content
stringlengths 42
6.51k
|
---|
def add_up(n):
"""
Adds up all numbers from 1 to n.
"""
numbers = range(1, n + 1)
return sum(numbers)
|
def serial_to_chamber(x: int) -> int:
"""Convert serialized chamber id to chamber number."""
return (x & 0x0000003F) + 1
|
def _to_list(obj):
"""Make object into a list"""
return [obj] if not isinstance(obj, list) else obj
|
def u_func(c, h, mp):
""" Calculates utility of chosen (consumption, housing) bundle.
Args:
c (float): consumption
h (float): housing
mp (dict): model parameters.
Returns:
(float): utility of bundle
"""
return (c**(1-mp['phi']))*(h**mp['phi'])
|
def JsonString_to_JsonFile(json_string,file_name="test.json"):
"""Transforms a json string to a json file"""
out_file=open(file_name,'w')
out_file.write(json_string)
out_file.close()
return file_name
|
def _py_assert_stmt(expression1, expression2):
"""Overload of assert_stmt that executes a Python assert statement."""
assert expression1, expression2()
return None
|
def do_the_diff(defaults, overrides):
"""Diff two yaml loaded objects, returning diffs in a namedtuple
:param defaults: File you wish to compare against, the base.
:param overrides: File you wish to compare, the mask.
:return: stuff
:rtype: dict
"""
new_combined_diff = {}
for key in overrides.keys():
if key not in defaults.keys():
new_combined_diff[key] = overrides[key]
else:
if defaults[key] == overrides[key]:
pass
else:
if 'NEW_DEFAULTS' not in new_combined_diff.keys():
new_combined_diff['NEW_DEFAULTS'] = {}
if 'OLD_OVERRIDES' not in new_combined_diff.keys():
new_combined_diff['OLD_OVERRIDES'] = {}
new_combined_diff['NEW_DEFAULTS'][key] = defaults[key]
new_combined_diff['OLD_OVERRIDES'][key] = overrides[key]
return new_combined_diff
|
def pad(l, until=0, fillvalue=None):
"""
Pad a list.
"""
for _ in range(until - len(l)):
l.insert(0, fillvalue)
return l
|
def convert (number):
"""
:param number: int
:return: str - as requested
"""
result = ''
if (number % 3) == 0:
result = 'Pling'
if (number % 5) == 0:
result += 'Plang'
if (number % 7) == 0:
result += 'Plong'
if len (result) == 0:
return f'{number}'
return result
|
def get_total_colors(color_frequencies: dict) -> int:
"""Count total amount of colors"""
return len([p for p in color_frequencies.values() if p])
|
def generate_variable(r, c, n):
"""Creates a label for the coordinates and contents of a cell."""
return f'{r},{c}_{n}'
|
def merge_timelines(timeline_a, timeline_b):
"""Takes two timelines, both of which must contain a list of times and a
list of values, and combines them into a single timeline containing a list
of times and added values, so that if an interval in both timelines
overlap, then the returned timeline will show the sum of the two values
during that interval."""
combined_times = []
combined_values = []
# Reverse the timelines so that we pop the earliest values first.
times_a = timeline_a[0]
values_a = timeline_a[1]
times_b = timeline_b[0]
values_b = timeline_b[1]
times_a.reverse()
values_a.reverse()
times_b.reverse()
values_b.reverse()
# Track the a and b values independently
current_a_value = 0
current_b_value = 0
# Returns the next time from either timeline to appended to the output.
def get_next_smallest_time():
if (len(times_a) == 0) and (len(times_b) == 0):
raise Exception("Internal error combining timelines.")
if (len(times_a) == 0):
return times_b[-1]
if (len(times_b) == 0):
return times_a[-1]
if times_a[-1] <= times_b[-1]:
return times_a[-1]
return times_b[-1]
# Run the update_output() closure until all of the original timeline values
# have been combined into the output.
while (len(times_a) > 0) or (len(times_b) > 0):
t = get_next_smallest_time()
# It's possible that both timelines have a change in value at the same
# time.
if (len(times_a) != 0) and (times_a[-1] == t):
times_a.pop()
current_a_value = values_a.pop()
if (len(times_b) != 0) and (times_b[-1] == t):
times_b.pop()
current_b_value = values_b.pop()
combined_times.append(t)
combined_values.append(current_a_value + current_b_value)
return [combined_times, combined_values]
|
def nexus_infile(myid,itwist):
""" nexus style input name
Args:
myid (str): prefix
itwist (int): twist index
Returns:
str: input filename
"""
prefix = myid.split('.')[0]
infile = '.'.join([prefix,'g%s'%str(itwist).zfill(3),'twistnum_%d'%itwist,'in','xml'])
return infile
|
def xlen(seq):
"""
Returns the length of a sequence or None.
Parameters
----------
seq : iterable or None
Returns
-------
int or None
"""
if (seq is None): return seq
return len(seq)
|
def divider_row(sizes):
""" Create a one line string of '-' characters of given length in each column """
s = ''
for i in range(len(sizes)):
s = s + '-'.ljust(sizes[i], '-') + ' '
return s
|
def isempty(s):
"""return if string is empty
"""
if s is None or s == "" or s == "-":
return True
else:
return False
|
def count_vowels(s):
""" (str) -> int
Return the number of vowels (a, e, i, o, and u) in s.
