content
stringlengths 42
6.51k
|
---|
def nodeconfig(nodeconfig_line):
""" converts to nodeconfig """
config = {}
tokens = nodeconfig_line.split('; ')
for token in tokens:
pairs = token.split('=')
if len(pairs) > 1:
config[pairs[0]] = pairs[1]
return config
|
def google_list_style(style):
"""finds out whether this is an ordered or unordered list"""
if 'list-style-type' in style:
list_style = style['list-style-type']
if list_style in ['disc', 'circle', 'square', 'none']:
return 'ul'
return 'ol'
|
def headers(questions):
"""
Generate the headers for the CSV file
- take an array of questions. The order is important
- Each question id is a column header
- Paired with the index+1 of it's position in the array
- Example: 43:SQ3-1d
- SQ3-1d is the old question id
- 43 is it's number on the supplier application
- Note array is prefixed with the DM supplier ID
:param questions:
:return array of strings representing headers:
"""
csv_headers = list()
csv_headers.append('Digital Marketplace ID')
csv_headers.append('Digital Marketplace Name')
csv_headers.append('Digital Marketplace Duns number')
csv_headers.append('State of Declaration')
for index, value in enumerate(questions):
csv_headers.append("{}:{}".format(index+1, value))
return csv_headers
|
def solution(n: int = 1000) -> int:
"""
returns number of fractions containing a numerator with more digits than
the denominator in the first n expansions.
>>> solution(14)
2
>>> solution(100)
15
>>> solution(10000)
1508
"""
prev_numerator, prev_denominator = 1, 1
result = []
for i in range(1, n + 1):
numerator = prev_numerator + 2 * prev_denominator
denominator = prev_numerator + prev_denominator
if len(str(numerator)) > len(str(denominator)):
result.append(i)
prev_numerator = numerator
prev_denominator = denominator
return len(result)
|
def payloadDictionary(payload, lst):
"""creates payload dictionary.
Args:
payload: String
SQL query
lst: List of Strings
keywords for payload dictionary
Returns:
dikt: dictionary
dictionary using elements of lst as keys and payload as value for each key
"""
dikt = {}
for i in lst:
dikt[i] = payload
return dikt
|
def _count_righthand_zero_bits(number, bits):
"""Count the number of zero bits on the right hand side.
Args:
number: An integer.
bits: Maximum number of bits to count.
Returns:
The number of zero bits on the right hand side of the number.
"""
if number == 0:
return bits
return min(bits, (~number & (number - 1)).bit_length())
|
def next_word_max_solution(prev_seq, counts, N):
"""Returns the word with the highest occurence given a word sequence
:param prev_seq:
:param counts:
:param N:
:returns max_successor
"""
token_seq = " ".join(prev_seq.split()[-(N-1):])
# SOLUTION:
max_successor = max(counts[token_seq].items(), key=lambda k: k[1])[0]
return max_successor
|
def is_nursery_rule_path(path: str) -> bool:
"""
The nursery is a spot for rules that have not yet been fully polished.
For example, they may not have references to public example of a technique.
Yet, we still want to capture and report on their matches.
The nursery is currently a subdirectory of the rules directory with that name.
When nursery rules are loaded, their metadata section should be updated with:
`nursery=True`.
"""
return "nursery" in path
|
def riemann_sum(func, partition):
"""
Compute the Riemann sum for a given partition
Inputs:
- func: any single variable function
- partition: list of the form [(left, right, midpoint)]
Outputs:
- a float
"""
return sum(func(point) * (right - left) for left, right, point in partition)
|
def source_page(is_awesome) -> str:
"""
Returns an awesome string
Args:
is_awesome (bool): is SourcePage awesome?
"""
if is_awesome:
return f"{is_awesome}! SourcePage is awesome!"
return f"{is_awesome}! Nah, SourcePage is still awesome!"
|
def remove_prefix(state_dict, prefix):
""" Old style model is stored with all names of parameters sharing common prefix 'module.' """
# print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
|
def getinrangelist(inputlist,minval,maxval):
"""creates a binary list, indicating inputlist entries are
between (inclusive) the minval and maxval"""
inrangelist=[1 if maxval>=i>=minval else 0
for i in inputlist]
return inrangelist
|
def convert_eq(list_of_eq):
"""
Convert equality constraints in the right format
to be used by unification library.
"""
lhs = []
rhs = []
for eq in list_of_eq:
lhs.append(eq.lhs)
rhs.append(eq.rhs)
return tuple(lhs), tuple(rhs)
|
def _drop_label_from_string(label_string: str, search_label: str):
""" Mask labels with Booleans that appear in row """
valid_labels = []
for label in label_string.split(' '):
if search_label == label:
continue
valid_labels.append(label)
return ' '.join(valid_labels)
|
def update_nested_dictionary(old, new):
"""
Update dictionary with the values from other dictionary. Recursively update
any nested dictionaries if both old and new values are dictionaries.
