
}
test("load duplicated field names consistently with null or empty strings - case sensitive") {
withSQLConf(SQLConf.CASE_SENSITIVE.key -> "true") {
withTempPath { path =>
Seq("a,a,c,A,b,B").toDF().write.text(path.getAbsolutePath)
val actualSchema = spark.read
.format("csv")
.option("header", true)
.load(path.getAbsolutePath)
.schema
val fields = Seq("a0", "a1", "c", "A", "b", "B").map(StructField(_, StringType, true))
val expectedSchema = StructType(fields)
assert(actualSchema == expectedSchema)
}
}
}
test("load duplicated field names consistently with null or empty strings - case insensitive") {
withSQLConf(SQLConf.CASE_SENSITIVE.key -> "false") {
withTempPath { path =>
Seq("a,A,c,A,b,B").toDF().write.text(path.getAbsolutePath)
val actualSchema = spark.read
.format("csv")
.option("header", true)
.load(path.getAbsolutePath)
.schema
val fields = Seq("a0", "A1", "c", "A3", "b4", "B5").map(StructField(_, StringType, true))
val expectedSchema = StructType(fields)
assert(actualSchema == expectedSchema)
}
}
}
test("load null when the schema is larger than parsed tokens ") {
withTempPath { path =>
Seq("1").toDF().write.text(path.getAbsolutePath)
val schema = StructType(
StructField("a", IntegerType, true) ::
StructField("b", IntegerType, true) :: Nil)
val df = spark.read
.schema(schema)
.option("header", "false")
.csv(path.getAbsolutePath)
checkAnswer(df, Row(1, null))
}
}
test("SPARK-18699 put malformed records in a `columnNameOfCorruptRecord` field") {
Seq(false, true).foreach { multiLine =>
val schema = new StructType().add("a", IntegerType).add("b", DateType)
// We use `PERMISSIVE` mode by default if invalid string is given.
val df1 = spark
.read
.option("mode", "abcd")
.option("multiLine", multiLine)
.schema(schema)
.csv(testFile(valueMalformedFile))
checkAnswer(df1,
Row(0, null) ::
Row(1, java.sql.Date.valueOf("1983-08-04")) ::
Nil)
// If `schema` has `columnNameOfCorruptRecord`, it should handle corrupt records
val columnNameOfCorruptRecord = "_unparsed"
val schemaWithCorrField1 = schema.add(columnNameOfCorruptRecord, StringType)
val df2 = spark
.read
.option("mode", "Permissive")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("multiLine", multiLine)
.schema(schemaWithCorrField1)
.csv(testFile(valueMalformedFile))
checkAnswer(df2,
Row(0, null, "0,2013-111-11 12:13:14") ::
Row(1, java.sql.Date.valueOf("1983-08-04"), null) ::
Nil)
// We put a `columnNameOfCorruptRecord` field in the middle of a schema
val schemaWithCorrField2 = new StructType()
.add("a", IntegerType)
.add(columnNameOfCorruptRecord, StringType)
.add("b", DateType)
val df3 = spark
.read
.option("mode", "permissive")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("multiLine", multiLine)
.schema(schemaWithCorrField2)
.csv(testFile(valueMalformedFile))
checkAnswer(df3,
Row(0, "0,2013-111-11 12:13:14", null) ::
Row(1, null, java.sql.Date.valueOf("1983-08-04")) ::
Nil)
val errMsg = intercept[AnalysisException] {
spark
.read
.option("mode", "PERMISSIVE")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("multiLine", multiLine)
.schema(schema.add(columnNameOfCorruptRecord, IntegerType))
.csv(testFile(valueMalformedFile))
.collect
}.getMessage
assert(errMsg.startsWith("The field for corrupt records must be string type and nullable"))
}
}
test("Enabling/disabling ignoreCorruptFiles") {
val inputFile = File.createTempFile("input-", ".gz")
try {
// Create a corrupt gzip file
val byteOutput = new ByteArrayOutputStream()
val gzip = new GZIPOutputStream(byteOutput)
try {
gzip.write(Array[Byte](1, 2, 3, 4))
} finally {
gzip.close()
}
val bytes = byteOutput.toByteArray
val o = new FileOutputStream(inputFile)
try {
// It's corrupt since we only write half of bytes into the file.
o.write(bytes.take(bytes.length / 2))
} finally {
o.close()
}
withSQLConf(SQLConf.IGNORE_CORRUPT_FILES.key -> "false") {
val e = intercept[SparkException] {
spark.read.csv(inputFile.toURI.toString).collect()
}
assert(e.getCause.isInstanceOf[EOFException])
assert(e.getCause.getMessage === "Unexpected end of input stream")
}
withSQLConf(SQLConf.IGNORE_CORRUPT_FILES.key -> "true") {
assert(spark.read.csv(inputFile.toURI.toString).collect().isEmpty)
}
} finally {
inputFile.delete()
}
}
test("SPARK-19610: Parse normal multi-line CSV files") {
val primitiveFieldAndType = Seq(
""""
|string","integer
|
|
|","long
|
|","bigInteger",double,boolean,null""".stripMargin,
""""this is a
|simple
|string.","
|
|10","
|21474836470","92233720368547758070","
|
|1.7976931348623157E308",true,""".stripMargin)
withTempPath { path =>
primitiveFieldAndType.toDF("value").coalesce(1).write.text(path.getAbsolutePath)
val df = spark.read
.option("header", true)
.option("multiLine", true)
.csv(path.getAbsolutePath)
// Check if headers have new lines in the names.
val actualFields = df.schema.fieldNames.toSeq
val expectedFields =
Seq("\\nstring", "integer\\n\\n\\n", "long\\n\\n", "bigInteger", "double", "boolean", "null")
assert(actualFields === expectedFields)
// Check if the rows have new lines in the values.
val expected = Row(
"this is a\\nsimple\\nstring.",
"\\n\\n10",
"\\n21474836470",
"92233720368547758070",
"\\n\\n1.7976931348623157E308",
"true",
null)
checkAnswer(df, expected)
}
}
test("Empty file produces empty dataframe with empty schema") {
Seq(false, true).foreach { multiLine =>
val df = spark.read.format("csv")
.option("header", true)
.option("multiLine", multiLine)
.load(testFile(emptyFile))
assert(df.schema === spark.emptyDataFrame.schema)
checkAnswer(df, spark.emptyDataFrame)
}
}
test("Empty string dataset produces empty dataframe and keep user-defined schema") {
val df1 = spark.read.csv(spark.emptyDataset[String])
assert(df1.schema === spark.emptyDataFrame.schema)
checkAnswer(df1, spark.emptyDataFrame)
val schema = StructType(StructField("a", StringType) :: Nil)
val df2 = spark.read.schema(schema).csv(spark.emptyDataset[String])
assert(df2.schema === schema)
}
test("ignoreLeadingWhiteSpace and ignoreTrailingWhiteSpace options - read") {
val input = " a,b , c "
// For reading, default of both `ignoreLeadingWhiteSpace` and`ignoreTrailingWhiteSpace`
// are `false`. So, these are excluded.
val combinations = Seq(
(true, true),
(false, true),
(true, false))
// Check if read rows ignore whitespaces as configured.
val expectedRows = Seq(
Row("a", "b", "c"),
Row(" a", "b", " c"),
Row("a", "b ", "c "))
combinations.zip(expectedRows)
.foreach { case ((ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace), expected) =>
val df = spark.read
.option("ignoreLeadingWhiteSpace", ignoreLeadingWhiteSpace)
.option("ignoreTrailingWhiteSpace", ignoreTrailingWhiteSpace)
.csv(Seq(input).toDS())
checkAnswer(df, expected)
}
}
test("SPARK-18579: ignoreLeadingWhiteSpace and ignoreTrailingWhiteSpace options - write") {
val df = Seq((" a", "b ", " c ")).toDF()
// For writing, default of both `ignoreLeadingWhiteSpace` and `ignoreTrailingWhiteSpace`
// are `true`. So, these are excluded.
val combinations = Seq(
(false, false),
(false, true),
(true, false))
// Check if written lines ignore each whitespaces as configured.
val expectedLines = Seq(
" a,b , c ",
" a,b, c",
"a,b ,c ")
combinations.zip(expectedLines)
.foreach { case ((ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace), expected) =>
withTempPath { path =>
df.write
.option("ignoreLeadingWhiteSpace", ignoreLeadingWhiteSpace)
.option("ignoreTrailingWhiteSpace", ignoreTrailingWhiteSpace)
.csv(path.getAbsolutePath)
// Read back the written lines.
val readBack = spark.read.text(path.getAbsolutePath)
checkAnswer(readBack, Row(expected))
}
}
}
test("SPARK-21263: Invalid float and double are handled correctly in different modes") {
val exception = intercept[SparkException] {
spark.read.schema("a DOUBLE")
.option("mode", "FAILFAST")
.csv(Seq("10u12").toDS())
.collect()
}
assert(exception.getMessage.contains("""input string: "10u12""""))
val count = spark.read.schema("a FLOAT")
.option("mode", "DROPMALFORMED")
.csv(Seq("10u12").toDS())
.count()
assert(count == 0)
val results = spark.read.schema("a FLOAT")
.option("mode", "PERMISSIVE")
.csv(Seq("10u12").toDS())
checkAnswer(results, Row(null))
}
test("SPARK-20978: Fill the malformed column when the number of tokens is less than schema") {
val df = spark.read
.schema("a string, b string, unparsed string")
.option("columnNameOfCorruptRecord", "unparsed")
.csv(Seq("a").toDS())
checkAnswer(df, Row("a", null, "a"))
}
test("SPARK-21610: Corrupt records are not handled properly when creating a dataframe " +
"from a file") {
val columnNameOfCorruptRecord = "_corrupt_record"
val schema = new StructType()
.add("a", IntegerType)
.add("b", DateType)
.add(columnNameOfCorruptRecord, StringType)
// negative cases
val msg = intercept[AnalysisException] {
spark
.read
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.schema(schema)
.csv(testFile(valueMalformedFile))
.select(columnNameOfCorruptRecord)
.collect()
}.getMessage
assert(msg.contains("only include the internal corrupt record column"))
// workaround
val df = spark
.read
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.schema(schema)
.csv(testFile(valueMalformedFile))
.cache()
assert(df.filter($"_corrupt_record".isNotNull).count() == 1)
assert(df.filter($"_corrupt_record".isNull).count() == 1)
checkAnswer(
df.select(columnNameOfCorruptRecord),
Row("0,2013-111-11 12:13:14") :: Row(null) :: Nil
)
}
test("SPARK-23846: schema inferring touches less data if samplingRatio < 1.0") {
// Set default values for the DataSource parameters to make sure
// that whole test file is mapped to only one partition. This will guarantee
// reliable sampling of the input file.
withSQLConf(
SQLConf.FILES_MAX_PARTITION_BYTES.key -> (128 * 1024 * 1024).toString,
SQLConf.FILES_OPEN_COST_IN_BYTES.key -> (4 * 1024 * 1024).toString
)(withTempPath { path =>
val ds = sampledTestData.coalesce(1)
ds.write.text(path.getAbsolutePath)
val readback = spark.read
.option("inferSchema", true).option("samplingRatio", 0.1)
.csv(path.getCanonicalPath)
assert(readback.schema == new StructType().add("_c0", IntegerType))
})
}
test("SPARK-23846: usage of samplingRatio while parsing a dataset of strings") {
val ds = sampledTestData.coalesce(1)
val readback = spark.read
.option("inferSchema", true).option("samplingRatio", 0.1)
.csv(ds)
assert(readback.schema == new StructType().add("_c0", IntegerType))
}
test("SPARK-23846: samplingRatio is out of the range (0, 1.0]") {
val ds = spark.range(0, 100, 1, 1).map(_.toString)
val errorMsg0 = intercept[IllegalArgumentException] {
spark.read.option("inferSchema", true).option("samplingRatio", -1).csv(ds)
}.getMessage
assert(errorMsg0.contains("samplingRatio (-1.0) should be greater than 0"))
val errorMsg1 = intercept[IllegalArgumentException] {
spark.read.option("inferSchema", true).option("samplingRatio", 0).csv(ds)
}.getMessage
assert(errorMsg1.contains("samplingRatio (0.0) should be greater than 0"))
val sampled = spark.read.option("inferSchema", true).option("samplingRatio", 1.0).csv(ds)
assert(sampled.count() == ds.count())
}
test("SPARK-17916: An empty string should not be coerced to null when nullValue is passed.") {
val litNull: String = null
val df = Seq(
(1, "John Doe"),
(2, ""),
(3, "-"),
(4, litNull)
).toDF("id", "name")
// Checks for new behavior where an empty string is not coerced to null when `nullValue` is
// set to anything but an empty string literal.
withTempPath { path =>
df.write
.option("nullValue", "-")
.csv(path.getAbsolutePath)
val computed = spark.read
.option("nullValue", "-")
.schema(df.schema)
.csv(path.getAbsolutePath)
val expected = Seq(
(1, "John Doe"),
(2, ""),
(3, litNull),
(4, litNull)
).toDF("id", "name")
checkAnswer(computed, expected)
}
// Keeps the old behavior where empty string us coerced to nullValue is not passed.
withTempPath { path =>
df.write
.csv(path.getAbsolutePath)
val computed = spark.read
.schema(df.schema)
.csv(path.getAbsolutePath)
val expected = Seq(
(1, "John Doe"),
(2, litNull),
(3, "-"),
(4, litNull)
).toDF("id", "name")
checkAnswer(computed, expected)
}
}
test("SPARK-25241: An empty string should not be coerced to null when emptyValue is passed.") {
val litNull: String = null
val df = Seq(
(1, "John Doe"),
(2, ""),
(3, "-"),
(4, litNull)
).toDF("id", "name")
// Checks for new behavior where a null is not coerced to an empty string when `emptyValue` is
// set to anything but an empty string literal.
withTempPath { path =>
df.write
.option("emptyValue", "-")
.csv(path.getAbsolutePath)
val computed = spark.read
.option("emptyValue", "-")
.schema(df.schema)
.csv(path.getAbsolutePath)
val expected = Seq(
(1, "John Doe"),
(2, "-"),
(3, "-"),
(4, "-")
).toDF("id", "name")
checkAnswer(computed, expected)
}
// Keeps the old behavior where empty string us coerced to emptyValue is not passed.
withTempPath { path =>
df.write
.csv(path.getAbsolutePath)
val computed = spark.read
.schema(df.schema)
.csv(path.getAbsolutePath)
val expected = Seq(
(1, "John Doe"),
(2, litNull),
(3, "-"),
(4, litNull)
).toDF("id", "name")
checkAnswer(computed, expected)
}
}
test("SPARK-24329: skip lines with comments, and one or multiple whitespaces") {
val schema = new StructType().add("colA", StringType)
val ds = spark
.read
.schema(schema)
.option("multiLine", false)
.option("header", true)
.option("comment", "#")
.option("ignoreLeadingWhiteSpace", false)
.option("ignoreTrailingWhiteSpace", false)
.csv(testFile("test-data/comments-whitespaces.csv"))
checkAnswer(ds, Seq(Row(""" "a" """)))
}
test("SPARK-24244: Select a subset of all columns") {
withTempPath { path =>
import collection.JavaConverters._
val schema = new StructType()
.add("f1", IntegerType).add("f2", IntegerType).add("f3", IntegerType)
.add("f4", IntegerType).add("f5", IntegerType).add("f6", IntegerType)
.add("f7", IntegerType).add("f8", IntegerType).add("f9", IntegerType)
.add("f10", IntegerType).add("f11", IntegerType).add("f12", IntegerType)
.add("f13", IntegerType).add("f14", IntegerType).add("f15", IntegerType)
val odf = spark.createDataFrame(List(
Row(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
Row(-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15)
).asJava, schema)
odf.write.csv(path.getCanonicalPath)
val idf = spark.read
.schema(schema)
.csv(path.getCanonicalPath)
.select('f15, 'f10, 'f5)
assert(idf.count() == 2)
checkAnswer(idf, List(Row(15, 10, 5), Row(-15, -10, -5)))
}
}
def checkHeader(multiLine: Boolean): Unit = {
withSQLConf(SQLConf.CASE_SENSITIVE.key -> "true") {
withTempPath { path =>
val oschema = new StructType().add("f1", DoubleType).add("f2", DoubleType)
val odf = spark.createDataFrame(List(Row(1.0, 1234.5)).asJava, oschema)
odf.write.option("header", true).csv(path.getCanonicalPath)
val ischema = new StructType().add("f2", DoubleType).add("f1", DoubleType)
val exception = intercept[SparkException] {
spark.read
.schema(ischema)
.option("multiLine", multiLine)
.option("header", true)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
.collect()
}
assert(exception.getMessage.contains("CSV header does not conform to the schema"))
val shortSchema = new StructType().add("f1", DoubleType)
val exceptionForShortSchema = intercept[SparkException] {
spark.read
.schema(shortSchema)
.option("multiLine", multiLine)
.option("header", true)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
.collect()
}
assert(exceptionForShortSchema.getMessage.contains(
"Number of column in CSV header is not equal to number of fields in the schema"))
val longSchema = new StructType()
.add("f1", DoubleType)
.add("f2", DoubleType)
.add("f3", DoubleType)
val exceptionForLongSchema = intercept[SparkException] {
spark.read
.schema(longSchema)
.option("multiLine", multiLine)
.option("header", true)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
.collect()
}
assert(exceptionForLongSchema.getMessage.contains("Header length: 2, schema size: 3"))
val caseSensitiveSchema = new StructType().add("F1", DoubleType).add("f2", DoubleType)
val caseSensitiveException = intercept[SparkException] {
spark.read
.schema(caseSensitiveSchema)
.option("multiLine", multiLine)
.option("header", true)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
.collect()
}
assert(caseSensitiveException.getMessage.contains(
"CSV header does not conform to the schema"))
}
}
}
test(s"SPARK-23786: Checking column names against schema in the multiline mode") {
checkHeader(multiLine = true)
}
test(s"SPARK-23786: Checking column names against schema in the per-line mode") {
checkHeader(multiLine = false)
}
test("SPARK-23786: CSV header must not be checked if it doesn't exist") {
withTempPath { path =>
val oschema = new StructType().add("f1", DoubleType).add("f2", DoubleType)
val odf = spark.createDataFrame(List(Row(1.0, 1234.5)).asJava, oschema)
odf.write.option("header", false).csv(path.getCanonicalPath)
val ischema = new StructType().add("f2", DoubleType).add("f1", DoubleType)
val idf = spark.read
.schema(ischema)
.option("header", false)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
checkAnswer(idf, odf)
}
}
test("SPARK-23786: Ignore column name case if spark.sql.caseSensitive is false") {
withSQLConf(SQLConf.CASE_SENSITIVE.key -> "false") {
withTempPath { path =>
val oschema = new StructType().add("A", StringType)
val odf = spark.createDataFrame(List(Row("0")).asJava, oschema)
odf.write.option("header", true).csv(path.getCanonicalPath)
val ischema = new StructType().add("a", StringType)
val idf = spark.read.schema(ischema)
.option("header", true)
.option("enforceSchema", false)
.csv(path.getCanonicalPath)
checkAnswer(idf, odf)
}
}
}
test("SPARK-23786: check header on parsing of dataset of strings") {
val ds = Seq("columnA,columnB", "1.0,1000.0").toDS()
val ischema = new StructType().add("columnB", DoubleType).add("columnA", DoubleType)
val exception = intercept[IllegalArgumentException] {
spark.read.schema(ischema).option("header", true).option("enforceSchema", false).csv(ds)
}
assert(exception.getMessage.contains("CSV header does not conform to the schema"))
}
test("SPARK-23786: enforce inferred schema") {
val expectedSchema = new StructType().add("_c0", DoubleType).add("_c1", StringType)
val withHeader = spark.read
.option("inferSchema", true)
.option("enforceSchema", false)
.option("header", true)
.csv(Seq("_c0,_c1", "1.0,a").toDS())
assert(withHeader.schema == expectedSchema)
checkAnswer(withHeader, Seq(Row(1.0, "a")))
// Ignore the inferSchema flag if an user sets a schema
val schema = new StructType().add("colA", DoubleType).add("colB", StringType)
val ds = spark.read
.option("inferSchema", true)
.option("enforceSchema", false)
.option("header", true)
.schema(schema)
.csv(Seq("colA,colB", "1.0,a").toDS())
assert(ds.schema == schema)
checkAnswer(ds, Seq(Row(1.0, "a")))
val exception = intercept[IllegalArgumentException] {
spark.read
.option("inferSchema", true)
.option("enforceSchema", false)
.option("header", true)
.schema(schema)
.csv(Seq("col1,col2", "1.0,a").toDS())
}
assert(exception.getMessage.contains("CSV header does not conform to the schema"))
}
test("SPARK-23786: warning should be printed if CSV header doesn't conform to schema") {
class TestAppender extends AppenderSkeleton {
var events = new java.util.ArrayList[LoggingEvent]
override def close(): Unit = {}
override def requiresLayout: Boolean = false
protected def append(event: LoggingEvent): Unit = events.add(event)
}
val testAppender1 = new TestAppender
withLogAppender(testAppender1) {
val ds = Seq("columnA,columnB", "1.0,1000.0").toDS()
val ischema = new StructType().add("columnB", DoubleType).add("columnA", DoubleType)
spark.read.schema(ischema).option("header", true).option("enforceSchema", true).csv(ds)
}
assert(testAppender1.events.asScala
.exists(msg => msg.getRenderedMessage.contains("CSV header does not conform to the schema")))
val testAppender2 = new TestAppender
withLogAppender(testAppender2) {
withTempPath { path =>
val oschema = new StructType().add("f1", DoubleType).add("f2", DoubleType)
val odf = spark.createDataFrame(List(Row(1.0, 1234.5)).asJava, oschema)
odf.write.option("header", true).csv(path.getCanonicalPath)
val ischema = new StructType().add("f2", DoubleType).add("f1", DoubleType)
spark.read
.schema(ischema)
.option("header", true)
.option("enforceSchema", true)
.csv(path.getCanonicalPath)
.collect()
}
}
assert(testAppender2.events.asScala
.exists(msg => msg.getRenderedMessage.contains("CSV header does not conform to the schema")))
}
test("SPARK-25134: check header on parsing of dataset with projection and column pruning") {
withSQLConf(SQLConf.CSV_PARSER_COLUMN_PRUNING.key -> "true") {
Seq(false, true).foreach { multiLine =>
withTempPath { path =>
val dir = path.getAbsolutePath
Seq(("a", "b")).toDF("columnA", "columnB").write
.format("csv")
.option("header", true)
.save(dir)
// schema with one column
checkAnswer(spark.read
.format("csv")
.option("header", true)
.option("enforceSchema", false)
.option("multiLine", multiLine)
.load(dir)
.select("columnA"),
Row("a"))
// empty schema
assert(spark.read
.format("csv")
.option("header", true)
.option("enforceSchema", false)
.option("multiLine", multiLine)
.load(dir)
.count() === 1L)
}
}
}
}
test("SPARK-24645 skip parsing when columnPruning enabled and partitions scanned only") {
withSQLConf(SQLConf.CSV_PARSER_COLUMN_PRUNING.key -> "true") {
withTempPath { path =>
val dir = path.getAbsolutePath
spark.range(10).selectExpr("id % 2 AS p", "id").write.partitionBy("p").csv(dir)
checkAnswer(spark.read.csv(dir).selectExpr("sum(p)"), Row(5))
}
}
}
test("SPARK-24676 project required data from parsed data when columnPruning disabled") {
withSQLConf(SQLConf.CSV_PARSER_COLUMN_PRUNING.key -> "false") {
withTempPath { path =>
val dir = path.getAbsolutePath
spark.range(10).selectExpr("id % 2 AS p", "id AS c0", "id AS c1").write.partitionBy("p")
.option("header", "true").csv(dir)
val df1 = spark.read.option("header", true).csv(dir).selectExpr("sum(p)", "count(c0)")
checkAnswer(df1, Row(5, 10))
// empty required column case
val df2 = spark.read.option("header", true).csv(dir).selectExpr("sum(p)")
checkAnswer(df2, Row(5))
}
// the case where tokens length != parsedSchema length
withTempPath { path =>
val dir = path.getAbsolutePath
Seq("1,2").toDF().write.text(dir)
// more tokens
val df1 = spark.read.schema("c0 int").format("csv").option("mode", "permissive").load(dir)
checkAnswer(df1, Row(1))
// less tokens
val df2 = spark.read.schema("c0 int, c1 int, c2 int").format("csv")
.option("mode", "permissive").load(dir)
checkAnswer(df2, Row(1, 2, null))
}
}
}
test("count() for malformed input") {
def countForMalformedCSV(expected: Long, input: Seq[String]): Unit = {
val schema = new StructType().add("a", IntegerType)
val strings = spark.createDataset(input)
val df = spark.read.schema(schema).option("header", false).csv(strings)
assert(df.count() == expected)
}
def checkCount(expected: Long): Unit = {
val validRec = "1"
val inputs = Seq(
Seq("{-}", validRec),
Seq(validRec, "?"),
Seq("0xAC", validRec),
Seq(validRec, "0.314"),
Seq("\\\\\\\\\\\\", validRec)
)
inputs.foreach { input =>
countForMalformedCSV(expected, input)
}
}
checkCount(2)
countForMalformedCSV(0, Seq(""))
}
test("SPARK-25387: bad input should not cause NPE") {
val schema = StructType(StructField("a", IntegerType) :: Nil)
val input = spark.createDataset(Seq("\\u0000\\u0000\\u0001234"))
checkAnswer(spark.read.schema(schema).csv(input), Row(null))
checkAnswer(spark.read.option("multiLine", true).schema(schema).csv(input), Row(null))
assert(spark.read.csv(input).collect().toSet == Set(Row()))
}
test("field names of inferred schema shouldn't compare to the first row") {
val input = Seq("1,2").toDS()
val df = spark.read.option("enforceSchema", false).csv(input)
checkAnswer(df, Row("1", "2"))
}
test("using the backward slash as the delimiter") {
val input = Seq("""abc\\1""").toDS()
val delimiter = """\\\\"""
checkAnswer(spark.read.option("delimiter", delimiter).csv(input), Row("abc", "1"))
checkAnswer(spark.read.option("inferSchema", true).option("delimiter", delimiter).csv(input),
Row("abc", 1))
val schema = new StructType().add("a", StringType).add("b", IntegerType)
checkAnswer(spark.read.schema(schema).option("delimiter", delimiter).csv(input), Row("abc", 1))
}
test("using spark.sql.columnNameOfCorruptRecord") {
withSQLConf(SQLConf.COLUMN_NAME_OF_CORRUPT_RECORD.key -> "_unparsed") {
val csv = "\\""
val df = spark.read
.schema("a int, _unparsed string")
.csv(Seq(csv).toDS())
checkAnswer(df, Row(null, csv))
}
}
test("encoding in multiLine mode") {
val df = spark.range(3).toDF()
Seq("UTF-8", "ISO-8859-1", "CP1251", "US-ASCII", "UTF-16BE", "UTF-32LE").foreach { encoding =>
Seq(true, false).foreach { header =>
withTempPath { path =>
df.write
.option("encoding", encoding)
.option("header", header)
.csv(path.getCanonicalPath)
val readback = spark.read
.option("multiLine", true)
.option("encoding", encoding)
.option("inferSchema", true)
.option("header", header)
.csv(path.getCanonicalPath)
checkAnswer(readback, df)
}
}
}
}
test("""Support line separator - default value \\r, \\r\\n and \\n""") {
val data = "\\"a\\",1\\r\\"c\\",2\\r\\n\\"d\\",3\\n"
withTempPath { path =>
Files.write(path.toPath, data.getBytes(StandardCharsets.UTF_8))
val df = spark.read.option("inferSchema", true).csv(path.getAbsolutePath)
val expectedSchema =
StructType(StructField("_c0", StringType) :: StructField("_c1", IntegerType) :: Nil)
checkAnswer(df, Seq(("a", 1), ("c", 2), ("d", 3)).toDF())
assert(df.schema === expectedSchema)
}
}
def testLineSeparator(lineSep: String, encoding: String, inferSchema: Boolean, id: Int): Unit = {
test(s"Support line separator in ${encoding} #${id}") {
// Read
val data =
s""""a",1$lineSep
|c,2$lineSep"
|d",3""".stripMargin
val dataWithTrailingLineSep = s"$data$lineSep"
Seq(data, dataWithTrailingLineSep).foreach { lines =>
withTempPath { path =>
Files.write(path.toPath, lines.getBytes(encoding))
val schema = StructType(StructField("_c0", StringType)
:: StructField("_c1", LongType) :: Nil)
val expected = Seq(("a", 1), ("\\nc", 2), ("\\nd", 3))
.toDF("_c0", "_c1")
Seq(false, true).foreach { multiLine =>
val reader = spark
.read
.option("lineSep", lineSep)
.option("multiLine", multiLine)
.option("encoding", encoding)
val df = if (inferSchema) {
reader.option("inferSchema", true).csv(path.getAbsolutePath)
} else {
reader.schema(schema).csv(path.getAbsolutePath)
}
checkAnswer(df, expected)
}
}
}
// Write
withTempPath { path =>
Seq("a", "b", "c").toDF("value").coalesce(1)
.write
.option("lineSep", lineSep)
.option("encoding", encoding)
.csv(path.getAbsolutePath)
val partFile = TestUtils.recursiveList(path).filter(f => f.getName.startsWith("part-")).head
val readBack = new String(Files.readAllBytes(partFile.toPath), encoding)
assert(
readBack === s"a${lineSep}b${lineSep}c${lineSep}")
}
// Roundtrip
withTempPath { path =>
val df = Seq("a", "b", "c").toDF()
df.write
.option("lineSep", lineSep)
.option("encoding", encoding)
.csv(path.getAbsolutePath)
val readBack = spark
.read
.option("lineSep", lineSep)
.option("encoding", encoding)
.csv(path.getAbsolutePath)
checkAnswer(df, readBack)
}
}
}
// scalastyle:off nonascii
List(
(0, "|", "UTF-8", false),
(1, "^", "UTF-16BE", true),
(2, ":", "ISO-8859-1", true),
(3, "!", "UTF-32LE", false),
(4, 0x1E.toChar.toString, "UTF-8", true),
(5, "아", "UTF-32BE", false),
(6, "у", "CP1251", true),
(8, "\\r", "UTF-16LE", true),
(9, "\\u000d", "UTF-32BE", false),
(10, "=", "US-ASCII", false),
(11, "$", "utf-32le", true)
).foreach { case (testNum, sep, encoding, inferSchema) =>
testLineSeparator(sep, encoding, inferSchema, testNum)
}
// scalastyle:on nonascii
test("lineSep restrictions") {
val errMsg1 = intercept[IllegalArgumentException] {
spark.read.option("lineSep", "").csv(testFile(carsFile)).collect
}.getMessage
assert(errMsg1.contains("'lineSep' cannot be an empty string"))
val errMsg2 = intercept[IllegalArgumentException] {
spark.read.option("lineSep", "123").csv(testFile(carsFile)).collect
}.getMessage
assert(errMsg2.contains("'lineSep' can contain only 1 character"))
}
test("SPARK-26208: write and read empty data to csv file with headers") {
withTempPath { path =>
val df1 = spark.range(10).repartition(2).filter(_ < 0).map(_.toString).toDF
// we have 2 partitions but they are both empty and will be filtered out upon writing
// thanks to SPARK-23271 one new empty partition will be inserted
df1.write.format("csv").option("header", true).save(path.getAbsolutePath)
val df2 = spark.read.format("csv").option("header", true).option("inferSchema", false)
.load(path.getAbsolutePath)
assert(df1.schema === df2.schema)
checkAnswer(df1, df2)
}
}
test("do not produce empty files for empty partitions") {
withTempPath { dir =>
val path = dir.getCanonicalPath
spark.emptyDataset[String].write.csv(path)
val files = new File(path).listFiles()
assert(!files.exists(_.getName.endsWith("csv")))
}
}
test("Do not reuse last good value for bad input field") {
val schema = StructType(
StructField("col1", StringType) ::
StructField("col2", DateType) ::
Nil
)
val rows = spark.read
.schema(schema)
.format("csv")
.load(testFile(badAfterGoodFile))
val expectedRows = Seq(
Row("good record", java.sql.Date.valueOf("1999-08-01")),
Row("bad record", null))
checkAnswer(rows, expectedRows)
}
test("SPARK-27512: Decimal type inference should not handle ',' for backward compatibility") {
assert(spark.read
.option("delimiter", "|")
.option("inferSchema", "true")
.csv(Seq("1,2").toDS).schema.head.dataType === StringType)
}
test("SPARK-27873: disabling enforceSchema should not fail columnNameOfCorruptRecord") {
Seq("csv", "").foreach { reader =>
withSQLConf(SQLConf.USE_V1_SOURCE_READER_LIST.key -> reader) {
withTempPath { path =>
val df = Seq(("0", "2013-111-11")).toDF("a", "b")
df.write
.option("header", "true")
.csv(path.getAbsolutePath)
val schema = StructType.fromDDL("a int, b date")
val columnNameOfCorruptRecord = "_unparsed"
val schemaWithCorrField = schema.add(columnNameOfCorruptRecord, StringType)
val readDF = spark
.read
.option("mode", "Permissive")
.option("header", "true")
.option("enforceSchema", false)
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.schema(schemaWithCorrField)
.csv(path.getAbsoluteFile.toString)
checkAnswer(readDF, Row(0, null, "0,2013-111-11") :: Nil)
}
}
}
}
test("SPARK-28431: prevent CSV datasource throw TextParsingException with large size message") {
withTempPath { path =>
val maxCharsPerCol = 10000
val str = "a" * (maxCharsPerCol + 1)
Files.write(
path.toPath,
str.getBytes(StandardCharsets.UTF_8),
StandardOpenOption.CREATE, StandardOpenOption.WRITE
)
val errMsg = intercept[TextParsingException] {
spark.read
.option("maxCharsPerColumn", maxCharsPerCol)
.csv(path.getAbsolutePath)
.count()
}.getMessage
assert(errMsg.contains("..."),
"expect the TextParsingException truncate the error content to be 1000 length.")