>>> count_vowels('Happy Anniversary!')
5
>>> count_vowels('xyz')
0
"""
num_vowels = 0
for char in s:
if char in 'aeiouAEIOU':
num_vowels = num_vowels + 1
return num_vowels
|
def should_force_reinit(config):
"""Configs older than 2.0.0 should be replaced"""
ver = config.get("cli_version", "0.0.0")
return int(ver.split(".")[0]) < 2
|
def extract_features(document, word_features):
"""
Used to get a word vector required by the naive bayes classifier for training and during streaming
:param document: tokens
:param word_features: all words
:return:
"""
document_words = set(document)
features = []
for word in word_features:
features.append(word in document_words)
return features
|
def get_errors_from_serializer(serializer_errors):
"""
Extracts the errors from the serializer errors into a list of strings.
"""
errors = []
for key, details in serializer_errors.items():
for error in details:
errors.append(str(error))
return errors
|
def check_parameter_string(candidate, param):
"""Checks that a parameter is a string or a list of strings.
"""
parameters = {
"site": "NWIS station id(s) should be a string or list of strings,"
+ "often in the form of an eight digit number enclosed in quotes.",
"parameterCd": "NWIS parameter codes are five-digit strings that specify "
+ "the parameter that is being measured at the site. Common "
+ "codes are '00060' for stream stage in feet, '00065' for "
+ "stream discharge in cubic feet per second, and '72019' for "
+ "groundwater levels. Not all sites collect data for all "
+ "parameters. See a complete list of physical parameters here: "
+ "https://help.waterdata.usgs.gov/parameter_cd?group_cd=PHY "
+ "You may request multiple parameters by submitting a comma-"
+ "delimited string of codes with no spaces, or by submitting "
+ "a list of codes, like this: parameterCd = '00065,00060' or "
+ "parameterCd = ['00065', '00060'] ",
"county": "The NWIS county parameter accepts a five-digit string or "
+ "a list of five-digit strings to select all of the sites "
+ "within a county or list of counties. "
+ "Example: '51059' or ['51059', '51061'] are acceptable.",
"state": "This parameter uses US two-letter postal codes "
+ "such as 'MD' for Maryland or 'AZ' for Arizona.",
"default": "This parameter should be a string or a list of strings.",
}
if param in parameters:
msg = parameters[param] + " Actual value: {}".format(candidate)
else:
msg = (
"This parameter should be a string or a list of strings."
+ " Actual value: {}".format(candidate)
)
if candidate is None:
return None
elif isinstance(candidate, str) and candidate:
return candidate
elif (isinstance(candidate, list) or isinstance(candidate, tuple)) and candidate:
for s in candidate:
if not isinstance(s, str):
raise TypeError(msg + " bad element: {}".format(s))
return ",".join([str(s) for s in candidate])
else:
raise TypeError(msg)
|
def scalar_mul(eta, x):
"""Scalar multiplication. Return a list with the same dimensions as `x`
where each element in `x` is multiplied by `eta`.
Args:
eta (float) Scalar to apply to `x`.
x (list): Vector to scale. 1 or 2 dimensional.
Returns:
list: A scaled list. Same dimensions as `x`.
"""
if isinstance(x[0], list): # 2 dimensional
return [[eta * x_ij for x_ij in x_i] for x_i in x]
else: # 1 dimensional
return [eta * x_i for x_i in x]
|
def calc_lcoe_om(fom, vom, cf=1):
"""
:param fom: Fixed operation and maintentance costs as CURR/KWY
:param vom: Variable cost in the form of CURR/ KWH
:param cf: Capacity factor assumed for the plant, default is 1
:return: LCOE O&M component in CURR per KWh
"""
fixed = fom / (cf * 8600)
om_lcoe = fixed + vom
return om_lcoe
|
def process_funql(funql):
"""Remove quotes and unnecessary spaces."""
funql = funql.replace("'", "")
funql = funql.replace(", ", ",")
funql = funql.replace(", ", ",")
funql = funql.replace(" ,", ",")
return funql
|
def intersection(L1, L2):
"""
Find the intersection point of the two lines
A1 * x + B1 * y = C1
A2 * x + B2 * y = C2
The intersection point is:
x = Dx/D
y = Dy/D
The determinant D
A1 B1 which is L1[0] L1[1]
A2 B2 L2[0] L2[1]
Dx:
C1 B1 which is L1[2] L1[1]
C2 B2 L2[2] L2[1]
and Dy:
A1 C1 which is L1[0] L1[2]
A2 C2 L2[0] L2[2]
Input: Line1, Line2 the two intersecting lines
Output: x, y the point of intersection
"""
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x, y
else:
return False
|
def parse_line(line):
"""Parse a line of instructions and return a (step, requires) tuple"""
assert line.startswith("Step ") and line.endswith(" can begin.")
word = line.split()
return word[7], word[1]
|
def quantize(rgb, quanta):
"""map a tuple (r,g,b) each between 0 and 255
to our discrete color buckets"""
r,g,b = rgb
r = max([q for q in quanta if q <= r])
g = max([q for q in quanta if q <= g])
b = max([q for q in quanta if q <= b])
return (r,g,b)
|
def create_word_vocab(input_data):
"""create word vocab from input data"""
word_vocab = {}
for sentence in input_data:
words = sentence.strip().split(' ')
for word in words:
if word not in word_vocab:
word_vocab[word] = 1
else:
word_vocab[word] += 1
return word_vocab
|
def list_merger(base_list, overlay_list):
"""It is important to note we expect both arg lists to be non-repeating.