:param old: Old dictionary that will be updated
:type old: dict
:param new: New dictionary that contains the updated values
:type new: dict
:return: Updated dictionary
:rtype: dict
"""
for key, new_value in new.items():
old_value = old.get(key)
if (isinstance(old_value, dict) and
isinstance(new_value, dict)):
old[key] = update_nested_dictionary(old_value, new_value)
else:
old[key] = new_value
return old
|
def marker_name(name):
"""Returns a marker filename for an external repository."""
return "@{}.marker".format(name.replace("//external:", ""))
|
def music(music=True):
"""Enables, or disables, the in-game music. Useful if you want to use an MSU-1 soundtrack instead.
Keyword Arguments:
music {bool} -- If true, music is enabled. If false, the music id disabled. (default: {True})
Returns:
list -- a list of dictionaries indicating which ROM address offsets to write and what to write to them
"""
return [{'1573402': [0 if music else 1]}]
|
def decode_base_qual(raw_base_qual: bytes,
offset: int = 33) -> str:
"""Decode raw BAM base quality scores into ASCII values
Parameters
----------
raw_base_qual : bytes
The base quality section of a BAM alignment record as bytes
eg the output from pylazybam.bam.get_raw_base_qual()
offset : int
The offset to add to the quality values when converting to ASCII
Returns
-------
str
The ASCII encoded SAM representation of the quality scores
"""
return "".join([chr(q + offset) for q in list(raw_base_qual)])
|
def citationContainsDOI(citation):
""" Checks if the citation contains a doi """
if citation.startswith("doi:"):
return True
elif citation.startswith("@doi:"):
return True
elif citation.startswith("[@doi"):
return True
else:
return False
|
def transpose(m):
"""transpose(m): transposes a 2D matrix, made of tuples or lists of tuples or lists,
keeping their type.
>>> transpose([])
Traceback (most recent call last):
...
IndexError: list index out of range
>>> transpose([[]])
[]
>>> transpose([1,2,3])
Traceback (most recent call last):
...
TypeError: zip argument #1 must support iteration
>>> transpose([[1,2,3]])
[[1], [2], [3]]
>>> transpose( [[2, 2, 2], [2, 2, 2]] )
[[2, 2], [2, 2], [2, 2]]
>>> transpose( [(2, 2, 2), (2, 2, 2)] )
[(2, 2), (2, 2), (2, 2)]
>>> transpose( ([2, 2, 2], [2, 2, 2]) )
([2, 2], [2, 2], [2, 2])
>>> transpose( ((2, 2, 2), (2, 2, 2)) )
((2, 2), (2, 2), (2, 2))
>>> t = [[[1], [2]], [[3], [4]], [[5], [6]]]
>>> transpose(t)
[[[1], [3], [5]], [[2], [4], [6]]]
"""
if isinstance(m, list):
if isinstance(m[0], list):
return map(list, zip(*m))
else:
return zip(*m) # faster
else:
if isinstance(m[0], list):
return tuple(map(list, zip(*m)))
else:
return tuple( zip(*m) )
|
def protect_special_chars(lines):
"""Add \ in front of * or _ so that Markdown doesn't interpret them."""
for i in range(len(lines)):
if lines[i][0] in ['text', 'list', 'list-item']:
protectedline = []
for c in lines[i][1]:
if c in '_*':
protectedline.append('\\' + c)
else:
protectedline.append(c)
lines[i][1] = ''.join(protectedline)
return lines
|
def _find(s: str, ch: str) -> list:
"""
Finds indices of character `ch` in string `s`
"""
return [i for i, ltr in enumerate(s) if ltr == ch]
|
def is_valid_strategy(strategy):
"""A valid strategy comes in pairs of buys and sells."""
