code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package sample.persistence import scala.concurrent.duration._ import akka.actor._ import akka.persistence._ object ViewExample extends App { class ExamplePersistentActor extends PersistentActor { override def persistenceId = "sample-id-4" var count = 1 def receiveCommand: Receive = { case payload: String => println(s"persistentActor received ${payload} (nr = ${count})") persist(payload + count) { evt => count += 1 } } def receiveRecover: Receive = { case _: String => count += 1 } } class ExampleView extends PersistentView { private var numReplicated = 0 override def persistenceId: String = "sample-id-4" override def viewId = "sample-view-id-4" def receive = { case "snap" => println(s"view saving snapshot") saveSnapshot(numReplicated) case SnapshotOffer(metadata, snapshot: Int) => numReplicated = snapshot println(s"view received snapshot offer ${snapshot} (metadata = ${metadata})") case payload if isPersistent => numReplicated += 1 println(s"view replayed event ${payload} (num replicated = ${numReplicated})") case SaveSnapshotSuccess(metadata) => println(s"view saved snapshot (metadata = ${metadata})") case SaveSnapshotFailure(metadata, reason) => println(s"view snapshot failure (metadata = ${metadata}), caused by ${reason}") case payload => println(s"view received other message ${payload}") } } val system = ActorSystem("example") val persistentActor = system.actorOf(Props(classOf[ExamplePersistentActor])) val view = system.actorOf(Props(classOf[ExampleView])) import system.dispatcher system.scheduler.schedule(Duration.Zero, 2.seconds, persistentActor, "scheduled") system.scheduler.schedule(Duration.Zero, 5.seconds, view, "snap") }
writeonly/scalaservices
akka-sample/src/main/scala/sample/persistence/ViewExample.scala
Scala
unlicense
1,891
/** * Copyright 2011-2017 GatlingCorp (http://gatling.io) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.gatling.recorder.http.model import scala.collection.JavaConverters._ import io.gatling.commons.util.StringHelper._ import io.netty.buffer.Unpooled import io.netty.handler.codec.http._ import org.asynchttpclient.netty.util.ByteBufUtils object SafeHttpResponse { def fromNettyResponse(nettyResponse: FullHttpResponse): SafeHttpResponse = SafeHttpResponse( nettyResponse.protocolVersion, nettyResponse.status, nettyResponse.headers, nettyResponse.trailingHeaders, ByteBufUtils.byteBuf2Bytes(nettyResponse.content) ) } case class SafeHttpResponse( httpVersion: HttpVersion, status: HttpResponseStatus, headers: HttpHeaders, trailingHeaders: HttpHeaders, body: Array[Byte] ) { def toNettyResponse: FullHttpResponse = { val response = new DefaultFullHttpResponse(httpVersion, status, Unpooled.wrappedBuffer(body)) response.headers.set(headers) response.trailingHeaders.set(trailingHeaders) response } def summary: String = s"""$httpVersion $status |${(headers.asScala ++ trailingHeaders.asScala).map { entry => s"${entry.getKey}: ${entry.getValue}" }.mkString(Eol)}""".stripMargin }
timve/gatling
gatling-recorder/src/main/scala/io/gatling/recorder/http/model/SafeHttpResponse.scala
Scala
apache-2.0
1,839
class Bippo { def length: Int = 123 class Tree } package object p1 { class A implicit class B(val s: String) { def bippy = s } val c: Bippo = new Bippo type D = String } package object p2 { class A implicit class B(val s: String) { def bippy = s } val c: Bippo = new Bippo type D = Int } trait NoWarn { { import p1._ // no warn println("abc".bippy) } { import p1._ // no warn println(new A) } { import p1.B // no warn println("abc".bippy) } { import p1._ // no warn import c._ // no warn println(length) } { import p1._ // no warn import c._ // no warn val x: Tree = null println(x) } { import p1.D // no warn val x: D = null println(x) } } trait Warn { { import p1.A // warn println(123) } { import p1.{ A, B } // warn on A println("abc".bippy) } { import p1.{ A, B } // warn on both println(123) } { import p1._ // no warn (technically this could warn, but not worth the effort to unroll unusedness transitively) import c._ // warn println(123) } { import p1._ // warn println(123) } { class Tree import p1._ // no warn import c._ // warn val x: Tree = null println(x) } { import p1.c._ // warn println(123) } } trait Nested { { import p1._ // warn trait Warn { // warn about unused local trait for good measure import p2._ println(new A) println("abc".bippy) } println("") } { import p1._ // no warn trait NoWarn { import p2.B // no warn println("abc".bippy) println(new A) } println(new NoWarn { }) } { import p1.A // warn trait Warn { import p2.A println(new A) } println(new Warn { }) } }
som-snytt/dotty
tests/untried/neg/warn-unused-imports.scala
Scala
apache-2.0
1,841
/** * Copyright (C) 2009-2011 the original author or authors. * See the notice.md file distributed with this work for additional * information regarding copyright ownership. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.fusesource.scalate.console import _root_.org.fusesource.scalate.test.FunSuiteSupport class SourceLineTest extends FunSuiteSupport { val line = SourceLine(1, "abcd") test("split line") { assertResult(("", "a", "bcd")) { line.splitOnCharacter(0) } assertResult(("a", "b", "cd")) { line.splitOnCharacter(1) } assertResult(("ab", "c", "d")) { line.splitOnCharacter(2) } assertResult(("abc", "d", "")) { line.splitOnCharacter(3) } assertResult(("abcd", "", "")) { line.splitOnCharacter(4) } assertResult(("abcd", "", "")) { line.splitOnCharacter(5) } } }
scalate/scalate
scalate-jersey/src/test/scala/org/fusesource/scalate/console/SourceLineTest.scala
Scala
apache-2.0
1,335
package org.http4s package server package middleware import java.nio.charset.StandardCharsets import org.http4s.server.middleware.EntityLimiter.EntityTooLarge import org.specs2.mutable.Specification import scodec.bits.ByteVector import scalaz.stream.Process.emit import Method._ import Status._ class EntityLimiterSpec extends Specification { import Http4s._ val s = HttpService { case r: Request if r.uri.path == "/echo" => r.decode[String](Response(Ok).withBody) } val b = emit(ByteVector.view("hello".getBytes(StandardCharsets.UTF_8))) "EntityLimiter" should { "Allow reasonable entities" in { EntityLimiter(s, 100).apply(Request(POST, uri("/echo"), body = b)) .map(_ => -1) .run must be_==(-1) } "Limit the maximum size of an EntityBody" in { EntityLimiter(s, 3).apply(Request(POST, uri("/echo"), body = b)) .map(_ => -1) .handle { case EntityTooLarge(i) => i } .run must be_==(3) } "Chain correctly with other HttpServices" in { val s2 = HttpService { case r: Request if r.uri.path == "/echo2" => r.decode[String](Response(Ok).withBody) } val st = EntityLimiter(s, 3) (st.apply(Request(POST, uri("/echo2"), body = b)) .map(_ => -1) .run must be_==(-1)) && (st.apply(Request(POST, uri("/echo"), body = b)) .map(_ => -1) .handle { case EntityTooLarge(i) => i } .run must be_==(3)) } } }
hvesalai/http4s
server/src/test/scala/org/http4s/server/middleware/EntityLimiterSpec.scala
Scala
apache-2.0
1,479
package com.overviewdocs.query import scala.collection.immutable /** A way of searching for documents using a search index. * * This is modeled after ElasticSearch's (JSON) Query DSL. See * http://www.elastic.co/guide/en/elasticsearch/reference/1.x/query-dsl.html */ sealed trait Query { /** Returns an equivalent Query, with AndQuery(AndQuery(a, b), c) rewritten * to AndQuery(a, b, c). */ def flatten: Query } sealed trait BooleanQuery extends Query case class AndQuery(nodes: immutable.Seq[Query]) extends Query with BooleanQuery { override def flatten = AndQuery(nodes.flatMap(_ match { case AndQuery(children) => { // recurse children.flatMap(_.flatten match { case AndQuery(subChildren) => subChildren case query => Vector(query) }) } case query => Vector(query) })) } case class OrQuery(nodes: immutable.Seq[Query]) extends Query with BooleanQuery { override def flatten = OrQuery(nodes.flatMap(_ match { case OrQuery(children) => { // recurse children.flatMap(_.flatten match { case OrQuery(subChildren) => subChildren case query => Vector(query) }) } case query => Vector(query) })) } case class NotQuery(node: Query) extends Query with BooleanQuery { override def flatten = NotQuery(node.flatten) } case object AllQuery extends Query with BooleanQuery { override def flatten = this } sealed trait FieldQuery extends Query { val field: Field override def flatten = this } case class PhraseQuery(field: Field, phrase: String) extends Query with FieldQuery case class PrefixQuery(field: Field, prefix: String) extends Query with FieldQuery case class FuzzyTermQuery(field: Field, term: String, fuzziness: Option[Int]) extends Query with FieldQuery case class ProximityQuery(field: Field, phrase: String, slop: Int) extends Query with FieldQuery /** A regular-expression query. * * The regex hasn't actually been parsed: that will happen during execution and * cause a warning (and match no documents) if it's invalid. (Rationale: the * query language doesn't have any invalid input.) */ case class RegexQuery(field: Field, regex: String) extends Query with FieldQuery object Query { def walkFields(query: Query)(f: Field => Unit): Unit = query match { case AllQuery => {} case AndQuery(nodes) => { nodes.foreach(q => walkFields(q)(f)) } case OrQuery(nodes) => { nodes.foreach(q => walkFields(q)(f)) } case NotQuery(p) => walkFields(p)(f) case fq: FieldQuery => f(fq.field) } }
overview/overview-server
common/src/main/scala/com/overviewdocs/query/Query.scala
Scala
agpl-3.0
2,556
package org.vertx.scala.router import java.io.FileNotFoundException import java.net.URLEncoder import org.vertx.scala.FutureOps import org.vertx.scala.core._ import org.vertx.scala.core.file.FileProps import org.vertx.scala.core.http.{HttpServerRequest, HttpServerResponse} import FutureOps._ import org.vertx.scala.router.routing._ import scala.concurrent.Future import scala.util.{Failure, Success} /** * The Router trait can be extended to give access to an easy way to write nice routes for your * HTTP server. * * @author <a href="http://www.campudus.com/">Joern Bernhardt</a> */ trait Router extends (HttpServerRequest => Unit) { this: VertxAccess => type Routing = PartialFunction[RouteMatch, Reply] /** * Override this method to define your routes for the request handler. * * @param req The HttpServerRequest that came in. * @return A partial function that matches all routes. */ def routes(implicit req: HttpServerRequest): Routing /** * Override this method for your custom authentication check. * * @param req The HttpServerRequest to check. * @return A future telling whether the request is authorized (true) or not (false / Exception). */ protected def checkAuthentication(req: HttpServerRequest): Future[Boolean] = { Future.successful(false) } /** The working directory */ protected def workingDirectory: String = "./" /** File to send if the given file in SendFile was not found. */ protected def notFoundFile: String = "404.html" /** * Use this to check for authentication in your routes. * * @param replyIfAuthed The reply to send if the request is successfully authed. * @param req The HttpServerRequest that was sent. * @return The given replyIfAuthed or an Error reply that the request wasn't authed. */ final protected def authed(replyIfAuthed: => Reply)(implicit req: HttpServerRequest): Reply = { def unauthorized(ex: Option[Throwable]): Reply = ex match { case Some(cause: RouterException) => Error(cause) case Some(cause) => Error(RouterException(message = "Unauthorized", cause = cause, id = "UNAUTHORIZED", statusCode = 401)) case None => Error(RouterException(message = "Unauthorized", id = "UNAUTHORIZED", statusCode = 401)) } req.pause() AsyncReply(checkAuthentication(req) map { authenticated => req.resume() if (authenticated) replyIfAuthed else unauthorized(None) } recover { case x => req.resume() unauthorized(Some(x)) }) } private val noRouteMatch: RouteMatch => Reply = _ => Error(RouterException(message = "No route matched.", id = "NO_ROUTE", statusCode = 404)) private def matcherFor(routeMatch: RouteMatch, req: HttpServerRequest): Reply = { val pf: PartialFunction[RouteMatch, Reply] = routes(req) val tryAllThenNoRouteMatch: Function[RouteMatch, Reply] = _ => pf.applyOrElse(All(req.path()), noRouteMatch) pf.applyOrElse(routeMatch, tryAllThenNoRouteMatch) } private def fileExists(file: String): Future[String] = asyncResultToFuture { tryFn: ResultHandler[Boolean] => vertx.fileSystem.exists(file, tryFn) } map { case true => file case false => throw new FileNotFoundException(file) } private def addIndexToDirName(path: String): String = if (path.endsWith("/")) path + "index.html" else path + "/index.html" private def directoryToIndexFile(path: String): Future[String] = asyncResultToFuture { tryFn: ResultHandler[FileProps] => vertx.fileSystem.lprops(path, tryFn) } flatMap { fp => if (fp.isDirectory) fileExists(addIndexToDirName(path)) else Future.successful(path) } private def urlEncode(str: String) = URLEncoder.encode(str, "UTF-8") private def endResponse(resp: HttpServerResponse, reply: SyncReply): Unit = { reply match { case NoBody => resp.end() case Ok(js) => resp.setStatusCode(200) resp.setStatusMessage("OK") resp.putHeader("Content-type", "application/json") resp.end(js.encode()) case SendFile(path, absolute) => (for { exists <- fileExists(if (absolute) path else s"$workingDirectory/$path") file <- directoryToIndexFile(exists) } yield { logger.info(s"Serving file $file after receiving request for: $path") resp.sendFile(file, notFoundFile) }) recover { case ex: FileNotFoundException => endResponse(resp, Error(RouterException("File not found", ex, "errors.routing.fileNotFound", 404))) case ex => endResponse(resp, Error(RouterException("send file exception", ex, "errors.routing.sendFile", 500))) } case Error(RouterException(_, cause, id, 404)) => logger.info(s"File not found", cause) resp.setStatusCode(404) resp.setStatusMessage("NOT FOUND") resp.sendFile(notFoundFile) case Error(RouterException(message, cause, id, statusCode)) => logger.warn(s"Error $statusCode: $message", cause) resp.setStatusCode(statusCode) resp.setStatusMessage(id) message match { case null => resp.end() case msg => resp.end(msg) } } } private def sendReply(req: HttpServerRequest, reply: Reply): Unit = { logger.debug(s"Sending back reply as response: $reply") reply match { case AsyncReply(future) => future.onComplete { case Success(r) => sendReply(req, r) case Failure(x: RouterException) => endResponse(req.response(), errorReplyFromException(x)) case Failure(x: Throwable) => endResponse(req.response(), Error(routerException(x))) } case SetCookie(key, value, nextReply) => req.response().headers().addBinding("Set-Cookie", s"${urlEncode(key)}=${urlEncode(value)}") sendReply(req, nextReply) case Header(key, value, nextReply) => req.response().putHeader(key, value) sendReply(req, nextReply) case x: SyncReply => endResponse(req.response(), x) } } private def routerException(ex: Throwable): RouterException = ex match { case x: RouterException => x case x => RouterException(message = x.getMessage, cause = x) } private def errorReplyFromException(ex: RouterException) = Error(ex) /** * To be able to use this in `HttpServer.requestHandler()`, the Router needs to be a `HttpServerRequest => Unit`. This * apply method starts the magic to be able to use `override def request() = ...` for the routes. * * @param req The HttpServerRequest that comes in. */ override final def apply(req: HttpServerRequest): Unit = { logger.info(s"${req.method()}-Request: ${req.uri()}") val reply = try { val path = req.path() val routeMatch: RouteMatch = req.method() match { case "GET" => Get(path) case "PUT" => Put(path) case "POST" => Post(path) case "DELETE" => Delete(path) case "OPTIONS" => Options(path) case "HEAD" => Head(path) case "TRACE" => Trace(path) case "PATCH" => Patch(path) case "CONNECT" => Connect(path) } matcherFor(routeMatch, req) } catch { case ex: RouterException => errorReplyFromException(ex) case ex: Throwable => logger.warn(s"Uncaught Exception for request ${req.absoluteURI()}", ex) errorReplyFromException(routerException(ex)) } sendReply(req, reply) } }
galderz/mod-lang-scala
src/main/scala/org/vertx/scala/router/Router.scala
Scala
apache-2.0
7,488
import akka.http.scaladsl.model.ContentTypes.`application/json` import akka.http.scaladsl.model.StatusCodes import akka.http.scaladsl.server.Route import com.delprks.productservicesprototype.domain.Offer import com.delprks.productservicesprototype.domain.response.{ErrorResponse, Responses} import util.AbstractOffersSpec class MultipleOffersSpec extends AbstractOffersSpec { "The service" should { "return a response with offers" in new OffersScope { insertOffer() Get("/offers") ~> Route.seal(routes) ~> check { status must be equalTo StatusCodes.OK contentType must be equalTo `application/json` responseAs[Responses[Offer]].total must be > 0 } } "return a response with the requested limit" in new OffersScope { insertOffer() Get("/offers?limit=1") ~> Route.seal(routes) ~> check { status must be equalTo StatusCodes.OK responseAs[Responses[Offer]].total must be equalTo 1 } } "return a 400 Bad Request when a limit greater than the maximum is requested" in new OffersScope { Get("/offers?limit=101") ~> Route.seal(routes) ~> check { status must be equalTo StatusCodes.BadRequest responseAs[ErrorResponse].errors.size must be > 0 } } } }
delprks/product-services-prototype
src/it/scala/MultipleOffersSpec.scala
Scala
mit
1,282
package edu.mit.csail.cap.query package analysis /** Query a trace for a feature from a demo trace */ sealed trait CallQuery extends Ordered[CallQuery] { /** Identifying, descriptive methods */ def methods: Set[Method] /** * Returns a stream of seed events for matches. * The first event in a match is the ancestor of all events in a match. */ def search(t: BoundaryAnalysis): Traversable[List[Event]] /** Quick check before search (optimization) */ def has(t: BoundaryAnalysis): Boolean /** Find number of matches */ def count(t: BoundaryAnalysis): Int override def compare(that: CallQuery) = this.toString.compare(that.toString) /** Select events happening under this query (for extends and invokes) */ def under(t: BoundaryAnalysis) = t.select(Or({ for (e :: _ <- search(t)) yield e.asInstanceOf[Enter].contains }.toList)) /** Select stack traces for this query (not including the element itself) */ def over(t: BoundaryAnalysis) = t.select(Or({ for (e :: _ <- search(t)) yield StackTrace(e) }.toList)) } object EmptyQuery extends CallQuery { override def methods = Set() override def search(t: BoundaryAnalysis) = Nil override def has(t: BoundaryAnalysis) = false override def count(t: BoundaryAnalysis) = 0 override def toString = "" } object CallQuery { def fromString(meta: Metadata, s: String): CallQuery = if (s.isEmpty) EmptyQuery else s(0) match { case '+' => Extends(meta.method(s.substring(1).toLong)) case '=' => Invokes(meta.method(s.substring(1).toLong)) case '[' => val comma = s.indexOf(',') NestedQuery( fromString(meta, s.substring(1, comma)), fromString(meta, s.substring(comma + 1, s.size - 1))) case '{' => val comma = s.indexOf(',') Extends( meta.method(s.substring(1, comma).toLong), Some(meta.clazz(s.substring(comma + 1, s.size - 1).toLong))) case 'r' => Invokes(meta.method(s.substring(1).toLong), Not(ValueIs(Null))) case _ => ??? } } /** Framework definition user extensions in the sub-types of the class */ case class Extends(definition: Method, declaration: Option[ClassType] = None) extends CallQuery { override def methods = Set(definition) def supertype = declaration.getOrElse(definition.declarer) def extensions(b: FrameworkBoundary = AllUser): Set[Method] = definition.overriding(b.isUser, supertype) override def search(t: BoundaryAnalysis) = t.member(extensions(t.b)).view.map(List(_)) override def count(t: BoundaryAnalysis) = t.member(extensions(t.b)).size override def has(t: BoundaryAnalysis) = this match { case Extends(m, None) if m.toString == "java.lang.Object.toString()Ljava/lang/String;" => true case _ => (t.methods intersect extensions(t.b)).size > 0 } override def toString = declaration match { case None => "+" + definition.id case Some(t) => "{" + definition.id + "," + t.id + "}" } } /** Simple call to a framework (or its extension) */ case class Invokes(m: Method, filter: Query = True) extends CallQuery { override def methods = Set(m) val q = Set(m) ++ m.overriding() override def search(t: BoundaryAnalysis) = t.member(q).select(filter).view.collect { // add return seed as well case e: Enter => e :: (e.exit match { case Some(d) => d :: Nil case None => Nil }) } override def count(t: BoundaryAnalysis) = t.member(q).size /** TODO Very slow! Not clear why since it should be Lucene-based. Make an under approximation now */ override def has(t: BoundaryAnalysis) = t.methods(m) //(t.methods intersect q).size > 0 override def toString = "=" + m.id } /** Group call queries by the declaring classes */ case class ClassQuery(clazz: ClassType, queries: Set[CallQuery]) extends CallQuery { override def methods = queries.flatMap(_.methods) override def search(t: BoundaryAnalysis) = queries.flatMap(_.search(t)) override def count(t: BoundaryAnalysis) = queries.map(_.count(t)).sum /** TODO: performance optimization, over approximation */ override def has(t: BoundaryAnalysis) = true //queries.exists(_.has(t)) override def toString = queries.map(_.toString).mkString("(", ",", ")") } case class NestedQuery(parent: CallQuery, child: CallQuery) extends CallQuery { override def methods = parent.methods ++ child.methods override def search(t: BoundaryAnalysis) = for ( r1 <- parent.search(t); r2 <- child.search(t.select(r1(0).asInstanceOf[Enter].contains)) ) yield r1 ::: r2 override def count(t: BoundaryAnalysis) = search(t).size /** XXX: over approximation ! */ override def has(t: BoundaryAnalysis) = parent.has(t) && child.has(t) //!search(t).isEmpty override def toString = "[" + parent + "," + child + "]" } case class Score( // original query q: CallQuery, // maximum heuristics; higher -> more important heuristics: Double = 0, // minimum depth; lower -> more important depth: Int = 0, // # documents / # containing documents or 0; higher -> more specific IDF: Double = 0, // boolean for keyword match; higher -> more important keyword: Int = 0) /** Distinct score queries */ case class Scores(scores: Set[Score]) { def idf(target: Group) = if (target.isEmpty) this else { debug("computing idf") val n = target.traces.size val out = Scores(scores.map { case score => val count = target.traces.filter(score.q.has).size; score.copy(IDF = if (count == 0) 0 else Math.log(n.toDouble / count.toDouble)) }) debug("done") out } def keyword(meta: Metadata, q: String) = if (q.trim() == "") this else { val index = db.Lucene.index(meta, scores.flatMap(_.q.methods)) val matches = index.search(index.containsOne(q)) Scores(scores.map { case score => score.copy(keyword = (matches intersect score.q.methods).size) }) } def declarationClass(q: CallQuery): ClassType = q match { case q: Invokes => q.m.declarer.sourceClass case q: Extends => q.supertype.sourceClass case ClassQuery(clazz, _) => clazz case EmptyQuery => ??? case NestedQuery(parent, child) => declarationClass(parent) } /** Group queries by the defining class */ def groupByClass = { // extract defining class for each call query val groups = scores.groupBy(score => declarationClass(score.q)) Scores(groups.map { case (clazz, scores) => Score( q = ClassQuery(clazz, scores.map(_.q)), keyword = scores.map(_.keyword).max, depth = scores.map(_.depth).min, IDF = scores.map(_.IDF).max, heuristics = scores.map(_.heuristics).max) }.toSet) } /** Top-down sorted list */ def sorted = scores.toList.sortBy(Ranking.lexicographic).reverse def size = scores.size } object Ranking { // - high is good def lexicographic(a: Score) = ( // keyword matching first a.keyword, // extends first a.q match { case _: Extends => 2 case _: Invokes => 1 case _ => 0 }, // specific first (absent or common get rank 0) a.IDF, // closer to the top get higher rank -a.depth, // name heuristic a.heuristics) } object Heuristics { /** [0,1] priority. Threshold .5 for getters/util, 1 for interesting stuff */ def apply(m: Method): Double = m match { case m if m.isSynthetic => 0 case m if m.isConstructor || m.isStaticInitializer => .25 case m if m.name == "equals" && m.sig == "(Ljava/lang/Object;)Z" => .25 case m if m.name == "hashCode" && m.sig == "()I" => .25 case m if PrefixMask("java.lang.")(m.declarer) => .4 case m if PrefixMask("java.util.")(m.declarer) => .4 case m if m.name == "getAdapter" && m.sig == "(Ljava/lang/Class;)Ljava/lang/Object;" => .5 case m if m.name.startsWith("get") => .75 case m if m.name.startsWith("has") && m.returnType == BooleanType => .75 case m if m.name.startsWith("is") && m.returnType == BooleanType => .75 case m if m.name.startsWith("can") && m.returnType == BooleanType => .75 case m if m.declarer.name.endsWith("Listener") => .75 case _ => 1.0 } }
kyessenov/semeru
src/main/scala/analysis/CallQuery.scala
Scala
gpl-3.0
8,394
/** Copyright 2014 TappingStone, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.prediction.controller import org.apache.spark.SparkContext /** Mix in and implement this trait if your model cannot be persisted by * PredictionIO automatically. A companion object extending * IPersistentModelLoader is required for PredictionIO to load the persisted * model automatically during deployment. * * {{{ * class MyModel extends IPersistentModel[MyParams] { * def save(id: String, params: MyParams, sc: SparkContext): Boolean = { * ... * } * } * * object MyModel extends IPersistentModelLoader[MyParams, MyModel] { * def apply(id: String, params: MyParams, sc: Option[SparkContext]): MyModel = { * ... * } * } * }}} * * In Java, all you need to do is to implement this interface, and add a static * method with 3 arguments of type String, [[Params]], and SparkContext. * * {{{ * public class MyModel implements IPersistentModel<MyParams>, Serializable { * ... * public boolean save(String id, MyParams params, SparkContext sc) { * ... * } * * public static MyModel load(String id, Params params, SparkContext sc) { * ... * } * ... * } * }}} * * @tparam AP Algorithm parameters class. * @see [[IPersistentModelLoader]] * @group Algorithm */ trait IPersistentModel[AP <: Params] { /** Save the model to some persistent storage. * * This method should return true if the model has been saved successfully so * that PredictionIO knows that it can be restored later during deployment. * This method should return false if the model cannot be saved (or should * not be saved due to configuration) so that PredictionIO will re-train the * model during deployment. All arguments of this method are provided by * automatically by PredictionIO. * * @param id ID of the run that trained this model. * @param params Algorithm parameters that were used to train this model. * @param sc An Apache Spark context. */ def save(id: String, params: AP, sc: SparkContext): Boolean } /** Implement an object that extends this trait for PredictionIO to support * loading a persisted model during serving deployment. * * @tparam AP Algorithm parameters class. * @tparam M Model class. * @see [[IPersistentModel]] * @group Algorithm */ trait IPersistentModelLoader[AP <: Params, M] { /** Implement this method to restore a persisted model that extends the * [[IPersistentModel]] trait. All arguments of this method are provided * automatically by PredictionIO. * * @param id ID of the run that trained this model. * @param params Algorithm parameters that were used to train this model. * @param sc An optional Apache Spark context. This will be injected if the * model was generated by a [[PAlgorithm]]. */ def apply(id: String, params: AP, sc: Option[SparkContext]): M } /** Mix in this trait if your model cannot be persisted to PredictionIO's * metadata store for any reason and want to have it persisted to local * filesystem instead. These traits contain concrete implementation and need * not be implemented. * * {{{ * class MyModel extends IFSPersistentModel[MyParams] { * ... * } * * object MyModel extends IFSPersistentModelLoader[MyParams, MyModel] { * ... * } * }}} * * @tparam AP Algorithm parameters class. * @see [[IFSPersistentModelLoader]] * @group Algorithm */ trait IFSPersistentModel[AP <: Params] extends IPersistentModel[AP] { def save(id: String, params: AP, sc: SparkContext) = { Utils.save(id, this) true } } /** Implement an object that extends this trait for PredictionIO to support * loading a persisted model from local filesystem during serving deployment. * * @tparam AP Algorithm parameters class. * @tparam M Model class. * @see [[IFSPersistentModel]] * @group Algorithm */ trait IFSPersistentModelLoader[AP <: Params, M] extends IPersistentModelLoader[AP, M] { def apply(id: String, params: AP, sc: Option[SparkContext]): M = { Utils.load(id).asInstanceOf[M] } }
TheDataShed/PredictionIO
core/src/main/scala/controller/IPersistentModel.scala
Scala
apache-2.0
4,716
package org.typeclassopedia package std import scala.{Conversion, None, Option, Some, StringContext} import org.typeclassopedia.extras.Show import scala.Predef.implicitly import java.lang.{IllegalArgumentException, String} object Options { extension[T](t: T) { def some: Option[T] = Some(t) } def none[T]: Option[T] = None trait OptionFunctor extends Functor[Option] { extension [A, B](x: Option[A]) override def map(f: A => B): Option[B] = x map f } trait OptionPointed extends Pointed[Option] { extension [A](a: A) override def point: Option[A] = Some(a) } trait OptionCopointed extends Copointed[Option] { extension[A](f: Option[A]) override def extract: A = f.getOrElse(throw new IllegalArgumentException("Option cannot be None")) } trait OptionApplicative extends Applicative[Option] { extension [A, B](ma: Option[A]) def <*>(f: Option[A => B]): Option[B] = for { m <- ma g <- f } yield g(m) } trait OptionAlternative extends Alternative[Option] { def empty[A]: Option[A] = None extension [A, B](a: Option[A]) override def <|>(b: Option[A]): Option[A] = if (a.isDefined) a else b } trait OptionFoldable extends Foldable[Option] { extension[A, B](value: Option[A]) override def foldMap(f: A => B)(using monoid: Monoid[B]): B = value.fold(monoid.zero)(f) } trait OptionMonad extends Monad[Option] with OptionApplicative { extension[A, B](ma: Option[A]) override def flatMap(f: A => Option[B]): Option[B] = ma flatMap f } trait OptionComonad extends Comonad[Option] { extension[A, B](a: Option[A]) override def duplicate: Option[Option[A]] = Option(a) } trait OptionMonadPlus extends MonadPlus[Option] { def mzero[A]: Option[A] = None extension[A](a: Option[A]) override def mplus(b: Option[A]): Option[A] = a orElse b } given [A: Semigroup] as Semigroup[Option[A]] = new Semigroup[Option[A]] { extension(a: Option[A]) override def append(b: Option[A]): Option[A] = (a, b) match { case (Some(a1), Some(a2)) => Some(a1.append(a2)) case (Some(_), None) => a case (None, Some(_)) => b case (None, None) => None } } trait OptionTraverse extends Traversable[Option] with OptionFunctor with OptionFoldable { extension[G[_]: Applicative, A, B](fa: Option[A]) override def traverse(f: A => G[B]): G[Option[B]] = { val none: Option[B] = None fa.fold(none.pure)(v => f(v).map((b: B) => Option(b))) } } trait OptionShow { given [T: Show] as Show[Option[T]] = new Show[Option[T]] { def show(option: Option[T]): String = option.fold("None")(v => s"Option(${v.show})") } } trait OptionAll extends OptionPointed with OptionApplicative with OptionCopointed with OptionTraverse with OptionMonad with OptionComonad with OptionMonadPlus with OptionAlternative with OptionShow given optionAll as OptionAll }
channingwalton/typeclassopedia
src/main/scala/org/typeclassopedia/std/Options.scala
Scala
mit
3,183
package domain.logic import domain.models.{LunchProvider, LunchOffer} import org.joda.money.Money import java.time.LocalDate import org.scalamock.scalatest.MockFactory import org.scalatest._ class LunchResolverSaltNPepperSpec extends FlatSpec with Matchers with MockFactory { it should "resolve offers for week of 2015-06-19" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2015-06-19.html") val offers = resolver.resolve(url) offers should have size 24 offers should contain (LunchOffer(0, "Grüne Bohneneintopf mit Kasslerfleisch", date("2015-06-15"), euro("3.90"), Id)) offers should contain (LunchOffer(0, "Hähnchenkeule in Curry-Mango-Rahm, frische Buttermöhren, Kartoffeln", date("2015-06-15"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "Putenstreifen mit Pilzen in Käsesahnesauce auf Spaghetti", date("2015-06-15"), euro("5.70"), Id)) offers should contain (LunchOffer(0, "Sahnemilchreis mit Kirschen, 1 Tasse Kaffee", date("2015-06-15"), euro("5.30"), Id)) offers should contain (LunchOffer(0, "Wochenangebot: Rumpsteak (180gr.), Grillbutter, Pommes frites, Salatbeilage", date("2015-06-15"), euro("6.90"), Id)) offers should contain (LunchOffer(0, "Frische Paprikacremesuppe mit geröstetem Bacon", date("2015-06-16"), euro("3.90"), Id)) offers should contain (LunchOffer(0, "Putenleber, hausgemachter Apfelrotkohl, hausgemachtes Kartoffelpüree", date("2015-06-16"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "Gefüllte Schnitzel „Cordon bleu“, mediterranem Gemüsegratin", date("2015-06-16"), euro("5.70"), Id)) offers should contain (LunchOffer(0, "Blumenkohlgratin, 1 Dessert", date("2015-06-16"), euro("4.90"), Id)) offers should contain (LunchOffer(0, "Wochenangebot: Rumpsteak (180gr.), Grillbutter, Pommes frites, Salatbeilage", date("2015-06-16"), euro("6.90"), Id)) offers should contain (LunchOffer(0, "Erbseneintopf mit Wiener Würstchenscheiben", date("2015-06-17"), euro("3.90"), Id)) offers should contain (LunchOffer(0, "Frische Lachsfiletwürfel auf Bandnudeln, Spinat-Käse-Sauce", date("2015-06-17"), euro("5.70"), Id)) offers should contain (LunchOffer(0, "Hühnerfrikassee mit Butterreis", date("2015-06-17"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "4 Kartoffelpuffer mit Apfelmus", date("2015-06-17"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "Wochenangebot: Rumpsteak (180gr.), Grillbutter, Pommes frites, Salatbeilage", date("2015-06-17"), euro("6.90"), Id)) offers should contain (LunchOffer(0, "Thai Suppe mit Hühnerfleisch und Frischem Koriander", date("2015-06-18"), euro("3.90"), Id)) offers should contain (LunchOffer(0, "Frische Hähnchenbrust auf gebratenen Asianudeln, Kokos-Sauce", date("2015-06-18"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "Paprika-Gulasch oder Champignon-Gulasch mit Nudeln Sauerrahm", date("2015-06-18"), euro("5.70"), Id)) offers should contain (LunchOffer(0, "2 Eier, Senfsauce, Buttergemüse, Kartoffeln, 1 Dessert", date("2015-06-18"), euro("4.90"), Id)) offers should contain (LunchOffer(0, "Wochenangebot: Rumpsteak (180gr.), Grillbutter, Pommes frites, Salatbeilage", date("2015-06-18"), euro("6.90"), Id)) offers should contain (LunchOffer(0, "Spaghetti-Bolognese", date("2015-06-19"), euro("5.20"), Id)) offers should contain (LunchOffer(0, "Kasslersteak mit Pommes frites und Weißkrautsalat", date("2015-06-19"), euro("5.70"), Id)) offers should contain (LunchOffer(0, "Sommerpommes, 1 Dessert", date("2015-06-19"), euro("4.90"), Id)) offers should contain (LunchOffer(0, "Wochenangebot: Rumpsteak (180gr.), Grillbutter, Pommes frites, Salatbeilage", date("2015-06-19"), euro("6.90"), Id)) } it should "resolve offers for Easter week of 2015-03-30" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2015-03-30.html") val offers = resolver.resolve(url) offers should have size 19 offers.filter(_.day == date("2015-03-30")) should have size 5 offers.filter(_.day == date("2015-03-31")) should have size 5 offers.filter(_.day == date("2015-04-01")) should have size 5 offers.filter(_.day == date("2015-04-02")) should have size 4 offers.filter(_.day == date("2015-04-03")) should have size 0 } it should "resolve offers for week of 2015-05-29" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2015-05-29.html") val offers = resolver.resolve(url) offers should have size 19 offers.filter(_.day == date("2015-05-25")) should have size 0 offers.filter(_.day == date("2015-05-26")) should have size 5 offers.filter(_.day == date("2015-05-27")) should have size 5 offers.filter(_.day == date("2015-05-28")) should have size 5 offers.filter(_.day == date("2015-05-29")) should have size 4 } it should "resolve offers for week of 2015-07-11" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2015-07-11.html") val offers = resolver.resolve(url) offers should have size 24 } it should "resolve offers for week of 2015-08-10" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2015-08-10.html") val offers = resolver.resolve(url) offers should have size 24 offers should contain(LunchOffer(0, "Gefülltes Schnitzel „Toskaner Art“ mit Tomatensalat und Pommes frites", date("2015-08-11"), euro("5.70"), Id)) offers should contain(LunchOffer(0, "Gefülltes Schnitzel „Cordon bleu“ mit buntem Krautsalat und Pommes frites", date("2015-08-12"), euro("5.70"), Id)) offers should contain(LunchOffer(0, "Hacksteak „Toskana“ mit mediterraner Gemüsepfanne dazu Pommes frites", date("2015-08-14"), euro("5.20"), Id)) } it should "resolve offers for week of 2016-02-16" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2016-02-16.html") val offers = resolver.resolve(url) offers should have size 24 } it should "resolve offers for week of 2016-04-12" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2016-04-12.html") val offers = resolver.resolve(url) offers should have size 24 offers should contain(LunchOffer(0, "Wochenangebot: Bunter Salat mit frischen Erdbeeren, gebratenem Hähnchenfleisch und hausgemachtem Erdbeer-Minze-Joghurt-Dressing", date("2016-04-11"), euro("5.90"), Id)) } it should "resolve offers for week of 2018-09-14" in { val url = getClass.getResource("/mittagsplaene/salt_n_pepper/2018-09-14.html") val offers = resolver.resolve(url) offers should have size 19 offers should contain(LunchOffer(0, "Serbischer Bohneneintopf", date("2018-09-10"), euro("3.50"), Id)) offers should contain(LunchOffer(0, "Spaghetti Bolognese mit Reibekäse", date("2018-09-10"), euro("5.90"), Id)) } private def resolver = { val validatorStub = stub[DateValidator] (validatorStub.isValid _).when(*).returning(true) new LunchResolverSaltNPepper(validatorStub) } private val Id = LunchProvider.SALT_N_PEPPER.id private def date(dateString: String): LocalDate = LocalDate.parse(dateString) private def euro(moneyString: String): Money = Money.parse(s"EUR $moneyString") }
rori-dev/lunchbox
backend-play-akka-scala/test/domain/logic/LunchResolverSaltNPepperSpec.scala
Scala
mit
7,278
package db.migration.postgres import db.migration.{V1_030__SpillStateToDisk => V1_030__SpillStateToDiskDefinition} import slick.jdbc.{JdbcProfile, PostgresProfile} class V1_030__SpillStateToDisk extends V1_030__SpillStateToDiskDefinition { override protected lazy val profile: JdbcProfile = PostgresProfile }
TouK/nussknacker
ui/server/src/main/scala/db/migration/postgres/V1_030__SpillStateToDisk.scala
Scala
apache-2.0
312
package com.twitter.finagle.filter import com.twitter.conversions.DurationOps._ import com.twitter.finagle.Filter.TypeAgnostic import com.twitter.finagle._ import com.twitter.finagle.context.Contexts import com.twitter.finagle.filter.ServerAdmissionControl.ServerParams import com.twitter.finagle.server.StackServer import com.twitter.finagle.stack.Endpoint import com.twitter.util.{Await, Future} import java.util.concurrent.atomic.AtomicInteger import org.scalatestplus.mockito.MockitoSugar import org.scalatest.funsuite.AnyFunSuite class ServerAdmissionControlTest extends AnyFunSuite with MockitoSugar { class Ctx { val a = new AtomicInteger(1) class AdditionFilter(delta: Int) extends TypeAgnostic { val name = s"multiple $delta" override def toFilter[Req, Rep]: Filter[Req, Rep, Req, Rep] = new SimpleFilter[Req, Rep] { def apply(req: Req, service: Service[Req, Rep]): Future[Rep] = { a.addAndGet(delta) service(req) } } } def injectFilter(filter: AdditionFilter): Stackable[ServiceFactory[Int, Int]] = new Stack.TransformParams[ServiceFactory[Int, Int]] { private val head = Stack.Head(Stack.Role("addAc")) def transform(params: Stack.Params): Stack.Params = { val j: ServerParams => TypeAgnostic = _ => filter val nextFilters = params[ServerAdmissionControl.Filters].filters + (filter.name -> j) params + ServerAdmissionControl.Filters(nextFilters) } def role: Stack.Role = head.role def description: String = head.description def parameters: Seq[Stack.Param[_]] = head.parameters } val echo = ServiceFactory.const(Service.mk[Int, Int](v => Future.value(v))) val stack = StackServer .newStack[Int, Int].insertBefore( ServerAdmissionControl.role, injectFilter(new AdditionFilter(2))) ++ Stack.leaf(Endpoint, echo) } test("register a controller") { val ctx = new Ctx import ctx._ val factory = stack.make(StackServer.defaultParams) val svc = Await.result(factory(), 5.seconds) assert(Await.result(svc(1), 5.seconds) == 1) assert(a.get == 3) } test("disabled by param") { val ctx = new Ctx import ctx._ val factory = stack.make( StackServer.defaultParams + ServerAdmissionControl.Param(false) ) val svc = Await.result(factory(), 5.seconds) assert(Await.result(svc(1), 5.seconds) == 1) assert(a.get == 1) } test("register multiple controller") { val ctx = new Ctx import ctx._ val factory = stack .insertBefore(ServerAdmissionControl.role, injectFilter(new AdditionFilter(3))) .make(StackServer.defaultParams) val svc = Await.result(factory(), 5.seconds) assert(Await.result(svc(1), 5.seconds) == 1) assert(a.get == 6) } test("duplicated registration is ignored") { val ctx = new Ctx import ctx._ val factory = stack .insertBefore(ServerAdmissionControl.role, injectFilter(new AdditionFilter(2))).make( StackServer.defaultParams) val svc = Await.result(factory(), 5.seconds) assert(Await.result(svc(1), 5.seconds) == 1) assert(a.get == 3) } test("Respects the NonRetryable context entry") { val ctx = new Ctx import ctx._ val factory = stack.make(StackServer.defaultParams) val svc = Await.result(factory(), 5.seconds) Contexts.local.let(ServerAdmissionControl.NonRetryable, ()) { val aInitial = a.get assert(Await.result(svc(1), 5.seconds) == 1) assert(a.get == aInitial) } } }
twitter/finagle
finagle-core/src/test/scala/com/twitter/finagle/filter/ServerAdmissionControlTest.scala
Scala
apache-2.0
3,623
package scorex.lagonaki.unit import org.scalatest.{Matchers, FunSuite} import scorex.crypto.encode.Base58 import scorex.wallet.Wallet import scala.util.Random class WalletSpecification extends FunSuite with Matchers { private val walletSize = 10 val w = new Wallet(None, "cookies", Base58.decode("FQgbSAm6swGbtqA3NE8PttijPhT4N3Ufh4bHFAkyVnQz").toOption) test("wallet - acc creation") { w.generateNewAccounts(walletSize) w.privateKeyAccounts().size shouldBe walletSize w.privateKeyAccounts().map(_.address) shouldBe Seq("3MqMwwHW4v2nSEDHVWoh8RCQL8QrsWLkkeB", "3MuwVgJA8EXHukxo6rcakT5tD6FpvACtitG", "3MuAvUG4EAsG9RP9jaWjewCVmggaQD2t39B", "3MqoX4A3UGBYU7cX2JPs6BCzntNC8K8FBR4", "3N1Q9VVVQtY3GqhwHtJDEyHb3oWBcerZL8X", "3NARifVFHthMDnCwBacXijPB2szAgNTeBCz", "3N6dsnfD88j5yKgpnEavaaJDzAVSRBRVbMY", "3MufvXKZxLuNn5SHcEgGc2Vo7nLWnKVskfJ", "3Myt4tocZmj7o3d1gnuWRrnQWcoxvx5G7Ac", "3N3keodUiS8WLEw9W4BKDNxgNdUpwSnpb3K") } test("wallet - acc deletion") { val head = w.privateKeyAccounts().head w.deleteAccount(head) assert(w.privateKeyAccounts().size == walletSize - 1) w.deleteAccount(w.privateKeyAccounts().head) assert(w.privateKeyAccounts().size == walletSize - 2) w.privateKeyAccounts().foreach(w.deleteAccount) assert(w.privateKeyAccounts().isEmpty) } test("reopening") { //todo read folder from settings val walletFile = new java.io.File(s"/tmp/wallet${Random.nextLong()}.dat") val w = new Wallet(Some(walletFile), "cookies", Base58.decode("FQgbSAm6swGbtqA3NE8PttijPhT4N3Ufh4bHFAkyVnQz").toOption) w.generateNewAccounts(10) val nonce = w.nonce() w.close() assert(w.exists()) val w2 = new Wallet(Some(walletFile), "cookies", None) w2.privateKeyAccounts().head.address should not be null w2.nonce() shouldBe nonce } }
B83YPoj/Waves
src/test/scala/scorex/lagonaki/unit/WalletSpecification.scala
Scala
apache-2.0
1,822
package org.jetbrains.plugins.scala package annotator.createFromUsage import com.intellij.codeInsight.navigation.NavigationUtil import com.intellij.codeInsight.template.{TemplateBuilder, TemplateBuilderImpl, TemplateManager} import com.intellij.codeInsight.{CodeInsightUtilCore, FileModificationService} import com.intellij.ide.util.PsiElementListCellRenderer import com.intellij.openapi.diagnostic.Logger import com.intellij.openapi.editor.Editor import com.intellij.openapi.project.Project import com.intellij.psi._ import com.intellij.psi.search.PsiElementProcessor import com.intellij.psi.util.PsiTreeUtil import com.intellij.util.IncorrectOperationException import org.jetbrains.plugins.scala.annotator.createFromUsage.CreateFromUsageUtil._ import org.jetbrains.plugins.scala.console.ScalaLanguageConsoleView import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.psi.ScalaPsiUtil import org.jetbrains.plugins.scala.lang.psi.api.base.ScReferenceElement import org.jetbrains.plugins.scala.lang.psi.api.base.types.ScParameterizedTypeElement import org.jetbrains.plugins.scala.lang.psi.api.toplevel.templates.ScTemplateBody import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.{ScClass, ScTemplateDefinition, ScTypeDefinition} import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory import org.jetbrains.plugins.scala.lang.refactoring.util.ScalaDirectoryService /** * Nikolay.Tropin * 2014-07-28 */ abstract class CreateTypeDefinitionQuickFix(ref: ScReferenceElement, description: String, kind: ClassKind) extends CreateFromUsageQuickFixBase(ref, description) { private final val LOG: Logger = Logger.getInstance("#org.jetbrains.plugins.scala.annotator.createFromUsage.CreateTemplateDefinitionQuickFix") private val name = ref.refName override def isAvailable(project: Project, editor: Editor, file: PsiFile) = { def goodQualifier = ref.qualifier match { case Some(InstanceOfClass(typeDef: ScTypeDefinition)) => true case Some(ResolvesTo(pack: PsiPackage)) => true case None => true case _ => false } super.isAvailable(project, editor, file) && goodQualifier } override protected def invokeInner(project: Project, editor: Editor, file: PsiFile) = { inWriteAction { ref.qualifier match { case Some(InstanceOfClass(typeDef: ScTypeDefinition)) => createInnerClassIn(typeDef) case Some(ResolvesTo(pack: PsiPackage)) => createClassInPackage(pack) case None => val inThisFile = (Iterator(ref) ++ ref.parentsInFile).collect { case inner childOf (_: ScTemplateBody) => inner case td: ScTypeDefinition if td.isTopLevel => td } val possibleSiblings = file +: inThisFile.toSeq.reverse createClassWithLevelChoosing(editor, possibleSiblings) case _ => } } } private def createClassInPackage(psiPackage: PsiPackage): Unit = { val directory = psiPackage.getDirectories match { case Array(dir) => dir case Array() => throw new IllegalStateException(s"Cannot find directory for the package `${psiPackage.getName}`") case dirs => val currentDir = dirs.find(PsiTreeUtil.isAncestor(_, ref, true)) .orElse(dirs.find(ScalaPsiUtil.getModule(_) == ScalaPsiUtil.getModule(ref))) currentDir.getOrElse(dirs(0)) } createClassInDirectory(directory) } private def createInnerClassIn(target: ScTemplateDefinition): Unit = { val extBlock = target.extendsBlock val targetBody = extBlock.templateBody.getOrElse( extBlock.add(ScalaPsiElementFactory.createTemplateBody(target.getManager))) createClassIn(targetBody, Some(targetBody.getLastChild)) } private def createClassIn(parent: PsiElement, anchorAfter: Option[PsiElement]): Unit = { try { if (!FileModificationService.getInstance.preparePsiElementForWrite(parent)) return val text = s"${kind.keyword} $name" val newTd = ScalaPsiElementFactory.createTemplateDefinitionFromText(text, parent, parent.getFirstChild) val anchor = anchorAfter.orNull parent.addBefore(ScalaPsiElementFactory.createNewLine(parent.getManager), anchor) val result = parent.addBefore(newTd, anchor) afterCreationWork(result.asInstanceOf[ScTypeDefinition]) } catch { case e: IncorrectOperationException => LOG.error(e) } } private def createClassWithLevelChoosing(editor: Editor, siblings: Seq[PsiElement]): Unit = { val renderer = new PsiElementListCellRenderer[PsiElement] { override def getElementText(element: PsiElement) = element match { case f: PsiFile => "New file" case td: ScTypeDefinition if td.isTopLevel => "Top level in this file" case _ childOf (tb: ScTemplateBody) => val containingClass = PsiTreeUtil.getParentOfType(tb, classOf[ScTemplateDefinition]) s"Inner in ${containingClass.name}" case _ => "Local scope" } override def getContainerText(element: PsiElement, name: String) = null override def getIconFlags = 0 override def getIcon(element: PsiElement) = null } siblings match { case Seq() => case Seq(elem) => createClassAtLevel(elem) case _ => val selection = siblings.head val processor = new PsiElementProcessor[PsiElement] { def execute(elem: PsiElement): Boolean = { inWriteCommandAction(elem.getProject){ createClassAtLevel(elem) } false } } NavigationUtil.getPsiElementPopup(siblings.toArray, renderer, "Choose level", processor, selection) .showInBestPositionFor(editor) } } private def createClassAtLevel(sibling: PsiElement): Unit = { sibling match { case file: PsiFile => createClassInDirectory(file.getContainingDirectory) case td: ScTypeDefinition if td.isTopLevel => createClassIn(td.getParent, None) case _ childOf (tb: ScTemplateBody) => createInnerClassIn(PsiTreeUtil.getParentOfType(tb, classOf[ScTemplateDefinition])) case _ => } } private def createClassInDirectory(directory: PsiDirectory) = { val clazz = ScalaDirectoryService.createClassFromTemplate(directory, name, kind.templateName, askToDefineVariables = false) afterCreationWork(clazz.asInstanceOf[ScTypeDefinition]) } protected def afterCreationWork(clazz: ScTypeDefinition) { addGenericParams(clazz) addClassParams(clazz) ScalaPsiUtil.adjustTypes(clazz) runTemplate(clazz) } protected def addMoreElementsToTemplate(builder: TemplateBuilder, clazz: ScTypeDefinition): Unit = {} private def runTemplate(clazz: ScTypeDefinition): Unit = { val builder = new TemplateBuilderImpl(clazz) addTypeParametersToTemplate(clazz, builder) clazz match { case cl: ScClass if cl.constructor.exists(_.parameters.nonEmpty) => addParametersToTemplate(cl.constructor.get, builder) case _ => } addMoreElementsToTemplate(builder, clazz) CodeInsightUtilCore.forcePsiPostprocessAndRestoreElement(clazz) val template = builder.buildTemplate() val targetFile = clazz.getContainingFile val isScalaConsole = targetFile.getName == ScalaLanguageConsoleView.SCALA_CONSOLE if (!isScalaConsole) { val newEditor = positionCursor(clazz.nameId) if (template.getSegmentsCount != 0) { val range = clazz.getTextRange newEditor.getDocument.deleteString(range.getStartOffset, range.getEndOffset) TemplateManager.getInstance(clazz.getProject).startTemplate(newEditor, template) } } } private def addGenericParams(clazz: ScTypeDefinition): Unit = ref.getParent.getParent match { case pt: ScParameterizedTypeElement => val paramsText = pt.typeArgList.typeArgs match { case args if args.size == 1 => "[T]" case args => args.indices.map(i => s"T${i + 1}").mkString("[",", ", "]") } val nameId = clazz.nameId val clause = ScalaPsiElementFactory.createTypeParameterClauseFromTextWithContext(paramsText, clazz, nameId) clazz.addAfter(clause, nameId) case _ => } private def addClassParams(clazz: ScTypeDefinition): Unit = { clazz match { case cl: ScClass => val constr = cl.constructor.get val text = parametersText(ref) val parameters = ScalaPsiElementFactory.createParamClausesWithContext(text, constr, constr.getFirstChild) constr.parameterList.replace(parameters) case _ => } } } class CreateObjectQuickFix(ref: ScReferenceElement) extends CreateTypeDefinitionQuickFix(ref, "object", Object) class CreateTraitQuickFix(ref: ScReferenceElement) extends CreateTypeDefinitionQuickFix(ref, "trait", Trait) { override def isAvailable(project: Project, editor: Editor, file: PsiFile) = { super.isAvailable(project, editor, file) && parametersText(ref).isEmpty } } class CreateClassQuickFix(ref: ScReferenceElement) extends CreateTypeDefinitionQuickFix(ref, "class", Class) class CreateCaseClassQuickFix(ref: ScReferenceElement) extends CreateTypeDefinitionQuickFix(ref, "case class", Class) { override protected def afterCreationWork(clazz: ScTypeDefinition) = { clazz.setModifierProperty("case", value = true) super.afterCreationWork(clazz) } }
