content
stringlengths
42
6.51k
def expression_parser(expression, numeric): """Parse an uncomplete math expression e.g. '* 10' and apply it to supplied attribute. Parameters ---------- expression : string Incomplete math expression in the form '* 5' or '- 10'. Can also be empty to leave numeric un-affected. numeric : int or float Value to evaluate against expression. Returns ------- The full expression evaluated. """ # is expression a string? if not isinstance(expression, str): raise TypeError("expression should be a string.") elif not isinstance(numeric, (int, float)): raise TypeError("numeric should be an integer or a float.") # If expression is empty, we return the numeric. elif expression == "": return numeric else: # Extract the operator operator = expression[0] if operator not in ["*", "/", "+", "-"]: raise ValueError( "First part of expression should be either one of *, /, +, -." ) # Extract the factor factor = float(expression[1:]) # Create a table of possible expressions. Then we just pick the correct one for return. expression_dict = { "*": numeric * factor, "/": numeric / factor, "+": numeric + factor, "-": numeric - factor, } return expression_dict[operator]
def next_power_of_2(x: int): """ Returns the smallest power of two which is >= x. """ assert isinstance(x, int) and x > 0 res = 2 ** (x - 1).bit_length() assert x <= res < 2 * x, f'{x}, {res}' return res
def get_hit_table(hit): """Create context for a single hit in the search. Args: hit(Dict): a dictionary representing a single hit in the search. Returns: (dict).The hit context. (list).the headers of the hit. """ table_context = { '_index': hit.get('_index'), '_id': hit.get('_id'), '_type': hit.get('_type'), '_score': hit.get('_score'), } headers = ['_index', '_id', '_type', '_score'] if hit.get('_source') is not None: for source_field in hit.get('_source').keys(): table_context[str(source_field)] = hit.get('_source').get(str(source_field)) headers.append(source_field) return table_context, headers
def get_destroyed_volume(vol, array): """Return Destroyed Volume or None""" try: return bool(array.get_volume(vol, pending=True)["time_remaining"] != "") except Exception: return False
def check_object_inconsistent_identifier(frm_list, tubes): """ checking whether boxes are lost during the track """ valid_flag = False for tube_id, tube_info in enumerate(tubes): if tube_info[frm_list[0]]!=[0,0,1,1]: for tmp_id in range(1, len(frm_list)): tmp_frm = frm_list[tmp_id] if tube_info[tmp_frm]==[0, 0, 1, 1]: valid_flag=True return valid_flag return valid_flag
def is_not_csv_file(filename): """Retun an indication if the file entered is the clusterserviceversion (csv) file """ return not filename.endswith('clusterserviceversion.yaml')
def estimate_s3_conversion_cost( total_mb: float, transfer_rate_mb: float = 20.0, conversion_rate_mb: float = 17.0, upload_rate_mb: float = 40, compression_ratio: float = 1.7, ): """ Estimate potential cost of performing an entire conversion on S3 using full automation. Parameters ---------- total_mb: float The total amount of data (in MB) that will be transferred, converted, and uploaded to dandi. transfer_rate_mb: float, optional Estimate of the transfer rate for the data. conversion_rate_mb: float, optional Estimate of the conversion rate for the data. Can vary widely depending on conversion options and type of data. Figure of 17MB/s is based on extensive compression of high-volume, high-resolution ecephys. upload_rate_mb: float, optional Estimate of the upload rate of a single file to the DANDI archive. compression_ratio: float, optional Esimate of the final average compression ratio for datasets in the file. Can vary widely. """ c = 1 / compression_ratio # compressed_size = total_size * c total_mb_s = ( total_mb**2 / 2 * (1 / transfer_rate_mb + (2 * c + 1) / conversion_rate_mb + 2 * c**2 / upload_rate_mb) ) cost_gb_m = 0.08 / 1e3 # $0.08 / GB Month cost_mb_s = cost_gb_m / (1e3 * 2.628e6) # assuming 30 day month; unsure how amazon weights shorter months? return cost_mb_s * total_mb_s
def merge(lst1, lst2): """Merges two sorted lists. >>> merge([1, 3, 5], [2, 4, 6]) [1, 2, 3, 4, 5, 6] >>> merge([], [2, 4, 6]) [2, 4, 6] >>> merge([1, 2, 3], []) [1, 2, 3] >>> merge([5, 7], [2, 4, 6]) [2, 4, 5, 6, 7] """ "*** YOUR CODE HERE ***" if lst1 == []: return lst2 elif lst2 ==[]: return lst1 elif lst1[0] <= lst2[0]: return lst1[:1] + merge(lst1[1:], lst2) else: return lst2[:1] + merge(lst1, lst2[1:])
def cauchy(x0, gx, x): """1-D Cauchy. See http://en.wikipedia.org/wiki/Cauchy_distribution""" #return INVPI * gx/((x-x0)**2+gx**2) gx2 = gx * gx return gx2 / ((x-x0)**2 + gx2)
def max_of(a, b): """ Returns the larger of the values a and b. """ if a >= b: return a return b
def add(a, b): """ Addiert die beiden Matrizen a, b komponentenweise. Gibt das Resultat der Addition als neue Matrix c aus. """ n = len(a) c = [[0 for j in range(n)] for i in range(n)] for i in range(n): for j in range(n): c[i][j] = a[i][j] + b[i][j] return c
def isDelimited(value): """ This method simply checks to see if the user supplied value has delimiters. That is, if it starts and ends with double-quotes, then it is delimited. """ if len(value) < 2: return False if value[0] == '"' and value[-1] == '"': return True else: return False