cumsum = 0
for num in strategy:
cumsum += num
if cumsum > 0:
return False
elif cumsum < -1:
return False
return True
|
def node_type(node):
"""
Node numbering scheme is as follows:
[c1-c309] [c321-c478] old compute nodes (Sandy Bridge)
[c579-c628],[c639-c985] new compute nodes (Haswell) -- 50 + 346
Special nodes:
c309-c320 old big memory nodes (Sandy Bridge)
c629-c638 new big memory nodes (Haswell) -- 10
c577,c578 old huge memory nodes (HP Proliant DL560)
c986-c989 new huge memory nodes (Dell R930)
TOTAL Haswell 406
"""
if node.strip() in ['c'+str(x) for x in range(1, 310)]:
return 'SandyBridge'
if node.strip() in ['c'+str(x) for x in range(321, 479)]:
return 'SandyBridge'
if node.strip() in ['c'+str(x) for x in range(579, 629)]:
return 'Haswell'
if node.strip() in ['c'+str(x) for x in range(639, 986)]:
return 'Haswell'
if node.strip() in ['c'+str(x) for x in range(309, 321)]:
return 'SandyBridgeBig'
if node.strip() in ['c'+str(x) for x in range(629, 639)]:
return 'HaswellBig'
if node.strip() in ['c'+str(x) for x in range(577, 579)]:
return 'OldHuge'
if node.strip() in ['c'+str(x) for x in range(986, 990)]:
return 'NewHuge'
|
def eye_to_age(D_eye):
"""Inverts age_to_eye_diameter
Args:
D_eye (float): Diameter of Eyepiece (mm); default is 7 mm
Returns:
age (float): approximate age
"""
if D_eye > 7.25:
age = 15
elif D_eye <= 7.25 and D_eye > 6.75:
age = 25
elif D_eye <= 6.75 and D_eye > 6.25:
age = 33
elif D_eye <= 6.25 and D_eye > 5.75:
age = 40
elif D_eye <= 5.75 and D_eye > 5.25:
age = 54
else:
age = 70
return age
|
def generate_targets_dict_for_comparison(targets_list):
"""
Generates a dict which contains the target name as key, and the score '1.00' and a p-value 'foo'
as a set in the value of the dict. This dict will be used for the targets comparison
"""
targets_dict = {}
for target in targets_list:
targets_dict[target] = (1.0, "foo")
return targets_dict
|
def _pretty(name: str) -> str:
"""
Make :class:`StatusCode` name pretty again
Parameters
-----------
name: [:class:`str`]
The status code name to make pretty
Returns
---------
:class:`str`
The pretty name for the status code name given
"""
return name.replace("_", " ").lower().title()
|
def bindings_friendly_attrs(format_list):
"""
Convert the format_list into attrs that can be used with python bindings
Python bindings should take care of the typing
"""
attrs = []
if format_list is not None:
if isinstance(format_list, list):
attrs = format_list
elif isinstance(format_list, str):
attrs = [format_list]
return attrs
|
def tail(lst):
"""
tail(lst: list)
1 to len of a list
args:
a list => eg: [1,2,3]
return:
a list => [2,3]
"""
return lst[1:]
|
def split(input_list):
"""
Splits a list into two pieces
:param input_list: list
:return: left and right lists (list, list)
"""
input_list_len = len(input_list)
midpoint = input_list_len // 2
return input_list[:midpoint], input_list[midpoint:]
|
def tumor_type_match(section, keywords, match_type):
"""Process metadata function."""
for d in section:
if not keywords:
d[match_type] = "null"
else:
d[match_type] = "False"
for k in keywords:
if k in d["db_tumor_repr"].lower():
d[match_type] = "True"
break
else:
continue
return section
|
def add_w_to_param_names(parameter_dict):
"""
add a "W" string to the end of the parameter name to indicate that the parameter should over-write up the chain of
stratification, rather than being a multiplier or adjustment function for the upstream parameters
:param parameter_dict: dict
the dictionary before the adjustments
:return: dict
same dictionary but with the "W" string added to each of the keys
"""
return {str(key) + "W": value for key, value in parameter_dict.items()}
|
def check_for_output_match(output, test_suite):
"""Return bool list with a True item for each output matching expected output.
Return None if the functions suspects user tried to print something when
they should not have.
"""
output_lines = output.splitlines()
if len(output_lines) != len(test_suite):
return None # number of outputs != number of test cases
result = list()
for exe_output, test_case in zip(output_lines, test_suite):
# check if exe_output has format "RESULT: <integer>"
prefix = "RESULT: "
if (not exe_output.startswith(prefix)):
return None # the user printed something
exe_value = exe_output[len(prefix):]
if (test_case['output'] == exe_value):
result.append(True)
else:
result.append(False)
return result
|
def next_pow_two(max_sent_tokens):
"""
Next power of two for a given input, with a minimum of 16 and a
maximum of 512
Args:
max_sent_tokens (int): the integer
Returns:
int: the appropriate power of two
"""
pow_two = [16, 32, 64, 128, 256, 512]
if max_sent_tokens <= pow_two[0]:
return pow_two[0]
if max_sent_tokens >= pow_two[-1]:
return pow_two[-1]
check = [max_sent_tokens > j for j in pow_two]
idx = check.index(False)
return pow_two[idx]
|
def tokenize_stories(stories, token_to_id):
"""
Convert all tokens into their unique ids.
"""
story_ids = []
for story, query, answer in stories:
story = [[token_to_id[token] for token in sentence] for sentence in story]
query = [token_to_id[token] for token in query]
answer = token_to_id[answer]
story_ids.append((story, query, answer))
return story_ids
|
def remove_num(text):
"""
Function to clean JOB_TITLE and SOC_TITLE by removing digits from the values
"""
if not any(c.isdigit() for c in text):
return text
return ''
|
def unpad(data):
"""Remove PKCS#7 padding.
This function remove PKCS#7 padding at the end of the last block from
`data`.
:parameter:
data : string
The data to be unpadded.
:return: A string, the data without the PKCS#7 padding.
"""
array = bytearray()
array.extend(data)
array = array[:-(array[-1])]
return array
|
def can_import(module_name):
"""Check if module can be imported.
can_import(module_name) -> module or None.
