Dataset Viewer
Search is not available for this dataset
age
int64 18
95
| job
class label 12
classes | marital
class label 3
classes | education
class label 4
classes | default
class label 2
classes | balance
int64 -8,019
102k
| housing
class label 2
classes | loan
class label 2
classes | contact
class label 3
classes | day
int64 1
31
| month
class label 12
classes | duration
int64 0
4.92k
| campaign
int64 1
63
| pdays
int64 1
999
| previous
int64 0
275
| poutcome
class label 4
classes | y
class label 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58 | 4management
| 1married
| 2tertiary
| 0no
| 2,143 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 261 | 1 | 999 | 0 | 3unknown
| 0no
|
44 | 9technician
| 2single
| 1secondary
| 0no
| 29 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 151 | 1 | 999 | 0 | 3unknown
| 0no
|
33 | 2entrepreneur
| 1married
| 1secondary
| 0no
| 2 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 76 | 1 | 999 | 0 | 3unknown
| 0no
|
47 | 1blue-collar
| 1married
| 3unknown
| 0no
| 1,506 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 92 | 1 | 999 | 0 | 3unknown
| 0no
|
33 | 11unknown
| 2single
| 3unknown
| 0no
| 1 | 0no
| 0no
| 2unknown
| 5 | 4may
| 198 | 1 | 999 | 0 | 3unknown
| 0no
|
35 | 4management
| 1married
| 2tertiary
| 0no
| 231 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 139 | 1 | 999 | 0 | 3unknown
| 0no
|
28 | 4management
| 2single
| 2tertiary
| 0no
| 447 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 217 | 1 | 999 | 0 | 3unknown
| 0no
|
42 | 2entrepreneur
| 0divorced
| 2tertiary
| 1yes
| 2 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 380 | 1 | 999 | 0 | 3unknown
| 0no
|
58 | 5retired
| 1married
| 0primary
| 0no
| 121 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 50 | 1 | 999 | 0 | 3unknown
| 0no
|
43 | 9technician
| 2single
| 1secondary
| 0no
| 593 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 55 | 1 | 999 | 0 | 3unknown
| 0no
|
41 | 0admin.
| 0divorced
| 1secondary
| 0no
| 270 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 222 | 1 | 999 | 0 | 3unknown
| 0no
|
29 | 0admin.
| 2single
| 1secondary
| 0no
| 390 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 137 | 1 | 999 | 0 | 3unknown
| 0no
|
53 | 9technician
| 1married
| 1secondary
| 0no
| 6 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 517 | 1 | 999 | 0 | 3unknown
| 0no
|
58 | 9technician
| 1married
| 3unknown
| 0no
| 71 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 71 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 7services
| 1married
| 1secondary
| 0no
| 162 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 174 | 1 | 999 | 0 | 3unknown
| 0no
|
51 | 5retired
| 1married
| 0primary
| 0no
| 229 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 353 | 1 | 999 | 0 | 3unknown
| 0no
|
45 | 0admin.
| 2single
| 3unknown
| 0no
| 13 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 98 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 1blue-collar
| 1married
| 0primary
| 0no
| 52 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 38 | 1 | 999 | 0 | 3unknown
| 0no
|
60 | 5retired
| 1married
| 0primary
| 0no
| 60 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 219 | 1 | 999 | 0 | 3unknown
| 0no
|
33 | 7services
| 1married
| 1secondary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 54 | 1 | 999 | 0 | 3unknown
| 0no
|
28 | 1blue-collar
| 1married
| 1secondary
| 0no
| 723 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 262 | 1 | 999 | 0 | 3unknown
| 0no
|
56 | 4management
| 1married
| 2tertiary
| 0no
| 779 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 164 | 1 | 999 | 0 | 3unknown
| 0no
|
32 | 1blue-collar
| 2single
| 0primary
| 0no
| 23 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 160 | 1 | 999 | 0 | 3unknown
| 0no
|
25 | 7services
| 1married
| 1secondary
| 0no
| 50 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 342 | 1 | 999 | 0 | 3unknown
| 0no
|
40 | 5retired
| 1married
| 0primary
| 0no
| 0 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 181 | 1 | 999 | 0 | 3unknown
| 0no
|
44 | 0admin.