}
}
}
|
techaddict/spark
|
sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/csv/CSVSuite.scala
|
Scala
|
apache-2.0
| 71,591 |
/**
* Original work: Swagger Codegen (https://github.com/swagger-api/swagger-codegen)
* Copyright 2016 Swagger (http://swagger.io)
*
* Derivative work: Swagger Codegen - Play Scala (https://github.com/mohiva/swagger-codegen-play-scala)
* Modifications Copyright 2016 Mohiva Organisation (license at mohiva dot com)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.mohiva.swagger.codegen.core
import akka.stream.scaladsl.{ Source, StreamConverters }
import akka.util.ByteString
import com.mohiva.swagger.codegen.core.ApiRequest._
import play.api.http.MediaType
import play.api.libs.json._
import play.api.libs.ws._
import play.api.mvc.MultipartFormData.{ DataPart, FilePart, Part }
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* Some default Json formats.
*/
object ApiJsonFormats {
/**
* Converts an enum value to Json and vice versa.
*/
implicit def enumValueFormat[T <: Enumeration: ClassTag]: Format[T#Value] = new Format[T#Value] {
def reads(json: JsValue): JsResult[T#Value] = {
val c = implicitly[ClassTag[T]].runtimeClass
val enum = c.getField("MODULE$").get(null).asInstanceOf[T]
json.asOpt[String].map { value =>
enum.values.find(_.toString == value) match {
case Some(v) => JsSuccess(v)
case _ => JsError("invalid")
}
} getOrElse JsError("string")
}
def writes(value: T#Value): JsValue = JsString(value.toString)
}
}
/**
* Some API param types and implicits.
*/
object ApiParams {
/**
* Extractor used to unapply empty values only in pattern matching.
*/
object EmptyValue {
def unapply(n: Any): Option[Any] = n match {
case (None | Seq() | "" | ArrayValues(Seq(), _)) => Some(n)
case _ => None
}
}
/**
* Case class used to unapply numeric values only in pattern matching.
*/
sealed case class NumericValue(value: String)
object NumericValue {
def unapply(n: Any): Option[NumericValue] = n match {
case (_: Int | _: Long | _: Float | _: Double | _: Boolean | _: Byte) => Some(NumericValue(String.valueOf(n)))
case _ => None
}
}
/**
* Used for params being arrays.
*/
sealed case class ArrayValues(values: Seq[Any], format: CollectionFormat = CollectionFormats.CSV)
object ArrayValues {
def apply(values: Option[Seq[Any]], format: CollectionFormat): ArrayValues =
ArrayValues(values.getOrElse(Seq.empty), format)
def apply(values: Option[Seq[Any]]): ArrayValues = ArrayValues(values, CollectionFormats.CSV)
}
/**
* Defines how arrays should be rendered in query strings.
*/
sealed trait CollectionFormat
object CollectionFormats {
trait MergedArrayFormat extends CollectionFormat {
def separator: String
}
case object CSV extends MergedArrayFormat { override val separator = "," }
case object TSV extends MergedArrayFormat { override val separator = "\\t" }
case object SSV extends MergedArrayFormat { override val separator = " " }
case object PIPES extends MergedArrayFormat { override val separator = "|" }
case object MULTI extends CollectionFormat
}
/**
* Normalize `Map[String, Any]` parameters so that it can be used without hassle.
*
* None values will be filtered out.
*/
implicit class AnyMapNormalizers(val m: Map[String, Any]) {
def normalize: Seq[(String, Any)] = m.mapValues(_.normalize).toSeq.flatMap {
case (_, EmptyValue(_)) => Seq()
case (name, ArrayValues(values, format)) if format == CollectionFormats.MULTI =>
val containsFile = (value: Any) => value match {
case _: ApiFile => true
case _ => false
}
if (values.exists(containsFile)) {
values.zipWithIndex.map { case (v, i) => name + i.toString -> v }
} else {
values.map { v => name -> v }
}
case (k, v) => Seq(k -> v)
}
}
/**
* Normalize `Any` parameters so that it can be used without hassle.
*/
implicit class AnyParametersNormalizer(value: Any) {
import CollectionFormats._
def normalize: Any = {
def n(value: Any): Any = value match {
case Some(opt) => n(opt)
case arr @ ArrayValues(values, CollectionFormats.MULTI) => arr.copy(values.map(n))
case ArrayValues(values, format: MergedArrayFormat) => values.mkString(format.separator)
case sequence: Seq[Any] => n(ArrayValues(sequence))
case NumericValue(numeric) => numeric.value
case v => v
}
n(value)
}
}
}
/**
* A Play request.
*/
trait PlayRequest {
/**
* Executes the request.
*
* @return A response.
*/
def execute(): Future[WSResponse]
}
/**
* The companion object of the [[PlayRequest]].
*/
object PlayRequest {
import ApiParams._
/**
* An implicits that allows to convert an API request into a Play request.
*
* @param apiRequest The API request to convert.
*/
implicit class ApiRequestToPlayRequest(apiRequest: ApiRequest) {
/**
* Converts an API request to a Play request.
*
* @param config The global API config.
* @param wsClient The Play WS client.
* @return A Play request.
*/
def toPlay(config: ApiConfig, wsClient: WSClient): PlayRequest = new PlayRequest {
/**
* A request pipeline.
*/
type Pipeline = PartialFunction[WSRequest, WSRequest]
/**
* The request pipeline.
*/
private val requestPipeline =
requestTimeoutPipeline andThen
requestMethodPipeline andThen
authenticationPipeline andThen
headerPipeline andThen
queryPipeline
/**
* The complete configured request to execute.
*/
private val request = requestPipeline(wsClient.url(url))
/**
* Executes the request.
*
* @return A response.
*/
def execute(): Future[WSResponse] = request.execute()
/**
* Builds the URL to which the request should be sent.
*
* Searches in the following locations in the following order:
* - request config
* - global config
* - Swagger SPEC file
*
* @return The URL to which the request should be sent.
*/
private def url: String = {
val base = apiRequest.config.url.getOrElse(config.url.getOrElse(apiRequest.basePath))
val path = apiRequest.operationPath.replaceAll("\\\\{format\\\\}", "json")
val pathParams = apiRequest.pathParams.normalize
.foldLeft(path) {
case (p, (name, value)) => p.replaceAll(s"\\\\{$name\\\\}", String.valueOf(value))
}
base.stripSuffix("/") + pathParams
}
/**
* Adds the request method, and the body based on the this method.
*
* The body will be sent only for the following request methods:
* - POST
* - PUT
* - PATCH
* - DELETE
*/
private def requestMethodPipeline: Pipeline = {
case wsRequest =>
apiRequest.method match {
case RequestMethod.POST | RequestMethod.PUT | RequestMethod.PATCH | RequestMethod.DELETE =>
bodyPipeline(wsRequest.withMethod(apiRequest.method.name))
case _ => wsRequest.withMethod(apiRequest.method.name)
}
}
/**
* Adds the request timeout.
*/
private def requestTimeoutPipeline: Pipeline = {
case wsRequest =>
wsRequest.withRequestTimeout(apiRequest.config.timeout.getOrElse(config.requestTimeout))
}
/**
* Ads the body.
*
* First it checks the `bodyParam` of the API request and then it checks the form part of the request.
*/
private def bodyPipeline: Pipeline = {
case wsRequest =>
apiRequest.bodyParam.normalize match {
case file: ApiFile => wsRequest.withBody(StreamConverters.fromInputStream(() => file.content))
case NumericValue(numeric) => wsRequest.withBody(numeric.value)
case string: String => wsRequest.withBody(String.valueOf(string))
case json: JsValue => wsRequest.withBody(json)
case _ =>
val contentType = apiRequest.contentType.flatMap(MediaType.parse.apply).map(mt => mt.mediaType + "/" + mt.mediaSubType)
apiRequest.formParams.normalize match {
case p if p.isEmpty => wsRequest
case p if contentType.contains("multipart/form-data") =>
val body = p.foldLeft(List[Part[Source[ByteString, Any]]]()) {
case (parts, (key, value)) =>
value match {
case f: ApiFile => parts :+ FilePart(key, f.name, None, StreamConverters.fromInputStream(() => f.content))
case _ => parts :+ DataPart(key, String.valueOf(value))
}
}
wsRequest.withBody(Source(body))(WSBodyWritables.bodyWritableOf_Multipart)
case p => // default: application/x-www-form-urlencoded
wsRequest.withBody(p.toMap.mapValues(v => Seq(String.valueOf(v))))
}
}
}
/**
* Adds the authentication.
*/
private def authenticationPipeline: Pipeline = {
case wsRequest =>
apiRequest.credentials.foldLeft(wsRequest) {
case (req, BasicCredentials(username, password)) =>
req.withAuth(username, password, WSAuthScheme.BASIC)
case (req, ApiKeyCredentials(keyValue, keyName, ApiKeyLocations.HEADER)) =>
req.addHttpHeaders(keyName -> keyValue.value)
case (req, _) => req
}
}
/**
* Adds the headers.
*/
private def headerPipeline: Pipeline = {
case wsRequest =>
wsRequest.addHttpHeaders(apiRequest.headerParams.normalize.map {
case (k, v) =>
k -> String.valueOf(v)
}: _*)
}
/**
* Adds the query params.
*/
private def queryPipeline: Pipeline = {
case wsRequest =>
val queryParams = apiRequest.credentials.foldLeft(apiRequest.queryParams) {
case (params, ApiKeyCredentials(key, keyName, ApiKeyLocations.QUERY)) =>
params + (keyName -> key.value)
case (params, _) => params
}.normalize.map { case (k, v) => k -> String.valueOf(v) }
wsRequest.addQueryStringParameters(queryParams.toList: _*)
}
}
}
}
|
akkie/swagger-codegen-play-scala
|
clientstub/src/main/scala/com/mohiva/swagger/codegen/core/ApiImplicits.scala
|
Scala
|
apache-2.0
| 11,120 |
package play.api
import play.api.mvc._
/**
* A Play plugin.
*
* You can define a Play plugin this way:
* {{{
* class MyPlugin(app: Application) extends Plugin
* }}}
*
* The plugin class must be declared in a play.plugins file available in the classpath root:
* {{{
* 1000:myapp.MyPlugin
* }}}
* The associated int defines the plugin priority.
*/
trait Plugin {
/**
* Called when the application starts.
*/
def onStart() {}
/**
* Called when the application stops.
*/
def onStop() {}
/**
* Is the plugin enabled?
*/
def enabled: Boolean = true
}
|
noel-yap/setter-for-catan
|
play-2.1.1/framework/src/play/src/main/scala/play/api/Plugins.scala
|
Scala
|
apache-2.0
| 595 |
package org.scalamu.report
import org.scalamu.core.coverage.Statement
import org.scalamu.core.api.{SourceInfo, TestedMutant}
import org.scalamu.core.testapi.AbstractTestSuite
import scala.io.Source
import scala.collection.{Map, Set, SortedSet}
final case class SourceFileSummary(
name: String,
lines: Seq[Line],
statements: Set[Statement],
coveredStatements: Set[Statement],
mutantsByLine: Map[Int, Set[TestedMutant]],
exercisedTests: SortedSet[AbstractTestSuite]
) extends CoverageStats {
override def mutants: Set[TestedMutant] = mutantsByLine.values.flatMap(identity)(collection.breakOut)
}
object SourceFileSummary {
def apply(
info: SourceInfo,
statements: Set[Statement],
invoked: Set[Statement],
mutants: Set[TestedMutant],
tests: Set[AbstractTestSuite]
): SourceFileSummary = {
val mutantsByLine = mutants.groupBy(_.info.pos.line)
val lines = Source
.fromFile(info.fullPath.toFile, "utf-8")
.getLines()
.zipWithIndex
.map {
case (contents, number) =>
val lineNumber = number + 1
Line(contents, lineNumber, mutantsByLine.getOrElse(lineNumber, Set.empty))
}
.toSeq
implicit val testSuiteOrdering: Ordering[AbstractTestSuite] =
Ordering.by[AbstractTestSuite, String](_.toString)
SourceFileSummary(
info.name.toString,
lines,
statements,
invoked,
mutantsByLine,
tests.to[SortedSet]
)
}
}
|
sugakandrey/scalamu
|
report/src/main/scala/org/scalamu/report/SourceFileSummary.scala
|
Scala
|
gpl-3.0
| 1,464 |
/*
* Distributed as part of Scalala, a linear algebra library.
*
* Copyright (C) 2008- Daniel Ramage
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA
*/
package scalala;
package tensor;
import scalar.Scalar;
import domain._;
import scalala.generic.collection._;
import scalala.operators._;
import generic.TensorTriplesMonadic;
/**
* Implementation trait for tensors indexed by two keys, such as Matrices.
*
* TODO: Make up mind about whether implementing classes should provide
* which one (or both) of the pairs interface and triples interface.
*
* @author dramage
*/
trait Tensor2Like
[@specialized(Int) K1, @specialized(Int) K2,
@specialized(Int,Long,Float,Double,Boolean) V,
+D1<:Domain1[K1],
+D2<:Domain1[K2],
+D<:Domain2[K1,K2],
+T<:Domain2[K2,K1],
+This<:Tensor2[K1,K2,V]]
extends TensorLike[(K1,K2),V,D,This]
with operators.MatrixOps[This] { self =>
def checkKey(k1 : K1, k2 : K2) : Unit = {
if (!domain._1.contains(k1) || !domain._2.contains(k2)) {
throw new DomainException((k1,k2)+" not in domain");
}
}
/* final */ override def checkKey(pos : (K1,K2)) : Unit =
checkKey(pos._1, pos._2);
/** Gets the value indexed by (i,j). */
def apply(i : K1, j : K2) : V;
/** Fixed alias for apply(i,j). */
/* final */ override def apply(pos : (K1,K2)) : V =
apply(pos._1, pos._2);
/** Select all columns within a given row. */
def apply[TT>:This,That](i : K1, j : SelectAll)(implicit bf : CanSliceRow[TT,K1,That]) : That =
bf.apply(repr, i);
/** Select all rows within a given column. */
def apply[TT>:This,That](i : SelectAll, j : K2)(implicit bf : CanSliceCol[TT,K2,That]) : That =
bf.apply(repr, j);
/** Select a sub-matrix of the requested rows and columns. */
def apply[TT>:This,That](i : Seq[K1], j : Seq[K2])(implicit bf : CanSliceMatrix[TT,K1,K2,That]) : That =
bf.apply(repr, i, j);
/** Select all columns for a specified set of rows. */
def apply[TT>:This,That](i : Seq[K1], j : SelectAll)(implicit bf : CanSliceMatrix[TT,K1,K2,That]) : That =
bf.apply(repr, i, domain._2.toIndexedSeq);
/** Select all rows for a specified set of columns. */
def apply[TT>:This,That](i : SelectAll, j : Seq[K2])(implicit bf : CanSliceMatrix[TT,K1,K2,That]) : That =
bf.apply(repr, domain._1.toIndexedSeq, j);
/** Select specified columns within a row. */
def apply[TT>:This,That1,That2](i : K1, j : IndexedSeq[K2])
(implicit s1 : CanSliceRow[TT,K1,That1], s2 : CanSliceVector[That1,K2,That2]) : That2 =
s2.apply(s1.apply(repr, i), j);
/** Select specified rows within a column. */
def apply[TT>:This,That1,That2](i : IndexedSeq[K1], j : K2)
(implicit s1 : CanSliceCol[TT,K2,That1], s2 : CanSliceVector[That1,K1,That2]) : That2 =
s2.apply(s1.apply(repr, j), i);
/** Transpose of the matrix. */
def t : Tensor2[K2,K1,V] =
new Tensor2Transpose.Impl[K2,K1,V,This](repr);
//
// triples accessors
//
def triples : TensorTriplesMonadic[K1,K2,V,This] =
new TensorTriplesMonadic[K1,K2,V,This] { override def repr = self.repr; }
def foreachTriple[U](fn : (K1,K2,V)=>U) : Unit =
foreachPair((k,v) => fn(k._1, k._2, v));
def foreachNonZeroTriple[U](fn : (K1,K2,V)=>U) : Boolean =
foreachNonZeroPair((k,v) => fn(k._1, k._2, v));
def mapTriples[TT>:This,RV,That](fn : (K1,K2,V)=>RV)
(implicit bf : CanMapKeyValuePairs[TT, (K1,K2), V, RV, That]) : That =
mapPairs[TT,RV,That]((k,v) => fn(k._1,k._2,v))(bf);
def mapNonZeroTriples[TT>:This,RV,That](fn : (K1,K2,V)=>RV)
(implicit bf : CanMapKeyValuePairs[TT, (K1,K2), V, RV, That]) : That =
mapNonZeroPairs[TT,RV,That]((k,v) => fn(k._1,k._2,v))(bf);
def triplesIterator : Iterator[(K1,K2,V)] =
pairsIterator.map(pair => (pair._1._1,pair._1._2,pair._2));
def triplesIteratorNonZero : Iterator[(K1,K2,V)] =
pairsIteratorNonZero.map(pair => (pair._1._1,pair._1._2,pair._2));
//
// equality
//
override protected def canEqual(other : Any) : Boolean = other match {
case that : Tensor2[_,_,_] => true;
case _ => false;
}
}
/**
* Tensors indexed by two keys, such as matrices.