advancedxy/intellij-scala
src/org/jetbrains/plugins/scala/annotator/createFromUsage/CreateTypeDefinitionQuickFix.scala
Scala
apache-2.0
9,418
// Copyright (c) 2014 David Miguel Antunes <davidmiguel {at} antunes.net> // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package com.github.david04.liftutils.elem import scala.xml.NodeSeq import scala.xml.Text import net.liftweb.util.Helpers._ import scala.util.Try // get***Value: in the server // getCurrent***Value: in the client trait GenDoubleValueElem extends Elem {def getDoubleValue(): Double} trait GenEditableDoubleValueElem extends GenDoubleValueElem with ValidatableElem {def getCurrentDoubleValue(): Double} trait GenIntValueElem extends Elem {def getIntValue(): Int} trait GenEditableIntValueElem extends GenIntValueElem with ValidatableElem {def getCurrentIntValue(): Int} trait GenBooleanValueElem extends Elem {def getBooleanValue(): Boolean} trait GenEditableBooleanValueElem extends GenBooleanValueElem with ValidatableElem {def getCurrentBooleanValue(): Boolean} trait GenStringValueElem extends Elem {def getStringValue(): String} trait GenEditableStringValueElem extends GenStringValueElem with ValidatableElem {def getCurrentStringValue(): String} trait GenDateTimeValueElem extends Elem {def getDateTimeValue(): (Long, Long)} trait GenEditableDateTimeValueElem extends GenDateTimeValueElem with ValidatableElem {def getCurrentDateTimeValue(): (Long, Long)} trait GenFileOptValueElem extends Elem {def getFile(): Option[(Array[Byte], String)]} trait GenOneOfEnumValueElem extends Elem { protected type EnumType <: Enumeration protected type EnumValueType = EnumType#Value protected def enum: EnumType def getOneOfEnumValue(): EnumValueType } trait GenEditableOneOfEnumValueElem extends GenOneOfEnumValueElem with ValidatableElem {def getCurrentOneOfEnumValue(): EnumValueType} trait GenManyOfEnumValueElem extends Elem { protected type EnumType <: Enumeration protected type EnumValueType = EnumType#Value protected def enum: EnumType def getManyOfEnumValue(): Seq[EnumValueType] } trait GenEditableManyOfEnumValueElem extends GenManyOfEnumValueElem with ValidatableElem {def getCurrentManyOfEnumValue(): Seq[EnumValueType]} trait GenOneOfSeqValueElem extends Elem { protected type SeqValueType protected def seq: Seq[SeqValueType] def getOneOfSeqValue(): SeqValueType } trait GenEditableOneOfSeqValueElem extends GenOneOfSeqValueElem with ValidatableElem {def getCurrentOneOfSeqValue(): SeqValueType} trait GenManyOfSeqValueElem extends Elem { protected type SeqValueType protected def seq: Seq[SeqValueType] def getManyOfSeqValue(): Seq[SeqValueType] } trait GenEditableManyOfSeqValueElem extends GenManyOfSeqValueElem with ValidatableElem {def getCurrentManyOfSeqValue(): Seq[SeqValueType]} trait GenOneOfManyValueElem extends Elem { protected type OneOfManyValue <: Object {def name: NodeSeq; def id: String} def getOneOfManyValue(): OneOfManyValue def getAllOneOfManyValues(): Seq[OneOfManyValue] } trait GenEditableOneOfManyValueElem extends GenOneOfManyValueElem with ValidatableElem {def getCurrentOneOfManyValue(): OneOfManyValue} trait GenManyOfManyValueElem extends Elem { protected type ManyOfManyValue <: Object {def name: NodeSeq; def id: String} def getManyOfManyValue(): Seq[ManyOfManyValue] def getAllManyOfManyValues(): Seq[ManyOfManyValue] } trait GenEditableManyOfManyValueElem extends GenManyOfManyValueElem with ValidatableElem {def getCurrentManyOfManyValue(): Seq[ManyOfManyValue]} abstract class GenDouble2GenString extends GenEditableDoubleValueElem with GenEditableStringValueElem { val suffix: Option[String] val precision: Int protected def double2StringFormat = s"%.${precision}f" private def currentStringValueWithoutSuffix() = suffix.map(suffix => getCurrentStringValue().replaceAllLiterally(suffix, "")).getOrElse(getCurrentStringValue()) override def error: Option[NodeSeq] = Try(currentStringValueWithoutSuffix().toDouble).map(_ => super.error).getOrElse(Some(Text("Invalid value."))) def getCurrentDoubleValue(): Double = currentStringValueWithoutSuffix().toDouble def getStringValue() = double2StringFormat.format(getDoubleValue()) + suffix.getOrElse("") } abstract class GenInt2GenString extends GenEditableIntValueElem with GenEditableStringValueElem { val suffix: Option[String] private def currentStringValueWithoutSuffix() = suffix.map(suffix => getCurrentStringValue().replaceAllLiterally(suffix, "")).getOrElse(getCurrentStringValue()) override def error: Option[NodeSeq] = Try(currentStringValueWithoutSuffix().toInt).map(_ => super.error).getOrElse(Some(Text("Invalid value."))) def getCurrentIntValue(): Int = currentStringValueWithoutSuffix().toInt def getStringValue() = getIntValue().toString() + suffix.getOrElse("") } abstract class GenOneOfEnum2GenOneOfMany extends GenEditableOneOfEnumValueElem with GenEditableOneOfManyValueElem { protected case class EnumValue(v: EnumValueType) { def name = enumValue2NodeSeq(v) def id = Option(v).map(_.id + "").getOrElse("") } protected def enumValue2NodeSeq(v: EnumValueType): NodeSeq protected type OneOfManyValue = EnumValue def getOneOfManyValue() = EnumValue(getOneOfEnumValue()) def getCurrentOneOfEnumValue() = getCurrentOneOfManyValue().v def getAllOneOfManyValues() = enum.values.map(EnumValue(_)).toSeq.sortBy(_.v.id) } abstract class GenManyOfEnum2GenOneOfMany extends GenEditableManyOfEnumValueElem with GenEditableManyOfManyValueElem { protected case class EnumValue(v: EnumValueType) { def name = enumValue2NodeSeq(v) def id = Option(v).map(_.id + "").getOrElse("") } protected def enumValue2NodeSeq(v: EnumValueType): NodeSeq protected type ManyOfManyValue = EnumValue def getManyOfManyValue() = getManyOfEnumValue().map(EnumValue(_)) def getCurrentManyOfEnumValue() = getCurrentManyOfManyValue().map(_.v) def getAllManyOfManyValues() = enum.values.map(EnumValue(_)).toSeq.sortBy(_.v.id) } abstract class GenOneOfSeq2GenOneOfMany extends GenEditableOneOfSeqValueElem with GenEditableOneOfManyValueElem { protected case class SeqValue(v: SeqValueType, idx: Int) { def name = seqValue2NodeSeq(v) def id = idx + "" } protected def seqValue2NodeSeq(v: SeqValueType): NodeSeq protected type OneOfManyValue = SeqValue def getOneOfManyValue() = SeqValue(getOneOfSeqValue(), seq.indexOf(getOneOfSeqValue())) def getCurrentOneOfSeqValue() = getCurrentOneOfManyValue().v def getAllOneOfManyValues() = seq.zipWithIndex.map(e => SeqValue(e._1, e._2)) } abstract class GenManyOfSeq2GenManyOfMany extends GenEditableManyOfSeqValueElem with GenEditableManyOfManyValueElem { protected case class SeqValue(v: SeqValueType, idx: Int) { def name = seqValue2NodeSeq(v) def id = idx + "" } protected def seqValue2NodeSeq(v: SeqValueType): NodeSeq protected type ManyOfManyValue = SeqValue def getManyOfManyValue() = getManyOfSeqValue().map(v => SeqValue(v, seq.indexOf(v))) def getCurrentManyOfSeqValue() = getCurrentManyOfManyValue().map(_.v) def getAllManyOfManyValues() = seq.zipWithIndex.map(e => SeqValue(e._1, e._2)) }
david04/liftutils
src/main/scala/com/github/david04/liftutils/elem/GenericElem.scala
Scala
mit
8,130
package models import java.sql.Timestamp import java.util.UUID import javax.inject.Inject import com.fang.GamePlayJson import com.fang.game.Step import play.api.db.slick.{DatabaseConfigProvider, HasDatabaseConfigProvider} import slick.driver.JdbcProfile import scala.concurrent.{ExecutionContext, Future} import scala.util.Try class GamePlayDAO @Inject()(protected val dbConfigProvider: DatabaseConfigProvider) (implicit executionContext: ExecutionContext) extends HasDatabaseConfigProvider[JdbcProfile] { import util.MyPostgresDriver.api._ class GamePlayTable(tag: Tag) extends Table[GamePlayModel](tag, "gameplay") { def id = column[UUID]("id", O.PrimaryKey) def first_user = column[String]("first_user") def second_user = column[String]("second_user") def status = column[String]("status") def rule = column[String]("rule") def first_win = column[Option[Boolean]]("first_win") def start_time = column[Timestamp]("start_time") def steps = column[List[Step]]("steps") def * = (id, first_user, second_user, status, rule, first_win, start_time, steps) <> ((GamePlayModel.apply _).tupled, GamePlayModel.unapply) } val gamePlays: TableQuery[GamePlayTable] = TableQuery[GamePlayTable] def containUser(id: String): (GamePlayTable) => Rep[Boolean] = (g: GamePlayTable) => g.first_user === id || g.second_user === id def queryRunningGame(userId: String): Future[Option[GamePlayModel]] = db.run( gamePlays.filter(g => containUser(userId)(g) && g.status === GamePlayJson.PLAYING).result.headOption ) def queryPlayingGame(): Future[Seq[GamePlayModel]] = db.run( gamePlays.sortBy(_.start_time.desc).take(10).result ) def intSeq2Str(seq: List[Int]): String = { val builder = new StringBuilder var isFirst = true builder.append("{") for (item <- seq) { if (isFirst) { isFirst = false } else { builder.append(", ") } builder.append(item) } builder.append("}") builder.toString() } def createGame(gamePlayModel: GamePlayModel): Future[Boolean] = { val m = gamePlayModel val stepStr = intSeq2Str(m.steps.map(_.toInt)) val stat = sqlu"""INSERT INTO gameplay(id, first_user, second_user, status, rule, first_win, start_time, steps) VALUES (${m.id.toString}::uuid, ${m.first_user}, ${m.second_user}, ${m.status}, ${m.rule}, ${m.first_win}, ${m.start_time}, ${stepStr}::integer[])""" db.run(stat).map(_ > 0).recover{ case exception: Exception => exception.printStackTrace() false } } def queryGame(id: String): Future[Option[GamePlayModel]] = { val uid = Try(UUID.fromString(id)) if (uid.isFailure) Future.successful(None) else db.run(gamePlays.filter(_.id === uid.get).result.headOption) } def updateGame(id: String, gamePlayModel: GamePlayModel): Future[Int] = { val uid = Try(UUID.fromString(id)) if (uid.isFailure) return Future.successful(0) val m = gamePlayModel val stepStr = intSeq2Str(m.steps.map(_.toInt)) val statement = sqlu"""UPDATE gameplay SET status = ${m.status}, first_win = ${m.first_win}, steps = ${stepStr}::integer[] WHERE id = ${id}::uuid """ db.run(statement) } }
TianhaoFang/online-go
app/models/GamePlayDAO.scala
Scala
mit
3,298
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.expressions import java.math.{BigDecimal => JavaBigDecimal} import java.time.ZoneId import java.util.Locale import java.util.concurrent.TimeUnit._ import org.apache.spark.SparkException import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.analysis.{TypeCheckResult, TypeCoercion} import org.apache.spark.sql.catalyst.expressions.codegen._ import org.apache.spark.sql.catalyst.expressions.codegen.Block._ import org.apache.spark.sql.catalyst.util._ import org.apache.spark.sql.catalyst.util.DateTimeConstants._ import org.apache.spark.sql.catalyst.util.DateTimeUtils._ import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.types._ import org.apache.spark.unsafe.UTF8StringBuilder import org.apache.spark.unsafe.types.{CalendarInterval, UTF8String} import org.apache.spark.unsafe.types.UTF8String.{IntWrapper, LongWrapper} object Cast { /** * Returns true iff we can cast `from` type to `to` type. */ def canCast(from: DataType, to: DataType): Boolean = (from, to) match { case (fromType, toType) if fromType == toType => true case (NullType, _) => true case (_, StringType) => true case (StringType, BinaryType) => true case (_: IntegralType, BinaryType) => true case (StringType, BooleanType) => true case (DateType, BooleanType) => true case (TimestampType, BooleanType) => true case (_: NumericType, BooleanType) => true case (StringType, TimestampType) => true case (BooleanType, TimestampType) => true case (DateType, TimestampType) => true case (_: NumericType, TimestampType) => true case (StringType, DateType) => true case (TimestampType, DateType) => true case (StringType, CalendarIntervalType) => true case (StringType, _: NumericType) => true case (BooleanType, _: NumericType) => true case (DateType, _: NumericType) => true case (TimestampType, _: NumericType) => true case (_: NumericType, _: NumericType) => true case (ArrayType(fromType, fn), ArrayType(toType, tn)) => canCast(fromType, toType) && resolvableNullability(fn || forceNullable(fromType, toType), tn) case (MapType(fromKey, fromValue, fn), MapType(toKey, toValue, tn)) => canCast(fromKey, toKey) && (!forceNullable(fromKey, toKey)) && canCast(fromValue, toValue) && resolvableNullability(fn || forceNullable(fromValue, toValue), tn) case (StructType(fromFields), StructType(toFields)) => fromFields.length == toFields.length && fromFields.zip(toFields).forall { case (fromField, toField) => canCast(fromField.dataType, toField.dataType) && resolvableNullability( fromField.nullable || forceNullable(fromField.dataType, toField.dataType), toField.nullable) } case (udt1: UserDefinedType[_], udt2: UserDefinedType[_]) if udt1.userClass == udt2.userClass => true case _ => false } /** * Return true if we need to use the `timeZone` information casting `from` type to `to` type. * The patterns matched reflect the current implementation in the Cast node. * c.f. usage of `timeZone` in: * * Cast.castToString * * Cast.castToDate * * Cast.castToTimestamp */ def needsTimeZone(from: DataType, to: DataType): Boolean = (from, to) match { case (StringType, TimestampType | DateType) => true case (DateType, TimestampType) => true case (TimestampType, StringType) => true case (TimestampType, DateType) => true case (ArrayType(fromType, _), ArrayType(toType, _)) => needsTimeZone(fromType, toType) case (MapType(fromKey, fromValue, _), MapType(toKey, toValue, _)) => needsTimeZone(fromKey, toKey) || needsTimeZone(fromValue, toValue) case (StructType(fromFields), StructType(toFields)) => fromFields.length == toFields.length && fromFields.zip(toFields).exists { case (fromField, toField) => needsTimeZone(fromField.dataType, toField.dataType) } case _ => false } /** * Returns true iff we can safely up-cast the `from` type to `to` type without any truncating or * precision lose or possible runtime failures. For example, long -> int, string -> int are not * up-cast. */ def canUpCast(from: DataType, to: DataType): Boolean = (from, to) match { case _ if from == to => true case (from: NumericType, to: DecimalType) if to.isWiderThan(from) => true case (from: DecimalType, to: NumericType) if from.isTighterThan(to) => true case (f, t) if legalNumericPrecedence(f, t) => true case (DateType, TimestampType) => true case (_: AtomicType, StringType) => true case (_: CalendarIntervalType, StringType) => true case (NullType, _) => true // Spark supports casting between long and timestamp, please see `longToTimestamp` and // `timestampToLong` for details. case (TimestampType, LongType) => true case (LongType, TimestampType) => true case (ArrayType(fromType, fn), ArrayType(toType, tn)) => resolvableNullability(fn, tn) && canUpCast(fromType, toType) case (MapType(fromKey, fromValue, fn), MapType(toKey, toValue, tn)) => resolvableNullability(fn, tn) && canUpCast(fromKey, toKey) && canUpCast(fromValue, toValue) case (StructType(fromFields), StructType(toFields)) => fromFields.length == toFields.length && fromFields.zip(toFields).forall { case (f1, f2) => resolvableNullability(f1.nullable, f2.nullable) && canUpCast(f1.dataType, f2.dataType) } case _ => false } /** * Returns true iff we can cast the `from` type to `to` type as per the ANSI SQL. * In practice, the behavior is mostly the same as PostgreSQL. It disallows certain unreasonable * type conversions such as converting `string` to `int` or `double` to `boolean`. */ def canANSIStoreAssign(from: DataType, to: DataType): Boolean = (from, to) match { case _ if from == to => true case (NullType, _) => true case (_: NumericType, _: NumericType) => true case (_: AtomicType, StringType) => true case (_: CalendarIntervalType, StringType) => true case (DateType, TimestampType) => true case (TimestampType, DateType) => true case (ArrayType(fromType, fn), ArrayType(toType, tn)) => resolvableNullability(fn, tn) && canANSIStoreAssign(fromType, toType) case (MapType(fromKey, fromValue, fn), MapType(toKey, toValue, tn)) => resolvableNullability(fn, tn) && canANSIStoreAssign(fromKey, toKey) && canANSIStoreAssign(fromValue, toValue) case (StructType(fromFields), StructType(toFields)) => fromFields.length == toFields.length && fromFields.zip(toFields).forall { case (f1, f2) => resolvableNullability(f1.nullable, f2.nullable) && canANSIStoreAssign(f1.dataType, f2.dataType) } case _ => false } private def legalNumericPrecedence(from: DataType, to: DataType): Boolean = { val fromPrecedence = TypeCoercion.numericPrecedence.indexOf(from) val toPrecedence = TypeCoercion.numericPrecedence.indexOf(to) fromPrecedence >= 0 && fromPrecedence < toPrecedence } def canNullSafeCastToDecimal(from: DataType, to: DecimalType): Boolean = from match { case from: BooleanType if to.isWiderThan(DecimalType.BooleanDecimal) => true case from: NumericType if to.isWiderThan(from) => true case from: DecimalType => // truncating or precision lose (to.precision - to.scale) > (from.precision - from.scale) case _ => false // overflow } /** * Returns `true` if casting non-nullable values from `from` type to `to` type * may return null. Note that the caller side should take care of input nullability * first and only call this method if the input is not nullable. */ def forceNullable(from: DataType, to: DataType): Boolean = (from, to) match { case (NullType, _) => false // empty array or map case case (_, _) if from == to => false case (StringType, BinaryType) => false case (StringType, _) => true case (_, StringType) => false case (FloatType | DoubleType, TimestampType) => true case (TimestampType, DateType) => false case (_, DateType) => true case (DateType, TimestampType) => false case (DateType, _) => true case (_, CalendarIntervalType) => true case (_, to: DecimalType) if !canNullSafeCastToDecimal(from, to) => true case (_: FractionalType, _: IntegralType) => true // NaN, infinity case _ => false } def resolvableNullability(from: Boolean, to: Boolean): Boolean = !from || to /** * We process literals such as 'Infinity', 'Inf', '-Infinity' and 'NaN' etc in case * insensitive manner to be compatible with other database systems such as PostgreSQL and DB2. */ def processFloatingPointSpecialLiterals(v: String, isFloat: Boolean): Any = { v.trim.toLowerCase(Locale.ROOT) match { case "inf" | "+inf" | "infinity" | "+infinity" => if (isFloat) Float.PositiveInfinity else Double.PositiveInfinity case "-inf" | "-infinity" => if (isFloat) Float.NegativeInfinity else Double.NegativeInfinity case "nan" => if (isFloat) Float.NaN else Double.NaN case _ => null } } } abstract class CastBase extends UnaryExpression with TimeZoneAwareExpression with NullIntolerant { def child: Expression def dataType: DataType override def toString: String = { val ansi = if (ansiEnabled) "ansi_" else "" s"${ansi}cast($child as ${dataType.simpleString})" } override def checkInputDataTypes(): TypeCheckResult = { if (Cast.canCast(child.dataType, dataType)) { TypeCheckResult.TypeCheckSuccess } else { TypeCheckResult.TypeCheckFailure( s"cannot cast ${child.dataType.catalogString} to ${dataType.catalogString}") } } override def nullable: Boolean = child.nullable || Cast.forceNullable(child.dataType, dataType) protected def ansiEnabled: Boolean // When this cast involves TimeZone, it's only resolved if the timeZoneId is set; // Otherwise behave like Expression.resolved. override lazy val resolved: Boolean = childrenResolved && checkInputDataTypes().isSuccess && (!needsTimeZone || timeZoneId.isDefined) private[this] def needsTimeZone: Boolean = Cast.needsTimeZone(child.dataType, dataType) // [[func]] assumes the input is no longer null because eval already does the null check. @inline private[this] def buildCast[T](a: Any, func: T => Any): Any = func(a.asInstanceOf[T]) private lazy val dateFormatter = DateFormatter(zoneId) private lazy val timestampFormatter = TimestampFormatter.getFractionFormatter(zoneId) // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { case CalendarIntervalType => buildCast[CalendarInterval](_, i => UTF8String.fromString(i.toString)) case BinaryType => buildCast[Array[Byte]](_, UTF8String.fromBytes) case DateType => buildCast[Int](_, d => UTF8String.fromString(dateFormatter.format(d))) case TimestampType => buildCast[Long](_, t => UTF8String.fromString(DateTimeUtils.timestampToString(timestampFormatter, t))) case ArrayType(et, _) => buildCast[ArrayData](_, array => { val builder = new UTF8StringBuilder builder.append("[") if (array.numElements > 0) { val toUTF8String = castToString(et) if (!array.isNullAt(0)) { builder.append(toUTF8String(array.get(0, et)).asInstanceOf[UTF8String]) } var i = 1 while (i < array.numElements) { builder.append(",") if (!array.isNullAt(i)) { builder.append(" ") builder.append(toUTF8String(array.get(i, et)).asInstanceOf[UTF8String]) } i += 1 } } builder.append("]") builder.build() }) case MapType(kt, vt, _) => buildCast[MapData](_, map => { val builder = new UTF8StringBuilder builder.append("[") if (map.numElements > 0) { val keyArray = map.keyArray() val valueArray = map.valueArray() val keyToUTF8String = castToString(kt) val valueToUTF8String = castToString(vt) builder.append(keyToUTF8String(keyArray.get(0, kt)).asInstanceOf[UTF8String]) builder.append(" ->") if (!valueArray.isNullAt(0)) { builder.append(" ") builder.append(valueToUTF8String(valueArray.get(0, vt)).asInstanceOf[UTF8String]) } var i = 1 while (i < map.numElements) { builder.append(", ") builder.append(keyToUTF8String(keyArray.get(i, kt)).asInstanceOf[UTF8String]) builder.append(" ->") if (!valueArray.isNullAt(i)) { builder.append(" ") builder.append(valueToUTF8String(valueArray.get(i, vt)) .asInstanceOf[UTF8String]) } i += 1 } } builder.append("]") builder.build() }) case StructType(fields) => buildCast[InternalRow](_, row => { val builder = new UTF8StringBuilder builder.append("[") if (row.numFields > 0) { val st = fields.map(_.dataType) val toUTF8StringFuncs = st.map(castToString) if (!row.isNullAt(0)) { builder.append(toUTF8StringFuncs(0)(row.get(0, st(0))).asInstanceOf[UTF8String]) } var i = 1 while (i < row.numFields) { builder.append(",") if (!row.isNullAt(i)) { builder.append(" ") builder.append(toUTF8StringFuncs(i)(row.get(i, st(i))).asInstanceOf[UTF8String]) } i += 1 } } builder.append("]") builder.build() }) case pudt: PythonUserDefinedType => castToString(pudt.sqlType) case udt: UserDefinedType[_] => buildCast[Any](_, o => UTF8String.fromString(udt.deserialize(o).toString)) case _ => buildCast[Any](_, o => UTF8String.fromString(o.toString)) } // BinaryConverter private[this] def castToBinary(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, _.getBytes) case ByteType => buildCast[Byte](_, NumberConverter.toBinary) case ShortType => buildCast[Short](_, NumberConverter.toBinary) case IntegerType => buildCast[Int](_, NumberConverter.toBinary) case LongType => buildCast[Long](_, NumberConverter.toBinary) } // UDFToBoolean private[this] def castToBoolean(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => { if (StringUtils.isTrueString(s)) { true } else if (StringUtils.isFalseString(s)) { false } else { null } }) case TimestampType => buildCast[Long](_, t => t != 0) case DateType => // Hive would return null when cast from date to boolean buildCast[Int](_, d => null) case LongType => buildCast[Long](_, _ != 0) case IntegerType => buildCast[Int](_, _ != 0) case ShortType => buildCast[Short](_, _ != 0) case ByteType => buildCast[Byte](_, _ != 0) case DecimalType() => buildCast[Decimal](_, !_.isZero) case DoubleType => buildCast[Double](_, _ != 0) case FloatType => buildCast[Float](_, _ != 0) } // TimestampConverter private[this] def castToTimestamp(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, utfs => DateTimeUtils.stringToTimestamp(utfs, zoneId).orNull) case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0) case LongType => buildCast[Long](_, l => longToTimestamp(l)) case IntegerType => buildCast[Int](_, i => longToTimestamp(i.toLong)) case ShortType => buildCast[Short](_, s => longToTimestamp(s.toLong)) case ByteType => buildCast[Byte](_, b => longToTimestamp(b.toLong)) case DateType => buildCast[Int](_, d => epochDaysToMicros(d, zoneId)) // TimestampWritable.decimalToTimestamp case DecimalType() => buildCast[Decimal](_, d => decimalToTimestamp(d)) // TimestampWritable.doubleToTimestamp case DoubleType => buildCast[Double](_, d => doubleToTimestamp(d)) // TimestampWritable.floatToTimestamp case FloatType => buildCast[Float](_, f => doubleToTimestamp(f.toDouble)) } private[this] def decimalToTimestamp(d: Decimal): Long = { (d.toBigDecimal * MICROS_PER_SECOND).longValue } private[this] def doubleToTimestamp(d: Double): Any = { if (d.isNaN || d.isInfinite) null else (d * MICROS_PER_SECOND).toLong } // converting seconds to us private[this] def longToTimestamp(t: Long): Long = SECONDS.toMicros(t) // converting us to seconds private[this] def timestampToLong(ts: Long): Long = { Math.floorDiv(ts, MICROS_PER_SECOND) } // converting us to seconds in double private[this] def timestampToDouble(ts: Long): Double = { ts / MICROS_PER_SECOND.toDouble } // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => DateTimeUtils.stringToDate(s, zoneId).orNull) case TimestampType => // throw valid precision more than seconds, according to Hive. // Timestamp.nanos is in 0 to 999,999,999, no more than a second. buildCast[Long](_, t => microsToEpochDays(t, zoneId)) } // IntervalConverter private[this] def castToInterval(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => IntervalUtils.safeStringToInterval(s)) } // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType if ansiEnabled => buildCast[UTF8String](_, _.toLongExact()) case StringType => val result = new LongWrapper() buildCast[UTF8String](_, s => if (s.toLong(result)) result.value else null) case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0L) case DateType => buildCast[Int](_, d => null) case TimestampType => buildCast[Long](_, t => timestampToLong(t)) case x: NumericType if ansiEnabled => b => x.exactNumeric.asInstanceOf[Numeric[Any]].toLong(b) case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toLong(b) } // IntConverter private[this] def castToInt(from: DataType): Any => Any = from match { case StringType if ansiEnabled => buildCast[UTF8String](_, _.toIntExact()) case StringType => val result = new IntWrapper() buildCast[UTF8String](_, s => if (s.toInt(result)) result.value else null) case BooleanType => buildCast[Boolean](_, b => if (b) 1 else 0) case DateType => buildCast[Int](_, d => null) case TimestampType if ansiEnabled => buildCast[Long](_, t => LongExactNumeric.toInt(timestampToLong(t))) case TimestampType => buildCast[Long](_, t => timestampToLong(t).toInt) case x: NumericType if ansiEnabled => b => x.exactNumeric.asInstanceOf[Numeric[Any]].toInt(b) case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toInt(b) } // ShortConverter private[this] def castToShort(from: DataType): Any => Any = from match { case StringType if ansiEnabled => buildCast[UTF8String](_, _.toShortExact()) case StringType => val result = new IntWrapper() buildCast[UTF8String](_, s => if (s.toShort(result)) { result.value.toShort } else { null }) case BooleanType => buildCast[Boolean](_, b => if (b) 1.toShort else 0.toShort) case DateType => buildCast[Int](_, d => null) case TimestampType if ansiEnabled => buildCast[Long](_, t => { val longValue = timestampToLong(t) if (longValue == longValue.toShort) { longValue.toShort } else { throw new ArithmeticException(s"Casting $t to short causes overflow") } }) case TimestampType => buildCast[Long](_, t => timestampToLong(t).toShort) case x: NumericType if ansiEnabled => b => val intValue = try { x.exactNumeric.asInstanceOf[Numeric[Any]].toInt(b) } catch { case _: ArithmeticException => throw new ArithmeticException(s"Casting $b to short causes overflow") } if (intValue == intValue.toShort) { intValue.toShort } else { throw new ArithmeticException(s"Casting $b to short causes overflow") } case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toInt(b).toShort } // ByteConverter private[this] def castToByte(from: DataType): Any => Any = from match { case StringType if ansiEnabled => buildCast[UTF8String](_, _.toByteExact()) case StringType => val result = new IntWrapper() buildCast[UTF8String](_, s => if (s.toByte(result)) { result.value.toByte } else { null }) case BooleanType => buildCast[Boolean](_, b => if (b) 1.toByte else 0.toByte) case DateType => buildCast[Int](_, d => null) case TimestampType if ansiEnabled => buildCast[Long](_, t => { val longValue = timestampToLong(t) if (longValue == longValue.toByte) { longValue.toByte } else { throw new ArithmeticException(s"Casting $t to byte causes overflow") } }) case TimestampType => buildCast[Long](_, t => timestampToLong(t).toByte) case x: NumericType if ansiEnabled => b => val intValue = try { x.exactNumeric.asInstanceOf[Numeric[Any]].toInt(b) } catch { case _: ArithmeticException => throw new ArithmeticException(s"Casting $b to byte causes overflow") } if (intValue == intValue.toByte) { intValue.toByte } else { throw new ArithmeticException(s"Casting $b to byte causes overflow") } case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toInt(b).toByte } /** * Change the precision / scale in a given decimal to those set in `decimalType` (if any), * modifying `value` in-place and returning it if successful. If an overflow occurs, it * either returns null or throws an exception according to the value set for * `spark.sql.ansi.enabled`. * * NOTE: this modifies `value` in-place, so don't call it on external data. */ private[this] def changePrecision(value: Decimal, decimalType: DecimalType): Decimal = { if (value.changePrecision(decimalType.precision, decimalType.scale)) { value } else { if (!ansiEnabled) { null } else { throw new ArithmeticException(s"${value.toDebugString} cannot be represented as " + s"Decimal(${decimalType.precision}, ${decimalType.scale}).") } } } /** * Create new `Decimal` with precision and scale given in `decimalType` (if any). * If overflow occurs, if `spark.sql.ansi.enabled` is false, null is returned; * otherwise, an `ArithmeticException` is thrown. */ private[this] def toPrecision(value: Decimal, decimalType: DecimalType): Decimal = value.toPrecision( decimalType.precision, decimalType.scale, Decimal.ROUND_HALF_UP, !ansiEnabled) private[this] def castToDecimal(from: DataType, target: DecimalType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => try { // According the benchmark test, `s.toString.trim` is much faster than `s.trim.toString`. // Please refer to https://github.com/apache/spark/pull/26640 changePrecision(Decimal(new JavaBigDecimal(s.toString.trim)), target) } catch { case _: NumberFormatException => if (ansiEnabled) { throw new NumberFormatException(s"invalid input syntax for type numeric: $s") } else { null } }) case BooleanType => buildCast[Boolean](_, b => toPrecision(if (b) Decimal.ONE else Decimal.ZERO, target)) case DateType => buildCast[Int](_, d => null) // date can't cast to decimal in Hive case TimestampType => // Note that we lose precision here. buildCast[Long](_, t => changePrecision(Decimal(timestampToDouble(t)), target)) case dt: DecimalType => b => toPrecision(b.asInstanceOf[Decimal], target) case t: IntegralType => b => changePrecision(Decimal(t.integral.asInstanceOf[Integral[Any]].toLong(b)), target) case x: FractionalType => b => try { changePrecision(Decimal(x.fractional.asInstanceOf[Fractional[Any]].toDouble(b)), target) } catch { case _: NumberFormatException => null } } // DoubleConverter private[this] def castToDouble(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => { val doubleStr = s.toString try doubleStr.toDouble catch { case _: NumberFormatException => val d = Cast.processFloatingPointSpecialLiterals(doubleStr, false) if(ansiEnabled && d == null) { throw new NumberFormatException(s"invalid input syntax for type numeric: $s") } else { d } } }) case BooleanType => buildCast[Boolean](_, b => if (b) 1d else 0d) case DateType => buildCast[Int](_, d => null) case TimestampType => buildCast[Long](_, t => timestampToDouble(t)) case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toDouble(b) } // FloatConverter private[this] def castToFloat(from: DataType): Any => Any = from match { case StringType => buildCast[UTF8String](_, s => { val floatStr = s.toString try floatStr.toFloat catch { case _: NumberFormatException => val f = Cast.processFloatingPointSpecialLiterals(floatStr, true) if (ansiEnabled && f == null) { throw new NumberFormatException(s"invalid input syntax for type numeric: $s") } else { f } } }) case BooleanType => buildCast[Boolean](_, b => if (b) 1f else 0f) case DateType => buildCast[Int](_, d => null) case TimestampType => buildCast[Long](_, t => timestampToDouble(t).toFloat) case x: NumericType => b => x.numeric.asInstanceOf[Numeric[Any]].toFloat(b) } private[this] def castArray(fromType: DataType, toType: DataType): Any => Any = { val elementCast = cast(fromType, toType) // TODO: Could be faster? buildCast[ArrayData](_, array => { val values = new Array[Any](array.numElements()) array.foreach(fromType, (i, e) => { if (e == null) { values(i) = null } else { values(i) = elementCast(e) } }) new GenericArrayData(values) }) } private[this] def castMap(from: MapType, to: MapType): Any => Any = { val keyCast = castArray(from.keyType, to.keyType) val valueCast = castArray(from.valueType, to.valueType) buildCast[MapData](_, map => { val keys = keyCast(map.keyArray()).asInstanceOf[ArrayData] val values = valueCast(map.valueArray()).asInstanceOf[ArrayData] new ArrayBasedMapData(keys, values) }) } private[this] def castStruct(from: StructType, to: StructType): Any => Any = { val castFuncs: Array[(Any) => Any] = from.fields.zip(to.fields).map { case (fromField, toField) => cast(fromField.dataType, toField.dataType) } // TODO: Could be faster? buildCast[InternalRow](_, row => { val newRow = new GenericInternalRow(from.fields.length) var i = 0 while (i < row.numFields) { newRow.update(i, if (row.isNullAt(i)) null else castFuncs(i)(row.get(i, from.apply(i).dataType))) i += 1 } newRow }) } private[this] def cast(from: DataType, to: DataType): Any => Any = { // If the cast does not change the structure, then we don't really need to cast anything. // We can return what the children return. Same thing should happen in the codegen path. if (DataType.equalsStructurally(from, to)) { identity } else if (from == NullType) { // According to `canCast`, NullType can be casted to any type. // For primitive types, we don't reach here because the guard of `nullSafeEval`. // But for nested types like struct, we might reach here for nested null type field. // We won't call the returned function actually, but returns a placeholder. _ => throw new SparkException(s"should not directly cast from NullType to $to.") } else { to match { case dt if dt == from => identity[Any] case StringType => castToString(from) case BinaryType => castToBinary(from) case DateType => castToDate(from) case decimal: DecimalType => castToDecimal(from, decimal) case TimestampType => castToTimestamp(from) case CalendarIntervalType => castToInterval(from) case BooleanType => castToBoolean(from) case ByteType => castToByte(from) case ShortType => castToShort(from) case IntegerType => castToInt(from) case FloatType => castToFloat(from) case LongType => castToLong(from) case DoubleType => castToDouble(from) case array: ArrayType => castArray(from.asInstanceOf[ArrayType].elementType, array.elementType) case map: MapType => castMap(from.asInstanceOf[MapType], map) case struct: StructType => castStruct(from.asInstanceOf[StructType], struct) case udt: UserDefinedType[_] if udt.userClass == from.asInstanceOf[UserDefinedType[_]].userClass => identity[Any] case _: UserDefinedType[_] => throw new SparkException(s"Cannot cast $from to $to.") } } } private[this] lazy val cast: Any => Any = cast(child.dataType, dataType) protected override def nullSafeEval(input: Any): Any = cast(input) override def genCode(ctx: CodegenContext): ExprCode = { // If the cast does not change the structure, then we don't really need to cast anything. // We can return what the children return. Same thing should happen in the interpreted path. if (DataType.equalsStructurally(child.dataType, dataType)) { child.genCode(ctx) } else { super.genCode(ctx) } } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { val eval = child.genCode(ctx) val nullSafeCast = nullSafeCastFunction(child.dataType, dataType, ctx) ev.copy(code = eval.code + castCode(ctx, eval.value, eval.isNull, ev.value, ev.isNull, dataType, nullSafeCast)) } // The function arguments are: `input`, `result` and `resultIsNull`. We don't need `inputIsNull` // in parameter list, because the returned code will be put in null safe evaluation region. private[this] type CastFunction = (ExprValue, ExprValue, ExprValue) => Block private[this] def nullSafeCastFunction( from: DataType, to: DataType, ctx: CodegenContext): CastFunction = to match { case _ if from == NullType => (c, evPrim, evNull) => code"$evNull = true;" case _ if to == from => (c, evPrim, evNull) => code"$evPrim = $c;" case StringType => castToStringCode(from, ctx) case BinaryType => castToBinaryCode(from) case DateType => castToDateCode(from, ctx) case decimal: DecimalType => castToDecimalCode(from, decimal, ctx) case TimestampType => castToTimestampCode(from, ctx) case CalendarIntervalType => castToIntervalCode(from) case BooleanType => castToBooleanCode(from) case ByteType => castToByteCode(from, ctx) case ShortType => castToShortCode(from, ctx) case IntegerType => castToIntCode(from, ctx) case FloatType => castToFloatCode(from, ctx) case LongType => castToLongCode(from, ctx) case DoubleType => castToDoubleCode(from, ctx) case array: ArrayType => castArrayCode(from.asInstanceOf[ArrayType].elementType, array.elementType, ctx) case map: MapType => castMapCode(from.asInstanceOf[MapType], map, ctx) case struct: StructType => castStructCode(from.asInstanceOf[StructType], struct, ctx) case udt: UserDefinedType[_] if udt.userClass == from.asInstanceOf[UserDefinedType[_]].userClass => (c, evPrim, evNull) => code"$evPrim = $c;" case _: UserDefinedType[_] => throw new SparkException(s"Cannot cast $from to $to.") } // Since we need to cast input expressions recursively inside ComplexTypes, such as Map's // Key and Value, Struct's field, we need to name out all the variable names involved in a cast. private[this] def castCode(ctx: CodegenContext, input: ExprValue, inputIsNull: ExprValue, result: ExprValue, resultIsNull: ExprValue, resultType: DataType, cast: CastFunction): Block = { val javaType = JavaCode.javaType(resultType) code""" boolean $resultIsNull = $inputIsNull; $javaType $result = ${CodeGenerator.defaultValue(resultType)}; if (!$inputIsNull) { ${cast(input, result, resultIsNull)} } """ } private def writeArrayToStringBuilder( et: DataType, array: ExprValue, buffer: ExprValue, ctx: CodegenContext): Block = { val elementToStringCode = castToStringCode(et, ctx) val funcName = ctx.freshName("elementToString") val element = JavaCode.variable("element", et) val elementStr = JavaCode.variable("elementStr", StringType) val elementToStringFunc = inline"${ctx.addNewFunction(funcName, s""" |private UTF8String $funcName(${CodeGenerator.javaType(et)} $element) { | UTF8String $elementStr = null; | ${elementToStringCode(element, elementStr, null /* resultIsNull won't be used */)} | return elementStr; |} """.stripMargin)}" val loopIndex = ctx.freshVariable("loopIndex", IntegerType) code""" |$buffer.append("["); |if ($array.numElements() > 0) { | if (!$array.isNullAt(0)) { | $buffer.append($elementToStringFunc(${CodeGenerator.getValue(array, et, "0")})); | } | for (int $loopIndex = 1; $loopIndex < $array.numElements(); $loopIndex++) { | $buffer.append(","); | if (!$array.isNullAt($loopIndex)) { | $buffer.append(" "); | $buffer.append($elementToStringFunc(${CodeGenerator.getValue(array, et, loopIndex)})); | } | } |} |$buffer.append("]"); """.stripMargin } private def writeMapToStringBuilder( kt: DataType, vt: DataType, map: ExprValue, buffer: ExprValue, ctx: CodegenContext): Block = { def dataToStringFunc(func: String, dataType: DataType) = { val funcName = ctx.freshName(func) val dataToStringCode = castToStringCode(dataType, ctx) val data = JavaCode.variable("data", dataType) val dataStr = JavaCode.variable("dataStr", StringType) val functionCall = ctx.addNewFunction(funcName, s""" |private UTF8String $funcName(${CodeGenerator.javaType(dataType)} $data) { | UTF8String $dataStr = null; | ${dataToStringCode(data, dataStr, null /* resultIsNull won't be used */)} | return dataStr; |} """.stripMargin) inline"$functionCall" } val keyToStringFunc = dataToStringFunc("keyToString", kt) val valueToStringFunc = dataToStringFunc("valueToString", vt) val loopIndex = ctx.freshVariable("loopIndex", IntegerType) val mapKeyArray = JavaCode.expression(s"$map.keyArray()", classOf[ArrayData]) val mapValueArray = JavaCode.expression(s"$map.valueArray()", classOf[ArrayData]) val getMapFirstKey = CodeGenerator.getValue(mapKeyArray, kt, JavaCode.literal("0", IntegerType)) val getMapFirstValue = CodeGenerator.getValue(mapValueArray, vt, JavaCode.literal("0", IntegerType)) val getMapKeyArray = CodeGenerator.getValue(mapKeyArray, kt, loopIndex) val getMapValueArray = CodeGenerator.getValue(mapValueArray, vt, loopIndex) code""" |$buffer.append("["); |if ($map.numElements() > 0) { | $buffer.append($keyToStringFunc($getMapFirstKey)); | $buffer.append(" ->"); | if (!$map.valueArray().isNullAt(0)) { | $buffer.append(" "); | $buffer.append($valueToStringFunc($getMapFirstValue)); | } | for (int $loopIndex = 1; $loopIndex < $map.numElements(); $loopIndex++) { | $buffer.append(", "); | $buffer.append($keyToStringFunc($getMapKeyArray)); | $buffer.append(" ->"); | if (!$map.valueArray().isNullAt($loopIndex)) { | $buffer.append(" "); | $buffer.append($valueToStringFunc($getMapValueArray)); | } | } |} |$buffer.append("]"); """.stripMargin } private def writeStructToStringBuilder( st: Seq[DataType], row: ExprValue, buffer: ExprValue, ctx: CodegenContext): Block = { val structToStringCode = st.zipWithIndex.map { case (ft, i) => val fieldToStringCode = castToStringCode(ft, ctx) val field = ctx.freshVariable("field", ft) val fieldStr = ctx.freshVariable("fieldStr", StringType) val javaType = JavaCode.javaType(ft) code""" |${if (i != 0) code"""$buffer.append(",");""" else EmptyBlock} |if (!