| 1married
| 1secondary
| 0no
| -372 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 172 | 1 | 999 | 0 | 3unknown
| 0no
|
39 | 4management
| 2single
| 2tertiary
| 0no
| 255 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 296 | 1 | 999 | 0 | 3unknown
| 0no
|
52 | 2entrepreneur
| 1married
| 1secondary
| 0no
| 113 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 127 | 1 | 999 | 0 | 3unknown
| 0no
|
46 | 4management
| 2single
| 1secondary
| 0no
| -246 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 255 | 2 | 999 | 0 | 3unknown
| 0no
|
36 | 9technician
| 2single
| 1secondary
| 0no
| 265 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 348 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 9technician
| 1married
| 1secondary
| 0no
| 839 | 0no
| 1yes
| 2unknown
| 5 | 4may
| 225 | 1 | 999 | 0 | 3unknown
| 0no
|
49 | 4management
| 1married
| 2tertiary
| 0no
| 378 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 230 | 1 | 999 | 0 | 3unknown
| 0no
|
60 | 0admin.
| 1married
| 1secondary
| 0no
| 39 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 208 | 1 | 999 | 0 | 3unknown
| 0no
|
59 | 1blue-collar
| 1married
| 1secondary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 226 | 1 | 999 | 0 | 3unknown
| 0no
|
51 | 4management
| 1married
| 2tertiary
| 0no
| 10,635 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 336 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 9technician
| 0divorced
| 1secondary
| 0no
| 63 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 242 | 1 | 999 | 0 | 3unknown
| 0no
|
25 | 1blue-collar
| 1married
| 1secondary
| 0no
| -7 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 365 | 1 | 999 | 0 | 3unknown
| 0no
|
53 | 9technician
| 1married
| 1secondary
| 0no
| -3 | 0no
| 0no
| 2unknown
| 5 | 4may
| 1,666 | 1 | 999 | 0 | 3unknown
| 0no
|
36 | 0admin.
| 0divorced
| 1secondary
| 0no
| 506 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 577 | 1 | 999 | 0 | 3unknown
| 0no
|
37 | 0admin.
| 2single
| 1secondary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 137 | 1 | 999 | 0 | 3unknown
| 0no
|
44 | 7services
| 0divorced
| 1secondary
| 0no
| 2,586 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 160 | 1 | 999 | 0 | 3unknown
| 0no
|
50 | 4management
| 1married
| 1secondary
| 0no
| 49 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 180 | 2 | 999 | 0 | 3unknown
| 0no
|
60 | 1blue-collar
| 1married
| 3unknown
| 0no
| 104 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 22 | 1 | 999 | 0 | 3unknown
| 0no
|
54 | 5retired
| 1married
| 1secondary
| 0no
| 529 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 1,492 | 1 | 999 | 0 | 3unknown
| 0no
|
58 | 5retired
| 1married
| 3unknown
| 0no
| 96 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 616 | 1 | 999 | 0 | 3unknown
| 0no
|
36 | 0admin.
| 2single
| 0primary
| 0no
| -171 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 242 | 1 | 999 | 0 | 3unknown
| 0no
|
58 | 6self-employed
| 1married
| 2tertiary
| 0no
| -364 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 355 | 1 | 999 | 0 | 3unknown
| 0no
|
44 | 9technician
| 1married
| 1secondary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 225 | 2 | 999 | 0 | 3unknown
| 0no
|
55 | 9technician
| 0divorced
| 1secondary
| 0no
| 0 | 0no
| 0no
| 2unknown
| 5 | 4may
| 160 | 1 | 999 | 0 | 3unknown
| 0no
|
29 | 4management
| 2single
| 2tertiary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 363 | 1 | 999 | 0 | 3unknown
| 0no
|
54 | 1blue-collar
| 1married
| 1secondary
| 0no
| 1,291 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 266 | 1 | 999 | 0 | 3unknown
| 0no
|
48 | 4management
| 0divorced
| 2tertiary
| 0no
| -244 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 253 | 1 | 999 | 0 | 3unknown
| 0no
|
32 | 4management
| 1married
| 2tertiary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 179 | 1 | 999 | 0 | 3unknown
| 0no
|
42 | 0admin.