Merges lists such that the `base_list` is preserved and
the `overlay_list` is overlaid onto it.
Example:
source = ['Node', 'Node1']
target = ['Node', 'Jack']
returns = ['Node', 'Jack', 'Node1']
:param base_list: Source list of object we want to overlay.
:param overlay_list: Target list of object we want overlay onto.
:return: Non-repeating list of object.
"""
merged_list = base_list[:]
result_len = len(merged_list)
if base_list == overlay_list:
return merged_list
src_set = set(base_list)
tgt_set = set(overlay_list)
tgt_order = overlay_list[:]
src_order = base_list[:]
if not tgt_set.intersection(src_set):
only_source = [n for n in src_order if n not in tgt_order]
else:
only_source = []
if tgt_set.issubset(src_set):
return merged_list
idx = 0
for item in tgt_order:
if item not in src_order:
offset = 0
try:
_ = src_order[idx]
valid = True
except IndexError:
valid = False
if valid:
prev_idx = max(0, idx - 1)
match = src_order[prev_idx] == tgt_order[prev_idx]
if prev_idx >= 0 and match:
offset = 0
elif match:
offset = prev_idx
else:
next_idx = idx + 1
try:
match = src_order[next_idx] == tgt_order[next_idx]
if match:
offset = next_idx
except IndexError:
pass
insert = idx + offset
if insert >= 0 or result_len < 3:
merged_list.insert(insert, item)
else:
merged_list.append(item)
else:
merged_list.insert(idx, item)
result_len += 1
idx += 1
for item in reversed(only_source):
merged_list.remove(item)
merged_list.insert(0, item)
return merged_list
|
def point_sub(a, b):
""" Subtract two 2d vectors
(Inline this if you can, function calls are slow)
"""
return (a[0] - b[0], a[1] - b[1])
|
def unwrap(mappings):
"""Remove the set() wrapper around values in component-to-team mapping."""
for c in mappings['component-to-team']:
mappings['component-to-team'][c] = mappings['component-to-team'][c].pop()
return mappings
|
def choice_id(choice):
"""
Returns Choice type field's choice id for form rendering
"""
try:
resp = choice[0]
except IndexError:
resp = ''
pass
return resp
|
def camel_case(name):
# type: (str) -> str
"""Return a camelCased version of a string."""
return name[0:1].lower() + name[1:]
|
def _validate(validation_func, err, *args):
"""Generic validation function that returns default on
no errors, but the message associated with the err class
otherwise. Passes all other arguments into the validation function.
:param validation_func: The function used to perform validation.
:param err: The error class to catch.
:param args: The arguments to pass into the validation function.
:return: Validation error message, or empty string if no error.
"""
try:
validation_func(*args)
except err as validation_err:
return str(validation_err)
return ''
|
def sort_by(comparator, list):
"""Sorts the list according to the supplied function"""
return sorted(list, key=comparator)
|
def gcd_recursive_by_divrem(m, n):
"""
Computes the greatest common divisor of two numbers by recursively getting remainder from
division.
:param int m: First number.
:param int n: Second number.
:returns: GCD as a number.
"""
if n == 0:
return m
return gcd_recursive_by_divrem(n, m % n)
|
def sort_and_print(body, num):
"""
Sorts the values of dictionaries and prints respective
top sentences
:param body: list of dictionaries of 'sentence': score
:param num: no of sentences to be printed
:return: prints
"""
result = []
rank = []
for sentdict in body:
for sent in sentdict:
rank.append(sentdict[sent])
rank = list(set(rank)) # remove duplicates
rank = sorted(rank, reverse=True)
count = 0
# print top 'num' sentences in same order as of original document
for sentdict in body:
for sent in sentdict:
if count == num:
break
for r in rank[:num]:
if sentdict[sent] == r:
result.append(sent)
count += 1
return result
|
def _clean_message(output: str) -> str:
"""Strips the succeeding new line and carriage return characters."""
return output.rstrip("\n\r")
|
def time_is_hh_mm_ss_ms(str_hh_mm_ss_ms):
"""test if time value is format hh:mm:ss.ms
Args:
str_hh_mm_ss_ms (str): time value
Raises:
Exception: incorrrect format
Returns:
bol: True if valid
"""
try:
hr, min, sec = map(float, str_hh_mm_ss_ms.split(':'))
return True
except:
raise Exception(f'The time value "{str_hh_mm_ss_ms} "' +
'need to be in format: hh:mm:ss.ms')
|
def reverse_dict(dct):
""" Reverse the {key:val} in dct to
{val:key}
"""
newmap = {}
for (key, val) in dct.items():
newmap[val] = key
return newmap
|
def _get_interior_years(from_year, to_year, start_year, end_year):
"""Return the Rule years that overlap with the Match[start_year, end_year].
