content
stringlengths 42
6.51k
|
---|
def factorial(letter_qty):
"""
:param letter_qty: how many letters are key in
:return: total arrangement qty
"""
if letter_qty == 0:
return 1
else:
temp = letter_qty * factorial(letter_qty - 1)
return temp
|
def bann(code):
""" If banned return True else False """
ban_list = ['First Ride', 'New Customers', 'From SMU', 'From NTU',
'From NUS', 'From SUTD', 'From SIM', 'First GrabHitch', 'New GrabPay',
'First 2 Rides', 'First 4 Rides']
for word in ban_list:
if code.find(word) > 0:
return True
return False
|
def convert_to_ents_dict(tokens, tags):
""" Handle the BIO-formatted data
:param tokens: list of tokens
:param tags: list of corresponding BIO tags
:return: json-formatted result
"""
ent_type = None
entities = []
start_char_offset = 0
end_char_offset = 0
start_char_entity = 0
entity_tokens = []
tokens_length = len(tokens)
for position, (token, token_tag) in enumerate(zip(tokens, tags)):
if token_tag == "O":
if ent_type:
entity = {
"type": ent_type,
"entity": " ".join(entity_tokens),
"start_offset": start_char_entity + 1,
"end_offset": end_char_offset + 1
}
entities.append(entity)
entity_tokens = []
ent_type = None
elif ent_type and token_tag.startswith('B-'):
entity = {
"type": ent_type,
"entity": " ".join(entity_tokens),
"start_offset": start_char_entity + 1,
"end_offset": end_char_offset + 1
}
entities.append(entity)
entity_tokens = []
ent_type = token_tag[2:]
entity_tokens.append(token)
start_char_entity = len(" ".join(tokens[:position]))
elif token_tag.startswith('B-'):
ent_type = token_tag[2:]
entity_tokens.append(token)
start_char_entity = len(" ".join(tokens[:position]))
elif not ent_type and token_tag.startswith('I-'):
ent_type = token_tag[2:]
entity_tokens.append(token)
start_char_entity = len(" ".join(tokens[:position]))
elif ent_type and token_tag.startswith('I-') and token_tag[2:] == ent_type:
entity_tokens.append(token)
elif ent_type and token_tag.startswith('I-') and token_tag[2:] != ent_type:
entity = {
"type": ent_type,
"entity": " ".join(entity_tokens),
"start_offset": start_char_entity + 1,
"end_offset": end_char_offset + 1
}
entities.append(entity)
entity_tokens = []
ent_type = token_tag[2:]
entity_tokens.append(token)
start_char_entity = len(" ".join(tokens[:position]))
if position:
start_char_offset = len(" ".join(tokens[:position])) + 1
end_char_offset = start_char_offset + len(token) - 1
# catches an entity that foes up until the last token
if ent_type and position == tokens_length - 1:
entity = {
"type": ent_type,
"entity": " ".join(entity_tokens),
"start_offset": start_char_entity + 1,
"end_offset": end_char_offset + 1
}
entities.append(entity)
return [" ".join(tokens), entities]
|
def nsf(num, n=1):
#from StackOverflow: https://stackoverflow.com/questions/9415939/how-can-i-print-many-significant-figures-in-python
"""n-Significant Figures"""
while n-1 < 0: n+=1
numstr = ("{0:.%ie}" % (n-1)).format(num)
return float(numstr)
|
def get_outputs(job: dict, configuration: dict, data: dict) -> list:
"""
Get list of output Datareference
"""
outputs = []
if "outputs" in job:
for data_name in job["outputs"]:
data_object = data[data_name]
outputs.append(data_object["pipelinedata_object"])
return outputs
|
def weigher(r, method='hyperbolic'):
""" The weigher function.
Must map nonnegative integers (zero representing the most important element) to a nonnegative weight.
The default method, 'hyperbolic', provides hyperbolic weighing, that is, rank r is mapped to weight 1/(r+1)
Args:
r: Integer value (supposedly a rank) to weight
method: Weighing method. 'hyperbolic'
"""
if method == 'hyperbolic':
return 1 / (r + 1)
else:
raise Exception('Unknown method: {}'.format(method))
|
def integer(value, numberbase=10):
"""OpenEmbedded 'integer' type
Defaults to base 10, but this can be specified using the optional
'numberbase' flag."""
return int(value, int(numberbase))
|
def getPlayerID(playerOrID):
"""Returns the Player ID for the given player."""
if playerOrID is None or playerOrID == -1:
return -1
if isinstance(playerOrID, int):
return playerOrID
return playerOrID.getID()
|
def elliptical_u(b, k, upsilon, l_tilde, n):
"""
Disutility of labor supply from the elliptical utility function
Args:
b (scalar): scale parameter of elliptical utility function
k (scalar): shift parametr of elliptical utility function
upsilon (scalar): curvature parameter of elliptical utility
function
l_tilde (scalar): maximum amount of labor supply
n (array_like): labor supply amount
Returns:
u (array_like): disutility of labor supply
"""
u = b * ((1 - ((n / l_tilde) ** upsilon)) ** (1 / upsilon)) + k
return u
|
def get_value_with_field(model, field, null=None):
"""
Get value from a model or dict or list with field
Field must be a string or number value
usage:
>>> model_value_with_field({"key1": "value1", "key2": "value2"}, "key1", "default")
"value1"
>>> model_value_with_field({"key1": "value1", "key2": "value2"}, "key3", "default")
"default"
>>> model_value_with_field(["1", "2", "3"], 2, "default")
"3"
>>> model_value_with_field(["1", "2", "3"], 4, "default")
"default"
:param model: origin model or dict or list
:param field: which value want to get
:param null: default value if field not in model
"""
# check input value
if not model:
return null
# get value from dict
if isinstance(model, dict):
return model.get(field, null)
# get value from list
if isinstance(model, list):
# if model is a list, field must be a number
try:
index = int(field)
# check index is in the list
if len(model) <= index:
return null
return list(model)[index]
except TypeError:
return null
# get value from an object
if hasattr(model, field):
return getattr(model, field)
return null
|
def _apply_correction(tokens, correction, offset):
"""Apply a single correction to a list of tokens"""
start_token_offset, end_token_offset, _, insertion = correction
to_insert = insertion[0].split(" ")
end_token_offset += (len(to_insert) - 1)
to_insert_filtered = [t for t in to_insert if t != ""]
head = tokens[:start_token_offset + offset]
tail = tokens[end_token_offset + offset:]
new_tokens = head + to_insert_filtered + tail
new_offset = len(to_insert_filtered) - (end_token_offset - start_token_offset) + offset
return new_tokens, new_offset
|
def get_last_n_features(feature, current_words, idx, n=3):
"""For the purposes of timing info, get the timing, word or pos
values of the last n words (default = 3).