*
* @author dramage
*/
trait Tensor2
[@specialized(Int) K1, @specialized(Int) K2,
@specialized(Int,Long,Float,Double,Boolean) V]
extends Tensor[(K1,K2),V]
with Tensor2Like[K1,K2,V,Domain1[K1],Domain1[K2],Domain2[K1,K2],Domain2[K2,K1],Tensor2[K1,K2,V]]
object Tensor2 {
/** Constructs a tensor for the given domain. */
def apply[K1,K2,V:Scalar](domain : Domain2[K1,K2]) =
mutable.Tensor2.apply(domain);
implicit def canSliceRow[T2<:Tensor2[K1,K2,V],K1,K2,V:Scalar] : CanSliceRow[Tensor2[K1,K2,V],K1,Tensor1Row[K2,V]]
= new CanSliceRow[Tensor2[K1,K2,V],K1,Tensor1Row[K2,V]] {
override def apply(from : Tensor2[K1,K2,V], row : K1) =
new RowSliceImpl[K1,K2,V,Tensor2[K1,K2,V]](from,row);
}
implicit def canSliceCol[K1,K2,V:Scalar] : CanSliceCol[Tensor2[K1,K2,V],K2,Tensor1Col[K1,V]]
= new CanSliceCol[Tensor2[K1,K2,V],K2,Tensor1Col[K1,V]] {
override def apply(from : Tensor2[K1,K2,V], col : K2) =
new ColSliceImpl[K1,K2,V,Tensor2[K1,K2,V]](from, col);
}
implicit def canSliceMatrix[K1,K2,V:Scalar]
: CanSliceMatrix[Tensor2[K1,K2,V],K1,K2,Matrix[V]]
= new CanSliceMatrix[Tensor2[K1,K2,V],K1,K2,Matrix[V]] {
override def apply(from : Tensor2[K1,K2,V], keys1 : Seq[K1], keys2 : Seq[K2]) =
new MatrixSliceImpl[K1,K2,V,Tensor2[K1,K2,V]](from, keys1, keys2);
}
implicit def canMulTensor2ByTensor1Col[
@specialized(Int) K1, @specialized(Int) K2,
@specialized(Int,Double) V1, K, AR, ADomainRow, ADomainCol, ADomain,
@specialized(Int,Double) V2, V, BD,
@specialized(Int,Double) RV, That]
(implicit
viewA : K=>Tensor2[K1,K2,V1],
sliceA : CanSliceRow[K,K1,AR],
domainA : CanGetDomain2[K,ADomainRow,ADomainCol,ADomain],
viewB : V=>Tensor1Col[K2,V2],
mul : BinaryOp[AR,V,OpMulRowVectorBy,RV],
bf : CanBuildTensorFrom[V,ADomainRow,K1,RV,That],
scalar : Scalar[RV])
: BinaryOp[K, V, OpMulMatrixBy, That] =
new BinaryOp[K, V, OpMulMatrixBy, That] {
override def opType = OpMulMatrixBy;
override def apply(a : K, b : V) = {
val builder = bf(b, domainA._1(a));
for (i <- a.domain._1) {
builder(i) = mul(sliceA(a,i), b);
}
builder.result;
}
}
implicit def canMulMatrixByMatrix[
@specialized(Int) K1, @specialized(Int) K2, @specialized(Int) K3,
@specialized(Int,Double) V1, A, ARow, ADomainRow, InnerDomain, ADomain,
@specialized(Int,Double) V2, B, BCol, BDomainCol, BDomain,
@specialized(Int,Double) RV, RDomain, That]
(implicit
viewA : A=>Tensor2[K1,K2,V1],
sliceA : CanSliceRow[A,K1,ARow],
domainA : CanGetDomain2[A,ADomainRow,InnerDomain,ADomain],
viewB : B=>Tensor2[K2,K3,V2],
sliceB : CanSliceCol[B,K3,BCol],
domainB : CanGetDomain2[B,InnerDomain,BDomainCol,BDomain],
mul : BinaryOp[ARow,BCol,OpMulInner,RV],
domainR : CanBuildDomain2[ADomainRow,BDomainCol,RDomain],
bf : CanBuildTensorForBinaryOp[A,B,RDomain,(K1,K3),RV,OpMulMatrixBy,That],
scalar : Scalar[RV])
: BinaryOp[A, B, OpMulMatrixBy, That] =
new BinaryOp[A, B, OpMulMatrixBy, That] {
override def opType = OpMulMatrixBy;
override def apply(a : A, b : B) = {
val domain = domainR(domainA._1(a), domainB._2(b));
val builder = bf(a, b, domain);
for (i <- a.domain._1; j <- b.domain._2) {
builder((i,j)) = mul(sliceA(a,i), sliceB(b,j));
}
builder.result;
}
}
trait RowSliceLike[K1,K2,V,+Coll<:Tensor2[K1,K2,V],+This<:RowSlice[K1,K2,V,Coll]]
extends Tensor1SliceLike[(K1,K2),IterableDomain[(K1,K2)],K2,Domain1[K2],V,Coll,This] with Tensor1RowLike[K2,V,Domain1[K2],This] {
def row : K1;
override def domain = underlying.domain._2;
override def size = domain.size;
override def lookup(key : K2) = (row,key);
}
trait RowSlice[K1,K2,V,+Coll<:Tensor2[K1,K2,V]]
extends Tensor1Slice[(K1,K2),K2,V,Coll] with Tensor1Row[K2,V] with RowSliceLike[K1,K2,V,Coll,RowSlice[K1,K2,V,Coll]];
class RowSliceImpl[K1,K2,V,+Coll<:Tensor2[K1,K2,V]]
(override val underlying : Coll, override val row : K1)
(implicit override val scalar : Scalar[V])
extends RowSlice[K1,K2,V,Coll];
trait ColSliceLike[K1,K2,V,+Coll<:Tensor2[K1,K2,V],+This<:ColSlice[K1,K2,V,Coll]]
extends Tensor1SliceLike[(K1,K2),IterableDomain[(K1,K2)],K1,Domain1[K1],V,Coll,This] with Tensor1ColLike[K1,V,Domain1[K1],This] {
def col : K2;
override val domain = underlying.domain._1;
override def size = domain.size;
override def lookup(key : K1) = (key,col);
}
trait ColSlice[K1,K2,V,+Coll<:Tensor2[K1,K2,V]]
extends Tensor1Slice[(K1,K2),K1,V,Coll] with Tensor1Col[K1,V] with ColSliceLike[K1,K2,V,Coll,ColSlice[K1,K2,V,Coll]];
class ColSliceImpl[K1,K2,V,+Coll<:Tensor2[K1,K2,V]]
(override val underlying : Coll, override val col : K2)
(implicit override val scalar : Scalar[V])
extends ColSlice[K1,K2,V,Coll];
trait MatrixSliceLike
[@specialized(Int) K1, @specialized(Int) K2,
@specialized(Int,Long,Float,Double,Boolean) V,
+D1<:Domain1[K1],
+D2<:Domain1[K2],
+D<:Domain2[K1,K2],
+T<:Domain2[K2,K1],
+Coll<:Tensor2[K1,K2,V],
+This<:MatrixSlice[K1,K2,V,Coll]]
extends TensorSliceLike[(K1,K2),D,(Int,Int),TableDomain,V,Coll,This]
with MatrixLike[V,This] {
def lookup1(i : Int) : K1;
def lookup2(j : Int) : K2;
/* final */ override def lookup(tup : (Int,Int)) =
(lookup1(tup._1), lookup2(tup._2));
override def apply(i : Int, j : Int) : V =
underlying.apply(lookup1(i), lookup2(j));
}
trait MatrixSlice
[@specialized(Int,Long) K1, @specialized(Int,Long) K2,
@specialized(Int,Long,Float,Double,Boolean) V,
+Coll<:Tensor2[K1,K2,V]]
extends TensorSlice[(K1,K2),(Int,Int),V,Coll]
with Matrix[V]
with MatrixSliceLike[K1,K2,V,Domain1[K1],Domain1[K2],Domain2[K1,K2],Domain2[K2,K1],Coll,MatrixSlice[K1,K2,V,Coll]];
class MatrixSliceImpl[K1, K2, V, +Coll<:Tensor2[K1,K2,V]]
(override val underlying : Coll, val keys1 : Seq[K1], val keys2 : Seq[K2])
(implicit override val scalar : Scalar[V])
extends MatrixSlice[K1, K2, V, Coll] {
override def numRows = keys1.size;
override def numCols = keys2.size;
override def lookup1(i : Int) = keys1(i);
override def lookup2(j : Int) = keys2(j);
override val domain = TableDomain(keys1.length, keys2.length);
}
}
|
scalala/Scalala
|
src/main/scala/scalala/tensor/Tensor2.scala
|
Scala
|
lgpl-2.1
| 11,090 |
package sample.cluster.transformation
//#messages
final case class TransformationJob(text: String)
final case class TransformationResult(text: String)
final case class JobFailed(reason: String, job: TransformationJob)
case object BackendRegistration
//#messages
|
jastice/intellij-scala
|
scala/scala-impl/testdata/localProjects/akka-samples/src/main/scala/sample/cluster/transformation/TransformationMessages.scala
|
Scala
|
apache-2.0
| 263 |
package beam.agentsim.infrastructure
case class ParkingInquiryResponse(stall: ParkingStall, requestId: Int)
|
colinsheppard/beam
|
src/main/scala/beam/agentsim/infrastructure/ParkingInquiryResponse.scala
|
Scala
|
gpl-3.0
| 109 |
package svstm.vbox
class VBoxBody[+A](val value: A, val version: Int, val next: VBoxBody[A]) {
def this(v0: A) = this(v0, 0, null)
def getBody(maxVersion: Int) : VBoxBody[A] =
if (version > maxVersion)
next.getBody(maxVersion)
else
this
}
|
fcristovao/SVSTM
|
src/main/scala/svstm/vbox/VBoxBody.scala
|
Scala
|
apache-2.0
| 259 |
package pl.umk.bugclassification.scmparser.git.parsers
import org.slf4j.LoggerFactory
import pl.umk.bugclassification.scmparser.git.parsers.results.Commit
import scala.util.parsing.combinator.RegexParsers
object CommitParser extends RegexParsers with CommonParser {
val log = LoggerFactory.getLogger(CommitParser.getClass)
override def skipWhitespace = false
def commitList: Parser[List[Commit]] = commit.* //<~ (not(sha1)|not(newline))
def commit: Parser[Commit] = properCommit <~ newline.?
def properCommit =
(sha1 ~ author ~ date ~ message ~ filenames) ^^ {
case s ~ a ~ d ~ m ~ f => {
val c = new Commit(s, a, d, m, f)
log.debug("parsed {Commit={}}", c)
c
}
}
def sha1: Parser[String] =
("commit(\\\\s*)".r ~> sha1Text <~ newline) ^^ (s => s)
def author: Parser[String] =
("Author:(\\\\s*)".r ~> authorName <~ newline) ^^ (a => a)
def date: Parser[String] =
("Date:(\\\\s*)".r ~> dateValue <~ newline) ^^ (dv => dv)
def message: Parser[String] =
(newline ~> messageText <~ newline.?) ^^ (mt => mt)
def filenames: Parser[List[String]] =
(newline.? ~> rep(filename) <~ newline.?) ^^ { case files => files}
def filename: Parser[String] = "^(?!(commit [0-9a-f]{40}))\\\\S+[\\\\S ]*\\\\n".r ^^ { case s => s.trim() }
def authorName: Parser[String] = ".*[^\\\\n]".r ^^ { case s => s }
def dateValue: Parser[String] = "[^\\\\n]*".r ^^ { case s => s }
def messageText: Parser[String] = "(\\\\s{4}.*)*".r ^^ { case s => s }
def commitsFromLog(input: String): List[Commit] = parseAll(commitList, input) match {
case Success(result, _) => result
case failure: NoSuccess => {
log.error(failure.toString)
scala.sys.error(failure.toString)
}
}
}
|
mfejzer/CommitClassification
|
src/main/scala/pl/umk/bugclassification/scmparser/git/parsers/CommitParser.scala
|
Scala
|
bsd-3-clause
| 1,754 |
package inverse_macros
package object lazys {
@inline final def defer[A](body: => A): A@lzy = throw LazyContext(() => body)
}
|
hiroshi-cl/InverseMacros
|
inverse_macros_libraries/src/main/scala/inverse_macros/lazys/package.scala
|
Scala
|
bsd-2-clause
| 129 |
package com.scalaAsm.x86
package Instructions
package General
// Description: Convert Word to Doubleword
// Category: general/conver
trait CWD extends InstructionDefinition {
val mnemonic = "CWD"
}
object CWD extends ZeroOperands[CWD] with CWDImpl
trait CWDImpl extends CWD {
implicit object _0 extends NoOp{
val opcode: OneOpcode = 0x99
override def hasImplicitOperand = true
}
}
|
bdwashbu/scala-x86-inst
|
src/main/scala/com/scalaAsm/x86/Instructions/General/CWD.scala
|
Scala
|
apache-2.0
| 403 |
/*
* Copyright (c) 2015, Nightfall Group
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package moe.nightfall.instrumentality.mc194
import java.lang.ref.WeakReference
import java.util.concurrent.ConcurrentLinkedQueue
import moe.nightfall.instrumentality.animations.AnimSet
import moe.nightfall.instrumentality.{Loader, PMXModel}
import net.minecraft.client.Minecraft
import net.minecraft.entity.player.EntityPlayer
/**
* A not-thread-safe implementation of a sort-of hashmap, for one specific purpose:
* We need to know when players are deallocated from memory so we can delete their VBOs.
*/
object InstanceCache {
// TODO SCALA Use scala classes, ACTUALLY, rewrite all of this using FP
// NOTE TO WHOEVER WROTE THAT ^ : Whatever you do, the hashmap needs to use weak references in the key field
private val cacheDivisions: Array[collection.mutable.Set[ModelCacheEntry]] = new Array(0x100)
private val changes: ConcurrentLinkedQueue[ChangeEntry] = new ConcurrentLinkedQueue[ChangeEntry]
/**
* Updates existing players,
* and removes GL objects used by players whose memory has been freed.
* This ensures MC is done with the object by the time we free the GL object.
*/
def update(dt: Double) {
for (div <- 0 until cacheDivisions.length) {
if (cacheDivisions(div) != null) {
val cache = cacheDivisions(div).clone
// TODO SCALA This is ugly
val i = cacheDivisions(div).iterator
while (i.hasNext) {
val mce = i.next()
if (mce.playerRef.get() == null) {
if (mce.value != null)
mce.value.cleanupGL()
Loader.currentFileListeners -= mce.cfHook
cache.remove(mce)
} else {
if (mce.value != null)
mce.value.update(dt)
}
}
if (cacheDivisions(div).size == 0)
cacheDivisions(div) = null
}
}
var ch = Seq[ChangeEntry]()
while (true) {
val ce = changes.poll()
if (ce == null) {
ch.foreach((c) => changes.add(c))
return
}
val pent = Minecraft.getMinecraft.theWorld.getPlayerEntityByName(ce.changeTarget)
if (pent == null) {
// NOTE: Forge's magical stacktrace thing only works with the functions directly
System.err.println("Could not apply change to \\"" + ce.changeTarget + "\\" : entity does not exist")
ch = ch :+ ce
} else {
setModel(pent, ce.newModel, ce.newAnims)
}
}
}
/**
* @param player The EntityPlayer to apply a model to.
* @param model The model to apply.
* @return The MCE(Note that MCEs are reused - they are always assigned to the same EntityPlayer, though.)
*/
def setModel(player: EntityPlayer, model: PMXModel, animSet: AnimSet): ModelCacheEntry = {
val div = player.hashCode() & 0xFF00 >> 8
var dll = cacheDivisions(div)
if (dll == null) {
dll = collection.mutable.Set()
cacheDivisions(div) = dll
}
var nm = dll.find(_.playerRef.get == player).orNull
if (nm == null) {
nm = new ModelCacheEntry()
nm.playerRef = new WeakReference(player)
dll += nm
} else {
if (nm.value != null) {
nm.value.cleanupGL()
nm.value = null
}
}
if (model == null)
return nm
// This is the only case where nm.value ends up != null
nm.value = new PlayerInstance(model, animSet)
return nm
}
// TODO SCALA Return option
def getModel(player: EntityPlayer): ModelCacheEntry = {
val div = player.hashCode() & 0xFF00 >> 8
var dll = cacheDivisions(div)
if (dll == null)
dll = collection.mutable.Set()
cacheDivisions(div) = dll
return dll.find(_.playerRef.get == player) orNull
}
// This is how MT writes are done
def queueChange(user: EntityPlayer, pm: PMXModel, as: AnimSet) {
queueChange(user.getUniqueID.toString, pm, as)
}
def queueChange(user: String, pm: PMXModel, as: AnimSet) {
val ce = new ChangeEntry(user, pm, as)
changes.add(ce)
}
}
class ModelCacheEntry {
var value: PlayerInstance = null
// EntityPlayer. Don't keep not-weak references long-term anywhere in the code.
var playerRef: WeakReference[EntityPlayer] = null
// If != null, is the currentFileListeners Runnable. Is removed from there when the MCE is removed.
var cfHook: () => Unit = null
}
private class ChangeEntry(
// Uses a string because it can be called from another thread.
// Hopefully people can't change name while connected to a server,
// if this is wrong, then change this to a GUID.
// getCommandSenderName is used, since that's what the world uses to find a player
val changeTarget: String,
val newModel: PMXModel,
val newAnims: AnimSet
)
|
Nightfall/Instrumentality
|
mc194/src/main/scala/moe/nightfall/instrumentality/mc194/InstanceCache.scala
|
Scala
|
bsd-2-clause
| 6,699 |
/**
* Generated by API Builder - https://www.apibuilder.io
* Service version: 0.14.85
* apibuilder 0.14.93 app.apibuilder.io/apicollective/apibuilder-generator/latest/anorm_2_8_parsers
*/
package io.apibuilder.generator.v0.anorm.conversions {
import anorm.{Column, MetaDataItem, TypeDoesNotMatch}
import play.api.libs.json.{JsArray, JsObject, JsValue}
import scala.util.{Failure, Success, Try}
import play.api.libs.json.JodaReads._
/**
* Conversions to collections of objects using JSON.
*/
object Util {
def parser[T](
f: play.api.libs.json.JsValue => T
) = anorm.Column.nonNull { (value, meta) =>
val MetaDataItem(columnName, nullable, clazz) = meta
value match {
case json: org.postgresql.util.PGobject => parseJson(f, columnName.qualified, json.getValue)
case json: java.lang.String => parseJson(f, columnName.qualified, json)
case _=> {
Left(
TypeDoesNotMatch(
s"Column[${columnName.qualified}] error converting $value to Json. Expected instance of type[org.postgresql.util.PGobject] and not[${value.asInstanceOf[AnyRef].getClass}]"
)
)
}
}
}
private[this] def parseJson[T](f: play.api.libs.json.JsValue => T, columnName: String, value: String) = {
Try {
f(
play.api.libs.json.Json.parse(value)
)
} match {
case Success(result) => Right(result)
case Failure(ex) => Left(
TypeDoesNotMatch(
s"Column[$columnName] error parsing json $value: $ex"
)
)
}
}
}
object Types {
import io.apibuilder.generator.v0.models.json._
implicit val columnToSeqApibuilderGeneratorFileFlag: Column[Seq[_root_.io.apibuilder.generator.v0.models.FileFlag]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.FileFlag]] }
implicit val columnToMapApibuilderGeneratorFileFlag: Column[Map[String, _root_.io.apibuilder.generator.v0.models.FileFlag]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.FileFlag]] }
implicit val columnToSeqApibuilderGeneratorAttribute: Column[Seq[_root_.io.apibuilder.generator.v0.models.Attribute]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.Attribute]] }
implicit val columnToMapApibuilderGeneratorAttribute: Column[Map[String, _root_.io.apibuilder.generator.v0.models.Attribute]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.Attribute]] }
implicit val columnToSeqApibuilderGeneratorError: Column[Seq[_root_.io.apibuilder.generator.v0.models.Error]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.Error]] }
implicit val columnToMapApibuilderGeneratorError: Column[Map[String, _root_.io.apibuilder.generator.v0.models.Error]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.Error]] }
implicit val columnToSeqApibuilderGeneratorFile: Column[Seq[_root_.io.apibuilder.generator.v0.models.File]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.File]] }
implicit val columnToMapApibuilderGeneratorFile: Column[Map[String, _root_.io.apibuilder.generator.v0.models.File]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.File]] }
implicit val columnToSeqApibuilderGeneratorGenerator: Column[Seq[_root_.io.apibuilder.generator.v0.models.Generator]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.Generator]] }
implicit val columnToMapApibuilderGeneratorGenerator: Column[Map[String, _root_.io.apibuilder.generator.v0.models.Generator]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.Generator]] }
implicit val columnToSeqApibuilderGeneratorHealthcheck: Column[Seq[_root_.io.apibuilder.generator.v0.models.Healthcheck]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.Healthcheck]] }
implicit val columnToMapApibuilderGeneratorHealthcheck: Column[Map[String, _root_.io.apibuilder.generator.v0.models.Healthcheck]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.Healthcheck]] }
implicit val columnToSeqApibuilderGeneratorInvocation: Column[Seq[_root_.io.apibuilder.generator.v0.models.Invocation]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.Invocation]] }
implicit val columnToMapApibuilderGeneratorInvocation: Column[Map[String, _root_.io.apibuilder.generator.v0.models.Invocation]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.Invocation]] }
implicit val columnToSeqApibuilderGeneratorInvocationForm: Column[Seq[_root_.io.apibuilder.generator.v0.models.InvocationForm]] = Util.parser { _.as[Seq[_root_.io.apibuilder.generator.v0.models.InvocationForm]] }
implicit val columnToMapApibuilderGeneratorInvocationForm: Column[Map[String, _root_.io.apibuilder.generator.v0.models.InvocationForm]] = Util.parser { _.as[Map[String, _root_.io.apibuilder.generator.v0.models.InvocationForm]] }
}
object Standard {
implicit val columnToJsObject: Column[play.api.libs.json.JsObject] = Util.parser { _.as[play.api.libs.json.JsObject] }
implicit val columnToSeqBoolean: Column[Seq[Boolean]] = Util.parser { _.as[Seq[Boolean]] }
implicit val columnToMapBoolean: Column[Map[String, Boolean]] = Util.parser { _.as[Map[String, Boolean]] }
implicit val columnToSeqDouble: Column[Seq[Double]] = Util.parser { _.as[Seq[Double]] }
implicit val columnToMapDouble: Column[Map[String, Double]] = Util.parser { _.as[Map[String, Double]] }
implicit val columnToSeqInt: Column[Seq[Int]] = Util.parser { _.as[Seq[Int]] }
implicit val columnToMapInt: Column[Map[String, Int]] = Util.parser { _.as[Map[String, Int]] }
implicit val columnToSeqLong: Column[Seq[Long]] = Util.parser { _.as[Seq[Long]] }
implicit val columnToMapLong: Column[Map[String, Long]] = Util.parser { _.as[Map[String, Long]] }
implicit val columnToSeqLocalDate: Column[Seq[_root_.org.joda.time.LocalDate]] = Util.parser { _.as[Seq[_root_.org.joda.time.LocalDate]] }
implicit val columnToMapLocalDate: Column[Map[String, _root_.org.joda.time.LocalDate]] = Util.parser { _.as[Map[String, _root_.org.joda.time.LocalDate]] }
implicit val columnToSeqDateTime: Column[Seq[_root_.org.joda.time.DateTime]] = Util.parser { _.as[Seq[_root_.org.joda.time.DateTime]] }
implicit val columnToMapDateTime: Column[Map[String, _root_.org.joda.time.DateTime]] = Util.parser { _.as[Map[String, _root_.org.joda.time.DateTime]] }
implicit val columnToSeqBigDecimal: Column[Seq[BigDecimal]] = Util.parser { _.as[Seq[BigDecimal]] }
implicit val columnToMapBigDecimal: Column[Map[String, BigDecimal]] = Util.parser { _.as[Map[String, BigDecimal]] }
implicit val columnToSeqJsObject: Column[Seq[_root_.play.api.libs.json.JsObject]] = Util.parser { _.as[Seq[_root_.play.api.libs.json.JsObject]] }
implicit val columnToMapJsObject: Column[Map[String, _root_.play.api.libs.json.JsObject]] = Util.parser { _.as[Map[String, _root_.play.api.libs.json.JsObject]] }
implicit val columnToSeqJsValue: Column[Seq[_root_.play.api.libs.json.JsValue]] = Util.parser { _.as[Seq[_root_.play.api.libs.json.JsValue]] }
implicit val columnToMapJsValue: Column[Map[String, _root_.play.api.libs.json.JsValue]] = Util.parser { _.as[Map[String, _root_.play.api.libs.json.JsValue]] }
implicit val columnToSeqString: Column[Seq[String]] = Util.parser { _.as[Seq[String]] }
implicit val columnToMapString: Column[Map[String, String]] = Util.parser { _.as[Map[String, String]] }
implicit val columnToSeqUUID: Column[Seq[_root_.java.util.UUID]] = Util.parser { _.as[Seq[_root_.java.util.UUID]] }
implicit val columnToMapUUID: Column[Map[String, _root_.java.util.UUID]] = Util.parser { _.as[Map[String, _root_.java.util.UUID]] }
}
}
|
mbryzek/apidoc
|
api/app/generated/ApicollectiveApibuilderGeneratorV0Conversions.scala
|
Scala
|
mit
| 7,877 |
package test.roundeights.hasher
import org.specs2.mutable._
import com.roundeights.hasher.{Algo, Hasher}
class AlgoTest extends Specification {
def hashTest ( algo: Algo, data: TestData, hash: String ) = {
"Using " + algo + ", the apply methods on the Algo object" in {
"Hash a String" in {
algo( data.str ).hex must_== hash
}
"Hash a StringBuilder" in {
algo( data.builder ).hex must_== hash
}
"Hash an Array of Bytes" in {
algo( data.bytes ).hex must_== hash
}
"Hash a Stream" in {
algo( data.stream ).hex must_== hash
}
"Hash a Reader" in {
algo( data.reader ).hex must_== hash
}
"Hash a Source" in {
algo( data.source ).hex must_== hash
}
}
"Hashing multiple times with " + algo + " should return the same result" in {
algo( data.str ).hex must_== hash
algo( data.str ).hex must_== hash
algo( data.str ).hex must_== hash
}
}
def compareTest ( algo: Algo, data: TestData, hash: String ) = {
"Using " + algo + ", the compare methods on the Algo object" in {
"match with a String" in {
(algo( data.str ) hash= hash)
.aka( "Comparing a String to " + hash ) must beTrue
}
"match with a StringBuilder" in {
(algo( data.builder ) hash= hash)
.aka( "Comparing a StringBuilder to " + hash ) must beTrue
}
"match with an Array of Bytes" in {
(algo( data.bytes ) hash= hash)
.aka( "Comparing a Byte Array to " + hash ) must beTrue
}
"match with a Stream" in {
(algo( data.stream ) hash= hash )
.aka( "Comparing a Stream to " + hash ) must beTrue
}
"match with a Reader" in {
(algo( data.reader ) hash= hash )
.aka( "Comparing a Reader to " + hash ) must beTrue
}
"match with a Source" in {
(algo( data.source ) hash= hash )
.aka( "Comparing a Source to " + hash ) must beTrue
}
}
"Comparing multiple times with " + algo + " should still match" in {
"match with a String" in {
(algo( data.str ) hash= hash )
.aka( "Comparing a String to " + hash ) must beTrue
(algo( data.str ) hash= hash )
.aka( "Comparing a String to " + hash ) must beTrue
(algo( data.str ) hash= hash )
.aka( "Comparing a String to " + hash ) must beTrue
}
}
}
// BCrypt produces salted hashes, so we can only assert against the format
// of the resulting hashes
def testBCrypt( data: TestData ) {
"Using BCrypt, the apply methods on the Algo object" in {
"Hash a String" in {
Algo.bcrypt()(data.str).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
"Hash a StringBuilder" in {
Algo.bcrypt()(data.builder).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
"Hash an Array of Bytes" in {
Algo.bcrypt()(data.bytes).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
"Hash a Stream" in {
Algo.bcrypt()(data.stream).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
"Hash a Reader" in {
Algo.bcrypt()(data.reader).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
"Hash a Source" in {
Algo.bcrypt()(data.source).hex must
beMatching("^[a-zA-Z0-9]{120}$")
}
}
}
// A simple test
"Simple plain text data" should {
testBCrypt( TestData.test )
TestData.test.runAgainstUnsalted(hashTest)
TestData.test.runAgainstAll(compareTest)
}
// Test an internationalized, multi-byte string
"Internationalized plain text values" should {
testBCrypt( TestData.international )
TestData.international.runAgainstUnsalted(hashTest)
TestData.international.runAgainstAll(compareTest)
}
// Test a string large enough that it blows out the buffers
"Large values" should {
testBCrypt( TestData.large )
TestData.large.runAgainstUnsalted(hashTest)
TestData.large.runAgainstAll(compareTest)
}
// Test hashing a blank string
"Blank string" should {
testBCrypt( TestData.blank )
TestData.blank.runAgainstUnsalted(hashTest)
TestData.blank.runAgainstAll(compareTest)
}
}
|
Nycto/Hasher
|
src/test/scala/hasher/AlgoTest.scala
|
Scala
|
mit
| 4,977 |
package chat.tox.antox.av
import chat.tox.antox.utils.AntoxLog
import chat.tox.antox.wrapper.{CallNumber, ContactKey}
import rx.lang.scala.JavaConversions._
import rx.lang.scala.subjects.BehaviorSubject
import rx.lang.scala.{Observable, Subject}
class CallManager {
private val callsSubject = BehaviorSubject[Map[CallNumber, Call]](Map.empty[CallNumber, Call])
def calls: Seq[Call] = {
// TODO: getValue !!
try {
callsSubject.getValue.values.toSeq
}
catch {
case e: Exception => {
e.printStackTrace()
null
}
case e: java.lang.NoSuchMethodError => {
e.printStackTrace()
null
}
}
}
val activeCallObservable = callsSubject.map(_.values.filter(_.active))
private val callAddedSubject = Subject[Call]()
val callAddedObservable: Observable[Call] = callAddedSubject.asJavaObservable
def add(call: Call): Unit = {
AntoxLog.debug("Adding call")
callAddedSubject.onNext(call)
// TODO: getValue !! -> can't logout when it crashes here
try {
callsSubject.onNext(callsSubject.getValue + (call.callNumber -> call))
}
catch {
case e: Exception => e.printStackTrace()
case e: java.lang.NoSuchMethodError => e.printStackTrace()
}
call.endedObservable.subscribe { _ =>
remove(call.callNumber)
}
}
def get(callNumber: CallNumber): Option[Call] = {
calls.find(_.callNumber == callNumber)
}
def get(callKey: ContactKey): Option[Call] = {
calls.find(_.contactKey == callKey)
}
private def remove(callNumber: CallNumber): Unit = {
AntoxLog.debug("Removing call")
// TODO: getValue !!