"""
years = []
for year in range(start_year, end_year + 1):
if from_year <= year and year <= to_year:
years.append(year)
return years
|
def ctd_sbe37im_preswat(p0, p_range_psia):
"""
Description:
OOI Level 1 Pressure (Depth) data product, which is calculated using
data from the Sea-Bird Electronics conductivity, temperature and depth
(CTD) family of instruments.
This data product is derived from SBE 37IM instruments and applies to
CTDMO instruments, all series, and specifically processes telemetered and
recovered_host (not recovered_instrument) data.
Implemented by:
2014-02-05: Russell Desiderio. Initial Code
Usage:
p = ctd_sbe37im_preswat(p0, p_range_psia)
where
p = sea water pressure (PRESWAT_L1) [dbar]
p0 = raw pressure (PRESWAT_L0) [counts]
p_range_psia = pressure range calibration coefficient [psia]
References:
OOI (2012). Data Product Specification for Pressure (Depth). Document
Control Number 1341-00020. https://alfresco.oceanobservatories.org/
(See: Company Home >> OOI >> Controlled >> 1000 System Level >>
1341-00020_Data_Product_SPEC_PRESWAT_OOI.pdf)
"""
# compute pressure range in units of dbar
p_range_dbar = (p_range_psia - 14.7) * 0.6894757
# compute pressure in dbar and return
p_dbar = p0 * p_range_dbar / (0.85 * 65536.0) - 0.05 * p_range_dbar
return p_dbar
|
def M_from_t(t,n,M0,t0):
"""
find mean anomaly at time t
Parameters
----------
t
time to find M for
n
mean motion
M0
reference mean anomaly at time t0
t0
reference time t0
Note that M = 0 at pericentre so if t0 = pericentre passage time then M0 = 0
"""
M = M0 + (n*(t-t0))
return M
|
def decode_cp1252(string):
"""
CSV files look to be in CP-1252 encoding (Western Europe)
Decoding to ASCII is normally fine, except when it gets an O umlaut, for example
In this case, values must be decoded from cp1252 in order to be added as unicode
to the final XML output.
This function helps do that in selected places, like on author surnames
"""
if not string:
return string
try:
# See if it is not safe to encode to ascii first
string.encode("ascii")
except (UnicodeEncodeError, UnicodeDecodeError):
# Wrap the decode in another exception to make sure this never fails
try:
string = string.decode("cp1252")
except (UnicodeEncodeError, UnicodeDecodeError, AttributeError):
pass
return string
|
def count_mismatches(aligned_seq1, aligned_seq2):
"""
:param seq1, aligned_seq2: aligned sgRNA and genomic target (seq+PAM)
:return:
"""
cnt = 0
ending = len(aligned_seq1) - 3
for i in range(ending):
cnt += int(aligned_seq1[i] != aligned_seq2[i] and aligned_seq1[i] != "-" and aligned_seq2[i] != "-")
return cnt
|
def decimal_to_binary_util(val):
"""
Convert 8-bit decimal number to binary representation
:type val: str
:rtype: str
"""
bits = [128, 64, 32, 16, 8, 4, 2, 1]
val = int(val)
binary_rep = ''
for bit in bits:
if val >= bit:
binary_rep += str(1)
val -= bit
else:
binary_rep += str(0)
return binary_rep
|
def get_catalog_record_embargo_available(cr):
"""
Get access rights embargo available date as string for a catalog record.
:param cr:
:return:
"""
return cr.get('research_dataset', {}).get('access_rights', {}).get('available', '')
|
def _damerau_levenshtein(a, b):
"""Returns Damerau-Levenshtein edit distance from a to b."""
memo = {}
def distance(x, y):
"""Recursively defined string distance with memoization."""
if (x, y) in memo:
return memo[x, y]
if not x:
d = len(y)
elif not y:
d = len(x)
else:
d = min(
distance(x[1:], y) + 1, # correct an insertion error
distance(x, y[1:]) + 1, # correct a deletion error
distance(x[1:], y[1:]) + (x[0] != y[0])) # correct a wrong character
if len(x) >= 2 and len(y) >= 2 and x[0] == y[1] and x[1] == y[0]:
# Correct a transposition.
t = distance(x[2:], y[2:]) + 1
if d > t:
d = t
memo[x, y] = d
return d
return distance(a, b)
|
def itb(num: int, length: int):
#print(num)
"""
Converts integer to bit array
Someone fix this please :D - it's horrible
:param num: number to convert to bits
:param length: length of bits to convert to
:return: bit array
"""
if num >= 2**length:
num = 2**length - 1
if num < 0:
num = 0
num = int(num)
if length == 13:
return [int(i) for i in '{0:013b}'.format(num)]
if length == 16:
return [int(i) for i in '{0:016b}'.format(num)]
if length == 17:
return [int(i) for i in '{0:017b}'.format(num)]
if length == 23:
return [int(i) for i in '{0:023b}'.format(num)]
|
def get_filesize_est(n_regions):
""" Get a filesize estimate given the number of regions in grid encoding.
Parameters
----------
n_regions: int
number of regions encoded by grid encoding
Returns
-------
float
Estimated filesize
"""
return 0.00636654 * n_regions + 3.392864597
|
def sext(binary, bits):
"""
Sign-extend the binary number, check the most significant
bit
"""
neg = binary & (1 << (bits - 1))
if neg:
mask = 0
for i in range(bits, 16):
mask |= (0b1 << i)
return (mask | binary)
else:
return binary
|
def zfp_precision_opts(precision):
"""Create a compression options for ZFP in fixed-precision mode
The float precision parameter is the number of uncompressed bits per value.