"""
if feature == "words":
position = 0
elif feature == "POS":
position = 1
elif feature == "timings":
position = 2
else:
raise Exception("Unknown feature {}".format(feature))
start = max(0, (idx - n) + 1)
# print start, idx + 1
return [triple[position] for triple in
current_words[start: idx + 1]]
|
def traffic_gen(flows: dict, flow_rates, num_bytes, K, skewness):
"""Generate the traffic configurations.
Args:
flows (dict): Dictionary of flows information (key, value) = (flowID, (flowID, (src, dst))).
flow_rates (dict): Dictionary of flow rate information (key, value) = (flowID, flow rate).
num_bytes (int): Number of bytes to send for all the flows.
K (int): number of pods.
skewness (float): num_bytes skewness between intrapod and interpod traffic, inter = intra*skewness
Returns:
str: Generated traffic configurations.
Examples:
The return can be
"
# Format: int job id, source host, destination host, number of bytes to transfer, time in seconds to start the transfer, expected fair share of the flow in Mbits/sec
1, h1, h2, 80000000, 0, 1.4583333333333346, h1 s1 s17 s2 h2
2, h1, h3, 80000000, 0, 1.4583333333333346, h1 s1 s17 s3 h3
3, h1, h4, 80000000, 0, 1.4583333333333346, h1 s1 s17 s4 h4
...
"
"""
traffic_conf = "# Format: int job id, source host, destination host, number of bytes to transfer, " \
"time in seconds to start the transfer, expected fair share of the flow in Mbits/sec, specified path\n"
for flow_id, (src,dst) in flows.items():
if (int(src[1:])-1) // K != (int(dst[1:])-1) // K:
traffic_conf += "{}, {}, {}, {}, 0, {}, N/A\n".format(flow_id, src, dst, int(num_bytes*skewness), flow_rates[flow_id])
else:
traffic_conf += "{}, {}, {}, {}, 0, {}, N/A\n".format(flow_id, src, dst, num_bytes, flow_rates[flow_id])
return traffic_conf
|
def parsePort(port):
"""
Converts port in string format to an int
:param port: a string or integer value
:returns: an integer port number
:rtype: int
"""
result = None
try:
result = int(port)
except ValueError:
import socket
result = socket.getservbyname(port)
return result
|
def _CreateAssetsList(path_tuples):
"""Returns a newline-separated list of asset paths for the given paths."""
dests = sorted(t[1] for t in path_tuples)
return '\n'.join(dests) + '\n'
|
def checksum(data):
""" Calculates the checksum, given a message without the STX and ETX.
Returns a list with the ordered checksum bytes"""
calc_sum = 0
for i in data:
calc_sum += i
low_sum = calc_sum >> 8 & 0xFF
high_sum = calc_sum & 0xFF
return bytearray([high_sum, low_sum])
|
def get_duplicates(iterable):
"""
Returns set of duplicated items from iterable. Item is duplicated if it
appears at least two times.
"""
seen = set()
seen2 = set()
for item in iterable:
if item in seen:
seen2.add(item)
else:
seen.add(item)
return seen2
|
def find_workflow_uuid(galaxy_workflows,uuid):
"""
Finds a particular workflow with the given uuid.
:param galaxy_workflows: The list of workflows to search through.
:param uuid: The workflow uuid to search for.
:return: The matching workflow.
:throws: Exception if no such matching workflow.
"""
workflow = None
for w in galaxy_workflows:
if w['latest_workflow_uuid'] == uuid:
if workflow != None:
raise Exception("Error: multiple workflows with uuid="+uuid+", please use --workflow-id to specify")
else:
workflow=w
return workflow
|
def fill_point(x, y, z, _):
"""
Returns a string defining a set of minecraft fill coordinates relative to the actor.
In minecraft, the y axis denotes the vertical (non-intuitively).
"""
return f'~{int(x)} ~{int(z)} ~{int(y)}'
|
def rbits_to_int(rbits):
"""Convert a list of bits (MSB first) to an int.
l[0] == MSB
l[-1] == LSB
0b10000
| |
| \\--- LSB
|
\\------ MSB
>>> rbits_to_int([1])
1
>>> rbits_to_int([0])
0
>>> bin(rbits_to_int([1, 0, 0]))
'0b100'
>>> bin(rbits_to_int([1, 0, 1, 0]))
'0b1010'
>>> bin(rbits_to_int([1, 0, 1, 0, 0, 0, 0, 0]))
'0b10100000'
"""
v = 0
for i in range(0, len(rbits)):
v |= rbits[i] << len(rbits)-i-1
return v
|
def stick_to_bounds(box, bounds=(0,0,1,1)):
"""
Sticks the given `box`, which is a `(l, t, w, h)`-tuple to the given bounds
which are also expressed as `(l, t, w, h)`-tuple.