def generate_fasta_dict(sec_record_list): """ Creates a dictionary containing FASTA formatted strings from a list of sequence record objects. This dictionary is keyed by the sequence ID. :param sec_record_list: List of Biopython sequence record objects. :return: Dictionary containing FASTA formatted strings. """ fasta_string_dict = {} for record in sec_record_list: fasta_string_dict[record.id] = record.format("fasta") return fasta_string_dict
def rgb2int(r, g, b): """ rgba2int: Converts an RGB value into an integer :param r The red value (0-255) :param g The green value (0-255) :param b The blue value (0-255) :returns: The RGB value compact into a 24 byte integer. """ r, g, b = int(abs(r)), int(abs(g)), int(abs(b)) return (r << 16) + (g << 8) + b
def init_nested_dict_zero(first_level_keys, second_level_keys): """Initialise a nested dictionary with two levels Parameters ---------- first_level_keys : list First level data second_level_keys : list Data to add in nested dict Returns ------- nested_dict : dict Nested 2 level dictionary """ nested_dict = {} for first_level_key in first_level_keys: nested_dict[first_level_key] = {} for second_level_key in second_level_keys: nested_dict[first_level_key][second_level_key] = 0 return nested_dict
def update_key_value(contents, key, old_value, new_value): """ Find key in the contents of a file and replace its value with the new value, returning the resulting file. This validates that the old value is constant and hasn't changed since parsing its value. Raises a ValueError when the key cannot be found in the given contents. Does not modify the value of contents. """ new_contents = contents[:] old_line = key + ": " + old_value updated = False for line_num in range(0, len(new_contents)): line = new_contents[line_num] if line == old_line: new_contents[line_num] = key + ": " + new_value updated = True break if not updated: raise ValueError("For key:%s, cannot find the old value (%s) in the given " "contents." % (key, old_value)) return new_contents
def binarize_preds(predictions, threshold=0.5, debug=False): """ Converts real-value predictions between 0 and 1 to integer class values 0 and 1 according to a threshold. Parameters: ----------------- predictions: predicted values threshold: threshold for converting prediction to 0 or 1 debug: Boolean indicating whether or not to print additional information; default=False Returns: ----------------- pred_binary: binarized predictions """ pred_binary = [] for prediction in predictions: if prediction < threshold: pred_binary.append(0) else: pred_binary.append(1) if debug: print(predictions) print(pred_binary) return pred_binary
def check_coarse_parallel(msgs): # type: (str) -> bool """ Check if coarse parallel is enabled as expected """ for msg in msgs: if msg.find('\"coarse_grained_parallel": \"off') != -1: return False return True
def _build_pruned_tree(tree, cases, tree2): """helper method for ``build_pruned_tree``""" is_results = False if isinstance(tree[0], str): try: name, icase, cases2 = tree except ValueError: print(tree) raise if isinstance(icase, int): assert cases2 == [], tree if icase in cases: is_results = True tree2.append(tree) else: assert icase is None, tree tree3 = [] for case in cases2: is_resultsi, tree3 = _build_pruned_tree(case, cases, tree3) if is_resultsi: is_results = True if is_results: tree2.append((name, icase, tree3)) else: tree3 = [] for case in tree: is_resultsi, tree3 = _build_pruned_tree(case, cases, tree3) if is_resultsi: is_results = True tree2 = tree3 return is_results, tree2
def get_scope_preview(value, n): """ Get the top N lines of a ``scope`` list for an individual :model:`rolodex.ProjectScope`. **Parameters** ``value`` The ``scope`` value of an individual :model:`rolodex.ProjectScope` entry ``value`` Number of lines to return """ return "\n".join(value.split("\r\n")[0:n])
def card_average(hand): """ :param hand: list - cards in hand. :return: float - average value of the cards in the hand. """ total = 0 for card in hand: total += card return total / len(hand)
def between_markers(text: str, begin: str, end: str) -> str: """ returns substring between two given markers """ return ('' if len(text.split(begin)[0]) > len(text.split(end)[0]) and begin in text and end in text else text.split(begin)[-1].split(end)[0] if begin in text and end in text else text.split(begin)[-1] if begin in text else text.split(end)[0] if end in text else text)
def pair_sum_eff(A, n=0): """ O(nlogn) but a memory efficient """ A = sorted(A) lst = [] first = 0 last = len(A) - 1 while first < last: if A[first] + A[last] == n: lst.append((A[first], A[last])) first += 1 last -= 1 elif A[first] + A[last] < n: first += 1 else: last -= 1 return lst
def func_param_immutable_default_safer(collection=None): """ :param collection: a collection. default None which is immutable and therefor safer. :return: collection by appending 'thing' """ if collection is None: # safer pattern, instantiate a new mutable object inside the function, not as a parameter default. collection = [] collection.append("thing") return collection