| 2single
| 1secondary
| 0no
| -76 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 787 | 1 | 999 | 0 | 3unknown
| 0no
|
24 | 9technician
| 2single
| 1secondary
| 0no
| -103 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 145 | 1 | 999 | 0 | 3unknown
| 0no
|
38 | 2entrepreneur
| 2single
| 2tertiary
| 0no
| 243 | 0no
| 1yes
| 2unknown
| 5 | 4may
| 174 | 1 | 999 | 0 | 3unknown
| 0no
|
38 | 4management
| 2single
| 2tertiary
| 0no
| 424 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 104 | 1 | 999 | 0 | 3unknown
| 0no
|
47 | 1blue-collar
| 1married
| 3unknown
| 0no
| 306 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 13 | 1 | 999 | 0 | 3unknown
| 0no
|
40 | 1blue-collar
| 2single
| 3unknown
| 0no
| 24 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 185 | 1 | 999 | 0 | 3unknown
| 0no
|
46 | 7services
| 1married
| 0primary
| 0no
| 179 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 1,778 | 1 | 999 | 0 | 3unknown
| 0no
|
32 | 0admin.
| 1married
| 2tertiary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 138 | 1 | 999 | 0 | 3unknown
| 0no
|
53 | 9technician
| 0divorced
| 1secondary
| 0no
| 989 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 812 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 1blue-collar
| 1married
| 0primary
| 0no
| 249 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 164 | 1 | 999 | 0 | 3unknown
| 0no
|
33 | 7services
| 1married
| 1secondary
| 0no
| 790 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 391 | 1 | 999 | 0 | 3unknown
| 0no
|
49 | 1blue-collar
| 1married
| 3unknown
| 0no
| 154 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 357 | 1 | 999 | 0 | 3unknown
| 0no
|
51 | 4management
| 1married
| 2tertiary
| 0no
| 6,530 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 91 | 1 | 999 | 0 | 3unknown
| 0no
|
60 | 5retired
| 1married
| 2tertiary
| 0no
| 100 | 0no
| 0no
| 2unknown
| 5 | 4may
| 528 | 1 | 999 | 0 | 3unknown
| 0no
|
59 | 4management
| 0divorced
| 2tertiary
| 0no
| 59 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 273 | 1 | 999 | 0 | 3unknown
| 0no
|
55 | 9technician
| 1married
| 1secondary
| 0no
| 1,205 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 158 | 2 | 999 | 0 | 3unknown
| 0no
|
35 | 1blue-collar
| 2single
| 1secondary
| 0no
| 12,223 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 177 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 1blue-collar
| 1married
| 1secondary
| 0no
| 5,935 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 258 | 1 | 999 | 0 | 3unknown
| 0no
|
31 | 7services
| 1married
| 1secondary
| 0no
| 25 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 172 | 1 | 999 | 0 | 3unknown
| 0no
|
54 | 4management
| 1married
| 1secondary
| 0no
| 282 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 154 | 1 | 999 | 0 | 3unknown
| 0no
|
55 | 1blue-collar
| 1married
| 0primary
| 0no
| 23 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 291 | 1 | 999 | 0 | 3unknown
| 0no
|
43 | 9technician
| 1married
| 1secondary
| 0no
| 1,937 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 181 | 1 | 999 | 0 | 3unknown
| 0no
|
53 | 9technician
| 1married
| 1secondary
| 0no
| 384 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 176 | 1 | 999 | 0 | 3unknown
| 0no
|
44 | 1blue-collar
| 1married
| 1secondary
| 0no
| 582 | 0no
| 1yes
| 2unknown
| 5 | 4may
| 211 | 1 | 999 | 0 | 3unknown
| 0no
|
55 | 7services
| 0divorced
| 1secondary
| 0no
| 91 | 0no
| 0no
| 2unknown
| 5 | 4may
| 349 | 1 | 999 | 0 | 3unknown
| 0no
|
49 | 7services
| 0divorced
| 1secondary
| 0no
| 0 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 272 | 1 | 999 | 0 | 3unknown
| 0no
|
55 | 7services
| 0divorced
| 1secondary
| 1yes
| 1 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 208 | 1 | 999 | 0 | 3unknown
| 0no
|
45 | 0admin.
