|
"""
|
|
This file is to plot the MDP and POMDP results separately.
|
|
"""
|
|
|
|
import jax.numpy as jnp
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
from jax import lax
|
|
from scipy.interpolate import interp1d
|
|
|
|
import wandb
|
|
|
|
|
|
def f(name):
|
|
WINDOW_SIZE = 100
|
|
SIGMA = 100
|
|
INTERP_POINTS = 1000
|
|
NORMALIZING_FACTOR = 200
|
|
|
|
ENV_MAX_STEPS = {
|
|
"CountRecallEasy": 2e7,
|
|
"CountRecallMedium": 2e7,
|
|
"CountRecallHard": 2e7,
|
|
"BattleShipEasy": 2e7,
|
|
"BattleShipMedium": 2e7,
|
|
"BattleShipHard": 2e7,
|
|
|
|
}
|
|
AXIS_FONT = {"fontsize": 9, "labelpad": 8}
|
|
TICK_FONT = {"labelsize": 8}
|
|
|
|
api = wandb.Api()
|
|
runs = api.runs("bolt-um/Arcade-RLC")
|
|
filtered_runs = [run for run in runs if run.state == "finished"]
|
|
print(f"Total runs: {len(runs)}, Completed runs: {len(filtered_runs)}")
|
|
|
|
METRIC_MAPPING = {
|
|
"PQN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
|
|
"PQN_RNN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
|
|
"default": {"return_col": "episodic return", "time_col": "TOTAL_TIMESTEPS"},
|
|
}
|
|
|
|
def process_run(run):
|
|
"""Process individual W&B run with dynamic max steps per environment"""
|
|
try:
|
|
config = {k: v for k, v in run.config.items() if not k.startswith("_")}
|
|
env_name = config.get("ENV_NAME", "UnknownEnv")
|
|
partial_status = str(config.get("PARTIAL", False))
|
|
|
|
if env_name in ENV_MAX_STEPS:
|
|
env_max_step = ENV_MAX_STEPS[env_name]
|
|
else:
|
|
env_max_step = 1e7
|
|
|
|
alg_name = config.get("ALG_NAME", "").upper()
|
|
memory_type = "MLP"
|
|
if alg_name == "PQN_RNN":
|
|
memory_type = config.get("MEMORY_TYPE", "Unknown").capitalize()
|
|
|
|
metric_map = METRIC_MAPPING.get(alg_name, METRIC_MAPPING["default"])
|
|
|
|
history = list(
|
|
run.scan_history(
|
|
keys=[metric_map["return_col"], metric_map["time_col"]]
|
|
)
|
|
)
|
|
history = pd.DataFrame(
|
|
history, columns=[metric_map["return_col"], metric_map["time_col"]]
|
|
)
|
|
|
|
history["true_steps"] = history[metric_map["time_col"]].clip(
|
|
upper=env_max_step
|
|
)
|
|
history = history.sort_values(metric_map["time_col"]).drop_duplicates(
|
|
subset=["true_steps"]
|
|
)
|
|
|
|
if len(history) < 2:
|
|
print(f"Skipping {run.name} due to insufficient data points")
|
|
return None
|
|
|
|
|
|
first_return = history[metric_map["return_col"]].iloc[0]
|
|
last_return = history[metric_map["return_col"]].iloc[-1]
|
|
|
|
|
|
unified_steps = np.linspace(0, env_max_step, INTERP_POINTS)
|
|
unified_steps = np.round(unified_steps, decimals=5)
|
|
scale_factor = NORMALIZING_FACTOR / env_max_step
|
|
|
|
|
|
interp_func = interp1d(
|
|
history["true_steps"],
|
|
history[metric_map["return_col"]],
|
|
kind="linear",
|
|
bounds_error=False,
|
|
fill_value=(first_return, last_return),
|
|
)
|
|
interpolated_returns = interp_func(unified_steps)
|
|
|
|
smoothed_returns = (
|
|
pd.Series(interpolated_returns)
|
|
.ewm(span=100, adjust=False, min_periods=1)
|
|
.mean()
|
|
.values
|
|
)
|
|
|
|
|
|
|
|
cummax_returns = lax.cummax(jnp.array(smoothed_returns))
|
|
|
|
return pd.DataFrame(
|
|
{
|
|
"Algorithm": f"{alg_name} ({memory_type})",
|
|
"Return": interpolated_returns,
|
|
"Smoothed Return": smoothed_returns,
|
|
"Cummax Return": np.array(cummax_returns),
|
|
"True Steps": unified_steps,
|
|
"EnvName": env_name,
|
|
"Partial": partial_status,
|
|
"Seed": str(config.get("SEED", 0)),
|
|
"run_id": run.id,
|
|
"StepsNormalized": unified_steps * scale_factor,
|
|
"EnvMaxStep": env_max_step,
|
|
"ScaleFactor": scale_factor,
|
|
}
|
|
)
|
|
|
|
except Exception as e:
|
|
print(f"Error processing {run.name}: {str(e)}")
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runs_df = pd.read_csv("F:/desktop/env_group.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pivot = {}
|
|
for algo, group in runs_df.groupby("Algorithm"):
|
|
table = group.pivot(index="EnvName", columns="Partial", values=["mean", "std"])
|
|
pivot[algo] = table
|
|
|
|
table.columns = table.columns.map(
|
|
lambda x: (
|
|
"MDP"
|
|
if (x[0] == "mean" and str(x[1]) == "False")
|
|
else (
|
|
"POMDP"
|
|
if (x[0] == "mean" and str(x[1]) == "True")
|
|
else (
|
|
"MDP_std"
|
|
if (x[0] == "std" and str(x[1]) == "False")
|
|
else (
|
|
"POMDP_std"
|
|
if (x[0] == "std" and str(x[1]) == "True")
|
|
else f"{x[0]}_{x[1]}"
|
|
)
|
|
)
|
|
)
|
|
)
|
|
)
|
|
|
|
|
|
table["MDP+POMDP"] = table[["MDP", "POMDP"]].mean(axis=1)
|
|
|
|
|
|
table["MDP+POMDP_std"] = table[["MDP_std", "POMDP_std"]].mean(axis=1)
|
|
for algo, table in pivot.items():
|
|
print(f"\n{algo}")
|
|
print(table)
|
|
|
|
|
|
table.to_csv(f"{algo}.csv", index=True)
|
|
|
|
|
|
for i in range(1):
|
|
f(f"plot_{i}")
|
|
|