$row.isNullAt($i)) { | ${if (i != 0) code"""$buffer.append(" ");""" else EmptyBlock} | | // Append $i field into the string buffer | $javaType $field = ${CodeGenerator.getValue(row, ft, s"$i")}; | UTF8String $fieldStr = null; | ${fieldToStringCode(field, fieldStr, null /* resultIsNull won't be used */)} | $buffer.append($fieldStr); |} """.stripMargin } val writeStructCode = ctx.splitExpressions( expressions = structToStringCode.map(_.code), funcName = "fieldToString", arguments = ("InternalRow", row.code) :: (classOf[UTF8StringBuilder].getName, buffer.code) :: Nil) code""" |$buffer.append("["); |$writeStructCode |$buffer.append("]"); """.stripMargin } private[this] def castToStringCode(from: DataType, ctx: CodegenContext): CastFunction = { from match { case BinaryType => (c, evPrim, evNull) => code"$evPrim = UTF8String.fromBytes($c);" case DateType => val df = JavaCode.global( ctx.addReferenceObj("dateFormatter", dateFormatter), dateFormatter.getClass) (c, evPrim, evNull) => code"""$evPrim = UTF8String.fromString(${df}.format($c));""" case TimestampType => val tf = JavaCode.global( ctx.addReferenceObj("timestampFormatter", timestampFormatter), timestampFormatter.getClass) (c, evPrim, evNull) => code"""$evPrim = UTF8String.fromString( org.apache.spark.sql.catalyst.util.DateTimeUtils.timestampToString($tf, $c));""" case CalendarIntervalType => (c, evPrim, _) => code"""$evPrim = UTF8String.fromString($c.toString());""" case ArrayType(et, _) => (c, evPrim, evNull) => { val buffer = ctx.freshVariable("buffer", classOf[UTF8StringBuilder]) val bufferClass = JavaCode.javaType(classOf[UTF8StringBuilder]) val writeArrayElemCode = writeArrayToStringBuilder(et, c, buffer, ctx) code""" |$bufferClass $buffer = new $bufferClass(); |$writeArrayElemCode; |$evPrim = $buffer.build(); """.stripMargin } case MapType(kt, vt, _) => (c, evPrim, evNull) => { val buffer = ctx.freshVariable("buffer", classOf[UTF8StringBuilder]) val bufferClass = JavaCode.javaType(classOf[UTF8StringBuilder]) val writeMapElemCode = writeMapToStringBuilder(kt, vt, c, buffer, ctx) code""" |$bufferClass $buffer = new $bufferClass(); |$writeMapElemCode; |$evPrim = $buffer.build(); """.stripMargin } case StructType(fields) => (c, evPrim, evNull) => { val row = ctx.freshVariable("row", classOf[InternalRow]) val buffer = ctx.freshVariable("buffer", classOf[UTF8StringBuilder]) val bufferClass = JavaCode.javaType(classOf[UTF8StringBuilder]) val writeStructCode = writeStructToStringBuilder(fields.map(_.dataType), row, buffer, ctx) code""" |InternalRow $row = $c; |$bufferClass $buffer = new $bufferClass(); |$writeStructCode |$evPrim = $buffer.build(); """.stripMargin } case pudt: PythonUserDefinedType => castToStringCode(pudt.sqlType, ctx) case udt: UserDefinedType[_] => val udtRef = JavaCode.global(ctx.addReferenceObj("udt", udt), udt.sqlType) (c, evPrim, evNull) => { code"$evPrim = UTF8String.fromString($udtRef.deserialize($c).toString());" } case _ => (c, evPrim, evNull) => code"$evPrim = UTF8String.fromString(String.valueOf($c));" } } private[this] def castToBinaryCode(from: DataType): CastFunction = from match { case StringType => (c, evPrim, evNull) => code"$evPrim = $c.getBytes();" case _: IntegralType => (c, evPrim, evNull) => code"$evPrim = ${NumberConverter.getClass.getName.stripSuffix("$")}.toBinary($c);" } private[this] def castToDateCode( from: DataType, ctx: CodegenContext): CastFunction = { def getZoneId() = { val zoneIdClass = classOf[ZoneId] JavaCode.global( ctx.addReferenceObj("zoneId", zoneId, zoneIdClass.getName), zoneIdClass) } from match { case StringType => val intOpt = ctx.freshVariable("intOpt", classOf[Option[Integer]]) val zid = getZoneId() (c, evPrim, evNull) => code""" scala.Option<Integer> $intOpt = org.apache.spark.sql.catalyst.util.DateTimeUtils.stringToDate($c, $zid); if ($intOpt.isDefined()) { $evPrim = ((Integer) $intOpt.get()).intValue(); } else { $evNull = true; } """ case TimestampType => val zid = getZoneId() (c, evPrim, evNull) => code"""$evPrim = org.apache.spark.sql.catalyst.util.DateTimeUtils.microsToEpochDays($c, $zid);""" case _ => (c, evPrim, evNull) => code"$evNull = true;" } } private[this] def changePrecision(d: ExprValue, decimalType: DecimalType, evPrim: ExprValue, evNull: ExprValue, canNullSafeCast: Boolean): Block = { if (canNullSafeCast) { code""" |$d.changePrecision(${decimalType.precision}, ${decimalType.scale}); |$evPrim = $d; """.stripMargin } else { val overflowCode = if (!ansiEnabled) { s"$evNull = true;" } else { s""" |throw new ArithmeticException($d.toDebugString() + " cannot be represented as " + | "Decimal(${decimalType.precision}, ${decimalType.scale})."); """.stripMargin } code""" |if ($d.changePrecision(${decimalType.precision}, ${decimalType.scale})) { | $evPrim = $d; |} else { | $overflowCode |} """.stripMargin } } private[this] def castToDecimalCode( from: DataType, target: DecimalType, ctx: CodegenContext): CastFunction = { val tmp = ctx.freshVariable("tmpDecimal", classOf[Decimal]) val canNullSafeCast = Cast.canNullSafeCastToDecimal(from, target) from match { case StringType => (c, evPrim, evNull) => val handleException = if (ansiEnabled) { s"""throw new NumberFormatException("invalid input syntax for type numeric: $c");""" } else { s"$evNull =true;" } code""" try { Decimal $tmp = Decimal.apply(new java.math.BigDecimal($c.toString().trim())); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} } catch (java.lang.NumberFormatException e) { $handleException } """ case BooleanType => (c, evPrim, evNull) => code""" Decimal $tmp = $c ? Decimal.apply(1) : Decimal.apply(0); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} """ case DateType => // date can't cast to decimal in Hive (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => // Note that we lose precision here. (c, evPrim, evNull) => code""" Decimal $tmp = Decimal.apply( scala.math.BigDecimal.valueOf(${timestampToDoubleCode(c)})); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} """ case DecimalType() => (c, evPrim, evNull) => code""" Decimal $tmp = $c.clone(); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} """ case x: IntegralType => (c, evPrim, evNull) => code""" Decimal $tmp = Decimal.apply((long) $c); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} """ case x: FractionalType => // All other numeric types can be represented precisely as Doubles (c, evPrim, evNull) => code""" try { Decimal $tmp = Decimal.apply(scala.math.BigDecimal.valueOf((double) $c)); ${changePrecision(tmp, target, evPrim, evNull, canNullSafeCast)} } catch (java.lang.NumberFormatException e) { $evNull = true; } """ } } private[this] def castToTimestampCode( from: DataType, ctx: CodegenContext): CastFunction = from match { case StringType => val zoneIdClass = classOf[ZoneId] val zid = JavaCode.global( ctx.addReferenceObj("zoneId", zoneId, zoneIdClass.getName), zoneIdClass) val longOpt = ctx.freshVariable("longOpt", classOf[Option[Long]]) (c, evPrim, evNull) => code""" scala.Option<Long> $longOpt = org.apache.spark.sql.catalyst.util.DateTimeUtils.stringToTimestamp($c, $zid); if ($longOpt.isDefined()) { $evPrim = ((Long) $longOpt.get()).longValue(); } else { $evNull = true; } """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? 1L : 0L;" case _: IntegralType => (c, evPrim, evNull) => code"$evPrim = ${longToTimeStampCode(c)};" case DateType => val zoneIdClass = classOf[ZoneId] val zid = JavaCode.global( ctx.addReferenceObj("zoneId", zoneId, zoneIdClass.getName), zoneIdClass) (c, evPrim, evNull) => code"""$evPrim = org.apache.spark.sql.catalyst.util.DateTimeUtils.epochDaysToMicros($c, $zid);""" case DecimalType() => (c, evPrim, evNull) => code"$evPrim = ${decimalToTimestampCode(c)};" case DoubleType => (c, evPrim, evNull) => code""" if (Double.isNaN($c) || Double.isInfinite($c)) { $evNull = true; } else { $evPrim = (long)($c * $MICROS_PER_SECOND); } """ case FloatType => (c, evPrim, evNull) => code""" if (Float.isNaN($c) || Float.isInfinite($c)) { $evNull = true; } else { $evPrim = (long)($c * $MICROS_PER_SECOND); } """ } private[this] def castToIntervalCode(from: DataType): CastFunction = from match { case StringType => val util = IntervalUtils.getClass.getCanonicalName.stripSuffix("$") (c, evPrim, evNull) => code"""$evPrim = $util.safeStringToInterval($c); if(${evPrim} == null) { ${evNull} = true; } """.stripMargin } private[this] def decimalToTimestampCode(d: ExprValue): Block = { val block = inline"new java.math.BigDecimal($MICROS_PER_SECOND)" code"($d.toBigDecimal().bigDecimal().multiply($block)).longValue()" } private[this] def longToTimeStampCode(l: ExprValue): Block = code"$l * (long)$MICROS_PER_SECOND" private[this] def timestampToLongCode(ts: ExprValue): Block = code"java.lang.Math.floorDiv($ts, $MICROS_PER_SECOND)" private[this] def timestampToDoubleCode(ts: ExprValue): Block = code"$ts / (double)$MICROS_PER_SECOND" private[this] def castToBooleanCode(from: DataType): CastFunction = from match { case StringType => val stringUtils = inline"${StringUtils.getClass.getName.stripSuffix("$")}" (c, evPrim, evNull) => code""" if ($stringUtils.isTrueString($c)) { $evPrim = true; } else if ($stringUtils.isFalseString($c)) { $evPrim = false; } else { $evNull = true; } """ case TimestampType => (c, evPrim, evNull) => code"$evPrim = $c != 0;" case DateType => // Hive would return null when cast from date to boolean (c, evPrim, evNull) => code"$evNull = true;" case DecimalType() => (c, evPrim, evNull) => code"$evPrim = !$c.isZero();" case n: NumericType => (c, evPrim, evNull) => code"$evPrim = $c != 0;" } private[this] def castTimestampToIntegralTypeCode( ctx: CodegenContext, integralType: String): CastFunction = { if (ansiEnabled) { val longValue = ctx.freshName("longValue") (c, evPrim, evNull) => code""" long $longValue = ${timestampToLongCode(c)}; if ($longValue == ($integralType) $longValue) { $evPrim = ($integralType) $longValue; } else { throw new ArithmeticException("Casting " + $c + " to $integralType causes overflow"); } """ } else { (c, evPrim, evNull) => code"$evPrim = ($integralType) ${timestampToLongCode(c)};" } } private[this] def castDecimalToIntegralTypeCode( ctx: CodegenContext, integralType: String): CastFunction = { if (ansiEnabled) { (c, evPrim, evNull) => code"$evPrim = $c.roundTo${integralType.capitalize}();" } else { (c, evPrim, evNull) => code"$evPrim = $c.to${integralType.capitalize}();" } } private[this] def castIntegralTypeToIntegralTypeExactCode(integralType: String): CastFunction = { assert(ansiEnabled) (c, evPrim, evNull) => code""" if ($c == ($integralType) $c) { $evPrim = ($integralType) $c; } else { throw new ArithmeticException("Casting " + $c + " to $integralType causes overflow"); } """ } private[this] def lowerAndUpperBound( fractionType: String, integralType: String): (String, String) = { assert(fractionType == "float" || fractionType == "double") val typeIndicator = fractionType.charAt(0) val (min, max) = integralType.toLowerCase(Locale.ROOT) match { case "long" => (Long.MinValue, Long.MaxValue) case "int" => (Int.MinValue, Int.MaxValue) case "short" => (Short.MinValue, Short.MaxValue) case "byte" => (Byte.MinValue, Byte.MaxValue) } (min.toString + typeIndicator, max.toString + typeIndicator) } private[this] def castFractionToIntegralTypeCode( fractionType: String, integralType: String): CastFunction = { assert(ansiEnabled) val (min, max) = lowerAndUpperBound(fractionType, integralType) val mathClass = classOf[Math].getName // When casting floating values to integral types, Spark uses the method `Numeric.toInt` // Or `Numeric.toLong` directly. For positive floating values, it is equivalent to `Math.floor`; // for negative floating values, it is equivalent to `Math.ceil`. // So, we can use the condition `Math.floor(x) <= upperBound && Math.ceil(x) >= lowerBound` // to check if the floating value x is in the range of an integral type after rounding. (c, evPrim, evNull) => code""" if ($mathClass.floor($c) <= $max && $mathClass.ceil($c) >= $min) { $evPrim = ($integralType) $c; } else { throw new ArithmeticException("Casting " + $c + " to $integralType causes overflow"); } """ } private[this] def castToByteCode(from: DataType, ctx: CodegenContext): CastFunction = from match { case StringType if ansiEnabled => (c, evPrim, evNull) => code"$evPrim = $c.toByteExact();" case StringType => val wrapper = ctx.freshVariable("intWrapper", classOf[UTF8String.IntWrapper]) (c, evPrim, evNull) => code""" UTF8String.IntWrapper $wrapper = new UTF8String.IntWrapper(); if ($c.toByte($wrapper)) { $evPrim = (byte) $wrapper.value; } else { $evNull = true; } $wrapper = null; """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? (byte) 1 : (byte) 0;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => castTimestampToIntegralTypeCode(ctx, "byte") case DecimalType() => castDecimalToIntegralTypeCode(ctx, "byte") case _: ShortType | _: IntegerType | _: LongType if ansiEnabled => castIntegralTypeToIntegralTypeExactCode("byte") case _: FloatType if ansiEnabled => castFractionToIntegralTypeCode("float", "byte") case _: DoubleType if ansiEnabled => castFractionToIntegralTypeCode("double", "byte") case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (byte) $c;" } private[this] def castToShortCode( from: DataType, ctx: CodegenContext): CastFunction = from match { case StringType if ansiEnabled => (c, evPrim, evNull) => code"$evPrim = $c.toShortExact();" case StringType => val wrapper = ctx.freshVariable("intWrapper", classOf[UTF8String.IntWrapper]) (c, evPrim, evNull) => code""" UTF8String.IntWrapper $wrapper = new UTF8String.IntWrapper(); if ($c.toShort($wrapper)) { $evPrim = (short) $wrapper.value; } else { $evNull = true; } $wrapper = null; """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? (short) 1 : (short) 0;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => castTimestampToIntegralTypeCode(ctx, "short") case DecimalType() => castDecimalToIntegralTypeCode(ctx, "short") case _: IntegerType | _: LongType if ansiEnabled => castIntegralTypeToIntegralTypeExactCode("short") case _: FloatType if ansiEnabled => castFractionToIntegralTypeCode("float", "short") case _: DoubleType if ansiEnabled => castFractionToIntegralTypeCode("double", "short") case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (short) $c;" } private[this] def castToIntCode(from: DataType, ctx: CodegenContext): CastFunction = from match { case StringType if ansiEnabled => (c, evPrim, evNull) => code"$evPrim = $c.toIntExact();" case StringType => val wrapper = ctx.freshVariable("intWrapper", classOf[UTF8String.IntWrapper]) (c, evPrim, evNull) => code""" UTF8String.IntWrapper $wrapper = new UTF8String.IntWrapper(); if ($c.toInt($wrapper)) { $evPrim = $wrapper.value; } else { $evNull = true; } $wrapper = null; """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? 1 : 0;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => castTimestampToIntegralTypeCode(ctx, "int") case DecimalType() => castDecimalToIntegralTypeCode(ctx, "int") case _: LongType if ansiEnabled => castIntegralTypeToIntegralTypeExactCode("int") case _: FloatType if ansiEnabled => castFractionToIntegralTypeCode("float", "int") case _: DoubleType if ansiEnabled => castFractionToIntegralTypeCode("double", "int") case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (int) $c;" } private[this] def castToLongCode(from: DataType, ctx: CodegenContext): CastFunction = from match { case StringType if ansiEnabled => (c, evPrim, evNull) => code"$evPrim = $c.toLongExact();" case StringType => val wrapper = ctx.freshVariable("longWrapper", classOf[UTF8String.LongWrapper]) (c, evPrim, evNull) => code""" UTF8String.LongWrapper $wrapper = new UTF8String.LongWrapper(); if ($c.toLong($wrapper)) { $evPrim = $wrapper.value; } else { $evNull = true; } $wrapper = null; """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? 1L : 0L;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => (c, evPrim, evNull) => code"$evPrim = (long) ${timestampToLongCode(c)};" case DecimalType() => castDecimalToIntegralTypeCode(ctx, "long") case _: FloatType if ansiEnabled => castFractionToIntegralTypeCode("float", "long") case _: DoubleType if ansiEnabled => castFractionToIntegralTypeCode("double", "long") case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (long) $c;" } private[this] def castToFloatCode(from: DataType, ctx: CodegenContext): CastFunction = { from match { case StringType => val floatStr = ctx.freshVariable("floatStr", StringType) (c, evPrim, evNull) => val handleNull = if (ansiEnabled) { s"""throw new NumberFormatException("invalid input syntax for type numeric: $c");""" } else { s"$evNull = true;" } code""" final String $floatStr = $c.toString(); try { $evPrim = Float.valueOf($floatStr); } catch (java.lang.NumberFormatException e) { final Float f = (Float) Cast.processFloatingPointSpecialLiterals($floatStr, true); if (f == null) { $handleNull } else { $evPrim = f.floatValue(); } } """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? 1.0f : 0.0f;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => (c, evPrim, evNull) => code"$evPrim = (float) (${timestampToDoubleCode(c)});" case DecimalType() => (c, evPrim, evNull) => code"$evPrim = $c.toFloat();" case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (float) $c;" } } private[this] def castToDoubleCode(from: DataType, ctx: CodegenContext): CastFunction = { from match { case StringType => val doubleStr = ctx.freshVariable("doubleStr", StringType) (c, evPrim, evNull) => val handleNull = if (ansiEnabled) { s"""throw new NumberFormatException("invalid input syntax for type numeric: $c");""" } else { s"$evNull = true;" } code""" final String $doubleStr = $c.toString(); try { $evPrim = Double.valueOf($doubleStr); } catch (java.lang.NumberFormatException e) { final Double d = (Double) Cast.processFloatingPointSpecialLiterals($doubleStr, false); if (d == null) { $handleNull } else { $evPrim = d.doubleValue(); } } """ case BooleanType => (c, evPrim, evNull) => code"$evPrim = $c ? 1.0d : 0.0d;" case DateType => (c, evPrim, evNull) => code"$evNull = true;" case TimestampType => (c, evPrim, evNull) => code"$evPrim = ${timestampToDoubleCode(c)};" case DecimalType() => (c, evPrim, evNull) => code"$evPrim = $c.toDouble();" case x: NumericType => (c, evPrim, evNull) => code"$evPrim = (double) $c;" } } private[this] def castArrayCode( fromType: DataType, toType: DataType, ctx: CodegenContext): CastFunction = { val elementCast = nullSafeCastFunction(fromType, toType, ctx) val arrayClass = JavaCode.javaType(classOf[GenericArrayData]) val fromElementNull = ctx.freshVariable("feNull", BooleanType) val fromElementPrim = ctx.freshVariable("fePrim", fromType) val toElementNull = ctx.freshVariable("teNull", BooleanType) val toElementPrim = ctx.freshVariable("tePrim", toType) val size = ctx.freshVariable("n", IntegerType) val j = ctx.freshVariable("j", IntegerType) val values = ctx.freshVariable("values", classOf[Array[Object]]) val javaType = JavaCode.javaType(fromType) (c, evPrim, evNull) => code""" final int $size = $c.numElements(); final Object[] $values = new Object[$size]; for (int $j = 0; $j < $size; $j ++) { if ($c.isNullAt($j)) { $values[$j] = null; } else { boolean $fromElementNull = false; $javaType $fromElementPrim = ${CodeGenerator.getValue(c, fromType, j)}; ${castCode(ctx, fromElementPrim, fromElementNull, toElementPrim, toElementNull, toType, elementCast)} if ($toElementNull) { $values[$j] = null; } else { $values[$j] = $toElementPrim; } } } $evPrim = new $arrayClass($values); """ } private[this] def castMapCode(from: MapType, to: MapType, ctx: CodegenContext): CastFunction = { val keysCast = castArrayCode(from.keyType, to.keyType, ctx) val valuesCast = castArrayCode(from.valueType, to.valueType, ctx) val mapClass = JavaCode.javaType(classOf[ArrayBasedMapData]) val keys = ctx.freshVariable("keys", ArrayType(from.keyType)) val convertedKeys = ctx.freshVariable("convertedKeys", ArrayType(to.keyType)) val convertedKeysNull = ctx.freshVariable("convertedKeysNull", BooleanType) val values = ctx.freshVariable("values", ArrayType(from.valueType)) val convertedValues = ctx.freshVariable("convertedValues", ArrayType(to.valueType)) val convertedValuesNull = ctx.freshVariable("convertedValuesNull", BooleanType) (c, evPrim, evNull) => code""" final ArrayData $keys = $c.keyArray(); final ArrayData $values = $c.valueArray(); ${castCode(ctx, keys, FalseLiteral, convertedKeys, convertedKeysNull, ArrayType(to.keyType), keysCast)} ${castCode(ctx, values, FalseLiteral, convertedValues, convertedValuesNull, ArrayType(to.valueType), valuesCast)} $evPrim = new $mapClass($convertedKeys, $convertedValues); """ } private[this] def castStructCode( from: StructType, to: StructType, ctx: CodegenContext): CastFunction = { val fieldsCasts = from.fields.zip(to.fields).map { case (fromField, toField) => nullSafeCastFunction(fromField.dataType, toField.dataType, ctx) } val tmpResult = ctx.freshVariable("tmpResult", classOf[GenericInternalRow]) val rowClass = JavaCode.javaType(classOf[GenericInternalRow]) val tmpInput = ctx.freshVariable("tmpInput", classOf[InternalRow]) val fieldsEvalCode = fieldsCasts.zipWithIndex.map { case (cast, i) => val fromFieldPrim = ctx.freshVariable("ffp", from.fields(i).dataType) val fromFieldNull = ctx.freshVariable("ffn", BooleanType) val toFieldPrim = ctx.freshVariable("tfp", to.fields(i).dataType) val toFieldNull = ctx.freshVariable("tfn", BooleanType) val fromType = JavaCode.javaType(from.fields(i).dataType) val setColumn = CodeGenerator.setColumn(tmpResult, to.fields(i).dataType, i, toFieldPrim) code""" boolean $fromFieldNull = $tmpInput.isNullAt($i); if ($fromFieldNull) { $tmpResult.setNullAt($i); } else { $fromType $fromFieldPrim = ${CodeGenerator.getValue(tmpInput, from.fields(i).dataType, i.toString)}; ${castCode(ctx, fromFieldPrim, fromFieldNull, toFieldPrim, toFieldNull, to.fields(i).dataType, cast)} if ($toFieldNull) { $tmpResult.setNullAt($i); } else { $setColumn; } } """ } val fieldsEvalCodes = ctx.splitExpressions( expressions = fieldsEvalCode.map(_.code), funcName = "castStruct", arguments = ("InternalRow", tmpInput.code) :: (rowClass.code, tmpResult.code) :: Nil) (input, result, resultIsNull) => code""" final $rowClass $tmpResult = new $rowClass(${fieldsCasts.length}); final InternalRow $tmpInput = $input; $fieldsEvalCodes $result = $tmpResult; """ } override def sql: String = dataType match { // HiveQL doesn't allow casting to complex types. For logical plans translated from HiveQL, this // type of casting can only be introduced by the analyzer, and can be omitted when converting // back to SQL query string. case _: ArrayType | _: MapType | _: StructType => child.sql case _ => s"CAST(${child.sql} AS ${dataType.sql})" } } /** * Cast the child expression to the target data type. * * When cast from/to timezone related types, we need timeZoneId, which will be resolved with * session local timezone by an analyzer [[ResolveTimeZone]]. */ @ExpressionDescription( usage = "_FUNC_(expr AS type) - Casts the value `expr` to the target data type `type`.", examples = """ Examples: > SELECT _FUNC_('10' as int); 10 """) case class Cast(child: Expression, dataType: DataType, timeZoneId: Option[String] = None) extends CastBase { override def withTimeZone(timeZoneId: String): TimeZoneAwareExpression = copy(timeZoneId = Option(timeZoneId)) override protected val ansiEnabled: Boolean = SQLConf.get.ansiEnabled } /** * Cast the child expression to the target data type as per ANSI SQL standard. * A runtime exception will be thrown on casting failure such as converting an out-of-range value * to an integral type. * * When cast from/to timezone related types, we need timeZoneId, which will be resolved with * session local timezone by an analyzer [[ResolveTimeZone]]. */ case class AnsiCast(child: Expression, dataType: DataType, timeZoneId: Option[String] = None) extends CastBase { override def withTimeZone(timeZoneId: String): TimeZoneAwareExpression = copy(timeZoneId = Option(timeZoneId)) override protected val ansiEnabled: Boolean = true } /** * Cast the child expression to the target data type, but will throw error if the cast might * truncate, e.g. long -> int, timestamp -> data. */ case class UpCast(child: Expression, dataType: DataType, walkedTypePath: Seq[String] = Nil) extends UnaryExpression with Unevaluable { override lazy val resolved = false }
matthewfranglen/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala
Scala
mit
68,320
/* * Copyright (c) 2014-2018 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.catnap import cats.effect.{ContextShift, IO} import cats.implicits._ import minitest.TestSuite import monix.execution.internal.Platform import monix.execution.schedulers.TestScheduler import scala.concurrent.{ExecutionContext, Promise} import scala.util.{Random, Success} object SemaphoreSuite extends TestSuite[TestScheduler] { def setup() = TestScheduler() def tearDown(env: TestScheduler): Unit = assert(env.state.tasks.isEmpty, "should not have tasks left to execute") implicit def contextShift(implicit ec: ExecutionContext): ContextShift[IO] = IO.contextShift(ec) test("simple greenLight") { implicit s => val semaphore = Semaphore.unsafe[IO](provisioned = 4) val future = semaphore.withPermit(IO.shift *> IO(100)).unsafeToFuture() assertEquals(semaphore.available.unsafeRunSync(), 3) assert(!future.isCompleted, "!future.isCompleted") s.tick() assertEquals(future.value, Some(Success(100))) assertEquals(semaphore.available.unsafeRunSync(), 4) } test("should back-pressure when full") { implicit s => val semaphore = Semaphore.unsafe[IO](provisioned = 2) val p1 = Promise[Int]() val f1 = semaphore.withPermit(IO.fromFuture(IO.pure(p1.future))).unsafeToFuture() val p2 = Promise[Int]() val f2 = semaphore.withPermit(IO.fromFuture(IO.pure(p2.future))).unsafeToFuture() s.tick() assertEquals(semaphore.available.unsafeRunSync(), 0) val f3 = semaphore.withPermit(IO(3)).unsafeToFuture() s.tick() assertEquals(f3.value, None) assertEquals(semaphore.available.unsafeRunSync(), 0) p1.success(1); s.tick() assertEquals(semaphore.available.unsafeRunSync(), 1) assertEquals(f1.value, Some(Success(1))) assertEquals(f3.value, Some(Success(3))) p2.success(2); s.tick() assertEquals(f2.value, Some(Success(2))) assertEquals(semaphore.available.unsafeRunSync(), 2) } testAsync("real async test of many futures") { _ => // Executing Futures on the global scheduler! import scala.concurrent.ExecutionContext.Implicits.global val semaphore = Semaphore.unsafe[IO](provisioned = 20) val count = if (Platform.isJVM) 10000 else 1000 val futures = for (i <- 0 until count) yield semaphore.withPermit(IO.shift *> IO(i)) val sum = futures.toList.parSequence.map(_.sum).unsafeToFuture() // Asynchronous result, to be handled by Minitest for (result <- sum) yield { assertEquals(result, count * (count - 1) / 2) } } test("await for release of all active and pending permits") { implicit s => val semaphore = Semaphore.unsafe[IO](provisioned = 2) val p1 = semaphore.acquire.unsafeToFuture() assertEquals(p1.value, Some(Success(()))) val p2 = semaphore.acquire.unsafeToFuture() assertEquals(p2.value, Some(Success(()))) val p3 = semaphore.acquire.unsafeToFuture() assert(!p3.isCompleted, "!p3.isCompleted") val p4 = semaphore.acquire.unsafeToFuture() assert(!p4.isCompleted, "!p4.isCompleted") val all1 = semaphore.awaitAvailable(2).unsafeToFuture() assert(!all1.isCompleted, "!all1.isCompleted") semaphore.release.unsafeToFuture(); s.tick() assert(!all1.isCompleted, "!all1.isCompleted") semaphore.release.unsafeToFuture(); s.tick() assert(!all1.isCompleted, "!all1.isCompleted") semaphore.release.unsafeToFuture(); s.tick() assert(!all1.isCompleted, "!all1.isCompleted") semaphore.release.unsafeToFuture(); s.tick() assert(all1.isCompleted, "all1.isCompleted") // REDO val p5 = semaphore.acquire.unsafeToFuture() assert(p5.isCompleted, "p5.isCompleted") val all2 = semaphore.awaitAvailable(2).unsafeToFuture() s.tick(); assert(!all2.isCompleted, "!all2.isCompleted") semaphore.release.unsafeToFuture(); s.tick() assert(all2.isCompleted, "all2.isCompleted") // Already completed val all3 = semaphore.awaitAvailable(2).unsafeToFuture(); s.tick() assert(all3.isCompleted, "all3.isCompleted") } test("acquire is cancelable") { implicit s => val semaphore = Semaphore.unsafe[IO](provisioned = 2) val p1 = semaphore.acquire.unsafeToFuture() assert(p1.isCompleted, "p1.isCompleted") val p2 = semaphore.acquire.unsafeToFuture() assert(p2.isCompleted, "p2.isCompleted") val p3 = Promise[Unit] val cancel = semaphore.acquire.unsafeRunCancelable(_ => p3.success(())) assert(!p3.isCompleted, "!p3.isCompleted") assertEquals(semaphore.available.unsafeRunSync(), 0) cancel.unsafeRunSync() semaphore.release.unsafeToFuture(); s.tick() assertEquals(semaphore.available.unsafeRunSync(), 1) semaphore.release.unsafeRunSync(); s.tick() assertEquals(semaphore.available.unsafeRunSync(), 2) s.tick() assertEquals(semaphore.available.unsafeRunSync(), 2) assert(!p3.isCompleted, "!p3.isCompleted") } testAsync("withPermitN / awaitAvailable concurrent test") { _ => // Executing Futures on the global scheduler! import scala.concurrent.ExecutionContext.Implicits.global val task = repeatTest(10) { val available = 6 val semaphore = Semaphore.unsafe[IO](provisioned = available) val count = if (Platform.isJVM) 10000 else 50 val allReleased = Promise[Unit]() val task = semaphore.withPermit(IO.suspend { allReleased.completeWith(semaphore.awaitAvailable(available).unsafeToFuture()) val futures = for (i <- 0 until count) yield { semaphore.withPermitN(Math.floorMod(Random.nextInt(), 3) + 1) { IO(1).map { x => assert(!allReleased.isCompleted, s"!allReleased.isCompleted (index $i)") x } } } futures.toList.parSequence.map { x => x.sum } }) for (r <- task; _ <- IO.fromFuture(IO.pure(allReleased.future))) yield { assertEquals(r, count) assertEquals(semaphore.available.unsafeRunSync(), available) } } task.unsafeToFuture() } test("withPermitN has FIFO priority") { implicit s => val sem = Semaphore.unsafe[IO](provisioned = 0) val f1 = sem.withPermitN(3)(IO(1 + 1)).unsafeToFuture() assertEquals(f1.value, None) val f2 = sem.withPermitN(4)(IO(1 + 1)).unsafeToFuture() assertEquals(f2.value, None) sem.releaseN(2).unsafeRunAsyncAndForget(); s.tick() assertEquals(f1.value, None) assertEquals(f2.value, None) sem.releaseN(1).unsafeRunAsyncAndForget(); s.tick() assertEquals(f1.value, Some(Success(2))) assertEquals(f2.value, None) sem.releaseN(1).unsafeRunAsyncAndForget(); s.tick() assertEquals(f2.value, Some(Success(2))) } test("withPermitN is cancelable (1)") { implicit s => val sem = Semaphore.unsafe[IO](provisioned = 0) assertEquals(sem.count.unsafeRunSync(), 0) val p1 = Promise[Int]() val cancel = sem.withPermitN(3)(IO(1 + 1)).unsafeRunCancelable(r => p1.complete(r.toTry)) val f2 = sem.withPermitN(3)(IO(1 + 1)).unsafeToFuture() assertEquals(p1.future.value, None) assertEquals(f2.value, None) assertEquals(sem.count.unsafeRunSync(), -6) cancel.unsafeRunAsyncAndForget(); s.tick() assertEquals(sem.count.unsafeRunSync(), -3) sem.releaseN(3).unsafeRunAsyncAndForget() s.tick() assertEquals(p1.future.value, None) assertEquals(f2.value, Some(Success(2))) } test("withPermitN is cancelable (2)") { implicit s => val sem = Semaphore.unsafe[IO](provisioned = 1) val p1 = Promise[Int]() val cancel = sem.withPermitN(3)(IO(1 + 1)).unsafeRunCancelable(r => p1.complete(r.toTry)) val f2 = sem.withPermitN(3)(IO(1 + 1)).unsafeToFuture() assertEquals(sem.count.unsafeRunSync(), -5) sem.releaseN(1).unsafeRunAsyncAndForget() assertEquals(sem.count.unsafeRunSync(), -4) assertEquals(p1.future.value, None) assertEquals(f2.value, None) cancel.unsafeRunAsyncAndForget(); s.tick() assertEquals(sem.count.unsafeRunSync(), -1) sem.releaseN(1).unsafeRunAsyncAndForget() s.tick() assertEquals(p1.future.value, None) assertEquals(f2.value, Some(Success(2))) } def repeatTest(n: Int)(f: => IO[Unit]): IO[Unit] = if (n > 0) f.flatMap(_ => repeatTest(n - 1)(f)) else IO.unit }
Wogan/monix
monix-catnap/shared/src/test/scala/monix/catnap/SemaphoreSuite.scala
Scala
apache-2.0
8,915
object ch8_10 { import ch8.Gen case class SGen[A](forSize: Int => Gen[A]) //should be case class SGen[+A](forSize: Int => Gen[A]) but ''<console>:79: error: covariant type A occurs in invariant position in type => Int => ch8.Gen[A] of value forSize' occurs def unsized[A](g: Gen[A]): SGen[A] = SGen(_ => g) } import ch8_10._ /* from repl you can test typing: :load src/main/scala/fpinscala/ch6/RNG.scala :load src/main/scala/fpinscala/ch6/State.scala :load src/main/scala/fpinscala/ch8/Gen.scala :load src/main/scala/fpinscala/ch8/Exercise10.scala */
rucka/fpinscala
src/main/scala/fpinscala/ch8/Exercise10.scala
Scala
gpl-2.0
565
// Copyright (C) 2014 Fehmi Can Saglam (@fehmicans) and contributors. // See the LICENCE.txt file distributed with this work for additional // information regarding copyright ownership. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package reactivemongo.extensions.json.dao import scala.concurrent.ExecutionContext.Implicits.global import reactivemongo.extensions.json.model.Person import reactivemongo.api.DB import scala.concurrent.Future import reactivemongo.extensions.json.dsl.JsonDsl class PersonJsonDao(_db: DB) extends JsonDao[Person, String](() => _db, "persons") with JsonDsl { def findByName(name: String): Future[Option[Person]] = { findOne("name" $eq name) } }
fehmicansaglam/reactivemongo-extensions
json/src/test/scala/dao/PersonJsonDao.scala
Scala
apache-2.0
1,202
package com.monsanto.arch.kamon.prometheus.metric import com.monsanto.arch.kamon.prometheus.util.strictlyIncreasing /** Generic trait for all possible metric values. */ sealed trait MetricValue object MetricValue { /** Counters are represented as doubles, despite being integral. They must be non-negative. */ case class Counter(count: Double) extends MetricValue { require(count >= 0) } /** A histogram consists of series of buckets, a sample count, and a sample sum. The buckets must be in strictly * increasing order by level. Also, the counts in each bucket is cumulative and should therefore also be strictly * increasing (i.e. the bucket is not empty), with the possible exception of the last bucket, which is special. * The last bucket must have the level +∞ and should have a cumulative count that is the same as the total count * for the whole histogram. The sample count and sum should match the values from the histogram. */ case class Histogram(buckets: Seq[Bucket], sampleCount: Long, sampleSum: Double) extends MetricValue { require(strictlyIncreasing(buckets.map(_.upperBound)), "Buckets must be in strictly increasing order by level") require(strictlyIncreasing(buckets.dropRight(1).map(_.cumulativeCount)), "Every finite bucket must add to the count") require(buckets.nonEmpty, "Buckets must not be empty, a (∞, 0) bucket indicates no values") require(buckets.last.upperBound == Double.PositiveInfinity, "The last bucket must have the value +∞") require(buckets.takeRight(2) match { case Bucket(Double.PositiveInfinity, x) :: Nil ⇒ x == 0 case Bucket(_, x) :: Bucket(Double.PositiveInfinity, y) :: Nil ⇒ x == y }, "∞ bucket must not modify cumulative count") require(sampleCount == buckets.last.cumulativeCount, s"The sampleCount ($sampleCount) must match the count from the buckets (${buckets.last.cumulativeCount})") val bucketSum = { buckets.dropRight(1).foldLeft(0.0 → 0L) { (sumAndLastCount, bucket) ⇒ val (lastSum, lastCount) = sumAndLastCount val thisCount = bucket.cumulativeCount - lastCount val sum = lastSum + bucket.upperBound * thisCount (sum, bucket.cumulativeCount) }._1 } require(sampleSum == bucketSum || (math.abs(sampleSum - bucketSum) < 5 * math.ulp(bucketSum)) , s"The sampleSum ($sampleSum) must match the sum derived from the buckets ($bucketSum)") } /** Provides a factory function for creating new instances. */ object Histogram { /** Creates a new value directly from a Kamon snapshot. */ def apply(snapshot: kamon.metric.instrument.Histogram.Snapshot): Histogram = { val rawValues = { val builder = Seq.newBuilder[(Double, Long)] snapshot.recordsIterator.foreach(r ⇒ builder += r.level.toDouble → r.count) builder.result() } val sumValues = rawValues match { case Nil ⇒ Nil case h :: t ⇒ t.scanLeft(h)((lhs, rhs) ⇒ (rhs._1, lhs._2 + rhs._2)) } val finiteBuckets = sumValues.map(b ⇒ MetricValue.Bucket(b._1.toDouble, b._2)) val sum = rawValues.foldLeft(0.0) { (sum, pair) ⇒ sum + pair._1 * pair._2 } val count = finiteBuckets.lastOption.map(_.cumulativeCount).getOrElse(0L) val allBuckets = finiteBuckets :+ MetricValue.Bucket(Double.PositiveInfinity, count) Histogram(allBuckets, count, sum) } } /** A bucket in a histogram. */ case class Bucket(upperBound: Double, cumulativeCount: Long) }
MonsantoCo/kamon-prometheus
library/src/main/scala/com/monsanto/arch/kamon/prometheus/metric/MetricValue.scala
Scala
bsd-3-clause
3,535
package org.sireum.pilarform.lexer import org.sireum.pilarform.lexer.CharConstants.SU import org.sireum.pilarform.util.Utils._ object UnicodeEscapeDecoder { /** * Decode unicode escapes of the form "\\u0061" in the given text. * If forgiveErrors is true, then no exception will be thrown on malformed escapes. */ @throws(classOf[PilarLexerException]) def decode(text: String, forgiveErrors: Boolean = false): String = new UnicodeEscapeReader(text, forgiveErrors).mkString } trait IUnicodeEscapeReader extends Iterator[Char] { val text: String /** * @return true if all the available characters have been read. */ def isEof: Boolean /** * @return the next character from the post-decoded text */ @throws(classOf[PilarLexerException]) def read(): Char /** * @return the corresponding unicode escape sequence if the last character read was decoded, otherwise None. */ def unicodeEscapeOpt: Option[String] def next() = read() def hasNext = !isEof /** * Return a clone of this reader initialised to the current state */ def copy: IUnicodeEscapeReader } class UnicodeEscapeReader(val text: String, forgiveErrors: Boolean = false) extends IUnicodeEscapeReader { private var pos: Int = 0 private var unicodeEscapeSequence: String = null /** * To distinguish cases like "\\\\u" from unicode escape sequences. */ private var consecutiveBackslashCount = 0 def copy: UnicodeEscapeReader = { val reader = new UnicodeEscapeReader(text, forgiveErrors) reader.pos = pos reader.unicodeEscapeSequence = unicodeEscapeSequence reader.consecutiveBackslashCount = consecutiveBackslashCount reader } def isEof = pos >= text.length @throws(classOf[PilarLexerException]) def read(): Char = { val ch = consumeNextCharacter() unicodeEscapeSequence = null if (ch == '\\\\') if (nextChar == 'u' && consecutiveBackslashCount % 2 == 0) { consecutiveBackslashCount = 0 readUnicodeChar(pos - 1) } else { consecutiveBackslashCount += 1 ch } else { consecutiveBackslashCount = 0 ch } } def unicodeEscapeOpt: Option[String] = Option(unicodeEscapeSequence) private def consumeNextCharacter(): Char = { val result = safeGet(pos) pos += 1 result } private def nextChar = safeGet(pos) private def safeGet(pos: Int): Char = if (pos >= text.length) SU else text(pos) private def readUnicodeChar(startPos: Int): Char = { this.unicodeEscapeSequence = consumeUnicodeEscape() val decodedChar = decodeUnicodeChar(unicodeEscapeSequence takeRight 4 toList, unicodeEscapeSequence, startPos) decodedChar } private def consumeUnicodeEscape(): String = { val sb = new StringBuilder sb.append('\\\\') // Repeating u's are allowed in Unicode escapes (bizarrely enough): do sb.append(consumeNextCharacter()) while (nextChar == 'u') for (n ← 1 to 4) sb.append(consumeNextCharacter()) sb.toString } private def decodeUnicodeChar(digits: List[Char], unicodeEscapeSequence: String, startPos: Int): Char = { val List(digit1, digit2, digit3, digit4) = digits.map(digit2int(_, base = 16)) if (digit1 < 0 || digit2 < 0 || digit3 < 0 || digit4 < 0) if (forgiveErrors) ' ' else { val (line, column) = lineAndColumn(startPos) throw new PilarLexerException("[" + line + ":" + column + "] error in unicode escape: '" + unicodeEscapeSequence + "'") } else (digit1 << 12 | digit2 << 8 | digit3 << 4 | digit4).toChar } private def lineAndColumn(offset: Int): (Int, Int) = { var line = 1 var column = 1 for (i ← 0 until offset) { if (text(i) == '\\n') { line += 1 column = 1 } else column += 1 } (line, column) } } class NoUnicodeEscapeReader(val text: String) extends IUnicodeEscapeReader { private var pos = 0 def copy = { val reader = new NoUnicodeEscapeReader(text) reader.pos = pos reader } def isEof: Boolean = pos >= text.length def read(): Char = { val result = if (isEof) SU else text(pos) pos += 1 result } def unicodeEscapeOpt: Option[String] = None }
fgwei/pilarform
pilarform/src/main/scala/org/sireum/pilarform/lexer/UnicodeEscapeReader.scala
Scala
epl-1.0
4,258
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark import scala.collection.JavaConverters._ import org.apache.spark.internal.Logging /** * Thread audit for test suites. */ trait ThreadAudit extends Logging { val threadWhiteList = Set( /** * Netty related internal threads. * These are excluded because their lifecycle is handled by the netty itself * and spark has no explicit effect on them. */ "netty.*", /** * Netty related internal threads. * A Single-thread singleton EventExecutor inside netty which creates such threads. * These are excluded because their lifecycle is handled by the netty itself * and spark has no explicit effect on them. */ "globalEventExecutor.*", /** * Netty related internal threads. * Checks if a thread is alive periodically and runs a task when a thread dies. * These are excluded because their lifecycle is handled by the netty itself * and spark has no explicit effect on them. */ "threadDeathWatcher.*", /** * During [[SparkContext]] creation [[org.apache.spark.rpc.netty.NettyRpcEnv]] * creates event loops. One is wrapped inside * [[org.apache.spark.network.server.TransportServer]] * the other one is inside [[org.apache.spark.network.client.TransportClient]]. * Calling [[SparkContext#stop]] will shut down the thread pool of this event group * asynchronously. In each case proper stopping is checked manually. */ "rpc-client.*", "rpc-server.*", /** * During [[org.apache.spark.network.TransportContext]] construction a separate event loop could * be created for handling ChunkFetchRequest. * Calling [[org.apache.spark.network.TransportContext#close]] will shut down the thread pool * of this event group asynchronously. In each case proper stopping is checked manually. */ "shuffle-chunk-fetch-handler.*", /** * During [[SparkContext]] creation BlockManager creates event loops. One is wrapped inside * [[org.apache.spark.network.server.TransportServer]] * the other one is inside [[org.apache.spark.network.client.TransportClient]]. * Calling [[SparkContext#stop]] will shut down the thread pool of this event group * asynchronously. In each case proper stopping is checked manually. */ "shuffle-client.*", "shuffle-server.*", /** * Global cleaner thread that manage statistics data references of Hadoop filesystems. * This is excluded because their lifecycle is handled by Hadoop and spark has no explicit * effect on it. */ "org.apache.hadoop.fs.FileSystem\\\\$Statistics\\\\$StatisticsDataReferenceCleaner", /** * A global thread pool for broadcast exchange executions. */ "broadcast-exchange.*", /** * A thread started by JRE to support safe parallel execution of waitFor() and exitStatus() * methods to forked subprocesses. */ "process reaper" ) private var threadNamesSnapshot: Set[String] = Set.empty protected def doThreadPreAudit(): Unit = { threadNamesSnapshot = runningThreadNames() } protected def doThreadPostAudit(): Unit = { val shortSuiteName = this.getClass.getName.replaceAll("org.apache.spark", "o.a.s") if (threadNamesSnapshot.nonEmpty) { val remainingThreadNames = runningThreadNames().diff(threadNamesSnapshot) .filterNot { s => threadWhiteList.exists(s.matches(_)) } if (remainingThreadNames.nonEmpty) { logWarning(s"\\n\\n===== POSSIBLE THREAD LEAK IN SUITE $shortSuiteName, " + s"thread names: ${remainingThreadNames.mkString(", ")} =====\\n") } } else { logWarning("\\n\\n===== THREAD AUDIT POST ACTION CALLED " + s"WITHOUT PRE ACTION IN SUITE $shortSuiteName =====\\n") } } private def runningThreadNames(): Set[String] = { Thread.getAllStackTraces.keySet().asScala.map(_.getName).toSet } }
ConeyLiu/spark
core/src/test/scala/org/apache/spark/ThreadAudit.scala
Scala
apache-2.0
4,730
package mountainrangepvp.core import com.badlogic.gdx.math.{MathUtils, Vector2} /** * Holds the point the camera is centred on. */ case class Camera(centre: Vector2) { val RunningLookAhead = 170 val AimingLookAhead = 70 val VerticalShift = +50 def centreOn(player: PlayerEntity) = { val target = player.position.cpy() target.add(0, VerticalShift) val lookAhead = MathUtils.lerp(AimingLookAhead, RunningLookAhead, (player.velocity.x / 400).abs.max(0).min(1)) target.add(player.aim.cpy().scl(lookAhead)) val nextCentre = centre.cpy() nextCentre.lerp(target, 0.15f) Camera(nextCentre) } }
thorinii/MountainRangePvP
src/main/scala/mountainrangepvp/core/Camera.scala
Scala
mit
667
package se.lu.nateko.cp.meta.onto.reasoner import scala.jdk.CollectionConverters.IteratorHasAsScala import org.semanticweb.owlapi.model.OWLClass import org.semanticweb.owlapi.model.OWLProperty import org.semanticweb.owlapi.model.OWLClassExpression import org.semanticweb.owlapi.model.OWLOntology import org.semanticweb.owlapi.model.OWLDataProperty import org.semanticweb.owlapi.model.OWLObjectProperty class HermitBasedReasoner(ontology: OWLOntology) extends BaseReasoner(ontology){ val reasoner = new org.semanticweb.HermiT.ReasonerFactory().createReasoner(ontology) override def close(): Unit = { reasoner.dispose() } override def getSubClasses(owlClass: OWLClass, direct: Boolean): Seq[OWLClass] = reasoner.getSubClasses(owlClass, direct).entities.iterator.asScala.toSeq override def getTopLevelClasses: Seq[OWLClass] = reasoner .getSubClasses(factory.getOWLThing, true) .entities.iterator.asScala .toSeq override def isSubClass(subClass: OWLClassExpression, superClass: OWLClassExpression): Boolean = { val axiom = factory.getOWLSubClassOfAxiom(subClass, superClass) reasoner.isEntailed(axiom) } override protected def getParentProps(owlProp: OWLProperty): Seq[OWLProperty] = owlProp match { case dp: OWLDataProperty => reasoner.getSuperDataProperties(dp, false).entities.iterator.asScala.toIndexedSeq case op: OWLObjectProperty => reasoner.getSuperObjectProperties(op, false).entities.iterator.asScala.collect{ case op: OWLObjectProperty => op }.toIndexedSeq case _ => Nil //ignoring annotation properties } }
ICOS-Carbon-Portal/meta
src/main/scala/se/lu/nateko/cp/meta/onto/reasoner/HermitBasedReasoner.scala
Scala
gpl-3.0
1,563
/* * Copyright 2014–2018 SlamData Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package quasar.physical.rdbms import slamdata.Predef._ import quasar.{RenderTree, RenderTreeT, fp} import quasar.Planner.PlannerError import quasar.common._ import quasar.common.PhaseResult._ import quasar.connector.{BackendModule, DefaultAnalyzeModule} import quasar.contrib.pathy.APath import quasar.contrib.scalaz.{MonadReader_, MonadTell_} import quasar.effect.MonoSeq import quasar.fp.free._ import quasar.fs.FileSystemError._ import quasar.fs.MonadFsErr import quasar.fs.mount.BackendDef.{DefErrT, DefinitionError} import quasar.fs.mount.ConnectionUri import quasar.physical.rdbms.fs._ import quasar.physical.rdbms.common.Config import quasar.physical.rdbms.planner.Planner import quasar.physical.rdbms.planner.sql.SqlExpr import quasar.physical.rdbms.common._ import quasar.physical.rdbms.jdbc.JdbcConnectionInfo import quasar.qscript.analysis._ import quasar.qscript.{ExtractPath, Injectable, QScriptCore, QScriptTotal} import quasar.qscript.rewrites.{Optimize, Unicoalesce, Unirewrite} import scala.Predef.implicitly import doobie.imports.Transactor import doobie.hikari.hikaritransactor.HikariTransactor import matryoshka.{BirecursiveT, Delay, EqualT, RecursiveT, ShowT} import matryoshka.implicits._ import matryoshka.data._ import scalaz._ import Scalaz._ import scalaz.concurrent.Task trait Rdbms extends BackendModule with RdbmsReadFile with RdbmsWriteFile with RdbmsManageFile with RdbmsQueryFile with Interpreter with DefaultAnalyzeModule { type Repr = Fix[SqlExpr] type QS[T[_[_]]] = model.QS[T] type Eff[A] = model.Eff[A] type M[A] = model.M[A] type Config = common.Config val chunkSize = 512 implicit class LiftEffBackend[F[_], A](m: F[A])(implicit I: F :<: Eff) { val liftB: Backend[A] = lift(m).into[Eff].liftB } import Cost._ import Cardinality._ def MonoSeqM: MonoSeq[M] = MonoSeq[M] def CardinalityQSM: Cardinality[QSM[Fix, ?]] = Cardinality[QSM[Fix, ?]] def CostQSM: Cost[QSM[Fix, ?]] = Cost[QSM[Fix, ?]] def FunctorQSM[T[_[_]]] = Functor[QSM[T, ?]] def TraverseQSM[T[_[_]]] = Traverse[QSM[T, ?]] def DelayRenderTreeQSM[T[_[_]]: BirecursiveT: EqualT: ShowT: RenderTreeT] = implicitly[Delay[RenderTree, QSM[T, ?]]] def ExtractPathQSM[T[_[_]]: RecursiveT] = ExtractPath[QSM[T, ?], APath] def QSCoreInject[T[_[_]]] = implicitly[QScriptCore[T, ?] :<: QSM[T, ?]] def MonadM = Monad[M] def UnirewriteT[T[_[_]]: BirecursiveT: EqualT: ShowT: RenderTreeT] = implicitly[Unirewrite[T, QS[T]]] def UnicoalesceCap[T[_[_]]: BirecursiveT: EqualT: ShowT: RenderTreeT] = Unicoalesce.Capture[T, QS[T]] implicit def qScriptToQScriptTotal[T[_[_]]]: Injectable.Aux[ QSM[T, ?], QScriptTotal[T, ?]] = quasar.physical.rdbms.qScriptToQScriptTotal[T] override def optimize[T[_[_]]: BirecursiveT: EqualT: ShowT]: QSM[T, T[QSM[T, ?]]] => QSM[T, T[QSM[T, ?]]] = { val O = new Optimize[T] O.optimize(fp.reflNT[QSM[T, ?]]) } def parseConfig(uri: ConnectionUri): DefErrT[Task, Config] = EitherT(Task.delay(parseConnectionUri(uri).map(Config.apply))) def compile(cfg: Config): DefErrT[Task, (M ~> Task, Task[Unit])] = { val xa = HikariTransactor[Task]( cfg.connInfo.driverClassName, cfg.connInfo.url, cfg.connInfo.userName, cfg.connInfo.password.getOrElse("") ) (interp(xa) ∘ { case (i, close) => (foldMapNT[Eff, Task](i), close) }).liftM[DefErrT] } lazy val MR = MonadReader_[Backend, Config] lazy val MRT = quasar.effect.Read.monadReader_[Transactor[Task], Eff] lazy val ME = MonadFsErr[Backend] lazy val MT = MonadTell_[Backend, PhaseResults] // TODO[scalaz]: Shadow the scalaz.Monad.monadMTMAB SI-2712 workaround import EitherT.eitherTMonad def plan[T[_[_]]: BirecursiveT: EqualT: ShowT: RenderTreeT]( cp: T[QSM[T, ?]]): Backend[Repr] = { val planner = Planner[T, EitherT[Free[Eff, ?], PlannerError, ?], QSM[T, ?]] for { plan <- ME.unattempt( cp.cataM(planner.plan) .bimap(qscriptPlanningFailed(_), _.convertTo[Repr]) .run .liftB) _ <- MT.tell( Vector(detail("SQL AST", RenderTreeT[Fix].render(plan).shows))) } yield plan } def parseConnectionUri(uri: ConnectionUri): DefinitionError \\/ JdbcConnectionInfo }
jedesah/Quasar
rdbms/src/main/scala/quasar/physical/rdbms/Rdbms.scala
Scala
apache-2.0
5,122