def get_req_key(req_items=[{}]): """ Determines the base key in the dict for required items """ return [key for key in req_items[0].keys() if key not in ["description", "dict_params", "default_values"]][0]
def get_rule_names(rules): """Returns a sorted list of rule names from the rules list.""" return sorted([r['name'] for r in rules])
def build_describe_query(subject): """Create a query SELECT * WHERE { <subject> ?p ?o .}""" return { 'type': 'bgp', 'bgp': [ { 'subject': subject, 'predicate': '?p', 'object': '?o' } ] }
def readable_timedelta(days): """To get the number of weeks and days in given nuber of days""" number_of_weeks = days // 7 #To get number of weeks number_of_days = days % 7 # To get number of days return('{} week(s) and {} day(s)'.format(number_of_weeks, number_of_days))
def nested_set(base, key_list, value): """Set a value in a nested object in base by item sequence.""" for key in key_list[:-1]: base = base.setdefault(key, {}) base[key_list[-1]] = value return base
def hex_to_chars(num): """ Convert the hex representation of the number to a correctly ordered string. Parameters ---------- val: int The integer representing the string. This is in reverse order. Ie. XXYYZZ -> chr(ZZ)chr(YY)chr(XX) Returns ------- str The actual string. """ # convert to an actual number return (chr(num & 0xFF) + chr((num & 0xFF00) >> 8) + chr((num & 0xFF0000) >> 16))
def get_one_song_cold_start_recs(title, title_pop_recs, pop_recs, trackID): """ Based on title popularity recommender for the cold start scenario! This method is called for playlists with title info and first song!! :param title: :param title_pop_recs: :param pop_recs: :return: """ t_recs = title_pop_recs[title] print(len(t_recs), title) temp2 = [r for r in t_recs if not trackID == r] if len(temp2) < 500: for pop_rec in pop_recs: if pop_rec not in temp2 and trackID != pop_rec: temp2.append(pop_rec) if len(temp2) == 500: break else: return temp2[:500] return temp2
def concat_body_paragraphs(body_candidates): """ Concatenate paragraphs constituting the question body. :param body_candidates: :return: """ return ' '.join(' '.join(body_candidates).split())
def all_ped_combos_lsts(num_locs=4, val_set=("0", "1")): """Return a list of all pedestrian observation combinations (in list format) for a vehicle under the 4 location scheme""" res = [] if num_locs == 0: return [] if num_locs == 1: return [[flag] for flag in val_set] for comb in all_ped_combos_lsts(num_locs - 1, val_set): # append a flag for all possible flags for flag in val_set: appended = comb + [flag] res.append(appended) return res
def _parsems(value): """Parse a I[.F] seconds value into (seconds, microseconds).""" if "." not in value: return int(value), 0 else: i, f = value.split(".") return int(i), int(f.ljust(6, "0")[:6])
def parse_description(description): """ Parses the description of a request/response field. """ if description is None: return None return description.lstrip(' /*').lstrip(' /**').replace('\n', ' ')
def _decode_options(options): """Parse options given in str. When options = 'cutoff = 4.0', options is converted to {'cutoff': 4.0}. In this implementation (can be modified), using phonopy command line options, ``options`` is passed by --fc-calc-opt such as:: phonopy --hiphiveph --fc-calc-opt "cutoff = 4" ... """ option_dict = {} for pair in options.split(","): key, value = [x.strip() for x in pair.split("=")] if key == "cutoff": option_dict[key] = float(value) return option_dict
def scenario_ids(scenarios): """Parse the scenarios and feed the IDs to the test function.""" return [test_input[1] for test_input in scenarios]
def exif2gps(exif_data): """ Transform coordinate from DMS into D.D :param exif_data: image exif data: :return: degrees in D.D format """ if not exif_data: return None if isinstance(exif_data[0], tuple): degree = float(exif_data[0][0] / exif_data[0][1]) else: degree = float(exif_data[0]) if isinstance(exif_data[1], tuple): minute = float(exif_data[1][0] / exif_data[1][1]) else: minute = float(exif_data[1]) if isinstance(exif_data[2], tuple): second = float(exif_data[2][0] / exif_data[2][1]) else: second = float(exif_data[2]) return degree + minute / 60.0 + second / 3600.0
def quantile(x, percentile): """ Returns value of specified quantile of X. :param list or tuple x: array to calculate Q value. :param float percentile: percentile (unit fraction). :return: Q value. :rtype: int or float :raise ValueError: when len of x == 0 """ if x: p_idx = int(percentile * len(x)) return sorted(x)[p_idx] else: raise ValueError('len of x == 0')
def unify(lines): """ put one statement on each line """ results = [] result = [] for line in lines: result.append(line) if ";" in line: results.append("".join(result)) result = [] return results
def any_key(m) -> str: """Any single key""" return str(m[0])