"""
zfp_mode_precision = 2
return zfp_mode_precision, 0, precision, 0, 0, 0
|
def schur_representative_from_index(i0, i1):
"""
Simultaneously reorder a pair of tuples to obtain the equivalent
element of the distinguished basis of the Schur algebra.
.. SEEALSO::
:func:`schur_representative_indices`
INPUT:
- A pair of tuples of length `r` with elements in `\{1,\dots,n\}`
OUTPUT:
- The corresponding pair of tuples ordered correctly.
EXAMPLES::
sage: from sage.algebras.schur_algebra import schur_representative_from_index
sage: schur_representative_from_index([2,1,2,2], [1,3,0,0])
((1, 2, 2, 2), (3, 0, 0, 1))
"""
w = []
for i, val in enumerate(i0):
w.append((val, i1[i]))
w.sort()
i0 = []
i1 = []
for pair in w:
i0.append(pair[0])
i1.append(pair[1])
return (tuple(i0), tuple(i1))
|
def get_qualified_name(_object):
"""Return the Fully Qualified Name from an instance or class."""
module = _object.__module__
if hasattr(_object, '__name__'):
_class = _object.__name__
else:
_class = _object.__class__.__name__
return module + '.' + _class
|
def is_valid(x, y, grid, x_max, y_max):
"""Check the bounds and free space in the map"""
if 0 <= x < x_max and 0 <= y < y_max:
return grid[x][y] == 0
return False
|
def keys_of(d):
"""
Returns the keys of a dict.
"""
try:
return list(d.keys())
except:
raise ValueError('keys_of(d) must be passed a dict')
|
def sint(mixed, default=None):
"""Safe int cast."""
try:
return int(mixed)
except:
return default
|
def quick_exponent_with_mod(base, power, modulo):
"""Compute quickly the exponent within a given modulo range.
Will apply a modulo with the specified base at every iteration of the
exponentiation algorithm, making sure the result is in the given range."""
# 'powers' will be a list of the base with powers of two applied, i.e.:
# with base==3, powers==[3, 3^2, 3^4, 3^8, 3^16, ...]
powers = [base]
# for each power of two
i = 2
while i <= power:
# compute base^(2^i) and add it to the list
powers.append((powers[-1] * powers[-1]) % modulo)
# next power of two
i *= 2
# list of booleans corresponding to which powers of two to include to make
# up the whole exponent
powers_to_include = list(bool(int(digit)) for digit in bin(power)[2:][::-1])
# accumulator for the product
accumulator = 1
# for each factor==base^(2^index)
for index, factor in enumerate(powers):
# if this power should be included
if powers_to_include[index]:
# multiply and apply modulo
accumulator *= factor
accumulator %= modulo
# return the product accumulator
return accumulator
|
def list_to_string(list_to_convert):
"""
list_to_convert -> List that should be converted into string
e.g. '[1,2,False,String]'
returns string
"""
list_to_string = '['
for j in range(len(list_to_convert)):
list_to_string += str(list_to_convert[j]) + ','
# remove last ','
list_to_string = list_to_string[:-1]
list_to_string += ']'
return list_to_string
|
def compute_U(Sigma_sfr, Sigma_g):
"""
Ionizaton parameter as a function of star formation and gas surface densities.
reference:
Eq. 38 Ferrara et al. 2019
inputs:
Sigma_sfr in Msun/yr/kpc^2
Sigma_g in Msun/kpc^2
"""
out= (1.7e+14)*(Sigma_sfr/(Sigma_g*Sigma_g))
return out
|
def _coerce_ascii(c):
"""
coerce an ASCII value into the alphabetical range
"""
while True:
if c > 127: c -= 128
if c < 64: c += 64
if (c >= 65 and c <= 90) or (c >= 97 and c <= 122):
return c
c += 7
|
def status_8bit(inp):
"""
Return the status of each bit in a 8 byte status
"""
idx = 7
matches = {}
for num in (2 ** p for p in range(idx, -1, -1)):
if ((inp - num) > 0) or ((inp - num) == 0):
inp = inp - num
matches[idx] = True
else:
matches[idx] = False
idx -= 1
return matches
|
def query_url(namespace, cls_version,
extension=''):
"""
"""
url = 'https://kg.humanbrainproject.org/query/%s/%s/fg' %\
(namespace.lower(), cls_version)
return url+extension
|
def prune_position(step):
"""Keep only ``left`` and ``top`` keys in step position."""
return {k: v for k, v in step.get('position', {}).items() if k in ('left', 'top')}
|
def _header_name(channel_name: str, i_bin: int, unique: bool = True) -> str:
"""Constructs the header name for a column in a yield table.
There are two modes: by default the names are unique (to be used as keys). With
``unique=False``, the region names are skipped for bins beyond the first bin (for
less redundant output).