| 2single
| 1secondary
| 0no
| 206 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 193 | 1 | 999 | 0 | 3unknown
| 0no
|
47 | 7services
| 0divorced
| 1secondary
| 0no
| 164 | 0no
| 0no
| 2unknown
| 5 | 4may
| 212 | 1 | 999 | 0 | 3unknown
| 0no
|
42 | 9technician
| 2single
| 1secondary
| 0no
| 690 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 20 | 1 | 999 | 0 | 3unknown
| 0no
|
59 | 0admin.
| 1married
| 1secondary
| 0no
| 2,343 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 1,042 | 1 | 999 | 0 | 3unknown
| 1yes
|
46 | 6self-employed
| 1married
| 2tertiary
| 0no
| 137 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 246 | 1 | 999 | 0 | 3unknown
| 0no
|
51 | 1blue-collar
| 1married
| 0primary
| 0no
| 173 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 529 | 2 | 999 | 0 | 3unknown
| 0no
|
56 | 0admin.
| 1married
| 1secondary
| 0no
| 45 | 0no
| 0no
| 2unknown
| 5 | 4may
| 1,467 | 1 | 999 | 0 | 3unknown
| 1yes
|
41 | 9technician
| 1married
| 1secondary
| 0no
| 1,270 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 1,389 | 1 | 999 | 0 | 3unknown
| 1yes
|
46 | 4management
| 0divorced
| 1secondary
| 0no
| 16 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 188 | 2 | 999 | 0 | 3unknown
| 0no
|
57 | 5retired
| 1married
| 1secondary
| 0no
| 486 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 180 | 2 | 999 | 0 | 3unknown
| 0no
|
42 | 4management
| 2single
| 1secondary
| 0no
| 50 | 0no
| 0no
| 2unknown
| 5 | 4may
| 48 | 1 | 999 | 0 | 3unknown
| 0no
|
30 | 9technician
| 1married
| 1secondary
| 0no
| 152 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 213 | 2 | 999 | 0 | 3unknown
| 0no
|
60 | 0admin.
| 1married
| 1secondary
| 0no
| 290 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 583 | 1 | 999 | 0 | 3unknown
| 0no
|
60 | 1blue-collar
| 1married
| 3unknown
| 0no
| 54 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 221 | 1 | 999 | 0 | 3unknown
| 0no
|
57 | 2entrepreneur
| 0divorced
| 1secondary
| 0no
| -37 | 0no
| 0no
| 2unknown
| 5 | 4may
| 173 | 1 | 999 | 0 | 3unknown
| 0no
|
36 | 4management
| 1married
| 2tertiary
| 0no
| 101 | 1yes
| 1yes
| 2unknown
| 5 | 4may
| 426 | 1 | 999 | 0 | 3unknown
| 0no
|
55 | 1blue-collar
| 1married
| 1secondary
| 0no
| 383 | 0no
| 0no
| 2unknown
| 5 | 4may
| 287 | 1 | 999 | 0 | 3unknown
| 0no
|
60 | 5retired
| 1married
| 2tertiary
| 0no
| 81 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 101 | 1 | 999 | 0 | 3unknown
| 0no
|
39 | 9technician
| 1married
| 1secondary
| 0no
| 0 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 203 | 1 | 999 | 0 | 3unknown
| 0no
|
46 | 4management
| 1married
| 2tertiary
| 0no
| 229 | 1yes
| 0no
| 2unknown
| 5 | 4may
| 197 | 1 | 999 | 0 | 3unknown
| 0no
|
End of preview. Expand
in Data Studio
Dataset Card for Bank Marketing
This dataset is a precise version of Bank Marketing.