package org.dele.text.maen.matchers import org.dele.text.maen.AtomPropMatcherLib._ import org.dele.text.maen.TestHelper._ import SubMatchCheckerLib._ import TMatcher._ import org.dele.text.maen.TInput import org.dele.text.maen.test.TestAtom._ import org.dele.text.maen.test.TestInput._ import org.scalatest._ import org.scalatest.testng.TestNGSuite import org.testng.annotations.Test /** * Created by jiaji on 2016-10-04. */ class ANOBMatcherTest extends TestNGSuite with ShouldMatchers { val input:TInput = fromAtomArrayEng(IndexedSeq( textAtom("Now"), FBI, textAtom("and"), Microsoft, textAtom("announce") )) implicit val checkerLib = StaticSubMatchCheckerLib val orgCompanyMatcherId = "OrgCompany" val entityMatcher = fromAtomMatcher(E(EmptyRegexDict, Array("Company", "Organization")), EmptyCheckerIds, Option(orgCompanyMatcherId)) val andMatcher = fromAtomMatcher(FExact("and")) val announceMatcher = fromAtomMatcher(FExact("announce")) @Test def t1 = { val mm = MatcherManager.create val anobMatcherId = "anob" val anobMatcherId2 = "anob2" val andentMatcherId = "andEnt" val entAnnounceMatcherId = "entAnnounce" val andEntMatcher = matchersOrderedAllPositive(Seq(andMatcher, entityMatcher), List(ListNGramId), Option(andentMatcherId)) val entAnnounceMatcher = matchersOrderedAllPositive(Seq(entityMatcher, announceMatcher), List(ListNGramId), Option(entAnnounceMatcherId)) val anobMatcher = matchersNonOverlap(andEntMatcher, andMatcher, Option(anobMatcherId)) val anobMatcher2 = matchersNonOverlap(andEntMatcher, announceMatcher, Option(anobMatcherId2)) mm.add(entityMatcher) mm.add(andMatcher) mm.add(andEntMatcher) mm.add(entAnnounceMatcher) mm.add(anobMatcher) mm.add(anobMatcher2) val resultPool = mm.m(input, StaticSubMatchCheckerLib, MatcherManager.EmptyMIdFilters) val orgCompanies = resultPool.query(orgCompanyMatcherId) orgCompanies.size shouldBe(2) val andentMatches = resultPool.query(andentMatcherId) andentMatches.size shouldBe(1) val anobMatches = resultPool.query(anobMatcherId) anobMatches.size shouldBe(0) val anobMatches2 = resultPool.query(anobMatcherId2) anobMatches2.size shouldBe(1) } }
new2scala/text-util
maen/src/test/scala/org/dele/text/maen/matchers/ANOBMatcherTest.scala
Scala
apache-2.0
2,265
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package models.responsiblepeople import play.api.libs.json.{Json, Reads, Writes} final case class ApprovalFlags( hasAlreadyPassedFitAndProper: Option[Boolean] = None, hasAlreadyPaidApprovalCheck: Option[Boolean] = None ) { def isComplete() = { hasAlreadyPassedFitAndProper.isDefined & hasAlreadyPaidApprovalCheck.isDefined } } object ApprovalFlags { implicit lazy val reads: Reads[ApprovalFlags] = { import play.api.libs.functional.syntax._ import play.api.libs.json._ ( (__ \\ "hasAlreadyPassedFitAndProper").readNullable[Boolean] and (__ \\ "hasAlreadyPaidApprovalCheck").readNullable[Boolean] ) (ApprovalFlags.apply _) } implicit lazy val writes: Writes[ApprovalFlags] = { import play.api.libs.functional.syntax._ import play.api.libs.json._ ( (__ \\ "hasAlreadyPassedFitAndProper").writeNullable[Boolean] and (__ \\ "hasAlreadyPaidApprovalCheck").writeNullable[Boolean] ) (unlift(ApprovalFlags.unapply)) } implicit val format = Json.format[ApprovalFlags] }
hmrc/amls-frontend
app/models/responsiblepeople/ApprovalFlags.scala
Scala
apache-2.0
1,747
/* * Copyright (c) <2015-2016>, see CONTRIBUTORS * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the <organization> nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package ch.usi.inf.l3.sana.oberon0.symbols import ch.usi.inf.l3.sana import sana.tiny.symbols.Symbol import sana.tiny.modifiers.Ops.noflags import sana.tiny.types.Type import sana.tiny.names.Name import sana.ooj.names.StdNames import sana.ooj.modifiers.Ops._ import sana.ooj.types.TypeUtils import sana.calcj.types.{IntType, BooleanType} import sana.primj.types.VoidType import sana.tiny.symbols.{TypeSymbol, TermSymbol} import sana.primj.symbols.{ProgramSymbol, MethodSymbol, VariableSymbol, ScopeSymbol, VoidSymbol} trait SymbolUtils extends sana.arrooj.symbols.SymbolUtils { /** * Returns the enclosing module of a given symbol * * @param symbol the symbol to return its enclosing module */ def enclosingModule(symbol: Option[Symbol]): Option[Symbol] = symbol.flatMap { case sym: ModuleSymbol => Some(sym) case sym => enclosingModule(sym.owner) } /** @param [[sana.arrooj.symbols.SymbolUtils]] */ override def getSymbol(t: Type): Option[Symbol] = t match { case BooleanType => Some(BooleanSymbol) case IntType => Some(IntSymbol) case VoidType => Some(VoidSymbol) case _ => None } /** @param [[sana.arrooj.symbols.standardDefinitions]] */ override def standardDefinitions: Set[Symbol] = Set( VoidSymbol, BooleanSymbol, IntSymbol ) } object SymbolUtils extends SymbolUtils
amanjpro/languages-a-la-carte
oberon0/src/main/scala/symbols/SymbolUtils.scala
Scala
bsd-3-clause
3,066
/* __ *\\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2002-2010, LAMP/EPFL ** ** __\\ \\/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\\___/_/ |_/____/_/ | | ** ** |/ ** \\* */ // generated by genprod on Thu Apr 29 17:52:16 CEST 2010 package scala object Product20 { def unapply[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20](x: Product20[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20]): Option[Product20[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20]] = Some(x) } /** Product20 is a cartesian product of 20 components. * * @since 2.3 */ trait Product20[+T1, +T2, +T3, +T4, +T5, +T6, +T7, +T8, +T9, +T10, +T11, +T12, +T13, +T14, +T15, +T16, +T17, +T18, +T19, +T20] extends Product { /** * The arity of this product. * @return 20 */ override def productArity = 20 /** * Returns the n-th projection of this product if 0&lt;=n&lt;arity, * otherwise null. * * @param n number of the projection to be returned * @return same as _(n+1) * @throws IndexOutOfBoundsException */ @throws(classOf[IndexOutOfBoundsException]) override def productElement(n: Int) = n match { case 0 => _1 case 1 => _2 case 2 => _3 case 3 => _4 case 4 => _5 case 5 => _6 case 6 => _7 case 7 => _8 case 8 => _9 case 9 => _10 case 10 => _11 case 11 => _12 case 12 => _13 case 13 => _14 case 14 => _15 case 15 => _16 case 16 => _17 case 17 => _18 case 18 => _19 case 19 => _20 case _ => throw new IndexOutOfBoundsException(n.toString()) } /** projection of this product */ def _1: T1 /** projection of this product */ def _2: T2 /** projection of this product */ def _3: T3 /** projection of this product */ def _4: T4 /** projection of this product */ def _5: T5 /** projection of this product */ def _6: T6 /** projection of this product */ def _7: T7 /** projection of this product */ def _8: T8 /** projection of this product */ def _9: T9 /** projection of this product */ def _10: T10 /** projection of this product */ def _11: T11 /** projection of this product */ def _12: T12 /** projection of this product */ def _13: T13 /** projection of this product */ def _14: T14 /** projection of this product */ def _15: T15 /** projection of this product */ def _16: T16 /** projection of this product */ def _17: T17 /** projection of this product */ def _18: T18 /** projection of this product */ def _19: T19 /** projection of this product */ def _20: T20 }
cran/rkafkajars
java/scala/Product20.scala
Scala
apache-2.0
3,072
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.optim.aggregator import org.apache.spark.SparkFunSuite import org.apache.spark.ml.feature.Instance import org.apache.spark.ml.linalg.{BLAS, Vector, Vectors} import org.apache.spark.ml.util.TestingUtils._ import org.apache.spark.mllib.util.MLlibTestSparkContext class HingeAggregatorSuite extends SparkFunSuite with MLlibTestSparkContext { import DifferentiableLossAggregatorSuite.getClassificationSummarizers @transient var instances: Array[Instance] = _ @transient var instancesConstantFeature: Array[Instance] = _ @transient var instancesConstantFeatureFiltered: Array[Instance] = _ override def beforeAll(): Unit = { super.beforeAll() instances = Array( Instance(0.0, 0.1, Vectors.dense(1.0, 2.0)), Instance(1.0, 0.5, Vectors.dense(1.5, 1.0)), Instance(0.0, 0.3, Vectors.dense(4.0, 0.5)) ) instancesConstantFeature = Array( Instance(0.0, 0.1, Vectors.dense(1.0, 2.0)), Instance(1.0, 0.5, Vectors.dense(1.0, 1.0)), Instance(1.0, 0.3, Vectors.dense(1.0, 0.5)) ) instancesConstantFeatureFiltered = Array( Instance(0.0, 0.1, Vectors.dense(2.0)), Instance(1.0, 0.5, Vectors.dense(1.0)), Instance(2.0, 0.3, Vectors.dense(0.5)) ) } /** Get summary statistics for some data and create a new HingeAggregator. */ private def getNewAggregator( instances: Array[Instance], coefficients: Vector, fitIntercept: Boolean): HingeAggregator = { val (featuresSummarizer, ySummarizer) = DifferentiableLossAggregatorSuite.getClassificationSummarizers(instances) val featuresStd = featuresSummarizer.variance.toArray.map(math.sqrt) val bcFeaturesStd = spark.sparkContext.broadcast(featuresStd) val bcCoefficients = spark.sparkContext.broadcast(coefficients) new HingeAggregator(bcFeaturesStd, fitIntercept)(bcCoefficients) } test("aggregator add method input size") { val coefArray = Array(1.0, 2.0) val interceptArray = Array(2.0) val agg = getNewAggregator(instances, Vectors.dense(coefArray ++ interceptArray), fitIntercept = true) withClue("HingeAggregator features dimension must match coefficients dimension") { intercept[IllegalArgumentException] { agg.add(Instance(1.0, 1.0, Vectors.dense(2.0))) } } } test("negative weight") { val coefArray = Array(1.0, 2.0) val interceptArray = Array(2.0) val agg = getNewAggregator(instances, Vectors.dense(coefArray ++ interceptArray), fitIntercept = true) withClue("HingeAggregator does not support negative instance weights") { intercept[IllegalArgumentException] { agg.add(Instance(1.0, -1.0, Vectors.dense(2.0, 1.0))) } } } test("check sizes") { val rng = new scala.util.Random val numFeatures = instances.head.features.size val coefWithIntercept = Vectors.dense(Array.fill(numFeatures + 1)(rng.nextDouble)) val coefWithoutIntercept = Vectors.dense(Array.fill(numFeatures)(rng.nextDouble)) val aggIntercept = getNewAggregator(instances, coefWithIntercept, fitIntercept = true) val aggNoIntercept = getNewAggregator(instances, coefWithoutIntercept, fitIntercept = false) instances.foreach(aggIntercept.add) instances.foreach(aggNoIntercept.add) assert(aggIntercept.gradient.size === numFeatures + 1) assert(aggNoIntercept.gradient.size === numFeatures) } test("check correctness") { val coefArray = Array(1.0, 2.0) val intercept = 1.0 val numFeatures = instances.head.features.size val (featuresSummarizer, _) = getClassificationSummarizers(instances) val featuresStd = featuresSummarizer.variance.toArray.map(math.sqrt) val weightSum = instances.map(_.weight).sum val agg = getNewAggregator(instances, Vectors.dense(coefArray ++ Array(intercept)), fitIntercept = true) instances.foreach(agg.add) // compute the loss val stdCoef = coefArray.indices.map(i => coefArray(i) / featuresStd(i)).toArray val lossSum = instances.map { case Instance(l, w, f) => val margin = BLAS.dot(Vectors.dense(stdCoef), f) + intercept val labelScaled = 2 * l - 1.0 if (1.0 > labelScaled * margin) { (1.0 - labelScaled * margin) * w } else { 0.0 } }.sum val loss = lossSum / weightSum // compute the gradients val gradientCoef = new Array[Double](numFeatures) var gradientIntercept = 0.0 instances.foreach { case Instance(l, w, f) => val margin = BLAS.dot(f, Vectors.dense(coefArray)) + intercept if (1.0 > (2 * l - 1.0) * margin) { gradientCoef.indices.foreach { i => gradientCoef(i) += f(i) * -(2 * l - 1.0) * w / featuresStd(i) } gradientIntercept += -(2 * l - 1.0) * w } } val gradient = Vectors.dense((gradientCoef ++ Array(gradientIntercept)).map(_ / weightSum)) assert(loss ~== agg.loss relTol 0.01) assert(gradient ~== agg.gradient relTol 0.01) } test("check with zero standard deviation") { val binaryCoefArray = Array(1.0, 2.0) val intercept = 1.0 val aggConstantFeatureBinary = getNewAggregator(instancesConstantFeature, Vectors.dense(binaryCoefArray ++ Array(intercept)), fitIntercept = true) instancesConstantFeature.foreach(aggConstantFeatureBinary.add) val aggConstantFeatureBinaryFiltered = getNewAggregator(instancesConstantFeatureFiltered, Vectors.dense(binaryCoefArray ++ Array(intercept)), fitIntercept = true) instancesConstantFeatureFiltered.foreach(aggConstantFeatureBinaryFiltered.add) // constant features should not affect gradient assert(aggConstantFeatureBinary.gradient(0) === 0.0) assert(aggConstantFeatureBinary.gradient(1) == aggConstantFeatureBinaryFiltered.gradient(0)) } }
sahilTakiar/spark
mllib/src/test/scala/org/apache/spark/ml/optim/aggregator/HingeAggregatorSuite.scala
Scala
apache-2.0
6,603
package fringe import chisel3._ import chisel3.util._ /** * Counter: 1-dimensional counter. Counts upto 'max', each time incrementing * by 'stride', beginning at zero. * @param w: Word width */ class Counter(val w: Int) extends Module { val io = IO(new Bundle { val max = Input(UInt(w.W)) val stride = Input(UInt(w.W)) val out = Output(UInt(w.W)) val next = Output(UInt(w.W)) val last = Output(Bool()) val reset = Input(Bool()) val enable = Input(Bool()) val saturate = Input(Bool()) val done = Output(Bool()) }) val reg = Module(new FF(UInt(w.W))) val init = 0.U(w.W) reg.io.init := init reg.io.enable := io.reset | io.enable val count = Cat(0.U(1.W), reg.io.out) val newval = count + io.stride val isMax = newval >= io.max val next = Mux(isMax, Mux(io.saturate, count, init), newval) when (io.reset) { reg.io.in := init } .otherwise { reg.io.in := next } io.last := isMax io.out := count io.next := next io.done := io.enable & isMax } class CounterReg(val w: Int) extends Module { val io = IO(new Bundle { val max = Input(UInt(w.W)) val stride = Input(UInt(w.W)) val out = Output(UInt(w.W)) val reset = Input(Bool()) val enable = Input(Bool()) val saturate = Input(Bool()) val done = Output(Bool()) }) // Register the inputs val maxReg = Module(new FF(UInt(w.W))) maxReg.io.enable := true.B maxReg.io.in := io.max val max = maxReg.io.out val strideReg = Module(new FF(UInt(w.W))) strideReg.io.enable := true.B strideReg.io.in := io.stride val stride = strideReg.io.out val rstReg = Module(new FF(Bool())) rstReg.io.enable := true.B rstReg.io.in := io.reset val rst = rstReg.io.out val enableReg = Module(new FF(Bool())) enableReg.io.enable := true.B enableReg.io.in := io.enable val enable = enableReg.io.out val saturateReg = Module(new FF(Bool())) saturateReg.io.enable := true.B saturateReg.io.in := io.saturate val saturate = saturateReg.io.out // Instantiate counter val counter = Module(new Counter(w)) counter.io.max := max counter.io.stride := stride counter.io.enable := enable counter.io.reset := rst counter.io.enable := enable counter.io.saturate := saturate // Register outputs val outReg = Module(new FF(UInt(w.W))) outReg.io.enable := true.B outReg.io.in := counter.io.out io.out := outReg.io.out val doneReg = Module(new FF(Bool())) doneReg.io.enable := true.B doneReg.io.in := counter.io.done io.done := doneReg.io.out }
stanford-ppl/spatial-lang
spatial/core/resources/chiselgen/template-level/fringeHW/Counter.scala
Scala
mit
2,583
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.expressions import com.clearspring.analytics.stream.cardinality.HyperLogLog import org.apache.spark.sql.types._ import org.apache.spark.sql.catalyst.trees import org.apache.spark.sql.catalyst.errors.TreeNodeException import org.apache.spark.util.collection.OpenHashSet abstract class AggregateExpression extends Expression { self: Product => /** * Creates a new instance that can be used to compute this aggregate expression for a group * of input rows/ */ def newInstance(): AggregateFunction /** * [[AggregateExpression.eval]] should never be invoked because [[AggregateExpression]]'s are * replaced with a physical aggregate operator at runtime. */ override def eval(input: Row = null): EvaluatedType = throw new TreeNodeException(this, s"No function to evaluate expression. type: ${this.nodeName}") } /** * Represents an aggregation that has been rewritten to be performed in two steps. * * @param finalEvaluation an aggregate expression that evaluates to same final result as the * original aggregation. * @param partialEvaluations A sequence of [[NamedExpression]]s that can be computed on partial * data sets and are required to compute the `finalEvaluation`. */ case class SplitEvaluation( finalEvaluation: Expression, partialEvaluations: Seq[NamedExpression]) /** * An [[AggregateExpression]] that can be partially computed without seeing all relevant tuples. * These partial evaluations can then be combined to compute the actual answer. */ abstract class PartialAggregate extends AggregateExpression { self: Product => /** * Returns a [[SplitEvaluation]] that computes this aggregation using partial aggregation. */ def asPartial: SplitEvaluation } /** * A specific implementation of an aggregate function. Used to wrap a generic * [[AggregateExpression]] with an algorithm that will be used to compute one specific result. */ abstract class AggregateFunction extends AggregateExpression with Serializable with trees.LeafNode[Expression] { self: Product => override type EvaluatedType = Any /** Base should return the generic aggregate expression that this function is computing */ val base: AggregateExpression override def nullable: Boolean = base.nullable override def dataType: DataType = base.dataType def update(input: Row): Unit // Do we really need this? override def newInstance(): AggregateFunction = { makeCopy(productIterator.map { case a: AnyRef => a }.toArray) } } case class Min(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = true override def dataType: DataType = child.dataType override def toString: String = s"MIN($child)" override def asPartial: SplitEvaluation = { val partialMin = Alias(Min(child), "PartialMin")() SplitEvaluation(Min(partialMin.toAttribute), partialMin :: Nil) } override def newInstance(): MinFunction = new MinFunction(child, this) } case class MinFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val currentMin: MutableLiteral = MutableLiteral(null, expr.dataType) val cmp = GreaterThan(currentMin, expr) override def update(input: Row): Unit = { if (currentMin.value == null) { currentMin.value = expr.eval(input) } else if (cmp.eval(input) == true) { currentMin.value = expr.eval(input) } } override def eval(input: Row): Any = currentMin.value } case class Max(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = true override def dataType: DataType = child.dataType override def toString: String = s"MAX($child)" override def asPartial: SplitEvaluation = { val partialMax = Alias(Max(child), "PartialMax")() SplitEvaluation(Max(partialMax.toAttribute), partialMax :: Nil) } override def newInstance(): MaxFunction = new MaxFunction(child, this) } case class MaxFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val currentMax: MutableLiteral = MutableLiteral(null, expr.dataType) val cmp = LessThan(currentMax, expr) override def update(input: Row): Unit = { if (currentMax.value == null) { currentMax.value = expr.eval(input) } else if (cmp.eval(input) == true) { currentMax.value = expr.eval(input) } } override def eval(input: Row): Any = currentMax.value } case class Count(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = false override def dataType: LongType.type = LongType override def toString: String = s"COUNT($child)" override def asPartial: SplitEvaluation = { val partialCount = Alias(Count(child), "PartialCount")() SplitEvaluation(Coalesce(Seq(Sum(partialCount.toAttribute), Literal(0L))), partialCount :: Nil) } override def newInstance(): CountFunction = new CountFunction(child, this) } case class CountDistinct(expressions: Seq[Expression]) extends PartialAggregate { def this() = this(null) override def children: Seq[Expression] = expressions override def nullable: Boolean = false override def dataType: DataType = LongType override def toString: String = s"COUNT(DISTINCT ${expressions.mkString(",")})" override def newInstance(): CountDistinctFunction = new CountDistinctFunction(expressions, this) override def asPartial: SplitEvaluation = { val partialSet = Alias(CollectHashSet(expressions), "partialSets")() SplitEvaluation( CombineSetsAndCount(partialSet.toAttribute), partialSet :: Nil) } } case class CollectHashSet(expressions: Seq[Expression]) extends AggregateExpression { def this() = this(null) override def children: Seq[Expression] = expressions override def nullable: Boolean = false override def dataType: OpenHashSetUDT = new OpenHashSetUDT(expressions.head.dataType) override def toString: String = s"AddToHashSet(${expressions.mkString(",")})" override def newInstance(): CollectHashSetFunction = new CollectHashSetFunction(expressions, this) } case class CollectHashSetFunction( @transient expr: Seq[Expression], @transient base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val seen = new OpenHashSet[Any]() @transient val distinctValue = new InterpretedProjection(expr) override def update(input: Row): Unit = { val evaluatedExpr = distinctValue(input) if (!evaluatedExpr.anyNull) { seen.add(evaluatedExpr) } } override def eval(input: Row): Any = { seen } } case class CombineSetsAndCount(inputSet: Expression) extends AggregateExpression { def this() = this(null) override def children: Seq[Expression] = inputSet :: Nil override def nullable: Boolean = false override def dataType: DataType = LongType override def toString: String = s"CombineAndCount($inputSet)" override def newInstance(): CombineSetsAndCountFunction = { new CombineSetsAndCountFunction(inputSet, this) } } case class CombineSetsAndCountFunction( @transient inputSet: Expression, @transient base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val seen = new OpenHashSet[Any]() override def update(input: Row): Unit = { val inputSetEval = inputSet.eval(input).asInstanceOf[OpenHashSet[Any]] val inputIterator = inputSetEval.iterator while (inputIterator.hasNext) { seen.add(inputIterator.next) } } override def eval(input: Row): Any = seen.size.toLong } /** The data type of ApproxCountDistinctPartition since its output is a HyperLogLog object. */ private[sql] case object HyperLogLogUDT extends UserDefinedType[HyperLogLog] { override def sqlType: DataType = BinaryType /** Since we are using HyperLogLog internally, usually it will not be called. */ override def serialize(obj: Any): Array[Byte] = obj.asInstanceOf[HyperLogLog].getBytes /** Since we are using HyperLogLog internally, usually it will not be called. */ override def deserialize(datum: Any): HyperLogLog = HyperLogLog.Builder.build(datum.asInstanceOf[Array[Byte]]) override def userClass: Class[HyperLogLog] = classOf[HyperLogLog] } case class ApproxCountDistinctPartition(child: Expression, relativeSD: Double) extends AggregateExpression with trees.UnaryNode[Expression] { override def nullable: Boolean = false override def dataType: DataType = HyperLogLogUDT override def toString: String = s"APPROXIMATE COUNT(DISTINCT $child)" override def newInstance(): ApproxCountDistinctPartitionFunction = { new ApproxCountDistinctPartitionFunction(child, this, relativeSD) } } case class ApproxCountDistinctMerge(child: Expression, relativeSD: Double) extends AggregateExpression with trees.UnaryNode[Expression] { override def nullable: Boolean = false override def dataType: LongType.type = LongType override def toString: String = s"APPROXIMATE COUNT(DISTINCT $child)" override def newInstance(): ApproxCountDistinctMergeFunction = { new ApproxCountDistinctMergeFunction(child, this, relativeSD) } } case class ApproxCountDistinct(child: Expression, relativeSD: Double = 0.05) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = false override def dataType: LongType.type = LongType override def toString: String = s"APPROXIMATE COUNT(DISTINCT $child)" override def asPartial: SplitEvaluation = { val partialCount = Alias(ApproxCountDistinctPartition(child, relativeSD), "PartialApproxCountDistinct")() SplitEvaluation( ApproxCountDistinctMerge(partialCount.toAttribute, relativeSD), partialCount :: Nil) } override def newInstance(): CountDistinctFunction = new CountDistinctFunction(child :: Nil, this) } case class Average(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = true override def dataType: DataType = child.dataType match { case DecimalType.Fixed(precision, scale) => DecimalType(precision + 4, scale + 4) // Add 4 digits after decimal point, like Hive case DecimalType.Unlimited => DecimalType.Unlimited case _ => DoubleType } override def toString: String = s"AVG($child)" override def asPartial: SplitEvaluation = { child.dataType match { case DecimalType.Fixed(_, _) | DecimalType.Unlimited => // Turn the child to unlimited decimals for calculation, before going back to fixed val partialSum = Alias(Sum(Cast(child, DecimalType.Unlimited)), "PartialSum")() val partialCount = Alias(Count(child), "PartialCount")() val castedSum = Cast(Sum(partialSum.toAttribute), DecimalType.Unlimited) val castedCount = Cast(Sum(partialCount.toAttribute), DecimalType.Unlimited) SplitEvaluation( Cast(Divide(castedSum, castedCount), dataType), partialCount :: partialSum :: Nil) case _ => val partialSum = Alias(Sum(child), "PartialSum")() val partialCount = Alias(Count(child), "PartialCount")() val castedSum = Cast(Sum(partialSum.toAttribute), dataType) val castedCount = Cast(Sum(partialCount.toAttribute), dataType) SplitEvaluation( Divide(castedSum, castedCount), partialCount :: partialSum :: Nil) } } override def newInstance(): AverageFunction = new AverageFunction(child, this) } case class Sum(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = true override def dataType: DataType = child.dataType match { case DecimalType.Fixed(precision, scale) => DecimalType(precision + 10, scale) // Add 10 digits left of decimal point, like Hive case DecimalType.Unlimited => DecimalType.Unlimited case _ => child.dataType } override def toString: String = s"SUM($child)" override def asPartial: SplitEvaluation = { child.dataType match { case DecimalType.Fixed(_, _) => val partialSum = Alias(Sum(Cast(child, DecimalType.Unlimited)), "PartialSum")() SplitEvaluation( Cast(CombineSum(partialSum.toAttribute), dataType), partialSum :: Nil) case _ => val partialSum = Alias(Sum(child), "PartialSum")() SplitEvaluation( CombineSum(partialSum.toAttribute), partialSum :: Nil) } } override def newInstance(): SumFunction = new SumFunction(child, this) } /** * Sum should satisfy 3 cases: * 1) sum of all null values = zero * 2) sum for table column with no data = null * 3) sum of column with null and not null values = sum of not null values * Require separate CombineSum Expression and function as it has to distinguish "No data" case * versus "data equals null" case, while aggregating results and at each partial expression.i.e., * Combining PartitionLevel InputData * <-- null * Zero <-- Zero <-- null * * <-- null <-- no data * null <-- null <-- no data */ case class CombineSum(child: Expression) extends AggregateExpression { def this() = this(null) override def children: Seq[Expression] = child :: Nil override def nullable: Boolean = true override def dataType: DataType = child.dataType override def toString: String = s"CombineSum($child)" override def newInstance(): CombineSumFunction = new CombineSumFunction(child, this) } case class SumDistinct(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { def this() = this(null) override def nullable: Boolean = true override def dataType: DataType = child.dataType match { case DecimalType.Fixed(precision, scale) => DecimalType(precision + 10, scale) // Add 10 digits left of decimal point, like Hive case DecimalType.Unlimited => DecimalType.Unlimited case _ => child.dataType } override def toString: String = s"SUM(DISTINCT $child)" override def newInstance(): SumDistinctFunction = new SumDistinctFunction(child, this) override def asPartial: SplitEvaluation = { val partialSet = Alias(CollectHashSet(child :: Nil), "partialSets")() SplitEvaluation( CombineSetsAndSum(partialSet.toAttribute, this), partialSet :: Nil) } } case class CombineSetsAndSum(inputSet: Expression, base: Expression) extends AggregateExpression { def this() = this(null, null) override def children: Seq[Expression] = inputSet :: Nil override def nullable: Boolean = true override def dataType: DataType = base.dataType override def toString: String = s"CombineAndSum($inputSet)" override def newInstance(): CombineSetsAndSumFunction = { new CombineSetsAndSumFunction(inputSet, this) } } case class CombineSetsAndSumFunction( @transient inputSet: Expression, @transient base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val seen = new OpenHashSet[Any]() override def update(input: Row): Unit = { val inputSetEval = inputSet.eval(input).asInstanceOf[OpenHashSet[Any]] val inputIterator = inputSetEval.iterator while (inputIterator.hasNext) { seen.add(inputIterator.next) } } override def eval(input: Row): Any = { val casted = seen.asInstanceOf[OpenHashSet[Row]] if (casted.size == 0) { null } else { Cast(Literal( casted.iterator.map(f => f.apply(0)).reduceLeft( base.dataType.asInstanceOf[NumericType].numeric.asInstanceOf[Numeric[Any]].plus)), base.dataType).eval(null) } } } case class First(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def nullable: Boolean = true override def dataType: DataType = child.dataType override def toString: String = s"FIRST($child)" override def asPartial: SplitEvaluation = { val partialFirst = Alias(First(child), "PartialFirst")() SplitEvaluation( First(partialFirst.toAttribute), partialFirst :: Nil) } override def newInstance(): FirstFunction = new FirstFunction(child, this) } case class Last(child: Expression) extends PartialAggregate with trees.UnaryNode[Expression] { override def references: AttributeSet = child.references override def nullable: Boolean = true override def dataType: DataType = child.dataType override def toString: String = s"LAST($child)" override def asPartial: SplitEvaluation = { val partialLast = Alias(Last(child), "PartialLast")() SplitEvaluation( Last(partialLast.toAttribute), partialLast :: Nil) } override def newInstance(): LastFunction = new LastFunction(child, this) } case class AverageFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. private val calcType = expr.dataType match { case DecimalType.Fixed(_, _) => DecimalType.Unlimited case _ => expr.dataType } private val zero = Cast(Literal(0), calcType) private var count: Long = _ private val sum = MutableLiteral(zero.eval(null), calcType) private def addFunction(value: Any) = Add(sum, Cast(Literal.create(value, expr.dataType), calcType)) override def eval(input: Row): Any = { if (count == 0L) { null } else { expr.dataType match { case DecimalType.Fixed(_, _) => Cast(Divide( Cast(sum, DecimalType.Unlimited), Cast(Literal(count), DecimalType.Unlimited)), dataType).eval(null) case _ => Divide( Cast(sum, dataType), Cast(Literal(count), dataType)).eval(null) } } } override def update(input: Row): Unit = { val evaluatedExpr = expr.eval(input) if (evaluatedExpr != null) { count += 1 sum.update(addFunction(evaluatedExpr), input) } } } case class CountFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. var count: Long = _ override def update(input: Row): Unit = { val evaluatedExpr = expr.eval(input) if (evaluatedExpr != null) { count += 1L } } override def eval(input: Row): Any = count } case class ApproxCountDistinctPartitionFunction( expr: Expression, base: AggregateExpression, relativeSD: Double) extends AggregateFunction { def this() = this(null, null, 0) // Required for serialization. private val hyperLogLog = new HyperLogLog(relativeSD) override def update(input: Row): Unit = { val evaluatedExpr = expr.eval(input) if (evaluatedExpr != null) { hyperLogLog.offer(evaluatedExpr) } } override def eval(input: Row): Any = hyperLogLog } case class ApproxCountDistinctMergeFunction( expr: Expression, base: AggregateExpression, relativeSD: Double) extends AggregateFunction { def this() = this(null, null, 0) // Required for serialization. private val hyperLogLog = new HyperLogLog(relativeSD) override def update(input: Row): Unit = { val evaluatedExpr = expr.eval(input) hyperLogLog.addAll(evaluatedExpr.asInstanceOf[HyperLogLog]) } override def eval(input: Row): Any = hyperLogLog.cardinality() } case class SumFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. private val calcType = expr.dataType match { case DecimalType.Fixed(_, _) => DecimalType.Unlimited case _ => expr.dataType } private val zero = Cast(Literal(0), calcType) private val sum = MutableLiteral(null, calcType) private val addFunction = Coalesce(Seq(Add(Coalesce(Seq(sum, zero)), Cast(expr, calcType)), sum, zero)) override def update(input: Row): Unit = { sum.update(addFunction, input) } override def eval(input: Row): Any = { expr.dataType match { case DecimalType.Fixed(_, _) => Cast(sum, dataType).eval(null) case _ => sum.eval(null) } } } case class CombineSumFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. private val calcType = expr.dataType match { case DecimalType.Fixed(_, _) => DecimalType.Unlimited case _ => expr.dataType } private val zero = Cast(Literal(0), calcType) private val sum = MutableLiteral(null, calcType) private val addFunction = Coalesce(Seq(Add(Coalesce(Seq(sum, zero)), Cast(expr, calcType)), sum, zero)) override def update(input: Row): Unit = { val result = expr.eval(input) // partial sum result can be null only when no input rows present if(result != null) { sum.update(addFunction, input) } } override def eval(input: Row): Any = { expr.dataType match { case DecimalType.Fixed(_, _) => Cast(sum, dataType).eval(null) case _ => sum.eval(null) } } } case class SumDistinctFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. private val seen = new scala.collection.mutable.HashSet[Any]() override def update(input: Row): Unit = { val evaluatedExpr = expr.eval(input) if (evaluatedExpr != null) { seen += evaluatedExpr } } override def eval(input: Row): Any = { if (seen.size == 0) { null } else { Cast(Literal( seen.reduceLeft( dataType.asInstanceOf[NumericType].numeric.asInstanceOf[Numeric[Any]].plus)), dataType).eval(null) } } } case class CountDistinctFunction( @transient expr: Seq[Expression], @transient base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. val seen = new OpenHashSet[Any]() @transient val distinctValue = new InterpretedProjection(expr) override def update(input: Row): Unit = { val evaluatedExpr = distinctValue(input) if (!evaluatedExpr.anyNull) { seen.add(evaluatedExpr) } } override def eval(input: Row): Any = seen.size.toLong } case class FirstFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. var result: Any = null override def update(input: Row): Unit = { if (result == null) { result = expr.eval(input) } } override def eval(input: Row): Any = result } case class LastFunction(expr: Expression, base: AggregateExpression) extends AggregateFunction { def this() = this(null, null) // Required for serialization. var result: Any = null override def update(input: Row): Unit = { result = input } override def eval(input: Row): Any = { if (result != null) expr.eval(result.asInstanceOf[Row]) else null } }
andrewor14/iolap
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala
Scala
apache-2.0
24,166
/** * Copyright 2015 NICTA * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this * file except in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under * the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the specific language governing * permissions and limitations under the License. */ package com.n1analytics.paillier.examples import com.n1analytics.paillier._ object PrivateSum { def main(args: Array[String]): Unit = { val rawNumbers = Array(0.0, 0.8, 1.0, 3.2, -5, 50) val keypair = PaillierPrivateKey.create(1024) var publicKey = keypair.getPublicKey val paillierContext = publicKey.createSignedContext println("Encrypting doubles with public key (e.g., on multiple devices)") val encryptedNumbers = rawNumbers.map(n => paillierContext.encrypt(n)) println("Adding encrypted doubles") val encryptedSum = encryptedNumbers.reduce((n1, n2) => n1.add(n2)) println("Decrypting result:") println(keypair.decrypt(encryptedSum).decodeDouble) } }
NICTA/javallier
examples/privateSum/src/main/scala/PrivateSum.scala
Scala
apache-2.0
1,290
/* * Copyright (c) 2016 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics.kinesistee.routing import com.snowplowanalytics.kinesistee.StreamWriter import scalaz._ import scalaz.syntax.validation._ import com.snowplowanalytics.kinesistee.models.Stream /** * This routing strategy passes all traffic through to the destination * @param destination the endpoint to route all data to */ class PointToPointRoute(destination: StreamWriter) extends RoutingStrategy { /** * Routing strategy that sends all traffic to the given destination * @return all traffic sent to the given destination */ override def route: ValidationNel[String, StreamWriter] = { destination.success } override def toString:String = { s"Stream to stream route: stream `source` -> stream ${destination.toString}" } }
snowplow/kinesis-tee
src/main/scala/com/snowplowanalytics/kinesistee/routing/PointToPointRoute.scala
Scala
apache-2.0
1,482
package com.theiterators.scalaspray import akka.actor.{ActorSystem, Props} import akka.io.IO import spray.can.Http import com.typesafe.config.ConfigFactory object Boot extends App { val config = ConfigFactory.load() implicit val system = ActorSystem("on-spray-can") val service = system.actorOf(Props[DemoServiceActor], "demo-service") IO(Http) ! Http.Bind(service, interface = config.getString("host.interface"), port = config.getInt("host.port")) }
pjagielski/microservices-jvm
scala-spray-rest/src/main/scala/com/theiterators/scalaspray/Boot.scala
Scala
mit
463
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql import scala.util.Random import org.scalatest.Matchers.the import org.apache.spark.sql.execution.WholeStageCodegenExec import org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanHelper import org.apache.spark.sql.execution.aggregate.{HashAggregateExec, ObjectHashAggregateExec, SortAggregateExec} import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec import org.apache.spark.sql.expressions.Window import org.apache.spark.sql.functions._ import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.test.SharedSparkSession import org.apache.spark.sql.test.SQLTestData.DecimalData import org.apache.spark.sql.types._ import org.apache.spark.unsafe.types.CalendarInterval case class Fact(date: Int, hour: Int, minute: Int, room_name: String, temp: Double) class DataFrameAggregateSuite extends QueryTest with SharedSparkSession with AdaptiveSparkPlanHelper { import testImplicits._ val absTol = 1e-8 test("groupBy") { checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(1, 3), Row(2, 3), Row(3, 3)) ) checkAnswer( testData2.groupBy("a").agg(sum($"b").as("totB")).agg(sum($"totB")), Row(9) ) checkAnswer( testData2.groupBy("a").agg(count("*")), Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil ) checkAnswer( testData2.groupBy("a").agg(Map("*" -> "count")), Row(1, 2) :: Row(2, 2) :: Row(3, 2) :: Nil ) checkAnswer( testData2.groupBy("a").agg(Map("b" -> "sum")), Row(1, 3) :: Row(2, 3) :: Row(3, 3) :: Nil ) val df1 = Seq(("a", 1, 0, "b"), ("b", 2, 4, "c"), ("a", 2, 3, "d")) .toDF("key", "value1", "value2", "rest") checkAnswer( df1.groupBy("key").min(), df1.groupBy("key").min("value1", "value2").collect() ) checkAnswer( df1.groupBy("key").min("value2"), Seq(Row("a", 0), Row("b", 4)) ) checkAnswer( decimalData.groupBy("a").agg(sum("b")), Seq(Row(new java.math.BigDecimal(1), new java.math.BigDecimal(3)), Row(new java.math.BigDecimal(2), new java.math.BigDecimal(3)), Row(new java.math.BigDecimal(3), new java.math.BigDecimal(3))) ) val decimalDataWithNulls = spark.sparkContext.parallelize( DecimalData(1, 1) :: DecimalData(1, null) :: DecimalData(2, 1) :: DecimalData(2, null) :: DecimalData(3, 1) :: DecimalData(3, 2) :: DecimalData(null, 2) :: Nil).toDF() checkAnswer( decimalDataWithNulls.groupBy("a").agg(sum("b")), Seq(Row(new java.math.BigDecimal(1), new java.math.BigDecimal(1)), Row(new java.math.BigDecimal(2), new java.math.BigDecimal(1)), Row(new java.math.BigDecimal(3), new java.math.BigDecimal(3)), Row(null, new java.math.BigDecimal(2))) ) } test("SPARK-17124 agg should be ordering preserving") { val df = spark.range(2) val ret = df.groupBy("id").agg("id" -> "sum", "id" -> "count", "id" -> "min") assert(ret.schema.map(_.name) == Seq("id", "sum(id)", "count(id)", "min(id)")) checkAnswer( ret, Row(0, 0, 1, 0) :: Row(1, 1, 1, 1) :: Nil ) } test("SPARK-18952: regexes fail codegen when used as keys due to bad forward-slash escapes") { val df = Seq(("some[thing]", "random-string")).toDF("key", "val") checkAnswer( df.groupBy(regexp_extract($"key", "([a-z]+)\\\\[", 1)).count(), Row("some", 1) :: Nil ) } test("rollup") { checkAnswer( courseSales.rollup("course", "year").sum("earnings"), Row("Java", 2012, 20000.0) :: Row("Java", 2013, 30000.0) :: Row("Java", null, 50000.0) :: Row("dotNET", 2012, 15000.0) :: Row("dotNET", 2013, 48000.0) :: Row("dotNET", null, 63000.0) :: Row(null, null, 113000.0) :: Nil ) } test("cube") { checkAnswer( courseSales.cube("course", "year").sum("earnings"), Row("Java", 2012, 20000.0) :: Row("Java", 2013, 30000.0) :: Row("Java", null, 50000.0) :: Row("dotNET", 2012, 15000.0) :: Row("dotNET", 2013, 48000.0) :: Row("dotNET", null, 63000.0) :: Row(null, 2012, 35000.0) :: Row(null, 2013, 78000.0) :: Row(null, null, 113000.0) :: Nil ) val df0 = spark.sparkContext.parallelize(Seq( Fact(20151123, 18, 35, "room1", 18.6), Fact(20151123, 18, 35, "room2", 22.4), Fact(20151123, 18, 36, "room1", 17.4), Fact(20151123, 18, 36, "room2", 25.6))).toDF() val cube0 = df0.cube("date", "hour", "minute", "room_name").agg(Map("temp" -> "avg")) assert(cube0.where("date IS NULL").count > 0) } test("grouping and grouping_id") { checkAnswer( courseSales.cube("course", "year") .agg(grouping("course"), grouping("year"), grouping_id("course", "year")), Row("Java", 2012, 0, 0, 0) :: Row("Java", 2013, 0, 0, 0) :: Row("Java", null, 0, 1, 1) :: Row("dotNET", 2012, 0, 0, 0) :: Row("dotNET", 2013, 0, 0, 0) :: Row("dotNET", null, 0, 1, 1) :: Row(null, 2012, 1, 0, 2) :: Row(null, 2013, 1, 0, 2) :: Row(null, null, 1, 1, 3) :: Nil ) // use column reference in `grouping_id` instead of column name checkAnswer( courseSales.cube("course", "year") .agg(grouping_id(courseSales("course"), courseSales("year"))), Row("Java", 2012, 0) :: Row("Java", 2013, 0) :: Row("Java", null, 1) :: Row("dotNET", 2012, 0) :: Row("dotNET", 2013, 0) :: Row("dotNET", null, 1) :: Row(null, 2012, 2) :: Row(null, 2013, 2) :: Row(null, null, 3) :: Nil ) intercept[AnalysisException] { courseSales.groupBy().agg(grouping("course")).explain() } intercept[AnalysisException] { courseSales.groupBy().agg(grouping_id("course")).explain() } } test("grouping/grouping_id inside window function") { val w = Window.orderBy(sum("earnings")) checkAnswer( courseSales.cube("course", "year") .agg(sum("earnings"), grouping_id("course", "year"), rank().over(Window.partitionBy(grouping_id("course", "year")).orderBy(sum("earnings")))), Row("Java", 2012, 20000.0, 0, 2) :: Row("Java", 2013, 30000.0, 0, 3) :: Row("Java", null, 50000.0, 1, 1) :: Row("dotNET", 2012, 15000.0, 0, 1) :: Row("dotNET", 2013, 48000.0, 0, 4) :: Row("dotNET", null, 63000.0, 1, 2) :: Row(null, 2012, 35000.0, 2, 1) :: Row(null, 2013, 78000.0, 2, 2) :: Row(null, null, 113000.0, 3, 1) :: Nil ) } test("SPARK-21980: References in grouping functions should be indexed with semanticEquals") { checkAnswer( courseSales.cube("course", "year") .agg(grouping("CouRse"), grouping("year")), Row("Java", 2012, 0, 0) :: Row("Java", 2013, 0, 0) :: Row("Java", null, 0, 1) :: Row("dotNET", 2012, 0, 0) :: Row("dotNET", 2013, 0, 0) :: Row("dotNET", null, 0, 1) :: Row(null, 2012, 1, 0) :: Row(null, 2013, 1, 0) :: Row(null, null, 1, 1) :: Nil ) } test("rollup overlapping columns") { checkAnswer( testData2.rollup($"a" + $"b" as "foo", $"b" as "bar").agg(sum($"a" - $"b") as "foo"), Row(2, 1, 0) :: Row(3, 2, -1) :: Row(3, 1, 1) :: Row(4, 2, 0) :: Row(4, 1, 2) :: Row(5, 2, 1) :: Row(2, null, 0) :: Row(3, null, 0) :: Row(4, null, 2) :: Row(5, null, 1) :: Row(null, null, 3) :: Nil ) checkAnswer( testData2.rollup("a", "b").agg(sum("b")), Row(1, 1, 1) :: Row(1, 2, 2) :: Row(2, 1, 1) :: Row(2, 2, 2) :: Row(3, 1, 1) :: Row(3, 2, 2) :: Row(1, null, 3) :: Row(2, null, 3) :: Row(3, null, 3) :: Row(null, null, 9) :: Nil ) } test("cube overlapping columns") { checkAnswer( testData2.cube($"a" + $"b", $"b").agg(sum($"a" - $"b")), Row(2, 1, 0) :: Row(3, 2, -1) :: Row(3, 1, 1) :: Row(4, 2, 0) :: Row(4, 1, 2) :: Row(5, 2, 1) :: Row(2, null, 0) :: Row(3, null, 0) :: Row(4, null, 2) :: Row(5, null, 1) :: Row(null, 1, 3) :: Row(null, 2, 0) :: Row(null, null, 3) :: Nil ) checkAnswer( testData2.cube("a", "b").agg(sum("b")), Row(1, 1, 1) :: Row(1, 2, 2) :: Row(2, 1, 1) :: Row(2, 2, 2) :: Row(3, 1, 1) :: Row(3, 2, 2) :: Row(1, null, 3) :: Row(2, null, 3) :: Row(3, null, 3) :: Row(null, 1, 3) :: Row(null, 2, 6) :: Row(null, null, 9) :: Nil ) } test("spark.sql.retainGroupColumns config") { checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(1, 3), Row(2, 3), Row(3, 3)) ) spark.conf.set(SQLConf.DATAFRAME_RETAIN_GROUP_COLUMNS.key, false) checkAnswer( testData2.groupBy("a").agg(sum($"b")), Seq(Row(3), Row(3), Row(3)) ) spark.conf.set(SQLConf.DATAFRAME_RETAIN_GROUP_COLUMNS.key, true) } test("agg without groups") { checkAnswer( testData2.agg(sum($"b")), Row(9) ) } test("agg without groups and functions") { checkAnswer( testData2.agg(lit(1)), Row(1) ) } test("average") { checkAnswer( testData2.agg(avg($"a"), mean($"a")), Row(2.0, 2.0)) checkAnswer( testData2.agg(avg($"a"), sumDistinct($"a")), // non-partial Row(2.0, 6.0) :: Nil) checkAnswer( decimalData.agg(avg($"a")), Row(new java.math.BigDecimal(2))) checkAnswer( decimalData.agg(avg($"a"), sumDistinct($"a")), // non-partial Row(new java.math.BigDecimal(2), new java.math.BigDecimal(6)) :: Nil) checkAnswer( decimalData.agg(avg($"a" cast DecimalType(10, 2))), Row(new java.math.BigDecimal(2))) // non-partial checkAnswer( decimalData.agg( avg($"a" cast DecimalType(10, 2)), sumDistinct($"a" cast DecimalType(10, 2))), Row(new java.math.BigDecimal(2), new java.math.BigDecimal(6)) :: Nil) } test("null average") { checkAnswer( testData3.agg(avg($"b")), Row(2.0)) checkAnswer( testData3.agg(avg($"b"), countDistinct($"b")), Row(2.0, 1)) checkAnswer( testData3.agg(avg($"b"), sumDistinct($"b")), // non-partial Row(2.0, 2.0)) } test("zero average") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(avg($"a")), Row(null)) checkAnswer( emptyTableData.agg(avg($"a"), sumDistinct($"b")), // non-partial Row(null, null)) } test("count") { assert(testData2.count() === testData2.rdd.map(_ => 1).count()) checkAnswer( testData2.agg(count($"a"), sumDistinct($"a")), // non-partial Row(6, 6.0)) } test("null count") { checkAnswer( testData3.groupBy($"a").agg(count($"b")), Seq(Row(1, 0), Row(2, 1)) ) checkAnswer( testData3.groupBy($"a").agg(count($"a" + $"b")), Seq(Row(1, 0), Row(2, 1)) ) checkAnswer( testData3.agg( count($"a"), count($"b"), count(lit(1)), countDistinct($"a"), countDistinct($"b")), Row(2, 1, 2, 2, 1) ) checkAnswer( testData3.agg(count($"b"), countDistinct($"b"), sumDistinct($"b")), // non-partial Row(1, 1, 2) ) } test("multiple column distinct count") { val df1 = Seq( ("a", "b", "c"), ("a", "b", "c"), ("a", "b", "d"), ("x", "y", "z"), ("x", "q", null.asInstanceOf[String])) .toDF("key1", "key2", "key3") checkAnswer( df1.agg(countDistinct($"key1", $"key2")), Row(3) ) checkAnswer( df1.agg(countDistinct($"key1", $"key2", $"key3")), Row(3) ) checkAnswer( df1.groupBy($"key1").agg(countDistinct($"key2", $"key3")), Seq(Row("a", 2), Row("x", 1)) ) } test("zero count") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(count($"a"), sumDistinct($"a")), // non-partial Row(0, null)) } test("stddev") { val testData2ADev = math.sqrt(4.0 / 5.0) checkAnswer( testData2.agg(stddev($"a"), stddev_pop($"a"), stddev_samp($"a")), Row(testData2ADev, math.sqrt(4 / 6.0), testData2ADev)) checkAnswer( testData2.agg(stddev("a"), stddev_pop("a"), stddev_samp("a")), Row(testData2ADev, math.sqrt(4 / 6.0), testData2ADev)) } test("zero stddev") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(stddev($"a"), stddev_pop($"a"), stddev_samp($"a")), Row(null, null, null)) } test("zero sum") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(sum($"a")), Row(null)) } test("zero sum distinct") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer( emptyTableData.agg(sumDistinct($"a")), Row(null)) } test("moments") { val sparkVariance = testData2.agg(variance($"a")) checkAggregatesWithTol(sparkVariance, Row(4.0 / 5.0), absTol) val sparkVariancePop = testData2.agg(var_pop($"a")) checkAggregatesWithTol(sparkVariancePop, Row(4.0 / 6.0), absTol) val sparkVarianceSamp = testData2.agg(var_samp($"a")) checkAggregatesWithTol(sparkVarianceSamp, Row(4.0 / 5.0), absTol) val sparkSkewness = testData2.agg(skewness($"a")) checkAggregatesWithTol(sparkSkewness, Row(0.0), absTol) val sparkKurtosis = testData2.agg(kurtosis($"a")) checkAggregatesWithTol(sparkKurtosis, Row(-1.5), absTol) } test("zero moments") { val input = Seq((1, 2)).toDF("a", "b") checkAnswer( input.agg(stddev($"a"), stddev_samp($"a"), stddev_pop($"a"), variance($"a"), var_samp($"a"), var_pop($"a"), skewness($"a"), kurtosis($"a")), Row(Double.NaN, Double.NaN, 