"""
if bounds is None:
return box
l, t, w, h = box
bl, bt, bw, bh = bounds
l += max(bl - l, 0)
l -= max((l+w) - (bl+bw), 0)
t += max(bt - t, 0)
t -= max((t+h) - (bt+bh), 0)
return l, t, w, h
|
def setup_path(project, test_data):
"""
Setting up project URL
:param project: from pytest_addoption
:return: project URL
"""
url = project
if project == 'market':
url = test_data[0]['url']
elif project == 'bank':
url = test_data[0]['url']
elif project == 'intranet':
url = test_data[0]['url']
return url
|
def get_project_host_names_local():
""""
In tests and local projectnames are hardcoded
"""
return ['wiki', 'dewiki', 'enwiki']
|
def map_route_to_route_locations(vehicle_location, route, jobs):
"""
Maps route list, which includes job ids to route location list.
:param vehicle_location: Vehicle location index.
:param route: Job ids in route.
:param jobs: Jobs information, which includes job ids, location indexes and delivery.
:return: Route location list including job location indexes.
"""
route_locations = [vehicle_location]
for job in route:
job_location = jobs[job][0]
route_locations.append(job_location)
return route_locations
|
def post_data(data):
"""
Take a dictionary of test data (suitable for comparison to an instance) and return a dict suitable for POSTing.
"""
ret = {}
for key, value in data.items():
if value is None:
ret[key] = ''
elif type(value) in (list, tuple):
if value and hasattr(value[0], 'pk'):
# Value is a list of instances
ret[key] = [v.pk for v in value]
else:
ret[key] = value
elif hasattr(value, 'pk'):
# Value is an instance
ret[key] = value.pk
else:
ret[key] = str(value)
return ret
|
def flatten(x):
"""flatten
flatten 2d array to 1d array
:param x: initial array
:return: array after flatten
"""
x_flatten = []
for i in range(len(x)):
for j in range(len(x[0])):
x_flatten.append(x[i][j])
return x_flatten
|
def sanitize_plugin_class_name(plugin_name: str, config: bool = False) -> str:
"""
Converts a non-standard plugin package name into its respective class name.
:param: plugin_name: String a plugins name
:param: config: Boolean true if it should convert into a config name instead of a class name. For given package:
philips_hue_lights when config is false it will produce PhilipsHueLightsPlugin and when its true it will produce
PhilipsHueLightsConfig
:return: The name of the class enclosed within the plugin package.
"""
if plugin_name is None:
return ""
parts = plugin_name.split("_")
sanitized = []
for part in parts:
part = part.capitalize()
sanitized.append(part)
sanitized.append("Plugin" if not config else "Config")
return "".join(sanitized)
|
def variance(x):
"""
Return the standard variance
If ``x`` is an uncertain real number, return the
standard variance.
If ``x`` is an uncertain complex number, return
a 4-element sequence containing elements of the
variance-covariance matrix.
Otherwise, return 0.
**Examples**::
>>> ur = ureal(2.5,0.5,3,label='x')
>>> variance(ur)
0.25
>>> ur.v
0.25
>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> variance(uc)
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)
"""
try:
return x.v
except AttributeError:
return 0.0
|
def int_to_roman(number: int) -> str:
"""
Given a integer, convert it to an roman numeral.
https://en.wikipedia.org/wiki/Roman_numerals
>>> tests = {"III": 3, "CLIV": 154, "MIX": 1009, "MMD": 2500, "MMMCMXCIX": 3999}
>>> all(int_to_roman(value) == key for key, value in tests.items())
True
"""
ROMAN = [
(1000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
result = []
for (arabic, roman) in ROMAN:
(factor, number) = divmod(number, arabic)
result.append(roman * factor)
if number == 0:
break
return "".join(result)
|
def dice_coefficient(a, b):
"""dice coefficient 2nt / (na + nb)."""
if not len(a) or not len(b):
return 0.0
if len(a) == 1:
a = a + u'.'
if len(b) == 1:
b = b + u'.'
a_bigram_list = []
for i in range(len(a) - 1):
a_bigram_list.append(a[i:i + 2])
b_bigram_list = []
for i in range(len(b) - 1):
b_bigram_list.append(b[i:i + 2])
a_bigrams = set(a_bigram_list)
b_bigrams = set(b_bigram_list)
overlap = len(a_bigrams & b_bigrams)
dice_coeff = overlap * 2.0 / (len(a_bigrams) + len(b_bigrams))
return dice_coeff
|
def int_to_bytes(number: int) -> bytes:
"""Convert integer to byte array in big endian format"""
return number.to_bytes((number.bit_length() + 7) // 8, byteorder='big')
|
def annotate_counts(node):
"""Recursive function to annotate each node with the count of all
of it's descendants, as well as the count of all sibling comments plus
their children, made after each node.
"""
# If no replies, this is a leaf node. Stop and return 1.
node['reply_count'] = 0
if not node['replies']:
return 1
else:
# Annotate descendants and sum counts.
for r in node['replies']:
node['reply_count'] += annotate_counts(r)