def subplot_dims(n_plots): """Get the number of rows and columns for the give number of plots. Returns how many rows and columns should be used to have the correct number of figures available. This doesn't return anything larger than 3 columns, but the number of rows can be large. Parameters ---------- n_plots: int The number of subplots which will be plotted Returns ------- dims: Tuple[int, int] The dimensions of the subplots returned as (nrows, ncols) """ if n_plots > 9: n_cols = 3 n_rows = (1 + n_plots) // n_cols elif n_plots < 2: n_rows = n_cols = 1 else: n_cols = 2 n_rows = (1 + n_plots) // n_cols return n_rows, n_cols
def bitlist(n): """ Returns a list of bits for a char. """ return [n >> i & 1 for i in range(7,-1,-1)]
def dec_to_tri(n): """ :param n: decimal number to be converted to trinary :returns: trinary string of the number n """ tri_string = "" while n != 0: tri_string = str(n % 3) + tri_string n = n // 3 return tri_string
def f_linear(x, a, b): """ compute the linear function value with given parameters Parameters ---------- x: int or vector independent variable values a: double slope parameter b: double y-intercept parameter Returns ------- evaluated linear fucntion with the given parameters for the given x """ return(a * x + b)
def transistor_power(vcc_max, i_out, r_load, r_set): """Calculate power loss in the transistor.""" r_tot = r_load + r_set # Find point where power is maximum max_pwr_i = vcc_max/(2 * r_tot) load_rdrop = max_pwr_i * r_tot v_trans = vcc_max - load_rdrop return max_pwr_i * v_trans
def regular_polygon_area(perimeter, apothem): """Returns the area of a regular polygon""" # You have to code here # REMEMBER: Tests first!!! return (perimeter * apothem) / 2
def get_size_in_nice_string(sizeInBytes): """ Convert the given byteCount into a string like: 9.9bytes/KB/MB/GB """ for (cutoff, label) in [(1024 * 1024 * 1024, "GB"), (1024 * 1024, "MB"), (1024, "KB"), ]: if sizeInBytes >= cutoff: return "%.1f %s" % (sizeInBytes * 1.0 / cutoff, label) if sizeInBytes == 1: return "1 byte" else: bytes = "%.1f" % (sizeInBytes or 0,) return (bytes[:-2] if bytes.endswith('.0') else bytes) + ' bytes'
def _verify_notif_contents(packet): """ Verify the contents of a result packet - Returns False, list of errors if verification fails OR - Returns True, None if passes verification """ errors = [] # Key "id" not allowed in a JSON-RPC notification if "id" in packet: errors.append("Key 'id' is not allowed in a JSON-RPC notification") # Method isn't in the packet, required key if "method" not in packet: errors.append("method") # We don't want to run this code if either of these keys are missing # Only run it if failed == False if not len(errors) > 0: if not isinstance(packet["method"], str): errors.append("Key 'method' is not required type str") # If it exists, "params" must be list or dict if packet.get("params", None) is not None and \ not isinstance(packet, (dict, list)): errors.append("Key 'params' is not required structured type " "(list/dict)") if len(errors) > 0: # It failed, so return list of "Missing required key 'KEY'" # for each 1 length strings (keys) OR # just the error string if length > 1 return False, ["Missing required key '{}'".format(err) if len(err.split()) == 1 else err for err in errors] else: # Success, execution to this point means the packet has passed return True, None
def three_list_to_record(three_list): """Helper function for csv_to_records to convert list with three [lname,fname,age_str] to {'last_name': lname, 'first_name': fname, 'age': age_int} Code checks argument for three entries and third entry being convertible to int. Args: three_list(list(str,str,int)): [lname,fname,age] Returns: {'last_name': lname, 'first_name': fname, 'age': age_int} Raises: ValueError: three_list has not three entries or entry 3 is not int. """ if len(three_list) != 3: raise ValueError('three_list argument did not have three entries') lname, fname, age_str = three_list if age_str.isdigit(): age_int = int(age_str) else: raise ValueError('three_list[2] (age_str) should convertible to int') return {'last_name': lname, 'first_name': fname, 'age': age_int}
def map_collection(collection, map_fn): """Apply ``map_fn`` on each element in ``collection``. * If ``collection`` is a tuple or list of elements, ``map_fn`` is applied on each element, and a tuple or list, respectively, containing mapped values is returned. * If ``collection`` is a dictionary, ``map_fn`` is applied on each value, and a dictionary containing the mapped values is returned. * If ``collection`` is ``None``, ``None`` is returned. * If ``collection`` is a single element, the result of applying ``map_fn`` on it is returned. Args: collection: The element, or a tuple of elements. map_fn: A function to invoke on each element. Returns: Collection: The result of applying ``map_fn`` on each element of ``collection``. The type of ``collection`` is preserved. """ if collection is None: return None if isinstance(collection, (tuple, list)): return type(collection)(map_fn(x) for x in collection) if isinstance(collection, dict): return {k: map_fn(v) for k, v in collection.items()} return map_fn(collection)