0.0, Double.NaN, Double.NaN, 0.0, Double.NaN, Double.NaN)) checkAnswer( input.agg( expr("stddev(a)"), expr("stddev_samp(a)"), expr("stddev_pop(a)"), expr("variance(a)"), expr("var_samp(a)"), expr("var_pop(a)"), expr("skewness(a)"), expr("kurtosis(a)")), Row(Double.NaN, Double.NaN, 0.0, Double.NaN, Double.NaN, 0.0, Double.NaN, Double.NaN)) } test("null moments") { val emptyTableData = Seq.empty[(Int, Int)].toDF("a", "b") checkAnswer(emptyTableData.agg( variance($"a"), var_samp($"a"), var_pop($"a"), skewness($"a"), kurtosis($"a")), Row(null, null, null, null, null)) checkAnswer( emptyTableData.agg( expr("variance(a)"), expr("var_samp(a)"), expr("var_pop(a)"), expr("skewness(a)"), expr("kurtosis(a)")), Row(null, null, null, null, null)) } test("collect functions") { val df = Seq((1, 2), (2, 2), (3, 4)).toDF("a", "b") checkAnswer( df.select(collect_list($"a"), collect_list($"b")), Seq(Row(Seq(1, 2, 3), Seq(2, 2, 4))) ) checkAnswer( df.select(collect_set($"a"), collect_set($"b")), Seq(Row(Seq(1, 2, 3), Seq(2, 4))) ) checkDataset( df.select(collect_set($"a").as("aSet")).as[Set[Int]], Set(1, 2, 3)) checkDataset( df.select(collect_set($"b").as("bSet")).as[Set[Int]], Set(2, 4)) checkDataset( df.select(collect_set($"a"), collect_set($"b")).as[(Set[Int], Set[Int])], Seq(Set(1, 2, 3) -> Set(2, 4)): _*) } test("collect functions structs") { val df = Seq((1, 2, 2), (2, 2, 2), (3, 4, 1)) .toDF("a", "x", "y") .select($"a", struct($"x", $"y").as("b")) checkAnswer( df.select(collect_list($"a"), sort_array(collect_list($"b"))), Seq(Row(Seq(1, 2, 3), Seq(Row(2, 2), Row(2, 2), Row(4, 1)))) ) checkAnswer( df.select(collect_set($"a"), sort_array(collect_set($"b"))), Seq(Row(Seq(1, 2, 3), Seq(Row(2, 2), Row(4, 1)))) ) } test("collect_set functions cannot have maps") { val df = Seq((1, 3, 0), (2, 3, 0), (3, 4, 1)) .toDF("a", "x", "y") .select($"a", map($"x", $"y").as("b")) val error = intercept[AnalysisException] { df.select(collect_set($"a"), collect_set($"b")) } assert(error.message.contains("collect_set() cannot have map type data")) } test("SPARK-17641: collect functions should not collect null values") { val df = Seq(("1", 2), (null, 2), ("1", 4)).toDF("a", "b") checkAnswer( df.select(collect_list($"a"), collect_list($"b")), Seq(Row(Seq("1", "1"), Seq(2, 2, 4))) ) checkAnswer( df.select(collect_set($"a"), collect_set($"b")), Seq(Row(Seq("1"), Seq(2, 4))) ) } test("collect functions should be able to cast to array type with no null values") { val df = Seq(1, 2).toDF("a") checkAnswer(df.select(collect_list("a") cast ArrayType(IntegerType, false)), Seq(Row(Seq(1, 2)))) checkAnswer(df.select(collect_set("a") cast ArrayType(FloatType, false)), Seq(Row(Seq(1.0, 2.0)))) } test("SPARK-14664: Decimal sum/avg over window should work.") { checkAnswer( spark.sql("select sum(a) over () from values 1.0, 2.0, 3.0 T(a)"), Row(6.0) :: Row(6.0) :: Row(6.0) :: Nil) checkAnswer( spark.sql("select avg(a) over () from values 1.0, 2.0, 3.0 T(a)"), Row(2.0) :: Row(2.0) :: Row(2.0) :: Nil) } test("SQL decimal test (used for catching certain decimal handling bugs in aggregates)") { checkAnswer( decimalData.groupBy($"a" cast DecimalType(10, 2)).agg(avg($"b" cast DecimalType(10, 2))), Seq(Row(new java.math.BigDecimal(1), new java.math.BigDecimal("1.5")), Row(new java.math.BigDecimal(2), new java.math.BigDecimal("1.5")), Row(new java.math.BigDecimal(3), new java.math.BigDecimal("1.5")))) } test("SPARK-17616: distinct aggregate combined with a non-partial aggregate") { val df = Seq((1, 3, "a"), (1, 2, "b"), (3, 4, "c"), (3, 4, "c"), (3, 5, "d")) .toDF("x", "y", "z") checkAnswer( df.groupBy($"x").agg(countDistinct($"y"), sort_array(collect_list($"z"))), Seq(Row(1, 2, Seq("a", "b")), Row(3, 2, Seq("c", "c", "d")))) } test("SPARK-18004 limit + aggregates") { val df = Seq(("a", 1), ("b", 2), ("c", 1), ("d", 5)).toDF("id", "value") val limit2Df = df.limit(2) checkAnswer( limit2Df.groupBy("id").count().select($"id"), limit2Df.select($"id")) } test("SPARK-17237 remove backticks in a pivot result schema") { val df = Seq((2, 3, 4), (3, 4, 5)).toDF("a", "x", "y") withSQLConf(SQLConf.SUPPORT_QUOTED_REGEX_COLUMN_NAME.key -> "false") { checkAnswer( df.groupBy("a").pivot("x").agg(count("y"), avg("y")).na.fill(0), Seq(Row(3, 0, 0.0, 1, 5.0), Row(2, 1, 4.0, 0, 0.0)) ) } } test("aggregate function in GROUP BY") { val e = intercept[AnalysisException] { testData.groupBy(sum($"key")).count() } assert(e.message.contains("aggregate functions are not allowed in GROUP BY")) } private def assertNoExceptions(c: Column): Unit = { for ((wholeStage, useObjectHashAgg) <- Seq((true, true), (true, false), (false, true), (false, false))) { withSQLConf( (SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key, wholeStage.toString), (SQLConf.USE_OBJECT_HASH_AGG.key, useObjectHashAgg.toString)) { val df = Seq(("1", 1), ("1", 2), ("2", 3), ("2", 4)).toDF("x", "y") // test case for HashAggregate val hashAggDF = df.groupBy("x").agg(c, sum("y")) hashAggDF.collect() val hashAggPlan = hashAggDF.queryExecution.executedPlan if (wholeStage) { assert(find(hashAggPlan) { case WholeStageCodegenExec(_: HashAggregateExec) => true case _ => false }.isDefined) } else { assert(stripAQEPlan(hashAggPlan).isInstanceOf[HashAggregateExec]) } // test case for ObjectHashAggregate and SortAggregate val objHashAggOrSortAggDF = df.groupBy("x").agg(c, collect_list("y")) objHashAggOrSortAggDF.collect() val objHashAggOrSortAggPlan = stripAQEPlan(objHashAggOrSortAggDF.queryExecution.executedPlan) if (useObjectHashAgg) { assert(objHashAggOrSortAggPlan.isInstanceOf[ObjectHashAggregateExec]) } else { assert(objHashAggOrSortAggPlan.isInstanceOf[SortAggregateExec]) } } } } test("SPARK-19471: AggregationIterator does not initialize the generated result projection" + " before using it") { Seq( monotonically_increasing_id(), spark_partition_id(), rand(Random.nextLong()), randn(Random.nextLong()) ).foreach(assertNoExceptions) } test("SPARK-21580 ints in aggregation expressions are taken as group-by ordinal.") { checkAnswer( testData2.groupBy(lit(3), lit(4)).agg(lit(6), lit(7), sum("b")), Seq(Row(3, 4, 6, 7, 9))) checkAnswer( testData2.groupBy(lit(3), lit(4)).agg(lit(6), $"b", sum("b")), Seq(Row(3, 4, 6, 1, 3), Row(3, 4, 6, 2, 6))) checkAnswer( spark.sql("SELECT 3, 4, SUM(b) FROM testData2 GROUP BY 1, 2"), Seq(Row(3, 4, 9))) checkAnswer( spark.sql("SELECT 3 AS c, 4 AS d, SUM(b) FROM testData2 GROUP BY c, d"), Seq(Row(3, 4, 9))) } test("SPARK-22223: ObjectHashAggregate should not introduce unnecessary shuffle") { withSQLConf(SQLConf.USE_OBJECT_HASH_AGG.key -> "true") { val df = Seq(("1", "2", 1), ("1", "2", 2), ("2", "3", 3), ("2", "3", 4)).toDF("a", "b", "c") .repartition(col("a")) val objHashAggDF = df .withColumn("d", expr("(a, b, c)")) .groupBy("a", "b").agg(collect_list("d").as("e")) .withColumn("f", expr("(b, e)")) .groupBy("a").agg(collect_list("f").as("g")) val aggPlan = objHashAggDF.queryExecution.executedPlan val sortAggPlans = collect(aggPlan) { case sortAgg: SortAggregateExec => sortAgg } assert(sortAggPlans.isEmpty) val objHashAggPlans = collect(aggPlan) { case objHashAgg: ObjectHashAggregateExec => objHashAgg } assert(objHashAggPlans.nonEmpty) val exchangePlans = collect(aggPlan) { case shuffle: ShuffleExchangeExec => shuffle } assert(exchangePlans.length == 1) } } testWithWholeStageCodegenOnAndOff("SPARK-22951: dropDuplicates on empty dataFrames " + "should produce correct aggregate") { _ => // explicit global aggregations val emptyAgg = Map.empty[String, String] checkAnswer(spark.emptyDataFrame.agg(emptyAgg), Seq(Row())) checkAnswer(spark.emptyDataFrame.groupBy().agg(emptyAgg), Seq(Row())) checkAnswer(spark.emptyDataFrame.groupBy().agg(count("*")), Seq(Row(0))) checkAnswer(spark.emptyDataFrame.dropDuplicates().agg(emptyAgg), Seq(Row())) checkAnswer(spark.emptyDataFrame.dropDuplicates().groupBy().agg(emptyAgg), Seq(Row())) checkAnswer(spark.emptyDataFrame.dropDuplicates().groupBy().agg(count("*")), Seq(Row(0))) // global aggregation is converted to grouping aggregation: assert(spark.emptyDataFrame.dropDuplicates().count() == 0) } test("SPARK-21896: Window functions inside aggregate functions") { def checkWindowError(df: => DataFrame): Unit = { val thrownException = the [AnalysisException] thrownBy { df.queryExecution.analyzed } assert(thrownException.message.contains("not allowed to use a window function")) } checkWindowError(testData2.select(min(avg($"b").over(Window.partitionBy($"a"))))) checkWindowError(testData2.agg(sum($"b"), max(rank().over(Window.orderBy($"a"))))) checkWindowError(testData2.groupBy($"a").agg(sum($"b"), max(rank().over(Window.orderBy($"b"))))) checkWindowError(testData2.groupBy($"a").agg(max(sum(sum($"b")).over(Window.orderBy($"a"))))) checkWindowError(testData2.groupBy($"a").agg( sum($"b").as("s"), max(count("*").over())).where($"s" === 3)) checkAnswer(testData2.groupBy($"a").agg( max($"b"), sum($"b").as("s"), count("*").over()).where($"s" === 3), Row(1, 2, 3, 3) :: Row(2, 2, 3, 3) :: Row(3, 2, 3, 3) :: Nil) checkWindowError(sql("SELECT MIN(AVG(b) OVER(PARTITION BY a)) FROM testData2")) checkWindowError(sql("SELECT SUM(b), MAX(RANK() OVER(ORDER BY a)) FROM testData2")) checkWindowError(sql("SELECT SUM(b), MAX(RANK() OVER(ORDER BY b)) FROM testData2 GROUP BY a")) checkWindowError(sql("SELECT MAX(SUM(SUM(b)) OVER(ORDER BY a)) FROM testData2 GROUP BY a")) checkWindowError( sql("SELECT MAX(RANK() OVER(ORDER BY b)) FROM testData2 GROUP BY a HAVING SUM(b) = 3")) checkAnswer( sql("SELECT a, MAX(b), RANK() OVER(ORDER BY a) FROM testData2 GROUP BY a HAVING SUM(b) = 3"), Row(1, 2, 1) :: Row(2, 2, 2) :: Row(3, 2, 3) :: Nil) } test("SPARK-24788: RelationalGroupedDataset.toString with unresolved exprs should not fail") { // Checks if these raise no exception assert(testData.groupBy($"key").toString.contains( "[grouping expressions: [key], value: [key: int, value: string], type: GroupBy]")) assert(testData.groupBy(col("key")).toString.contains( "[grouping expressions: [key], value: [key: int, value: string], type: GroupBy]")) assert(testData.groupBy(current_date()).toString.contains( "grouping expressions: [current_date(None)], value: [key: int, value: string], " + "type: GroupBy]")) } test("SPARK-26021: NaN and -0.0 in grouping expressions") { checkAnswer( Seq(0.0f, -0.0f, 0.0f/0.0f, Float.NaN).toDF("f").groupBy("f").count(), Row(0.0f, 2) :: Row(Float.NaN, 2) :: Nil) checkAnswer( Seq(0.0d, -0.0d, 0.0d/0.0d, Double.NaN).toDF("d").groupBy("d").count(), Row(0.0d, 2) :: Row(Double.NaN, 2) :: Nil) // test with complicated type grouping expressions checkAnswer( Seq(0.0f, -0.0f, 0.0f/0.0f, Float.NaN).toDF("f") .groupBy(array("f"), struct("f")).count(), Row(Seq(0.0f), Row(0.0f), 2) :: Row(Seq(Float.NaN), Row(Float.NaN), 2) :: Nil) checkAnswer( Seq(0.0d, -0.0d, 0.0d/0.0d, Double.NaN).toDF("d") .groupBy(array("d"), struct("d")).count(), Row(Seq(0.0d), Row(0.0d), 2) :: Row(Seq(Double.NaN), Row(Double.NaN), 2) :: Nil) checkAnswer( Seq(0.0f, -0.0f, 0.0f/0.0f, Float.NaN).toDF("f") .groupBy(array(struct("f")), struct(array("f"))).count(), Row(Seq(Row(0.0f)), Row(Seq(0.0f)), 2) :: Row(Seq(Row(Float.NaN)), Row(Seq(Float.NaN)), 2) :: Nil) checkAnswer( Seq(0.0d, -0.0d, 0.0d/0.0d, Double.NaN).toDF("d") .groupBy(array(struct("d")), struct(array("d"))).count(), Row(Seq(Row(0.0d)), Row(Seq(0.0d)), 2) :: Row(Seq(Row(Double.NaN)), Row(Seq(Double.NaN)), 2) :: Nil) // test with complicated type grouping columns val df = Seq( (Array(-0.0f, 0.0f), Tuple2(-0.0d, Double.NaN), Seq(Tuple2(-0.0d, Double.NaN))), (Array(0.0f, -0.0f), Tuple2(0.0d, Double.NaN), Seq(Tuple2(0.0d, 0.0/0.0))) ).toDF("arr", "stru", "arrOfStru") checkAnswer( df.groupBy("arr", "stru", "arrOfStru").count(), Row(Seq(0.0f, 0.0f), Row(0.0d, Double.NaN), Seq(Row(0.0d, Double.NaN)), 2) ) } test("SPARK-27581: DataFrame countDistinct(\\"*\\") shouldn't fail with AnalysisException") { val df = sql("select id % 100 from range(100000)") val distinctCount1 = df.select(expr("count(distinct(*))")) val distinctCount2 = df.select(countDistinct("*")) checkAnswer(distinctCount1, distinctCount2) val countAndDistinct = df.select(count("*"), countDistinct("*")) checkAnswer(countAndDistinct, Row(100000, 100)) } test("max_by") { val yearOfMaxEarnings = sql("SELECT course, max_by(year, earnings) FROM courseSales GROUP BY course") checkAnswer(yearOfMaxEarnings, Row("dotNET", 2013) :: Row("Java", 2013) :: Nil) checkAnswer( sql("SELECT max_by(x, y) FROM VALUES (('a', 10)), (('b', 50)), (('c', 20)) AS tab(x, y)"), Row("b") :: Nil ) checkAnswer( sql("SELECT max_by(x, y) FROM VALUES (('a', 10)), (('b', null)), (('c', 20)) AS tab(x, y)"), Row("c") :: Nil ) checkAnswer( sql("SELECT max_by(x, y) FROM VALUES (('a', null)), (('b', null)), (('c', 20)) AS tab(x, y)"), Row("c") :: Nil ) checkAnswer( sql("SELECT max_by(x, y) FROM VALUES (('a', 10)), (('b', 50)), (('c', null)) AS tab(x, y)"), Row("b") :: Nil ) checkAnswer( sql("SELECT max_by(x, y) FROM VALUES (('a', null)), (('b', null)) AS tab(x, y)"), Row(null) :: Nil ) // structs as ordering value. checkAnswer( sql("select max_by(x, y) FROM VALUES (('a', (10, 20))), (('b', (10, 50))), " + "(('c', (10, 60))) AS tab(x, y)"), Row("c") :: Nil ) checkAnswer( sql("select max_by(x, y) FROM VALUES (('a', (10, 20))), (('b', (10, 50))), " + "(('c', null)) AS tab(x, y)"), Row("b") :: Nil ) withTempView("tempView") { val dfWithMap = Seq((0, "a"), (1, "b"), (2, "c")) .toDF("x", "y") .select($"x", map($"x", $"y").as("y")) .createOrReplaceTempView("tempView") val error = intercept[AnalysisException] { sql("SELECT max_by(x, y) FROM tempView").show } assert( error.message.contains("function max_by does not support ordering on type map<int,string>")) } } test("min_by") { val yearOfMinEarnings = sql("SELECT course, min_by(year, earnings) FROM courseSales GROUP BY course") checkAnswer(yearOfMinEarnings, Row("dotNET", 2012) :: Row("Java", 2012) :: Nil) checkAnswer( sql("SELECT min_by(x, y) FROM VALUES (('a', 10)), (('b', 50)), (('c', 20)) AS tab(x, y)"), Row("a") :: Nil ) checkAnswer( sql("SELECT min_by(x, y) FROM VALUES (('a', 10)), (('b', null)), (('c', 20)) AS tab(x, y)"), Row("a") :: Nil ) checkAnswer( sql("SELECT min_by(x, y) FROM VALUES (('a', null)), (('b', null)), (('c', 20)) AS tab(x, y)"), Row("c") :: Nil ) checkAnswer( sql("SELECT min_by(x, y) FROM VALUES (('a', 10)), (('b', 50)), (('c', null)) AS tab(x, y)"), Row("a") :: Nil ) checkAnswer( sql("SELECT min_by(x, y) FROM VALUES (('a', null)), (('b', null)) AS tab(x, y)"), Row(null) :: Nil ) // structs as ordering value. checkAnswer( sql("select min_by(x, y) FROM VALUES (('a', (10, 20))), (('b', (10, 50))), " + "(('c', (10, 60))) AS tab(x, y)"), Row("a") :: Nil ) checkAnswer( sql("select min_by(x, y) FROM VALUES (('a', null)), (('b', (10, 50))), " + "(('c', (10, 60))) AS tab(x, y)"), Row("b") :: Nil ) withTempView("tempView") { val dfWithMap = Seq((0, "a"), (1, "b"), (2, "c")) .toDF("x", "y") .select($"x", map($"x", $"y").as("y")) .createOrReplaceTempView("tempView") val error = intercept[AnalysisException] { sql("SELECT min_by(x, y) FROM tempView").show } assert( error.message.contains("function min_by does not support ordering on type map<int,string>")) } } test("count_if") { withTempView("tempView") { Seq(("a", None), ("a", Some(1)), ("a", Some(2)), ("a", Some(3)), ("b", None), ("b", Some(4)), ("b", Some(5)), ("b", Some(6))) .toDF("x", "y") .createOrReplaceTempView("tempView") checkAnswer( sql("SELECT COUNT_IF(NULL), COUNT_IF(y % 2 = 0), COUNT_IF(y % 2 <> 0), " + "COUNT_IF(y IS NULL) FROM tempView"), Row(0L, 3L, 3L, 2L)) checkAnswer( sql("SELECT x, COUNT_IF(NULL), COUNT_IF(y % 2 = 0), COUNT_IF(y % 2 <> 0), " + "COUNT_IF(y IS NULL) FROM tempView GROUP BY x"), Row("a", 0L, 1L, 2L, 1L) :: Row("b", 0L, 2L, 1L, 1L) :: Nil) checkAnswer( sql("SELECT x FROM tempView GROUP BY x HAVING COUNT_IF(y % 2 = 0) = 1"), Row("a")) checkAnswer( sql("SELECT x FROM tempView GROUP BY x HAVING COUNT_IF(y % 2 = 0) = 2"), Row("b")) checkAnswer( sql("SELECT x FROM tempView GROUP BY x HAVING COUNT_IF(y IS NULL) > 0"), Row("a") :: Row("b") :: Nil) checkAnswer( sql("SELECT x FROM tempView GROUP BY x HAVING COUNT_IF(NULL) > 0"), Nil) val error = intercept[AnalysisException] { sql("SELECT COUNT_IF(x) FROM tempView") } assert(error.message.contains("function count_if requires boolean type")) } } }
kevinyu98/spark
sql/core/src/test/scala/org/apache/spark/sql/DataFrameAggregateSuite.scala
Scala
apache-2.0
33,269
package org.nexbook.fix import org.nexbook.app.OrderHandlersModule import org.slf4j.LoggerFactory import quickfix._ import quickfix.fix44.{NewOrderSingle, OrderCancelRequest} class FixMessageHandler(orderHandlersModule: OrderHandlersModule, fixOrderConverter: FixOrderConverter) extends Application { val logger = LoggerFactory.getLogger(classOf[FixMessageHandler]) val newOrderHandler = orderHandlersModule.newOrderHandler override def onCreate(sessionId: SessionID) { logger.info(s"FixOrderHandler Session Created with SessionID: $sessionId") } override def onLogon(sessionId: SessionID) { logger.info(s"Logon: $sessionId") } override def onLogout(sessionId: SessionID) { logger.info(s"Logout: $sessionId") } override def toAdmin(message: Message, sessionId: SessionID) { logger.trace(s"ToAdmin: $message") } @throws(classOf[RejectLogon]) @throws(classOf[IncorrectTagValue]) @throws(classOf[IncorrectDataFormat]) @throws(classOf[FieldNotFound]) override def fromAdmin(message: Message, sessionId: SessionID) { logger.debug(s"FromAdmin: $message") } @throws(classOf[DoNotSend]) override def toApp(message: Message, sessionId: SessionID) { logger.trace(s"ToApp: $message") } @throws(classOf[UnsupportedMessageType]) @throws(classOf[IncorrectTagValue]) @throws(classOf[IncorrectDataFormat]) @throws(classOf[FieldNotFound]) override def fromApp(message: Message, sessionId: SessionID) { logger.trace(s"FromApp: ${System.currentTimeMillis}: $message") try { message match { case o: NewOrderSingle => onMessage(o, sessionId) case o: OrderCancelRequest => onMessage(o, sessionId) } } catch { case e: Exception => logger.error("Unexpected exception", e) } } def onMessage(order: NewOrderSingle, sessionID: SessionID) { logger.debug(s"${order.getClOrdID.getValue} - onMessage: handled message - $order from: ${sessionID.getSenderCompID}") newOrderHandler.handleNewOrder(fixOrderConverter convert order) } def onMessage(orderCancel: OrderCancelRequest, sessionID: SessionID) = { logger.debug(s"${orderCancel.getClOrdID.getValue} - onMessage: handled message with clOrdID: $orderCancel from: ${sessionID.getSenderCompID}") newOrderHandler.handleNewOrderCancel(fixOrderConverter convert orderCancel) } }
milczarekIT/nexbook
src/main/scala/org/nexbook/fix/FixMessageHandler.scala
Scala
apache-2.0
2,292
package de.kalass.batchmonads.base /** * A very simply operation that simply returns the given value when executed in a batch. */ case class Return[A](private[base] result: A) extends Operation[A]
kkalass/BatchMonads
src/de/kalass/batchmonads/base/Return.scala
Scala
lgpl-3.0
201
object SearchComments /** * SearchComments */ object Main { /*caret*/SearchComments } /* object NameAfterRename /** * NameAfterRename */ object Main { /*caret*/NameAfterRename } */
triggerNZ/intellij-scala
testdata/rename/class/SearchComments.scala
Scala
apache-2.0
190
package org.emailscript.api import java.net.{ConnectException, URL} import java.time.Instant import java.time.format.DateTimeFormatter import java.util.Date import com.google.gson.Gson import org.emailscript.helpers.{Exporter, Importer, LoggerFactory} import uk.co.bigbeeconsultants.http.HttpClient import uk.co.bigbeeconsultants.http.header.MediaType import uk.co.bigbeeconsultants.http.request.RequestBody import scala.beans.BeanProperty class NoteBean { @BeanProperty var uid_l: Long = 0 @BeanProperty var from_s: String = "" @BeanProperty var subject_s: String = "" @BeanProperty var note_t: String = "" @BeanProperty var date_dt: String = "" } object NoteBean { def apply(email: Email, note: String) = { val bean = new NoteBean bean.uid_l = email.getUid() bean.from_s = email.getFrom().toString bean.subject_s = email.getSubject() bean.note_t = note bean.date_dt = Indexer.formatDate(email.getReceived()) bean } } class IndexEmailBean { @BeanProperty var id: String = "" @BeanProperty var from_s: String = "" @BeanProperty var received_dt: String = "" @BeanProperty var body_t: String = "" @BeanProperty var subject_s: String = "" @BeanProperty var folder_s: String = "" } object IndexEmailBean { def apply(email: Email) = { val bean = new IndexEmailBean bean.id = email.getUid().toString bean.from_s = email.getFrom().toString bean.received_dt = Indexer.formatDate(email.getReceived()) bean.body_t = email.getBody() bean.subject_s = email.getSubject() bean.folder_s = email.getFolder() bean } } class LogBean { @BeanProperty var date_dt: String = "" @BeanProperty var text_t: String = "" @BeanProperty var level_s: String = "" @BeanProperty var thread_s: String = "" } object LogBean { def apply (timeStamp: Long, text: String, level: String, thread: String) = { val bean = new LogBean bean.date_dt = Indexer.formatDate(timeStamp) bean.text_t = text bean.level_s = level bean.thread_s = thread bean } } class IndexerBean() extends NamedBean with Importer { @BeanProperty var url: String = "" override def doImport(): AnyRef = Indexer(this) } /** * Provide search and indexing support using the Lucene search engine */ class Indexer(val url: String) extends Exporter { import org.emailscript.api.Indexer._ val httpClient = new HttpClient override def doExport(): AnyRef = { val bean = new IndexerBean() bean.url = url bean } // // Public API // def indexNote(email: Email, note:String) = { val noteBean = NoteBean(email, note) index(noteBean) } def indexEmail(email: Email) = { val emailBean = IndexEmailBean(email) index(emailBean) } /** * Add this email to the search index, so that we can find it later */ def index(data: AnyRef): Unit = { val gson = new Gson(); val body = gson.toJson(Array(data)) val requestBody = RequestBody(body, MediaType.APPLICATION_JSON) try { val response = httpClient.post(new URL(url), Some(requestBody)) logger.debug(s"indexing to url: $url body: $body ") if (!response.status.isSuccess) logger.warn(s"status: ${response.status.message} response = ${response.body.asString}") } catch { case e: ConnectException => logger.debug("Connection not working") case e: Throwable => logger.info(s"Could not post to $url", e) } } } object Indexer { val logger = LoggerFactory.getLogger(getClass) val dateFormatter = DateTimeFormatter.ISO_INSTANT val CommitParam = "?commitWithin=5000" // tells solr to commit transactions with 5 seconds def makeUpdateCommand(url: String) = url + "/update" + CommitParam def apply(bean: IndexerBean) = new Indexer(makeUpdateCommand(bean.url)) def apply(url: String) = new Indexer(makeUpdateCommand(url)) def formatDate(date: Date) = dateFormatter.format(date.toInstant) def formatDate(timeStamp: Long) = dateFormatter.format(Instant.ofEpochMilli(timeStamp)) }
OdysseusLevy/emailscript
src/main/scala/org/emailscript/api/Indexer.scala
Scala
lgpl-3.0
4,029
package mypkg object Container { class StringExtras(val s: String) extends AnyVal { def op(item: Int): Int = ??? } } trait Container { import Container.* implicit def mkStringExtras(s: String): StringExtras = new StringExtras(s) }
lampepfl/dotty
tests/pos/i6989/Container_1.scala
Scala
apache-2.0
244
package com.fh import javax.servlet.annotation.WebServlet import com.vaadin.annotations.{Theme, Title, VaadinServletConfiguration} import com.vaadin.server.{VaadinRequest, VaadinServlet} import com.vaadin.ui._ import org.slf4j.LoggerFactory /** * Servlet definition with annotations, so that we can avoid using a web.xml file. * Points to our sub-class of the Vaadin UI. * Created by fh on 2/12/2017. */ @WebServlet(value=Array("/*"), asyncSupported=true) @VaadinServletConfiguration(productionMode=false, ui=classOf[App]) class Servlet extends VaadinServlet /** * Vaadin application. * Created by fh on 2/12/2017. */ @Theme( "fh1" ) @Title( "Hello World Application" ) class App extends UI { private val log = LoggerFactory.getLogger( classOf[App] ) override def init(request: VaadinRequest): Unit = { try { log.info( "init" ) val view = new VerticalLayout() view.setStyleName( "bgYellow" ) // highlight the background of this view, so that we can see it on the page view.addComponent(new Label( getMsg )) setContent(view) } catch { case t: Throwable => log.error( "Failed miserably", t ) } } def getMsg = "Hello Vaadin!" }
fh137/ScalaVaadin
src/main/scala/com/fh/App.scala
Scala
mit
1,248
/* * Copyright (C) 2014 Ivan Cukic <ivan at mi.sanu.ac.rs> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package dataapi import slick.driver.PostgresDriver.simple._ import akka.actor.Actor import akka.io.IO import akka.pattern.ask import spray.can.Http import spray.http._ import spray.httpx.RequestBuilding._ import spray.httpx.SprayJsonSupport._ import spray.json._ import DefaultJsonProtocol._ import MediaTypes._ import HttpCharsets._ import HttpMethods._ import HttpHeaders._ import StateFilter._ import common.Config.{ Ckan => CkanConfig } import scala.concurrent.ExecutionContext.Implicits.global import spray.http.HttpResponse import java.sql.Timestamp import ckan.{CkanGodInterface, DataspaceTable} import spray.httpx.SprayJsonSupport._ import ckan.DataspaceJsonProtocol._ import ckan.ResourceJsonProtocol._ import CkanJsonProtocol._ import scala.slick.lifted.{Column, Query} import spray.http.HttpHeaders.Location import ckan.CkanGodInterface.IteratorData import java.util.UUID object DataspaceActor { /// Gets the list of resources modified in the specified time range case class ListDataspaces( val authorizationKey: String, val since: Option[Timestamp], val until: Option[Timestamp], val state: StateFilter, val start: Int = 0, val count: Int = CkanGodInterface.queryResultDefaultLimit ) /// Gets the next results for the iterator case class ListDataspacesFromIterator( val authorizationKey: String, val iterator: String ) /// Gets the meta data for the the specified resource case class GetDataspaceMetadata( val authorizationKey: String, val id: String) /// Creates a dataspace case class CreateDataspace( val authorizationKey: String, val dataspace: DataspaceCreateWithId ) /// Updates a dataspace case class UpdateDataspace( val authorizationKey: String, val dataspace: DataspaceUpdateWithId) /// Creates a new package in the dataspace case class CreatePackageInDataspace( val authorizationKey: String, val p: PackageCreateWithId) } class DataspaceActor extends Actor with dataapi.DefaultValues { import DataspaceActor._ import context.system def postRequest[T](action: String, data: T, authorizationKey: String)(implicit evidence: spray.httpx.marshalling.Marshaller[T]) = (IO(Http) ? ( Post(CkanConfig.namespace + "action/" + action, data)~>addHeader("Authorization", authorizationKey) )) def receive: Receive = { /// Gets the list of resources modified in the specified time range case ListDataspaces(authorizationKey, since, until, state, start, count) => CkanGodInterface.database withSession { implicit session: Session => val (query, nextPage, currentPage) = CkanGodInterface.listDataspacesQuery(authorizationKey, since, until, state, start, count) // Dataspaces do not support iterators thanks to CKAN // // "nextPage" -> JsString(nextPage.map("/resources/query/results/" + _) getOrElse ""), // "currentPage" -> JsString(currentPage.map("/resources/query/results/" + _) getOrElse ""), sender ! HttpResponse(status = StatusCodes.OK, entity = HttpEntity(ContentType(`application/json`, `UTF-8`), JsObject("data" -> query.list.toJson).prettyPrint)) } /// Decodes the iterator data and invokes ListDataspaces case ListDataspacesFromIterator(authorizationKey, iteratorData) => val iterator = IteratorData.fromId(iteratorData).get receive(ListDataspaces( authorizationKey, Some(iterator.since), Some(iterator.until), iterator.state, iterator.start, iterator.count )) /// Gets the meta data for the the specified resource case GetDataspaceMetadata(authorizationKey, request) => CkanGodInterface.database withSession { implicit session: Session => val requestParts = request.split('.') val id = requestParts.head val format = if (requestParts.size == 2) requestParts(1) else "json" val mimetype = if (format == "html") `text/html` else `application/json` val dataspace = CkanGodInterface.getDataspace(authorizationKey, id) sender ! HttpResponse( status = StatusCodes.OK, entity = HttpEntity( ContentType(mimetype, `UTF-8`), if (format == "html") { dataspace.map { templates.html.dataspace(_).toString }.getOrElse { templates.html.error(403, id).toString } } else { dataspace.map { _.toJson.prettyPrint }.getOrElse { "" } } ) ) } // Creates a new dataspace case CreateDataspace(authorizationKey, dataspace) => { val originalSender = sender // Passing the request to CKAN postRequest("organization_create", dataspace, authorizationKey) .mapTo[HttpResponse] .map { response => response.status match { case StatusCodes.OK => // TODO: Try to read dataspace from (ugly) CKAN response, not from db val createdDataspace = CkanGodInterface.getDataspace(authorizationKey, dataspace.id) originalSender ! HttpResponse(status = StatusCodes.Created, entity = HttpEntity(ContentType(`application/json`, `UTF-8`), createdDataspace.map { _.toJson.prettyPrint}.getOrElse {""}), headers = List(Location(s"${common.Config.namespace}dataspaces/${dataspace.id}"))) case StatusCodes.BadRequest => originalSender ! HttpResponse(status = response.status, entity = response.entity) case _ => originalSender ! HttpResponse(response.status, "Error creating dataspace!") } } } // Updates the dataspace case UpdateDataspace(authorizationKey, dataspace) => { val originalSender = sender // Passing the request to CKAN postRequest("organization_update", dataspace, authorizationKey) .mapTo[HttpResponse] .map { response => response.status match { case StatusCodes.OK => // TODO: Try to read dataspace from (ugly) CKAN response, not from db val updatedDataspace = CkanGodInterface.getDataspace(authorizationKey, dataspace.id) originalSender ! HttpResponse(status = StatusCodes.OK, entity = HttpEntity(ContentType(`application/json`, `UTF-8`), updatedDataspace.map { _.toJson.prettyPrint} getOrElse "")) case StatusCodes.BadRequest => originalSender ! HttpResponse(status = response.status, entity = response.entity) case _ => originalSender ! HttpResponse(response.status, "Error updating dataspace!") } } } // Creates a new package in the dataspace case CreatePackageInDataspace(authorizationKey, p) => { val originalSender = sender postRequest("package_create", p, authorizationKey) .mapTo[HttpResponse] .map { response => originalSender ! response} } case response: HttpResponse => println(s"Sending the response back to the requester $response") case other => println(s"Found an unknown thing: $other") sender ! other } }
ivan-cukic/litef-conductor
src/main/scala/dataapi/DataspaceActor.scala
Scala
apache-2.0
9,323
import org.apache.log4j.{Level, Logger} import org.apache.spark.SparkContext import org.apache.spark.graphx.{Edge, Graph} import org.apache.spark.rdd.RDD /** * Created by xinghao on 3/13/15. */ object AuxiliaryFunctions { def setZeroDegreeToCenter(graph: Graph[Int, Int], zeroDegreeID: Int, centerID: Int): Graph[Int, Int] = { graph.mapVertices[Int]((vid, attr) => if (attr == zeroDegreeID) centerID else attr) } def setCenterAttrToNegativeID(graph: Graph[Int, Int]): Graph[Int, Int] = { graph.mapVertices[Int]((vid, attr) => if (attr <= 0) -vid.toInt else attr) } def computeObjective(graph: Graph[Int, Int]): Long = { val g = setCenterAttrToNegativeID(graph) val cChoose2: Long = g.aggregateMessages[Long]( triplet => { if (triplet.srcAttr == triplet.dstId) triplet.sendToDst(1) }, _ + _ ).map(vc => vc._2 * (vc._2 + 1) / 2).fold(0)(_ + _) val intraCluster: Long = g.aggregateMessages[Long]( triplet => { if (math.abs(triplet.srcAttr) == math.abs(triplet.dstAttr)) triplet.sendToDst(1) }, _ + _ ).map(vc => vc._2).fold(0)(_ + _) / 2 val interCluster: Long = g.aggregateMessages[Long]( triplet => { if (math.abs(triplet.srcAttr) != math.abs(triplet.dstAttr)) triplet.sendToDst(1) }, _ + _ ).map(vc => vc._2).fold(0)(_ + _) / 2 cChoose2 - intraCluster + interCluster } def main(args: Array[String]) = { Logger.getLogger("org").setLevel(Level.WARN) Logger.getLogger("akka").setLevel(Level.WARN) val sc = new SparkContext() /* Start with 1, obj = 2 */ val vertexArray = Array( (1L, -999), (2L, 1), (3L, 1), (4L, -999), (5L, 1) ) /* Start with 2, obj = 4 */ // val vertexArray = Array( // (1L, 2), // (2L, -999), // (3L, -999), // (4L, 2), // (5L, 2) // ) /* Start with 3, obj = 2 */ // val vertexArray = Array( // (1L, 3), // (2L, -999), // (3L, -999), // (4L, 2), // (5L, 3) // ) /* Start with 4, obj = 2 */ // val vertexArray = Array( // (1L, 3), // (2L, 4), // (3L, -999), // (4L, -999), // (5L, 3) // ) /* Start with 5, obj = 2 */ // val vertexArray = Array( // (1L, 5), // (2L, 5), // (3L, 5), // (4L, -999), // (5L, -999) // ) /* Every vertex in its own cluster, obj = 6 */ // val vertexArray = Array( // (1L, -999), // (2L, -999), // (3L, -999), // (4L, -999), // (5L, -999) // ) /* {{1,2,3}, {4}, {5}}, obj = 5 */ // val vertexArray = Array( // (1L, -999), // (2L, 1), // (3L, 1), // (4L, -999), // (5L, -999) // ) val edgeArray = Array( Edge(1, 2, 1), Edge(1, 3, 1), Edge(1, 5, 1), Edge(2, 1, 1), Edge(2, 4, 1), Edge(2, 5, 1), Edge(3, 1, 1), Edge(3, 5, 1), Edge(4, 2, 1), Edge(5, 1, 1), Edge(5, 2, 1), Edge(5, 3, 1) ) val vertexRDD: RDD[(Long, Int)] = sc.parallelize(vertexArray) val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray) var graph: Graph[Int, Int] = Graph(vertexRDD, edgeRDD) val obj = AuxiliaryFunctions.computeObjective(graph) System.out.println(s"$obj") } }
anadim/clusterWild
src/main/scala/AuxiliaryFunctions.scala
Scala
apache-2.0
3,342
package bad.robot.temperature import bad.robot.temperature.rrd.{Host, Seconds} import org.specs2.matcher.DisjunctionMatchers._ import org.specs2.matcher.MatchResult import org.specs2.mutable.Specification import org.specs2.specification.AfterAll import scala.Double._ import scalaz.{\\/, \\/-} class ErrorOnTemperatureSpikeTest extends Specification with AfterAll { val SensorError: PartialFunction[Error, MatchResult[Any]] = { case _: SensorSpikeError => ok } "Delegates" >> { val delegate = new StubWriter new ErrorOnTemperatureSpike(delegate).write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))) ) } "Errors on spiked value (single sensor)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(51.1))))) must be_-\\/.like(SensorError) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4)))), Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6)))) ) } "Error on spiked values (multiple sensors)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(5), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(7), List(SensorReading("A", Temperature(51.6))))) must be_-\\/.like(SensorError) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("B", Temperature(31.4))))) writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("B", Temperature(31.1))))) writer.write(Measurement(Host("example"), Seconds(6), List(SensorReading("B", Temperature(31.4))))) writer.write(Measurement(Host("example"), Seconds(8), List(SensorReading("B", Temperature(51.1))))) must be_-\\/.like(SensorError) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6)))), Measurement(Host("example"), Seconds(5), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(2), List(SensorReading("B", Temperature(31.4)))), Measurement(Host("example"), Seconds(4), List(SensorReading("B", Temperature(31.1)))), Measurement(Host("example"), Seconds(6), List(SensorReading("B", Temperature(31.4)))) ) } "Recovers from spiked value (single sensor)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(51.1))))) must be_-\\/.like(SensorError) writer.write(Measurement(Host("example"), Seconds(5), List(SensorReading("A", Temperature(51.2))))) must be_-\\/.like(SensorError) writer.write(Measurement(Host("example"), Seconds(6), List(SensorReading("A", Temperature(51.5))))) must be_-\\/.like(SensorError) writer.write(Measurement(Host("example"), Seconds(7), List(SensorReading("A", Temperature(21.7))))) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4)))), Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6)))), Measurement(Host("example"), Seconds(7), List(SensorReading("A", Temperature(21.7)))) ) } "Negative spikes values (single sensor)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(1.1))))) must be_-\\/.like(SensorError) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.4)))), Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(21.6)))) ) } "Negative spikes values (single sensor), example from production" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate, Barrier(1)) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(0.5))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(0.5))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(0.4))))) writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(-0.7))))) must be_-\\/.like(SensorError) writer.write(Measurement(Host("example"), Seconds(5), List(SensorReading("A", Temperature(0.4))))) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(0.5)))), Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(0.5)))), Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(0.4)))), Measurement(Host("example"), Seconds(5), List(SensorReading("A", Temperature(0.4)))) ) } "NaN (32.625 - 0.0 / 0.0 * 100 is NaN)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(0.0))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(32.625))))) must be_-\\/.like(SensorError) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(0.0)))) ) } "Infinity (0.0 - 32.625 / 0.0 * 100 is -Infinity)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(32.625))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(0.0))))) must be_-\\/.like(SensorError) delegate.temperatures must_== List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(32.625)))) ) } "Error message on a spiked value (single sensor)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(51.1))))) must be_-\\/.like { case e: SensorSpikeError => e.message must_== """An unexpected spike was encountered on: | sensor(s) : A | previous temperatures : 21.6 °C | spiked temperatures : 51.1 °C |""".stripMargin } } "Error message on a spiked value (multiple sensors)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A1", Temperature(21.1)), SensorReading("A2", Temperature(21.3))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("B1", Temperature(21.6)), SensorReading("B2", Temperature(21.8))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A1", Temperature(51.4)), SensorReading("A2", Temperature(51.1))))) must be_-\\/.like { case e: SensorSpikeError => e.message must_== """An unexpected spike was encountered on: | sensor(s) : A1, A2 | previous temperatures : 21.1 °C, 21.3 °C | spiked temperatures : 51.4 °C, 51.1 °C |""".stripMargin } } "What happens with NaN (let it through)" >> { val delegate = new StubWriter val writer = new ErrorOnTemperatureSpike(delegate) writer.write(Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1))))) writer.write(Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.6))))) writer.write(Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(NaN))))) must be_\\/- writer.write(Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(21.8))))) delegate.temperatures must containAllOf(List( Measurement(Host("example"), Seconds(1), List(SensorReading("A", Temperature(21.1)))), Measurement(Host("example"), Seconds(2), List(SensorReading("A", Temperature(21.6)))), // Measurement(Host("example"), Seconds(3), List(SensorReading("A", Temperature(NaN)))), // can't do equality check on NaN Measurement(Host("example"), Seconds(4), List(SensorReading("A", Temperature(21.8)))) )) } "Toggle the use based on system property" >> { ErrorOnTemperatureSpike(new StubWriter()) must haveClass[StubWriter] sys.props += ("avoid.spikes" -> "true") ErrorOnTemperatureSpike(new StubWriter()) must haveClass[ErrorOnTemperatureSpike] } class StubWriter extends TemperatureWriter { var temperatures: List[Measurement] = List() def write(measurement: Measurement): \\/[Error, Unit] = { temperatures = temperatures :+ measurement \\/-(()) } } override def afterAll(): Unit = sys.props -= "avoid.spikes" }
tobyweston/temperature-machine
src/test/scala/bad/robot/temperature/ErrorOnTemperatureSpikeTest.scala
Scala
apache-2.0
11,069
package com.arcusys.valamis.slide.service import com.arcusys.learn.liferay.LiferayClasses.LAssetEntry import com.arcusys.learn.liferay.services.{AssetEntryLocalServiceHelper, CompanyHelper} import com.arcusys.valamis.liferay.AssetHelper import com.arcusys.valamis.slide.model.SlideSet import com.arcusys.valamis.tag.model.ValamisTag import scala.collection.JavaConverters._ trait SlideSetAssetHelper { def updateSlideAsset(slideSet: SlideSet, userId: Option[Long]): Long def getSlideAsset(slideSetId: Long): Option[LAssetEntry] def getSlideAssets(slideSetIds: Seq[Long]): Seq[LAssetEntry] def getSlideAssetCategories(slideSetId: Long): Seq[ValamisTag] def getSlidesAssetCategories(slideSetId: Seq[Long]): Seq[(Long, Seq[ValamisTag])] def deleteSlideAsset(slideSetId: Long): Unit } class SlideSetAssetHelperImpl extends AssetHelper[SlideSet] with SlideSetAssetHelper { private lazy val assetHelper = AssetEntryLocalServiceHelper def updateSlideAsset(slideSet: SlideSet, userId: Option[Long]): Long = { updateAssetEntry( slideSet.id, userId, if (slideSet.courseId != -1L) Some(slideSet.courseId) else None, Some(slideSet.title), Some(slideSet.description), slideSet, Option(CompanyHelper.getCompanyId)) } def getSlideAsset(slideSetId: Long): Option[LAssetEntry] = assetHelper.fetchAssetEntry(className, slideSetId) def getSlideAssets(slideSetIds: Seq[Long]): Seq[LAssetEntry] = assetHelper.fetchAssetEntries(className, slideSetIds) def getSlideAssetCategories(slideSetId: Long): Seq[ValamisTag] = getSlideAsset(slideSetId) map { asset => asset.getCategories.asScala.map(c => ValamisTag(c.getCategoryId, c.getName)).toSeq } getOrElse Seq() def getSlidesAssetCategories(slideSetIds: Seq[Long]): Seq[(Long, Seq[ValamisTag])] = getSlideAssets(slideSetIds) map { asset => val tags = asset.getCategories.asScala.map(c => ValamisTag(c.getCategoryId, c.getName)).toSeq (asset.getClassPK, tags) } def deleteSlideAsset(slideSetId: Long): Unit = { getSlideAsset(slideSetId).map { asset => assetHelper.deleteAssetEntry(asset.getEntryId) } } }
arcusys/Valamis
valamis-slide/src/main/scala/com/arcusys/valamis/slide/service/SlideSetAssetHelperImpl.scala
Scala
gpl-3.0
2,181
/* Copyright (c) 2008, 2009 Hanno Braun <[email protected]> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.hannobraun.kong.util import javax.swing.SwingUtilities object PiccoUtil { def updateSG( f: () => Unit ) { SwingUtilities.invokeAndWait( new Runnable { def run { f.apply } } ) } }
hannobraun/Kong
src/main/scala/com/hannobraun/kong/util/PiccoUtil.scala
Scala
apache-2.0
812
package nak.classify import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import breeze.linalg._ /** * * @author dlwh */ @RunWith(classOf[JUnitRunner]) class SMOTrainerTest extends ClassifierTrainerTestHarness with ContinuousTestHarness { def trainer[L,T]:Classifier.Trainer[L,Counter[T,Double]] = new SVM.SMOTrainer[L,Counter[T,Double]](10); }
scalanlp/nak
src/test/scala/nak/classify/SVMTrainerTest.scala
Scala
apache-2.0
377
package io.rout /** * Allows the creation of reusable validation rules for [[ReqRead]]s. */ object ValidationRule { /** * Implicit conversion that allows the same [[ValidationRule]] to be used for required * and optional values. If the optional value is non-empty, it gets validated (and validation may fail, producing an * error), but if it is empty, it is always treated as valid. * * @param rule the validation rule to adapt for optional values * @return a new validation rule that applies the specified rule to an optional value in case it is not empty */ implicit def toOptionalRule[A](rule: ValidationRule[A]): ValidationRule[Option[A]] = { ValidationRule(rule.description) { case Some(value) => rule(value) case None => true } } /** * Creates a new reusable [[ValidationRule]] based on the specified predicate. * * @param desc text describing the rule being validated * @param p returns true if the data is valid * * @return a new reusable validation rule. */ def apply[A](desc: String)(p: A => Boolean): ValidationRule[A] = new ValidationRule[A] { def description: String = desc def apply(value: A): Boolean = p(value) } } /** * A `ValidationRule` enables a reusable way of defining a validation rules in the application domain. It might be * composed with [[ReqRead]]s using either should` or `shouldNot` methods and with other `ValidationRule`s using * logical methods `and` and `or`. * * {{{ * case class User(name: String, age: Int) * val user: ReqRead[User] = ( * param("name").should(beLongerThan(3)) :: * param("age").as[Int].should(beGreaterThan(0) and beLessThan(120)) * ).as[User] * }}} */ trait ValidationRule[A] { self => /** * Text description of this validation rule. */ def description: String /** * Applies the rule to the specified value. * * @return true if the predicate of this rule holds for the specified value */ def apply(value: A): Boolean /** * Combines this rule with another rule such that the new rule only validates if both the combined rules validate. * * @param that the rule to combine with this rule * @return a new rule that only validates if both the combined rules validate */ def and(that: ValidationRule[A]): ValidationRule[A] = ValidationRule(s"${self.description} and ${that.description}") { value => self(value) && that(value) } /** * Combines this rule with another rule such that the new rule validates if any one of the combined rules validates. * * @param that the rule to combine with this rule * @return a new rule that validates if any of the combined rules validates */ def or(that: ValidationRule[A]): ValidationRule[A] = ValidationRule(s"${self.description} or ${that.description}") { value => self(value) || that(value) } }
teodimoff/rOut
core/src/io/rout/ValidationRule.scala
Scala
apache-2.0
2,873
trait T[T] { def apply(x: Int): T } class C(val x: Int) extends AnyVal { override def toString = s"$x" } object Test { def main(args: Array[String]): Unit = { { val t: A[String] = s => s assert((t: A[_]).apply("there") == "there") } { var u = 0 val t: T[Unit] = x => u = x t.apply(1) assert(u == 1) } { val t: T[C] = x => new C(x) assert(t.apply(1) == new C(1)) } } }
lrytz/scala
test/files/run/t10334b/Test.scala
Scala
apache-2.0
445
package models case class Inspectee(uri: String)
ukwa/interject
interject-webapp/app/models/Inspectee.scala
Scala
apache-2.0
51
package com.telegram.api /** * Sticker * * This object represents a sticker. * * @param fileId Unique identifier for this file * @param width Sticker width * @param height Sticker height * @param thumb Optional. Sticker thumbnail in .webp or .jpg format * @param fileSize Optional. File size */ case class Sticker( fileId : String, width : Int, height : Int, thumb : Option[PhotoSize] = None, fileSize : Option[Int] = None )
rub0/tbot
src/main/scala/com/telegram/api/Sticker.scala
Scala
gpl-3.0
589
package edu.gemini.spModel.core import scalaz.{Order, Monoid, Show} /** * Offset in P. */ case class OffsetP(toAngle: Angle) extends AnyVal object OffsetP { val Zero = OffsetP(Angle.zero) implicit val IsoAngleP = new IsoAngle[OffsetP] { override def toDegrees(p: OffsetP): Double = Angle.signedDegrees(p.toAngle.toDegrees) override def fromDegrees(d: Double): OffsetP = OffsetP(Angle.fromDegrees(d)) } import AngleSyntax._ implicit val ShowP: Show[OffsetP] = Show.shows(p => f"${p.arcsecs}%4.03f arcsecs") implicit val MonoidP: Monoid[OffsetP] = new Monoid[OffsetP] { val zero = Zero def append(a: OffsetP, b: => OffsetP): OffsetP = IsoAngleP.add(a, b) } implicit val OrderP: Order[OffsetP] = Order.orderBy(_.degrees) }
arturog8m/ocs
bundle/edu.gemini.spModel.core/src/main/scala/edu/gemini/spModel/core/OffsetP.scala
Scala
bsd-3-clause
782