# Once descendants are annotated with descendant counts,
# annotate with the count of siblings and their children coming after
# this node.
after_count = 0
for r in reversed(node['replies']):
r['after_count'] = after_count
after_count += r['reply_count'] + 1
return node['reply_count'] + 1
|
def format_data(account):
"""Format account into printable format: name, description and country"""
name = account["name"]
description = account["description"]
country = account["country"]
return f"{name}, a {description}, from {country}"
|
def caption_from_metadata(metadata):
"""
converts metadata list-of-lists to caption string which is one antinode per line
"""
caption = ""
for an in range(len(metadata)):
[cx, cy, a, b, angle, rings] = metadata[an]
#this_caption = "[{0}, {1}, {2}, {3}, {4}, {5}]".format(cx, cy, a, b, angle, rings)
this_caption = "{0},{1},{2},{3},{4},{5}".format(cx, cy, a, b, angle, rings)
if (an > 0):
caption +="\n"
caption += this_caption
return caption
|
def smoothstep(x):
"""Polynomial transition from 0 to 1 with continuous first derivative"""
return -2*x**3 + 3*x**2
|
def format_ctor_arguments(arguments, parent, id, size):
"""Format constructor arguments; returns a list
arguments: Constructor arguments (list)
parent: Parent widget (string or unicode)
id: Widget ID e.g. wxID_ANY
size: Widget size 'width, height'"""
vSize = size.split(',')
for i in range(len(arguments)):
if arguments[i] == '$parent':
arguments[i] = parent
elif arguments[i] == '$id':
arguments[i] = id
elif arguments[i] == '$width':
arguments[i] = vSize[0]
elif arguments[i] == '$height':
arguments[i] = vSize[1]
return arguments
|
def reverse_reps(replacements):
"""Map from replacement to source and reverse each string also
The string reverse is needed because the steps_to_molecule
reverses the molecule string itself.
"""
return {b[::-1]: a[::-1] for a, b in replacements}
|
def obtenerBinario(numero):
"""
bin(numero) obtiene el valor binario de numero
[2:] obtiene los elementos de del binario anterior excepto los primeros 2, por ejemplo 11000000[2:] regresa 000000
zfill(8) rellena con ceros a la izquiera el valor anterior hasta que este tenga longitud 8, por ejemplo 111111 regresa 00111111
"""
return bin(numero)[2:].zfill(8)
|
def _format_datetime_for_js(stamp):
"""Formats time stamp for Javascript."""
if not stamp:
return None
return stamp.strftime("%Y-%m-%d %H:%M:%S %Z")
|
def yaml_list_to_dict(yaml_list):
"""Converts a yaml list (volumes, configs etc) into a python dict
:yaml_list: list of a yaml containing colon separated entries
:return: python dict
"""
return {i.split(":")[0]: i.split(":")[1] for i in yaml_list}
|
def _linux_kernel_dso_name(kernel_build_target):
"""Given a build target, construct the dso name for linux."""
parts = kernel_build_target.split(":")
return "%s:libtfkernel_%s.so" % (parts[0], parts[1])
|
def _set_name_and_type(param, infer_type, word_wrap):
"""
Sanitise the name and set the type (iff default and no existing type) for the param
:param param: Name, dict with keys: 'typ', 'doc', 'default'
:type param: ```Tuple[str, dict]```
:param infer_type: Whether to try inferring the typ (from the default)
:type infer_type: ```bool```
:param word_wrap: Whether to word-wrap. Set `DOCTRANS_LINE_LENGTH` to configure length.
:type word_wrap: ```bool```
:returns: Name, dict with keys: 'typ', 'doc', 'default'
:rtype: ```Tuple[str, dict]```
"""
name, _param = param
del param
if name is not None and (name.endswith("kwargs") or name.startswith("**")):
name = name.lstrip("*")
if _param.get("typ", "dict") == "dict":
_param["typ"] = "Optional[dict]"
if "default" not in _param:
_param["default"] = NoneStr
elif "default" in _param:
_infer_default(_param, infer_type)
google_opt = ", optional"
if (_param.get("typ") or "").endswith(google_opt):
_param["typ"] = "Optional[{}]".format(_param["typ"][: -len(google_opt)])
if "doc" in _param and not _param["doc"]:
del _param["doc"]
# if "doc" in _param and isinstance(_param["doc"], list):
# _param["doc"] = "".join(_param["doc"])
if "doc" in _param:
if not isinstance(_param["doc"], str):
_param["doc"] = "".join(_param["doc"]).rstrip()
else:
_param["doc"] = (
" ".join(map(str.strip, _param["doc"].split("\n")))
if word_wrap
else _param["doc"]
).rstrip()
if (
(
_param["doc"].startswith("(Optional)")
or _param["doc"].startswith("Optional")
)
and "typ" in _param
and not _param["typ"].startswith("Optional[")
):
_param["typ"] = "Optional[{}]".format(_param["typ"])
return name, _param
|
def _gen_alt_forms(term):
"""
Generate a list of alternate forms for a given term.
"""
if not isinstance(term, str) or len(term) == 0:
return [None]
alt_forms = []
# For one alternate form, put contents of parentheses at beginning of term
if "(" in term:
prefix = term[term.find("(") + 1 : term.find(")")]
temp_term = term.replace("({0})".format(prefix), "").replace(" ", " ")
alt_forms.append(temp_term)
alt_forms.append("{0} {1}".format(prefix, temp_term))
else:
prefix = ""
# Remove extra spaces
alt_forms = [s.strip() for s in alt_forms]
# Allow plurals
# temp = [s+'s' for s in alt_forms]
# temp += [s+'es' for s in alt_forms]
# alt_forms += temp
# Remove words "task" and/or "paradigm"
alt_forms += [term.replace(" task", "") for term in alt_forms]
alt_forms += [term.replace(" paradigm", "") for term in alt_forms]
# Remove duplicates
alt_forms = list(set(alt_forms))
return alt_forms
|
def factorial(digit: int) -> int:
"""
>>> factorial(3)
6
>>> factorial(0)
1
>>> factorial(5)
120
"""
return 1 if digit in (0, 1) else (digit * factorial(digit - 1))
|
def nearest_neighbors_targets(x_train, y_train, x_new, k, distance):
"""Get the targets for the k nearest neighbors of a new sample,
according to a distance metric.
"""
# Associate training data and targets in a list of tuples
training_samples = list(zip(x_train, y_train))
# Sort samples by their distance to new sample
neighbors = sorted(
((x, y) for (x, y) in training_samples),
key=lambda sample: distance(x_new, sample[0]),
)
# Keep only targets of the k nearest neighbors
return [target for (_, target) in neighbors[:k]]
|
def hierarchical_label(*names):
"""
Returns the XNAT label for the given hierarchical name, qualified
by a prefix if necessary.