try {
callsSubject.onNext(callsSubject.getValue - callNumber)
}
catch {
case e: Exception => e.printStackTrace()
case e: java.lang.NoSuchMethodError => e.printStackTrace()
}
}
def removeAndEndAll(): Unit = {
// TODO: getValue !!
try {
callsSubject.getValue.foreach { case (callNumber, call) =>
if (call.active) call.end()
remove(callNumber)
}
}
catch {
case e: Exception => e.printStackTrace()
case e: java.lang.NoSuchMethodError => e.printStackTrace()
}
}
}
|
subliun/Antox
|
app/src/main/scala/chat/tox/antox/av/CallManager.scala
|
Scala
|
gpl-3.0
| 2,218 |
package org.jetbrains.plugins.scala.debugger.evaluation.evaluator
import com.intellij.debugger.engine.evaluation.expression.{Evaluator, Modifier}
import com.intellij.debugger.engine.evaluation.{EvaluateExceptionUtil, EvaluationContextImpl}
import com.sun.jdi.BooleanValue
/**
* User: Alefas
* Date: 19.10.11
*/
class ScalaIfEvaluator(condition: Evaluator, ifBranch: Evaluator, elseBranch: Option[Evaluator]) extends Evaluator {
private var modifier: Modifier = null
def evaluate(context: EvaluationContextImpl): AnyRef = {
var value: AnyRef = condition.evaluate(context)
value match {
case v: BooleanValue =>
if (v.booleanValue) {
value = ifBranch.evaluate(context)
modifier = ifBranch.getModifier
}
else {
elseBranch match {
case Some(elseBranch) =>
value = elseBranch.evaluate(context)
modifier = elseBranch.getModifier
return value
case None =>
modifier = null
}
}
case _ => throw EvaluateExceptionUtil.BOOLEAN_EXPECTED
}
if (elseBranch == None)
value = context.getDebugProcess.getVirtualMachineProxy.mirrorOf()
value
}
def getModifier: Modifier = modifier
}
|
triggerNZ/intellij-scala
|
src/org/jetbrains/plugins/scala/debugger/evaluation/evaluator/ScalaIfEvaluator.scala
|
Scala
|
apache-2.0
| 1,273 |
package org.openurp.edu.eams.teach.lesson.task.web.action
import org.openurp.base.Semester
import org.openurp.edu.base.Project
import org.openurp.edu.base.Student
class TeachTaskStdSearchAction extends TeachTaskSearchAction {
def index(): String = {
val std = getLoginStudent
if (null == std) {
return forwardError("error.std.stdNo.needed")
}
val semesterId = getInt("semester.id")
val projectId = getInt("project.id")
val project = (if (null == projectId) std.getProject else entityDao.get(classOf[Project], projectId))
var semester: Semester = null
semester = if (null != semesterId && null == projectId) semesterService.getSemester(semesterId) else semesterService.getCurSemester(project)
if (null == semester) {
return forwardError("error.semester.notMaded")
}
put("semester", semester)
put("cur_project", project)
put("semesters", semesterService.getCalendar(project).getSemesters)
put("departmentAll", departmentService.getColleges)
forward()
}
}
|
openurp/edu-eams-webapp
|
schedule/src/main/scala/org/openurp/edu/eams/teach/lesson/task/web/action/TeachTaskStdSearchAction.scala
|
Scala
|
gpl-3.0
| 1,034 |
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.plan.nodes.physical.batch
import org.apache.flink.runtime.operators.DamBehavior
import org.apache.flink.table.api.BatchTableEnvironment
import org.apache.flink.table.codegen.ValuesCodeGenerator
import org.apache.flink.table.dataformat.BaseRow
import org.apache.flink.table.plan.nodes.exec.{BatchExecNode, ExecNode}
import org.apache.calcite.plan.{RelOptCluster, RelTraitSet}
import org.apache.calcite.rel.`type`.RelDataType
import org.apache.calcite.rel.core.Values
import org.apache.calcite.rel.{RelNode, RelWriter}
import org.apache.calcite.rex.RexLiteral
import com.google.common.collect.ImmutableList
import java.util
import org.apache.flink.api.dag.Transformation
import scala.collection.JavaConversions._
/**
* Batch physical RelNode for [[Values]].
*/
class BatchExecValues(
cluster: RelOptCluster,
traitSet: RelTraitSet,
tuples: ImmutableList[ImmutableList[RexLiteral]],
outputRowType: RelDataType)
extends Values(cluster, outputRowType, tuples, traitSet)
with BatchPhysicalRel
with BatchExecNode[BaseRow] {
override def deriveRowType(): RelDataType = outputRowType
override def copy(traitSet: RelTraitSet, inputs: util.List[RelNode]): RelNode = {
new BatchExecValues(cluster, traitSet, getTuples, outputRowType)
}
override def explainTerms(pw: RelWriter): RelWriter = {
super.explainTerms(pw)
.item("values", getRowType.getFieldNames.toList.mkString(", "))
}
//~ ExecNode methods -----------------------------------------------------------
override def getDamBehavior: DamBehavior = DamBehavior.PIPELINED
override def getInputNodes: util.List[ExecNode[BatchTableEnvironment, _]] = List()
override def replaceInputNode(
ordinalInParent: Int,
newInputNode: ExecNode[BatchTableEnvironment, _]): Unit = {
replaceInput(ordinalInParent, newInputNode.asInstanceOf[RelNode])
}
override protected def translateToPlanInternal(
tableEnv: BatchTableEnvironment): Transformation[BaseRow] = {
val inputFormat = ValuesCodeGenerator.generatorInputFormat(
tableEnv,
getRowType,
tuples,
getRelTypeName)
val transformation = tableEnv.streamEnv.createInput(inputFormat,
inputFormat.getProducedType).getTransformation
transformation.setParallelism(getResource.getParallelism)
transformation
}
}
|
shaoxuan-wang/flink
|
flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/plan/nodes/physical/batch/BatchExecValues.scala
|
Scala
|
apache-2.0
| 3,167 |
/*
* Copyright 2017-2020 Aleksey Fomkin
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package korolev.internal
import java.util.concurrent.atomic.AtomicInteger
import scala.collection.mutable
import scala.annotation.switch
import korolev.Context.FileHandler
import korolev.data.Bytes
import korolev.web.{FormData, PathAndQuery}
import korolev.effect.syntax._
import korolev.effect.{AsyncTable, Effect, Queue, Reporter, Stream}
import levsha.Id
import levsha.impl.DiffRenderContext.ChangesPerformer
/**
* Typed interface to client side
*/
final class Frontend[F[_]: Effect](incomingMessages: Stream[F, String])(implicit reporter: Reporter) {
import Frontend._
private val lastDescriptor = new AtomicInteger(0)
private val remoteDomChangesPerformer = new RemoteDomChangesPerformer()
private val customCallbacks = mutable.Map.empty[String, String => F[Unit]]
private val downloadFiles = mutable.Map.empty[String, DownloadFileMeta[F]]
private val stringPromises = AsyncTable.unsafeCreateEmpty[F, String, String]
private val formDataPromises = AsyncTable.unsafeCreateEmpty[F, String, FormData]
private val filesPromises = AsyncTable.unsafeCreateEmpty[F, String, Stream[F, Bytes]]
// Store file name and it`s length as data
private val fileNamePromises = AsyncTable.unsafeCreateEmpty[F, String, List[(String, Long)]]
private val outgoingQueue = Queue[F, String]()
private val List(rawDomEvents, rawBrowserHistoryChanges, rawClientMessages) = incomingMessages
.map(parseMessage)
.sort(3) {
case (CallbackType.DomEvent.code, _) => 0
case (CallbackType.History.code, _) => 1
case _ => 2
}
val (outgoingConsumed, outgoingMessages: Stream[F, String]) = outgoingQueue.stream.handleConsumed
val domEventMessages: Stream[F, Frontend.DomEventMessage] =
rawDomEvents.map {
case (_, args) =>
val Array(renderNum, target, tpe) = args.split(':')
DomEventMessage(renderNum.toInt, Id(target), tpe)
}
val browserHistoryMessages: Stream[F, PathAndQuery] =
rawBrowserHistoryChanges.map {
case (_, args) => PathAndQuery.fromString(args)
}
private def send(args: Any*): F[Unit] = {
def escape(sb: StringBuilder, s: String, unicode: Boolean): Unit = {
sb.append('"')
var i = 0
val len = s.length
while (i < len) {
(s.charAt(i): @switch) match {
case '"' => sb.append("\\\\\\"")
case '\\\\' => sb.append("\\\\\\\\")
case '\\b' => sb.append("\\\\b")
case '\\f' => sb.append("\\\\f")
case '\\n' => sb.append("\\\\n")
case '\\r' => sb.append("\\\\r")
case '\\t' => sb.append("\\\\t")
case c =>
if (c < ' ' || (c > '~' && unicode)) sb.append("\\\\u%04x" format c.toInt)
else sb.append(c)
}
i += 1
}
sb.append('"')
()
}
val sb = new StringBuilder()
sb.append('[')
args.foreach {
case s: String =>
escape(sb, s, unicode = true)
sb.append(',')
case x =>
sb.append(x.toString)
sb.append(',')
}
sb.update(sb.length - 1, ' ') // replace last comma to space
sb.append(']')
outgoingQueue.enqueue(sb.mkString)
}
def listenEvent(name: String, preventDefault: Boolean): F[Unit] =
send(Procedure.ListenEvent.code, name, preventDefault)
def uploadForm(id: Id): F[FormData] =
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.UploadForm.code, id.mkString, descriptor)
result <- formDataPromises.get(descriptor)
} yield result
def listFiles(id: Id): F[List[(String, Long)]] =
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.ListFiles.code, id.mkString, descriptor)
files <- fileNamePromises.get(descriptor)
} yield files
def uploadFile(id: Id, handler: FileHandler): F[Stream[F, Bytes]] =
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.UploadFile.code, id.mkString, descriptor, handler.fileName)
file <- filesPromises.get(descriptor)
} yield file
def downloadFile(name: String, stream: Stream[F, Bytes], size: Option[Long], mimeType: String): F[Unit] = {
val (consumed, updatedStream) = stream.handleConsumed
val id = lastDescriptor.getAndIncrement().toString
consumed.runAsync(_ => downloadFiles.remove(name))
downloadFiles.put(id, DownloadFileMeta(updatedStream, size, mimeType))
send(Procedure.DownloadFile.code, id, name)
}
def resolveFileDownload(descriptor: String): F[Option[DownloadFileMeta[F]]] =
Effect[F].delay(downloadFiles.get(descriptor))
def focus(id: Id): F[Unit] =
send(Procedure.Focus.code, id.mkString)
private def nextDescriptor() =
Effect[F].delay(lastDescriptor.getAndIncrement().toString)
def extractProperty(id: Id, name: String): F[String] = {
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.ExtractProperty.code, descriptor, id.mkString, name)
result <- stringPromises.get(descriptor)
} yield result
}
def setProperty(id: Id, name: String, value: Any): F[Unit] = {
send(Procedure.ModifyDom.code, ModifyDomProcedure.SetAttr.code, id.mkString, 0, name, value, true)
}
def evalJs(code: String): F[String] =
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.EvalJs.code, descriptor, code)
result <- stringPromises.get(descriptor)
} yield result
def resetForm(id: Id): F[Unit] =
send(Procedure.RestForm.code, id.mkString)
def changePageUrl(pq: PathAndQuery): F[Unit] =
send(Procedure.ChangePageUrl.code, pq.mkString)
def setRenderNum(i: Int): F[Unit] =
send(Procedure.SetRenderNum.code, i)
def reload(): F[Unit] =
send(Procedure.Reload.code)
def reloadCss(): F[Unit] =
send(Procedure.ReloadCss.code)
def extractEventData(renderNum: Int): F[String] =
for {
descriptor <- nextDescriptor()
_ <- send(Procedure.ExtractEventData.code, descriptor, renderNum)
result <- stringPromises.get(descriptor)
} yield result
def performDomChanges(f: ChangesPerformer => Unit): F[Unit] =
for {
_ <- Effect[F]
.delay {
remoteDomChangesPerformer.buffer.append(Procedure.ModifyDom.code)
f(remoteDomChangesPerformer)
}
_ <- send(remoteDomChangesPerformer.buffer.toSeq: _*)
_ <- Effect[F].delay(remoteDomChangesPerformer.buffer.clear())
} yield ()
def resolveFile(descriptor: String, file: Stream[F, Bytes]): F[Unit] =
filesPromises
.put(descriptor, file)
.after(filesPromises.remove(descriptor))
def resolveFileNames(descriptor: String, handler: List[(String, Long)]): F[Unit] =
fileNamePromises
.put(descriptor, handler)
.after(fileNamePromises.remove(descriptor))
def resolveFormData(descriptor: String, formData: Either[Throwable, FormData]): F[Unit] =
formDataPromises
.putEither(descriptor, formData)
.after(formDataPromises.remove(descriptor))
def registerCustomCallback(name: String)(f: String => F[Unit]): F[Unit] =
Effect[F].delay {
customCallbacks.put(name, f)
()
}
private def unescapeJsonString(s: String): String = {
val sb = new StringBuilder()
var i = 1
val len = s.length - 1
while (i < len) {
val c = s.charAt(i)
var charsConsumed = 0
if (c != '\\\\') {
charsConsumed = 1
sb.append(c)
} else {
charsConsumed = 2
(s.charAt(i + 1): @switch) match {
case '\\\\' => sb.append('\\\\')
case '"' => sb.append('"')
case 'b' => sb.append('\\b')
case 'f' => sb.append('\\f')
case 'n' => sb.append('\\n')
case 'r' => sb.append('\\r')
case 't' => sb.append('\\t')
case 'u' =>
val code = s.substring(i + 2, i + 6)
charsConsumed = 6
sb.append(Integer.parseInt(code, 16).toChar)
}
}
i += charsConsumed
}
sb.result()
}
private def parseMessage(json: String) = {
val tokens = json
.substring(1, json.length - 1) // remove brackets
.split(",", 2) // split to tokens
val callbackType = tokens(0)
val args =
if (tokens.length > 1) unescapeJsonString(tokens(1))
else ""
(callbackType.toInt, args)
}
rawClientMessages
.foreach {
case (CallbackType.Heartbeat.code, _) =>
Effect[F].unit
case (CallbackType.ExtractPropertyResponse.code, args) =>
val Array(descriptor, propertyType, value) = args.split(":", 3)
propertyType.toInt match {
case PropertyType.Error.code =>
stringPromises
.fail(descriptor, ClientSideException(value))
.after(stringPromises.remove(descriptor))
case _ =>
stringPromises
.put(descriptor, value)
.after(stringPromises.remove(descriptor))
}
case (CallbackType.ExtractEventDataResponse.code, args) =>
val Array(descriptor, value) = args.split(":", 2)
stringPromises
.put(descriptor, value)
.after(stringPromises.remove(descriptor))
case (CallbackType.EvalJsResponse.code, args) =>
val Array(descriptor, status, json) = args.split(":", 3)
status.toInt match {
case EvalJsStatus.Success.code =>
stringPromises
.put(descriptor, json)
.after(stringPromises.remove(descriptor))
case EvalJsStatus.Failure.code =>
stringPromises
.fail(descriptor, ClientSideException(json))
.after(stringPromises.remove(descriptor))
}
case (CallbackType.CustomCallback.code, args) =>
val Array(name, arg) = args.split(":", 2)
customCallbacks.get(name) match {
case Some(f) => f(arg)
case None => Effect[F].unit
}
case (callbackType, args) =>
Effect[F].fail(UnknownCallbackException(callbackType, args))
}
.runAsyncForget
}
object Frontend {
final case class DomEventMessage(renderNum: Int,
target: Id,
eventType: String)
sealed abstract class Procedure(final val code: Int)
object Procedure {
case object SetRenderNum extends Procedure(0) // (n)
case object Reload extends Procedure(1) // ()
case object ListenEvent extends Procedure(2) // (type, preventDefault)
case object ExtractProperty extends Procedure(3) // (id, propertyName, descriptor)
case object ModifyDom extends Procedure(4) // (commands)
case object Focus extends Procedure(5) // (id) {
case object ChangePageUrl extends Procedure(6) // (path)
case object UploadForm extends Procedure(7) // (id, descriptor)
case object ReloadCss extends Procedure(8) // ()
case object KeepAlive extends Procedure(9) // ()
case object EvalJs extends Procedure(10) // (code)
case object ExtractEventData extends Procedure(11) // (descriptor, renderNum)
case object ListFiles extends Procedure(12) // (id, descriptor)
case object UploadFile extends Procedure(13) // (id, descriptor, fileName)
case object RestForm extends Procedure(14) // (id)
case object DownloadFile extends Procedure(15) // (descriptor, fileName)
val All = Set(
SetRenderNum,
Reload,
ListenEvent,
ExtractProperty,
ModifyDom,
Focus,
ChangePageUrl,
UploadForm,
ReloadCss,
KeepAlive,
EvalJs,
ExtractEventData,
ListFiles,
UploadFile,
RestForm,
DownloadFile
)
def apply(n: Int): Option[Procedure] =
All.find(_.code == n)
}
sealed abstract class ModifyDomProcedure(final val code: Int)
object ModifyDomProcedure {
case object Create extends ModifyDomProcedure(0) // (id, childId, xmlNs, tag)
case object CreateText extends ModifyDomProcedure(1) // (id, childId, text)
case object Remove extends ModifyDomProcedure(2) // (id, childId)
case object SetAttr extends ModifyDomProcedure(3) // (id, xmlNs, name, value, isProperty)
case object RemoveAttr extends ModifyDomProcedure(4) // (id, xmlNs, name, isProperty)
case object SetStyle extends ModifyDomProcedure(5) // (id, name, value)
case object RemoveStyle extends ModifyDomProcedure(6) // (id, name)
}
sealed abstract class PropertyType(final val code: Int)
object PropertyType {
case object String extends PropertyType(0)
case object Number extends PropertyType(1)
case object Boolean extends PropertyType(2)
case object Object extends PropertyType(3)
case object Error extends PropertyType(4)
}
sealed abstract class EvalJsStatus(final val code: Int)
object EvalJsStatus {
case object Success extends EvalJsStatus(0)
case object Failure extends EvalJsStatus(1)
}
sealed abstract class CallbackType(final val code: Int)
object CallbackType {
case object DomEvent extends CallbackType(0) // `$renderNum:$elementId:$eventType`
case object CustomCallback extends CallbackType(1) // `$name:arg`
case object ExtractPropertyResponse extends CallbackType(2) // `$descriptor:$value`
case object History extends CallbackType(3) // URL
case object EvalJsResponse extends CallbackType(4) // `$descriptor:$status:$value`
case object ExtractEventDataResponse extends CallbackType(5) // `$descriptor:$dataJson`
case object Heartbeat extends CallbackType(6) // `$descriptor:$anyvalue`
final val All = Set(DomEvent,
CustomCallback,
ExtractPropertyResponse,
History,
EvalJsResponse,
ExtractEventDataResponse,
Heartbeat)
def apply(n: Int): Option[CallbackType] =
All.find(_.code == n)
}
case class ClientSideException(message: String) extends Exception(message)
case class UnknownCallbackException(callbackType: Int, args: String)
extends Exception(s"Unknown callback $callbackType with args '$args' received")
final case class DownloadFileMeta[F[_]: Effect](stream: Stream[F, Bytes], size: Option[Long], mimeType: String)
val ReloadMessage: String = "[1]"
}
|
fomkin/korolev
|
modules/korolev/src/main/scala/korolev/internal/Frontend.scala
|
Scala
|
apache-2.0
| 14,816 |
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** @author Arash Fard, Usman Nisar, Ayushi Jain, Aravind Kalimurthy, John Miller
* @version 1.3
* @date Thu Nov 25 11:28:31 EDT 2013
* @see LICENSE (MIT style license file).
*
* `MGraph` Strict Simulation Using Mutable Sets
*/
package scalation.graphalytics.mutable
import scala.collection.mutable.{ArrayStack, ListBuffer, Map, HashMap, MutableList}
import scala.collection.mutable.{Set => SET}
import scala.reflect.ClassTag
import scala.util.control.Breaks.{break, breakable}
import scalation.graphalytics.mutable.{ExampleMGraphD => EX_GRAPH}
import scalation.stat.Statistic
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** The 'MStrictSim' class provides an implementation for strict simulation
* graph pattern matching. This version uses `DualSim`.
* @see hipore.com/ijbd/2014/IJBD%20Vol%201%20No%201%202014.pdf
* @param q the query graph Q(U, D, k)
* @param g the data graph G(V, E, l)
*/
class MStrictSim [TLabel: ClassTag] (g: MGraph [TLabel], q: MGraph [TLabel])
extends GraphMatcher (g, q)
{
private val listOfDistinctReducedSet = new ListBuffer [SET [String]] () // contains total number of matches
// after post processing
private val mapOfBallWithSize = Map [Int, Long] () // contains balls left after
// post processing with diameter.
private val listOfMatchedBallVertices = MutableList [Int] () // contains list of center vertices
private val qmet = new GraphMetrics (q.clone, false) // creating graph metrics object of query graph
private val dataSize = g.size // size of the data graph
private val querySize = q.size // size of the query graph
private val phi0 = new MDualSim (g, q).mappings ()
println (s"phi0 = ${phi0.deep}")
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Apply the Strict Graph Simulation pattern matching algorithm to find the mappings
* from the query graph 'q' to the data graph 'g'. These are represented by a
* multi-valued function 'phi' that maps each query graph vertex 'u' to a
* set of data graph vertices '{v}'.
*/
def mappings (): Array [SET [Int]] = merge (mappings2 ())
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Mapping results per ball.
*/
def mappings2 (): HashMap [Int, Array [SET [Int]]] = strictSim (phi0)
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Merged mapping results, the union over all balls.
*/
def merge (matches: Map [Int, Array [SET [Int]]]): Array [SET [Int]] =
{
val phi_all = Array.ofDim [SET [Int]] (querySize)
for (i <- 0 until querySize) phi_all (i) = SET [Int] ()
for ((c, phi_c) <- matches) {
println (s"(c, phi_c) = ($c, ${phi_c.deep})")
for (i <- 0 until querySize) phi_all(i) ++= phi_c(i)
} // for
phi_all
} // merge
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Performs strict simulation to find mappings with balls.
* @param phi the initial mapping after applying Dual to the whole graph
*/
def strictSim (phi: Array [SET [Int]]): HashMap [Int, Array [SET [Int]]] =
{
if (phi.size == 0) { println ("No dual match."); return null } // exit if no match after dual simulation
println (s"phi = ${phi.deep}")
val newGraph = filterGraph (phi) // if doing strong sim more than once, must clone g
val prunedSize = phi.clone.flatten.toSet.size // size of feasible matches after strict simulation
val qDiameter = qmet.diam // get the query diameter
val balls = HashMap [Int, Ball [TLabel]] () // map of balls: center -> ball
val matches = HashMap [Int, Array [SET [Int]]] () // map of matches in balls: center -> match
val gCenters = (0 until q.size).flatMap(phi(_)) // set of mapped data graph centers
val bCenters = SET [Int] () // set of centers for all balls
var ballSum = 0
for (center <- gCenters) { // for each mapped data graph center
val ball = new Ball (newGraph, center, qDiameter) // create a new ball for that center vertex
ballSum += ball.nodesInBall.size // calculate ball size
val mat = dualFilter (phi.clone, ball) // perform dual filter on the ball
println (s"center = $center, mat = ${mat.deep}")
balls.put (center, ball)
if (mat.size != 0) { bCenters += center; matches += center -> mat }
else println ("No match for ball centered at " + center + "\n")
} // for
println ("SEQUENTIAL: Data Graph Name: " + g.name +
"\n Number of Data Graph Nodes: " + dataSize +
"\n Query Graph Name: " + q.name +
"\n Number of Query Graph Nodes: " + querySize +
"\n Number of Strict Matches: " + bCenters.size +
"\n Graph Size after Pruning: " + prunedSize + " nodes" +
"\n Query Diameter: " + qDiameter +
"\n Average Ball Size: " + (ballSum / prunedSize.toDouble) +
"\n Total Distinct Edges: " + calculateTotalEdges (g, balls, bCenters) +
"\n Total Distinct Vertices: " + calculateTotalVertices ())
println ("Ball Diameter Metrics(Min, Max, Mean, StdDev): " + calculateBallDiameterMetrics (balls) )
matches
} // strictSim
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Prune the data graph by consider only those vertices and edges which
* are part of feasible matches after performing initial dual simulation.
* @param phi mappings from a query vertex u_q to { graph vertices v_g }
*/
def filterGraph (phi: Array [SET [Int]]): MGraph [TLabel] =
{
val nodesInSimset = phi.flatten.toSet // get all the vertices of feasible matches
for (i <- 0 until dataSize) g.ch(i) &= nodesInSimset // prune via intersection
val newCh = Array.ofDim [SET [Int]] (dataSize)
for (i <- 0 until dataSize) newCh(i) = SET [Int] ()
for (u <- 0 until q.size; w <- phi(u)) { // new ch and pa set for data graph based upon feasible vertices
for (v <- q.ch(u)) newCh(w) |= (g.ch(w) & phi(v))
} // for
new MGraph (newCh, g.label, g.elabel, g.inverse, g.name + "2") // create a new data graph
} // filterGraph
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Perform dual simulation onto the ball.
* @param phi mappings from a query vertex u_q to { graph vertices v_g }
* @param ball the Ball B(Graph, Center, Radius)
*/
def dualFilter (phi: Array [SET [Int]], ball: Ball [TLabel]): Array [SET [Int]] =
{
for (v <- phi.indices) phi(v) &= ball.nodesInBall // project simset onto ball
val filterSet = new ArrayStack [(Int, Int)] ()
var filtered = false
for (u <- phi.indices; v <- phi(u) if ball.borderNodes contains v) {
filtered = false // filtering ball based on child relationship
breakable { for (u1 <- q.ch(u)) {
if ((ball.post (v) & phi (u1)).isEmpty) {
filterSet.push ((u, v))
filtered = true
break
} // if
}} // breakable for
if (! filtered) { // filtering ball based on parent relationship,
breakable { for (u2 <- q.pa(u)) { // if no child has been filtered out
if ((ball.pre (v) & phi(u2)).isEmpty) {
filterSet.push ((u, v))
break
} // if
}} // breakable for
} // if
} // for
while (! filterSet.isEmpty) { // refine ch and pa relationship for the vertex v,
val (u, v) = filterSet.pop () // which is now not a feasible match
phi(u) -= v
for (u2 <- q.pa(u); v2 <- (ball.pre (v) & phi(u2)) if (ball.post (v2) & phi(u)).isEmpty)
filterSet.push ((u2, v2))
for (u1 <- q.ch(u); v1 <- (ball.post (v) & phi(u1)) if (ball.pre (v1) & phi(u)).isEmpty)
filterSet.push ((u1, v1))
} // while
val chSet = HashMap [Int, SET [Int]] ()
val paSet = HashMap [Int, SET [Int]] ()
// create new ch and pa set for the ball after above pruning
for (u <- phi.indices; v <- phi(u); uc <- q.ch(u); vc <- (ball.post (v) & phi(uc))) {
chSet.getOrElseUpdate (v, SET [Int] ()) += vc
paSet.getOrElseUpdate (vc, SET [Int] ()) += v
} // for
// Finding max perfect subgraph
val stack = new ArrayStack [Int] ()
val visited = SET (ball.center)
stack.push (ball.center)
while (! stack.isEmpty) {
val v = stack.pop ()
for (child <- (chSet.getOrElse (v, SET ()) | paSet.getOrElse (v, SET ()))) {
if (! visited.contains (child)) {
stack.push (child)
visited += child
} // if
} // for
} // while
for ( v <- phi.indices) phi(v) = phi(v) & visited
//fixes the edges in the ball
//(note that it does not change the parent set; this is only used for printing)
//uncomment if you want to see the ball after finding maximum perfect subgraph
ball.chMap = Map [Int, SET [Int]] ()
val matchNodes = phi.flatten.toSet
for ((n, nset) <- chSet; nc <- nset) {
if ((matchNodes contains n) && (matchNodes contains nc)) ball.chMap.getOrElseUpdate (n, SET () ) += nc
} // for
for (v <- phi.indices if phi(v).isEmpty) return Array [SET [Int]] ()
phi
} //dualFilter
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Count distinct vertices left after post processing.
