|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
|
|
|
|
from plotting.run_multi_seed_analysis import run_multiple_seeds_and_save_csv
|
|
|
|
|
|
def analyze_model_saliency(
|
|
config, seeds=[0, 1, 2, 3, 4], max_steps=200, visualize=True
|
|
):
|
|
"""
|
|
Analyze the saliency maps of a model with the given configuration.
|
|
|
|
Args:
|
|
config (dict): Dictionary containing model configuration with keys:
|
|
- ENV_NAME: Environment name
|
|
- PARTIAL: Whether to use partial observations
|
|
- MEMORY_TYPE: Type of memory to use
|
|
- OBS_SIZE: Size of observations
|
|
- MODEL_SEED: Seed used for the model (to locate model file)
|
|
seeds (list): List of seeds to run the analysis with
|
|
max_steps (int): Maximum number of steps per episode
|
|
visualize (bool): Whether to create visualization plots
|
|
|
|
Returns:
|
|
dict: A dictionary containing:
|
|
- csv_path: Path to the CSV file with results
|
|
- avg_plot_path: Path to the average saliency plot
|
|
- individual_plot_path: Path to the individual seeds saliency plot
|
|
"""
|
|
output_csv = f'saliency_results_{config["MEMORY_TYPE"]}_{config["ENV_NAME"]}_Partial={config["PARTIAL"]}.csv'
|
|
|
|
|
|
output_csv = run_multiple_seeds_and_save_csv(
|
|
config, seeds, max_steps=max_steps, output_csv=output_csv
|
|
)
|
|
|
|
result_paths = {"csv_path": output_csv}
|
|
|
|
if visualize:
|
|
|
|
results_df = pd.read_csv(output_csv)
|
|
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
sns.set_style("whitegrid")
|
|
|
|
|
|
pos_columns = [col for col in results_df.columns if col.startswith("pos_")]
|
|
|
|
|
|
for idx, row in results_df.iterrows():
|
|
seed = row["seed"]
|
|
positions = [float(col.split("_")[1]) for col in pos_columns]
|
|
values = [row[col] for col in pos_columns]
|
|
plt.plot(positions, values, marker="o", markersize=3, label=f"Seed {seed}")
|
|
|
|
plt.xlabel("Normalized Episode Position")
|
|
plt.ylabel("Saliency Magnitude")
|
|
plt.title(
|
|
f"Terminal Saliency Distribution by Seed\n{config['MEMORY_TYPE']} on {config['ENV_NAME']}"
|
|
)
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
|
|
individual_plot_path = f"saliency_plot_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_Partial={config['PARTIAL']}.png"
|
|
plt.savefig(individual_plot_path, dpi=300)
|
|
plt.close()
|
|
|
|
|
|
avg_values = [results_df[col].mean() for col in pos_columns]
|
|
std_values = [results_df[col].std() for col in pos_columns]
|
|
positions = [float(col.split("_")[1]) for col in pos_columns]
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
plt.plot(positions, avg_values, "b-", linewidth=2, label="Mean Distribution")
|
|
plt.fill_between(
|
|
positions,
|
|
[avg - std for avg, std in zip(avg_values, std_values)],
|
|
[avg + std for avg, std in zip(avg_values, std_values)],
|
|
color="b",
|
|
alpha=0.2,
|
|
label="Standard Deviation",
|
|
)
|
|
|
|
plt.xlabel("Normalized Episode Position")
|
|
plt.ylabel("Average Saliency Magnitude")
|
|
plt.title(
|
|
f"Average Terminal Saliency Distribution Across Seeds\n{config['MEMORY_TYPE']} on {config['ENV_NAME']}"
|
|
)
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
|
|
avg_plot_path = f"avg_saliency_plot_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_Partial={config['PARTIAL']}.png"
|
|
plt.savefig(avg_plot_path, dpi=300)
|
|
plt.close()
|
|
|
|
result_paths["individual_plot_path"] = individual_plot_path
|
|
result_paths["avg_plot_path"] = avg_plot_path
|
|
|
|
print(f"Analysis complete. Results saved to: {output_csv}")
|
|
return result_paths
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
configs = [
|
|
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 3,
|
|
},
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 3,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "fart",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 3,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 3,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "lru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "AutoEncodeEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 1,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "BattleShipEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "CartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "CountRecallEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "MineSweeperEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 2,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "NavigatorEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 0,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": False,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 3,
|
|
},
|
|
{
|
|
"ENV_NAME": "NoisyCartPoleEasy",
|
|
"PARTIAL": True,
|
|
"MEMORY_TYPE": "mingru",
|
|
"OBS_SIZE": 128,
|
|
"MODEL_SEED": 4,
|
|
},
|
|
]
|
|
|
|
|
|
seeds = [0, 1, 2, 3, 4]
|
|
|
|
for config in configs:
|
|
print(
|
|
f"Analyzing {config['MEMORY_TYPE']} on {config['ENV_NAME']} (Partial={config['PARTIAL']}, Seed={config['MODEL_SEED']})"
|
|
)
|
|
|
|
results = analyze_model_saliency(
|
|
config=config, seeds=seeds, max_steps=200, visualize=True
|
|
)
|
|
print(f"Successfully analyzed: {results}")
|
|
|