Example:
>>> from qixnat.helpers import hierarchical_label
>>> hierarchical_label('Breast003', 'Session01')
'Breast003_Session01'
>>> hierarchical_label('Breast003', 'Breast003_Session01')
'Breast003_Session01'
>>> hierarchical_label(3) # for scan number 3
3
:param names: the object names
:return: the corresponding XNAT label
"""
names = list(names)
if not all(names):
raise ValueError("The XNAT label name hierarchy is invalid: %s" %
names)
last = names.pop()
if names:
prefix = hierarchical_label(*names)
if last.startswith(prefix):
return last
else:
return "%s_%s" % (prefix, last)
else:
return last
|
def get_word_from_derewo_line(line):
"""Processor for individual line from DeReWo textfile.
Args:
line: Single line from DeReWo text file
Returns:
Lowercase word, None if invalid
"""
line = line.split()
# skip words with whitespace
if len(line) > 2:
return None
# disregard DeReWo integer for frequency, only word is needed
word = line[0]
# lowercase passwords are good enough with sufficient word list length
return word.lower()
|
def date_facet_interval(facet_name):
"""Return the date histogram interval for the given facet name
The default is "year".
"""
parts = facet_name.rpartition('.')
interval = parts[2]
if interval in ['month', 'year', 'decade', 'century']:
return interval
else:
return 'year'
|
def is_palindrome(word):
"""Check if input is a palindrome."""
if len(word) <= 1:
return True
return word[0] == word[-1] and is_palindrome(word[1:-1])
|
def onek_encoding_unk(x, allowable_set):
"""One-hot embedding"""
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: int(x == s), allowable_set))
|
def mean(data):
"""Return the sample arithmetic mean of data."""
n = len(data)
if n < 1:
raise ValueError('mean requires at least one data point')
return sum(data)/n
|
def build_links_package_index(packages_by_package_name, base_url):
"""
Return an HTML document as string which is a links index of all packages
"""
document = []
header = f"""<!DOCTYPE html>
<html>
<head>
<title>Links for all packages</title>
</head>
<body>"""
document.append(header)
for _name, packages in packages_by_package_name.items():
for package in packages:
document.append(package.simple_index_entry(base_url))
footer = """ </body>
</html>
"""
document.append(footer)
return "\n".join(document)
|
def get_eqn(p0, p1):
"""
Returns the equation of a line in the form mx+b as a tuple of (m, b) for two points.
Does not check for vertical lines.
"""
m = (p0[1] - p1[1]) / (p0[0] - p1[0])
return (m, p0[1] - m * p0[0])
|
def find_min_cand(counts):
""" return list of candidates who need to be eliminated this round
WARNING: doesn't deal properly with ties in support for min candidates....
"""
ans = []
if len(counts.keys()) == 0:
return None
curmin = min(list(counts.values()))
for k in counts.keys():
if counts[k] == curmin:
return k
|
def last(xs):
"""
last :: [a] -> a
Extract the last element of a list, which must be finite and non-empty.
"""
return xs[-1]
|
def find_peak(A):
"""find pick element"""
if A == []:
return None
def recursive(A, left=0, right=len(A) - 1):
"""helper recursive function"""
mid = (left + right) // 2
# check if the middle element is greater than its neighbors
if ((mid == 0 or A[mid - 1] <= A[mid]) and
(mid == len(A) - 1 or A[mid + 1] <= A[mid])):
return A[mid]
# If the left neighbor of `mid` is greater than the middle element,
# find the peak recursively in the left sublist
if mid - 1 >= 0 and A[mid - 1] > A[mid]:
return recursive(A, left, mid - 1)
# If the right neighbor of `mid` is greater than the middle element,
# find the peak recursively in the right sublist
return recursive(A, mid + 1, right)
return recursive(A)
|
def Pad(ids, pad_id, length):
"""Pad or trim list to len length.
Args:
ids: list of ints to pad
pad_id: what to pad with
length: length to pad or trim to
Returns:
ids trimmed or padded with pad_id
"""
assert pad_id is not None
assert length is not None
if len(ids) < length:
a = [pad_id] * (length - len(ids))
return ids + a
else:
return ids[:length]
|
def get_network_name_from_url(network_url):
"""Given a network URL, return the name of the network.
Args:
network_url: str - the fully qualified network url, such as
(https://www.googleapis.com/compute/v1/projects/'
'my-proj/global/networks/my-network')
Returns:
str - the network name, my-network in the previous example
"""
return network_url.split('/')[-1]
|
def in_bisect(word_list, target):
""" Takes a sorted word list and checks for presence of target word using bisection search"""
split_point = (len(word_list) // 2)
if target == word_list[split_point]:
return True
if len(word_list) <= 1:
return False
if target < word_list[split_point]:
# print ('Calling in_bisect on 0', split_point)
return in_bisect(word_list[0:split_point], target)
else:
# print ('Calling in_bisect on', split_point, len(word_list))
return in_bisect(word_list[split_point:], target)
|
def dotProduct(listA, listB):
"""
listA: a list of numbers
listB: a list of numbers of the same length as listB
Returns the dot product of all the numbers in the lists.
"""
dotProd = 0
for num in range(len(listA)):
prod = listA[num] * listB[num]
dotProd = dotProd + prod
return dotProd
|
def word_overlap(left_words, right_words):
"""Returns the Jaccard similarity between two sets.
Note
----
The topics are considered sets of words, and not distributions.
Parameters
----------
left_words : set
The set of words for first topic
right_words : set
The set of words for the other topic
Returns
-------
jaccard_similarity : float
"""
intersection = len(left_words.intersection(right_words))
union = len(left_words.union(right_words))
jaccard = intersection / union
return jaccard
|
def func(arg):
"""
:param arg: taking args
:return: returning square
"""
x = arg*arg
return x
|
def is_triangle_possible(triangle):
"""Check if triangle is possible."""
return sum(sorted(triangle)[:2]) > max(triangle)
|
def get_nr_dic1_keys_in_dic2(dic1, dic2):
"""
Return number of dic1 keys found in dic2.