def get_flattened_sub_schema(schema_fields, parent_name=''): """Helper function to get flattened sub schema from schema""" flattened_fields = [] for field in schema_fields: flattened_field = dict() if 'list' in field and field['list']: flattened_fields.extend(get_flattened_sub_schema(field['list'], field['field']+'__')) else: flattened_field['name'] = parent_name + field['field'] flattened_field['schemaid'] = field['schemaid'] if 'mapped' in field: flattened_field['mapped'] = field['mapped'] flattened_fields.append(flattened_field) return flattened_fields
def num_round(num, decimal=2): """Rounds a number to a specified number of decimal places. Args: num (float): The number to round. decimal (int, optional): The number of decimal places to round. Defaults to 2. Returns: float: The number with the specified decimal places rounded. """ return round(num, decimal)
def get_option_specs(name, required=False, default=None, help_str='', **kwargs): """ A wrapper function to get a specification as a dictionary. """ if isinstance(default, int): ret = {'name':name, 'required':required, 'default':default, 'help':help_str, 'type':int} elif isinstance(default, float): ret = {'name':name, 'required':required, 'default':default, 'help':help_str, 'type':float} else: ret = {'name':name, 'required':required, 'default':default, 'help':help_str} for key, value in list(kwargs.items()): ret[key] = value return ret
def ordered_sequential_search(array, element): """ Array must be ordered! """ pos = 0 found = False stopped = False while pos < len(array) and not found and not stopped: if array[pos] == element: found = True else: if array[pos] > element: stopped = True else: pos += 1 return found
def homo(a): """Homogenize, or project back to the w=1 plane by scaling all values by w""" return [ a[0]/a[3], a[1]/a[3], a[2]/a[3], 1 ]
def infer_shape(x): """Take a nested sequence and find its shape as if it were an array. Examples -------- >>> x = [[10, 20, 30], [40, 50, 60]] >>> infer_shape(x) (2, 3) """ shape = () if isinstance(x, str): return shape try: shape += (len(x),) return shape + infer_shape(x[0]) except TypeError: return shape
def maybe_float(v): """Casts a value to float if possible. Args: v: The value to cast. Returns: A float, or the original value if a cast was not possible. """ try: return float(v) except ValueError: return v
def str_to_bool(s): """ Convert a string to a boolean. :param s: string to convert :return: boolean value of string """ if s.lower() in ('1', 'true', 't'): return True elif s.lower() in ('0', 'false', 'f'): return False else: raise ValueError('Input string \"%s\" was not recognized as a boolean')
def normalize(num, lower=0.0, upper=360.0, b=False): """Normalize number to range [lower, upper) or [lower, upper]. Parameters ---------- num : float The number to be normalized. lower : float Lower limit of range. Default is 0.0. upper : float Upper limit of range. Default is 360.0. b : bool Type of normalization. See notes. Returns ------- n : float A number in the range [lower, upper) or [lower, upper]. Raises ------ ValueError If lower >= upper. Notes ----- If the keyword `b == False`, the default, then the normalization is done in the following way. Consider the numbers to be arranged in a circle, with the lower and upper marks sitting on top of each other. Moving past one limit, takes the number into the beginning of the other end. For example, if range is [0 - 360), then 361 becomes 1. Negative numbers move from higher to lower numbers. So, -1 normalized to [0 - 360) becomes 359. If the keyword `b == True` then the given number is considered to "bounce" between the two limits. So, -91 normalized to [-90, 90], becomes -89, instead of 89. In this case the range is [lower, upper]. This code is based on the function `fmt_delta` of `TPM`. Range must be symmetric about 0 or lower == 0. Examples -------- >>> normalize(-270,-180,180) 90 >>> import math >>> math.degrees(normalize(-2*math.pi,-math.pi,math.pi)) 0.0 >>> normalize(181,-180,180) -179 >>> normalize(-180,0,360) 180 >>> normalize(36,0,24) 12 >>> normalize(368.5,-180,180) 8.5 >>> normalize(-100, -90, 90, b=True) -80.0 >>> normalize(100, -90, 90, b=True) 80.0 >>> normalize(181, -90, 90, b=True) -1.0 >>> normalize(270, -90, 90, b=True) -90.0 """ from math import floor, ceil # abs(num + upper) and abs(num - lower) are needed, instead of # abs(num), since the lower and upper limits need not be 0. We need # to add half size of the range, so that the final result is lower + # <value> or upper - <value>, respectively. res = num if not b: if lower >= upper: raise ValueError("Invalid lower and upper limits: (%s, %s)" % (lower, upper)) res = num if num > upper or num == lower: num = lower + abs(num + upper) % (abs(lower) + abs(upper)) if num < lower or num == upper: num = upper - abs(num - lower) % (abs(lower) + abs(upper)) res = lower if res == upper else num else: total_length = abs(lower) + abs(upper) if num < -total_length: num += ceil(num / (-2 * total_length)) * 2 * total_length if num > total_length: num -= floor(num / (2 * total_length)) * 2 * total_length if num > upper: num = total_length - num if num < lower: num = -total_length - num res = num * 1.0 # Make all numbers float, to be consistent return res