*/
def calculateTotalVertices (): Int =
{
val totalSet = SET [String] ()
for (i <- 0 until listOfDistinctReducedSet.length) totalSet ++= listOfDistinctReducedSet(i)
totalSet.size
} // calculateTotalVertices
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Count distinct edges left after post processing.
* @param g the data graph G(V, E, l)
* @param balls mappings from a center vertex to the Ball B(Graph, Center, Radius)
* @param matchCenters set of all vertices which are considered as center
*/
def calculateTotalEdges (g: MGraph [TLabel], balls: Map [Int, Ball [TLabel]], matchCenters: SET [Int]): Int =
{
val distinctEdges = SET [String] ()
for (vert_id <- 0 until g.ch.length; if balls.keySet.contains (vert_id)) {
balls.get (vert_id).get.chMap.foreach (i => i._2.foreach (j => distinctEdges += (i._1.toString + "_" + j.toString)))
} // for
distinctEdges.size
} // calculateTotalEdges
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Calculate statistics (e.g., min, max, average diameter and standard deviation)
* on the balls left after post-processing.
* @param balls mappings from a center vertex to the Ball B(Graph, Center, Radius)
*/
def calculateBallDiameterMetrics (balls: Map [Int, Ball [TLabel]]): Statistic =
{
val ballStats = new Statistic ()
for (vert_id <- listOfMatchedBallVertices) ballStats.tally (balls.get (vert_id).get.getBallDiameter)
ballStats
} // calculateBallDiameterMetrics
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** Return the vertex from an array of central vertices, those which have
* highest 'ch' set size and lowest frequency of label in the query graph, i.e.,
* highest ratio.
* @param centr the array of vertices whose eccentricity is equal to the radius
*/
def selectivityCriteria (qmet: GraphMetrics [TLabel]): Int =
{
var index = 0
var max = 0.0
for (ctr <- qmet.central) {
val ratio = qmet.g.ch(ctr).size.toDouble / qmet.g.labelMap (qmet.g.label(ctr)).size.toDouble
if (max < ratio) { max = ratio; index = ctr }
} // for
index
} // selectivityCriteria
} // MStrictSim class
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::
/** The `MStrictSimTest` object is used to test the `MStrictSim` class.
* > run-main scalation.graphalytics.mutable.MStrictSimTest
*/
object MStrictSimTest extends App
{
val g = EX_GRAPH.g1p
val q = EX_GRAPH.q1p
println (s"g.checkEdges = ${g.checkEdges}")
g.printG ()
println (s"q.checkEdges = ${q.checkEdges}")
q.printG ()
(new MStrictSim (g, q)).test ("MStrictSim") // Strict Graph Simulation Pattern Matcher
} // MStrictSimTest object
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::
/** The `MStrictSimTest2` object is used to test the `MStrictSim` class.
* > run-main scalation.graphalytics.mutable.MStrictSimTest2
*/
object MStrictSimTest2 extends App
{
val g = EX_GRAPH.g2p
val q = EX_GRAPH.q2p
println (s"g.checkEdges = ${g.checkEdges}")
g.printG ()
println (s"q.checkEdges = ${q.checkEdges}")
q.printG ()
(new MStrictSim (g, q)).test ("MStrictSim") // Strict Graph Simulation Pattern Matcher
} // MStrictSimTest2 object
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/** The `MStrictSimTest3` object test the `MStrictSim` class by passing data graph
* and query graph relative file paths.
* > run-main scalation.graphalytics.mutable.MStrictSimTest3
*/
object MStrictSimTest3 extends App
{
val g = MGraphIO [Double] ("gfile")
val q = MGraphIO [Double] ("qfile")
println (s"q.checkEdges = ${q.checkEdges}")
q.printG ()
(new MStrictSim (g, q)).test ("MStrictSim") // Strict Graph Simulation Pattern Matcher
} // MStrictSimTest3 object
|
scalation/fda
|
scalation_1.3/scalation_modeling/src/main/scala/scalation/graphalytics/mutable/MStrictSim.scala
|
Scala
|
mit
| 15,158 |
package com.lorandszakacs.util.mongodb
import com.lorandszakacs.util.effects._
import com.lorandszakacs.util.math.Identifier
import org.scalatest._
import org.scalatest.flatspec.FixtureAnyFlatSpec
/**
*
* N.B.
* Known to fail in ``sbt``. But in Intellij, they run. And normal application start does find the configs.
* So no idea why this happens only during ``sbt test``
*{{{
* [info] com.typesafe.config.ConfigException$Missing: No configuration setting found for key 'akka'
* ....
*}}}
*
* @author Lorand Szakacs, [email protected]
* @since 15 Jul 2017
*
*/
class MongoCollectionTest extends FixtureAnyFlatSpec with OneInstancePerTest with Matchers {
implicit private val cs: ContextShift[IO] = IO.contextShift(ExecutionContext.global)
implicit private val dbIOScheduler: DBIOScheduler = DBIOScheduler(ExecutionContext.global)
implicit private val futureLift: FutureLift[IO] = FutureLift.instance[IO]
class EntityRepository(override protected val db: Database)(
implicit
implicit override protected val dbIOScheduler: DBIOScheduler,
implicit override protected val futureLift: FutureLift[IO],
) extends MongoCollection[Entity, String, BSONString] {
implicit protected def entityHandler: BSONDocumentHandler[Entity] = BSONMacros.handler[Entity]
implicit override protected lazy val idHandler: BSONHandler[BSONString, String] =
BSONStringHandler
implicit override protected lazy val identifier: Identifier[Entity, String] = Identifier { e =>
e.id
}
override def collectionName: String = "test_entities"
}
case class Entity(
@Annotations.Key("_id") id: String,
opt: Option[String],
actual: String,
)
override protected def withFixture(test: OneArgTest): Outcome = {
val dbName = Database.testName(this.getClass.getSimpleName, test.text)
val db = new Database(
uri = """mongodb://localhost:27016""",
dbName = dbName,
)
val repo = new EntityRepository(db)
db.drop().unsafeSyncGet()
val outcome: Outcome = withFixture(test.toNoArgTest(repo))
val f = if (outcome.isFailed || outcome.isCanceled) {
db.shutdown()
}
else {
for {
_ <- db.drop()
_ <- db.shutdown()
} yield ()
}
f.unsafeSyncGet()
outcome
}
override type FixtureParam = EntityRepository
//===========================================================================
//===========================================================================
behavior of "MongoCollection"
it should "001 single: write + read + update + remove" in { repo =>
val original = Entity(
id = "1",
opt = Some("OPTIONAL"),
actual = "VALUE",
)
withClue("we create") {
repo.create(original).unsafeSyncGet()
}
withClue("we read") {
val read = repo
.find(original.id)
.unsafeSyncGet()
.getOrElse(
fail("... expected entity"),
)
assert(read == original)
}
val updateNoOpt = original.copy(opt = None)
withClue("we createOrUpdate") {
repo.createOrUpdate(updateNoOpt).unsafeSyncGet()
}
withClue("we read after update") {
val read = repo
.find(updateNoOpt.id)
.unsafeSyncGet()
.getOrElse(
fail("... expected entity"),
)
assert(read == updateNoOpt)
}
withClue("we remove") {
repo.remove(original.id).unsafeSyncGet()
}
withClue("we read after remove") {
val read = repo.find(original.id).unsafeSyncGet()
assert(read.isEmpty)
}
}
//===========================================================================
//===========================================================================
it should "002: attempt to write twice" in { repo =>
val original = Entity(
id = "1",
opt = Some("OPTIONAL"),
actual = "VALUE",
)
withClue("we create") {
repo.create(original).unsafeSyncGet()
}
withClue("we create... again, should get exception") {
the[MongoDBException] thrownBy {
repo.create(original).unsafeSyncGet()
}
}
}
//===========================================================================
//===========================================================================
it should "003: bulk create + many read + bulk update" in { repo =>
val e1 = Entity(
id = "1",
opt = Some("OPTIONAL"),
actual = "VALUE",
)
val e2 = Entity(
id = "2",
opt = Some("OPTIONAL2"),
actual = "VALUE2",
)
val e3 = Entity(
id = "3",
opt = Some("OPTIONAL3"),
actual = "VALUE3",
)
withClue("we create all") {
repo.create(List(e1, e2, e3)).unsafeSyncGet()
}
withClue("we get all") {
val all = repo.findAll.unsafeSyncGet()
assert(List(e1, e2, e3) === all.sortBy(_.id))
}
withClue("we get only ones with IDS 1, 2 -- query") {
val q = document(
_id -> document(
$in -> array(e1.id, e2.id),
),
)
val found = repo.findMany(q).unsafeSyncGet()
assert(List(e1, e2) == found.sortBy(_.id))
}
withClue("we get only ones with IDS 1, 2 -- id method") {
val found = repo.findManyById(List(e1.id, e2.id)).unsafeSyncGet()
assert(List(e1, e2) == found.sortBy(_.id))
}
val e1U = e1.copy(opt = None)
val e2U = e2.copy(opt = None)
withClue("bulk update two") {
repo.createOrUpdate(List(e1U, e2U)).unsafeSyncGet()
}
withClue("get all after bulk update of two") {
val all = repo.findAll.unsafeSyncGet()
assert(List(e1U, e2U, e3) == all.sortBy(_.id))
}
}
//===========================================================================
//===========================================================================
it should "004: bulk create + double create" in { repo =>
val e1 = Entity(
id = "1",
opt = Some("OPTIONAL"),
actual = "VALUE",
)
val e2 = Entity(
id = "2",
opt = Some("OPTIONAL2"),
actual = "VALUE2",
)
val e3 = Entity(
id = "3",
opt = Some("OPTIONAL3"),
actual = "VALUE3",
)
withClue("we create all") {
repo.create(List(e1, e2, e3)).unsafeSyncGet()
}
withClue("we get all") {
val all = repo.findAll.unsafeSyncGet()
assert(List(e1, e2, e3) === all.sortBy(_.id))
}
val e1U = e1.copy(opt = None)
val e2U = e2.copy(opt = None)
withClue("bulk update two") {
the[MongoDBException] thrownBy {
repo.create(List(e1U, e2U)).unsafeSyncGet()
}
}
withClue("get all after failed bulk update, they should be ok") {
val all = repo.findAll.unsafeSyncGet()
assert(List(e1, e2, e3) == all.sortBy(_.id))
}
}
}
|
lorandszakacs/sg-downloader
|
util/src/test/scala/com/lorandszakacs/util/mongodb/MongoCollectionTest.scala
|
Scala
|
apache-2.0
| 6,958 |
package com.sksamuel.elastic4s.examples
import com.sksamuel.elastic4s.ElasticDsl
import com.sksamuel.elastic4s.source.Indexable
// examples of the count API in dot notation
class UpdateDotDsl extends ElasticDsl {
// update a doc by id in a given index / type.specifying a replacement doc
update("id").in("index" / "type").doc("name" -> "sam", "occuptation" -> "build breaker")
// update a doc by id in a given index / type specifying a replacement doc with the optimistic locking set
update("id").in("index" / "type").version(3).doc("name" -> "sam", "occuptation" -> "build breaker")
// update by id, using an implicit indexable for the updated doc
case class Document(a: String, b: String, c: String)
val somedoc = Document("a", "b", "c")
implicit case object DocumentIndexable extends Indexable[Document] {
override def json(t: Document): String = ???
}
update("id").in("index" / "type").source(somedoc)
// update by id, using a script
update("id").in("index" / "type").script("ctx._source.somefield = 'value'")
// update by id, using a script, where the script language is specified
update("id").in("index" / "type").script("ctx._source.somefield = 'value'").lang("sillylang")
// update by id, using a script which has parameters which are passed in as a map
update("id").in("index" / "type").script("ctx._source.somefield = myparam").params(Map("myparam" -> "sam"))
}
|
l15k4/elastic4s
|
elastic4s-examples/src/main/scala/com/sksamuel/elastic4s/examples/UpdateDotDsl.scala
|
Scala
|
apache-2.0
| 1,417 |
/* Copyright (C) 2008-2014 University of Massachusetts Amherst.
This file is part of "FACTORIE" (Factor graphs, Imperative, Extensible)
http://factorie.cs.umass.edu, http://github.com/factorie
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
package cc.factorie.optimize
import cc.factorie._
import cc.factorie.la._
import scala.collection.mutable.ArrayBuffer
import cc.factorie.util.FastLogging
import cc.factorie.model.{WeightsMap, WeightsSet}
// TODO What kind of regularization would be used with LBFGS other than L2?
// If nothing, then incorporate it directly into LBFGS. -akm
/** A quasi-Newton batch gradient optimizer.
Limited-memory BFGS, as described in Byrd, Nocedal, and Schnabel, "Representations of Quasi-Newton Matrices and Their Use in Limited Memory Methods" */
class LBFGS(var numIterations: Double = 1000,
var maxIterations: Int = 1000,
var tolerance: Double = 0.0001,
var gradientTolerance : Double= 0.001,
val eps : Double = 1.0e-5,
val rankOfApproximation : Int = 4,
val initialStepSize : Double = 1.0) extends GradientOptimizer with FastLogging {
private var _isConverged = false
def isConverged = _isConverged
case class StepTooSmallException(msg:String) extends Exception(msg)
var lineMaximizer: BackTrackLineOptimizer = null
// The number of corrections used in BFGS update
// ideally 3 <= m <= 7. Larger m means more cpu time, memory.
// State of search
// g = gradient
// s = list of m previous "parameters" values
// y = list of m previous "g" values
// rho = intermediate calculation
var g: WeightsMap = null
var oldg: WeightsMap = null
var direction: WeightsMap = null
var params: WeightsSet = null
var oldParams: WeightsMap = null
var s: ArrayBuffer[WeightsMap] = null
var y: ArrayBuffer[WeightsMap] = null
var rho: ArrayBuffer[Double] = null
var alpha: Array[Double] = null
var step = 1.0
var iterations: Int = 0
var oldValue: Double = Double.NegativeInfinity
// override to evaluate on dev set, save the intermediate model, etc.
def postIteration(iter: Int): Unit = ()
def reset(): Unit = {
_isConverged = false
step = 1.0
iterations = 0
oldValue = Double.NegativeInfinity
g = null
s = null
y = null
rho = null
alpha = null
params = null
oldParams = null
direction = null
oldg = null
}
def initializeWeights(weights: WeightsSet): Unit = { }
def finalizeWeights(weights: WeightsSet): Unit = { }
def step(weights:WeightsSet, gradient:WeightsMap, value:Double): Unit = {
if (_isConverged) return
//todo: is the right behavior to set _isConverged = true if exceeded numIters?
if (iterations > numIterations) { logger.warn("LBFGS: Failed to converge: too many iterations"); _isConverged = true; return }
//if first time in, initialize
if (g == null) {
logger.debug("LBFGS: Initial value = " + value)
iterations = 0
s = new ArrayBuffer[WeightsMap]
y = new ArrayBuffer[WeightsMap]
rho = new ArrayBuffer[Double]
alpha = new Array[Double](rankOfApproximation)
params = weights
oldParams = params.copy
//use copy to get the right size
g = gradient
oldg = gradient.copy
direction = gradient.copy
if (direction.twoNorm == 0) {
logger.info("LBFGS: Initial initial gradient is zero; saying converged")
g = null
_isConverged = true
//return true;
}
direction.*=(1.0 / direction.twoNorm)
// take a step in the direction
lineMaximizer = new BackTrackLineOptimizer(gradient, direction, initialStepSize)
lineMaximizer.step(weights, gradient, value)
//todo: change this to just check if lineOptimizer has converged
// if (step == 0.0) {
// // could not step in this direction
// // give up and say converged
// g = null // reset search
// step = 1.0
// logger.error("Line search could not step in the current direction. " +
// "(This is not necessarily cause for alarm. Sometimes this happens close to the maximum," +
// " where the function may be very flat.)")
// //throw new StepTooSmallException("Line search could not step in current direction.")
// return false
// }
oldValue = value
}else if(!lineMaximizer.isConverged){
lineMaximizer.step(weights, gradient, value)
}
//else{
if (lineMaximizer.isConverged) {
//first, check for convergence:
iterations += 1
logger.debug("LBFGS: At iteration " + iterations + ", value = " + value)
//params and g are just aliases for the names of the variables passed in
g = gradient
params = weights
if (2.0 * math.abs(value - oldValue) <= tolerance * (math.abs(value) + math.abs(oldValue) + eps)) {
logger.debug("LBFGS: Exiting on termination #1: value difference below tolerance (oldValue: " + oldValue + " newValue: " + value)
_isConverged = true
return
}
val gg = g.twoNorm
if (gg < gradientTolerance) {
logger.trace("LBFGS: Exiting on termination #2: gradient=" + gg + " < " + gradientTolerance)
_isConverged = true
return
}
if (gg == 0.0) {
logger.trace("LBFGS: Exiting on termination #3: gradient==0.0")
_isConverged = true
return
}
logger.trace("Gradient = " + gg)
iterations += 1
if (iterations > maxIterations) {
logger.warn("Too many iterations in L-BFGS.java. Continuing with current parameters.")
_isConverged = true
return
}
// get difference between previous 2 gradients and parameters
var sy = 0.0
var yy = 0.0
//todo: these next check are quite inefficient, but is a hack to avoid doing the following line on tensors:
//params(i).isInfinite && oldParams(i).isInfinite && (params(i) * oldParams(i) > 0)) 0.0
if(!params.toArray.forall(d => !(d == Double.PositiveInfinity || d == Double.NegativeInfinity))) throw new IllegalStateException("Weight value can't be infinite")
if(!gradient.toArray.forall(d => !(d == Double.PositiveInfinity || d == Double.NegativeInfinity))) throw new IllegalStateException("gradient value can't be infinite")
oldParams = params - oldParams
oldg = g - oldg
sy = oldParams dot oldg
yy = oldg.twoNormSquared
direction := gradient
if (sy > 0) throw new IllegalStateException("sy=" + sy + "> 0")
val gamma = sy / yy // scaling factor
if (gamma > 0) throw new IllegalStateException("gamma=" + gamma + "> 0")
pushDbl(rho, 1.0 / sy)
pushTensor(s, oldParams)
pushTensor(y, oldg)
// calculate new direction
assert(s.size == y.size)
for (i <- s.size -1 to 0 by -1) {
// alpha(i) = rho(i) * ArrayOps.dot(direction, s(i))
alpha(i) = rho(i) * (direction dot s(i))
// ArrayOps.incr(direction, y(i), -1.0 * alpha(i))
direction.+=(y(i),-1.0 * alpha(i))
}
direction.*=(gamma)
for (i <- 0 until s.size) {
//val beta = rho(i) * ArrayOps.dot(direction, y(i))
val beta = rho(i) * (direction dot y(i))
//ArrayOps.incr(direction, s(i), alpha(i) - beta)
direction.+=(s(i),alpha(i) - beta)
}
oldParams := params
oldValue = value
oldg := g
direction.*=(-1)
lineMaximizer = null
postIteration(iterations)
lineMaximizer = new BackTrackLineOptimizer(gradient, direction, initialStepSize)
lineMaximizer.step(weights, gradient, value)
}
}
def pushTensor(l: ArrayBuffer[WeightsMap], toadd: WeightsMap): Unit = {
assert(l.size <= rankOfApproximation)
if (l.size == rankOfApproximation) {
l.remove(0)
l += toadd.copy
//todo: change back to this circular thing below
// val last = l(0)
// Array.copy(toadd, 0, last, 0, toadd.length)
// forIndex(l.size - 1)(i => {l(i) = l(i + 1)})
// l(m - 1) = last
} else {
l += toadd.copy
}
}
def pushDbl(l: ArrayBuffer[Double], toadd: Double): Unit = {
assert(l.size <= rankOfApproximation)
if (l.size == rankOfApproximation) l.remove(0)
l += toadd
}
}
//class L2RegularizedLBFGS(var l2: Double = 0.1) extends LBFGS {
// override def step(weightsSet: Tensor, gradient: Tensor, value: Double, margin: Double) {
// gradient += (weightsSet, -l2)
// super.step(weightsSet, gradient, value - l2 * (weightsSet dot weightsSet), margin)
// }
//}
|
hlin117/factorie
|
src/main/scala/cc/factorie/optimize/LBFGS.scala
|
Scala
|
apache-2.0
| 9,206 |
/* __ *\\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2013, LAMP/EPFL **
** __\\ \\/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\\___/_/ |_/____/_/ | | **
** |/ **
\\* */
package scala
package sys
package process
import processInternal._
import ProcessBuilder._
/** Represents a sequence of one or more external processes that can be
* executed. A `ProcessBuilder` can be a single external process, or a
* combination of other `ProcessBuilder`. One can control where the
* output of an external process will go to, and where its input will come
* from, or leave that decision to whoever starts it.
*
* One creates a `ProcessBuilder` through factories provided in
* [[scala.sys.process.Process]]'s companion object, or implicit conversions
* based on these factories made available in the package object
* [[scala.sys.process]]. Here are some examples:
* {{{
* import scala.sys.process._
*
* // Executes "ls" and sends output to stdout
* "ls".!
*
* // Execute "ls" and assign a `Stream[String]` of its output to "contents".
* val contents = Process("ls").lineStream
*
* // Here we use a `Seq` to make the parameter whitespace-safe
* def contentsOf(dir: String): String = Seq("ls", dir).!!
* }}}
*
* The methods of `ProcessBuilder` are divided in three categories: the ones that
* combine two `ProcessBuilder` to create a third, the ones that redirect input
* or output of a `ProcessBuilder`, and the ones that execute
* the external processes associated with it.
*
* ==Combining `ProcessBuilder`==
*
* Two existing `ProcessBuilder` can be combined in the following ways:
*
* - They can be executed in parallel, with the output of the first being fed
* as input to the second, like Unix pipes. This is achieved with the `#|`
* method.
* - They can be executed in sequence, with the second starting as soon as
* the first ends. This is done by the `###` method.
* - The execution of the second one can be conditioned by the return code
* (exit status) of the first, either only when it's zero, or only when it's
* not zero. The methods `#&&` and `#||` accomplish these tasks.
*
* ==Redirecting Input/Output==
*
* Though control of input and output can be done when executing the process,
* there's a few methods that create a new `ProcessBuilder` with a
* pre-configured input or output. They are `#<`, `#>` and `#>>`, and may take
* as input either another `ProcessBuilder` (like the pipe described above), or
* something else such as a `java.io.File` or a `java.io.InputStream`.
* For example:
* {{{
* new URL("http://databinder.net/dispatch/About") #> "grep JSON" #>> new File("About_JSON") !
* }}}
*
* ==Starting Processes==
*
* To execute all external commands associated with a `ProcessBuilder`, one
* may use one of four groups of methods. Each of these methods have various
* overloads and variations to enable further control over the I/O. These
* methods are:
*
* - `run`: the most general method, it returns a
* [[scala.sys.process.Process]] immediately, and the external command
* executes concurrently.
* - `!`: blocks until all external commands exit, and returns the exit code
* of the last one in the chain of execution.
* - `!!`: blocks until all external commands exit, and returns a `String`
* with the output generated.
* - `lineStream`: returns immediately like `run`, and the output being generated
* is provided through a `Stream[String]`. Getting the next element of that
* `Stream` may block until it becomes available. This method will throw an
* exception if the return code is different than zero -- if this is not
* desired, use the `lineStream_!` method.
*
* ==Handling Input and Output==
*
* If not specified, the input of the external commands executed with `run` or
* `!` will not be tied to anything, and the output will be redirected to the
* stdout and stderr of the Scala process. For the methods `!!` and `lineStream`, no
* input will be provided, and the output will be directed according to the
* semantics of these methods.
*
* Some methods will cause stdin to be used as input. Output can be controlled
* with a [[scala.sys.process.ProcessLogger]] -- `!!` and `lineStream` will only
* redirect error output when passed a `ProcessLogger`. If one desires full
* control over input and output, then a [[scala.sys.process.ProcessIO]] can be
* used with `run`.
*
* For example, we could silence the error output from `lineStream_!` like this:
* {{{
* val etcFiles = "find /etc" lineStream_! ProcessLogger(line => ())
* }}}
*
* ==Extended Example==
*
* Let's examine in detail one example of usage:
* {{{
* import scala.sys.process._
* "find src -name *.scala -exec grep null {} ;" #| "xargs test -z" #&& "echo null-free" #|| "echo null detected" !
* }}}
* Note that every `String` is implicitly converted into a `ProcessBuilder`
* through the implicits imported from [[scala.sys.process]]. These `ProcessBuilder` are then
* combined in three different ways.
*
* 1. `#|` pipes the output of the first command into the input of the second command. It
* mirrors a shell pipe (`|`).
* 1. `#&&` conditionally executes the second command if the previous one finished with
* exit value 0. It mirrors shell's `&&`.
* 1. `#||` conditionally executes the third command if the exit value of the previous
* command is different than zero. It mirrors shell's `||`.
*
* Finally, `!` at the end executes the commands, and returns the exit value.
* Whatever is printed will be sent to the Scala process standard output. If
* we wanted to capture it, we could run that with `!!` instead.
*
* Note: though it is not shown above, the equivalent of a shell's `;` would be
* `###`. The reason for this name is that `;` is a reserved token in Scala.
*
* Note: the `lines` method, though deprecated, may conflict with the `StringLike`
* method of the same name. To avoid this, one may wish to call the builders in
* `Process` instead of importing `scala.sys.process._`. The example above would be
* {{{
* import scala.sys.process.Process
* Process("find src -name *.scala -exec grep null {} ;") #| Process("xargs test -z") #&& Process("echo null-free") #|| Process("echo null detected") !
* }}}
*/
trait ProcessBuilder extends Source with Sink {
/** Starts the process represented by this builder, blocks until it exits, and
* returns the output as a String. Standard error is sent to the console. If
* the exit code is non-zero, an exception is thrown.
*/
def !! : String
/** Starts the process represented by this builder, blocks until it exits, and
* returns the output as a String. Standard error is sent to the provided
* ProcessLogger. If the exit code is non-zero, an exception is thrown.
*/
def !!(log: ProcessLogger): String
/** Starts the process represented by this builder, blocks until it exits, and
* returns the output as a String. Standard error is sent to the console. If
* the exit code is non-zero, an exception is thrown. The newly started
* process reads from standard input of the current process.