>>> d1 = {'hallo': 1, 'hello' : 1}
>>> d2 = {'hallo': 1, 'hello' : 1, "bonjour" : 1}
>>> get_nr_dic1_keys_in_dic2(d1, d2)
2
>>> d1 = {'hollo': 1, 'ciao' : 1}
>>> get_nr_dic1_keys_in_dic2(d1, d2)
0
"""
assert dic1, "dic1 empty"
assert dic2, "dic2 empty"
dic1_keys_found = 0
for key in dic1:
if key in dic2:
dic1_keys_found += 1
return dic1_keys_found
|
def find_largest_digit_helper(n, lar):
"""
This is the help function to find the largest digit
:param n :(int) the number to find the largest digit
:param lar:(int) found the largest digit
:return :(int) the largest digit
"""
if n < lar:
return lar
else:
if n % 10 > lar:
lar = n % 10
return find_largest_digit_helper(int(n/10), lar)
|
def format_coord(x, y):
"""coordinate formatter replacement"""
return 'x={x}, y={y:.2f}'.format(x=x, y=y)
|
def isolate_rightmost_0_bit(n: int) -> int:
"""
Isolate the rightmost 0-bit.
>>> bin(isolate_rightmost_0_bit(0b10000111))
'0b1000'
"""
return ~n & (n + 1)
|
def convert(client, denomination, amount):
"""
Convert the amount from it's original precision to 18 decimals
"""
if denomination == 'nct':
return client.to_wei(amount, 'ether')
elif denomination == 'nct-gwei':
return client.to_wei(amount, 'gwei')
elif denomination == 'nct-wei':
return amount
else:
raise ValueError()
|
def repeat_val (num:int, val):
"""
repeat a value several k times.
"""
return [val for _ in range(num - 1)]
|
def to_dependencies_of(g):
"""
Compute the dependencies of each path var.
:param d: an adjacency list of dependency => [depends on, ...]
:return: an adjacency list of the given data structure such that
the k => [depends on, ...]. The vertices in the values are
presorted to ensure reproducible results
"""
deps = {}
for k, vertices in g.items():
for v in vertices:
if v not in deps:
deps[v] = set()
deps[v].add(k)
# I do this for deterministic ordering.
return {k: sorted(v) for k, v in deps.items()}
|
def _user_to_simple_dict(user: dict) -> dict:
"""Convert Notion User objects to a "simple" dictionary suitable for Pandas.
This is suitable for objects that have `"object": "user"`
"""
record = {
"notion_id": user["id"],
"type": user["type"],
"name": user["name"],
"avatar_url": user["avatar_url"],
}
if user["type"] == "person":
record["email"] = user["person"]["email"]
return record
|
def duration(s):
"""Turn a duration in seconds into a human readable string"""
m, s = divmod(s, 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
parts = []
if d:
parts.append('%dd' % d)
if h:
parts.append('%dh' % h)
if m:
parts.append('%dm' % m)
if s:
parts.append('%ds' % s)
return ' '.join(parts)
|
def is_discrete(num_records: int, cardinality: int, p=0.15):
"""
Estimate whether a feature is discrete given the number of records
observed and the cardinality (number of unique values)
The default assumption is that features are not discrete.
Parameters
----------
num_records : int
The number of observed records
cardinality : int
Number of unique observed values
Returns
-------
discrete : bool
Whether the feature is discrete
"""
if cardinality >= num_records:
return False
if num_records < 1:
return False
if cardinality < 1:
raise ValueError("Cardinality must be >= 1 for num records >= 1")
discrete = False
density = num_records/(cardinality + 1)
if 1/density <= p:
discrete = True
return discrete
|
def average(nums,n):
"""Find mean of a list of numbers."""
return sum(nums) / n
|
def find_str(string: str, pattern: str) -> list:
"""
Find all indices of patterns in a string
Parameters
----------
string : str
input string
pattern : str
string pattern to search
Returns
-------
ind : list
list of starting indices
"""
import re
if not pattern.isalpha(): # if the pattern contains non-alphabetic chars such as *
pattern = "\\" + pattern
ind = [m.start() for m in re.finditer(pattern, string)]
return ind
|
def _cons8_99(m8, L88, L89, d_gap, k, Cp, h_gap):
"""dz constrant for edge gap sc touching 2 corner gap sc"""
term1 = 2 * h_gap * L88 / m8 / Cp # conv to inner/outer ducts
term2 = 2 * k * d_gap / m8 / Cp / L89 # cond to adj bypass corner
return 1 / (term1 + term2)
|
def expand_brackets(text):
"""
Change a text with TEXT[ABC..] into a list with [TEXTA, TEXTB, TEXC, ...
if no bracket is used it just return the a list with the single text
It uses recursivity to allow several [] in the text
:param text:
:return:
"""
if text is None:
return (None, )
start = text.find("[")
end = text.find("]")
if start < 0 or end < 0:
return [text]
text_list = []
for char in text[start+1:end]:
text_list += expand_brackets(text[:start] + char + text[end+1:])
return text_list
|
def tokenize(separators, seq):
"""tokenize(separators, seq) : Transforms any type of sequence into a list of words and a list of gap lengths
seq : the sequence (any sequence type, e.g. a list, tuple, string, ...) [will not be modified]
separators : a sequence of values to be used as separators between words. adjoining separators will be merged.
Returns: words, gaps
where len(gaps) = len(words) + 1
The first and last gaps are at the beginning and end of the sequence and may have length 0.
If seq is a string, words are also returned as strings. Otherwise every word is a list. Gap lengths are integers >= 0.