"""
try:
return __import__(module_name)
except ImportError:
return None
|
def make_cache_key(question, docid):
"""Constructs a cache key using a fixed separator."""
return question + '###' + docid
|
def myavg(a, b):
"""
tests this problem
>>> myavg(10,20)
15
>>> myavg(2,4)
3
>>> myavg(1,1)
1
"""
return (a + b) / 2
|
def try_parse_int(s, base=10, val=None):
"""returns 'val' instead of throwing an exception when parsing fails"""
try:
return int(s, base)
except ValueError:
return val
|
def h(n):
""" assume n is an int >= 0 """
answer = 0
s = str(n)
for c in s:
answer += int(c)
return answer
|
def applyCompact(a, cops):
"""
Apply compact ops to string a to create and return string b
"""
result = []
apos = 0
for op in cops:
if apos < op[1]:
result.append(a[apos:op[1]]) # equal
if op[0] == 0:
result.append(op[3])
apos = op[2]
elif op[0] == 1:
apos = op[2]
elif op[0] == 2:
result.append(op[2])
apos = op[1]
if apos < len(a):
result.append(a[apos:]) # equal
return "".join(result)
|
def convertCharToInt(strs: list) -> list:
"""pega uma lista de caracteres e converte em uma lista de inteiros"""
for x in range(len(strs)):
strs[x] = ord(strs[x])
return strs
|
def grid_search_params(params):
"""
Given a dict of parameters, return a list of dicts
"""
params_list = []
for ip, (param, options) in enumerate(params.items()):
if ip == 0:
params_list += [{param: v} for v in options]
continue
_params_list = [dict(_) for _ in params_list]
for iv, value in enumerate(options):
if iv > 0 or ip == 0:
to_update = [dict(_) for _ in _params_list]
params_list += to_update
else:
to_update = params_list
for param_set in to_update:
param_set[param] = value
return params_list
|
def deterministic(v, u):
"""
Generates a deterministic variate.
:param v: (float) deterministic value.
:param u: (float) rnd number in (0,1).
:return: (float) the ChiSquare(n) rnd variate.
"""
# u is intentionally unused
return v
|
def mass_surface_solid(
chord,
span,
density=2700, # kg/m^3, defaults to that of aluminum
mean_t_over_c=0.08
):
"""
Estimates the mass of a lifting surface constructed out of a solid piece of material.
Warning: Not well validated; spar sizing is a guessed scaling and not based on structural analysis.
:param chord: wing mean chord [m]
:param span: wing span [m]
:param mean_t_over_c: wing thickness-to-chord ratio [unitless]
:return: estimated surface mass [kg]
"""
mean_t = chord * mean_t_over_c
volume = chord * span * mean_t
return density * volume
|
def left_circ_shift(x: int, shift: int, n_bits: int) -> int:
"""
Does a left binary circular shift on the number x of n_bits bits
:param x: A number
:param shift: The number of bits to shift
:param n_bits: The number of bits of x
:return: The shifted result
"""
mask = (1 << n_bits) - 1 # Trick to create a ones mask of n bits
x_base = (x << shift) & mask # Keep it in the n_bits range
return x_base | (x >> (n_bits - shift))
|
def vis8(n): # DONE
"""
OO OO OOO
OOO OOO
OOOO
Number of Os:
2 4 7"""
result = ''
for i in range(1, n + 1):
result += 'O' * (n)
if i == n:
result += 'O\n'
else:
result += '\n'
return result
|
def _get_tissue(x):
"""
It extracts the tissue name from a filename.
"""
if x.endswith("-projection"):
return x.split("spredixcan-mashr-zscores-")[1].split("-projection")[0]
else:
return x.split("spredixcan-mashr-zscores-")[1].split("-data")[0]
|
def is_palindrome(string):
"""Solution to exercise C-4.17.
Write a short recursive Python function that determines if a string s is a
palindrome, that is, it is equal to its reverse. For example, "racecar"
and "gohangasalamiimalasagnahog" are palindromes.
"""
n = len(string)
def recurse(idx):
if idx == n:
return True # Base case, end of string and all letters matched
if string[idx] == string[n-1-idx]:
return recurse(idx+1)
return False
return recurse(0)
|
def value2string(val):
""" to convert val to string """
if val is None:
return ""
else:
return str(val)
|
def to_month_number(month_name):
"""
Convert English month name to a number from 1 to 12.
Parameters
----------
month_name : str
Month name in English
Returns
----------
month_number: int
1-12 for the names from January to December, 0 for other inputs
"""
names = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"]
if month_name in names:
return names.index(month_name) + 1
else:
return 0
|
def choose_in(keys, values, choices):
"""" Return the values corresponding to the choices
:param keys: list of keys
:param values: list of values
:param choices: list of choices """
dictionary = dict(list(zip(keys, values)))
return [dictionary[key] for key in choices]
|
def same_rows(rows_list_1, rows_list_2):
"""Compare DF rows represented as lists of tuples ('records').
Checks that the lists contain the same tuples (possibly in different orders).