def closest(l, n): """finds the closest number in sorted list l to n""" mid = int(len(l) / 2) if len(l) < 7: return min(l, key=lambda e: abs(n - e)) elif n > l[mid]: return closest(l[mid:], n) else: return closest(l[:mid+1], n)
def BuildCampaignCriterionOperations(campaign_operations): """Builds the operations needed to create Negative Campaign Criterion. Args: campaign_operations: a list containing the operations that will add Campaigns. Returns: a list containing the operations that will create a new Negative Campaign Criterion associated with each provided Campaign. """ criterion_operations = [ { # The xsi_type of the operation can usually be guessed by the API # because a given service only handles one type of operation. # However, batch jobs process operations of different types, so # the xsi_type must always be explicitly defined for these # operations. 'xsi_type': 'CampaignCriterionOperation', 'operand': { 'xsi_type': 'NegativeCampaignCriterion', 'campaignId': campaign_operation['operand']['id'], 'criterion': { 'xsi_type': 'Keyword', 'matchType': 'BROAD', 'text': 'venus' } }, 'operator': 'ADD' } for campaign_operation in campaign_operations] return criterion_operations
def unique(errors, model, field, value, *, update=None): """Validates that a record's field is unique. :param errors: The existing error map :type errors: dict :param model: The SQLAlchemy database model to check against :type model: flask_sqlalchemy.Model :param field: The model's property to check :type field: sqlalchemy.orm.attributes.InstrumentedAttribute :param value: The new value to check that must be unique :param update: An existing instance of the record to stop false positive :return: The updated errors map :rtype: dict """ if value is not None and (update is None or getattr(update, field.name) != value): query = model.query.filter(field == value).first() if query: errors.setdefault(field.name, []) errors[field.name].append("Value must be unique.") return errors
def string(mat, val_format='{0:>8.3f}'): """ Write a matrix to a string. :param mat: matrix to form string with :type mat: tuple(tuple(float)) :param precision: number of integers past decimal :type precision: int :rtype: str """ mat_str = '' for row in mat: mat_str += ''.join(val_format.format(val) for val in row) mat_str += '\n' mat_str = mat_str.rstrip() return mat_str
def _customize_template(template, repository_id): """Copy ``template`` and interpolate a repository ID into its ``_href``.""" template = template.copy() template['_href'] = template['_href'].format(repository_id) return template
def duration(duration): """Filter that converts a duration in seconds to something like 01:54:01 """ if duration is None: return '' duration = int(duration) seconds = duration % 60 minutes = (duration // 60) % 60 hours = (duration // 60) // 60 s = '%02d' % (seconds) m = '%02d' % (minutes) h = '%02d' % (hours) output = [] if hours > 0: output.append(h) output.append(m) output.append(s) return ':'.join(output)
def crimeValue(crimeStr): """Find the crime parameters in the .csv file and converts them from strings (str) to integers (int) for later comparison""" if crimeStr == "low": crimeInt = 1 elif crimeStr == "average": crimeInt = 2 elif crimeStr == "high": crimeInt = 3 else: crimeInt = 0 return crimeInt
def with_unix_endl(string: str) -> str: """Return [string] with UNIX-style line endings""" return string.replace("\r\n", "\n").replace("\r", "")
def get_pdb_atom_info(line): """Split and read pdb-file line (QPREP-OUT). Extract and return: atomnumber, atomname, resname, resid) """ # UNIT: check if the correct numbers are extracted atomnum = int(line[6:11]) atmname = line[13:17].strip() resname = line[17:20].strip() resinum = int(line[22:27]) return (atomnum, atmname, resname, resinum)
def closeyear(year): """ Find how many years away was the closest leap year to a specific year """ return int(year % 4)
def sizeof_fmt(num, suffix='B', num_type='data'): """ Convert bytes into a human readable format Straight rip from stackoverflow """ if num_type == 'data': for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f %s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f %s%s" % (num, 'Yi', suffix) else: if abs(num) < 1000: return num for unit in ['', 'K', 'M', 'B']: if abs(num) < 1000.0: return "%3.1f %s" % (num, unit) num /= 1000.0 return "%.1f %s" % (num, 'T')
def is_ipv4_address(addr): """Return True if addr is a valid IPv4 address, False otherwise.""" if (not isinstance(addr, str)) or (not addr) or addr.isspace(): return False octets = addr.split('.') if len(octets) != 4: return False for octet in octets: if not octet.isdigit(): return False octet_value = int(octet) if octet_value < 0 or octet_value > 255: return False return True
def _WrapBinaryOp(op_fn, retrieval_fn, value, ctx, item): """Wrapper for binary operator functions. """ return op_fn(retrieval_fn(ctx, item), value)
def keep_matched_keys(dict_to_modify,model_keys): """ Drops only the keys of a dict that do **not** have the same name as the keys in a source dictionnary. Return dictionnary containing the rest. Args: dict_to_modify (TYPE): DESCRIPTION. source_dict (TYPE): DESCRIPTION. Returns: modified_dict (TYPE): DESCRIPTION. """ if isinstance(model_keys, dict) : model_keys = set(model_keys.keys()) return { kept_key : dict_to_modify[kept_key] for kept_key in model_keys if kept_key != 'empty' and dict_to_modify.get(kept_key) is not None}