"""
words = []
gaps = [0]
if len(seq)<1:
return words, gaps
gapIsOpen=True # current gap size
for i,v in enumerate(seq):
if v not in separators:
if gapIsOpen:
words.append([])
gapIsOpen=False
words[-1].append(v)
else:
if not gapIsOpen:
gaps.append(0)
gapIsOpen=True
gaps[-1] += 1
if not gapIsOpen:
gaps.append(0)
assert len(gaps) == len(words) + 1
if isinstance(seq, str):
for i in range(len(words)):
words[i] = "".join(words[i])
return words, gaps
|
def string_to_integer(word):
""" Converts a string into the integer format expected by the neural network """
integer_list = list()
for character in word:
integer_list.append(character)
for index in range(integer_list.__len__()):
current_character = integer_list[index]
integer_list[index] = ord(current_character)
for index in range(integer_list.__len__()):
current_character = integer_list[index]
integer_list[index] = current_character - ord('`')
while integer_list.__len__() < 16:
integer_list.append(0)
return integer_list
|
def shorten(x, length):
""" Shorten string x to length, adding '..' if shortened """
if len(x) > (length):
return x[:length - 2] + '..'
return x
|
def Right(text, number):
"""Return the right most characters in the text"""
return text[-number:]
|
def walk_line(strings, max_x, max_y, coordinates, direction, path_char):
"""
Given some starting points and a direction, find any connected corners in said direction.
:param strings string - the text that may contain rectangles.
:param max_x int - the boundary/width of the text.
:param max_y int - the boundary/height of the text.
:param coordinates list[(tuple),...] - List containing starting locations (y, x).
:param direction string - "+" or "-" for incrementing/decrmenting x or y depending on path_char.
:param path_char string - "|" or "-" the connecting char to look for.
:return list[(tuple),...] - List containing any valid corners in the direction specified.
"""
corner_coords = []
for coords in coordinates:
y = coords[0]
x = coords[1]
in_bounds = True
while (in_bounds):
# move 'forward'
if path_char == "-" and direction == "+":
x += 1
elif path_char == "-" and direction == "-":
x -= 1
elif path_char == "|" and direction == "+":
y += 1
elif path_char == "|" and direction == "-":
y -= 1
if x < 0 or x > max_x or y < 0 or y > max_y:
in_bounds = False
break
if strings[y][x] == path_char:
continue
elif strings[y][x] == "+":
corner_coords.append((y, x))
else:
break
return corner_coords
|
def _GetStepsAndTests(failed_steps):
"""Extracts failed steps and tests from failed_steps data structure.
Args:
failed_steps(TestFailedSteps): Failed steps and test information.
Example of a serialized TestFailedSteps:
{
'step_a': {
'last_pass': 4,
'tests': {
'test1': {
'last_pass': 4,
'current_failure': 6,
'first_failure': 5
},
'test2': {
'last_pass': 4,
'current_failure': 6,
'first_failure': 5
}
},
'current_failure': 6,
'first_failure': 5,
'list_isolated_data': [
{
'isolatedserver': 'https://isolateserver.appspot.com',
'namespace': 'default-gzip',
'digest': 'abcd'
}
]
},
'step_b': {
'current_failure': 3,
'first_failure': 2,
'last_pass': 1
}
}
Returns:
failed_steps_and_tests: Sorted list of lists of step and test names.
Example:
[
['step_a', 'test1'],
['step_a', 'test2'],
['step_b', None]
]
"""
failed_steps_and_tests = []
if not failed_steps:
return failed_steps_and_tests
for step_name, step in failed_steps.iteritems():
for test_name in (step.tests or [None]):
failed_steps_and_tests.append([step_name, test_name])
return sorted(failed_steps_and_tests)
|
def listize(obj):
""" If obj is iterable and not a string, returns a new list with the same
contents. Otherwise, returns a new list with obj as its only element.
"""
if not isinstance(obj, str):
try:
return list(obj)
except:
pass
return [obj]
|
def get_version(data):
"""
Parse version from changelog written in RST format.
"""
def all_same(s):
return not any(filter(lambda x: x != s[0], s))
def has_digit(s):
return any(char.isdigit() for char in s)
data = data.splitlines()
return next((
v
for v, u in zip(data, data[1:]) # v = version, u = underline
if len(v) == len(u) and all_same(u) and has_digit(v) and "." in v
))
|
def string_distance(a: str, b: str):
"""
Returns the levenshtein distance between two strings, which can be used to compare their similarity
[Code source](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py)
"""
if len(a) < len(b): return string_distance(b, a)
if len(b) == 0: return len(a)
prow = range(len(b) + 1)
for i, c1 in enumerate(a):
crow = [i + 1]
for j, c2 in enumerate(b):
ins = prow[j + 1] + 1
dl = crow[j] + 1
sub = prow[j] + (c1 != c2)
crow.append(min(ins, dl, sub))
prow = crow
return prow[-1]
|
def strip_whitespace_from_data(data):
"""Recursively strips whitespace and removes empty items from lists"""
if isinstance(data, str):
return data.strip()
elif isinstance(data, dict):
return {key: strip_whitespace_from_data(value) for key, value in data.items()}
elif isinstance(data, list):
return list(filter(lambda x: x != '', map(strip_whitespace_from_data, data)))
else:
return data
|
def how_many_namefellows(queue: list, person_name: str) -> int:
"""
:param queue: list - names in the queue.
:param person_name: str - name you wish to count or track.
:return: int - the number of times the name appears in the queue.