Args:
channel_name (str): name of the channel (phase space region)
i_bin (int): index of bin in channel
unique (bool, optional): whether to return a unique key, defaults to True
Returns:
str: the header name to be used for the column
"""
if i_bin == 0 or unique:
header_name = f"{channel_name}\nbin {i_bin+1}"
else:
header_name = f"\nbin {i_bin+1}"
return header_name
|
def pack_message_other(code, data):
"""
Method by which other modules messages are (re-)packed
:param code: the code of the message
:param data: the data to pack
:return: dict, code and data
"""
b_data = bytes(data, 'ascii')
return {'code': code, 'data': b_data}
|
def solution(N):
"""
DINAKAR
convert to binary and find gap by just knowing the entry of 1 and remember the last index of 1
also remember the longest in each iteration when 1 is encountered
"""
longest = -1
last_longest_index = 0
ar = bin(N).replace("0b", "")
print(ar)
for i in range(len(ar)):
if ar[i] == "1":
print("1 found...at index " + str(i))
longest = max(longest, i - last_longest_index - 1)
last_longest_index = i
print("current longest " + str(longest))
return 0 if longest == -1 else longest
|
def get_item_safe(sequence, index=0, default=""):
"""
Retrives the item at index in sequence
defaults to default if the item des not exist
"""
try:
item = sequence[index]
except IndexError:
item = default
return item
|
def merge_datasets(datasets):
""" Merge a list of datasets into one dataset """
dataset = datasets[0]
for i in range(1, len(datasets)):
dataset.extend(datasets[i])
return dataset
|
def get_subdict(d, param):
"""
Get a subdictionary d : key -> value
in a dictionary of form d : key -> (d : param -> value)
"""
return dict([(key, d[key][param]) for key in d.keys()])
|
def check_correlation_method(method):
"""Confirm that the input method is currently supported.
Parameters
----------
method : str
The correlation metric to use.
Returns
-------
str
Correctly formatted correlation method.
"""
method = method.lower()
avail_methods = ["pearson", "spearman", "kendall"]
assert method in avail_methods, "method {} not supported, select one of {}".format(
method, avail_methods
)
return method
|
def get_label_from_iri_list(iri_list, iri2label_dict):
""" Helper for getting labels of a df with IRI lists as values using an iri2label dict"""
label_list = [iri2label_dict[iri] for iri in iri_list]
return label_list
|
def StripComments(lines):
"""strip comments and empty lines
"""
result = []
found_comment = 0
for line in lines:
if not line.strip():
continue
if found_comment:
if line.startswith(" */"):
found_comment = 0
else:
if line.startswith(" //"):
continue
elif line.startswith(" /*"):
found_comment = 1
else:
result.append(line)
return result
|
def _number(string):
"""
Extracts an int from a string.
Returns a 0 if None or an empty string was passed.
"""
if not string:
return 0
else:
try:
return int(string)
except ValueError:
return float(string)
|
def next_month_is(year, month):
"""
Short function to get the next month given a particular month of interest
:param year: year of interest
:param month: month of interest
:type year: integer
:type month: integer
"""
next_year = year
next_month = month + 1
if next_month > 12:
next_month = 1
next_year = year + 1
return next_year, next_month
|
def example_func(parameter):
""" This is an example function """
try:
var = int(parameter)
result = var * var
except ValueError:
result = 'Nan'
return result
|
def removeTags(fileStr):
"""
Removes all tags from the chat that start with '<xyz' and end with '</xyz'.
"""
current = 0
while True:
#print("Next char:",fileStr[current])
openAngleBracketIndex = fileStr.find('<',current)
if openAngleBracketIndex == -1:
break
spaceIndex = fileStr.find(' ', openAngleBracketIndex+1)
if spaceIndex == -1:
break
else:
current = spaceIndex
endStr = "</"+fileStr[openAngleBracketIndex+1:spaceIndex]+'>'
endIndex = fileStr.find(endStr, spaceIndex)
if endIndex == -1:
current = spaceIndex
else:
endIndex = endIndex+len(endStr)
#print(openAngleBracketIndex, endStr, endIndex+len(endStr))
fileStr = fileStr[:openAngleBracketIndex]+ \
fileStr[endIndex:]
#print(fileStr)
current = openAngleBracketIndex
return fileStr
|
def class_ldap(log):
"""An error classifier.
log the console log text
Return None if not recognized, else the error type string.
"""
if 'failed to bind to LDAP server' in log:
return 'LDAP failure'
return None
|
def array_chunk_loop(array, size):
"""Return an array containing chunks of the specified array with the specified size, using a loop."""
result = []
chunk = []
for i, value in enumerate(array):
chunk.append(value)
if len(chunk) == size or i + 1 == len(array):
result.append(chunk[:])
chunk.clear()
return result
|
def flatten(data):
"""
Flatten a list/tuple/set of any nestedness.