"""
return sorted(rows_list_1) == sorted(rows_list_2)
|
def vector(b,e):
"""Vector Subtraction function.
Parameters
----------
v : list
First 3D vector.
e : list
Second 3D vector.
Returns
-------
tuple
Returns the vector of e - v.
Examples
--------
>>> import numpy as np
>>> from .pycgmKinetics import vector
>>> v = [1,2,3]
>>> e = [4,5,6]
>>> vector(v, e)
(3, 3, 3)
>>> v = np.array([5.10897693, 6.18161923, 9.44221215])
>>> e = np.array([3.68040209, 9.92542233, 5.38362424])
>>> vector(v, e)
(-1.42857484, 3.7438031, -4.05858791)
"""
x,y,z = b
X,Y,Z = e
return (X-x, Y-y, Z-z)
|
def find_delimiter_loc(delimiter, str):
"""Return a list of delimiter locations in the str"""
out = []
pos = 0
while pos < len(str):
if str[pos] == "%":
out.append(pos)
pos += 1
return out
|
def build_path(pattern, keys):
"""Replace placeholders in `pattern` to build path to be scraped.
`pattern` will be a string like "measure/%(measure)s/ccg/%(entity_code)s/".
"""
substitutions = {
"practice_code": "L83100",
"ccg_code": "15N",
"stp_code": "E54000037",
"regional_team_code": "Y58",
"bnf_code": "0205051R0BBAIAN",
"measure": "ace",
}
path = pattern
for key in keys:
subst_key = None
if key in ["code", "entity_code"]:
for token in ["practice", "ccg", "stp", "regional-team"]:
if token in pattern:
subst_key = "{}_code".format(token).replace("-", "_")
if subst_key is None:
subst_key = "bnf_code"
else:
subst_key = key
path = path.replace("%({})s".format(key), substitutions[subst_key])
assert "%" not in path, "Could not interpolate " + pattern
return path
|
def scramble(mouvs):
"""
Converts movements from boolean and str to human comprehensive
Parameters
----------
mouvs: list
The list of movements (tuple : (f, cw, r180))
Returns
-------
mvts: str
The movements <F B L R U D> [' 2] [_]
"""
mvts = ""
for mvt in mouvs:
# Add LETTER + possibly ' or 2 + SPACE
mvts += mvt[0] + ("2" if mvt[2] else "" if mvt[1] else "'") + " "
return mvts.strip()
|
def binary_search(arr, left, right, item):
"""
>>> binary_search([1,2,3,4,5,6], 0, 5, 6)
5
>>> binary_search([2,5], 0, 1, 5)
1
>>> binary_search([0], 0, 0, 1)
-1
"""
if right >= left:
mid = left + (right - left) // 2
if arr[mid] == item:
return mid
if arr[mid] > item:
return binary_search(arr, left, mid - 1, item)
return binary_search(arr, mid + 1, right, item)
return -1
|
def get_feature_code(properties, yearsuffix):
"""
Get code from GeoJSON feature
"""
code = None
if 'code' in properties: code = properties['code']
elif ('lau1' + yearsuffix + 'cd') in properties: code = properties['lau1' + yearsuffix + 'cd']
return code
|
def intt(tup):
"""Returns a tuple components as ints"""
return (int(tup[0]),int(tup[1]))
|
def compute_sum(r: int, g: int, b: int) -> int:
"""
Author: Zakaria Ismail
RETURNS the sum of three numbers
PASSED. If sum exceeds 255, then
the sum is 255.
>> compute_sum(5,6,7)
18
"""
if r + g + b <= 255:
return r + g + b
else:
return 255
|
def decrementAny(tup):
""" the closest tuples to tup: decrementing by 1 along any dimension.
Never go into negatives though. """
res = []
for i, x in enumerate(tup):
if x > 0:
res.append(tuple(list(tup[:i]) + [x - 1] + list(tup[i + 1:])))
return res
|
def find_region(t, dt, dt_buffer=0.0):
"""
This function creates regions based on point-data. So,
given an array t, each point will be assigned a region
defined by -dt/+dt. These small regions are all collapsed
into larger regions that define full 1d spaces of point
data.
Example:
import numpy as np
import icesatPlot as ip
import region_detect as rd
x = np.linspace(0,100)
dx = rd.est_dx(x)
x_cut, _ = rd.filt_reg_x(x, [[10,20], [30,40], [50,60]])
regions, index = rd.find_region(x_cut, 2*dx)
fig, ax = ip.make_fig()
ax.plot(x_cut, x_cut, '.')