package streaming import java.io.File import org.apache.spark.streaming._ import org.apache.spark.{SparkConf, SparkContext} import scala.util.Random // // A utility for creating a sequence of files of integers in the file system // so that Spark can treat them like a stream. // class FileMaker { private val root = new File("c:" + File.separator + "temp" + File.separator + "streamFiles") makeExist(root) private val prep = new File(root.getAbsolutePath() + File.separator + "prep") makeExist(prep) val dest = new File(root.getAbsoluteFile() + File.separator + "dest") makeExist(dest) // fill a file with integers private def writeOutput(f: File) : Unit = { val p = new java.io.PrintWriter(f) try { for (i <- 1 to 100) { p.println(Random.nextInt) } } finally { p.close() } } private def makeExist(dir: File) : Unit = { dir.mkdir() } // make the sequence of files by creating them in one place and renaming // them into the directory where Spark is looking for them // (file-based streaming requires "atomic" creation of the files) def makeFiles() = { for (n <- 1 to 10) { val f = File.createTempFile("Spark_", ".txt", prep) writeOutput(f) val nf = new File(dest + File.separator + f.getName()) f renameTo nf nf.deleteOnExit() Thread.sleep(500) } } } object FileBasedStreaming { def main (args: Array[String]) { val conf = new SparkConf().setAppName("FileBasedStreaming").setMaster("local[4]") val sc = new SparkContext(conf) // streams will produce data every second val ssc = new StreamingContext(sc, Seconds(1)) val fm = new FileMaker() // create the stream val stream = ssc.textFileStream(fm.dest.getAbsolutePath()) // register for data stream.foreachRDD(r => { println(r.count()) }) // start streaming ssc.start() // start producing files fm.makeFiles() while (true) { Thread.sleep(100) } } }
IMCG/https-github.com-spirom-LearningSpark
src/main/scala/streaming/FileBased.scala
Scala
mit
2,030
package io.plasmap.model case class OsmProperties( osmId: OsmId, user: Option[OsmUser] = None, version: OsmVersion ) { override def toString = StringBuilder.newBuilder.++=(osmId.toString).++=(user.getOrElse("unknown").toString).++=(version.toString).toString() }
plasmap/geow
src/main/scala/io/plasmap/model/OsmProperties.scala
Scala
apache-2.0
370
package com.signalcollect.dcop.test import com.signalcollect.dcop.termination.ConvergenceHistory object ConvergenceHistoryTest extends App { val h : ConvergenceHistory[Int] = new ConvergenceHistory(3) h.push(5) h.push(12) h.push(3) h.push(45) println(h) println(h.isFull) h.push(10) println(h) }
gmazlami/dcop-maxsum
src/main/scala/com/signalcollect/dcop/test/ConvergenceHistoryTest.scala
Scala
apache-2.0
334
package scuff import java.util.concurrent.{ Callable, Executor, ScheduledExecutorService } import scala.concurrent._ import scala.concurrent.duration.{ DurationInt, FiniteDuration } import scala.util.Try import scala.util.control.NoStackTrace import java.util.concurrent.ScheduledFuture import java.util.concurrent.TimeoutException import scala.annotation.implicitNotFound package object concurrent { implicit def exeCtxToExecutor(ec: ExecutionContext): Executor = ec match { case exe: Executor => exe case _ => new Executor with ExecutionContext { def execute(runnable: Runnable): Unit = ec.execute(runnable) def reportFailure(th: Throwable): Unit = ec.reportFailure(th) } } implicit class ScuffExecutor(private val ec: { def execute(run: Runnable): Unit }) extends AnyVal { @inline private def execute(r: Runnable): Unit = ec match { case ec: ExecutionContext => ec execute r case exe: Executor => exe execute r case _ => ec execute r } def execute(thunk: => Unit): Unit = this execute new Runnable { def run = thunk } def submit(runnable: Runnable): Future[Unit] = { val promise = Promise[Unit]() this execute new Runnable { def run = promise complete Try(runnable.run) override def hashCode = runnable.hashCode } promise.future } def submit[T](callable: Callable[T]): Future[T] = { val promise = Promise[T]() this execute new Runnable { def run = promise complete Try(callable.call) override def hashCode = callable.hashCode } promise.future } def submit[T](thunk: => T): Future[T] = { val promise = Promise[T]() this execute new Runnable { def run = promise complete Try(thunk) } promise.future } } implicit class ScuffScheduledExecutor(private val scheduler: ScheduledExecutorService) extends AnyVal { def schedule[T](delay: FiniteDuration)(thunk: => T): ScheduledFuture[T] = { val c = new Callable[T] { def call = thunk } scheduler.schedule(c, delay.length, delay.unit) } def scheduleAtFixedRate(initDelay: FiniteDuration, period: FiniteDuration)(thunk: => Unit): ScheduledFuture[Unit] = { val r = new Runnable { def run = thunk } val initialDelay = period.unit.convert(initDelay.length, initDelay.unit) scheduler.scheduleAtFixedRate(r, initialDelay, period.length, period.unit).asInstanceOf[ScheduledFuture[Unit]] } def scheduleWithFixedDelay(initDelay: FiniteDuration, period: FiniteDuration)(thunk: => Unit): ScheduledFuture[Unit] = { val r = new Runnable { def run = thunk } val initialDelay = period.unit.convert(initDelay.length, initDelay.unit) scheduler.scheduleWithFixedDelay(r, initialDelay, period.length, period.unit).asInstanceOf[ScheduledFuture[Unit]] } } private val DefaultTimeout = 30.seconds implicit class ScuffScalaFuture[T](private val f: Future[T]) extends AnyVal { def await: T = await(DefaultTimeout) def await(maxWait: FiniteDuration, reportFailureAfterTimeout: Throwable => Unit = null): T = if (f.isCompleted) { f.value.get.get } else { try Await.result(f, maxWait) catch { case timeout: TimeoutException if reportFailureAfterTimeout != null => f.failed.foreach(reportFailureAfterTimeout)(Threads.PiggyBack) throw timeout } } def flatten[A](implicit ev: T <:< Future[A]): Future[A] = { assert(ev != null) // Remove warning f.asInstanceOf[Future[Future[A]]].flatMap(identity)(Threads.PiggyBack) } def withTimeout(timeout: FiniteDuration)(implicit scheduler: ScheduledExecutorService): Future[T] = { if (f.isCompleted) f else { val promise = Promise[T]() val cmd = new Runnable { def run(): Unit = { promise tryFailure new TimeoutException(s"Timed out after $timeout") with NoStackTrace } } val timeoutFuture = scheduler.schedule(cmd, timeout.length, timeout.unit) f.onComplete { case result => if (promise tryComplete result) { timeoutFuture.cancel(false) } }(Threads.PiggyBack) promise.future } } } implicit def typedFutureConv[T](implicit untyped: JavaFutureConverter) = untyped.asInstanceOf[java.util.concurrent.Future[T] => Future[T]] implicit class ScuffJavaFuture[T](private val f: java.util.concurrent.Future[T]) extends AnyVal { @implicitNotFound(msg = "No java.util.concurrent.Future => scala.concurrent.Future function found. Try an instance of JavaFutureConverter") def asScala(implicit conv: java.util.concurrent.Future[T] => Future[T]): Future[T] = conv(f) } implicit class ScuffLock(private val lock: java.util.concurrent.locks.Lock) extends AnyVal { def tryFor[T](dur: FiniteDuration)(thunk: => T): Option[T] = { if (lock.tryLock(dur.length, dur.unit)) try { Some(thunk) } finally { lock.unlock() } else None } def apply[T](thunk: => T): T = { lock.lockInterruptibly() try { thunk } finally { lock.unlock() } } def uninterruptibly[T](thunk: => T) = { lock.lock() try { thunk } finally { lock.unlock() } } } implicit class ScuffCondition(private val cond: java.util.concurrent.locks.Condition) extends AnyVal { def await(condition: => Boolean): Unit = while (!condition) cond.await() def signalIf(condition: Boolean): Unit = if (condition) cond.signal() def signalAllIf(condition: Boolean): Unit = if (condition) cond.signalAll() } implicit class ScuffConcurrentMap[K, V](private val cmap: collection.concurrent.Map[K, V]) extends AnyVal { /** Update if present; return updated value. */ def updateIfPresent(k: K)(update: V => V): Option[V] = { cmap.get(k) flatMap { oldvalue => val newvalue = update(oldvalue) if (cmap.replace(k, oldvalue, newvalue)) Some(newvalue) else updateIfPresent(k)(update) } } /** Update or insert; return upserted value. */ def upsert(k: K, putIfAbsent: V)(updateIfPresent: V => V): V = { cmap.putIfAbsent(k, putIfAbsent) match { case None => putIfAbsent case Some(present) => val update = updateIfPresent(present) if (cmap.replace(k, present, update)) { update } else { upsert(k, putIfAbsent)(updateIfPresent) } } } } private[this] val NoFuture = Future successful None private[this] val NilFuture = Future successful Nil private[this] val UnitFuture = Future successful (()) private[this] val TrueFuture = Future successful true private[this] val FalseFuture = Future successful false implicit final class ScuffFutureObject(private val f: Future.type) extends AnyVal { def none: Future[None.type] = NoFuture def nil: Future[Nil.type] = NilFuture def unit: Future[Unit] = UnitFuture def True: Future[Boolean] = TrueFuture def False: Future[Boolean] = FalseFuture } }
nilskp/scuff
src/main/scala/scuff/concurrent/package.scala
Scala
mit
7,275
package model.estate import model.Url import model.Id import model.Identifiable /** * Data object for storing all the estate related data */ case class Estate[+Domain] (override val id: Option[Id] = None, url: Url, address: Option[EstateAddress] = None, fee: Option[EstateFee] = None, basicInfo: Option[EstateBasicInfo] = None, statusInfo: EstateStatusInfo = new EstateStatusInfo(), images: List[EstateImage] = List() ) extends Identifiable { override def updateId(newId: Id) = this.copy( id = Some(newId)) }
tiborbotos/domino
domino-crawler/src/main/scala/model/estate/Estate.scala
Scala
lgpl-3.0
532
package vultura.factor /** An instance of this class represents a sum-product operation on some factors with. The only thing that may change * are the values of the involved factors. Using this class to represents a sp-operation allows for very fast * operation. * @see sumProduct * * @param remainingVars * @param domainSizes * @param factorVariables */ case class SumProductTask(remainingVars: Array[Int], domainSizes: Array[Int], factorVariables: Array[Array[Int]], ring: Ring[Double]){ val numFactors: Int = factorVariables.length val remainSize: Int = Factor.mapMultiply(remainingVars,domainSizes) //collect all variables val (cliqueOrdering: Array[Int], margVars: Array[Int]) = { val allVars: Array[Int] = factorVariables.flatten.distinct //reorder, so that all margVars are at beginning val mv: Array[Int] = allVars.filterNot(remainingVars.contains) (mv ++ remainingVars,mv) } val lookups: Array[Array[Int]] = factorVariables.map(Factor.buildLookup(cliqueOrdering,domainSizes,_))(collection.breakOut) val margSize: Int = Factor.mapMultiply(margVars,domainSizes) //domain sizes ordered by the appearance of variables in the clique ordering (for efficient access when counting) val cliqueDomains: Array[Int] = cliqueOrdering.map(domainSizes) val counterSize: Int = cliqueOrdering.length /** Holds the temporary values that get summed, get overwritten before being read in sumProduct. */ val margTemp: Array[Double] = new Array[Double](margSize) /** Holds the temporary values that get multiplied. Get written to before being read in sumProduct. */ val prodTemp: Array[Double] = new Array[Double](numFactors) val counter: Array[Int] = new Array[Int](counterSize) val factorPointers: Array[Int] = new Array[Int](numFactors) final def sumProduct(factorValues: IndexedSeq[Array[Double]], result: Array[Double]) { //TODO maybe the clearing is not needed java.util.Arrays.fill(counter,0) java.util.Arrays.fill(factorPointers,0) var remainIdx = 0 var cnt = 0 while(remainIdx < remainSize){ var margIdx = 0 while(margIdx < margSize){ //increment counter val overflow = increment(cnt) cnt += 1 //calculate the factor contributions //NOTE: we collect the factor values for the counter state before its update in this loop! var fi = 0 while(fi < numFactors){ prodTemp(fi) = factorValues(fi)(factorPointers(fi)) factorPointers(fi) += lookups(fi)(overflow) fi += 1 } //multiply factor values margTemp(margIdx) = ring.prodA(prodTemp) margIdx += 1 } //now sum over marginalized variables for one assignment to the remaining variables result(remainIdx) = ring.sumA(margTemp) remainIdx += 1 } } final def sumProductNormalize(factorValues: IndexedSeq[Array[Double]], result: Array[Double]) { //TODO maybe the clearing is not needed java.util.Arrays.fill(counter,0) java.util.Arrays.fill(factorPointers,0) var remainIdx = 0 var cnt = 0 while(remainIdx < remainSize){ var margIdx = 0 while(margIdx < margSize){ //increment counter val overflow = increment(cnt) cnt += 1 //calculate the factor contributions //NOTE: we collect the factor values for the counter state before its update in this loop! var fi = 0 while(fi < numFactors){ prodTemp(fi) = factorValues(fi)(factorPointers(fi)) factorPointers(fi) += lookups(fi)(overflow) fi += 1 } //multiply factor values margTemp(margIdx) = ring.prodA(prodTemp) margIdx += 1 } //now sum over marginalized variables for one assignment to the remaining variables result(remainIdx) = ring.sumA(margTemp) remainIdx += 1 } ring.normalizeInplace(result) } /** Increments the counter. * Mutates the `counter` member. * @param count The current step number of the counter. * @return The counter figure where the overflow occurred. */ @inline private final def increment(count: Int): Int = { var overflow = 0 while(overflow < counterSize){ counter(overflow) += 1 if(counter(overflow) == cliqueDomains(overflow)){ counter(overflow) = 0 overflow += 1 } else { return overflow } } overflow } }
ziggystar/vultura-factor
src/main/scala/vultura/factor/SumProductTask.scala
Scala
mit
4,523
package com.mesosphere.cosmos.http case class Authorization(token: String) { val headerValue: String = token }
movicha/cosmos
cosmos-server/src/main/scala/com/mesosphere/cosmos/http/Authorization.scala
Scala
apache-2.0
114
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.tools import java.io.PrintStream import java.nio.charset.StandardCharsets import java.util.concurrent.CountDownLatch import java.util.{Locale, Properties, Random} import com.typesafe.scalalogging.LazyLogging import joptsimple._ import kafka.api.OffsetRequest import kafka.common.{MessageFormatter, StreamEndException} import kafka.consumer._ import kafka.message._ import kafka.metrics.KafkaMetricsReporter import kafka.utils._ import kafka.utils.Implicits._ import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord, KafkaConsumer} import org.apache.kafka.common.errors.{AuthenticationException, WakeupException} import org.apache.kafka.common.record.TimestampType import org.apache.kafka.common.serialization.{ByteArrayDeserializer, Deserializer} import org.apache.kafka.common.utils.Utils import scala.collection.JavaConversions import scala.collection.JavaConverters._ /** * Consumer that dumps messages to standard out. */ object ConsoleConsumer extends Logging { var messageCount = 0 private val shutdownLatch = new CountDownLatch(1) def main(args: Array[String]) { val conf = new ConsumerConfig(args) try { run(conf) } catch { case e: AuthenticationException => error("Authentication failed: terminating consumer process", e) Exit.exit(1) case e: Throwable => error("Unknown error when running consumer: ", e) Exit.exit(1) } } def run(conf: ConsumerConfig) { val consumer = if (conf.useOldConsumer) { checkZk(conf) val props = getOldConsumerProps(conf) checkAndMaybeDeleteOldPath(conf, props) new OldConsumer(conf.filterSpec, props) } else { val timeoutMs = if (conf.timeoutMs >= 0) conf.timeoutMs else Long.MaxValue val consumer = new KafkaConsumer(getNewConsumerProps(conf), new ByteArrayDeserializer, new ByteArrayDeserializer) if (conf.partitionArg.isDefined) new NewShinyConsumer(Option(conf.topicArg), conf.partitionArg, Option(conf.offsetArg), None, consumer, timeoutMs) else new NewShinyConsumer(Option(conf.topicArg), None, None, Option(conf.whitelistArg), consumer, timeoutMs) } addShutdownHook(consumer, conf) try { process(conf.maxMessages, conf.formatter, consumer, System.out, conf.skipMessageOnError) } finally { consumer.cleanup() conf.formatter.close() reportRecordCount() // if we generated a random group id (as none specified explicitly) then avoid polluting zookeeper with persistent group data, this is a hack if (conf.useOldConsumer && !conf.groupIdPassed) ZkUtils.maybeDeletePath(conf.options.valueOf(conf.zkConnectOpt), "/consumers/" + conf.consumerProps.get("group.id")) shutdownLatch.countDown() } } def checkZk(config: ConsumerConfig) { if (!checkZkPathExists(config.options.valueOf(config.zkConnectOpt), "/brokers/ids")) { System.err.println("No brokers found in ZK.") Exit.exit(1) } if (!config.options.has(config.deleteConsumerOffsetsOpt) && config.options.has(config.resetBeginningOpt) && checkZkPathExists(config.options.valueOf(config.zkConnectOpt), "/consumers/" + config.consumerProps.getProperty("group.id") + "/offsets")) { System.err.println("Found previous offset information for this group " + config.consumerProps.getProperty("group.id") + ". Please use --delete-consumer-offsets to delete previous offsets metadata") Exit.exit(1) } } def addShutdownHook(consumer: BaseConsumer, conf: ConsumerConfig) { Runtime.getRuntime.addShutdownHook(new Thread() { override def run() { consumer.stop() shutdownLatch.await() if (conf.enableSystestEventsLogging) { System.out.println("shutdown_complete") } } }) } def process(maxMessages: Integer, formatter: MessageFormatter, consumer: BaseConsumer, output: PrintStream, skipMessageOnError: Boolean) { while (messageCount < maxMessages || maxMessages == -1) { val msg: BaseConsumerRecord = try { consumer.receive() } catch { case _: StreamEndException => trace("Caught StreamEndException because consumer is shutdown, ignore and terminate.") // Consumer is already closed return case _: WakeupException => trace("Caught WakeupException because consumer is shutdown, ignore and terminate.") // Consumer will be closed return case e: Throwable => error("Error processing message, terminating consumer process: ", e) // Consumer will be closed return } messageCount += 1 try { formatter.writeTo(new ConsumerRecord(msg.topic, msg.partition, msg.offset, msg.timestamp, msg.timestampType, 0, 0, 0, msg.key, msg.value, msg.headers), output) } catch { case e: Throwable => if (skipMessageOnError) { error("Error processing message, skipping this message: ", e) } else { // Consumer will be closed throw e } } if (checkErr(output, formatter)) { // Consumer will be closed return } } } def reportRecordCount() { System.err.println(s"Processed a total of $messageCount messages") } def checkErr(output: PrintStream, formatter: MessageFormatter): Boolean = { val gotError = output.checkError() if (gotError) { // This means no one is listening to our output stream any more, time to shutdown System.err.println("Unable to write to standard out, closing consumer.") } gotError } def getOldConsumerProps(config: ConsumerConfig): Properties = { val props = new Properties props ++= config.consumerProps props ++= config.extraConsumerProps setAutoOffsetResetValue(config, props) props.put("zookeeper.connect", config.zkConnectionStr) if (config.timeoutMs >= 0) props.put("consumer.timeout.ms", config.timeoutMs.toString) props } def checkAndMaybeDeleteOldPath(config: ConsumerConfig, props: Properties) = { val consumerGroupBasePath = "/consumers/" + props.getProperty("group.id") if (config.options.has(config.deleteConsumerOffsetsOpt)) { ZkUtils.maybeDeletePath(config.options.valueOf(config.zkConnectOpt), consumerGroupBasePath) } else { val resetToBeginning = OffsetRequest.SmallestTimeString == props.getProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG) if (resetToBeginning && checkZkPathExists(config.options.valueOf(config.zkConnectOpt), consumerGroupBasePath + "/offsets")) { System.err.println("Found previous offset information for this group " + props.getProperty("group.id") + ". Please use --delete-consumer-offsets to delete previous offsets metadata") Exit.exit(1) } } } private[tools] def getNewConsumerProps(config: ConsumerConfig): Properties = { val props = new Properties props ++= config.consumerProps props ++= config.extraConsumerProps setAutoOffsetResetValue(config, props) props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, config.bootstrapServer) props.put(ConsumerConfig.ISOLATION_LEVEL_CONFIG, config.isolationLevel) props } /** * Used by both getNewConsumerProps and getOldConsumerProps to retrieve the correct value for the * consumer parameter 'auto.offset.reset'. * Order of priority is: * 1. Explicitly set parameter via --consumer.property command line parameter * 2. Explicit --from-beginning given -> 'earliest' * 3. Default value of 'latest' * * In case both --from-beginning and an explicit value are specified an error is thrown if these * are conflicting. */ def setAutoOffsetResetValue(config: ConsumerConfig, props: Properties) { val (earliestConfigValue, latestConfigValue) = if (config.useOldConsumer) (OffsetRequest.SmallestTimeString, OffsetRequest.LargestTimeString) else ("earliest", "latest") if (props.containsKey(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG)) { // auto.offset.reset parameter was specified on the command line val autoResetOption = props.getProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG) if (config.options.has(config.resetBeginningOpt) && earliestConfigValue != autoResetOption) { // conflicting options - latest und earliest, throw an error System.err.println(s"Can't simultaneously specify --from-beginning and 'auto.offset.reset=$autoResetOption', " + "please remove one option") Exit.exit(1) } // nothing to do, checking for valid parameter values happens later and the specified // value was already copied during .putall operation } else { // no explicit value for auto.offset.reset was specified // if --from-beginning was specified use earliest, otherwise default to latest val autoResetOption = if (config.options.has(config.resetBeginningOpt)) earliestConfigValue else latestConfigValue props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoResetOption) } } class ConsumerConfig(args: Array[String]) { val parser = new OptionParser(false) val topicIdOpt = parser.accepts("topic", "The topic id to consume on.") .withRequiredArg .describedAs("topic") .ofType(classOf[String]) val whitelistOpt = parser.accepts("whitelist", "Whitelist of topics to include for consumption.") .withRequiredArg .describedAs("whitelist") .ofType(classOf[String]) val blacklistOpt = parser.accepts("blacklist", "Blacklist of topics to exclude from consumption.") .withRequiredArg .describedAs("blacklist") .ofType(classOf[String]) val partitionIdOpt = parser.accepts("partition", "The partition to consume from. Consumption " + "starts from the end of the partition unless '--offset' is specified.") .withRequiredArg .describedAs("partition") .ofType(classOf[java.lang.Integer]) val offsetOpt = parser.accepts("offset", "The offset id to consume from (a non-negative number), or 'earliest' which means from beginning, or 'latest' which means from end") .withRequiredArg .describedAs("consume offset") .ofType(classOf[String]) .defaultsTo("latest") val zkConnectOpt = parser.accepts("zookeeper", "REQUIRED (only when using old consumer): The connection string for the zookeeper connection in the form host:port. " + "Multiple URLS can be given to allow fail-over.") .withRequiredArg .describedAs("urls") .ofType(classOf[String]) val consumerPropertyOpt = parser.accepts("consumer-property", "A mechanism to pass user-defined properties in the form key=value to the consumer.") .withRequiredArg .describedAs("consumer_prop") .ofType(classOf[String]) val consumerConfigOpt = parser.accepts("consumer.config", s"Consumer config properties file. Note that ${consumerPropertyOpt} takes precedence over this config.") .withRequiredArg .describedAs("config file") .ofType(classOf[String]) val messageFormatterOpt = parser.accepts("formatter", "The name of a class to use for formatting kafka messages for display.") .withRequiredArg .describedAs("class") .ofType(classOf[String]) .defaultsTo(classOf[DefaultMessageFormatter].getName) val messageFormatterArgOpt = parser.accepts("property", "The properties to initialize the message formatter. Default properties include:\\n" + "\\tprint.timestamp=true|false\\n" + "\\tprint.key=true|false\\n" + "\\tprint.value=true|false\\n" + "\\tkey.separator=<key.separator>\\n" + "\\tline.separator=<line.separator>\\n" + "\\tkey.deserializer=<key.deserializer>\\n" + "\\tvalue.deserializer=<value.deserializer>\\n" + "\\nUsers can also pass in customized properties for their formatter; more specifically, users " + "can pass in properties keyed with \\'key.deserializer.\\' and \\'value.deserializer.\\' prefixes to configure their deserializers.") .withRequiredArg .describedAs("prop") .ofType(classOf[String]) val deleteConsumerOffsetsOpt = parser.accepts("delete-consumer-offsets", "If specified, the consumer path in zookeeper is deleted when starting up") val resetBeginningOpt = parser.accepts("from-beginning", "If the consumer does not already have an established offset to consume from, " + "start with the earliest message present in the log rather than the latest message.") val maxMessagesOpt = parser.accepts("max-messages", "The maximum number of messages to consume before exiting. If not set, consumption is continual.") .withRequiredArg .describedAs("num_messages") .ofType(classOf[java.lang.Integer]) val timeoutMsOpt = parser.accepts("timeout-ms", "If specified, exit if no message is available for consumption for the specified interval.") .withRequiredArg .describedAs("timeout_ms") .ofType(classOf[java.lang.Integer]) val skipMessageOnErrorOpt = parser.accepts("skip-message-on-error", "If there is an error when processing a message, " + "skip it instead of halt.") val csvMetricsReporterEnabledOpt = parser.accepts("csv-reporter-enabled", "If set, the CSV metrics reporter will be enabled") val metricsDirectoryOpt = parser.accepts("metrics-dir", "If csv-reporter-enable is set, and this parameter is" + "set, the csv metrics will be output here") .withRequiredArg .describedAs("metrics directory") .ofType(classOf[java.lang.String]) val newConsumerOpt = parser.accepts("new-consumer", "Use the new consumer implementation. This is the default, so " + "this option is deprecated and will be removed in a future release.") val bootstrapServerOpt = parser.accepts("bootstrap-server", "REQUIRED (unless old consumer is used): The server to connect to.") .withRequiredArg .describedAs("server to connect to") .ofType(classOf[String]) val keyDeserializerOpt = parser.accepts("key-deserializer") .withRequiredArg .describedAs("deserializer for key") .ofType(classOf[String]) val valueDeserializerOpt = parser.accepts("value-deserializer") .withRequiredArg .describedAs("deserializer for values") .ofType(classOf[String]) val enableSystestEventsLoggingOpt = parser.accepts("enable-systest-events", "Log lifecycle events of the consumer in addition to logging consumed " + "messages. (This is specific for system tests.)") val isolationLevelOpt = parser.accepts("isolation-level", "Set to read_committed in order to filter out transactional messages which are not committed. Set to read_uncommitted" + "to read all messages.") .withRequiredArg() .ofType(classOf[String]) .defaultsTo("read_uncommitted") val groupIdOpt = parser.accepts("group", "The consumer group id of the consumer.") .withRequiredArg .describedAs("consumer group id") .ofType(classOf[String]) if (args.length == 0) CommandLineUtils.printUsageAndDie(parser, "The console consumer is a tool that reads data from Kafka and outputs it to standard output.") var groupIdPassed = true val options: OptionSet = tryParse(parser, args) val useOldConsumer = options.has(zkConnectOpt) val enableSystestEventsLogging = options.has(enableSystestEventsLoggingOpt) // If using old consumer, exactly one of whitelist/blacklist/topic is required. // If using new consumer, topic must be specified. var topicArg: String = null var whitelistArg: String = null var filterSpec: TopicFilter = null val extraConsumerProps = CommandLineUtils.parseKeyValueArgs(options.valuesOf(consumerPropertyOpt).asScala) val consumerProps = if (options.has(consumerConfigOpt)) Utils.loadProps(options.valueOf(consumerConfigOpt)) else new Properties() val zkConnectionStr = options.valueOf(zkConnectOpt) val fromBeginning = options.has(resetBeginningOpt) val partitionArg = if (options.has(partitionIdOpt)) Some(options.valueOf(partitionIdOpt).intValue) else None val skipMessageOnError = options.has(skipMessageOnErrorOpt) val messageFormatterClass = Class.forName(options.valueOf(messageFormatterOpt)) val formatterArgs = CommandLineUtils.parseKeyValueArgs(options.valuesOf(messageFormatterArgOpt).asScala) val maxMessages = if (options.has(maxMessagesOpt)) options.valueOf(maxMessagesOpt).intValue else -1 val timeoutMs = if (options.has(timeoutMsOpt)) options.valueOf(timeoutMsOpt).intValue else -1 val bootstrapServer = options.valueOf(bootstrapServerOpt) val keyDeserializer = options.valueOf(keyDeserializerOpt) val valueDeserializer = options.valueOf(valueDeserializerOpt) val isolationLevel = options.valueOf(isolationLevelOpt).toString val formatter: MessageFormatter = messageFormatterClass.newInstance().asInstanceOf[MessageFormatter] if (keyDeserializer != null && !keyDeserializer.isEmpty) { formatterArgs.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, keyDeserializer) } if (valueDeserializer != null && !valueDeserializer.isEmpty) { formatterArgs.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, valueDeserializer) } formatter.init(formatterArgs) if (useOldConsumer) { if (options.has(bootstrapServerOpt)) CommandLineUtils.printUsageAndDie(parser, s"Option $bootstrapServerOpt is not valid with $zkConnectOpt.") else if (options.has(newConsumerOpt)) CommandLineUtils.printUsageAndDie(parser, s"Option $newConsumerOpt is not valid with $zkConnectOpt.") val topicOrFilterOpt = List(topicIdOpt, whitelistOpt, blacklistOpt).filter(options.has) if (topicOrFilterOpt.size != 1) CommandLineUtils.printUsageAndDie(parser, "Exactly one of whitelist/blacklist/topic is required.") topicArg = options.valueOf(topicOrFilterOpt.head) filterSpec = if (options.has(blacklistOpt)) new Blacklist(topicArg) else new Whitelist(topicArg) Console.err.println("Using the ConsoleConsumer with old consumer is deprecated and will be removed " + s"in a future major release. Consider using the new consumer by passing $bootstrapServerOpt instead of ${zkConnectOpt}.") } else { val topicOrFilterOpt = List(topicIdOpt, whitelistOpt).filter(options.has) if (topicOrFilterOpt.size != 1) CommandLineUtils.printUsageAndDie(parser, "Exactly one of whitelist/topic is required.") topicArg = options.valueOf(topicIdOpt) whitelistArg = options.valueOf(whitelistOpt) } if (useOldConsumer && (partitionArg.isDefined || options.has(offsetOpt))) CommandLineUtils.printUsageAndDie(parser, "Partition-offset based consumption is supported in the new consumer only.") if (partitionArg.isDefined) { if (!options.has(topicIdOpt)) CommandLineUtils.printUsageAndDie(parser, "The topic is required when partition is specified.") if (fromBeginning && options.has(offsetOpt)) CommandLineUtils.printUsageAndDie(parser, "Options from-beginning and offset cannot be specified together.") } else if (options.has(offsetOpt)) CommandLineUtils.printUsageAndDie(parser, "The partition is required when offset is specified.") def invalidOffset(offset: String): Nothing = CommandLineUtils.printUsageAndDie(parser, s"The provided offset value '$offset' is incorrect. Valid values are " + "'earliest', 'latest', or a non-negative long.") val offsetArg = if (options.has(offsetOpt)) { options.valueOf(offsetOpt).toLowerCase(Locale.ROOT) match { case "earliest" => OffsetRequest.EarliestTime case "latest" => OffsetRequest.LatestTime case offsetString => val offset = try offsetString.toLong catch { case _: NumberFormatException => invalidOffset(offsetString) } if (offset < 0) invalidOffset(offsetString) offset } } else if (fromBeginning) OffsetRequest.EarliestTime else OffsetRequest.LatestTime if (!useOldConsumer) { CommandLineUtils.checkRequiredArgs(parser, options, bootstrapServerOpt) if (options.has(newConsumerOpt)) { Console.err.println("The --new-consumer option is deprecated and will be removed in a future major release. " + "The new consumer is used by default if the --bootstrap-server option is provided.") } } if (options.has(csvMetricsReporterEnabledOpt)) { val csvReporterProps = new Properties() csvReporterProps.put("kafka.metrics.polling.interval.secs", "5") csvReporterProps.put("kafka.metrics.reporters", "kafka.metrics.KafkaCSVMetricsReporter") if (options.has(metricsDirectoryOpt)) csvReporterProps.put("kafka.csv.metrics.dir", options.valueOf(metricsDirectoryOpt)) else csvReporterProps.put("kafka.csv.metrics.dir", "kafka_metrics") csvReporterProps.put("kafka.csv.metrics.reporter.enabled", "true") val verifiableProps = new VerifiableProperties(csvReporterProps) KafkaMetricsReporter.startReporters(verifiableProps) } // if the group id is provided in more than place (through different means) all values must be the same val groupIdsProvided = Set( Option(options.valueOf(groupIdOpt)), // via --group Option(consumerProps.get(ConsumerConfig.GROUP_ID_CONFIG)), // via --consumer-property Option(extraConsumerProps.get(ConsumerConfig.GROUP_ID_CONFIG)) // via --cosumer.config ).flatten if (groupIdsProvided.size > 1) { CommandLineUtils.printUsageAndDie(parser, "The group ids provided in different places (directly using '--group', " + "via '--consumer-property', or via '--consumer.config') do not match. " + s"Detected group ids: ${groupIdsProvided.mkString("'", "', '", "'")}") } groupIdsProvided.headOption match { case Some(group) => consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, group) case None => consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, s"console-consumer-${new Random().nextInt(100000)}") groupIdPassed = false } def tryParse(parser: OptionParser, args: Array[String]): OptionSet = { try parser.parse(args: _*) catch { case e: OptionException => CommandLineUtils.printUsageAndDie(parser, e.getMessage) } } } def checkZkPathExists(zkUrl: String, path: String): Boolean = { try { val zk = ZkUtils.createZkClient(zkUrl, 30 * 1000, 30 * 1000) zk.exists(path) } catch { case _: Throwable => false } } } class DefaultMessageFormatter extends MessageFormatter { var printKey = false var printValue = true var printTimestamp = false var keySeparator = "\\t".getBytes(StandardCharsets.UTF_8) var lineSeparator = "\\n".getBytes(StandardCharsets.UTF_8) var keyDeserializer: Option[Deserializer[_]] = None var valueDeserializer: Option[Deserializer[_]] = None override def init(props: Properties) { if (props.containsKey("print.timestamp")) printTimestamp = props.getProperty("print.timestamp").trim.equalsIgnoreCase("true") if (props.containsKey("print.key")) printKey = props.getProperty("print.key").trim.equalsIgnoreCase("true") if (props.containsKey("print.value")) printValue = props.getProperty("print.value").trim.equalsIgnoreCase("true") if (props.containsKey("key.separator")) keySeparator = props.getProperty("key.separator").getBytes(StandardCharsets.UTF_8) if (props.containsKey("line.separator")) lineSeparator = props.getProperty("line.separator").getBytes(StandardCharsets.UTF_8) // Note that `toString` will be called on the instance returned by `Deserializer.deserialize` if (props.containsKey("key.deserializer")) { keyDeserializer = Some(Class.forName(props.getProperty("key.deserializer")).newInstance().asInstanceOf[Deserializer[_]]) keyDeserializer.get.configure(JavaConversions.propertiesAsScalaMap(propertiesWithKeyPrefixStripped("key.deserializer.", props)).asJava, true) } // Note that `toString` will be called on the instance returned by `Deserializer.deserialize` if (props.containsKey("value.deserializer")) { valueDeserializer = Some(Class.forName(props.getProperty("value.deserializer")).newInstance().asInstanceOf[Deserializer[_]]) valueDeserializer.get.configure(JavaConversions.propertiesAsScalaMap(propertiesWithKeyPrefixStripped("value.deserializer.", props)).asJava, false) } } private def propertiesWithKeyPrefixStripped(prefix: String, props: Properties): Properties = { val newProps = new Properties() import scala.collection.JavaConversions._ for ((key, value) <- props if key.startsWith(prefix) && key.length > prefix.length) newProps.put(key.substring(prefix.length), value) newProps } def writeTo(consumerRecord: ConsumerRecord[Array[Byte], Array[Byte]], output: PrintStream) { def writeSeparator(columnSeparator: Boolean): Unit = { if (columnSeparator) output.write(keySeparator) else output.write(lineSeparator) } def write(deserializer: Option[Deserializer[_]], sourceBytes: Array[Byte]) { val nonNullBytes = Option(sourceBytes).getOrElse("null".getBytes(StandardCharsets.UTF_8)) val convertedBytes = deserializer.map(_.deserialize(null, nonNullBytes).toString. getBytes(StandardCharsets.UTF_8)).getOrElse(nonNullBytes) output.write(convertedBytes) } import consumerRecord._ if (printTimestamp) { if (timestampType != TimestampType.NO_TIMESTAMP_TYPE) output.write(s"$timestampType:$timestamp".getBytes(StandardCharsets.UTF_8)) else output.write(s"NO_TIMESTAMP".getBytes(StandardCharsets.UTF_8)) writeSeparator(printKey || printValue) } if (printKey) { write(keyDeserializer, key) writeSeparator(printValue) } if (printValue) { write(valueDeserializer, value) output.write(lineSeparator) } } } class LoggingMessageFormatter extends MessageFormatter with LazyLogging { private val defaultWriter: DefaultMessageFormatter = new DefaultMessageFormatter override def init(props: Properties): Unit = defaultWriter.init(props) def writeTo(consumerRecord: ConsumerRecord[Array[Byte], Array[Byte]], output: PrintStream): Unit = { import consumerRecord._ defaultWriter.writeTo(consumerRecord, output) logger.info({if (timestampType != TimestampType.NO_TIMESTAMP_TYPE) s"$timestampType:$timestamp, " else ""} + s"key:${if (key == null) "null" else new String(key, StandardCharsets.UTF_8)}, " + s"value:${if (value == null) "null" else new String(value, StandardCharsets.UTF_8)}") } } class NoOpMessageFormatter extends MessageFormatter { override def init(props: Properties) {} def writeTo(consumerRecord: ConsumerRecord[Array[Byte], Array[Byte]], output: PrintStream){} } class ChecksumMessageFormatter extends MessageFormatter { private var topicStr: String = _ override def init(props: Properties) { topicStr = props.getProperty("topic") if (topicStr != null) topicStr = topicStr + ":" else topicStr = "" } def writeTo(consumerRecord: ConsumerRecord[Array[Byte], Array[Byte]], output: PrintStream) { import consumerRecord._ val chksum = if (timestampType != TimestampType.NO_TIMESTAMP_TYPE) new Message(value, key, timestamp, timestampType, NoCompressionCodec, 0, -1, Message.MagicValue_V1).checksum else new Message(value, key, Message.NoTimestamp, Message.MagicValue_V0).checksum output.println(topicStr + "checksum:" + chksum) } }
sebadiaz/kafka
core/src/main/scala/kafka/tools/ConsoleConsumer.scala
Scala
apache-2.0
29,081
/* * SPDX-License-Identifier: Apache-2.0 * * Copyright 2015-2021 Andre White. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.truthencode.ddo.model.effect.features import io.truthencode.ddo.api.model.effect.DetailedEffect import io.truthencode.ddo.enhancement.BonusType import io.truthencode.ddo.model.effect import io.truthencode.ddo.model.effect._ import io.truthencode.ddo.model.stats.BasicStat import io.truthencode.ddo.support.naming.UsingSearchPrefix /** * Affects your Hit Points by the specific Percent */ trait HitPointPercentFeature extends Features { self: SourceInfo => protected val hitPointBonusType: BonusType protected val hitPointBonusPercent: Int protected[this] val triggerOn: Seq[TriggerEvent] protected[this] val triggerOff: Seq[TriggerEvent] protected[this] val hitPointPctCategories: Seq[effect.EffectCategories.Value] private val src = this private[this] val hitPointPercent = new PartModifier[Int, BasicStat] with UsingSearchPrefix { /** * Used when qualifying a search with a prefix. Examples include finding "HalfElf" from * qualified "Race:HalfElf" * * @return * A default or applied prefix */ override def searchPrefixSource: String = partToModify.searchPrefixSource private val eb = EffectParameterBuilder() .toggleOffValue(triggerOff: _*) .toggleOnValue(triggerOn: _*) .addBonusType(hitPointBonusType) .build override protected[this] def effectParameters: Seq[ParameterModifier[_]] = eb.modifiers override protected[this] lazy val partToModify: BasicStat = BasicStat.HitPoints /** * The General Description should be just that. This should not include specific values unless * all instances will share that value. I.e. a Dodge Effect might state it increases your * miss-chance, but omit any value such as 20%. Those values will be displayed in the * effectText of a specific implementation such as the Dodge Feat or Uncanny Dodge */ override val generalDescription: String = "Increases your Total Hit Points by certain percentage" /** * a list of Categories useful for menu / UI placement and also for searching / querying for * Miss-Chance or other desired effects. * * This list might be constrained or filtered by an Enumeration or CSV file. The goal is to * enable quick and advanced searching for specific categories from general (Miss-Chance) to * specific (evasion). In addition, it may be useful for deep searching such as increasing * Spot, which should suggest not only +Spot items, but +Wisdom or eventually include a feat * or enhancement that allows the use of some other value as your spot score. */ override def categories: Seq[String] = hitPointPctCategories.map(_.toString) override lazy val effectDetail: DetailedEffect = DetailedEffect( id = "HitChance", description = "Increases your Hit points", triggersOn = triggerOn.map(_.entryName), triggersOff = triggerOff.map(_.entryName), bonusType = hitPointBonusType.entryName ) override val source: SourceInfo = src override lazy val value: Int = hitPointBonusPercent override lazy val effectText: Option[String] = Some(s"Hit Points by $value%") } abstract override def features: Seq[Feature[_]] = { assert(hitPointPercent.value == hitPointBonusPercent) super.features :+ hitPointPercent } }
adarro/ddo-calc
subprojects/common/ddo-core/src/main/scala/io/truthencode/ddo/model/effect/features/HitPointPercentFeature.scala
Scala
apache-2.0
4,081
/** * Copyright 2014 www.alaraph.com * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.alaraph.sudoku abstract class Sudoku(val board: Vector[Vector[Char]], val square: Int, val alphabet: Set[Char]) { val size = square * square val ncells = size * size require(board.size == size && board.forall(row => row.size == size), "The board must have the same number of rows and columns: " + size) require(board.flatMap(row => row.toSet).toSet.subsetOf((alphabet + '-')), "The symbols in the board must be included in this set: %s".format(alphabet + '-')) override def toString: String = { val str = for { r <- 0 until size c <- 0 until size sep = if ((c + 1) % size == 0) "\\n" + (if ((r + 1) % square == 0) "\\n" else "") else if ((c + 1) % square == 0) " " else "" } yield "%c%s".format(board(r)(c), sep) str.mkString("") } def canEqual(other: Any): Boolean = other.isInstanceOf[Sudoku] override def equals(other: Any): Boolean = other match { case that: Sudoku => (that canEqual this) && (0 until size).forall(x => this.board(x) == that.board(x)) case _ => false } override def hashCode: Int = board.hashCode } private class Sudoku9(board: Vector[Vector[Char]]) extends Sudoku(board, 3, Sudoku.alphabet(9)) private class Sudoku4(board: Vector[Vector[Char]]) extends Sudoku(board, 2, Sudoku.alphabet(4)) private class Sudoku16(board: Vector[Vector[Char]]) extends Sudoku(board, 4, Sudoku.alphabet(16)) object Sudoku { def build(board: Vector[Vector[Char]], size: Int = 9): Sudoku = size match { case 9 => new Sudoku9(board) case 4 => new Sudoku4(board) case 16 => new Sudoku16(board) case _ => throw new IllegalArgumentException(sizeErrMsg) } def build(board: String): Sudoku = { val ncells = board.size val sizes = alphabet.keySet.map(x => (x * x, x)).toMap val size = sizes.get(ncells) size match { case Some(s) => val vecBoard = (for (row <- board.sliding(s, s)) yield row.toVector).toVector build(vecBoard, s) case None => throw new IllegalArgumentException(sizeErrMsg) } } val alphabet = Map( (9 -> ('1' to '9').toSet), (4 -> ('1' to '4').toSet), (16 -> (('1' to '9') ++ ('A' to 'G')).toSet)).withDefaultValue(Set.empty) private val sizeErrMsg = "Sudoku can only have size %s".format(alphabet.keys.mkString(",")) }
maumorelli/alaraph
sudoku/src/main/scala/com/alaraph/sudoku/Sudoku.scala
Scala
apache-2.0
3,105
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.dllib.utils.tf.loaders import java.nio.ByteOrder import com.intel.analytics.bigdl.Module import com.intel.analytics.bigdl.dllib.nn.ops.{Rank => RankOperation} import com.intel.analytics.bigdl.dllib.tensor.Tensor import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric import com.intel.analytics.bigdl.dllib.utils.tf.Context import org.tensorflow.framework.NodeDef import scala.reflect.ClassTag class Rank extends TensorflowOpsLoader { import Utils._ override def build[T: ClassTag](nodeDef: NodeDef, byteOrder: ByteOrder, context: Context[T])(implicit ev: TensorNumeric[T]): Module[T] = { new RankOperation[T]() } }
intel-analytics/BigDL
scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/utils/tf/loaders/Rank.scala
Scala
apache-2.0
1,295
package org.scaladebugger.tool.backend.functions import com.sun.jdi.ThreadReference import org.scaladebugger.api.lowlevel.wrappers.Implicits._ import org.scaladebugger.tool.backend.StateManager import scala.collection.JavaConverters._ import scala.util.Try /** * Represents a collection of functions for managing threads. * * @param stateManager The manager whose state to share among functions * @param writeLine Used to write output to the terminal */ class ThreadGroupFunctions( private val stateManager: StateManager, private val writeLine: String => Unit ) { /** Entrypoint for listing thread groups for connected JVMs. */ def threadsGroups(m: Map[String, Any]) = { val jvms = stateManager.state.scalaVirtualMachines if (jvms.isEmpty) writeLine("No VM connected!") jvms.foreach(s => { val threadGroups = s.threads.map(_.threadGroup) .groupBy(_.name).map(_._2.head) writeLine(s"<= JVM ${s.uniqueId} =>") threadGroups.foreach(tg => { val rName = tg.referenceType.name val id = "0x" + tg.uniqueIdHexString val name = tg.name writeLine(s"($rName)$id $name") }) }) } /** Entrypoint for setting the default thread group. */ def threadGroup(m: Map[String, Any]) = { val jvms = stateManager.state.scalaVirtualMachines if (jvms.isEmpty) writeLine("No VM connected!") val threadGroupName = m.get("threadGroup").map(_.toString) threadGroupName match { // If name provided, lookup and set as active thread group case Some(name) => val threadGroup = jvms.view.flatMap(_.threads).map(_.threadGroup) .collectFirst { case tg if tg.name == name => tg } if (threadGroup.isEmpty) writeLine(s"No thread group found named '$name'!") threadGroup.foreach(stateManager.updateActiveThreadGroup) // No name provided, so clear existing active thread group case None => stateManager.clearActiveThreadGroup() } } }
ensime/scala-debugger
scala-debugger-tool/src/main/scala/org/scaladebugger/tool/backend/functions/ThreadGroupFunctions.scala
Scala
apache-2.0
1,991
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.samza.coordinator.server import java.util.concurrent.atomic.AtomicReference import org.apache.samza.SamzaException import org.apache.samza.job.model.JobModel import org.apache.samza.util.Logging /** * A servlet that dumps the job model for a Samza job. */ class JobServlet(jobModelRef: AtomicReference[JobModel]) extends ServletBase with Logging { protected def getObjectToWrite() = { val jobModel = jobModelRef.get() if (jobModel == null) { // This should never happen because JobServlet is instantiated only after a jobModel is generated and its reference is updated throw new SamzaException("Job Model is not defined in the JobCoordinator. This indicates that the Samza job is unstable. Exiting...") } jobModel } }
vjagadish/samza-clone
samza-core/src/main/scala/org/apache/samza/coordinator/server/JobServlet.scala
Scala
apache-2.0
1,577
package sangria.validation.rules import sangria.renderer.{SchemaRenderer, QueryRenderer} import sangria.validation.ValidationContext.isValidLiteralValue import sangria.validation.{BadValueViolation, ValidationContext, ValidationRule} import sangria.ast import sangria.ast.AstVisitorCommand._ /** * Argument values of correct type * * A GraphQL document is only valid if all field argument literal values are * of the type expected by their position. */ class ArgumentsOfCorrectType extends ValidationRule { override def visitor(ctx: ValidationContext) = new AstValidatingVisitor { override val onEnter: ValidationVisit = { case ast.Argument(name, value, _) => ctx.typeInfo.argument.map { arg => if (!isValidLiteralValue(arg.inputValueType, value)) Left(Vector(BadValueViolation( arg.name, SchemaRenderer.renderTypeName(arg.inputValueType), QueryRenderer.render(value), ctx.sourceMapper, value.position.toList))) else Right(Continue) } getOrElse Right(Continue) } } }
narahari92/sangria
src/main/scala/sangria/validation/rules/ArgumentsOfCorrectType.scala
Scala
apache-2.0
1,122