"""
result = []
for item in data:
if isinstance(item, (tuple, list, set)):
result.extend(flatten(item))
else:
result.append(item)
return result
|
def check_line_for_error(line,errormsg):
"""
Parse given line for VASP error code
Args:
line (string): error statement
Returns:
errormsg (string): VASP error code
"""
if 'inverse of rotation matrix was not found (increase SYMPREC)' in line:
errormsg.append('inv_rot_mat')
elif 'WARNING: Sub-Space-Matrix is not hermitian in DAV' in line:
errormsg.append('subspacematrix')
elif 'Routine TETIRR needs special values' in line:
errormsg.append('tetirr')
elif 'Could not get correct shifts' in line:
errormsg.append('incorrect_shift')
elif ('REAL_OPTLAY: internal error' in line
or 'REAL_OPT: internal ERROR' in line):
errormsg.append('real_optlay')
elif 'ERROR RSPHER' in line:
errormsg.append('rspher')
elif 'DENTET' in line:
errormsg.append('dentet')
elif 'TOO FEW BANDS' in line:
errormsg.append('too_few_bands')
elif 'BRIONS problems: POTIM should be increased' in line:
errormsg.append('brions')
elif 'internal error in subroutine PRICEL' in line:
errormsg.append('pricel')
elif 'One of the lattice vectors is very long (>50 A), but AMIN' in line:
errormsg.append('amin')
elif ('ZBRENT: fatal internal in' in line
or 'ZBRENT: fatal error in bracketing' in line):
errormsg.append('zbrent')
elif 'ERROR in subspace rotation PSSYEVX' in line:
errormsg.append('pssyevx')
elif 'WARNING in EDDRMM: call to ZHEGV failed' in line:
errormsg.append('eddrmm')
elif 'Error EDDDAV: Call to ZHEGV failed' in line:
errormsg.append('edddav')
elif 'EDWAV: internal error, the gradient is not orthogonal' in line:
errormsg.append('grad_not_orth')
elif 'ERROR: SBESSELITER : nicht konvergent' in line:
errormsg.append('nicht_konv')
elif 'ERROR EDDIAG: Call to routine ZHEEV failed!' in line:
errormsg.append('zheev')
elif 'ELF: KPAR>1 not implemented' in line:
errormsg.append('elf_kpar')
elif 'RHOSYG internal error' in line:
errormsg.append('rhosyg')
elif 'POSMAP internal error: symmetry equivalent atom not found' in line:
errormsg.append('posmap')
elif 'internal error in subroutine IBZKPT' in line:
errormsg.append('ibzkpt')
elif 'internal error in subroutine SGRCON' in line:
errormsg.append('sgrcon')
return errormsg
|
def auc(points):
"""Calulate the area under the curve using trapezoid rule."""
return sum((p[0]-lp[0])/100*(lp[1]+(p[1]-lp[1])/2.0)/100
for p, lp in zip(points[1:], points[:-1]))
|
def learner_stats_id(ctr_info):
"""Assemble stats id."""
broker_id = ctr_info.get('broker_id')
explorer_id = ctr_info.get('explorer_id')
agent_id = ctr_info.get('agent_id')
return "_".join(map(str, (broker_id, explorer_id, agent_id)))
|
def isSet(input):
"""
This function check input is a set object.
:param input: unknown type object
"""
return isinstance(input, set)
|
def pascal_triangle(n):
"""pascal triangle"""
if (n <= 0):
return []
init = [[1]]
for i in range(1, n):
if (i == 1):
init.append([1, 1])
else:
init.append([0] * (i + 1))
init_point = 0
for num in range(i + 1):
if (num == 0):
init[i][num] = 1
continue
elif (num == i):
init[i][num] = 1
continue
if (init_point != i - 1):
val = init[i - 1][init_point] + init[i - 1][init_point + 1]
init[i][num] = val
init_point += 1
return(init)
|
def fnSeconds_To_Hours(time_period):
"""
Convert from seconds to hours, minutes and seconds.
Date: 16 October 2016
"""
num_hrs = int(time_period/(60.*60.));
time_period =time_period - num_hrs*60.*60.;
num_mins = int(time_period/60.);
num_secs = time_period - num_mins*60.;
return num_hrs,num_mins,num_secs
|
def with_subfolder(location: str, subfolder: str):
"""
Wrapper to appends a subfolder to a location.
:param location:
:param subfolder:
:return:
"""
if subfolder:
location += subfolder + '/'
return location
|
def merge(dict1, dict2, def1, def2, func):
"""Merge two nested dictionaries, using default values when it makes sense"""
assert isinstance(dict1, dict)
assert isinstance(dict2, dict)
toReturn = {}
keys1 = set(dict1.keys())
keys2 = set(dict2.keys())
for key in keys1 | keys2: # change this to |
val1 = dict1.get(key, None)
val2 = dict2.get(key, None)
if isinstance(val1,dict) or isinstance(val2,dict):
toReturn[key] = merge(val1 or {}, val2 or {}, def1, def2, func)
else:
toReturn[key] = func(val1 or def1, val2 or def2)
return toReturn
|
def create_mute_list(time_list):
"""
Args:
subs (tuple): a list of tuples (start,end)
Returns:
"""
muteTimeList = []
for timePair in time_list:
lineStart = timePair[0]
lineEnd = timePair[1]
muteTimeList.append("volume=enable='between(t," + format(lineStart-.1, '.3f') + "," + format(lineEnd+.1, '.3f') + ")':volume=0")
return muteTimeList
|
def is_convolution_or_linear(layer):
""" Return True if `layer` is a convolution or a linear layer
"""
classname = layer.__class__.__name__
if classname.find('Conv') != -1:
return True
if classname.find('Linear') != -1:
return True
return False
|
def ngram(max_ngram_size: int, s1: str, s2: str, *,
weighted: bool = False, any_mismatch: bool = False, longer_worse: bool = False) -> int:
"""
Calculates how many of n-grams of s1 are contained in s2 (the more the number, the more words
are similar).