*/
def !!< : String
/** Starts the process represented by this builder, blocks until it exits, and
* returns the output as a String. Standard error is sent to the provided
* ProcessLogger. If the exit code is non-zero, an exception is thrown. The
* newly started process reads from standard input of the current process.
*/
def !!<(log: ProcessLogger): String
/** Starts the process represented by this builder. The output is returned as
* a Stream that blocks when lines are not available but the process has not
* completed. Standard error is sent to the console. If the process exits
* with a non-zero value, the Stream will provide all lines up to termination
* and then throw an exception.
*/
def lineStream: Stream[String]
/** Deprecated (renamed). Use `lineStream` instead. */
@deprecated("use lineStream instead", "2.11.0")
def lines: Stream[String] = lineStream
/** Starts the process represented by this builder. The output is returned as
* a Stream that blocks when lines are not available but the process has not
* completed. Standard error is sent to the provided ProcessLogger. If the
* process exits with a non-zero value, the Stream will provide all lines up
* to termination and then throw an exception.
*/
def lineStream(log: ProcessLogger): Stream[String]
/** Deprecated (renamed). Use `lineStream(log: ProcessLogger)` instead. */
@deprecated("use stream instead", "2.11.0")
def lines(log: ProcessLogger): Stream[String] = lineStream(log)
/** Starts the process represented by this builder. The output is returned as
* a Stream that blocks when lines are not available but the process has not
* completed. Standard error is sent to the console. If the process exits
* with a non-zero value, the Stream will provide all lines up to termination
* but will not throw an exception.
*/
def lineStream_! : Stream[String]
/** Deprecated (renamed). Use `lineStream_!` instead. */
@deprecated("use lineStream_! instead", "2.11.0")
def lines_! : Stream[String] = lineStream_!
/** Starts the process represented by this builder. The output is returned as
* a Stream that blocks when lines are not available but the process has not
* completed. Standard error is sent to the provided ProcessLogger. If the
* process exits with a non-zero value, the Stream will provide all lines up
* to termination but will not throw an exception.
*/
def lineStream_!(log: ProcessLogger): Stream[String]
/** Deprecated (renamed). Use `lineStream_!(log: ProcessLogger)` instead. */
@deprecated("use stream_! instead", "2.11.0")
def lines_!(log: ProcessLogger): Stream[String] = lineStream_!(log)
/** Starts the process represented by this builder, blocks until it exits, and
* returns the exit code. Standard output and error are sent to the console.
*/
def ! : Int
/** Starts the process represented by this builder, blocks until it exits, and
* returns the exit code. Standard output and error are sent to the given
* ProcessLogger.
*/
def !(log: ProcessLogger): Int
/** Starts the process represented by this builder, blocks until it exits, and
* returns the exit code. Standard output and error are sent to the console.
* The newly started process reads from standard input of the current process.
*/
def !< : Int
/** Starts the process represented by this builder, blocks until it exits, and
* returns the exit code. Standard output and error are sent to the given
* ProcessLogger. The newly started process reads from standard input of the
* current process.
*/
def !<(log: ProcessLogger): Int
/** Starts the process represented by this builder. Standard output and error
* are sent to the console.*/
def run(): Process
/** Starts the process represented by this builder. Standard output and error
* are sent to the given ProcessLogger.
*/
def run(log: ProcessLogger): Process
/** Starts the process represented by this builder. I/O is handled by the
* given ProcessIO instance.
*/
def run(io: ProcessIO): Process
/** Starts the process represented by this builder. Standard output and error
* are sent to the console. The newly started process reads from standard
* input of the current process if `connectInput` is true.
*/
def run(connectInput: Boolean): Process
/** Starts the process represented by this builder, blocks until it exits, and
* returns the exit code. Standard output and error are sent to the given
* ProcessLogger. The newly started process reads from standard input of the
* current process if `connectInput` is true.
*/
def run(log: ProcessLogger, connectInput: Boolean): Process
/** Constructs a command that runs this command first and then `other` if this
* command succeeds.
*/
def #&& (other: ProcessBuilder): ProcessBuilder
/** Constructs a command that runs this command first and then `other` if this
* command does not succeed.
*/
def #|| (other: ProcessBuilder): ProcessBuilder
/** Constructs a command that will run this command and pipes the output to
* `other`. `other` must be a simple command.
*/
def #| (other: ProcessBuilder): ProcessBuilder
/** Constructs a command that will run this command and then `other`. The
* exit code will be the exit code of `other`.
*/
def ### (other: ProcessBuilder): ProcessBuilder
/** True if this command can be the target of a pipe. */
def canPipeTo: Boolean
/** True if this command has an exit code which should be propagated to the
* user. Given a pipe between A and B, if B.hasExitValue is true then the
* exit code will be the one from B; if it is false, the one from A. This
* exists to prevent output redirections (implemented as pipes) from masking
* useful process error codes.
*/
def hasExitValue: Boolean
}
/** This object contains traits used to describe input and output sources. */
object ProcessBuilder extends ProcessBuilderImpl {
/** Used when creating [[scala.sys.process.ProcessBuilder.Source]] from an URL. */
trait URLBuilder extends Source {
}
/** Used when creating [[scala.sys.process.ProcessBuilder.Source]] and/or
* [[scala.sys.process.ProcessBuilder.Sink]] from a file.
*/
trait FileBuilder extends Sink with Source {
/** Append the contents of a `java.io.File` to this file */
def #<<(f: File): ProcessBuilder
/** Append the contents from a `java.net.URL` to this file */
def #<<(u: URL): ProcessBuilder
/** Append the contents of a `java.io.InputStream` to this file */
def #<<(i: => InputStream): ProcessBuilder
/** Append the contents of a [[scala.sys.process.ProcessBuilder]] to this file */
def #<<(p: ProcessBuilder): ProcessBuilder
}
/** Represents everything that can be used as an input to a
* [[scala.sys.process.ProcessBuilder]].
*/
trait Source {
protected def toSource: ProcessBuilder
/** Writes the output stream of this process to the given file. */
def #> (f: File): ProcessBuilder = toFile(f, append = false)
/** Appends the output stream of this process to the given file. */
def #>> (f: File): ProcessBuilder = toFile(f, append = true)
/** Writes the output stream of this process to the given OutputStream. The
* argument is call-by-name, so the stream is recreated, written, and closed each
* time this process is executed.
*/
def #>(out: => OutputStream): ProcessBuilder = #> (new OStreamBuilder(out, "<output stream>"))
/** Writes the output stream of this process to a [[scala.sys.process.ProcessBuilder]]. */
def #>(b: ProcessBuilder): ProcessBuilder = new PipedBuilder(toSource, b, false)
/** Returns a [[scala.sys.process.ProcessBuilder]] representing this `Source`. */
def cat = toSource
private def toFile(f: File, append: Boolean) = #> (new FileOutput(f, append))
}
/** Represents everything that can receive an output from a
* [[scala.sys.process.ProcessBuilder]].
*/
trait Sink {
protected def toSink: ProcessBuilder
/** Reads the given file into the input stream of this process. */
def #< (f: File): ProcessBuilder = #< (new FileInput(f))
/** Reads the given URL into the input stream of this process. */
def #< (f: URL): ProcessBuilder = #< (new URLInput(f))
/** Reads the given InputStream into the input stream of this process. The
* argument is call-by-name, so the stream is recreated, read, and closed each
* time this process is executed.
*/
def #<(in: => InputStream): ProcessBuilder = #< (new IStreamBuilder(in, "<input stream>"))
/** Reads the output of a [[scala.sys.process.ProcessBuilder]] into the input stream of this process. */
def #<(b: ProcessBuilder): ProcessBuilder = new PipedBuilder(b, toSink, false)
}
}
|
felixmulder/scala
|
src/library/scala/sys/process/ProcessBuilder.scala
|
Scala
|
bsd-3-clause
| 16,674 |
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package system.stress
import system.utils.KafkaUtils
import scala.concurrent.duration.DurationInt
import scala.language.postfixOps
import org.junit.runner.RunWith
import org.scalatest.FlatSpec
import org.scalatest.Matchers
import org.scalatest.junit.JUnitRunner
import common.TestHelpers
import common.Wsk
import common.WskActorSystem
import common.WskProps
import common.WskTestHelpers
import spray.json.DefaultJsonProtocol._
import spray.json._
@RunWith(classOf[JUnitRunner])
class BasicStressTest
extends FlatSpec
with Matchers
with WskActorSystem
with TestHelpers
with WskTestHelpers
with KafkaUtils {
val topic = "test"
val sessionTimeout = 10 seconds
implicit val wskprops = WskProps()
val wsk = new Wsk()
val messagingPackage = "/whisk.system/messaging"
val messageHubFeed = "messageHubFeed"
val messageHubProduce = "messageHubProduce"
behavior of "Message Hub provider"
it should "rapidly create and delete many triggers" in {
stressTriggerCreateAndDelete(totalIterations = 100, keepNthTrigger = 5)
}
/*
* Recursively create and delete (potentially) lots of triggers
*
* @param totalIterations The total number of triggers to create
* @param keepNthTrigger Optionally, do not delete the trigger created on every N iterations
* @param currentIteration Used for recursion
* @param storedTriggers The list of trigger names that were created, but not deleted (see keepNthTrigger)
*/
def stressTriggerCreateAndDelete(totalIterations : Int, keepNthTrigger : Int, currentIteration : Int = 0, storedTriggers : List[String] = List[String]()) {
if(currentIteration < totalIterations) {
val currentTime = s"${System.currentTimeMillis}"
// use this to print non-zero-based iteration numbers you know... for humans
val iterationLabel = currentIteration + 1
val triggerName = s"/_/dummyMessageHubTrigger-$currentTime"
println(s"\\nCreating trigger #${iterationLabel}: ${triggerName}")
val feedCreationResult = wsk.trigger.create(triggerName, feed = Some(s"$messagingPackage/$messageHubFeed"), parameters = Map(
"user" -> getAsJson("user"),
"password" -> getAsJson("password"),
"api_key" -> getAsJson("api_key"),
"kafka_admin_url" -> getAsJson("kafka_admin_url"),
"kafka_brokers_sasl" -> getAsJson("brokers"),
"topic" -> topic.toJson))
println("Waiting for trigger create")
withActivation(wsk.activation, feedCreationResult, initialWait = 5 seconds, totalWait = 60 seconds) {
activation =>
// should be successful
activation.response.success shouldBe true
}
// optionally allow triggers to pile up on the provider
if((iterationLabel % keepNthTrigger) != 0) {
println("Deleting trigger")
val feedDeletionResult = wsk.trigger.delete(triggerName)
feedDeletionResult.stdout should include("ok")
stressTriggerCreateAndDelete(totalIterations, keepNthTrigger, currentIteration + 1, storedTriggers)
} else {
println("I think I'll keep this trigger...")
stressTriggerCreateAndDelete(totalIterations, keepNthTrigger, currentIteration + 1, triggerName :: storedTriggers)
}
} else {
println("\\nCompleted all iterations, now cleaning up stored triggers.")
for(triggerName <- storedTriggers) {
println(s"Deleting trigger: ${triggerName}")
val feedDeletionResult = wsk.trigger.delete(triggerName)
feedDeletionResult.stdout should include("ok")
}
}
}
}
|
dubeejw/openwhisk-package-kafka
|
tests/src/test/scala/system/stress/StressTest.scala
|
Scala
|
apache-2.0
| 4,703 |
package adt.bson.mongo.bulk
import adt.bson.mongo.WriteError
import adt.bson.{BsonObject, BsonValue}
import scala.language.implicitConversions
/**
* Avoids name collision with the [[WriteRequest]] Scala version if both are imported.
*/
object JavaBulkModels extends JavaBulkModels
trait JavaBulkModels {
type JavaBulkWriteError = com.mongodb.bulk.BulkWriteError
type JavaBulkWriteResult = com.mongodb.bulk.BulkWriteResult
type JavaBulkWriteUpsert = com.mongodb.bulk.BulkWriteUpsert
type JavaDeleteRequest = com.mongodb.bulk.DeleteRequest
type JavaIndexRequest = com.mongodb.bulk.IndexRequest
type JavaInsertRequest = com.mongodb.bulk.InsertRequest
type JavaUpdateRequest = com.mongodb.bulk.UpdateRequest
type JavaWriteConcernError = com.mongodb.bulk.WriteConcernError
type JavaWriteRequest = com.mongodb.bulk.WriteRequest
type JavaWriteRequestType = com.mongodb.bulk.WriteRequest.Type
}
object JavaWriteRequest {
type Type = com.mongodb.bulk.WriteRequest.Type
object Type {
final val DELETE = com.mongodb.bulk.WriteRequest.Type.DELETE
final val INSERT = com.mongodb.bulk.WriteRequest.Type.INSERT
final val REPLACE = com.mongodb.bulk.WriteRequest.Type.REPLACE
final val UPDATE = com.mongodb.bulk.WriteRequest.Type.UPDATE
}
}
/**
* Constructs a new instance (substitutes [[com.mongodb.bulk.BulkWriteError]]).
*
* @param code the error code
* @param message the error message
* @param details details about the error
* @param index the index of the item in the bulk write operation that had this error
*/
case class BulkWriteError(code: Int, message: String, details: BsonObject, index: Int) extends WriteError
/**
* Represents an item in the bulk write that was upserted (substitutes [[com.mongodb.bulk.BulkWriteUpsert]]).
*
* @param index the index in the list of bulk write requests that the upsert occurred in
* @param id the id of the document that was inserted as the result of the upsert
*/
case class BulkWriteUpsert(index: Int, id: BsonValue)
object BulkWriteUpsert {
implicit def from(upsert: JavaBulkWriteUpsert): BulkWriteUpsert = BulkWriteUpsert(upsert.getIndex, upsert.getId.toBson)
}
/**
* An error representing a failure by the server to apply the requested write concern to the bulk operation
* (substitutes [[com.mongodb.bulk.WriteConcernError]]).
*
* @param code the error code
* @param message the error message
* @param details any details
*/
case class WriteConcernError(code: Int, message: String, details: BsonObject)
|
jeffmay/bson-adt
|
bson-adt-mongo3-async/src/main/scala/adt/bson/mongo/bulk/JavaBulkModels.scala
|
Scala
|
apache-2.0
| 2,551 |
package structures
package laws
trait MonadFilterLaws[F[_]] extends MonadLaws[F] {
implicit val typeClass: MonadFilter[F]
import MonadFilter.ops._, typeClass.empty
def monadFilterLeftDistributivity[A, B](f: A => F[B]): IsEqual[F[B]] =
empty[A].flatMap(f) =?= empty[B]
def monadFilterRightDistributivity[A](fa: F[A]): IsEqual[F[A]] =
fa.flatMap { a => empty[A] } =?= empty[A]
}
object MonadFilterLaws {
def apply[F[_]: MonadFilter]: MonadFilterLaws[F] = new MonadFilterLaws[F] {
val typeClass = MonadFilter[F]
}
}
|
mpilquist/Structures
|
laws/src/main/scala/structures/laws/MonadFilterLaws.scala
|
Scala
|
bsd-3-clause
| 543 |
/*
* Copyright (c) <2015-2016>, see CONTRIBUTORS
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package ch.usi.inf.l3.sana.robustj.typechecker
import ch.usi.inf.l3.sana
import sana.robustj
import sana.arrooj
import sana.arrayj
import sana.ooj
import sana.brokenj
import sana.primj
import sana.tiny
import sana.calcj
import tiny.core.TransformationComponent
import tiny.dsl._
// ASTs
import robustj.ast._
import arrooj.ast.Implicits._
import arrayj.ast.{TreeUtils => _, TreeCopiers => _, TreeFactories => _, _}
import ooj.ast.{TreeUtils => _, TreeCopiers => _, TreeFactories => _,
MethodDefApi => _, TreeUpgraders => _, _}
import brokenj.ast.{TreeUtils => _, TreeCopiers => _, TreeFactories => _, _}
import primj.ast.{TreeUtils => _, TreeCopiers => _, TreeFactories => _,
MethodDefApi => PMethodDefApi, ProgramApi => _, _}
import calcj.ast.{TreeUtils => _, TreeCopiers => _, TreeFactories => _, _}
import tiny.ast.{TreeCopiers => _, TreeFactories => _, _}
import tiny.types.Type
import tiny.symbols.Symbol
import robustj.symbols.MethodSymbol
import tiny.errors.ErrorReporting.{error, warning}
import tiny.source.Position
import robustj.errors.ErrorCodes._
import robustj.types.TypeUtils
/*
Program: DONE
CompilationUnit: DONE
PackageDef: DONE
ClassDef: DONE
Template: DONE
ValDef: DONE
Block: DONE
New: DONE
Select: DONE
This: DONE
Super: DONE
Ident: DONE
TypeUse: DONE
Cast: DONE
Literal: DONE
Binary: DONE
Unary: DONE
Assign: DONE
If: DONE
While: DONE
For: DONE
Ternary: DONE
Return: DONE
Label: DONE
Break: DONE
Continue: DONE
Case: DONE
Switch: DONE
ArrayInitializer: DONE
ArrayAccess: DONE
ArrayTypeUse: DONE
ArrayCreation: DONE
Catch: DONE
MethodDef: DONE
Apply: DONE
Try:
Throw: DONE
*/
/**
* A class to represent a handled (caught or declared) exception
*
* @param tpe the type of this exception
* @param pos the position of this exception
* @param state the state of this exception, possible states:
* <li> It is declared in the method signature (in the throws clause)
* <li> it is handled by a catch-block and is already thrown
* <li> it is handled by a catch-block and is not thrown yet
*/
case class HandledException(tpe: Type, pos: Position, state: State) {
override def equals(other: Any): Boolean = other match {
case null => false
case that: HandledException => this.pos == that.pos
case _ => false
}
override def hashCode: Int = 43 * this.pos.hashCode
}
/**
* A utility trait for performing different exception-handling related checks
*/
trait ExceptionUtils {
/**
* Given a list of handled exceptions and an exception type, updates the first
* handled exception that has the same type as `t`, if it has the state
* UnusedCaught, it marks it as UsedCaught.
*
* @param t the type of exception to update
* @param he the list of handled exceptions
*/
def updateFirstOccurance(t: Type,
he: List[HandledException]): Option[List[HandledException]] = he match {
case (h::hs) if t <:< h.tpe =>
if(h.state == ThrownClause) Some(he)
else Some(HandledException(h.tpe, h.pos, UsedCaught)::hs)
case (h::hs) if t >:> h.tpe =>
if(h.state == ThrownClause)
updateFirstOccurance(t, hs).map(h::_)
else
updateFirstOccurance(t, hs)
.map(HandledException(h.tpe, h.pos, UsedCaught)::_)
case (h::hs) =>
updateFirstOccurance(t, hs).map(h::_)
case Nil =>
None
}
/**
* Given two lists of handled-exceptions, unifies them. In case
* the same exception has the state UsedCaught in one list, then in the
* resulting list it will have UseCaught too.
*/
def unify(fst: List[HandledException],
snd: List[HandledException]): List[HandledException] = {
for {
f <- fst
} yield {
if(snd.exists(s =>
(f == s && (f.state == UsedCaught || s.state == UsedCaught)))) {
f.copy(state = UsedCaught)
} else f
}
}
/**
* Given lists lists of handled-exceptions, unifies them. In case
* the same exception has the state UsedCaught in one list, then in the
* resulting list it will have UseCaught too.
*/
def unify(fst: List[HandledException],
snd: List[HandledException],
thrd: List[HandledException]): List[HandledException] = for {
f <- fst
} yield {
if(snd.exists(s =>
(f == s && (f.state == UsedCaught || s.state == UsedCaught))) ||
thrd.exists(s =>
(f == s && (f.state == UsedCaught || s.state == UsedCaught)))) {
f.copy(state = UsedCaught)
} else f
}
}
object ExceptionUtils extends ExceptionUtils
/** The state of an exception */
trait State
/** An exception is declared in the method signature (throws clause) */
case object ThrownClause extends State
/** An exception is caught by a catch block, and is already thrown */
case object UsedCaught extends State
/** An exception is caught by a catch block, and is not thrown yet */
case object UnusedCaught extends State
/**
* This phase makes that all reported "checked" exceptions are declared, and
* all declared exceptions are declared.
*/
trait ExceptionHandlingCheckerComponent extends
TransformationComponent[(Tree, List[HandledException]),
List[HandledException]] {
def check: ((Tree, List[HandledException])) => List[HandledException]
}
// Interesting cases
@component(tree, handledExceptions)
trait MethodDefExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(mthd: PMethodDefApi) => {
mthd match {
case mthd: MethodDefApi =>
val he1 = getHandledExceptions(mthd)
val he2 = check((mthd.body, he1 ++ handledExceptions))
val he3 = he2.drop(he1.length)
unify(he3, handledExceptions)
case mthd: PMethodDefApi =>
val res = TreeUpgraders.upgradeMethodDef(mthd)
check((res, handledExceptions))
}
}
/** @see {{{ExceptionUtils.unify}}} */
protected def unify(fst: List[HandledException],
snd: List[HandledException]): List[HandledException] =
ExceptionUtils.unify(fst, snd)
/**
* Return all the declared (handled) exception of a method
*
* @param mthd the method to return its declared (handled) exceptions
*/
protected def getHandledExceptions(
mthd: MethodDefApi): List[HandledException] = {
mthd.symbol.map {
case sym: MethodSymbol =>
for {
sym <- sym.throwsSymbols
tpe <- sym.tpe
pos <- mthd.pos
} yield HandledException(tpe, pos, ThrownClause)
case e =>
Nil
}.getOrElse(Nil)
}
}
@component(tree, handledExceptions)
trait ThrowExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(thrw: ThrowApi) => {
val he = check((thrw.expr, handledExceptions))
thrw.expr.tpe.flatMap(updateFirstOccurance(_, he)).getOrElse(he)
}
/** @see [[ExceptionUtils.updateFirstOccurance]] */
protected def updateFirstOccurance(t: Type,
he: List[HandledException]): Option[List[HandledException]] =
ExceptionUtils.updateFirstOccurance(t, he)
}
@component(tree, handledExceptions)
trait ApplyExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(apply: ApplyApi) => {
val he = check((apply.fun, handledExceptions))
val he1 = checkThrownExceptions(apply, he)
apply.args.foldLeft(he1) { (z, y) =>
check((y, z))
}
}
/** @see [[ExceptionUtils.updateFirstOccurance]] */
protected def updateFirstOccurance(t: Type,
he: List[HandledException]): Option[List[HandledException]] =
ExceptionUtils.updateFirstOccurance(t, he)
/**
* Check if all the possible exceptions that may be thrown by this
* method/function is handled either by a try-catch statement or
* declared by the enclosing method of this expression.