ylim = ax.get_ylim()
for reg in regions:
ax.plot([reg[0], reg[0]], ylim, 'g--') # start
ax.plot([reg[1], reg[1]], ylim, 'r--') # end
fig.show()
"""
degrade = []
degrade_index_red = []
if len(t) > 0:
# This works by first giving every outlier point a region defined by
# deg_definition_dt. Then, regions are added to degrade_index, and
# each overlapping super region is separated from one-another.
# Then the first and last points of each super region are used to define
# the overall degrade at that set of points.
deg_regions = [[t[0] - dt, t[0] + dt]]
degrade_index = [[0]]
for k in range(1, len(t)):
deg_t = t[k]
deg_regions.append([deg_t - dt, deg_t + dt])
# deg_start1 = deg_regions[k-1][0]
deg_end1 = deg_regions[k-1][1]
deg_start2 = deg_regions[k][0]
# deg_end2 = deg_regions[k][1]
if deg_end1 > deg_start2:
# degrade regions overlap
degrade_index[-1].append(k)
else:
degrade_index.append([])
degrade_index[-1].append(k)
# degrade_index[d] is a list of k-indices, the degrade regions
# that all overlap, or a single region if len(degrade_index[d]) == 1
for d in range(len(degrade_index)):
# handles single point or multiple regions that overlap
# in single point case, degrade_index[d][0] == degrade_index[d][-1]
d_start = deg_regions[degrade_index[d][0]][0] # "deg_start1", or "deg_start1" in single-point case
d_end = deg_regions[degrade_index[d][-1]][1] # "deg_end2", or "deg_end1" in single-point case
d_start += (dt - dt_buffer)
d_end += (-dt + dt_buffer)
degrade.append([d_start, d_end])
degrade_index_red.append([degrade_index[d][0], degrade_index[d][-1]])
# fp_outlier_deg_h.write('%d %15.6f %15.6f %15.6f\n' % (i+1, degrade_start, degrade_end, degrade_end - degrade_start))
return degrade, degrade_index_red
|
def ERR_NOSUCHNICK(sender, receipient, message):
""" Error Code 401 """
return "ERROR from <" + sender + ">: " + message
|
def compute_total_matching_score(sem_score_norm, struc_score_norm,
cn_score_norm, var_score_norm, a=0.2):
"""
Computes overall formula features score.
It discriminates the contributions between features. Semantic and
structural features are more important than constant and variable
features and thus given more weights.
Args:
sem_score_norm: Normalized semantic matching score.
struc_score_norm: Normalized structural matching score.
cn_score_norm: Normalized constant matching score.
var_score_norm: Normalized variable matching score.
a: weight the contribution between features.
Returns:
The total formula matching score.
"""
return ((1 - a) * (sem_score_norm + struc_score_norm) +
a * (cn_score_norm + var_score_norm)) / float(2)
|
def humanize_number(x):
"""Convert number to human readable string."""
abs_x = abs(x)
if abs_x > 1e6:
return f"{x/1e6:.0f}m"
elif abs_x > 1e3:
return f"{x/1e3:.0f}k"
elif abs_x > 10:
return f"{x:.0f}"
else:
return f"{x:.3f}"
|
def join_path_segments(*args):
"""Join multiple list of path segments
This function is not encoding aware, it does not test for, or changed the
encoding of the path segments it's passed.
Example::
>>> assert join_path_segments(['a'], ['b']) == ['a','b']
>>> assert join_path_segments(['a',''], ['b']) == ['a','b']
>>> assert join_path_segments(['a'], ['','b']) == ['a','b']
>>> assert join_path_segments(['a',''], ['','b']) == ['a','','b']
>>> assert join_path_segments(['a','b'], ['c','d']) == ['a','b','c','d']
:param args: optional arguments
:return: :class:`list`, the segment list of the result path
"""
finals = []
for segments in args:
if not segments or segments[0] == ['']:
continue
elif not finals:
finals.extend(segments)
else:
# Example #1: ['a',''] + ['b'] == ['a','b']
# Example #2: ['a',''] + ['','b'] == ['a','','b']
if finals[-1] == '' and (segments[0] != '' or len(segments) > 1):
finals.pop(-1)
# Example: ['a'] + ['','b'] == ['a','b']
elif finals[-1] != '' and segments[0] == '' and len(segments) > 1:
segments.pop(0)
finals.extend(segments)
return finals
|
def _convert_dict_to_maestro_params(samples):
"""Convert a scisample dictionary to a maestro dictionary"""
keys = list(samples[0].keys())
parameters = {}
for key in keys:
parameters[key] = {}
parameters[key]["label"] = str(key) + ".%%"
values = [sample[key] for sample in samples]
parameters[key]["values"] = values
return parameters
|
def timeFormat(time):
"""Summary
Args:
time (TYPE): Description
Returns:
TYPE: Description
"""
time = int(time)
seconds = time%60
time = time//60
minutes = (time)%60
time = time//60
hours = time%60
timeStr = str(hours) +"h " + str(minutes) + "m " + str(seconds) + "s"
return(timeStr)
|
def cubic_ease_in_out(p):
"""Modeled after the piecewise cubic
y = (1/2)((2x)^3) ; [0, 0.5)
y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
"""
if p < 0.5:
return 4 * p * p * p
else:
f = (2 * p) - 2
return (0.5 * f * f * f) + 1
|
def _tail(text, n):
"""Returns the last n lines in text, or all of text if too few lines."""
return "\n".join(text.splitlines()[-n:])
|
def label_data(dictionary, images):
"""
Labels the data depending on patient's diagnosis
Parameters
----------
dictionary: Dict with patient information
images: Names of images to label
Returns
-------
Labeled data
"""
data = []
last_patient = ''
aux = []
for img in images:
patientid = img[5:15]
if last_patient == '':
last_patient = patientid
aux.append(img)
continue
if patientid == last_patient:
aux.append(img)
else:
last_date = aux[-1][16:22]
if last_patient + last_date in dictionary:
dx = dictionary[last_patient + last_date]
for a in aux:
data.append((a, dx))
aux = [img]
last_patient = patientid
return data
|
def onlyHive(fullData):
"""
Parses the fullData set and returns only those servers with "hive" in their name.