Args:
max_ngram_size: n in ngram
s1: string to compare
s2: string to compare
weighted: substract from result for ngrams *not* contained
longer_worse: add a penalty when second string is longer
any_mismatch: add a penalty for any string length difference
FIXME: Actually, the last two settings do NOT participate in ngram counting by themselves, they
are just adjusting the final score, but that's how it was structured in Hunspell.
"""
l2 = len(s2)
if l2 == 0:
return 0
l1 = len(s1)
nscore = 0
# For all sizes of ngram up to desired...
for ngram_size in range(1, max_ngram_size + 1):
ns = 0
# Check every position in the first string
for pos in range(l1 - ngram_size + 1):
# ...and if the ngram of current size in this position is present in ANY place in second string
if s1[pos:pos+ngram_size] in s2:
# increase score
ns += 1
elif weighted:
# For "weighted" ngrams, decrease score if ngram is not found,
ns -= 1
if pos == 0 or pos + ngram_size == l1:
# ...and decrease once more if it was the beginning or end of first string
ns -= 1
nscore += ns
# there is no need to check for 4-gram if there were only one 3-gram
if ns < 2 and not weighted:
break
# longer_worse setting adds a penalty if the second string is longer than first
if longer_worse:
penalty = (l2 - l1) - 2
# any_mismatch adds a penalty for _any_ string length difference
elif any_mismatch:
penalty = abs(l2 - l1) - 2
else:
penalty = 0
return nscore - penalty if penalty > 0 else nscore
|
def get_audio_args(name, data, sample_rate=None, step=None, **kwargs):
"""
Wrapper to parse args
"""
return (name, data, step, sample_rate)
|
def _crossing(n_x, n_y, n, shift):
"""tells you if the shift crosses PBC in the x or why direction
:param n_x: system size in x
:type n_x: int
:param n_y: system_size in y
:type n_y: int
:param n: what index you are currently at
:type n: int
:param shift: whoch way you want to shift to
:type shift: list
"""
x = n%n_x
y = n // n_x
x_new = x + shift[0]
x_looped = x//n_x != x_new //n_x
y_new = y + shift[1]
y_looped = y//n_y != y_new //n_y
return([shift[0]*x_looped, shift[1]*y_looped])
|
def qmul(q1, q2):
"""
Return quaduple (4 tuple) result of quaternion multiplation of q1 * q2
Quaternion multiplication is not commutative q1 * q2 != q2 * q1
Quaternions q1 and q2 are sequences are of the form [w, x, y, z]
"""
w = q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2] - q1[3] * q2[3]
x = q1[0] * q2[1] + q1[1] * q2[0] + q1[2] * q2[3] - q1[3] * q2[2]
y = q1[0] * q2[2] + q1[2] * q2[0] + q1[3] * q2[1] - q1[1] * q2[3]
z = q1[0] * q2[3] + q1[3] * q2[0] + q1[1] * q2[2] - q1[2] * q2[1]
return (w, x, y, z)
|
def build_placements(shoes):
""" (list of str) -> dict of {str: list of int}
Return a dictionary where each key is a company
and each value is a
list of placements by people wearing shoes
made by that company.
>>> result = build_placements(['Saucony', 'Asics', \
'Asics', 'NB', 'Saucony', 'Nike', 'Asics', 'Adidas', \
'Saucony', 'Asics'])
>>> result == {'Saucony': [1, 5, 9], \
'Asics': [2, 3, 7, 10], 'NB': [4], 'Nike': [6], \
'Adidas': [8]}
True
"""
placements = {}
position = 1
for brand in shoes:
if brand not in placements:
placements[brand] = []
placements[brand].append(position)
position = position + 1
return placements
|
def get_path(obj, *keys):
"""Extract a value from a JSON data structure."""
for key in keys:
if not obj:
return obj
if isinstance(key, int):
try:
obj = obj[key]
except IndexError:
return None
elif isinstance(key, str):
obj = obj.get(key)
else:
raise TypeError(f"Invalid key type: {type(key).__qualname__}")
return obj
|
def decimal_to_string(decimal):
"""
"""
# Don't love this
problem_fractions = {0.13: "1/8", 0.67: "2/3", 0.33: "1/3"}
if decimal in problem_fractions:
return problem_fractions.get(decimal)
ratio = float(decimal).as_integer_ratio()
return "/".join(str(d) for d in ratio)
|
def key_to_list(key):
"""make a list that contains primaryKey of this ingredient"""
return [x.strip() for x in key.split(',')]
|
def formatannotation_fwdref(annotation, base_module=None):
"""the python 3.7 _formatannotation with an extra repr() for 3rd party
modules"""
if getattr(annotation, "__module__", None) == "typing":
return repr(annotation).replace("typing.", "")
if isinstance(annotation, type):
if annotation.__module__ in ("builtins", base_module):
return annotation.__qualname__
return repr(annotation.__module__ + "." + annotation.__qualname__)
return repr(annotation)
|
def prod(iterator):
"""Product of the values in this iterator."""
p = 1
for v in iterator:
p *= v
return p
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.