*
* @param apply the method/function application in question
* @param he the exceptions that are handled at this point
*/
protected def checkThrownExceptions(apply: ApplyApi,
he: List[HandledException]): List[HandledException] = {
val thrownExceptions = apply.fun.symbol match {
case Some(s: MethodSymbol) => s.throwsSymbols
case _ => Nil
}
thrownExceptions.foldLeft(he) { (z, y) =>
if(isCheckedException(y.tpe)) {
y.tpe.flatMap(updateFirstOccurance(_, z)) match {
case Some(he) => he
case None =>
error(UNREPORTED_EXCEPTION, "", "", apply.pos)
z
}
} else z
}
}
/** @see [[robustj.types.TypeUtils.isCheckedException]] */
protected def isCheckedException(tpe: Option[Type]): Boolean =
TypeUtils.isCheckedException(tpe)
}
@component(tree, handledExceptions)
trait TryExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(tri: TryApi) => {
val handled = getHandledExceptions(tri.catches)
val he1 = handled ++ handledExceptions
val he2 = check((tri.tryClause, he1))
val (handled2, he3) = he2.splitAt(handled.size)
val he4 = tri.catches.foldLeft(he3)((z, y) => {
val z2 = check((y, z))
unify(z, z2)
})
val he5 = tri.finallyClause.map(f => check((f, he4))).getOrElse(he4)
checkHandledExceptions(handled2)
unify(he3, he4, he5)
}
/** @see {{{ExceptionUtils.unify}}} */
protected def unify(fst: List[HandledException],
snd: List[HandledException]): List[HandledException] =
ExceptionUtils.unify(fst, snd)
/** @see {{{ExceptionUtils.unify}}} */
protected def unify(fst: List[HandledException],
snd: List[HandledException],
thd: List[HandledException]): List[HandledException] =
ExceptionUtils.unify(fst, snd, thd)
/**
* Return all the caught (handled) exceptions by this try-catch statement
*
* @param catches the list of catch-blocks of this try-catch statement
*/
protected def getHandledExceptions(catches: List[CatchApi]):
List[HandledException] = for {
ctch <- catches
tpe <- ctch.eparam.tpe
pos <- ctch.eparam.pos
} yield HandledException(tpe, pos, UnusedCaught)
/**
* Checks if all the definitively checked exceptions that are handled
* are actually thrown in the body of the method
*
* @param he the list to be checked
*/
protected def checkHandledExceptions(he: List[HandledException]): Unit =
for {
handled <- he if isDefinitivelyCheckedException(Some(handled.tpe)) &&
handled.state == UnusedCaught
} {
error(HANDLING_NON_THROWN_EXCEPTION, "", "", Some(handled.pos))
}
/** @see [[robustj.types.TypeUtils.isDefinitivelyCheckedException]] */
protected def isDefinitivelyCheckedException(p: Option[Type]): Boolean =
TypeUtils.isDefinitivelyCheckedException(p)
}
// boring cases
@component(tree, handledExceptions)
trait ProgramExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(prg: ProgramApi) => {
prg.members.foreach(m => check((m, Nil)))
Nil
}
}
@component(tree, handledExceptions)
trait CompilationUnitExceptionHandlingCheckerComponent extends
ExceptionHandlingCheckerComponent {
(cunit: CompilationUnitApi) => {
check((cunit.module, Nil))
}
}
@component(tree, handledExceptions)
trait PackageDefExceptionHandlingCheckerComponent extends
ExceptionHandlingCheckerComponent {
(pkg: PackageDefApi) => {
pkg.members.foreach(m => check((m, Nil)))
Nil
}
}
@component(tree, handledExceptions)
trait ClassDefExceptionHandlingCheckerComponent extends
ExceptionHandlingCheckerComponent {
(clazz: ClassDefApi) => {
check((clazz.body, Nil))
}
}
@component(tree, handledExceptions)
trait TemplateExceptionHandlingCheckerComponent extends
ExceptionHandlingCheckerComponent {
(template: TemplateApi) => {
template.members.foreach(m => check((m, Nil)))
Nil
}
}
@component(tree, handledExceptions)
trait NewExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(nw: NewApi) => {
check((nw.app, handledExceptions))
}
}
@component(tree, handledExceptions)
trait SelectExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(select: SelectApi) => {
val he = check((select.qual, handledExceptions))
check((select.tree, he))
}
}
@component(tree, handledExceptions)
trait ThisExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(ths: ThisApi) => handledExceptions
}
@component(tree, handledExceptions)
trait SuperExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(spr: SuperApi) => handledExceptions
}
@component(tree, handledExceptions)
trait ArrayCreationExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(creation: ArrayCreationApi) => {
creation.size.map(size => check((size, handledExceptions)))
.getOrElse(handledExceptions)
}
}
@component(tree, handledExceptions)
trait ArrayAccessExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(access: ArrayAccessApi) => {
val he = check((access.array, handledExceptions))
check((access.index, he))
}
}
// @component(tree, handledExceptions)
// trait ArrayTypeUseExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (tuse: ArrayTypeUseApi) => handledExceptions
// }
@component(tree, handledExceptions)
trait ArrayInitializerExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(init: ArrayInitializerApi) => {
init.elements.foldLeft(handledExceptions) { (z, y) =>
check((y, z))
}
}
}
// @component(tree, handledExceptions)
// trait ContinueExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (cont: ContinueApi) => handledExceptions
// }
//
// @component(tree, handledExceptions)
// trait BreakExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (break: BreakApi) => handledExceptions
//
// }
@component(tree, handledExceptions)
trait LabelExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(label: LabelApi) => check((label.stmt, handledExceptions))
}
@component(tree, handledExceptions)
trait CatchExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(ctch: CatchApi) => check((ctch.catchClause, handledExceptions))
}
// boring cases
@component(tree, handledExceptions)
trait ValDefExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(vdef: ValDefApi) =>
check((vdef.rhs, handledExceptions))
}
@component(tree, handledExceptions)
trait AssignExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(assgn: AssignApi) => {
val he = check((assgn.lhs, handledExceptions))
check((assgn.rhs, he))
}
}
@component(tree, handledExceptions)
trait ReturnExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(ret: ReturnApi) =>
ret.expr.map(expr => check((expr, handledExceptions)))
.getOrElse(handledExceptions)
}
@component(tree, handledExceptions)
trait IfExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(ifelse: IfApi) => {
val he1 = check((ifelse.cond, handledExceptions))
val he2 = check((ifelse.thenp, he1))
check((ifelse.elsep, he2))
}
}
@component(tree, handledExceptions)
trait WhileExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(wile: WhileApi) => {
val he = check((wile.cond, handledExceptions))
check((wile.body, he))
}
}
@component(tree, handledExceptions)
trait BlockExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(block: BlockApi) => {
block.stmts.foldLeft(handledExceptions){(z, y) =>
check((y, z))
}
}
}
@component(tree, handledExceptions)
trait ForExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(forloop: ForApi) => {
val he1 = forloop.inits.foldLeft(handledExceptions){(z, y) =>
check((y, z))
}
val he2 = check((forloop.cond, he1))
val he3 = forloop.steps.foldLeft(he2){(z, y) =>
check((y, z))
}
check((forloop.body, he3))
}
}
@component(tree, handledExceptions)
trait TernaryExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(ternary: TernaryApi) => {
val he1 = check((ternary.cond, handledExceptions))
val he2 = check((ternary.thenp, he1))
check((ternary.elsep, he2))
}
}
@component(tree, handledExceptions)
trait CastExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(cast: CastApi) => {
check((cast.expr, handledExceptions))
}
}
@component(tree, handledExceptions)
trait UnaryExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(unary: UnaryApi) => {
check((unary.expr, handledExceptions))
}
}
@component(tree, handledExceptions)
trait BinaryExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(binary: BinaryApi) => {
val he = check((binary.lhs, handledExceptions))
check((binary.rhs, he))
}
}
@component(tree, handledExceptions)
trait SwitchExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(switch: SwitchApi) => {
val he = check((switch.expr, handledExceptions))
switch.cases.foldLeft(he){(z, y) =>
check((y, z))
}
}
}
@component(tree, handledExceptions)
trait CaseExceptionHandlingCheckerComponent
extends ExceptionHandlingCheckerComponent {
(cse: CaseApi) => {
check((cse.body, handledExceptions))
}
}
// even more boring cases
// @component(tree, handledExceptions)
// trait IdentExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (ident: IdentApi) => handledExceptions
// }
//
// @component(tree, handledExceptions)
// trait TypeUseExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (tuse: TypeUseApi) => handledExceptions
// }
//
//
//
// @component(tree, handledExceptions)
// trait LiteralExceptionHandlingCheckerComponent
// extends ExceptionHandlingCheckerComponent {
// (lit: LiteralApi) => handledExceptions
// }
|
amanjpro/languages-a-la-carte
|
robustj/src/main/scala/typechecker/exceptioncheckers.scala
|
Scala
|
bsd-3-clause
| 20,118 |
package com.twitter.finagle.kestrel.protocol
import org.jboss.netty.buffer.ChannelBuffer
import com.twitter.util.{Time, Duration}
sealed abstract class Command
sealed abstract class GetCommand extends Command {
val queueName: ChannelBuffer
val timeout: Option[Duration]
}
case class Get(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class Open(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class Close(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class CloseAndOpen(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class Abort(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class Peek(val queueName: ChannelBuffer, val timeout: Option[Duration] = None) extends GetCommand
case class Set(queueName: ChannelBuffer, expiry: Time, value: ChannelBuffer) extends Command
case class Delete(queueName: ChannelBuffer) extends Command
case class Flush(queueName: ChannelBuffer) extends Command
case class FlushAll() extends Command
case class Version() extends Command
case class ShutDown() extends Command
case class Reload() extends Command
case class DumpConfig() extends Command
case class Stats() extends Command
case class DumpStats() extends Command
|
enachb/finagle_2.9_durgh
|
finagle-kestrel/src/main/scala/com/twitter/finagle/kestrel/protocol/Command.scala
|
Scala
|
apache-2.0
| 2,077 |
package ozmi.lambda_core
package lib
import org.scalacheck.Prop.forAll
import org.scalacheck.{Gen, Properties}
object CollSpec extends Properties("Coll") {
import ozmi.lambda_core.lib.Coll._
import ozmi.lambda_core.lib.Num._
import ozmi.lambda_core.lib.Ord._
lazy val saneBigDecimal =
for {
unscaledVal <- Gen.choose(-1000, 1000)
scale <- Gen.choose(0, 100)
} yield
BigDecimal(unscaledVal, scale)
lazy val saneBigDecimalSeq =
Gen.containerOf[Seq, BigDecimal](saneBigDecimal)
property("Filter") = forAll (saneBigDecimalSeq) { (coll: Seq[BigDecimal]) =>
val predicate = (i: BigDecimal) => i < 100
val predicateEx = Lambda (Seq ("i"), LessThan (Lookup ("i"), Literal (BigDecimal (100))))
Library.eval (Filter (Literal (coll), predicateEx)) == Literal (coll filter predicate)
}
property("Map") = forAll (saneBigDecimalSeq) { (coll: Seq[BigDecimal]) =>
val mapping = (i: BigDecimal) => i * 2
val mappingEx = Lambda (Seq ("i"), Multiply (Lookup ("i"), Literal (BigDecimal (2))))
Library.eval (Map (Literal (coll), mappingEx)) == Literal (coll map mapping)
}
property("Reduce") = forAll (saneBigDecimalSeq) { (coll: Seq[BigDecimal]) =>
val reduction = (a: BigDecimal, b: BigDecimal) => a + b
val reductionEx = Lambda (Seq ("a", "b"), Add (Lookup ("a"), Lookup ("b")))
val expected =
if (coll.isEmpty) Literal (null)
else Literal (coll reduce reduction)
Library.eval (Reduce (Literal (coll), reductionEx)) == expected
}
}
|
ozmi/lambda_core
|
src/test/scala/ozmi/lambda_core/lib/CollSpec.scala
|
Scala
|
mit
| 1,682 |
package org.jetbrains.plugins.scala
package codeInspection
package unusedInspections
import com.intellij.codeHighlighting._
import com.intellij.openapi.editor.Editor
import com.intellij.openapi.project.Project
import com.intellij.psi.PsiFile
import org.jetbrains.plugins.scala.lang.psi.api.ScalaFile
class ScalaUnusedLocalSymbolPassFactory
extends TextEditorHighlightingPassFactory
with TextEditorHighlightingPassFactoryRegistrar {
override def createHighlightingPass(file: PsiFile, editor: Editor): TextEditorHighlightingPass = file match {
case scalaFile: ScalaFile => new ScalaUnusedLocalSymbolPass(scalaFile, Option(editor.getDocument))
case _ => null
}
override def registerHighlightingPassFactory(registrar: TextEditorHighlightingPassRegistrar, project: Project): Unit = {
registrar.registerTextEditorHighlightingPass(this, Array[Int](Pass.UPDATE_ALL), null, false, -1)
}
}
|
JetBrains/intellij-scala
|
scala/scala-impl/src/org/jetbrains/plugins/scala/codeInspection/unusedInspections/ScalaUnusedLocalSymbolPassFactory.scala
|
Scala
|
apache-2.0
| 908 |
/*
Copyright 2013 Twitter, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package com.twitter.summingbird.storm
import backtype.storm.{ Config => BacktypeStormConfig, LocalCluster, Testing }
import backtype.storm.generated.StormTopology
import backtype.storm.testing.{ CompleteTopologyParam, MockedSources }
import com.twitter.algebird.{MapAlgebra, Semigroup}
import com.twitter.storehaus.{ ReadableStore, JMapStore }
import com.twitter.storehaus.algebra.MergeableStore
import com.twitter.summingbird._
import com.twitter.summingbird.batch.{BatchID, Batcher}
import com.twitter.summingbird.storm.spout.TraversableSpout
import com.twitter.summingbird.storm.option._
import com.twitter.summingbird.memory._
import com.twitter.summingbird.planner._
import com.twitter.tormenta.spout.Spout
import com.twitter.util.Future
import java.util.{Collections, HashMap, Map => JMap, UUID}
import java.util.concurrent.atomic.AtomicInteger
import org.specs2.mutable._
import org.scalacheck._
import org.scalacheck.Prop._
import org.scalacheck.Properties
import scala.collection.JavaConverters._
import scala.collection.mutable.{
ArrayBuffer,
HashMap => MutableHashMap,
Map => MutableMap,
SynchronizedBuffer,
SynchronizedMap
}
import java.security.Permission
/**
* Tests for Summingbird's Storm planner.
*/
/**
* State required to perform a single Storm test run.
*/
case class TestState[T, K, V](
store: JMap[(K, BatchID), Option[V]] = Collections.synchronizedMap(new HashMap[(K, BatchID), Option[V]]()),
used: ArrayBuffer[T] = new ArrayBuffer[T] with SynchronizedBuffer[T],
placed: AtomicInteger = new AtomicInteger
)
object TrueGlobalState {
val data = new MutableHashMap[String, TestState[Int, Int, Int]]
with SynchronizedMap[String, TestState[Int, Int, Int]]
}
class MySecurityManager extends SecurityManager {
override def checkExit(status: Int): Unit = {
throw new SecurityException();
}
override def checkAccess(t: Thread) = {}
override def checkPermission(p: Permission) = {}
}
/*
* This is a wrapper to run a storm topology.
* We use the SecurityManager code to catch the System.exit storm calls when it
* fails. We wrap it into a normal exception instead so it can report better/retry.
*/
object StormRunner {
private def completeTopologyParam(conf: BacktypeStormConfig) = {
val ret = new CompleteTopologyParam()
ret.setMockedSources(new MockedSources)
ret.setStormConf(conf)
ret.setCleanupState(false)
ret
}
private def tryRun(plannedTopology: PlannedTopology): Unit = {
//Before running the external Command
val oldSecManager = System.getSecurityManager()
System.setSecurityManager(new MySecurityManager());
try {
val cluster = new LocalCluster()
Testing.completeTopology(cluster, plannedTopology.topology, completeTopologyParam(plannedTopology.config))
// Sleep to prevent this race: https://github.com/nathanmarz/storm/pull/667
Thread.sleep(1000)
cluster.shutdown
} finally {
System.setSecurityManager(oldSecManager)
}
}
def run(plannedTopology: PlannedTopology) {
this.synchronized {
try {
tryRun(plannedTopology)
} catch {
case _: Throwable =>
Thread.sleep(3000)
tryRun(plannedTopology)
}
}
}
}
object StormLaws extends Specification {
sequential
import MapAlgebra.sparseEquiv
// This is dangerous, obviously. The Storm platform graphs tested
// here use the UnitBatcher, so the actual time extraction isn't
// needed.
implicit def extractor[T]: TimeExtractor[T] = TimeExtractor(_ => 0L)
implicit val batcher = Batcher.unit
/**
* Global state shared by all tests.
*/
val globalState = TrueGlobalState.data
/**
* Returns a MergeableStore that routes get, put and merge calls
* through to the backing store in the proper globalState entry.
*/
def testingStore(id: String) =
new MergeableStore[(Int, BatchID), Int] with java.io.Serializable {
val semigroup = implicitly[Semigroup[Int]]
def wrappedStore = globalState(id).store
private def getOpt(k: (Int, BatchID)) = Option(wrappedStore.get(k)).flatMap(i => i)
override def get(k: (Int, BatchID)) = Future.value(getOpt(k))
override def put(pair: ((Int, BatchID), Option[Int])) = {
val (k, optV) = pair
if (optV.isDefined)
wrappedStore.put(k, optV)
else
wrappedStore.remove(k)
globalState(id).placed.incrementAndGet
Future.Unit
}
override def merge(pair: ((Int, BatchID), Int)) = {
val (k, v) = pair
val oldV = getOpt(k)
val newV = Semigroup.plus(Some(v), oldV)
wrappedStore.put(k, newV)
globalState(id).placed.incrementAndGet
Future.value(oldV)
}
}
val testFn = sample[Int => List[(Int, Int)]]
val storm = Storm.local(Map(
))
def sample[T: Arbitrary]: T = Arbitrary.arbitrary[T].sample.get
def genStore: (String, Storm#Store[Int, Int]) = {
val id = UUID.randomUUID.toString
globalState += (id -> TestState())
val store = MergeableStoreSupplier(() => testingStore(id), Batcher.unit)
(id, store)
}
def genSink:() => ((Int) => Future[Unit]) = () => {x: Int =>
append(x)
Future.Unit
}
/**
* Perform a single run of TestGraphs.singleStepJob using the
* supplied list of integers and the testFn defined above.
*/
def runOnce(original: List[Int])(mkJob: (Producer[Storm, Int], Storm#Store[Int, Int]) => TailProducer[Storm, Any])
: TestState[Int, Int, Int] = {
val (id, store) = genStore
val job = mkJob(
Storm.source(TraversableSpout(original)),
store
)
val topo = storm.plan(job)
StormRunner.run(topo)
globalState(id)
}
def memoryPlanWithoutSummer(original: List[Int])(mkJob: (Producer[Memory, Int], Memory#Sink[Int]) => TailProducer[Memory, Int])
: List[Int] = {
val memory = new Memory
val outputList = ArrayBuffer[Int]()
val sink: (Int) => Unit = {x: Int => outputList += x}
val job = mkJob(
Memory.toSource(original),
sink
)
val topo = memory.plan(job)
memory.run(topo)
outputList.toList
}
val outputList = new ArrayBuffer[Int] with SynchronizedBuffer[Int]
def append(x: Int):Unit = {
StormLaws.outputList += x
}
def runWithOutSummer(original: List[Int])(mkJob: (Producer[Storm, Int], Storm#Sink[Int]) => TailProducer[Storm, Int])
: List[Int] = {
val cluster = new LocalCluster()
val job = mkJob(
Storm.source(TraversableSpout(original)),
Storm.sink[Int]({ (x: Int) => append(x); Future.Unit })
)
val topo = storm.plan(job)
StormRunner.run(topo)
StormLaws.outputList.toList
}
val nextFn = { pair: ((Int, (Int, Option[Int]))) =>
val (k, (v, joinedV)) = pair
List((k -> joinedV.getOrElse(10)))
}
val serviceFn = sample[Int => Option[Int]]
val service = StoreWrapper[Int, Int](() => ReadableStore.fromFn(serviceFn))
// ALL TESTS START AFTER THIS LINE
"StormPlatform matches Scala for single step jobs" in {
val original = sample[List[Int]]
val returnedState =
runOnce(original)(
TestGraphs.singleStepJob[Storm, Int, Int, Int](_,_)(testFn)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.singleStepInScala(original)(testFn),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"FlatMap to nothing" in {
val original = sample[List[Int]]
val fn = {(x: Int) => List[(Int, Int)]()}
val returnedState =
runOnce(original)(
TestGraphs.singleStepJob[Storm, Int, Int, Int](_,_)(fn)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.singleStepInScala(original)(fn),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"OptionMap and FlatMap" in {
val original = sample[List[Int]]
val fnA = sample[Int => Option[Int]]
val fnB = sample[Int => List[(Int,Int)]]
val returnedState =
runOnce(original)(
TestGraphs.twinStepOptionMapFlatMapJob[Storm, Int, Int, Int, Int](_,_)(fnA, fnB)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.twinStepOptionMapFlatMapScala(original)(fnA, fnB),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"OptionMap to nothing and FlatMap" in {
val original = sample[List[Int]]
val fnA = {(x: Int) => None }
val fnB = sample[Int => List[(Int,Int)]]
val returnedState =
runOnce(original)(
TestGraphs.twinStepOptionMapFlatMapJob[Storm, Int, Int, Int, Int](_,_)(fnA, fnB)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.twinStepOptionMapFlatMapScala(original)(fnA, fnB),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform matches Scala for large expansion single step jobs" in {
val original = sample[List[Int]]
val expander = sample[Int => List[(Int, Int)]]
val expansionFunc = {(x: Int) =>
expander(x).flatMap{case (k, v) => List((k, v), (k, v), (k, v), (k, v), (k, v))}
}
val returnedState =
runOnce(original)(
TestGraphs.singleStepJob[Storm, Int, Int, Int](_,_)(expansionFunc)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.singleStepInScala(original)(expansionFunc),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform matches Scala for flatmap keys jobs" in {
val original = List(1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ,41, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ,41) // sample[List[Int]]
val fnA = sample[Int => List[(Int, Int)]]
val fnB = sample[Int => List[Int]]
val returnedState =
runOnce(original)(
TestGraphs.singleStepMapKeysJob[Storm, Int, Int, Int, Int](_,_)(fnA, fnB)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.singleStepMapKeysInScala(original)(fnA, fnB),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform matches Scala for left join jobs" in {
val original = sample[List[Int]]
val staticFunc = { i: Int => List((i -> i)) }
val returnedState =
runOnce(original)(
TestGraphs.leftJoinJob[Storm, Int, Int, Int, Int, Int](_, service, _)(staticFunc)(nextFn)
)
Equiv[Map[Int, Int]].equiv(
TestGraphs.leftJoinInScala(original)(serviceFn)
(staticFunc)(nextFn),
returnedState.store.asScala.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform matches Scala for optionMap only jobs" in {
val original = sample[List[Int]]
val (id, store) = genStore
val cluster = new LocalCluster()
val producer =
Storm.source(TraversableSpout(original))
.filter(_ % 2 == 0)
.map(_ -> 10)
.sumByKey(store)
val topo = storm.plan(producer)
StormRunner.run(topo)
Equiv[Map[Int, Int]].equiv(
MapAlgebra.sumByKey(original.filter(_ % 2 == 0).map(_ -> 10)),
globalState(id).store.asScala
.toMap
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform matches Scala for MapOnly/NoSummer" in {
val original = sample[List[Int]]
val doubler = {x: Int => List(x*2)}
val stormOutputList =
runWithOutSummer(original)(
TestGraphs.mapOnlyJob[Storm, Int, Int](_, _)(doubler)
).sorted
val memoryOutputList =
memoryPlanWithoutSummer(original) (TestGraphs.mapOnlyJob[Memory, Int, Int](_, _)(doubler)).sorted
stormOutputList must_==(memoryOutputList)
}
"StormPlatform with multiple summers" in {
val original = List(1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ,41, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ,41) // sample[List[Int]]
val doubler = {(x): (Int) => List((x -> x*2))}
val simpleOp = {(x): (Int) => List(x * 10)}
val source = Storm.source(TraversableSpout(original))
val (store1Id, store1) = genStore
val (store2Id, store2) = genStore
val tail = TestGraphs.multipleSummerJob[Storm, Int, Int, Int, Int, Int, Int](source, store1, store2)(simpleOp, doubler, doubler)
val topo = storm.plan(tail)
StormRunner.run(topo)
val (scalaA, scalaB) = TestGraphs.multipleSummerJobInScala(original)(simpleOp, doubler, doubler)
val store1Map = globalState(store1Id).store.asScala.toMap
val store2Map = globalState(store2Id).store.asScala.toMap
Equiv[Map[Int, Int]].equiv(
scalaA,
store1Map
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
Equiv[Map[Int, Int]].equiv(
scalaB,
store2Map
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
"StormPlatform should be efficent in real world job" in {
val original1 = sample[List[Int]]
val original2 = sample[List[Int]]
val original3 = sample[List[Int]]
val original4 = sample[List[Int]]
val source1 = Storm.source(TraversableSpout(original1))
val source2 = Storm.source(TraversableSpout(original2))
val source3 = Storm.source(TraversableSpout(original3))
val source4 = Storm.source(TraversableSpout(original4))
val fn1 = sample[(Int) => List[(Int, Int)]]
val fn2 = sample[(Int) => List[(Int, Int)]]
val fn3 = sample[(Int) => List[(Int, Int)]]
val (store1Id, store1) = genStore
val preJoinFn = sample[(Int) => (Int, Int)]
val postJoinFn = sample[((Int, (Int, Option[Int]))) => List[(Int, Int)]]
val serviceFn = sample[Int => Option[Int]]
val service = StoreWrapper[Int, Int](() => ReadableStore.fromFn(serviceFn))
val tail = TestGraphs.realJoinTestJob[Storm, Int, Int, Int, Int, Int, Int, Int, Int, Int](source1, source2, source3, source4,
service, store1, fn1, fn2, fn3, preJoinFn, postJoinFn)
val topo = storm.plan(tail)
OnlinePlan(tail).nodes.size must beLessThan(10)
StormRunner.run(topo)
val scalaA = TestGraphs.realJoinTestJobInScala(original1, original2, original3, original4,
serviceFn, fn1, fn2, fn3, preJoinFn, postJoinFn)
val store1Map = globalState(store1Id).store.asScala.toMap
Equiv[Map[Int, Int]].equiv(
scalaA,
store1Map
.collect { case ((k, batchID), Some(v)) => (k, v) }
) must beTrue
}
}
|
sengt/summingbird-batch
|
summingbird-storm/src/test/scala/com/twitter/summingbird/storm/StormLaws.scala
|
Scala
|
apache-2.0
| 15,176 |
package com.github.agourlay.cornichon.util
import io.circe.{ Encoder, Json, JsonObject }
import scala.concurrent.duration.FiniteDuration
object CirceUtil {
// taken from https://github.com/circe/circe/pull/978
implicit final val finiteDurationEncoder: Encoder[FiniteDuration] = new Encoder[FiniteDuration] {
final def apply(a: FiniteDuration): Json =
Json.fromJsonObject(
JsonObject(
"length" -> Json.fromLong(a.length),
"unit" -> Json.fromString(a.unit.name)))
}
}
|
agourlay/cornichon
|
cornichon-core/src/main/scala/com/github/agourlay/cornichon/util/CirceUtil.scala
|
Scala
|
apache-2.0
| 513 |
package im.actor.api
import treehugger.forest._, definitions._
import treehuggerDSL._
trait DebugHelpersTrees {
protected val debugTree: Tree = OBJECTDEF("Debug") withFlags PRIVATEWITHIN("api") := BLOCK(
IMPORT("com.typesafe.config.ConfigFactory"),
DEF("isDebug", BooleanClass) :=
REF("ConfigFactory") DOT "load" DOT "getBoolean" APPLY LIT("debug-mode")
)
}
|
actorapp/sbt-actor-api
|
src/main/scala/im/actor/api/DebugHelpersTrees.scala
|
Scala
|
mit
| 379 |
/*
utils-pbts.scala
Some property-based test code for utils
*/
package scalaglm
import breeze.linalg._
import breeze.numerics._
import math.abs
import org.scalatest._
import flatspec._
import matchers._
import org.scalatestplus.scalacheck.ScalaCheckPropertyChecks
class UtilsPbts extends AnyFlatSpec
with should.Matchers
with ScalaCheckPropertyChecks {
import Utils._
forAll { (x0: Double, x1: Double, x2: Double) =>
whenever (abs(x0) < 1e80 && abs(x1) < 1e80 && abs(x2) < 1e80) {
val A = DenseMatrix((1,2,3),(0,4,5),(0,0,6)) map (_.toDouble)
val x = DenseVector(x0, x1, x2)
val y = A * x
val xx = backSolve(A,y)
norm(x-xx) < 1e-5 + 1e-5*norm(x) shouldBe true
}
}
}
|
darrenjw/scala-glm
|
src/test/scala/utils-pbts.scala
|
Scala
|
apache-2.0
| 720 |
package org.sisioh.aws4s.cfn.model
import com.amazonaws.services.cloudformation.model.CancelUpdateStackRequest
import org.sisioh.aws4s.PimpedType
object CancelUpdateStackRequestFactory {
def create(): CancelUpdateStackRequest = new CancelUpdateStackRequest()
}
class RichCancelUpdateStackRequest(val underlying: CancelUpdateStackRequest)
extends AnyVal with PimpedType[CancelUpdateStackRequest] {
def stackNameOpt: Option[String] = Option(underlying.getStackName)
def stackNameOpt_=(value: Option[String]): Unit =
underlying.setStackName(value.orNull)
def withStackNameOpt(value: Option[String]): CancelUpdateStackRequest =
underlying.withStackName(value.orNull)
}
|
everpeace/aws4s
|
aws4s-cfn/src/main/scala/org/sisioh/aws4s/cfn/model/RichCancelUpdateStackRequest.scala
|
Scala
|
mit
| 694 |
package com.twitter.finagle.liveness
import com.twitter.app.GlobalFlag
import com.twitter.conversions.time._
import com.twitter.finagle.{Status, Stack}
import com.twitter.finagle.stats.{NullStatsReceiver, StatsReceiver}
import com.twitter.finagle.util.parsers.{double, duration, int, list}
import com.twitter.util.{Duration, Future}
import java.util.logging.Logger
/**
* Failure detectors attempt to gauge the liveness of a peer,
* usually by sending ping messages and evaluating response
* times.
*/
private[liveness] trait FailureDetector {
def status: Status
}
/**
* The null failure detector is the most conservative: it uses
* no information, and always gauges the session to be
* [[Status.Open]].
*/
private object NullFailureDetector extends FailureDetector {
def status: Status = Status.Open
}
/**
* The mock failure detector is for testing, and invokes the passed in
* `fn` to decide what `status` to return.
*/
private class MockFailureDetector(fn: () => Status) extends FailureDetector {
def status: Status = fn()
}
/**
* GlobalFlag to configure FailureDetection used only in the
* absence of any app-specified config. This is the default
* behavior.
*
* Value of:
* "none": turn off threshold failure detector
* "threshold:minPeriod:threshold:win:closeTimeout":
* use the specified configuration for failure detection
*/
object sessionFailureDetector extends GlobalFlag[String](
"threshold:5.seconds:2:100:4.seconds",
"The failure detector used to determine session liveness " +
"[none|threshold:minPeriod:threshold:win:closeTimeout]")
/**
* Companion object capable of creating a FailureDetector based on parameterized config.
*/
object FailureDetector {
/**
* Base type used to identify and configure the [[FailureDetector]].
*/
sealed trait Config
/**
* Default config type which tells the [[FailureDetector]] to extract
* config values from the sessionFailureDetector GlobalFlag.