"""
cnt = 0
for name in queue:
if name == person_name:
cnt += 1
return cnt
|
def year_list_to_cite_years(year_list,p_year):
"""convert year_list into cite_years
:param year_list,p_year:
:return: cite_years
"""
year_list_int = []
for s in year_list:
try:
year_list_int.append(int(s))
except:
pass
y = [p_year+i for i in range(2021 - p_year + 1)]
cite_years = [0 for _ in range(2021 - p_year + 1)]
for year in year_list_int:
if year >= p_year and year <= 2021:
cite_years[year - p_year] += 1
list_return = [y, cite_years]
# cite_years = pd.DataFrame(cite_years,
# index=y,
# columns=['total'])
# cite_years = cite_years.T
return list_return
|
def clean_string(string):
"""Clean a string.
Trims whitespace.
Parameters
----------
str : str
String to be cleaned.
Returns
-------
string
Cleaned string.
"""
assert isinstance(string, str)
clean_str = string.strip()
clean_str = clean_str.replace(" ", " ")
assert isinstance(clean_str, str)
return clean_str
|
def good_fibonacci(n):
"""Return pair of Fibonacci numbers, F(n) and F(n-1)"""
if n <= 1:
return n, 0
a, b = good_fibonacci(n - 1)
return a + b, a
|
def step_forward(position, panel_r, panel_l, connection_map):
"""
When each character is read from the input, this function is sounded until it reaches the reflect board.
This function specifies that at each step I have to go through the index of each page
Of the routers to reach the reflect board.
:param position: Position of the char in the list.
:param panel_r: The list that represents the right side of the router
:param panel_l: The list that represents the left side of the router
:param connection_map: A dictionary showing which characters are attached to each character on the screen
:return: Index of the char in left side of router
"""
holder1 = panel_r[position]
holder2 = connection_map[holder1]
holder3 = panel_l.index(holder2)
return holder3
|
def datetime_to_float(datetime):
"""
SOPC_DateTime* (the number of 100 nanosecond intervals since January 1, 1601)
to Python time (the floating point number of seconds since 01/01/1970, see help(time)).
"""
nsec = datetime[0]
# (datetime.date(1970,1,1) - datetime.date(1601,1,1)).total_seconds() * 1000 * 1000 * 10
return (nsec - 116444736000000000)/1e7
|
def readline_setup(exports):
"""setup readline completion, if available.
:param exports: the namespace to be used for completion
:return: True on success
"""
try:
import readline
except ImportError:
# no completion for you.
readline = None
return False
else:
import rlcompleter
readline.set_completer(
rlcompleter.Completer(namespace=exports).complete)
return True
|
def is_bad_port(port):
"""
Bad port as per https://fetch.spec.whatwg.org/#port-blocking
"""
return port in [
1, # tcpmux
7, # echo
9, # discard
11, # systat
13, # daytime
15, # netstat
17, # qotd
19, # chargen
20, # ftp-data
21, # ftp
22, # ssh
23, # telnet
25, # smtp
37, # time
42, # name
43, # nicname
53, # domain
69, # tftp
77, # priv-rjs
79, # finger
87, # ttylink
95, # supdup
101, # hostriame
102, # iso-tsap
103, # gppitnp
104, # acr-nema
109, # pop2
110, # pop3
111, # sunrpc
113, # auth
115, # sftp
117, # uucp-path
119, # nntp
123, # ntp
135, # loc-srv / epmap
137, # netbios-ns
139, # netbios-ssn
143, # imap2
161, # snmp
179, # bgp
389, # ldap
427, # afp (alternate)
465, # smtp (alternate)
512, # print / exec
513, # login
514, # shell
515, # printer
526, # tempo
530, # courier
531, # chat
532, # netnews
540, # uucp
548, # afp
554, # rtsp
556, # remotefs
563, # nntp+ssl
587, # smtp (outgoing)
601, # syslog-conn
636, # ldap+ssl
993, # ldap+ssl
995, # pop3+ssl
1719, # h323gatestat
1720, # h323hostcall
1723, # pptp
2049, # nfs
3659, # apple-sasl
4045, # lockd
5060, # sip
5061, # sips
6000, # x11
6566, # sane-port
6665, # irc (alternate)
6666, # irc (alternate)
6667, # irc (default)
6668, # irc (alternate)
6669, # irc (alternate)
6697, # irc+tls
]
|
def e_vect(n, i):
"""
get a vector of zeros with a one in the i-th position
Parameters
----------
n: vector length
i: position
Returns
-------
an array with zeros and 1 in the i-th position
"""
zeros = [0 for n_i in range(n)]
zeros[i] = 1
return zeros
|
def zoo_om_re_ratio(carbon, d_carbon, ratio, d_ratio):
"""carbon and d_carbon im moles
carbon, ratio - to be changed
d_carbon, d_ratio - what changes the ratio"""
return (carbon+d_carbon)/(carbon/ratio+d_carbon/d_ratio)
|
def sumNumber(num):
""" Gives the sum of all the positive numbers before input number """
# Used for rank based selection
sum_num = 0
for i in range(num+1):
sum_num += i
return sum_num
|
def filter_nodes(nodes, env='', roles=None, virt_roles=''):
"""Returns nodes which fulfill env, roles and virt_roles criteria"""
retval = []
if not roles:
roles = []
if virt_roles:
virt_roles = virt_roles.split(',')
for node in nodes:
append = True
if env and node.get('chef_environment', 'none') != env:
append = False
if roles:
if not set.intersection(
set(roles),
set([role.split("_")[0] for role in node['roles']])):
append = False
if virt_roles:
# Exclude node in two cases:
# * the virtualization role is not in the desired virt_roles
# * the virtualization role is not defined for the node AND
# 'guest' is a desired virt_role
virt_role = node.get('virtualization', {}).get('role')
if not virt_role in virt_roles and \
not ('guest' in virt_roles and not virt_role):
append = False
if append:
retval.append(node)
return retval
|
def lower(low, temp):
"""
:param low: int, the lowest temperature data before
:param temp: int, the new temperature data
:return: int, the lower one between high and temp, which becomes the lowest temperature
"""
if temp < low:
return temp
return low
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.