def remove_dashes(dashed_date): """ remove the dashes from a 'yyyy-mm-dd' formatted date write as a separate function because the apply(lambda x) one doesn't work as expected """ return str(dashed_date).replace('-', '')
def hilbert_f(x): """The Hilbert transform of f.""" return x / (x ** 2 + 1)
def least_significant_bit(val): """ Return the least significant bit """ return (val & -val).bit_length() - 1
def global_object_name(obj): """ Return full name of a global object. >>> from scrapy import Request >>> global_object_name(Request) 'scrapy.http.request.Request' """ return "%s.%s" % (obj.__module__, obj.__name__)
def _convert_bool_string(value): """ Convert a "True" or "False" string literal to corresponding boolean type. This is necessary because Python will otherwise parse the string "False" to the boolean value True, that is, `bool("False") == True`. This function raises a ValueError if a value other than "True" or "False" is passed. If the value is already a boolean, this function just returns it, to accommodate usage when the value was originally inside a stringified list. Parameters ---------- value : string {"True", "False"} the value to convert Returns ------- bool """ if value in {"True", "False"}: return value == "True" elif isinstance(value, bool): return value else: # pragma: no cover raise ValueError(f'invalid literal for boolean: "{value}"')
def capitalize(line): """ Courtesy of http://stackoverflow.com/questions/1549641/how-to-capitalize-the-first-letter-of-each-word-in-a-string-python :param line: :return: """ return ' '.join(s[0].upper() + s[1:] for s in line.split(' '))
def transpose_list(org_list): """ Transpose list of lists. Parameters ---------- org_list : list list of lists with equal lenghts. Returns ------- list : transposed list. """ return list(map(list, zip(*org_list)))
def get_consumer_groups(acls): """ Given a list of plugins, filter out the `acl` plugin and return a formatted string of all the acl consumer group names which are `allowed` to access the service. """ if acls is None: return return "`" + "`, `".join(i.get("group") for i in acls) + "`"
def get_param_val( param_str, param_key='', case_sensitive=False): """ Extract numerical value from string information. This expects a string containing a single parameter. Parameters ========== name : str The string containing the information. param_key : str (optional) The string containing the label of the parameter. case_sensitive : bool (optional) Parsing of the string is case-sensitive. Returns ======= param_val : int or float The value of the parameter. See Also ======== set_param_val, parse_series_name """ if param_str: if not case_sensitive: param_str = param_str.lower() param_key = param_key.lower() if param_str.startswith(param_key): param_val = param_str[len(param_key):] elif param_str.endswith(param_key): param_val = param_str[:-len(param_key)] else: param_val = None else: param_val = None return param_val
def percental_difference_between_two_numbers(a, b): """ How much percent is smaller number smaller than bigger number. If 1 -> both number equal size If 0.5 -> smaller number is half the size of bigger number """ if a <= b: return float(a) / b else: return float(b) / a
def is_natural(maybe_nat): """ Check if the given item is an Int >= 0 :param maybe_nat: Any :return: Boolean """ return isinstance(maybe_nat, int) and maybe_nat >= 0
def formatDollarsCents(d,noneValue='',zeroValue='$0.00'): """Formats a number as a dollar and cent value with alternatives for None and 0.""" if d is None: return noneValue elif d==0: return zeroValue return '${:.2f}'.format(d)
def sqrt(x: int) -> int: """ Gets the floor value of the positive square root of a number """ assert x >= 0 z = 0 if x > 3: z = x y = x // 2 + 1 while y < z: z = y y = (x // y + y) // 2 elif x != 0: z = 1 return z
def get_trackdata(tracks): """Converts CVAT track data. Args: tracks (OrderedDict): CVAT track data Returns: dict: Data of all tracks """ trackdata, tracks_size = \ {}, {} trackdata['tracks_number'] = len(tracks) for id, track in enumerate(tracks): tracks_size[id] = len(track['box']) trackdata['tracks_size'] = tracks_size return trackdata
def process_group(grp): """ Given a list of list of tokens where each token starts with a character from 'NSEWLRF', and ends with a number, that describe the motion of a ship and the direction it faces at any given point in time, compute the manhattan distance between the initial point and the final point of the ship. :param grp: The list of list of tokens. :return: The Manhattan distance between the source and destination of the ship. """ dire = {"N": 0, "E": 0, "W": 0, "S": 0} ship_dir_options = ["E", "S", "W", "N"] current_dir_idx = 0 for elem in grp: c, num = elem[0], int(elem[1:]) if c == "R": current_dir_idx = (current_dir_idx + num // 90) % 4 elif c == "L": current_dir_idx = (current_dir_idx - num // 90) % 4 elif c == "F": dire[ship_dir_options[current_dir_idx]] += num else: dire[c] += num dist_ver = abs(dire["N"] - dire["S"]) dist_hor = abs(dire["E"] - dire["W"]) man_dist = dist_ver + dist_hor return man_dist