*/
case object GlobalFlagConfig extends Config
/**
* Indicated to use the [[com.twitter.finagle.liveness.NullFailureDetector]]
* when creating a new detector
*/
case object NullConfig extends Config
/**
* Indicated to use the [[com.twitter.finagle.liveness.MockFailureDetector]]
* when creating a new detector
*/
case class MockConfig(fn: () => Status) extends Config
/**
* Indicated to use the [[com.twitter.finagle.liveness.ThresholdFailureDetector]]
* configured with these values when creating a new detector.
*
* The default `windowSize` and `threshold` are chosen from examining a
* representative ping distribution in a Twitter data center. With long tail
* distribution, we want a reasonably large window size to capture long RTTs
* in the history. A small threshold makes the detection sensitive to potential
* failures. There can be a low rate of false positive, which is fine in most
* production cases with cluster redundancy.
*
* `closeTimeout` allows a session to be closed when a ping response times out
* after 4 seconds. This allows sessions to be reestablished when there may be
* a networking issue, so that it can choose an alternative networking path instead.
* The default 4 seconds is pretty conservative regarding normal ping RTT.
*/
case class ThresholdConfig(
minPeriod: Duration = 5.seconds,
threshold: Double = 2,
windowSize: Int = 100,
closeTimeout: Duration = 4.seconds)
extends Config
/**
* Helper class for configuring a [[FailureDetector]] within a
* [[com.twitter.finagle.Stackable]] client
*/
case class Param(param: Config) {
def mk(): (Param, Stack.Param[Param]) =
(this, Param.param)
}
case object Param {
implicit val param = Stack.Param(Param(GlobalFlagConfig))
}
private[this] val log = Logger.getLogger(getClass.getName)
/**
* Instantiate a new FailureDetector based on the config type
*/
private[finagle] def apply(
config: Config,
ping: () => Future[Unit],
statsReceiver: StatsReceiver
): FailureDetector = {
config match {
case NullConfig => NullFailureDetector
case MockConfig(fn) => new MockFailureDetector(fn)
case cfg: ThresholdConfig =>
new ThresholdFailureDetector(ping, cfg.minPeriod, cfg.threshold,
cfg.windowSize, cfg.closeTimeout, statsReceiver = statsReceiver)
case GlobalFlagConfig =>
parseConfigFromFlags(ping, statsReceiver = statsReceiver)
}
}
/**
* Fallback behavior: parse the sessionFailureDetector global flag and
* instantiate the proper config.
*/
private def parseConfigFromFlags(
ping: () => Future[Unit],
nanoTime: () => Long = System.nanoTime,
statsReceiver: StatsReceiver = NullStatsReceiver
): FailureDetector = {
sessionFailureDetector() match {
case list("threshold", duration(min), double(threshold), int(win), duration(closeTimeout)) =>
new ThresholdFailureDetector(
ping, min, threshold, win, closeTimeout, nanoTime, statsReceiver)
case list("threshold", duration(min), double(threshold), int(win)) =>
new ThresholdFailureDetector(
ping, min, threshold, win, nanoTime = nanoTime, statsReceiver = statsReceiver)
case list("threshold", duration(min), double(threshold)) =>
new ThresholdFailureDetector(
ping, min, threshold, nanoTime = nanoTime, statsReceiver = statsReceiver)
case list("threshold", duration(min)) =>
new ThresholdFailureDetector(
ping, min, nanoTime = nanoTime, statsReceiver = statsReceiver)
case list("threshold") =>
new ThresholdFailureDetector(
ping, nanoTime = nanoTime, statsReceiver = statsReceiver)
case list("none") =>
NullFailureDetector
case list(_*) =>
log.warning(s"unknown failure detector ${sessionFailureDetector()} specified")
NullFailureDetector
}
}
}
|
koshelev/finagle
|
finagle-core/src/main/scala/com/twitter/finagle/liveness/FailureDetector.scala
|
Scala
|
apache-2.0
| 5,968 |
/***********************************************************************
* Copyright (c) 2013-2018 Commonwealth Computer Research, Inc.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Apache License, Version 2.0
* which accompanies this distribution and is available at
* http://www.opensource.org/licenses/apache2.0.php.
***********************************************************************/
package org.locationtech.geomesa.lambda.tools.data
import com.beust.jcommander.Parameters
import org.locationtech.geomesa.lambda.data.LambdaDataStore
import org.locationtech.geomesa.lambda.tools.{LambdaDataStoreCommand, LambdaDataStoreParams}
import org.locationtech.geomesa.tools.data.{CreateSchemaCommand, CreateSchemaParams}
class LambdaCreateSchemaCommand extends CreateSchemaCommand[LambdaDataStore] with LambdaDataStoreCommand {
override val params = new LambdaCreateSchemaParams()
}
@Parameters(commandDescription = "Create a GeoMesa feature type")
class LambdaCreateSchemaParams extends CreateSchemaParams with LambdaDataStoreParams
|
jahhulbert-ccri/geomesa
|
geomesa-lambda/geomesa-lambda-tools/src/main/scala/org/locationtech/geomesa/lambda/tools/data/LambdaCreateSchemaCommand.scala
|
Scala
|
apache-2.0
| 1,111 |
package exceptions
class BadBindingException(val msg: String) extends RuntimeException(msg)
|
j-c-w/mlc
|
src/main/scala/exceptions/BadBindingException.scala
|
Scala
|
gpl-3.0
| 93 |
package com.goyeau.kubernetes.client.operation
import cats.Applicative
import cats.implicits._
import com.goyeau.kubernetes.client.KubernetesClient
import com.goyeau.kubernetes.client.Utils.retry
import io.k8s.apimachinery.pkg.apis.meta.v1.ObjectMeta
import munit.FunSuite
import org.http4s.Status
trait CreatableTests[F[_], Resource <: { def metadata: Option[ObjectMeta] }]
extends FunSuite
with MinikubeClientProvider[F] {
def namespacedApi(namespaceName: String)(implicit client: KubernetesClient[F]): Creatable[F, Resource]
def getChecked(namespaceName: String, resourceName: String)(implicit client: KubernetesClient[F]): F[Resource]
def sampleResource(resourceName: String, labels: Map[String, String] = Map.empty): Resource
def modifyResource(resource: Resource): Resource
def checkUpdated(updatedResource: Resource): Unit
def createChecked(namespaceName: String, resourceName: String)(implicit
client: KubernetesClient[F]
): F[Resource] = createChecked(namespaceName, resourceName, Map.empty)
def createWithResourceChecked(namespaceName: String, resourceName: String)(implicit
client: KubernetesClient[F]
): F[Resource] = createWithResourceChecked(namespaceName, resourceName, Map.empty)
def createChecked(namespaceName: String, resourceName: String, labels: Map[String, String])(implicit
client: KubernetesClient[F]
): F[Resource] = {
val resource = sampleResource(resourceName, labels)
for {
status <- namespacedApi(namespaceName).create(resource)
_ = assertEquals(status, Status.Created)
resource <- getChecked(namespaceName, resourceName)
} yield resource
}
def createWithResourceChecked(namespaceName: String, resourceName: String, labels: Map[String, String])(implicit
client: KubernetesClient[F]
): F[Resource] = {
val resource = sampleResource(resourceName, labels)
for {
_ <- namespacedApi(namespaceName).createWithResource(resource)
retrievedResource <- getChecked(namespaceName, resourceName)
} yield retrievedResource
}
test(s"create a $resourceName") {
usingMinikube { implicit client =>
createChecked(resourceName.toLowerCase, "create-resource")
}
}
test(s"create a $resourceName with resource") {
usingMinikube { implicit client =>
createWithResourceChecked(resourceName.toLowerCase, "create-resource-1")
}
}
test(s"create a $resourceName") {
usingMinikube { implicit client =>
for {
namespaceName <- Applicative[F].pure(resourceName.toLowerCase)
resourceName = "create-update-resource"
status <- namespacedApi(namespaceName).createOrUpdate(sampleResource(resourceName))
_ = assertEquals(status, Status.Created)
_ <- getChecked(namespaceName, resourceName)
} yield ()
}
}
test(s"create a $resourceName with resource") {
usingMinikube { implicit client =>
for {
namespaceName <- Applicative[F].pure(resourceName.toLowerCase)
resourceName = "create-update-resource-1"
_ <- namespacedApi(namespaceName).createOrUpdateWithResource(sampleResource(resourceName))
_ <- getChecked(namespaceName, resourceName)
} yield ()
}
}
def createOrUpdate(namespaceName: String, resourceName: String)(implicit client: KubernetesClient[F]) =
for {
resource <- getChecked(namespaceName, resourceName)
status <- namespacedApi(namespaceName).createOrUpdate(modifyResource(resource))
_ = assertEquals(status, Status.Ok)
} yield ()
test(s"update a $resourceName already created") {
usingMinikube { implicit client =>
for {
namespaceName <- Applicative[F].pure(resourceName.toLowerCase)
resourceName <- Applicative[F].pure("update-resource")
_ <- createChecked(namespaceName, resourceName)
_ <- retry(createOrUpdate(namespaceName, resourceName))
updatedResource <- getChecked(namespaceName, resourceName)
_ = checkUpdated(updatedResource)
} yield ()
}
}
def createOrUpdateWithResource(namespaceName: String, resourceName: String)(implicit
client: KubernetesClient[F]
) =
for {
retrievedResource <- getChecked(namespaceName, resourceName)
updatedResource <- namespacedApi(namespaceName).createOrUpdateWithResource(modifyResource(retrievedResource))
} yield updatedResource
test(s"update a $resourceName already created with resource") {
usingMinikube { implicit client =>
for {
namespaceName <- Applicative[F].pure(resourceName.toLowerCase)
resourceName <- Applicative[F].pure("update-resource-1")
_ <- createChecked(namespaceName, resourceName)
updatedResource <- retry(createOrUpdateWithResource(namespaceName, resourceName))
_ = checkUpdated(updatedResource)
retrievedResource <- getChecked(namespaceName, resourceName)
_ = checkUpdated(retrievedResource)
} yield ()
}
}
}
|
joan38/kubernetes-client
|
kubernetes-client/test/src/com/goyeau/kubernetes/client/operation/CreatableTests.scala
|
Scala
|
apache-2.0
| 5,040 |
package fr.renoux.gaston.util
object TupleImplicits {
@inline final implicit class CoupleOps[A, B](val wrapped: (A, B)) extends AnyVal {
@inline def map1[C](f: A => C): (C, B) = (f(wrapped._1), wrapped._2)
@inline def map2[C](f: B => C): (A, C) = (wrapped._1, f(wrapped._2))
}
}
|
gaelrenoux/gaston
|
src/main/scala/fr/renoux/gaston/util/TupleImplicits.scala
|
Scala
|
apache-2.0
| 296 |
/* Scala.js compiler
* Copyright 2013 LAMP/EPFL
* @author Sébastien Doeraene
*/
package org.scalajs.core.compiler
import scala.tools.nsc._
/** Core definitions for Scala.js
*
* @author Sébastien Doeraene
*/
trait JSDefinitions { self: JSGlobalAddons =>
import global._
// scalastyle:off line.size.limit
object jsDefinitions extends JSDefinitionsClass // scalastyle:ignore
import definitions._
import rootMirror._
class JSDefinitionsClass {
lazy val ScalaJSJSPackage = getPackage(newTermNameCached("scala.scalajs.js")) // compat 2.10/2.11
lazy val JSPackage_typeOf = getMemberMethod(ScalaJSJSPackage, newTermName("typeOf"))
lazy val JSPackage_constructorOf = getMemberMethod(ScalaJSJSPackage, newTermName("constructorOf"))
lazy val JSPackage_debugger = getMemberMethod(ScalaJSJSPackage, newTermName("debugger"))
lazy val JSPackage_native = getMemberMethod(ScalaJSJSPackage, newTermName("native"))
lazy val JSPackage_undefined = getMemberMethod(ScalaJSJSPackage, newTermName("undefined"))
lazy val JSNativeAnnotation = getRequiredClass("scala.scalajs.js.native")
lazy val JSAnyClass = getRequiredClass("scala.scalajs.js.Any")
lazy val JSDynamicClass = getRequiredClass("scala.scalajs.js.Dynamic")
lazy val JSDictionaryClass = getRequiredClass("scala.scalajs.js.Dictionary")
lazy val JSDictionary_delete = getMemberMethod(JSDictionaryClass, newTermName("delete"))
lazy val JSObjectClass = getRequiredClass("scala.scalajs.js.Object")
lazy val JSThisFunctionClass = getRequiredClass("scala.scalajs.js.ThisFunction")
lazy val JSGlobalScopeClass = getRequiredClass("scala.scalajs.js.GlobalScope")
lazy val UndefOrClass = getRequiredClass("scala.scalajs.js.UndefOr")
lazy val UnionClass = getRequiredClass("scala.scalajs.js.$bar")
lazy val JSArrayClass = getRequiredClass("scala.scalajs.js.Array")
lazy val JSArray_apply = getMemberMethod(JSArrayClass, newTermName("apply"))
lazy val JSArray_update = getMemberMethod(JSArrayClass, newTermName("update"))
lazy val JSFunctionClasses = (0 to 22) map (n => getRequiredClass("scala.scalajs.js.Function"+n))
lazy val JSThisFunctionClasses = (0 to 21) map (n => getRequiredClass("scala.scalajs.js.ThisFunction"+n))
lazy val AllJSFunctionClasses = JSFunctionClasses ++ JSThisFunctionClasses
lazy val RuntimeExceptionClass = requiredClass[RuntimeException]
lazy val JavaScriptExceptionClass = getClassIfDefined("scala.scalajs.js.JavaScriptException")
lazy val JSNameAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSName")
lazy val JSFullNameAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSFullName")
lazy val JSBracketAccessAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSBracketAccess")
lazy val JSBracketCallAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSBracketCall")
lazy val JSExportAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExport")
lazy val JSExportDescendentObjectsAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportDescendentObjects")
lazy val JSExportDescendentClassesAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportDescendentClasses")
lazy val JSExportAllAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportAll")
lazy val JSExportNamedAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportNamed")
lazy val JSExportStaticAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportStatic")
lazy val JSExportTopLevelAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSExportTopLevel")
lazy val JSImportAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSImport")
lazy val JSGlobalScopeAnnotation = getRequiredClass("scala.scalajs.js.annotation.JSGlobalScope")
lazy val ScalaJSDefinedAnnotation = getRequiredClass("scala.scalajs.js.annotation.ScalaJSDefined")
lazy val SJSDefinedAnonymousClassAnnotation = getRequiredClass("scala.scalajs.js.annotation.SJSDefinedAnonymousClass")
lazy val HasJSNativeLoadSpecAnnotation = getRequiredClass("scala.scalajs.js.annotation.internal.HasJSNativeLoadSpec")
lazy val JSOptionalAnnotation = getRequiredClass("scala.scalajs.js.annotation.internal.JSOptional")
lazy val JavaDefaultMethodAnnotation = getRequiredClass("scala.scalajs.js.annotation.JavaDefaultMethod")
lazy val JSImportNamespaceObject = getRequiredModule("scala.scalajs.js.annotation.JSImport.Namespace")
lazy val JSAnyTpe = JSAnyClass.toTypeConstructor
lazy val JSObjectTpe = JSObjectClass.toTypeConstructor
lazy val JSGlobalScopeTpe = JSGlobalScopeClass.toTypeConstructor
lazy val JSFunctionTpes = JSFunctionClasses.map(_.toTypeConstructor)
lazy val JSAnyModule = JSAnyClass.companionModule
def JSAny_fromFunction(arity: Int): TermSymbol = getMemberMethod(JSAnyModule, newTermName("fromFunction"+arity))
lazy val JSDynamicModule = JSDynamicClass.companionModule
lazy val JSDynamic_newInstance = getMemberMethod(JSDynamicModule, newTermName("newInstance"))
lazy val JSDynamicLiteral = getMemberModule(JSDynamicModule, newTermName("literal"))
lazy val JSDynamicLiteral_applyDynamicNamed = getMemberMethod(JSDynamicLiteral, newTermName("applyDynamicNamed"))
lazy val JSDynamicLiteral_applyDynamic = getMemberMethod(JSDynamicLiteral, newTermName("applyDynamic"))
lazy val JSObjectModule = JSObjectClass.companionModule
lazy val JSObject_hasProperty = getMemberMethod(JSObjectModule, newTermName("hasProperty"))
lazy val JSObject_properties = getMemberMethod(JSObjectModule, newTermName("properties"))
lazy val JSArrayModule = JSArrayClass.companionModule
lazy val JSArray_create = getMemberMethod(JSArrayModule, newTermName("apply"))
lazy val JSThisFunctionModule = JSThisFunctionClass.companionModule
def JSThisFunction_fromFunction(arity: Int): TermSymbol = getMemberMethod(JSThisFunctionModule, newTermName("fromFunction"+arity))
lazy val JSConstructorTagModule = getRequiredModule("scala.scalajs.js.ConstructorTag")
lazy val JSConstructorTag_materialize = getMemberMethod(JSConstructorTagModule, newTermName("materialize"))
lazy val RawJSTypeAnnot = getRequiredClass("scala.scalajs.js.annotation.RawJSType")
lazy val ExposedJSMemberAnnot = getRequiredClass("scala.scalajs.js.annotation.ExposedJSMember")
lazy val RuntimeStringModule = getRequiredModule("scala.scalajs.runtime.RuntimeString")
lazy val RuntimeStringModuleClass = RuntimeStringModule.moduleClass
lazy val BooleanReflectiveCallClass = getRequiredClass("scala.scalajs.runtime.BooleanReflectiveCall")
lazy val NumberReflectiveCallClass = getRequiredClass("scala.scalajs.runtime.NumberReflectiveCall")
lazy val IntegerReflectiveCallClass = getRequiredClass("scala.scalajs.runtime.IntegerReflectiveCall")
lazy val LongReflectiveCallClass = getRequiredClass("scala.scalajs.runtime.LongReflectiveCall")
lazy val RuntimePackageModule = getPackageObject("scala.scalajs.runtime")
lazy val Runtime_wrapJavaScriptException = getMemberMethod(RuntimePackageModule, newTermName("wrapJavaScriptException"))
lazy val Runtime_unwrapJavaScriptException = getMemberMethod(RuntimePackageModule, newTermName("unwrapJavaScriptException"))
lazy val Runtime_genTraversableOnce2jsArray = getMemberMethod(RuntimePackageModule, newTermName("genTraversableOnce2jsArray"))
lazy val Runtime_jsTupleArray2jsObject = getMemberMethod(RuntimePackageModule, newTermName("jsTupleArray2jsObject"))
lazy val Runtime_constructorOf = getMemberMethod(RuntimePackageModule, newTermName("constructorOf"))
lazy val Runtime_newConstructorTag = getMemberMethod(RuntimePackageModule, newTermName("newConstructorTag"))
lazy val Runtime_propertiesOf = getMemberMethod(RuntimePackageModule, newTermName("propertiesOf"))
lazy val Runtime_linkingInfo = getMemberMethod(RuntimePackageModule, newTermName("linkingInfo"))
lazy val WrappedArrayClass = getRequiredClass("scala.scalajs.js.WrappedArray")
lazy val WrappedArray_ctor = WrappedArrayClass.primaryConstructor
// This is a def, since similar symbols (arrayUpdateMethod, etc.) are in runDefinitions
// (rather than definitions) and we weren't sure if it is safe to make this a lazy val
def ScalaRunTime_isArray: Symbol = getMemberMethod(ScalaRunTimeModule, newTermName("isArray")).suchThat(_.tpe.params.size == 2)
lazy val BoxesRunTime_boxToCharacter = getMemberMethod(BoxesRunTimeModule, newTermName("boxToCharacter"))
lazy val BoxesRunTime_unboxToChar = getMemberMethod(BoxesRunTimeModule, newTermName("unboxToChar"))
lazy val ReflectModule = getRequiredModule("scala.scalajs.reflect.Reflect")
lazy val Reflect_registerLoadableModuleClass = getMemberMethod(ReflectModule, newTermName("registerLoadableModuleClass"))
lazy val Reflect_registerInstantiatableClass = getMemberMethod(ReflectModule, newTermName("registerInstantiatableClass"))
lazy val EnableReflectiveInstantiationAnnotation = getRequiredClass("scala.scalajs.reflect.annotation.EnableReflectiveInstantiation")
}
// scalastyle:on line.size.limit
}
|
xuwei-k/scala-js
|
compiler/src/main/scala/org/scalajs/core/compiler/JSDefinitions.scala
|
Scala
|
bsd-3-clause
| 9,416 |
/*
* Copyright 2010 WorldWide Conferencing, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package net.liftweb {
package util {
import _root_.net.liftweb.common._
/**
* A wiring Cell. A Cell can be a ValueCell which holds
* a value which can be set (and thus update the dependencies),
* a FuncCell (a cell that is a function that depends on other cells),
* or a DynamicCell which has a value that updates each time the cell is
* accessed.
*/
trait Cell[T] {
/**
* The cell's value and most recent change time
*/
def currentValue: (T, Long)
/**
* Get the cell's value
*/
def get: T = currentValue._1
/**
* Create a new Cell by applying the function to this cell
*/
def lift[A](f: T => A): Cell[A] = FuncCell(this)(f)
def lift[A,B](cell: Cell[B])(f: (T, B) => A) = FuncCell(this, cell)(f)
}
object Cell {
def apply[T](v: T): ValueCell[T] = new ValueCell[T](v)
}
/**
* A cell that changes value on each access. This kind of cell
* could be used to access an external resource. <b>Warning</b>
* the function may be accessed many times during a single wiring
* recalculation, so it's best to use this as a front to a value
* that's memoized for some duration.
*/
final case class DynamicCell[T](f: () => T) extends Cell[T] {
/**
* The cell's value and most recent change time
*/
def currentValue: (T, Long) =
f() -> System.nanoTime()
}
/**
* The companion object that has a helpful constructor
*/
object ValueCell {
def apply[A](value: A): ValueCell[A] = new ValueCell(value)
implicit def vcToT[T](in: ValueCell[T]): T = in.get
}
/**
* A ValueCell holds a value that can be mutated.
*/
final class ValueCell[A](initialValue: A) extends Cell[A] with LiftValue[A] {
private var value: A = initialValue
private var ct: Long = System.nanoTime()
/**
* The cell's value and most recent change time
*/
def currentValue: (A, Long) = synchronized {
(value, ct)
}
/**
* Get the cell's value
*/
def set(v: A): A = synchronized {
value = v
ct = System.nanoTime()
value
}
override def toString(): String = synchronized {
"ValueCell("+value+")"
}
override def hashCode(): Int = synchronized {
if (null.asInstanceOf[Object] eq value.asInstanceOf[Object]) 0
else value.hashCode()
}
override def equals(other: Any): Boolean = synchronized {
other match {
case vc: ValueCell[_] => value == vc.get
case _ => false
}
}
}
/**
* A collection of Cells og a given type
*/
final case class SeqCell[T](cells: Cell[T]*) extends Cell[Seq[T]] {
/**
* The cell's value and most recent change time
*/
def currentValue: (Seq[T], Long) = {
val tcv = cells.map(_.currentValue)
tcv.map(_._1) -> tcv.foldLeft(0L)((max, c) => if (max > c._2) max else c._2)
}
}
/**
* The companion object for FuncCell (function cells)
*/
object FuncCell {
/**
* Construct a function cell based on a single parameter
*/
def apply[A, Z](a: Cell[A])(f: A => Z): Cell[Z] = FuncCell1(a, f)
/**
* Construct a function cell based on two parameters
*/
def apply[A, B, Z](a: Cell[A], b: Cell[B])(f: (A, B) => Z): Cell[Z] = FuncCell2(a, b, f)
/**
* Construct a function cell based on three parameters
*/
def apply[A, B, C, Z](a: Cell[A], b: Cell[B], c: Cell[C])(f: (A, B, C) => Z): Cell[Z] = FuncCell3(a, b, c, f)
/**
* Construct a function cell based on four parameters
*/
def apply[A, B, C, D, Z](a: Cell[A], b: Cell[B], c: Cell[C], d: Cell[D])(f: (A, B, C, D) => Z): Cell[Z] = FuncCell4(a, b, c, d, f)
/**
* Construct a function cell based on five parameters
*/
def apply[A, B, C, D, E, Z](a: Cell[A], b: Cell[B], c: Cell[C], d: Cell[D], e: Cell[E])(f: (A, B, C, D, E) => Z): Cell[Z] = FuncCell5(a, b, c, d, e, f)
}
final case class FuncCell1[A, Z](a: Cell[A], f: A => Z) extends Cell[Z] {
private var value: Z = _
private var ct: Long = 0
def currentValue: (Z, Long) = synchronized {
val (v, t) = a.currentValue
if (t > ct) {
value = f(v)
ct = t
}
(value -> ct)
}
}
final case class FuncCell2[A, B, Z](a: Cell[A], b: Cell[B], f: (A, B) => Z) extends Cell[Z] {
private var value: Z = _
private var ct: Long = 0
def currentValue: (Z, Long) = synchronized {
val (v1, t1) = a.currentValue
val (v2, t2) = b.currentValue
val t = WiringHelper.max(t1, t2)
if (t > ct) {
value = f(v1, v2)
ct = t
}
(value -> ct)
}
}
final case class FuncCell3[A, B, C, Z](a: Cell[A], b: Cell[B], c: Cell[C], f: (A, B, C) => Z) extends Cell[Z] {
private var value: Z = _
private var ct: Long = 0
def currentValue: (Z, Long) = synchronized {
val (v1, t1) = a.currentValue
val (v2, t2) = b.currentValue
val (v3, t3) = c.currentValue
val t = WiringHelper.max(t1, t2, t3)
if (t > ct) {
value = f(v1, v2, v3)
ct = t
}
(value -> ct)
}
}
final case class FuncCell4[A, B, C, D, Z](a: Cell[A], b: Cell[B], c: Cell[C], d: Cell[D], f: (A, B, C, D) => Z) extends Cell[Z] {
private var value: Z = _
private var ct: Long = 0
def currentValue: (Z, Long) = synchronized {
val (v1, t1) = a.currentValue
val (v2, t2) = b.currentValue
val (v3, t3) = c.currentValue
val (v4, t4) = d.currentValue
val t = WiringHelper.max(t1, t2, t3, t4)
if (t > ct) {
value = f(v1, v2, v3, v4)
ct = t
}
(value -> ct)
}
}
final case class FuncCell5[A, B, C, D, E, Z](a: Cell[A], b: Cell[B], c: Cell[C], d: Cell[D], e: Cell[E], f: (A, B, C, D, E) => Z) extends Cell[Z] {
private var value: Z = _
private var ct: Long = 0
def currentValue: (Z, Long) = synchronized {
val (v1, t1) = a.currentValue
val (v2, t2) = b.currentValue
val (v3, t3) = c.currentValue
val (v4, t4) = d.currentValue
val (v5, t5) = e.currentValue
val t = WiringHelper.max(t1, t2, t3, t4, t5)
if (t > ct) {
value = f(v1, v2, v3, v4, v5)
ct = t
}
(value -> ct)
}
}
private object WiringHelper {
def max(a: Long, b: Long*): Long = b.foldLeft(a){
(v1, v2) =>
if (v1 > v2) v1 else v2
}
}
}
}
|
lift/lift
|
framework/lift-base/lift-util/src/main/scala/net/liftweb/util/Wiring.scala
|
Scala
|
apache-2.0
| 7,063 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.