To download the original csv from UCI
wget https://archive.ics.uci.edu/static/public/222/bank+marketing.zip
find . -name "*.zip" -exec sh -c 'unzip -d "${1%.*}" "$1" && rm "$1"' _ {} \;
find . -name "*.zip" -exec sh -c 'unzip -d "${1%.*}" "$1" && rm "$1"' _ {} \;
We used the following python script to create this Hugging Face dataset
import pandas as pd
df_bank = pd.read_csv("bank+marketing/bank/bank-full.csv", sep=";")
df_additional = pd.read_csv("bank+marketing/bank-additional/bank-additional/bank-additional-full.csv", sep=";")
df_bank["pdays"] = df_bank["pdays"].replace(-1, 999)
# Correct order for months and weekdays
correct_month_order = ['jan', 'feb', 'mar', 'apr', 'may', 'jun',
'jul', 'aug', 'sep', 'oct', 'nov', 'dec']
correct_weekday_order = ['mon', 'tue', 'wed', 'thu', 'fri']
# List of categorical columns
categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
"contact", "month", "poutcome", "y"]
# Create a reference mapping from bank-additional (since it has more features)
bank_categories = {
col: list(df_bank[col].astype("category").cat.categories)
for col in categorical_columns
}
# Manually enforce correct month and weekday order
bank_categories["month"] = correct_month_order
# Create a reference mapping from bank-additional (since it has more features)
bank_additional_categories = {
col: list(df_additional[col].astype("category").cat.categories)
for col in categorical_columns
}
# Manually enforce correct month and weekday order
bank_additional_categories["month"] = correct_month_order
# bank_additional_categories["day_of_week"] = correct_weekday_order
from collections import OrderedDict
# Merge dictionaries using set union, preserving order where needed
reference_categories = {
key: list(OrderedDict.fromkeys(bank_categories.get(key, []) + bank_additional_categories.get(key, [])))
for key in set(bank_categories) | set(bank_additional_categories)
}
# Extract category mappings from the reference dataset (bank-additional)
category_mappings = {col: reference_categories[col] for col in categorical_columns}
from datasets import Dataset, DatasetDict, Features, Value, ClassLabel
# Define Hugging Face dataset schema
hf_features = Features({
"age": Value("int64"),
"job": ClassLabel(names=category_mappings["job"]),
"marital": ClassLabel(names=category_mappings["marital"]),
"education": ClassLabel(names=category_mappings["education"]),
"default": ClassLabel(names=category_mappings["default"]),
"balance": Value("int64"),
"housing": ClassLabel(names=category_mappings["housing"]),
"loan": ClassLabel(names=category_mappings["loan"]),
"contact": ClassLabel(names=category_mappings["contact"]),
"day": Value("int64"),
"month": ClassLabel(names=category_mappings['month']),
"duration": Value("int64"),
"campaign": Value("int64"),
"pdays": Value("int64"),
"previous": Value("int64"),
"poutcome": ClassLabel(names=category_mappings["poutcome"]),
"y": ClassLabel(names=category_mappings["y"]) # Target column
})
# Create a dataset dictionary
hf_dataset = DatasetDict({
"train": Dataset.from_pandas(df_bank, features=hf_features),
})
# Print dataset structure
print(hf_dataset)
The printed output could look like
DatasetDict({
train: Dataset({
features: ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'y'],
num_rows: 45211
})
})
Note that there is an additional file bank+marketing/bank-additional/bank-additional/bank-additional-full.csv
which contains 4 more columns. To avoid unnecessary errors, we align the categories from both datasets. We have also created a Hugging Face dataset for this additional data (HERE).
- Downloads last month
- 25