package setup import com.datastax.driver.core._ import com.datastax.driver.core.Cluster import scala.collection.JavaConversions._ object Setup { def runThenClose(f: => Unit) { val csc = new CassandraDataSetup("localhost") csc.populateTable() csc.querySchema try f finally csc.close } } class CassandraDataSetup(node: String) { protected val cluster = Cluster.builder.addContactPoint(node).build protected val metaData = cluster.getMetadata protected val session = cluster.connect createSchema("test.persons") createSchema("test.adults" ) createSchema("test.minors" ) val sourceBS = bs("test.persons") val adultsBS = bs("test.adults" ) val minorsBS = bs("test.minors" ) protected def bs(tableName: String) = new BoundStatement( session.prepare(s"""INSERT INTO $tableName (id, fname, lname, age) VALUES (?, ?, ?, ?)""") ) println(s"Connected to cluster: ${metaData.getClusterName}") metaData.getAllHosts.foreach{ h => println( s"Datacenter: ${h.getDatacenter}; Host: ${h.getAddress}, Rack: ${h.getRack}" )} def createSchema(tableName: String) { session.execute("""CREATE KEYSPACE IF NOT EXISTS test WITH replication = {'class':'SimpleStrategy', 'replication_factor':1};""") session.execute(s""" |CREATE TABLE IF NOT EXISTS $tableName ( | id text PRIMARY KEY, | fname text, | lname text, | age int |); """.stripMargin) session.execute(s"CREATE INDEX IF NOT EXISTS ON $tableName (fname);") session.execute(s"CREATE INDEX IF NOT EXISTS ON $tableName (lname);") session.execute(s"CREATE INDEX IF NOT EXISTS ON $tableName (age);" ) } def populateTable(implicit bs: BoundStatement = sourceBS) { insert(java.util.UUID.randomUUID.toString, "Matt", "Kew", 40) insert(java.util.UUID.randomUUID.toString, "Anita", "Kew", 35) insert(java.util.UUID.randomUUID.toString, "Gavin", "Kew", 6) insert(java.util.UUID.randomUUID.toString, "Aries", "Kew", 3) } def insert(id: String, fname: String, lname: String, age: java.lang.Integer)(implicit bs: BoundStatement) { session.execute(bs.bind(id, fname, lname, age)) } def querySchema { val results = session.execute("""SELECT * FROM test.persons WHERE fname = 'Matt';""") println(String.format("%-30s\\t%-20s\\t%-20s\\n%s", "fname", "lname", "age", "-------------------------------+-----------------------+--------------------")) results.foreach{ row => println(String.format("%-30s\\t%-20s\\t%-20s", row.getString("fname"), row.getString("lname"), row.getInt("age").toString)) } } def close { session.execute("DROP TABLE test.persons") session.execute("DROP TABLE test.adults" ) session.execute("DROP TABLE test.minors" ) cluster.close } }
mkew/sparkdemo
src/main/scala/setup/CassandraDataSetup.scala
Scala
gpl-2.0
2,792
import util.control.Breaks._ import scala.collection.parallel._ class DynamicFind (arrCombo: Array[Int]) { private val arrLen = arrCombo.length def FindSubset: Unit = { var a: Int = 0 var b: Int = 0 for (i <- 0 to arrLen - 1){ if(arrCombo(i)>0) b += arrCombo(i) else a += arrCombo(i) } val s: Int = (b - a)+1 val matrix = Array.ofDim[Boolean](arrLen,s) matrix(0)(arrCombo(0) - a) = true var findIndex: Int = 0 // breakable { // val v = Vector.range(0, s - 1) // for (j <- 1 to arrLen - 1){ // v.par.foreach { k => // val check = k - arrCombo(j) // if(s - 1 >= check && check >= 0) { // if(matrix(j-1)(k) || (k + a) == arrCombo(j) || matrix(j-1)(check)) matrix(j)(k) = true // } // else{ // if(matrix(j-1)(k) || (k + a) == arrCombo(j)) matrix(j)(k) = true // } // } // if (matrix(j)(-a)) { // findIndex = j // break // } // } // findIndex = arrLen - 1 // } var check: Int = 0 breakable { for (j <- 1 to arrLen - 1){ for (k <- 0 to s - 1){ check = k - arrCombo(j) if(s - 1 >= check && check >= 0) { if(matrix(j-1)(k) || (k + a) == arrCombo(j) || matrix(j-1)(check)) matrix(j)(k) = true } else{ if(matrix(j-1)(k) || (k + a) == arrCombo(j)) matrix(j)(k) = true } } if (matrix(j)(-a)) { findIndex = j break } } findIndex = arrLen - 1 } val result: Boolean = matrix(findIndex)(-a) println(result) //println(matrix.deep.mkString("\\n")) if (result){ var findResult = List(arrCombo(findIndex).toDouble/100) var col: Int = -a - arrCombo(findIndex) for (i <- findIndex - 1 to 1 by -1){ if (!matrix(i - 1)(col)){ findResult :::= List(arrCombo(i).toDouble/100) col = col - arrCombo(i) } } if (matrix(0)(col)) findResult :::= List(arrCombo(0).toDouble/100) println(findResult) } } }
matt-bentley/SubsetSumProcessor
SubsetSumProcessor/Scala/src/main/scala/DynamicFind.scala
Scala
gpl-3.0
2,227
package im.actor.server.mtproto.codecs import im.actor.server.mtproto.protocol._ import scodec.codecs._ package object protocol { val EncryptedPackageCodec = (int64 :: bytes).as[EncryptedPackage] val EncryptionCBCPackageCodec = (bytes :: bytes).as[EncryptionCBCPackage] val MessageAckCodec = longs.as[MessageAck] val NewSessionCodec = (int64 :: int64).as[NewSession] val AuthIdInvalidCodec = provide[AuthIdInvalid](AuthIdInvalid) val SessionHelloCodec = provide[SessionHello](SessionHello) val SessionLostCodec = provide[SessionLost](SessionLost) val RequestAuthIdCodec = provide[RequestAuthId](RequestAuthId) val RequestResendCodec = int64.as[RequestResend] val ResponseAuthIdCodec = int64.as[ResponseAuthId] val RequestStartAuthCodec = int64.as[RequestStartAuth] val ResponseStartAuthCodec = (int64 :: longs :: bytes).as[ResponseStartAuth] val RequestGetServerKeyCodec = int64.as[RequestGetServerKey] val ResponseGetServerKeyCodec = (int64 :: bytes).as[ResponseGetServerKey] val RequestDHCodec = (int64 :: int64 :: bytes :: bytes).as[RequestDH] val ResponseDoDHCodec = (int64 :: bytes :: bytes).as[ResponseDoDH] val ProtoRpcRequestCodec = bytes.as[ProtoRpcRequest] val ProtoRpcResponseCodec = (int64 :: bytes).as[ProtoRpcResponse] val UnsentMessageCodec = (int64 :: int32).as[UnsentMessage] val UnsentResponseCodec = (int64 :: int64 :: int32).as[UnsentResponse] val ProtoPushCodec = bytes.as[ProtoPush] }
actorapp/actor-platform
actor-server/actor-codecs/src/main/scala/im/actor/server/mtproto/codecs/protocol/package.scala
Scala
agpl-3.0
1,452
/* * Copyright 2016-2017 original author or authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * Created by [email protected] on 7/11/17. */ import sbt._ import Keys._ object LocalSbtSettings { val githubBaseUrl = "https://github.com/uts-cic/tap" val scaladocApiBaseUrl = "https://uts-cic.github.io/tap" val dockerRepoURI = "079464859481.dkr.ecr.ap-southeast-2.amazonaws.com" }
uts-cic/tap
project/LocalSbtSettings.scala
Scala
apache-2.0
924
import shapeless._ import shapeless.syntax.singleton._ /** * This addresses: * FR-01: Dev shall be able to define a style that requires a specific configuration of children such that the * compiler will enforce that the children are styled. * * The most sensible way of doing this is to have a composite style produce a ClassName for each component but then * the composition order matters which is error-prone and fragile. * Eg. in (Style,Style) which one is for the label and which is for the checkbox? * * This PoC below forces the client-site to acknowledge each style by name. */ object NamedChildrenPoC { trait Style class Step1 { val w = Witness('header) private val s: Style = ??? def apply[X](a: w.T, f: Style => Step2 => X): X = f(s)(new Step2) } class Step2 { val w = Witness('body) private val s: Style = ??? def apply[X](a: w.T, f: Style => X): X = f(s) } val myCompStyle = new Step1 // Example usage: myCompStyle('header, h => _('body, b => s"Header = $h, body = $b")) // Doesn't compile: // myCompStyle('header, h => // _('sidebar, b => // s"Header = $h, sidebar = $b")) // ----------------------------------------------------- val x = (Witness('a), "Aye") :: (Witness('b), "BB") :: (Witness('c), "Sea") :: HNil val l = x.tail.tail final class MidStep[W, A, B](a: A, b: B) { def apply[C](n: W, f: A => B => C): C = f(a)(b) } final class LastStep[W, A](a: A) { def apply[B](n: W, f: A => B): B = f(a) } def MidStep[A,B](w: Witness, a: A, b: B) = new MidStep[w.T, A, B](a, b) def LastStep[A](w: Witness, a: A) = new LastStep[w.T, A](a) val s3 = LastStep(Witness('c), 3) val s2 = MidStep(Witness('b), 20, s3) val s1 = MidStep(Witness('a), 100, s2) s1('a, a => _('b, b => _('c, a + b + _))) // ----------------------------------------------------- case class Named[W,A](a: A) trait MkStep[L <: HList] { type Out def apply(l: L): Out } def mkSteps[L <: HList](l: L)(implicit m: MkStep[L]): m.Out = m(l) type MkStepAux[L <: HList, O] = MkStep[L]{ type Out = O } trait LowPri { implicit def mkMidStep[W, A, T <: HList](implicit next: MkStep[T]): MkStepAux[Named[W,A] :: T, MidStep[W,A,next.Out]] = { type L = Named[W,A] :: T new MkStep[L] { override type Out = MidStep[W,A,next.Out] override def apply(l: L): Out = new MidStep[W,A,next.Out](l.head.a, next(l.tail)) } } } object TopPri extends LowPri { implicit def mkTailStep[W,A]: MkStepAux[Named[W,A] :: HNil, LastStep[W,A]] = { type L = Named[W,A] :: HNil new MkStep[L] { override type Out = LastStep[W,A] override def apply(l: L): Out = new LastStep[W,A](l.head.a) } } } import TopPri._ val wc = Witness('c) val hc = Named[wc.T, Int](123) :: HNil val sc = mkSteps(hc) sc('c, identity) val wb = Witness('b) val hb = Named[wb.T, Int](100) :: hc val sb = mkSteps(hb) sb('b, b => _('c, _ + b)) } // ===================================================================================================================== // Again for real object CompositeStyleStuff { case class Named[W,A](a: A) { def map[B](f: A => B): Named[W,B] = Named(f(a)) } final class UsageH[W, A, B](a: A, b: B) { def apply[C](n: W, f: A => B => C): C = f(a)(b) } final class UsageT[W, A](a: A) { def apply[B](n: W, f: A => B): B = f(a) } sealed abstract class MkUsage[L <: HList] { type Out val apply: L => Out } object MkUsage extends MkUsageLowPri { type Aux[L <: HList, O] = MkUsage[L]{ type Out = O } def apply[L <: HList, O](f: L => O): Aux[L, O] = new MkUsage[L] { override type Out = O override val apply = f } implicit def mkUsageT[W,A]: Aux[Named[W,A] :: HNil, UsageT[W,A]] = MkUsage(l => new UsageT(l.head.a)) } sealed trait MkUsageLowPri { implicit def mkUsageH[W, A, T <: HList](implicit t: MkUsage[T]): MkUsage.Aux[Named[W,A] :: T, UsageH[W,A,t.Out]] = MkUsage(l => new UsageH(l.head.a, t apply l.tail)) } def usage[L <: HList](l: L)(implicit m: MkUsage[L]): m.Out = m apply l }
beni55/scalacss
misc/experiment/named_children.scala
Scala
apache-2.0
4,216
package com.github.btmorr.harmonia.models /* The Vowpal Wabbit implementation of SEARN search requires input in a particular format. This can be submitted * to a stationary vw model (executing vw in a subprocess with a pretrained model and the test flag, to keep the * model stationary, equivalent to `echo '| <tag> <word>' | vw -t -i policy.vw -P 1`, or to an active */ case object SearnPredictor extends Model[(Word, PosTag), Boolean] { def apply(wt: (Word, PosTag)) = { val req = s"| ${wt._2} ${wt._1}" println(s"Assembled request for VW: $req") // submit req to vw server, get prediction false } }
btmorr/ideal-spork
mastermind/src/main/scala/com/github/btmorr/harmonia/models/SearnPredictor.scala
Scala
gpl-3.0
626
package client.rootmodel import shared.dtos.Introduction /** * Created by mandar.k on 7/19/2016. */ case class IntroRootModel(introResponse:Seq[Introduction]) { def updated(newIntroRes: Introduction) = { introResponse.indexWhere(_.connection.target == newIntroRes.connection.target) match { case -1 => IntroRootModel(introResponse :+ newIntroRes) case target => IntroRootModel(introResponse.updated(target, newIntroRes)) } } }
LivelyGig/ProductWebUI
client/src/main/scala/client/rootmodel/IntroRootModel.scala
Scala
apache-2.0
475
package cl.asa.result class Result(line:String = null) { var chunks: Seq[Chunk] = Seq.empty[Chunk] //文中の文節 var surface: String = line //文の表層 def addChunk(chunk: Chunk) { chunks = chunks :+ chunk } }
Takeuchi-Lab-LM/scala_asa3
ASA/src/main/scala/cl/asa/result/Result.scala
Scala
mit
224
package mobile.stream import monix.execution.Ack.Stop import monix.execution.{Ack, Cancelable} import monix.reactive.observers.Subscriber import monix.reactive.{Observable, OverflowStrategy} import org.scalajs.dom.raw.MessageEvent import org.scalajs.dom.{CloseEvent, ErrorEvent, Event, WebSocket} import scala.concurrent.Future import scala.concurrent.duration._ import scala.util.control.NonFatal /** This `Observable` is a simple variant that does not communicate * using the Reactive Streams back-pressure protocol, like the one * implemented by [[mobile.stream.BackPressuredWebSocketClient]]. * * Instead this connection uses a client-side buffer than can overflow. We * can control what happens on overflow if our subscribers are too slow * (like dropping events). But the disadvantage is that the server can't * find out about it. */ final class SimpleWebSocketClient private (url: String, os: OverflowStrategy.Synchronous[String]) extends Observable[String] { self => /** An `Observable` that upon subscription will open a * buffered web-socket connection. */ private val channel: Observable[String] = // This `create` builder is safer to use (versus unsafeCreate), because // the injected subscriber is going to be buffered and you don't // have to know details about the back-pressure protocol in order to use it. Observable.create[String](os) { downstream => // Reusing this in 2 places def closeConnection(webSocket: WebSocket): Unit = { Utils.log(s"Closing connection to $url") if (webSocket != null && webSocket.readyState <= 1) try webSocket.close() catch { case _: Throwable => () } } try { Utils.log(s"Connecting to $url") val webSocket = new WebSocket(url) // Not doing anything on open webSocket.onopen = (event: Event) => () webSocket.onerror = (event: ErrorEvent) => { // If error, signal it and it will be the last message downstream.onError(BackPressuredWebSocketClient.Exception(event.message)) } webSocket.onclose = (event: CloseEvent) => { // If close, signal it and it will be the last message downstream.onComplete() } webSocket.onmessage = (event: MessageEvent) => { // Signal next event as usual, but we need to catch // Stop acknowledgements. But given this is a synchronous // (buffered) subscriber, it's a simple if statement. val ack = downstream.onNext(event.data.asInstanceOf[String]) if (ack == Stop) closeConnection(webSocket) } Cancelable(() => closeConnection(webSocket)) } catch { case NonFatal(ex) => // Normally this could be a race condition, meaning that we aren't allowed to // send `onError` twice and at this point we have no way of knowing if `onError` // already happened, but this right here is fine, for one because this is Javascript, // but also because the `downstream` is protected by a concurrent buffer. downstream.onError(ex) Cancelable.empty } } override def unsafeSubscribeFn(subscriber: Subscriber[String]): Cancelable = channel.unsafeSubscribeFn(new Subscriber[String] { val scheduler = subscriber.scheduler def onNext(elem: String): Future[Ack] = subscriber.onNext(elem) def onError(ex: Throwable): Unit = { scheduler.reportFailure(ex) // Retry connection in a couple of secs self .delaySubscription(3.seconds) .unsafeSubscribeFn(subscriber) } def onComplete(): Unit = { // Retry connection in a couple of secs self .delaySubscription(3.seconds) .unsafeSubscribeFn(subscriber) } }) } object SimpleWebSocketClient { def apply(url: String, os: OverflowStrategy.Synchronous[String]): SimpleWebSocketClient = { new SimpleWebSocketClient(url, os) } case class Exception(msg: String) extends RuntimeException(msg) }
monifu/monix-ionic-sample
app-js/src/main/scala/mobile/stream/SimpleWebSocketClient.scala
Scala
gpl-2.0
4,026
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.raft import java.io.File import java.nio.ByteBuffer import java.nio.file.{Files, Path} import java.util.{Collections, Optional} import kafka.log.Log import kafka.server.KafkaRaftServer import kafka.utils.{MockTime, TestUtils} import org.apache.kafka.common.errors.{OffsetOutOfRangeException, RecordTooLargeException} import org.apache.kafka.common.protocol import org.apache.kafka.common.protocol.{ObjectSerializationCache, Writable} import org.apache.kafka.common.record.{CompressionType, MemoryRecords, SimpleRecord} import org.apache.kafka.common.utils.Utils import org.apache.kafka.raft.internals.BatchBuilder import org.apache.kafka.raft.{KafkaRaftClient, LogAppendInfo, LogOffsetMetadata, OffsetAndEpoch, RecordSerde, ReplicatedLog, ValidOffsetAndEpoch} import org.apache.kafka.snapshot.{SnapshotPath, Snapshots} import org.junit.jupiter.api.Assertions.{assertEquals, assertFalse, assertNotEquals, assertThrows, assertTrue} import org.junit.jupiter.api.{AfterEach, BeforeEach, Test} final class KafkaMetadataLogTest { import KafkaMetadataLogTest._ var tempDir: File = _ val mockTime = new MockTime() @BeforeEach def setUp(): Unit = { tempDir = TestUtils.tempDir() } @AfterEach def tearDown(): Unit = { Utils.delete(tempDir) } @Test def testUnexpectedAppendOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val recordFoo = new SimpleRecord("foo".getBytes()) val currentEpoch = 3 val initialOffset = log.endOffset().offset log.appendAsLeader( MemoryRecords.withRecords(initialOffset, CompressionType.NONE, currentEpoch, recordFoo), currentEpoch ) // Throw exception for out of order records assertThrows( classOf[RuntimeException], () => { log.appendAsLeader( MemoryRecords.withRecords(initialOffset, CompressionType.NONE, currentEpoch, recordFoo), currentEpoch ) } ) assertThrows( classOf[RuntimeException], () => { log.appendAsFollower( MemoryRecords.withRecords(initialOffset, CompressionType.NONE, currentEpoch, recordFoo) ) } ) } @Test def testCreateSnapshot(): Unit = { val numberOfRecords = 10 val epoch = 0 val snapshotId = new OffsetAndEpoch(numberOfRecords, epoch) val log = buildMetadataLog(tempDir, mockTime) append(log, numberOfRecords, epoch) log.updateHighWatermark(new LogOffsetMetadata(numberOfRecords)) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } TestUtils.resource(log.readSnapshot(snapshotId).get()) { snapshot => assertEquals(0, snapshot.sizeInBytes()) } } @Test def testReadMissingSnapshot(): Unit = { val log = buildMetadataLog(tempDir, mockTime) assertEquals(Optional.empty(), log.readSnapshot(new OffsetAndEpoch(10, 0))) } @Test def testUpdateLogStartOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val offset = 10 val epoch = 0 val snapshotId = new OffsetAndEpoch(offset, epoch) append(log, offset, epoch) log.updateHighWatermark(new LogOffsetMetadata(offset)) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.deleteBeforeSnapshot(snapshotId)) assertEquals(offset, log.startOffset) assertEquals(epoch, log.lastFetchedEpoch) assertEquals(offset, log.endOffset().offset) assertEquals(offset, log.highWatermark.offset) val newRecords = 10 append(log, newRecords, epoch + 1) // Start offset should not change since a new snapshot was not generated assertFalse(log.deleteBeforeSnapshot(new OffsetAndEpoch(offset + newRecords, epoch))) assertEquals(offset, log.startOffset) assertEquals(epoch + 1, log.lastFetchedEpoch) assertEquals(offset + newRecords, log.endOffset().offset) assertEquals(offset, log.highWatermark.offset) } @Test def testUpdateLogStartOffsetWillRemoveOlderSnapshot(): Unit = { val (logDir, log) = buildMetadataLogAndDir(tempDir, mockTime) val offset = 10 val epoch = 0 append(log, offset, epoch) val oldSnapshotId = new OffsetAndEpoch(offset, epoch) TestUtils.resource(log.createSnapshot(oldSnapshotId)) { snapshot => snapshot.freeze() } append(log, offset, epoch) val newSnapshotId = new OffsetAndEpoch(offset * 2, epoch) TestUtils.resource(log.createSnapshot(newSnapshotId)) { snapshot => snapshot.freeze() } log.updateHighWatermark(new LogOffsetMetadata(offset * 2)) assertTrue(log.deleteBeforeSnapshot(newSnapshotId)) log.close() mockTime.sleep(log.fileDeleteDelayMs) // Assert that the log dir doesn't contain any older snapshots Files .walk(logDir, 1) .map[Optional[SnapshotPath]](Snapshots.parse) .filter(_.isPresent) .forEach { path => assertFalse(path.get.snapshotId.offset < log.startOffset) } } @Test def testUpdateLogStartOffsetWithMissingSnapshot(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val offset = 10 val epoch = 0 append(log, offset, epoch) log.updateHighWatermark(new LogOffsetMetadata(offset)) assertFalse(log.deleteBeforeSnapshot(new OffsetAndEpoch(1L, epoch))) assertEquals(0, log.startOffset) assertEquals(epoch, log.lastFetchedEpoch) assertEquals(offset, log.endOffset().offset) assertEquals(offset, log.highWatermark.offset) } @Test def testFailToIncreaseLogStartPastHighWatermark(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val offset = 10 val epoch = 0 val snapshotId = new OffsetAndEpoch(2 * offset, 1 + epoch) append(log, offset, epoch) log.updateHighWatermark(new LogOffsetMetadata(offset)) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } assertThrows( classOf[OffsetOutOfRangeException], () => log.deleteBeforeSnapshot(snapshotId) ) } @Test def testTruncateFullyToLatestSnapshot(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 10 val epoch = 0 val sameEpochSnapshotId = new OffsetAndEpoch(2 * numberOfRecords, epoch) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(sameEpochSnapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.truncateToLatestSnapshot()) assertEquals(sameEpochSnapshotId.offset, log.startOffset) assertEquals(sameEpochSnapshotId.epoch, log.lastFetchedEpoch) assertEquals(sameEpochSnapshotId.offset, log.endOffset().offset) assertEquals(sameEpochSnapshotId.offset, log.highWatermark.offset) val greaterEpochSnapshotId = new OffsetAndEpoch(3 * numberOfRecords, epoch + 1) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(greaterEpochSnapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.truncateToLatestSnapshot()) assertEquals(greaterEpochSnapshotId.offset, log.startOffset) assertEquals(greaterEpochSnapshotId.epoch, log.lastFetchedEpoch) assertEquals(greaterEpochSnapshotId.offset, log.endOffset().offset) assertEquals(greaterEpochSnapshotId.offset, log.highWatermark.offset) } @Test def testTruncateWillRemoveOlderSnapshot(): Unit = { val (logDir, log) = buildMetadataLogAndDir(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 append(log, 1, epoch - 1) val oldSnapshotId1 = new OffsetAndEpoch(1, epoch - 1) TestUtils.resource(log.createSnapshot(oldSnapshotId1)) { snapshot => snapshot.freeze() } append(log, 1, epoch) val oldSnapshotId2 = new OffsetAndEpoch(2, epoch) TestUtils.resource(log.createSnapshot(oldSnapshotId2)) { snapshot => snapshot.freeze() } append(log, numberOfRecords - 2, epoch) val oldSnapshotId3 = new OffsetAndEpoch(numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(oldSnapshotId3)) { snapshot => snapshot.freeze() } val greaterSnapshotId = new OffsetAndEpoch(3 * numberOfRecords, epoch) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(greaterSnapshotId)) { snapshot => snapshot.freeze() } assertNotEquals(log.earliestSnapshotId(), log.latestSnapshotId()) assertTrue(log.truncateToLatestSnapshot()) assertEquals(log.earliestSnapshotId(), log.latestSnapshotId()) log.close() mockTime.sleep(log.fileDeleteDelayMs) // Assert that the log dir doesn't contain any older snapshots Files .walk(logDir, 1) .map[Optional[SnapshotPath]](Snapshots.parse) .filter(_.isPresent) .forEach { path => assertFalse(path.get.snapshotId.offset < log.startOffset) } } @Test def testDoesntTruncateFully(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 append(log, numberOfRecords, epoch) val olderEpochSnapshotId = new OffsetAndEpoch(numberOfRecords, epoch - 1) TestUtils.resource(log.createSnapshot(olderEpochSnapshotId)) { snapshot => snapshot.freeze() } assertFalse(log.truncateToLatestSnapshot()) append(log, numberOfRecords, epoch) val olderOffsetSnapshotId = new OffsetAndEpoch(numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(olderOffsetSnapshotId)) { snapshot => snapshot.freeze() } assertFalse(log.truncateToLatestSnapshot()) } @Test def testCleanupPartialSnapshots(): Unit = { val (logDir, log) = buildMetadataLogAndDir(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 val snapshotId = new OffsetAndEpoch(1, epoch) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } log.close() // Create a few partial snapshots Snapshots.createTempFile(logDir, new OffsetAndEpoch(0, epoch - 1)) Snapshots.createTempFile(logDir, new OffsetAndEpoch(1, epoch)) Snapshots.createTempFile(logDir, new OffsetAndEpoch(2, epoch + 1)) val secondLog = buildMetadataLog(tempDir, mockTime) assertEquals(snapshotId, secondLog.latestSnapshotId().get) assertEquals(0, log.startOffset) assertEquals(epoch, log.lastFetchedEpoch) assertEquals(numberOfRecords, log.endOffset().offset) assertEquals(0, secondLog.highWatermark.offset) // Assert that the log dir doesn't contain any partial snapshots Files .walk(logDir, 1) .map[Optional[SnapshotPath]](Snapshots.parse) .filter(_.isPresent) .forEach { path => assertFalse(path.get.partial) } } @Test def testCleanupOlderSnapshots(): Unit = { val (logDir, log) = buildMetadataLogAndDir(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 append(log, 1, epoch - 1) val oldSnapshotId1 = new OffsetAndEpoch(1, epoch - 1) TestUtils.resource(log.createSnapshot(oldSnapshotId1)) { snapshot => snapshot.freeze() } append(log, 1, epoch) val oldSnapshotId2 = new OffsetAndEpoch(2, epoch) TestUtils.resource(log.createSnapshot(oldSnapshotId2)) { snapshot => snapshot.freeze() } append(log, numberOfRecords - 2, epoch) val oldSnapshotId3 = new OffsetAndEpoch(numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(oldSnapshotId3)) { snapshot => snapshot.freeze() } val greaterSnapshotId = new OffsetAndEpoch(3 * numberOfRecords, epoch) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(greaterSnapshotId)) { snapshot => snapshot.freeze() } log.close() val secondLog = buildMetadataLog(tempDir, mockTime) assertEquals(greaterSnapshotId, secondLog.latestSnapshotId().get) assertEquals(3 * numberOfRecords, secondLog.startOffset) assertEquals(epoch, secondLog.lastFetchedEpoch) mockTime.sleep(log.fileDeleteDelayMs) // Assert that the log dir doesn't contain any older snapshots Files .walk(logDir, 1) .map[Optional[SnapshotPath]](Snapshots.parse) .filter(_.isPresent) .forEach { path => assertFalse(path.get.snapshotId.offset < log.startOffset) } } @Test def testCreateReplicatedLogTruncatesFully(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 val snapshotId = new OffsetAndEpoch(numberOfRecords + 1, epoch + 1) append(log, numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } log.close() val secondLog = buildMetadataLog(tempDir, mockTime) assertEquals(snapshotId, secondLog.latestSnapshotId().get) assertEquals(snapshotId.offset, secondLog.startOffset) assertEquals(snapshotId.epoch, secondLog.lastFetchedEpoch) assertEquals(snapshotId.offset, secondLog.endOffset().offset) assertEquals(snapshotId.offset, secondLog.highWatermark.offset) } @Test def testMaxBatchSize(): Unit = { val leaderEpoch = 5 val maxBatchSizeInBytes = 16384 val recordSize = 64 val log = buildMetadataLog(tempDir, mockTime, maxBatchSizeInBytes) val oversizeBatch = buildFullBatch(leaderEpoch, recordSize, maxBatchSizeInBytes + recordSize) assertThrows(classOf[RecordTooLargeException], () => { log.appendAsLeader(oversizeBatch, leaderEpoch) }) val undersizeBatch = buildFullBatch(leaderEpoch, recordSize, maxBatchSizeInBytes) val appendInfo = log.appendAsLeader(undersizeBatch, leaderEpoch) assertEquals(0L, appendInfo.firstOffset) } @Test def testTruncateBelowHighWatermark(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numRecords = 10 val epoch = 5 append(log, numRecords, epoch) assertEquals(numRecords.toLong, log.endOffset.offset) log.updateHighWatermark(new LogOffsetMetadata(numRecords)) assertEquals(numRecords.toLong, log.highWatermark.offset) assertThrows(classOf[IllegalArgumentException], () => log.truncateTo(5L)) assertEquals(numRecords.toLong, log.highWatermark.offset) } private def buildFullBatch( leaderEpoch: Int, recordSize: Int, maxBatchSizeInBytes: Int ): MemoryRecords = { val buffer = ByteBuffer.allocate(maxBatchSizeInBytes) val batchBuilder = new BatchBuilder[Array[Byte]]( buffer, new ByteArraySerde, CompressionType.NONE, 0L, mockTime.milliseconds(), false, leaderEpoch, maxBatchSizeInBytes ) val serializationCache = new ObjectSerializationCache val records = Collections.singletonList(new Array[Byte](recordSize)) while (!batchBuilder.bytesNeeded(records, serializationCache).isPresent) { batchBuilder.appendRecord(records.get(0), serializationCache) } batchBuilder.build() } @Test def testValidateEpochGreaterThanLastKnownEpoch(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 1 val epoch = 1 append(log, numberOfRecords, epoch) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(numberOfRecords, epoch + 1) assertEquals(ValidOffsetAndEpoch.Kind.DIVERGING, resultOffsetAndEpoch.kind) assertEquals(new OffsetAndEpoch(log.endOffset.offset, epoch), resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateEpochLessThanOldestSnapshotEpoch(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 append(log, numberOfRecords, epoch) log.updateHighWatermark(new LogOffsetMetadata(numberOfRecords)) val snapshotId = new OffsetAndEpoch(numberOfRecords, epoch) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.deleteBeforeSnapshot(snapshotId)) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(numberOfRecords, epoch - 1) assertEquals(ValidOffsetAndEpoch.Kind.SNAPSHOT, resultOffsetAndEpoch.kind) assertEquals(snapshotId, resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateOffsetLessThanOldestSnapshotOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val offset = 2 val epoch = 1 append(log, offset, epoch) log.updateHighWatermark(new LogOffsetMetadata(offset)) val snapshotId = new OffsetAndEpoch(offset, epoch) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.deleteBeforeSnapshot(snapshotId)) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(offset - 1, epoch) assertEquals(ValidOffsetAndEpoch.Kind.SNAPSHOT, resultOffsetAndEpoch.kind) assertEquals(snapshotId, resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateOffsetEqualToOldestSnapshotOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val offset = 2 val epoch = 1 append(log, offset, epoch) log.updateHighWatermark(new LogOffsetMetadata(offset)) val snapshotId = new OffsetAndEpoch(offset, epoch) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } assertTrue(log.deleteBeforeSnapshot(snapshotId)) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(offset, epoch) assertEquals(ValidOffsetAndEpoch.Kind.VALID, resultOffsetAndEpoch.kind) assertEquals(snapshotId, resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateUnknownEpochLessThanLastKnownGreaterThanOldestSnapshot(): Unit = { val offset = 10 val numOfRecords = 5 val log = buildMetadataLog(tempDir, mockTime) log.updateHighWatermark(new LogOffsetMetadata(offset)) val snapshotId = new OffsetAndEpoch(offset, 1) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } log.truncateToLatestSnapshot() append(log, numOfRecords, epoch = 1) append(log, numOfRecords, epoch = 2) append(log, numOfRecords, epoch = 4) // offset is not equal to oldest snapshot's offset val resultOffsetAndEpoch = log.validateOffsetAndEpoch(100, 3) assertEquals(ValidOffsetAndEpoch.Kind.DIVERGING, resultOffsetAndEpoch.kind) assertEquals(new OffsetAndEpoch(20, 2), resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateEpochLessThanFirstEpochInLog(): Unit = { val offset = 10 val numOfRecords = 5 val log = buildMetadataLog(tempDir, mockTime) log.updateHighWatermark(new LogOffsetMetadata(offset)) val snapshotId = new OffsetAndEpoch(offset, 1) TestUtils.resource(log.createSnapshot(snapshotId)) { snapshot => snapshot.freeze() } log.truncateToLatestSnapshot() append(log, numOfRecords, epoch = 3) // offset is not equal to oldest snapshot's offset val resultOffsetAndEpoch = log.validateOffsetAndEpoch(100, 2) assertEquals(ValidOffsetAndEpoch.Kind.DIVERGING, resultOffsetAndEpoch.kind) assertEquals(snapshotId, resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateOffsetGreatThanEndOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 1 val epoch = 1 append(log, numberOfRecords, epoch) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(numberOfRecords + 1, epoch) assertEquals(ValidOffsetAndEpoch.Kind.DIVERGING, resultOffsetAndEpoch.kind) assertEquals(new OffsetAndEpoch(log.endOffset.offset, epoch), resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateOffsetLessThanLEO(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 10 val epoch = 1 append(log, numberOfRecords, epoch) append(log, numberOfRecords, epoch + 1) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(11, epoch) assertEquals(ValidOffsetAndEpoch.Kind.DIVERGING, resultOffsetAndEpoch.kind) assertEquals(new OffsetAndEpoch(10, epoch), resultOffsetAndEpoch.offsetAndEpoch()) } @Test def testValidateValidEpochAndOffset(): Unit = { val log = buildMetadataLog(tempDir, mockTime) val numberOfRecords = 5 val epoch = 1 append(log, numberOfRecords, epoch) val resultOffsetAndEpoch = log.validateOffsetAndEpoch(numberOfRecords - 1, epoch) assertEquals(ValidOffsetAndEpoch.Kind.VALID, resultOffsetAndEpoch.kind) assertEquals(new OffsetAndEpoch(numberOfRecords - 1, epoch), resultOffsetAndEpoch.offsetAndEpoch()) } } object KafkaMetadataLogTest { class ByteArraySerde extends RecordSerde[Array[Byte]] { override def recordSize(data: Array[Byte], serializationCache: ObjectSerializationCache): Int = { data.length } override def write(data: Array[Byte], serializationCache: ObjectSerializationCache, out: Writable): Unit = { out.writeByteArray(data) } override def read(input: protocol.Readable, size: Int): Array[Byte] = { val array = new Array[Byte](size) input.readArray(array) array } } def buildMetadataLogAndDir( tempDir: File, time: MockTime, maxBatchSizeInBytes: Int = KafkaRaftClient.MAX_BATCH_SIZE_BYTES, maxFetchSizeInBytes: Int = KafkaRaftClient.MAX_FETCH_SIZE_BYTES ): (Path, KafkaMetadataLog) = { val logDir = createLogDirectory( tempDir, Log.logDirName(KafkaRaftServer.MetadataPartition) ) val metadataLog = KafkaMetadataLog( KafkaRaftServer.MetadataPartition, logDir, time, time.scheduler, maxBatchSizeInBytes, maxFetchSizeInBytes ) (logDir.toPath, metadataLog) } def buildMetadataLog( tempDir: File, time: MockTime, maxBatchSizeInBytes: Int = KafkaRaftClient.MAX_BATCH_SIZE_BYTES, maxFetchSizeInBytes: Int = KafkaRaftClient.MAX_FETCH_SIZE_BYTES ): KafkaMetadataLog = { val (_, log) = buildMetadataLogAndDir(tempDir, time, maxBatchSizeInBytes, maxFetchSizeInBytes) log } def append(log: ReplicatedLog, numberOfRecords: Int, epoch: Int): LogAppendInfo = { log.appendAsLeader( MemoryRecords.withRecords( log.endOffset().offset, CompressionType.NONE, epoch, (0 until numberOfRecords).map(number => new SimpleRecord(number.toString.getBytes)): _* ), epoch ) } private def createLogDirectory(logDir: File, logDirName: String): File = { val logDirPath = logDir.getAbsolutePath val dir = new File(logDirPath, logDirName) if (!Files.exists(dir.toPath)) { Files.createDirectories(dir.toPath) } dir } }
Chasego/kafka
core/src/test/scala/kafka/raft/KafkaMetadataLogTest.scala
Scala
apache-2.0
23,383
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.zouzias.spark.lucenerdd.config import com.typesafe.config.ConfigFactory /** * Load typesafe configuration */ trait Configurable extends Serializable { lazy val Config = ConfigFactory.load() }
zouzias/spark-lucenerdd
src/main/scala/org/zouzias/spark/lucenerdd/config/Configurable.scala
Scala
apache-2.0
1,011
/* * Copyright 2009-2010 the original author or authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ccf.transport class MalformedDataException(s: String) extends Exception(s)
akisaarinen/ccf
ccf/src/main/scala/ccf/transport/MalformedDataException.scala
Scala
apache-2.0
704
package org.rebeam.boxes.persistence import org.rebeam.boxes.core._ import org.rebeam.boxes.persistence.formats._ import org.rebeam.boxes.persistence.json.JsonPrettyIO import org.rebeam.boxes.persistence.buffers._ import org.scalacheck.Arbitrary import org.scalatest._ import org.scalatest.prop.PropertyChecks import scala.util.Try class PersistenceSpec extends WordSpec with PropertyChecks with ShouldMatchers { def duplicate[T: Format](t: T): Unit = { val s = BufferIO.toTokens(t:T) val d = BufferIO.fromTokens[T](s) t shouldBe d } "Persistence" should { "duplicate list of 100000 ints without stack overflow" in { import PrimFormats._ import CollectionFormats._ val l = Range(1, 100000).toList duplicate(l) } } }
trepidacious/boxes-core
src/test/scala/org/rebeam/boxes/persistence/PersistenceSpec.scala
Scala
gpl-2.0
773
/* * Copyright (c) 2013-2014 Telefónica Investigación y Desarrollo S.A.U. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package es.tid.cosmos.infinity.server.actions import scala.concurrent.{Future, future} import scala.concurrent.ExecutionContext.Implicits.global import es.tid.cosmos.infinity.common.fs.Path import es.tid.cosmos.infinity.common.permissions.PermissionsMask import es.tid.cosmos.infinity.server.actions.Action.Context import es.tid.cosmos.infinity.server.actions.MetadataAction.Created import es.tid.cosmos.infinity.server.hadoop.NameNode case class CreateDirectory( nameNode: NameNode, on: Path, permissions: PermissionsMask) extends MetadataAction { override def apply(context: Context): Future[MetadataAction.Result] = future { nameNode.as(context.user) { nameNode.createDirectory(on, context.user.username, context.user.groups.head, permissions) Created(nameNode.pathMetadata(on)) } } }
telefonicaid/fiware-cosmos-platform
infinity/server/src/main/scala/es/tid/cosmos/infinity/server/actions/CreateDirectory.scala
Scala
apache-2.0
1,460
package qrygraph.shared.pig import prickle.{CompositePickler, Pickler} import qrygraph.shared.pig.Primitives._ /** the typing of a result a node creates */ case class ResultType(name: String, fields: List[PField]) /** represents a typed field as a data type like (username:chararray) */ case class PField(var name: String, typ: DataType) /** A PigDataTyp defines a type of a given column */ sealed trait DataType /** All Pig primitives data types */ object Primitives { case object PByteArray extends DataType case object PScalar extends DataType case object PInt extends DataType case object PLong extends DataType case object PFloat extends DataType case object PDouble extends DataType case object PArray extends DataType case object PCharArray extends DataType case object PComplex extends DataType //@todo case object PDateTime extends DataType case object PBigInteger extends DataType case object PBgDecimal extends DataType } /** Pig tuple data type */ case class PTuple(fields: List[PField]) extends DataType /** Pig bag data type */ case class PBag(fields: List[PField]) extends DataType case class PMap(value: DataType) extends DataType /** helper to serialize PigDataTypes over webSocket */ object PigDataTypesPickler { // !!! as the data structure is recursive, we need to define the parent first implicit var pickler = CompositePickler[DataType] // then the recursive structure implicit val fieldPickler: Pickler[PField] = Pickler.materializePickler[PField] // then add all children pickler = pickler.concreteType[PByteArray.type] .concreteType[PScalar.type] .concreteType[PInt.type] .concreteType[PLong.type] .concreteType[PFloat.type] .concreteType[PDouble.type] .concreteType[PArray.type] .concreteType[PCharArray.type] .concreteType[PComplex.type] .concreteType[PMap] .concreteType[PTuple] .concreteType[PBag] }
Starofall/QryGraph
qrygraph/shared/src/main/scala/qrygraph/shared/pig/PigDataTypes.scala
Scala
mit
1,932
package de.unihamburg.vsis.sddf.test.reading import org.scalatest.FunSuite import de.unihamburg.vsis.sddf.reading.SymPair import de.unihamburg.vsis.sddf.reading.Tuple import de.unihamburg.vsis.sddf.reading.TupleArray import de.unihamburg.vsis.sddf.test.util.LocalSparkContext class SymPairTest extends FunSuite with LocalSparkContext { test("test equality and hashcode") { val tuple1: Tuple = new TupleArray(1) tuple1.addFeature(0, "test") tuple1.id = 1 val tuple2: Tuple = new TupleArray(1) tuple1.addFeature(0, "test2") tuple2.id = 2 val pair1 = new SymPair(tuple1, tuple2) val pair2 = new SymPair(tuple2, tuple1) assert(pair1 === pair1) assert(pair2 === pair1) assert(pair1 === pair2) assert(pair2 === pair2) assert(pair1.hashCode() === pair1.hashCode()) assert(pair2.hashCode() === pair1.hashCode()) assert(pair1.hashCode() === pair2.hashCode()) assert(pair2.hashCode() === pair2.hashCode()) val tuple3: Tuple = new TupleArray(1) tuple3.addFeature(0, "test2") tuple3.id = 2 val pair3 = new SymPair(tuple2, tuple3) val pair4 = new SymPair(tuple3, tuple2) assert(pair3 === pair4) assert(!(pair1 === pair3)) assert(pair3.hashCode() === pair4.hashCode()) assert(!(pair1.hashCode() === pair3.hashCode())) } test("test subtraction of RDD[SymPair[Tuple]]") { val tuple1 = new TupleArray(1) tuple1.id = 1 val tuple2 = new TupleArray(1) tuple2.id = 2 val pair1 = new SymPair(tuple1, tuple2) val pair1swapped = new SymPair(tuple2, tuple1) val listPair1 = Seq(pair1) val listPair1Swapped = Seq(pair1swapped) val list1 = sc.parallelize(listPair1) val list1Swapped = sc.parallelize(listPair1Swapped) val subtractionResult = list1.subtract(list1Swapped) assert(subtractionResult.count() === 0) } }
numbnut/sddf
src/test/scala/de/unihamburg/vsis/sddf/test/reading/SymPairTest.scala
Scala
gpl-3.0
1,856
package org.jetbrains.plugins.scala package codeInsight.intention.booleans import com.intellij.psi.util.PsiTreeUtil import com.intellij.openapi.util.TextRange import com.intellij.codeInsight.intention.PsiElementBaseIntentionAction import com.intellij.openapi.project.Project import com.intellij.openapi.editor.Editor import lang.psi.api.expr.ScInfixExpr import lang.psi.impl.ScalaPsiElementFactory import extensions._ import com.intellij.psi.{PsiDocumentManager, PsiElement} /** * @author Ksenia.Sautina * @since 4/23/12 */ object ReplaceEqualsOrEqualityInInfixExprIntention { def familyName = "Replace equals or equality in infix expression" } class ReplaceEqualsOrEqualityInInfixExprIntention extends PsiElementBaseIntentionAction { def getFamilyName = ReplaceEqualsOrEqualityInInfixExprIntention.familyName def isAvailable(project: Project, editor: Editor, element: PsiElement): Boolean = { val infixExpr: ScInfixExpr = PsiTreeUtil.getParentOfType(element, classOf[ScInfixExpr], false) if (infixExpr == null) return false val oper = infixExpr.operation.nameId.getText if (oper != "equals" && oper != "==") return false val range: TextRange = infixExpr.operation.nameId.getTextRange val offset = editor.getCaretModel.getOffset if (!(range.getStartOffset <= offset && offset <= range.getEndOffset)) return false val replaceOper = Map("equals" -> "==", "==" -> "equals") setText("Replace '" + oper + "' with '" + replaceOper(oper) + "'") true } override def invoke(project: Project, editor: Editor, element: PsiElement) { val infixExpr: ScInfixExpr = PsiTreeUtil.getParentOfType(element, classOf[ScInfixExpr], false) if (infixExpr == null || !infixExpr.isValid) return val start = infixExpr.getTextRange.getStartOffset val expr = new StringBuilder val replaceOper = Map("equals" -> "==", "==" -> "equals") expr.append(infixExpr.getBaseExpr.getText).append(" ").append(replaceOper(infixExpr.operation.nameId.getText)). append(" ").append(infixExpr.getArgExpr.getText) val newInfixExpr = ScalaPsiElementFactory.createExpressionFromText(expr.toString(), element.getManager) val size = newInfixExpr.asInstanceOf[ScInfixExpr].operation.nameId.getTextRange.getStartOffset - newInfixExpr.getTextRange.getStartOffset inWriteAction { infixExpr.replace(newInfixExpr) editor.getCaretModel.moveToOffset(start + size) PsiDocumentManager.getInstance(project).commitDocument(editor.getDocument) } } }
consulo/consulo-scala
src/org/jetbrains/plugins/scala/codeInsight/intention/booleans/ReplaceEqualsOrEqualityInInfixExprIntention.scala
Scala
apache-2.0
2,540
package org.apache.spark.sql.cassandra import java.net.InetAddress import java.sql.Timestamp import java.util.{UUID, Date} import java.math.BigInteger import org.apache.spark.sql.types.UTF8String import org.apache.spark.sql.types.Decimal import com.datastax.driver.core.{Row, ProtocolVersion} import com.datastax.spark.connector.{TupleValue, UDTValue, GettableData} import com.datastax.spark.connector.rdd.reader.{ThisRowReaderAsFactory, RowReader} import com.datastax.spark.connector.types.TypeConverter import org.apache.spark.sql.catalyst.expressions.{Row => SparkRow} final class CassandraSQLRow(val columnNames: IndexedSeq[String], val columnValues: IndexedSeq[AnyRef]) extends GettableData with SparkRow with Serializable { protected def fieldNames = columnNames private[spark] def this() = this(null, null) // required by Kryo for deserialization :( /** Generic getter for getting columns of any type. * Looks the column up by its index. First column starts at index 0. */ private def get[T](index: Int)(implicit c: TypeConverter[T]): T = c.convert(columnValues(index)) override def apply(i: Int) = columnValues(i) override def copy() = this // immutable override def size = super.size override def getDouble(i: Int) = get[Double](i) override def getFloat(i: Int) = get[Float](i) override def getLong(i: Int) = get[Long](i) override def getByte(i: Int) = get[Byte](i) override def getBoolean(i: Int) = get[Boolean](i) override def getShort(i: Int) = get[Short](i) override def getInt(i: Int) = get[Int](i) override def getString(i: Int) = get[String](i) override def toSeq: Seq[Any] = columnValues } object CassandraSQLRow { def fromJavaDriverRow(row: Row, columnNames: Array[String])(implicit protocolVersion: ProtocolVersion): CassandraSQLRow = { val data = new Array[Object](columnNames.length) for (i <- columnNames.indices) { data(i) = GettableData.get(row, i) data.update(i, toSparkSqlType(data(i))) } new CassandraSQLRow(columnNames, data) } implicit object CassandraSQLRowReader extends RowReader[CassandraSQLRow] with ThisRowReaderAsFactory[CassandraSQLRow] { override def read(row: Row, columnNames: Array[String])(implicit protocolVersion: ProtocolVersion): CassandraSQLRow = fromJavaDriverRow(row, columnNames) override def neededColumns = None override def targetClass = classOf[CassandraSQLRow] } private def toSparkSqlType(value: Any): AnyRef = { value match { case date: Date => new Timestamp(date.getTime) case str: String => UTF8String(str) case bigInteger: BigInteger => Decimal(bigInteger.toString) case inetAddress: InetAddress => UTF8String(inetAddress.getHostAddress) case uuid: UUID => UTF8String(uuid.toString) case set: Set[_] => set.map(toSparkSqlType).toSeq case list: List[_] => list.map(toSparkSqlType) case map: Map[_, _] => map map { case(k, v) => (toSparkSqlType(k), toSparkSqlType(v))} case udt: UDTValue => UDTValue(udt.columnNames, udt.columnValues.map(toSparkSqlType)) case tupleValue: TupleValue => TupleValue(tupleValue.values.map(toSparkSqlType)) case _ => value.asInstanceOf[AnyRef] } } }
viirya/spark-cassandra-connector
spark-cassandra-connector/src/main/scala/org/apache/spark/sql/cassandra/CassandraSQLRow.scala
Scala
apache-2.0
3,228
package cssprocessor import java.net.InetSocketAddress import java.util.concurrent.TimeUnit import java.util.concurrent.TimeUnit import org.specs2.mutable.Specification import cats.effect.IO import fs2._ import spinoco.fs2.http import http._ import http.websocket._ import spinoco.protocol.http.header._ import spinoco.protocol.http._ import spinoco.protocol.http.header.value._ import http.websocket._ import org.specs2.specification.AfterAll import spinoco.fs2.http.util._ import spinoco.protocol.http.Uri import scala.concurrent.duration._ import cats.effect.IO import fs2.io.tcp import org.specs2.mutable.Specification import org.specs2.specification.AfterAll import scala.concurrent.duration._ class CssProcessorSpec extends Specification with AfterAll { import Resources._ import CssProcessor._ def afterAll(): Unit = { println("shutting down ...") AG.shutdownNow() println("awaiting termination...") AG.awaitTermination(16, TimeUnit.SECONDS) () } val sample1: String = s""" |:display a { display: flex; } """.stripMargin //TODO: https://github.com/scalavision/scunicorn/issues/1 "CssProcessor" should { "process incoming css raw text" in { val startServer = cssProcessor val cssOutput: Stream[IO, Byte] = { Sch.sleep[IO](4.seconds) ++ tcp.client[IO]( new InetSocketAddress("127.0.0.1", 5001) ).flatMap { (socket: io.tcp.Socket[IO]) => Stream(sample1) .through(text.utf8Encode).covary[IO] .to(socket.writes()) .drain.onFinalize(socket.endOfOutput) ++ socket.reads(1024, None) } }.collect { case b: Byte => b} // stripping away the scheduler sleep unit thingy println("starting up the server and sending data ...") (startServer mergeHaltBoth cssOutput.through( text.utf8Decode andThen CssStreamHandler.cssBlocks ).to(log("result"))).run.unsafeRunTimed(10.seconds) println("data processed, finished") 1 === 1 } } }
scalavision/scunicorn
cssProcessing/src/test/scala/cssprocessor/CssProcessorSpec.scala
Scala
apache-2.0
2,050