This could probably be generalized to return other machines like those in Soda.
"""
toReturn = {}
for server in fullData:
if str(server)[0:4] == "hive":
toReturn[server] = fullData[server]
return toReturn
|
def short_kill_x(well, neighbor):
"""If the well is melanophore and neighbor is xantophore, kill the melanophore"""
# Note that original paper assumes that the chromaphores kill each other at the same rate (sm == sx == s)
if (well == 'M') & (neighbor == 'X'):
return 'S'
else:
return well
|
def update(m, k, f, *args, **kwargs):
"""clojure.core/update for Python's stateful maps."""
if k in m:
m[k] = f(m[k], *args, **kwargs)
return m
|
def r_sum(nested_num_list):
""" (list) -> float
Sum up the values in a nested numbers list
"""
cntr = 0
for elem in nested_num_list: # Traverse the list
# Recursive call for nested lists
if isinstance(elem, list):
cntr += r_sum(elem)
# Base case
elif isinstance(elem, (int, float)):
cntr += elem
else:
raise TypeError('Invalid value found in list: {0}'.format(elem))
return cntr
|
def migrate_stream_data(page_or_revision, block_path, stream_data, mapper):
""" Recursively run the mapper on fields of block_type in stream_data """
migrated = False
if isinstance(block_path, str):
block_path = [block_path, ]
if len(block_path) == 0:
return stream_data, False
# Separate out the current block name from its child paths
block_name = block_path[0]
child_block_path = block_path[1:]
for field in stream_data:
if field['type'] == block_name:
if len(child_block_path) == 0:
value = mapper(page_or_revision, field['value'])
field_migrated = True
else:
value, field_migrated = migrate_stream_data(
page_or_revision, child_block_path, field['value'], mapper
)
if field_migrated:
field['value'] = value
migrated = True
return stream_data, migrated
|
def get_qrels(iterable):
""" Get annotated weights for iunits """
qrels = {}
for line in iterable:
qid, uid, weight = line.rstrip().split('\t', 2)
qrels[(qid, uid)] = weight
return qrels
|
def format_image_expectation(profile):
"""formats a profile image to match what will be in JSON"""
image_fields = ['image', 'image_medium', 'image_small']
for field in image_fields:
if field in profile:
profile[field] = "http://testserver{}".format(profile[field])
return profile
|
def html_encode(text):
"""
Encode ``&``, ``<`` and ``>`` entities in ``text`` that will
be used in or as HTML.
"""
return (text.replace('&', '&').replace('<', '<').
replace('>', '>'))
|
def make_special_ticks(arr):
"""Makes x axis tick labels for `plot_time_errors` by iterating through a
given array
Args:
arr (iterable): The elements which will end up in the axis tick labels.
Returns:
list: the axis tick labels
"""
s = "$t={} \\ \\to \\ t={}$"
return [s.format(i, i+1) for i in arr]
|
def invert_filters(reference_filters):
"""Inverts reference query filters for a faster look-up time downstream."""
inverted_filters = {}
for key, value in reference_filters.items():
try:
# From {"cats_ok": {"url_key": "pets_cat", "value": 1, "attr": "cats are ok - purrr"},}
# To {"cats are ok - purrr": {"cats_ok": "true"},}
inverted_filters[value["attr"]] = {key: "true"}
except KeyError:
# For filters with multiple values.
# From {'auto_bodytype': ['bus', 'convertible', ... ],}
# To {'bus': 'auto_bodytype', 'convertible': 'auto_bodytype', ... ,}
if isinstance(value, dict):
inverted_filters.update({child_value: key for child_value in value})
return inverted_filters
|
def XYZ_to_uv76(X, Y, Z):
""" convert XYZ to CIE1976 u'v' coordinates
:param X: X value
:param Y: Y value (luminance)
:param Z: Z value
:return: u', v' in CIE1976 """
denominator = (X + (15 * Y) + (3 * Z))
if denominator == 0.0:
u76, v76 = 0.0, 0.0
else:
u76 = (4 * X) / denominator
v76 = (9 * Y) / denominator
return u76, v76 # u', v' in CIE1976
|
def inverse_quadratic_rbf(r, kappa):
"""
Computes the Inverse-Quadratic Radial Basis Function between two points with distance `r`.