def find_du_based_on_ip(ip, functions): """ This method finds a du id associated to an ip """ for vnf in functions: if 'vnfr' not in vnf.keys(): continue vnfr = vnf['vnfr'] dus = [] if 'virtual_deployment_units' in vnfr.keys(): dus = vnfr['virtual_deployment_units'] if 'couldnative_deployment_units' in vnfr.keys(): dus = vnfr['cloudnative_deployment_units'] for du in dus: du_string = str(du) if ip in du_string: return du['id'], vnf['id'] return None, None
def _str(text): """Convert from possible bytes without interpreting as number. :param text: Input to convert. :type text: str or unicode :returns: Converted text. :rtype: str """ return text.decode(u"utf-8") if isinstance(text, bytes) else text
def victoire_ligne(plateau, joueur): """ Teste si le plateau admet une victoire en ligne pour le joueur. """ for ligne in plateau: if all(c == joueur for c in ligne): return True return False
def get_data(data_list, data_cache): """ Gets the data specified by the keys in the data_list from the data_cache :param data_list: string or list of strings :param data_cache: dictionary containing the stored data :return: a single pandas.DataFrame if input is a string, a list of DataFrames if the input is a list of strings """ if not isinstance(data_list, list): data_list = [data_list] tmp = [data_cache[d] for d in data_list] if len(tmp) == 1: return tmp[0] res = ([t[0] for t in tmp], [t[1] for t in tmp]) return res
def build_SQL_query(query_words: dict) -> str: """ Builds an SQL style query string from a dictionary where keys are column titles and values are values that the query will test for. Args: query_words (dict): a dictionary where keys are column titles and values are values Returns: str: an string that can be used as an SQL query """ query_string = '' for col_nm, col_val in query_words.items(): if col_val not in [True, False]: col_val = f"'{col_val}'" query_string += f"{col_nm}=={col_val}" if col_nm != list(query_words.keys())[-1]: query_string += " & " return query_string
def override_config(config, overrides): """Overrides config dictionary. Args: config: dict, user passed parameters for training job from JSON or defaults. overrides: dict, user passed parameters to override some within config dictionary. Returns: Modified in-place config dictionary by overrides. """ for k, v in overrides.items(): if isinstance(v, dict): config[k] = override_config(config.get(k, {}), v) else: config[k] = v return config
def calc_split_class_average_iou(dict): """Calculate SOA-C-IoU-Top/Bot-40""" num_img_list = [] for label in dict.keys(): num_img_list.append([label, dict[label]["images_total"]]) num_img_list.sort(key=lambda x: x[1]) sorted_label_list = [x[0] for x in num_img_list] bottom_40_iou = 0 top_40_iou = 0 for label in dict.keys(): if sorted_label_list.index(label) < 40: if dict[label]["iou"] is not None and dict[label]["iou"] >= 0: bottom_40_iou += dict[label]["iou"] else: if dict[label]["iou"] is not None and dict[label]["iou"] >= 0: top_40_iou += dict[label]["iou"] bottom_40_iou /= 0.5*len(dict.keys()) top_40_iou /= 0.5*len(dict.keys()) return top_40_iou, bottom_40_iou
def format_list(_list): """Format a list to an enumeration. e.g.: [a,b,c,d] -> a, b, c and d """ if len(_list) == 0: return "no one" elif len(_list) == 1: return _list[0] else: s = "" for e in _list[: len(_list) - 2]: s = s + str(e) + ", " s = s + str(_list[len(_list) - 2]) + " and " + str(_list[len(_list) - 1]) return s
def facility_name(hutch): """Return the facility name for an instrument""" if hutch in [ 'dia', 'mfx', 'mec', 'cxi', 'xcs', 'xpp', 'sxr', 'amo', 'DIA', 'MFX', 'MEC', 'CXI', 'XCS', 'XPP', 'SXR', 'AMO', ]: return '{}_Instrument'.format(hutch.upper()) return '{}_Instrument'.format(hutch.lower())
def _calc_isbn10_check_digit(number): """Calculate the ISBN check digit for 10-digit numbers. The number passed should not have the check bit included.""" check = sum((i + 1) * int(n) for i, n in enumerate(number)) % 11 return 'X' if check == 10 else str(check)
def swap_xyz_string(xyzs, permutation): """ Permutate the xyz string operation Args: xyzs: e.g. ['x', 'y+1/2', '-z'] permuation: list, e.g., [0, 2, 1] Returns: the new xyz string after transformation """ if permutation == [0,1,2]: return xyzs else: new = [] for xyz in xyzs: tmp = xyz.replace(" ","").split(',') tmp = [tmp[it] for it in permutation] if permutation == [1,0,2]: #a,b tmp[0] = tmp[0].replace('y','x') tmp[1] = tmp[1].replace('x','y') elif permutation == [2,1,0]: #a,c tmp[0] = tmp[0].replace('z','x') tmp[2] = tmp[2].replace('x','z') elif permutation == [0,2,1]: #b,c tmp[1] = tmp[1].replace('z','y') tmp[2] = tmp[2].replace('y','z') elif permutation == [1,2,0]: #b,c tmp[0] = tmp[0].replace('y','x') tmp[1] = tmp[1].replace('z','y') tmp[2] = tmp[2].replace('x','z') elif permutation == [2,0,1]: #b,c tmp[0] = tmp[0].replace('z','x') tmp[1] = tmp[1].replace('x','y') tmp[2] = tmp[2].replace('y','z') new.append(tmp[0] + ", " + tmp[1] + ", " + tmp[2]) return new