package model.json /** * @author Camilo Sampedro <[email protected]> */ case class LaboratoryJson(name: String, location: Option[String], administration: Option[String])
ProjectAton/AtonLab
app/model/json/LaboratoryJson.scala
Scala
gpl-3.0
237
package net.fehmicansaglam.pide.examples import java.util.UUID import akka.util.Timeout import net.fehmicansaglam.bson.BsonDocument import net.fehmicansaglam.bson.BsonDsl._ import net.fehmicansaglam.pide.{Dao, Entity, StringPide} import net.fehmicansaglam.tepkin.{MongoClient, MongoCollection} import scala.concurrent.Await import scala.concurrent.duration._ object Example2 extends App { val client = MongoClient("mongodb://localhost") val db = client("tepkin") case class Person(id: String, name: String, surname: String, age: Int) extends Entity[String] object PersonDao extends Dao[String, Person] { override val collection: MongoCollection = db("person") } implicit object PersonPide extends StringPide[Person] { override def read(document: BsonDocument): Person = { Person( id = document.getAs[String]("_id").get, name = document.getAs[String]("name").get, surname = document.getAs[String]("surname").get, age = document.getAs[Int]("age").get ) } override def write(person: Person): BsonDocument = { ("_id" := person.id) ~ ("name" := person.name) ~ ("surname" := person.surname) ~ ("age" := person.age) } } val person1 = Person(UUID.randomUUID().toString, "name1", "surname1", 16) val person2 = Person(UUID.randomUUID().toString, "name2", "surname2", 32) import client.ec implicit val timeout: Timeout = 5.seconds val result = for { insert1 <- PersonDao.insert(person1) insert2 <- PersonDao.insert(person2) drop <- PersonDao.collection.drop() } yield drop Await.ready(result, 30.seconds) client.shutdown() }
fehmicansaglam/tepkin
examples/src/main/scala/net/fehmicansaglam/pide/examples/Example2.scala
Scala
apache-2.0
1,727
package org.phenoscape.owl.build import com.bigdata.journal.Options import com.bigdata.rdf.sail.{BigdataSail, BigdataSailRepository} import org.openrdf.query.QueryLanguage import java.io.{File, FileReader} import java.util.Properties import scala.io.Source object RunSPARQLUpdate extends App { val BlazegraphProperties = new File(args(0)) val BlazegraphJournal = new File(args(1)) val queryFile = new File(args(2)) val blazegraphProperties = new Properties() blazegraphProperties.load(new FileReader(BlazegraphProperties)) blazegraphProperties.setProperty(Options.FILE, BlazegraphJournal.getAbsolutePath) val sail = new BigdataSail(blazegraphProperties) val repository = new BigdataSailRepository(sail) repository.initialize() val blazegraph = repository.getUnisolatedConnection() val query = blazegraph.prepareUpdate(QueryLanguage.SPARQL, Source.fromFile(queryFile, "utf-8").mkString) query.execute() blazegraph.close() }
phenoscape/phenoscape-owl-tools
src/main/scala/org/phenoscape/owl/build/RunSPARQLUpdate.scala
Scala
mit
956
object Test { def f[X, Y](x: X, y: Y): Int = ??? f[Int, String](1, "") f[X = Int, Y = String](1, "") f[X = Int](1, "") f[Y = String](1, "") }
som-snytt/dotty
tests/pos/namedTypeParams.scala
Scala
apache-2.0
156
package com.kifi.franz import play.api.libs.iteratee.Enumerator import scala.concurrent.{ExecutionContext, Future, Promise} import scala.concurrent.duration.{FiniteDuration, SECONDS} import scala.collection.JavaConverters._ import scala.language.implicitConversions import com.amazonaws.services.sqs.AmazonSQSAsync import com.amazonaws.services.sqs.model._ import com.amazonaws.handlers.AsyncHandler case class QueueName(name: String) case class MessageId(id: String) case class SQSMessage[T]( id: MessageId, body: T, consume: () => Unit, setVisibilityTimeout: (FiniteDuration) => Unit, attributes: Map[String,String], messageAttributes: Map[String, MessageAttributeValue]) { def consume[K](block: T => K): K = { val returnValue = block(body) consume() returnValue } } object SQSQueue { val DefaultWaitTimeout = FiniteDuration(10, SECONDS) } trait SQSQueue[T]{ import SQSQueue._ val queue: QueueName protected val sqs: AmazonSQSAsync protected val createIfNotExists: Boolean protected implicit def asString(obj: T): String protected implicit def fromString(s: String): T protected val queueUrl: String = initQueueUrl() protected def initQueueUrl() = { try { sqs.getQueueUrl(new GetQueueUrlRequest(queue.name)).getQueueUrl } catch { case t: com.amazonaws.services.sqs.model.QueueDoesNotExistException if createIfNotExists => sqs.createQueue(new CreateQueueRequest(queue.name)).getQueueUrl case t: Throwable => throw t } } protected def stringMessageAttribute( attributeValue: String ): MessageAttributeValue = { val attr = new MessageAttributeValue() attr.setDataType("String") attr.setStringValue(attributeValue) attr } def send(msg: T ): Future[MessageId] = { send (msg, None) } def send(msg: T, delay:Int): Future[MessageId] = { send (msg, None, Some(delay)) } def send(msg: T, messageAttributes: Option[Map[String, String]] = None, delay:Option[Int] = None): Future[MessageId] = { val request = new SendMessageRequest request.setMessageBody(msg) request.setQueueUrl(queueUrl) delay.map{ d => request.setDelaySeconds(d) } // foreach on an Option unfolds Some, and skips if None messageAttributes.foreach { ma => ma.foreach { case (k,v) => request.addMessageAttributesEntry(k, stringMessageAttribute(v)) } } val p = Promise[MessageId]() sqs.sendMessageAsync(request, new AsyncHandler[SendMessageRequest,SendMessageResult]{ def onError(exception: Exception) = p.failure(exception) def onSuccess(req: SendMessageRequest, res: SendMessageResult) = p.success(MessageId(res.getMessageId)) }) p.future } def sendBatch(msg: Seq[(T, Option[Map[String, String]])], delay: Option[Int] = None): Future[(Seq[MessageId],Seq[MessageId])] = { val request = new SendMessageBatchRequest() request.setQueueUrl(queueUrl) val entries = msg.zipWithIndex.map { case ((message, attributes), index) => val entry = new SendMessageBatchRequestEntry() delay.foreach(entry.setDelaySeconds(_)) attributes.foreach(m => m.foreach { case (k, v) => entry.addMessageAttributesEntry(k, stringMessageAttribute(v)) }) entry.setMessageBody(message) entry.setId(index.toString) entry } request.setEntries(entries.asJavaCollection) val p = Promise[(Seq[MessageId], Seq[MessageId])]() sqs.sendMessageBatchAsync(request, new AsyncHandler[SendMessageBatchRequest,SendMessageBatchResult]{ def onError(exception: Exception) = p.failure(exception) def onSuccess(req: SendMessageBatchRequest, res: SendMessageBatchResult) = p.success((res.getSuccessful.asScala.map(m => MessageId(m.getMessageId)), res.getFailed.asScala.map(m => MessageId(m.getId)))) }) p.future } def attributes(attributeNames:Seq[String]):Future[Map[String,String]]={ val request = new GetQueueAttributesRequest() request.setQueueUrl(queueUrl) import scala.collection.JavaConversions._ request.setAttributeNames(attributeNames) val p = Promise[Map[String,String]]() sqs.getQueueAttributesAsync(request, new AsyncHandler[GetQueueAttributesRequest, GetQueueAttributesResult]{ def onError(exception: Exception) = p.failure(exception) def onSuccess(req: GetQueueAttributesRequest, response: GetQueueAttributesResult) = { try { val rawMessages = response.getAttributes p.success(rawMessages.asScala.toMap) } catch { case t: Throwable => p.failure(t) } } }) p.future } protected def nextBatchRequestWithLock(requestMaxBatchSize: Int, lockTimeout: FiniteDuration, waitTimeout: FiniteDuration): Future[Seq[SQSMessage[T]]] = { val request = new ReceiveMessageRequest request.setMaxNumberOfMessages(requestMaxBatchSize) request.setVisibilityTimeout(lockTimeout.toSeconds.toInt) request.setWaitTimeSeconds(waitTimeout.toSeconds.toInt) request.setQueueUrl(queueUrl) request.withMessageAttributeNames("All") request.withAttributeNames("All") val p = Promise[Seq[SQSMessage[T]]]() sqs.receiveMessageAsync(request, new AsyncHandler[ReceiveMessageRequest, ReceiveMessageResult]{ def onError(exception: Exception) = p.failure(exception) def onSuccess(req: ReceiveMessageRequest, response: ReceiveMessageResult) = { try { val rawMessages = response.getMessages p.success(rawMessages.asScala.map { rawMessage => SQSMessage[T]( id = MessageId(rawMessage.getMessageId), body = rawMessage.getBody, consume = {() => val request = new DeleteMessageRequest request.setQueueUrl(queueUrl) request.setReceiptHandle(rawMessage.getReceiptHandle) sqs.deleteMessageAsync(request) }, setVisibilityTimeout = {(timeout: FiniteDuration) => val request = (new ChangeMessageVisibilityRequest) .withQueueUrl(queueUrl) .withReceiptHandle(rawMessage.getReceiptHandle) .withVisibilityTimeout(timeout.toSeconds.toInt) sqs.changeMessageVisibilityAsync(request) }, attributes = rawMessage.getAttributes.asScala.toMap, messageAttributes = rawMessage.getMessageAttributes.asScala.toMap) }) } catch { case t: Throwable => p.failure(t) } } }) p.future } def nextBatchWithLock(maxBatchSize: Int, lockTimeout: FiniteDuration, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Future[Seq[SQSMessage[T]]] = { val maxBatchSizePerRequest = 10 val requiredBatchRequests = Seq.fill(maxBatchSize / maxBatchSizePerRequest)(maxBatchSizePerRequest) :+ (maxBatchSize % maxBatchSizePerRequest) val futureBatches = requiredBatchRequests.collect { case requestMaxBatchSize if requestMaxBatchSize > 0 => nextBatchRequestWithLock(requestMaxBatchSize, lockTimeout, waitTimeout) } Future.sequence(futureBatches).map { batches => val messages = batches.flatten val distinctMessages = messages.map { message => message.id -> message }.toMap.values distinctMessages.toSeq } } def next(waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Future[Option[SQSMessage[T]]] = nextBatchRequestWithLock(1, FiniteDuration(0, SECONDS), waitTimeout).map(_.headOption) def nextWithLock(lockTimeout: FiniteDuration, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Future[Option[SQSMessage[T]]] = nextBatchRequestWithLock(1, lockTimeout, waitTimeout).map(_.headOption) def nextBatch(maxBatchSize: Int, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Future[Seq[SQSMessage[T]]] = nextBatchWithLock(maxBatchSize, FiniteDuration(0, SECONDS), waitTimeout) def enumerator(waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Enumerator[SQSMessage[T]] = Enumerator.repeatM[SQSMessage[T]]{ loopFuture(next(waitTimeout)(ec)) } def enumeratorWithLock(lockTimeout: FiniteDuration, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Enumerator[SQSMessage[T]] = Enumerator.repeatM[SQSMessage[T]]{ loopFuture(nextWithLock(lockTimeout, waitTimeout)) } def batchEnumerator(maxBatchSize:Int, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Enumerator[Seq[SQSMessage[T]]] = Enumerator.repeatM[Seq[SQSMessage[T]]]{ loopFutureBatch(nextBatch(maxBatchSize, waitTimeout)) } def batchEnumeratorWithLock(maxBatchSize:Int, lockTimeout: FiniteDuration, waitTimeout: FiniteDuration = DefaultWaitTimeout)(implicit ec: ExecutionContext): Enumerator[Seq[SQSMessage[T]]] = Enumerator.repeatM[Seq[SQSMessage[T]]]{ loopFutureBatch(nextBatchWithLock(maxBatchSize, lockTimeout, waitTimeout)) } private def loopFuture[A](f: => Future[Option[A]], promise: Promise[A] = Promise[A]())(implicit ec: ExecutionContext): Future[A] = { f.onComplete { case util.Success(Some(res)) => promise.success(res) case util.Success(None) => loopFuture(f, promise) case util.Failure(ex) => promise.failure(ex) } promise.future } private def loopFutureBatch[A](f: => Future[Seq[A]], promise: Promise[Seq[A]] = Promise[Seq[A]]())(implicit ec: ExecutionContext): Future[Seq[A]] = { f.onComplete { case util.Success(res) if res.nonEmpty => promise.success(res) case util.Success(res) if res.isEmpty => loopFutureBatch(f, promise) case util.Failure(ex) => promise.failure(ex) } promise.future } }
kifi/franz
src/main/scala/com/kifi/franz/SQSQueue.scala
Scala
mit
9,781
package app import service.{AccountService, SystemSettingsService} import SystemSettingsService._ import util.AdminAuthenticator import jp.sf.amateras.scalatra.forms._ class SystemSettingsController extends SystemSettingsControllerBase with SystemSettingsService with AccountService with AdminAuthenticator trait SystemSettingsControllerBase extends ControllerBase { self: SystemSettingsService with AccountService with AdminAuthenticator => private val form = mapping( "baseUrl" -> trim(label("Base URL", optional(text()))), "allowAccountRegistration" -> trim(label("Account registration", boolean())), "gravatar" -> trim(label("Gravatar", boolean())), "notification" -> trim(label("Notification", boolean())), "smtp" -> optionalIfNotChecked("notification", mapping( "host" -> trim(label("SMTP Host", text(required))), "port" -> trim(label("SMTP Port", optional(number()))), "user" -> trim(label("SMTP User", optional(text()))), "password" -> trim(label("SMTP Password", optional(text()))), "ssl" -> trim(label("Enable SSL", optional(boolean()))), "fromAddress" -> trim(label("FROM Address", optional(text()))), "fromName" -> trim(label("FROM Name", optional(text()))) )(Smtp.apply)), "ldapAuthentication" -> trim(label("LDAP", boolean())), "ldap" -> optionalIfNotChecked("ldapAuthentication", mapping( "host" -> trim(label("LDAP host", text(required))), "port" -> trim(label("LDAP port", optional(number()))), "bindDN" -> trim(label("Bind DN", optional(text()))), "bindPassword" -> trim(label("Bind Password", optional(text()))), "baseDN" -> trim(label("Base DN", text(required))), "userNameAttribute" -> trim(label("User name attribute", text(required))), "fullNameAttribute" -> trim(label("Full name attribute", optional(text()))), "mailAttribute" -> trim(label("Mail address attribute", text(required))), "tls" -> trim(label("Enable TLS", optional(boolean()))), "keystore" -> trim(label("Keystore", optional(text()))) )(Ldap.apply)) )(SystemSettings.apply) get("/admin/system")(adminOnly { admin.html.system(loadSystemSettings(), flash.get("info")) }) post("/admin/system", form)(adminOnly { form => saveSystemSettings(form) flash += "info" -> "System settings has been updated." redirect("/admin/system") }) }
wangsicong/gitbucket
src/main/scala/app/SystemSettingsController.scala
Scala
apache-2.0
2,795
/* * Copyright 2001-2014 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest.fixture trait FreeSpecLike extends FreeSpecRegistration with ClassicTests
cheeseng/scalatest
scalatest/src/main/scala/org/scalatest/fixture/FreeSpecLike.scala
Scala
apache-2.0
698
package vexriscv.experimental import spinal.core._ import spinal.lib.eda.bench.{AlteraStdTargets, Bench, Rtl, XilinxStdTargets} import spinal.lib.eda.icestorm.IcestormStdTargets import vexriscv.demo.{GenSmallestNoCsr, Murax, MuraxConfig} import vexriscv.plugin._ import vexriscv.{VexRiscv, VexRiscvConfig, plugin} /** * Created by spinalvm on 15.06.17. */ object GenMicro extends App{ def cpu() = { val removeOneFetchStage = true val pessimisticHazard = true val writeBackOpt = true val rspHoldValue = true val withCompliantCsr = true val withCompliantCsrPlusEmulation = true val earlyBranch = false val noShifter = false val onlyLoadWords = false new VexRiscv( config = VexRiscvConfig( plugins = List( // new PcManagerSimplePlugin( // resetVector = 0x00000000l, // relaxedPcCalculation = false // ), new IBusSimplePlugin( resetVector = 0x80000000l, cmdForkOnSecondStage = false, cmdForkPersistence = false, prediction = NONE, catchAccessFault = false, compressedGen = false, injectorStage = !removeOneFetchStage, rspHoldValue = rspHoldValue ), new DBusSimplePlugin( catchAddressMisaligned = withCompliantCsr, catchAccessFault = false, earlyInjection = writeBackOpt, onlyLoadWords = onlyLoadWords ), new DecoderSimplePlugin( catchIllegalInstruction = withCompliantCsrPlusEmulation ), new RegFilePlugin( regFileReadyKind = plugin.SYNC, zeroBoot = false, readInExecute = removeOneFetchStage, writeRfInMemoryStage = writeBackOpt ), new IntAluPlugin, new SrcPlugin( separatedAddSub = false, executeInsertion = removeOneFetchStage ), if(!pessimisticHazard) new HazardSimplePlugin( bypassExecute = false, bypassMemory = false, bypassWriteBack = false, bypassWriteBackBuffer = false, pessimisticUseSrc = false, pessimisticWriteRegFile = false, pessimisticAddressMatch = false ) else new HazardPessimisticPlugin(), new BranchPlugin( earlyBranch = earlyBranch, catchAddressMisaligned = withCompliantCsr, fenceiGenAsAJump = withCompliantCsr ), new YamlPlugin("cpu0.yaml") ) ++ (if(noShifter) Nil else List(new LightShifterPlugin)) ++ (if(!withCompliantCsr) Nil else List(new CsrPlugin( config = if(withCompliantCsrPlusEmulation)CsrPluginConfig( catchIllegalAccess = true, mvendorid = null, marchid = null, mimpid = null, mhartid = null, misaExtensionsInit = 0, misaAccess = CsrAccess.NONE, mtvecAccess = CsrAccess.NONE, mtvecInit = 0x80000020l, mepcAccess = CsrAccess.NONE, mscratchGen = false, mcauseAccess = CsrAccess.READ_ONLY, mbadaddrAccess = CsrAccess.NONE, mcycleAccess = CsrAccess.NONE, minstretAccess = CsrAccess.NONE, ecallGen = false, ebreakGen = false, wfiGenAsWait = false, wfiGenAsNop = false, ucycleAccess = CsrAccess.NONE, noCsrAlu = true ) else CsrPluginConfig( catchIllegalAccess = false, mvendorid = null, marchid = null, mimpid = null, mhartid = null, misaExtensionsInit = 0, misaAccess = CsrAccess.READ_ONLY, mtvecAccess = CsrAccess.WRITE_ONLY, mtvecInit = 0x80000020l, mepcAccess = CsrAccess.READ_WRITE, mscratchGen = true, mcauseAccess = CsrAccess.READ_ONLY, mbadaddrAccess = CsrAccess.READ_ONLY, mcycleAccess = CsrAccess.NONE, minstretAccess = CsrAccess.NONE, ecallGen = true, ebreakGen = true, wfiGenAsWait = false, wfiGenAsNop = true, ucycleAccess = CsrAccess.NONE ) ))) ) ) } SpinalConfig(mergeAsyncProcess = false).generateVerilog(cpu()) } object GenMicroSynthesis { def main(args: Array[String]) { val microNoCsr = new Rtl { override def getName(): String = "MicroNoCsr" override def getRtlPath(): String = "MicroNoCsr.v" SpinalVerilog(GenMicro.cpu().setDefinitionName(getRtlPath().split("\\.").head)) } val smallestNoCsr = new Rtl { override def getName(): String = "SmallestNoCsr" override def getRtlPath(): String = "SmallestNoCsr.v" SpinalVerilog(GenSmallestNoCsr.cpu().setDefinitionName(getRtlPath().split("\\.").head)) } val rtls = List(microNoCsr) // val rtls = List(smallestNoCsr) val targets = IcestormStdTargets().take(1) ++ XilinxStdTargets( vivadoArtix7Path = "/eda/Xilinx/Vivado/2017.2/bin" ) ++ AlteraStdTargets( quartusCycloneIVPath = "/eda/intelFPGA_lite/17.0/quartus/bin/", quartusCycloneVPath = "/eda/intelFPGA_lite/17.0/quartus/bin/" ) Bench(rtls, targets, "/eda/tmp/") } }
SpinalHDL/VexRiscv
src/test/scala/vexriscv/experimental/GenMicro.scala
Scala
mit
5,617
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.nn import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, Initializable} import com.intel.analytics.bigdl.optim.Regularizer import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule} import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric import com.intel.analytics.bigdl.tensor._ import com.intel.analytics.bigdl.utils.serializer._ import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter import com.intel.analytics.bigdl.utils.{Shape, T, Table} import scala.reflect.ClassTag import scala.reflect.runtime.universe /** * Apply a 2D full convolution over an input image. * * The input tensor is expected to be a 3D or 4D(with batch) tensor. Note that instead * of setting adjW and adjH, SpatialFullConvolution[Table, T] also accepts a table input * with two tensors: T(convInput, sizeTensor) where convInput is the standard input tensor, * and the size of sizeTensor is used to set the size of the output (will ignore the adjW and * adjH values used to construct the module). This module can be used without a bias by setting * parameter noBias = true while constructing the module. * * If input is a 3D tensor nInputPlane x height x width, * owidth = (width - 1) * dW - 2*padW + kW + adjW * oheight = (height - 1) * dH - 2*padH + kH + adjH * * Other frameworks call this operation "In-network Upsampling", "Fractionally-strided convolution", * "Backwards Convolution," "Deconvolution", or "Upconvolution." * * Reference Paper: Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic * segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. * 2015: 3431-3440. * * @param nInputPlane The number of expected input planes in the image given into forward() * @param nOutputPlane The number of output planes the convolution layer will produce. * @param kW The kernel width of the convolution. * @param kH The kernel height of the convolution. * @param dW The step of the convolution in the width dimension. Default is 1. * @param dH The step of the convolution in the height dimension. Default is 1. * @param padW The additional zeros added per width to the input planes. Default is 0. * @param padH The additional zeros added per height to the input planes. Default is 0. * @param adjW Extra width to add to the output image. Default is 0. * @param adjH Extra height to add to the output image. Default is 0. * @param nGroup Kernel group number. * @param noBias If bias is needed. * @param wRegularizer: instance of [[Regularizer]] * (eg. L1 or L2 regularization), applied to the input weights matrices. * @param bRegularizer: instance of [[Regularizer]] * applied to the bias. */ @SerialVersionUID(- 3110412775551642284L) class SpatialFullConvolution[T: ClassTag]( val nInputPlane: Int, val nOutputPlane: Int, val kW: Int, val kH: Int, val dW: Int = 1, val dH: Int = 1, val padW: Int = 0, val padH: Int = 0, var adjW: Int = 0, var adjH: Int = 0, val nGroup: Int = 1, val noBias: Boolean = false, var wRegularizer: Regularizer[T] = null, var bRegularizer: Regularizer[T] = null )(implicit ev: TensorNumeric[T]) extends AbstractModule[Activity, Tensor[T], T] with Initializable { require(adjW <= dW - 1 && adjH <= dH - 1, "SpatialFullConvolution: adjW=$adjW and adjH=$adjH must be smaller than " + s"(dW - 1)=${dW - 1} and (dH - 1)=${dH - 1} respectively") val weight: Tensor[T] = Tensor[T](nGroup, nInputPlane / nGroup, nOutputPlane / nGroup, kH, kW) val bias: Tensor[T] = if (noBias) null else Tensor[T](nOutputPlane) val gradWeight: Tensor[T] = Tensor[T](nGroup, nInputPlane / nGroup, nOutputPlane / nGroup, kH, kW) val gradBias: Tensor[T] = if (noBias) null else Tensor[T](nOutputPlane) private val columns: Tensor[T] = Tensor[T]() private val ones: Tensor[T] = Tensor[T]() private val zeroScalar: Tensor[T] = Tensor[T]() protected val onesBias = Tensor[T]() protected val onesBatch = Tensor[T]() protected var weightMM: Tensor[T] = null protected val gradientBiasMT: Tensor[T] = Tensor[T]() protected val gradWeightMMInBatch: Tensor[T] = Tensor[T]() protected val _1x1 = if (kH == 1 && kW == 1 && dW == 1 && dH == 1 && padH == 0 && padW == 0) { true } else { false } { val stdv = 1.0 / math.sqrt(kW * kH * nInputPlane) val wInit = RandomUniform(-stdv, stdv) val bInit = RandomUniform(-stdv, stdv) setInitMethod(wInit, bInit) } private var im2colTime = 0L private var col2imTime = 0L def getIm2ColTime(): Double = im2colTime def getCol2ImgTime(): Double = col2imTime override def reset(): Unit = { weightInitMethod.init(weight, VariableFormat.GP_IN_OUT_KW_KH) Option(bias).foreach(biasInitMethod.init(_, VariableFormat.ONE_D)) zeroGradParameters() } private def calculateAdj(targetSize : Int, ker : Int, pad : Int, stride : Int) : Int = { (targetSize + 2 * pad - ker) % stride } private def shapeCheck(input : Tensor[T], gradOutput : Tensor[T], weight : Tensor[T], bias : Tensor[T], kH : Int, kW : Int, dH : Int, dW : Int, padH : Int, padW : Int, adjH : Int, adjW : Int) : Unit = { require(kW > 0 && kH > 0, s"SpatialFullConvolution: kernel size should be greater than zero, " + s"but got kH: $kH kW: $kW") require(dW > 0 && dH > 0, s"SpatialFullConvolution: stride should be greater than zero, " + s"but got dH: $dH dW: $dW") require(weight.nDimension == 3 || weight.nDimension == 5, s"SpatialFullConvolution: 3D or 5D weight tensor expected, but got size: ${weight.dim()}") if (null != bias) { require(bias.nDimension() == 1, s"SpatialFullConvolution: bias should be 1 dim, but got dim:${bias.nDimension()}") require(bias.size(1) == weight.size(3) * weight.size(1), s"SpatialFullConvolution: bias's size equals to weight.size(3) * weight.size(1) " + s"= ${weight.size(1) * weight.size(3)}, but got size:${bias.size(1)}") } val ndim = input.nDimension val dimf = if (ndim == 4) 2 else 1 val dimh = if (ndim == 4) 3 else 2 val dimw = if (ndim == 4) 4 else 3 require(ndim == 3 || ndim == 4, s"SpatialFullConvolution: 3D or 4D input tensor expected, " + s"but got size: ${input.dim()}") val inputHeight = input.size(dimh) val inputWidth = input.size(dimw) val outputHeight = (inputHeight - 1) * dH - 2 * padH + kH + adjH val outputWidth = (inputWidth - 1) * dW - 2 * padW + kW + adjW require(outputWidth >= 1 || outputHeight >= 1, s"SpatialFullConvolution: Given input size: ($nInputPlane x $inputHeight x $inputWidth). " + s"Calculated output size: ($nOutputPlane x $outputHeight x $outputWidth). " + s"Output size is too small") require(input.nDimension() == ndim && input.size(dimf) == nInputPlane, s"SpatialFullConvolution: input's feature maps should be $nInputPlane, " + s"but got ${input.size(dimf)}") if (null != gradOutput) { require(gradOutput.nDimension() == ndim, s"SpatialFullConvolution: gradOutput should be " + s"$ndim, but got ${gradOutput.nDimension()}") require(gradOutput.size(dimf) == nOutputPlane && gradOutput.size(dimh) == outputHeight && gradOutput.size(dimw) == outputWidth, s"SpatialFullConvolution: GradOutput's size should be (${nOutputPlane} x ${outputHeight} " + s"x ${outputWidth}), but got (${gradOutput.size(dimf)} x ${gradOutput.size(dimh)} " + s"x ${gradOutput.size(dimw)})") } } protected def updateOutputFrame( input: Tensor[T], output: Tensor[T], weight: Tensor[T], bias: Tensor[T], columns: Tensor[T], kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, outputWidth: Int, outputHeight: Int)(implicit ev: TensorNumeric[T]): Unit = { val output2d = output.view(nOutputPlane, outputHeight * outputWidth) // M,N,K are dims of matrix A and B // (see https://software.intel.com/en-us/node/468480) val m = weight.size(2) val n = columns.size(2) val k = weight.size(1) // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) DenseTensorBLAS.gemm[T]( 'N', 'T', n, m, k, ev.one, input.storage().array(), input.storageOffset() - 1, n, weight.storage().array(), weight.storageOffset() - 1, m, ev.zero, columns.storage().array(), columns.storageOffset() - 1, n ) if (!_1x1) { val before = System.nanoTime() ev.getType() match { case DoubleType => NNPrimitive.col2imWithDilationDouble( columns.asInstanceOf[Tensor[Double]], output2d.asInstanceOf[Tensor[Double]], nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case FloatType => NNPrimitive.col2imWithDilationFloat( columns.asInstanceOf[Tensor[Float]], output2d.asInstanceOf[Tensor[Float]], nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case _ => throw new UnsupportedOperationException( "SpatialFullConvolution: only Float/Double type supported") } col2imTime += System.nanoTime() - before } if (null != bias) { output2d.addr(ev.one, bias, onesBias) } } override def computeOutputShape(inputShape: Shape): Shape = { val input = inputShape.toSingle().toArray require(input.length == 4, s"Deconvolution2D requires 4D input, but got input dim ${input.length}") val inputHeight = input(2) val inputWidth = input(3) val outputHeight = (inputHeight - 1) * dH - 2 * padH + kH + adjH val outputWidth = (inputWidth - 1) * dW - 2 * padW + kW + adjW Shape(input(0), nOutputPlane, outputHeight, outputWidth) } override def updateOutput(input: Activity): Tensor[T] = { val inputTensor: Tensor[T] = if (input.isInstanceOf[Table]) { if (gradInput == null || !gradInput.isInstanceOf[Table]) { gradInput = T() } val targetTensor: Tensor[T] = input.toTable[Tensor[T]](2) val tDims = targetTensor.dim() val tH = targetTensor.size(tDims - 1) val tW = targetTensor.size(tDims) adjW = calculateAdj(tW, kW, padW, dW) adjH = calculateAdj(tH, kH, padH, dH) input.toTable[Tensor[T]](1) } else { if (gradInput == null || gradInput.isInstanceOf[Table]) { gradInput = Tensor[T]() } input.toTensor[T] } shapeCheck(inputTensor, null, weight, bias, kH, kW, dH, dW, padH, padW, adjH, adjW) require(inputTensor.isContiguous(), "SpatialFullConvolution: input should be contiguous") val isBatch = if (inputTensor.nDimension() == 3) { // Force batch inputTensor.resize(1, inputTensor.size(1), inputTensor.size(2), inputTensor.size(3)) false } else { true } val inputHeight = inputTensor.size(3) val inputWidth = inputTensor.size(4) val outputHeight = (inputHeight - 1) * dH - 2 * padH + kH + adjH val outputWidth = (inputWidth - 1) * dW - 2 * padW + kW + adjW // Batch size + input planes val batchSize = inputTensor.size(1) // Resize output output.resize(batchSize, nOutputPlane, outputHeight, outputWidth) output.zero() if (onesBias.dim() != 1 || onesBias.size(1) != outputHeight * outputWidth) { onesBias.resize(Array(outputHeight * outputWidth)).fill(ev.one) } if (_1x1) { columns.set(inputTensor) columns.resize(Array(batchSize, nGroup, kW * kH * nOutputPlane / nGroup, inputHeight * inputWidth)) } else { columns.resize(Array(batchSize, nGroup, kW * kH * nOutputPlane / nGroup, inputHeight * inputWidth)) } // weight's storage might change, so make a view every time weightMM = weight.view(nGroup, nInputPlane / nGroup, nOutputPlane * kH * kW / nGroup) var elt = 1 // For each element in batch, do: while(elt <= batchSize) { // Matrix mulitply per output: val input_n = inputTensor.select(1, elt) require(input_n.isContiguous(), s"SpatialFullConvolution: input($elt) should be contiguous") val output_n = output.select(1, elt) val columns_n = columns.select(1, elt) var g = 0 while (g < nGroup) { val bias_g = if (!noBias) { bias.narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup) } else { null } updateOutputFrame( input_n.narrow(1, g * nInputPlane / nGroup + 1, nInputPlane / nGroup), output_n.narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup), weightMM.select(1, g + 1), bias_g, columns_n.select(1, g + 1), kW, kH, dW, dH, padW, padH, nInputPlane / nGroup, inputWidth, inputHeight, nOutputPlane / nGroup, outputWidth, outputHeight) g += 1 } elt += 1 } // Resize output if(!isBatch) { output.resize(nOutputPlane, outputHeight, outputWidth) inputTensor.resize(nInputPlane, inputHeight, inputWidth) } output } protected def updateGradInputFrame( gradInput: Tensor[T], gradOutput: Tensor[T], weight: Tensor[T], columns: Tensor[T], kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, outputHeight: Int, outputWidth: Int)(implicit ev: TensorNumeric[T]): Unit = { // Extract columns: val before = System.nanoTime() ev.getType() match { case DoubleType => NNPrimitive.im2colWithDilationDouble( gradOutput.asInstanceOf[Tensor[Double]], columns.asInstanceOf[Tensor[Double]], gradOutput.size(1), outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case FloatType => NNPrimitive.im2colWithDilationFloat( gradOutput.asInstanceOf[Tensor[Float]], columns.asInstanceOf[Tensor[Float]], gradOutput.size(1), outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case _ => throw new UnsupportedOperationException( s"SpatialFullConvolution: only Float/Double type supported") } im2colTime += System.nanoTime() - before // M,N,K are dims of matrix A and B // (see https://software.intel.com/en-us/node/468480) val m = weight.size(1) val n = columns.size(2) val k = weight.size(2) // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) DenseTensorBLAS.gemm[T]( 'N', 'N', n, m, k, ev.one, columns.storage().array(), columns.storageOffset() - 1, n, weight.storage().array(), weight.storageOffset() - 1, k, ev.zero, gradInput.storage().array(), gradInput.storageOffset() - 1, n ) } override def updateGradInput(input: Activity, gradOutput: Tensor[T]): Activity = { val inputTensor: Tensor[T] = if (input.isInstanceOf[Table]) { input.toTable[Tensor[T]](1) } else { input.toTensor[T] } val gradInputTensor: Tensor[T] = if (input.isInstanceOf[Table]) { if (!gradInput.toTable.contains(1)) { gradInput.toTable(1) = Tensor[T]() } gradInput.toTable[Tensor[T]](1) } else { gradInput.toTensor[T] } shapeCheck(inputTensor, gradOutput, weight, null, kH, kW, dH, dW, padH, padW, adjH, adjW) val isBatch = if (inputTensor.nDimension() == 3) { // Force batch inputTensor.resize(1, inputTensor.size(1), inputTensor.size(2), inputTensor.size(3)) gradOutput.resize(1, gradOutput.size(1), gradOutput.size(2), gradOutput.size(3)) false } else { true } val inputWidth = inputTensor.size(4) val inputHeight = inputTensor.size(3) val outputWidth = (inputWidth - 1) * dW - 2 * padW + kW + adjW val outputHeight = (inputHeight - 1) * dH - 2 * padH + kH + adjH // Batch size + input planes val batchSize = inputTensor.size(1) gradInputTensor.resizeAs(inputTensor) gradInputTensor.zero() if (_1x1) { columns.set(gradInputTensor) columns.resize(Array(batchSize, nGroup, kW * kH * nOutputPlane / nGroup, inputHeight * inputWidth)) } else { columns.resize(Array(batchSize, nGroup, kW * kH * nOutputPlane / nGroup, inputHeight * inputWidth)) } var elt = 1 // For each element in batch, do: while (elt <= batchSize) { // Matrix mulitply per sample: val gradInput_n = gradInputTensor.select(1, elt) val gradOutput_n = gradOutput.select(1, elt) val columns_n = columns.select(1, elt) var g = 0 while (g < nGroup) { updateGradInputFrame( gradInput_n.narrow(1, g * nInputPlane / nGroup + 1, nInputPlane / nGroup), gradOutput_n.narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup), weightMM.select(1, g + 1), columns_n.select(1, g + 1), kW, kH, dW, dH, padW, padH, outputHeight, outputWidth) g += 1 } elt += 1 } // Resize output if (!isBatch) { gradOutput.resize(nOutputPlane, outputHeight, outputWidth) inputTensor.resize(nInputPlane, inputHeight, inputWidth) gradInputTensor.resize(nInputPlane, inputHeight, inputWidth) } if (input.isInstanceOf[Table]) { val input2 = input.toTable[Tensor[T]](2) zeroScalar.resizeAs(input2).zero() ones.resizeAs(input2).fill(ev.one) val zeroTensor = zeroScalar.view(ones.size()).expandAs(input2) gradInput.toTable(1) = gradInputTensor gradInput.toTable(2) = zeroTensor } return gradInput } protected def calcGradParametersFrame( input: Tensor[T], gradOutput: Tensor[T], gradWeight: Tensor[T], gradBias: Tensor[T], columns: Tensor[T], outputHeight: Int, outputWidth: Int, scaleW: T, scaleB: T)(implicit ev: TensorNumeric[T]): Unit = { // Extract columns: val before = System.nanoTime() ev.getType() match { case DoubleType => NNPrimitive.im2colWithDilationDouble( gradOutput.asInstanceOf[Tensor[Double]], columns.asInstanceOf[Tensor[Double]], gradOutput.size(1), outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case FloatType => NNPrimitive.im2colWithDilationFloat( gradOutput.asInstanceOf[Tensor[Float]], columns.asInstanceOf[Tensor[Float]], gradOutput.size(1), outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, 1, 1 ) case t => throw new NotImplementedError(s"$t is not supported") } im2colTime += System.nanoTime() - before // M,N,K are dims of matrix A and B // (see https://software.intel.com/en-us/node/468480) val n = columns.size(1) // nOutputPlane * kh * kw var m = input.size(1) // nInputPlane var k = columns.size(2) // inputHeight * inputWidth if (scaleW != 0) { // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) DenseTensorBLAS.gemm[T]( 'T', 'N', n, m, k, scaleW, columns.storage().array(), columns.storageOffset() - 1, k, input.storage().array(), input.storageOffset() - 1, k, ev.one, gradWeight.storage().array(), gradWeight.storageOffset() - 1, n ) } // Do Bias: // M,N,K are dims of matrix A and B // (see https://software.intel.com/en-us/node/468480) m = gradOutput.size(1) k = outputHeight * outputWidth // Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices) if (null != gradBias && scaleB != 0) { ev.gemv( 'T', k, m, scaleB, gradOutput.storage().array(), gradOutput.storageOffset() - 1, k, ones.storage().array(), ones.storageOffset() - 1, 1, ev.one, gradBias.storage().array(), gradBias.storageOffset() - 1, 1 ) } } override def accGradParameters(input: Activity, gradOutput: Tensor[T]): Unit = { val inputTensor: Tensor[T] = if (input.isInstanceOf[Table]) { val targetTensor: Tensor[T] = input.toTable[Tensor[T]](2) val tDims = targetTensor.dim() val tH = targetTensor.size(tDims - 1) val tW = targetTensor.size(tDims) adjW = calculateAdj(tW, kW, padW, dW) adjH = calculateAdj(tH, kH, padH, dH) input.toTable[Tensor[T]](1) } else { input.toTensor } shapeCheck(inputTensor, gradOutput, gradWeight, gradBias, kH, kW, dH, dW, padH, padW, adjH, adjW) val isBatch = if (inputTensor.nDimension() == 3) { // Force batch inputTensor.resize(1, inputTensor.size(1), inputTensor.size(2), inputTensor.size(3)) gradOutput.resize(1, gradOutput.size(1), gradOutput.size(2), gradOutput.size(3)) false } else { true } val inputWidth = inputTensor.size(4) val inputHeight = inputTensor.size(3) val outputWidth = (inputWidth - 1) * dW - 2 * padW + kW + adjW val outputHeight = (inputHeight - 1) * dH - 2 * padH + kH + adjH // Batch size + input planes val batchSize = inputTensor.size(1) gradWeightMMInBatch.resize(Array(batchSize, nGroup, nInputPlane / nGroup, nOutputPlane * kH * kW / nGroup)) gradWeightMMInBatch.zero() gradientBiasMT.resize(Array(batchSize, nOutputPlane)) // Define a buffer of ones, for bias accumulation if (ones.nDimension != 2 || ones.size(1) * ones.size(2) < outputHeight * outputWidth) { // Resize plane and fill with ones... ones.resize(outputHeight, outputWidth) ones.fill(ev.one) } if (onesBatch.dim() != 1 || onesBatch.size(1) != batchSize) { onesBatch.resize(Array(batchSize)).fill(ev.one) } var elt = 1 // For each element in batch, do: while (elt <= batchSize) { // Matrix mulitply per output: val input_n = inputTensor.select(1, elt) val gradOutput_n = gradOutput.select(1, elt) val column_n = columns.select(1, elt) var g = 0 while (g < nGroup) { val gradBias_G = if (noBias) { null } else if (isBatch) { gradientBiasMT.select(1, elt).narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup) } else { gradBias.narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup) } calcGradParametersFrame( input_n.narrow(1, g * nInputPlane / nGroup + 1, nInputPlane / nGroup), gradOutput_n.narrow(1, g * nOutputPlane / nGroup + 1, nOutputPlane / nGroup), gradWeightMMInBatch.select(1, elt).select(1, g + 1), gradBias_G, column_n.select(1, g + 1), outputHeight, outputWidth, ev.fromType[Double](scaleW), ev.fromType[Double](scaleB)) g += 1 } elt += 1 } val gradView = gradWeightMMInBatch.view(batchSize, nOutputPlane * nInputPlane * kH * kW / nGroup).t val grad = gradWeight.view(nOutputPlane * nInputPlane * kH * kW / nGroup) grad.addmv(ev.one, ev.one, gradView, onesBatch) if (!noBias) gradBias.addmv(ev.one, ev.one, gradientBiasMT.t, onesBatch) // Resize if (!isBatch) { gradOutput.resize(nOutputPlane, outputHeight, outputWidth) inputTensor.resize(nInputPlane, inputHeight, inputWidth) } if (null != wRegularizer) { wRegularizer.accRegularization(weight, gradWeight, scaleW) } if (null != bRegularizer) { bRegularizer.accRegularization(bias, gradBias, scaleB) } } override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = { if (null == bias) { (Array(this.weight), Array(this.gradWeight)) } else { (Array(this.weight, this.bias), Array(this.gradWeight, this.gradBias)) } } override def clearState() : this.type = { super.clearState() columns.set() ones.set() zeroScalar.set() onesBias.set() onesBatch.set() weightMM = null gradientBiasMT.set() gradWeightMMInBatch.set() im2colTime = 0L col2imTime = 0L this } override def equals(obj: Any): Boolean = { if (!super.equals(obj)) { return false } if (!obj.isInstanceOf[SpatialFullConvolution[T]]) { return false } val other = obj.asInstanceOf[SpatialFullConvolution[T]] if (this.eq(other)) { return true } nInputPlane == other.nInputPlane && nOutputPlane == other.nOutputPlane && kW == other.kW && kH == other.kH && dW == other.dW && dH == other.dH && padW == other.padW && padH == other.padH && adjW == other.adjW && adjH == other.adjH && weight == other.weight && bias == other.bias && gradWeight == other.gradWeight && gradBias == other.gradBias } override def hashCode() : Int = { val seed = 37 var hash = super.hashCode() hash = hash * seed + nInputPlane.hashCode() hash = hash * seed + nOutputPlane.hashCode() hash = hash * seed + kW.hashCode() hash = hash * seed + kH.hashCode() hash = hash * seed + dW.hashCode() hash = hash * seed + dH.hashCode() hash = hash * seed + padW.hashCode() hash = hash * seed + padH.hashCode() hash = hash * seed + adjW.hashCode() hash = hash * seed + adjH.hashCode() hash = hash * seed + weight.hashCode() hash = hash * seed + bias.hashCode() hash = hash * seed + gradWeight.hashCode() hash = hash * seed + gradBias.hashCode() hash } override def toString(): String = { s"${getPrintName}($nInputPlane -> $nOutputPlane, " + s"$kW x $kH, $dW, $dH, $padW, $padH, $adjW, $adjH)" } } object SpatialFullConvolution extends ModuleSerializable { def apply[@specialized(Float, Double) T: ClassTag]( nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null )(implicit ev: TensorNumeric[T]) : SpatialFullConvolution[T] = { new SpatialFullConvolution[T](nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH, nGroup, noBias, wRegularizer, bRegularizer) } override def doLoadModule[T: ClassTag](context: DeserializeContext) (implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = { val attrMap = context.bigdlModule.getAttrMap val intParams = DataConverter.getAttributeValue(context, attrMap.get("intParams")). asInstanceOf[Array[Int]] val noBias = DataConverter.getAttributeValue(context, attrMap.get("noBias")). asInstanceOf[Boolean] val wRegularizer = DataConverter.getAttributeValue(context, attrMap.get("wRegularizer")). asInstanceOf[Regularizer[T]] val bRegularizer = DataConverter.getAttributeValue(context, attrMap.get("bRegularizer")). asInstanceOf[Regularizer[T]] val fullConv = SpatialFullConvolution(intParams(0), intParams(1), intParams(2), intParams(3), intParams(4), intParams(5), intParams(6), intParams(7), intParams(8), intParams(9), intParams(10), noBias, wRegularizer, bRegularizer) fullConv } override def doSerializeModule[T: ClassTag](context: SerializeContext[T], fullConvBuilder : BigDLModule.Builder) (implicit ev: TensorNumeric[T]) : Unit = { val fullConv = context.moduleData.module.asInstanceOf[SpatialFullConvolution[T]] val intParamsBuilder = AttrValue.newBuilder val intParams = Array(fullConv.nInputPlane, fullConv.nOutputPlane, fullConv.kW, fullConv.kH, fullConv.dW, fullConv.dH, fullConv.padW, fullConv.padH, fullConv.adjW, fullConv.adjH, fullConv.nGroup) DataConverter.setAttributeValue(context, intParamsBuilder, intParams, universe.typeOf[Array[Int]]) fullConvBuilder.putAttr("intParams", intParamsBuilder.build) val biasBuilder = AttrValue.newBuilder DataConverter.setAttributeValue(context, biasBuilder, fullConv.noBias, universe.typeOf[Boolean]) fullConvBuilder.putAttr("noBias", biasBuilder.build) val wRegularizerBuilder = AttrValue.newBuilder DataConverter.setAttributeValue(context, wRegularizerBuilder, fullConv.wRegularizer, ModuleSerializer.regularizerType) fullConvBuilder.putAttr("wRegularizer", wRegularizerBuilder.build) val bRegularizerBuilder = AttrValue.newBuilder DataConverter.setAttributeValue(context, bRegularizerBuilder, fullConv.bRegularizer, ModuleSerializer.regularizerType) fullConvBuilder.putAttr("bRegularizer", bRegularizerBuilder.build) } }
wzhongyuan/BigDL
spark/dl/src/main/scala/com/intel/analytics/bigdl/nn/SpatialFullConvolution.scala
Scala
apache-2.0
29,702
package oauthorize.test import org.specs2.mutable._ import org.specs2.runner._ import org.junit.runner._ import play.api.test._ import play.api.test.Helpers._ import play.api.libs.json._ import oauth2.spec.AccessTokenErrors._ import oauth2.spec.Req._ import oauth2.spec.GrantTypes import oauthorize.model._ import org.apache.commons.codec.binary.Base64 import java.net.URLDecoder import java.net.URLEncoder import play.api.Play import oauthorize.sample.Oauth import play.api.libs.ws._ import com.ning.http.client.Realm import play.api.libs.ws.WS.WSRequestHolder @RunWith(classOf[JUnitRunner]) class ClientCredentialsApplicationSpec extends PlaySpecification with TestHelpers { "Application" should { s"send 401 if unregistered client" in new WithServer(port = 3333) { val resp = postfWoRegisteredClient("/oauth/token", grant_type -> GrantTypes.client_credentials) resp.status must equalTo(401) (resp.json \ "error") must equalTo(JsString(invalid_client)) (resp.json \ "error_description") must equalTo(JsString("unregistered client")) } s"send 401 if bad client credentials" in new WithServer(port = 3333) { val client = Some(Oauth2Client("the_client", Oauth.hashClientSecret(SecretInfo("wrongpass")), Seq("global"), Seq(GrantTypes.authorization_code), RedirectUri, Seq(), 3600, 3600, None, false)) val resp = postf("/oauth/token", grant_type -> GrantTypes.client_credentials)(client) resp.status must equalTo(401) (resp.json \ "error") must equalTo(JsString(invalid_client)) (resp.json \ "error_description") must equalTo(JsString("bad credentials")) } "respond with 400 if incorrect scope" in new WithServer(port = 3333) { import oauth2.spec.AccessTokenResponseParams._ val c = Oauth.storeClient(Oauth2Client("the_client", hash("pass"), Seq("global"), Seq(GrantTypes.client_credentials, GrantTypes.refresh_token), RedirectUri, Seq(), 3600, 3600, None, true)) val resp = postf("/oauth/token", grant_type -> GrantTypes.client_credentials, "scope" -> "nonexistent")(Some(c)) resp.status must equalTo(400) (resp.json \ "error") must equalTo(JsString(invalid_scope)) (resp.json \ "error_description") must equalTo(JsString("unsupported scope")) } "respond with 400 if client_credentials unsupported" in new WithServer(port = 3333) { import oauth2.spec.AccessTokenResponseParams._ val c = Oauth.storeClient(Oauth2Client("the_client", hash("pass"), Seq("global"), Seq(GrantTypes.authorization_code), RedirectUri, Seq(), 3600, 3600, None, true)) val resp = postf("/oauth/token", grant_type -> GrantTypes.client_credentials, "scope" -> "global")(Some(c)) resp.status must equalTo(400) (resp.json \ "error") must equalTo(JsString(unsupported_grant_type)) (resp.json \ "error_description") must equalTo(JsString("unsupported grant type")) } "respond with 200 and the access token if request is correct" in new WithServer(port = 3333) { import oauth2.spec.AccessTokenResponseParams._ val c = Oauth.storeClient(Oauth2Client("the_client", hash("pass"), Seq("global"), Seq(GrantTypes.client_credentials, GrantTypes.refresh_token), RedirectUri, Seq(), 3600, 3600, None, true)) val resp = postf("/oauth/token", grant_type -> GrantTypes.client_credentials, "scope" -> "global")(Some(c)) resp.status must equalTo(200) (resp.json \ access_token).as[String] must beMatching(".{53}") (resp.json \ refresh_token).as[String] must beMatching(".{53}") (resp.json \ token_type).as[String] must equalTo("bearer") (resp.json \ scope).as[String] must equalTo("global") (resp.json \ expires_in).as[Int] must beGreaterThan(0) } "respond with 200 and correct access token to refresh token created by client_credentials" in new WithServer(port = 3333) { import oauth2.spec.AccessTokenResponseParams._ val c = Oauth.storeClient(Oauth2Client("the_client", hash("pass"), Seq("global"), Seq(GrantTypes.client_credentials, GrantTypes.refresh_token), RedirectUri, Seq(), 3600, 3600, None, true)) val resp = postf("/oauth/token", grant_type -> GrantTypes.client_credentials, "scope" -> "global")(Some(c)) val refToken = (resp.json \ refresh_token).as[String] resp.status must equalTo(200) val accessResp = postf1("/oauth/token", refresh_token -> refToken, grant_type -> GrantTypes.refresh_token) accessResp.status must equalTo(200) (accessResp.json \ access_token).as[String] must beMatching(".{53}") (accessResp.json \ token_type).as[String] must equalTo("bearer") (accessResp.json \ scope).as[String] must equalTo("global") (accessResp.json \ expires_in).as[Int] must beGreaterThan(0) } } }
adaptorel/oauthorize
oauthorize-play-sample/test/ClientCredentialsApplicationSpec.scala
Scala
apache-2.0
4,829
/* * Copyright 2017 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.gov.hmrc.ct.ct600a.v3 import uk.gov.hmrc.ct.box.{Calculated, CtBoxIdentifier, CtOptionalBigDecimal} import uk.gov.hmrc.ct.ct600.v3.calculations.LoansToParticipatorsCalculator import uk.gov.hmrc.ct.ct600a.v3.retriever.CT600ABoxRetriever case class A20(value: Option[BigDecimal]) extends CtBoxIdentifier(name = "A20 - Tax chargeable on loans - (Tax due before any relief for loans repaid, released, or written off after the end of the period)") with CtOptionalBigDecimal object A20 extends Calculated[A20, CT600ABoxRetriever] with LoansToParticipatorsCalculator { override def calculate(fieldValueRetriever: CT600ABoxRetriever): A20 = { calculateA20(fieldValueRetriever.a15(), fieldValueRetriever.loansToParticipators(), fieldValueRetriever.cp2()) } }
pncampbell/ct-calculations
src/main/scala/uk/gov/hmrc/ct/ct600a/v3/A20.scala
Scala
apache-2.0
1,374