Parameters
----------
r : float
Distance between point `x1` and `x2`.
kappa : float
Shape parameter.
Returns
-------
phi : float
Radial basis function response.
"""
return 1. / (1. + (r * kappa) ** 2.)
|
def pad_seq_with_mask(seq, mask):
"""Given a shorter sequence, expands it to match the padding in mask.
Args:
seq: String with length smaller than mask.
mask: String of '+'s and '-'s used to expand seq.
Returns:
New string of seq but with added '-'s where indicated by mask.
"""
seq_iter = iter(seq)
new_seq = ""
for m in mask:
if m == "+":
new_seq += next(seq_iter)
elif m == "-":
new_seq += "-"
return new_seq
|
def is_simple(word):
"""Decide if a word is simple."""
return len(word) < 7
|
def total_capacity(facilities: list) -> int:
"""
Function to obtain the total capacity of all facilities of the current problem
:param facilities: list of problem instance's facilities
:return: an int representing the total capacity of all the facilities
"""
tot_capacity = 0
for facility in facilities:
tot_capacity += facility.capacity
return tot_capacity
|
def get_file_index(file: str) -> int:
"""Returns the index of the image"""
return int(file.split('_')[-1].split('.')[0])
|
def github_html_url_to_api(url):
""" Convert https://github.com links to https://api.gitub.com """
if url.startswith('https://github.com/'):
return "https://api.github.com/repos/" + url[19:]
else:
return None
|
def convert_to_valid_int(value):
"""
Purpose:
Converts a string to an int.
Args:
value - string/float
Returns:
value - of type int.
"""
return int(float(value))
|
def update_signatures(signatures, v):
"""Updates the signature dictionary.
Args:
signatures (dict): Signature dictionary, which can be empty.
v (dict): A dictionary, where the keys are:
mime: the file mime type
signs: a list of comma separated strings containing the offsets and the hex signatures.
Returns:
dict: The signature dictionary with signatures from v
"""
mime = v.get("mime")
# signs is a list of file signatures
signs = v.get("signs")
for sign in signs:
# Each signature is a comma separated string
# The number before the comma is the offset
# The string after the comma is the signature hex.
arr = sign.split(",")
offset = arr[0]
hex = arr[1]
# Ignore 00 as it might appear in different files.
if hex == "00":
continue
offset_signatures = signatures.get(offset, {})
offset_signatures[hex] = mime
signatures[offset] = offset_signatures
return signatures
|
def __get_years_tickvals(years):
"""
Helper function to determine the year ticks for a graph based on how many
years are passed as input
Parameters
----------
years : list
A list of the years for this dataset
Returns
-------
year_ticks : list
A list of places for tick marks on the years axis of the graph
"""
min_year = int(min(years))
max_year = int(max(years))
delta = max_year - min_year
if delta >= 80:
stepsize = 10
elif delta >= 40:
stepsize = 5
elif delta >= 16:
stepsize = 2
else:
stepsize = 1
year_ticks = list(range(min_year, max_year + stepsize, stepsize))
return year_ticks
|
def test_alnum(arr):
""" Returns false if list contains non-alphanumeric strings
"""
for element in arr:
if not element.isalnum():
return False
return True
|
def alphadump(d, indent=2, depth=0):
"""Dump a dict to a str,
with keys in alphabetical order.
"""
sep = "\n" + " " * depth * indent
return "".join(
(
"{}: {}{}".format(
k,
alphadump(d[k], depth=depth + 1)
if isinstance(d[k], dict)
else str(d[k]),
sep,
)
for k in sorted(d.keys())
)
)
|
def problem_2_1(node):
""" Write code to remove duplicates from an unsorted linked list.
FOLLOW UP
How would you solve this problem if a temporary buffer is not allowed?
"""
# This algorithm solves the harder follow-up problem.
start = node
while node != None:
succ = node.next
while succ != None and succ.key == node.key:
succ = succ.next
node.next = succ
node = succ
return start
|
def toUpperCamelCase(text):
"""converts a given Text to a upper camel case text
this is a example -> ThisIsAExample"""
splittedText = text.split()
upperCamelCase = ''
for t in splittedText:
upperCamelCase += t[0:1].capitalize()
upperCamelCase += t[1:]
return upperCamelCase
|
def loadstastic(file):
"""
this method takes an ALREADY SCRUBBED chunk of file(string), and convert that into a WordLists
(see :return for this function or see the document for 'test' function, :param WordLists)
:param file: a string contain an AlREADY SCRUBBED file
:return: a WordLists: Array type
each element of array represent a chunk, and it is a dictionary type
each element in the dictionary maps word inside that chunk to its frequency
"""
Words = file.split()
Wordlist = {}
for word in Words:
try:
Wordlist[word] += 1
except:
Wordlist.update({word: 1})
return Wordlist
|
def hgt_to_mb(hgt, mslp=1013.25):
"""Convert altitude, in meters, to expected millibars."""
return mslp*(1-hgt/44307.69396)**5.2553026
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.