Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
age
int64
18
95
job
class label
12 classes
marital
class label
3 classes
education
class label
4 classes
default
class label
2 classes
balance
int64
-8,019
102k
housing
class label
2 classes
loan
class label
2 classes
contact
class label
3 classes
day
int64
1
31
month
class label
12 classes
duration
int64
0
4.92k
campaign
int64
1
63
pdays
int64
1
999
previous
int64
0
275
poutcome
class label
4 classes
y
class label
2 classes
58
4management
1married
2tertiary
0no
2,143
1yes
0no
2unknown
5
4may
261
1
999
0
3unknown
0no
44
9technician
2single
1secondary
0no
29
1yes
0no
2unknown
5
4may
151
1
999
0
3unknown
0no
33
2entrepreneur
1married
1secondary
0no
2
1yes
1yes
2unknown
5
4may
76
1
999
0
3unknown
0no
47
1blue-collar
1married
3unknown
0no
1,506
1yes
0no
2unknown
5
4may
92
1
999
0
3unknown
0no
33
11unknown
2single
3unknown
0no
1
0no
0no
2unknown
5
4may
198
1
999
0
3unknown
0no
35
4management
1married
2tertiary
0no
231
1yes
0no
2unknown
5
4may
139
1
999
0
3unknown
0no
28
4management
2single
2tertiary
0no
447
1yes
1yes
2unknown
5
4may
217
1
999
0
3unknown
0no
42
2entrepreneur
0divorced
2tertiary
1yes
2
1yes
0no
2unknown
5
4may
380
1
999
0
3unknown
0no
58
5retired
1married
0primary
0no
121
1yes
0no
2unknown
5
4may
50
1
999
0
3unknown
0no
43
9technician
2single
1secondary
0no
593
1yes
0no
2unknown
5
4may
55
1
999
0
3unknown
0no
41
0admin.
0divorced
1secondary
0no
270
1yes
0no
2unknown
5
4may
222
1
999
0
3unknown
0no
29
0admin.
2single
1secondary
0no
390
1yes
0no
2unknown
5
4may
137
1
999
0
3unknown
0no
53
9technician
1married
1secondary
0no
6
1yes
0no
2unknown
5
4may
517
1
999
0
3unknown
0no
58
9technician
1married
3unknown
0no
71
1yes
0no
2unknown
5
4may
71
1
999
0
3unknown
0no
57
7services
1married
1secondary
0no
162
1yes
0no
2unknown
5
4may
174
1
999
0
3unknown
0no
51
5retired
1married
0primary
0no
229
1yes
0no
2unknown
5
4may
353
1
999
0
3unknown
0no
45
0admin.
2single
3unknown
0no
13
1yes
0no
2unknown
5
4may
98
1
999
0
3unknown
0no
57
1blue-collar
1married
0primary
0no
52
1yes
0no
2unknown
5
4may
38
1
999
0
3unknown
0no
60
5retired
1married
0primary
0no
60
1yes
0no
2unknown
5
4may
219
1
999
0
3unknown
0no
33
7services
1married
1secondary
0no
0
1yes
0no
2unknown
5
4may
54
1
999
0
3unknown
0no
28
1blue-collar
1married
1secondary
0no
723
1yes
1yes
2unknown
5
4may
262
1
999
0
3unknown
0no
56
4management
1married
2tertiary
0no
779
1yes
0no
2unknown
5
4may
164
1
999
0
3unknown
0no
32
1blue-collar
2single
0primary
0no
23
1yes
1yes
2unknown
5
4may
160
1
999
0
3unknown
0no
25
7services
1married
1secondary
0no
50
1yes
0no
2unknown
5
4may
342
1
999
0
3unknown
0no
40
5retired
1married
0primary
0no
0
1yes
1yes
2unknown
5
4may
181
1
999
0
3unknown
0no
44
0admin.
1married
1secondary
0no
-372
1yes
0no
2unknown
5
4may
172
1
999
0
3unknown
0no
39
4management
2single
2tertiary
0no
255
1yes
0no
2unknown
5
4may
296
1
999
0
3unknown
0no
52
2entrepreneur
1married
1secondary
0no
113
1yes
1yes
2unknown
5
4may
127
1
999
0
3unknown
0no
46
4management
2single
1secondary
0no
-246
1yes
0no
2unknown
5
4may
255
2
999
0
3unknown
0no
36
9technician
2single
1secondary
0no
265
1yes
1yes
2unknown
5
4may
348
1
999
0
3unknown
0no
57
9technician
1married
1secondary
0no
839
0no
1yes
2unknown
5
4may
225
1
999
0
3unknown
0no
49
4management
1married
2tertiary
0no
378
1yes
0no
2unknown
5
4may
230
1
999
0
3unknown
0no
60
0admin.
1married
1secondary
0no
39
1yes
1yes
2unknown
5
4may
208
1
999
0
3unknown
0no
59
1blue-collar
1married
1secondary
0no
0
1yes
0no
2unknown
5
4may
226
1
999
0
3unknown
0no
51
4management
1married
2tertiary
0no
10,635
1yes
0no
2unknown
5
4may
336
1
999
0
3unknown
0no
57
9technician
0divorced
1secondary
0no
63
1yes
0no
2unknown
5
4may
242
1
999
0
3unknown
0no
25
1blue-collar
1married
1secondary
0no
-7
1yes
0no
2unknown
5
4may
365
1
999
0
3unknown
0no
53
9technician
1married
1secondary
0no
-3
0no
0no
2unknown
5
4may
1,666
1
999
0
3unknown
0no
36
0admin.
0divorced
1secondary
0no
506
1yes
0no
2unknown
5
4may
577
1
999
0
3unknown
0no
37
0admin.
2single
1secondary
0no
0
1yes
0no
2unknown
5
4may
137
1
999
0
3unknown
0no
44
7services
0divorced
1secondary
0no
2,586
1yes
0no
2unknown
5
4may
160
1
999
0
3unknown
0no
50
4management
1married
1secondary
0no
49
1yes
0no
2unknown
5
4may
180
2
999
0
3unknown
0no
60
1blue-collar
1married
3unknown
0no
104
1yes
0no
2unknown
5
4may
22
1
999
0
3unknown
0no
54
5retired
1married
1secondary
0no
529
1yes
0no
2unknown
5
4may
1,492
1
999
0
3unknown
0no
58
5retired
1married
3unknown
0no
96
1yes
0no
2unknown
5
4may
616
1
999
0
3unknown
0no
36
0admin.
2single
0primary
0no
-171
1yes
0no
2unknown
5
4may
242
1
999
0
3unknown
0no
58
6self-employed
1married
2tertiary
0no
-364
1yes
0no
2unknown
5
4may
355
1
999
0
3unknown
0no
44
9technician
1married
1secondary
0no
0
1yes
0no
2unknown
5
4may
225
2
999
0
3unknown
0no
55
9technician
0divorced
1secondary
0no
0
0no
0no
2unknown
5
4may
160
1
999
0
3unknown
0no
29
4management
2single
2tertiary
0no
0
1yes
0no
2unknown
5
4may
363
1
999
0
3unknown
0no
54
1blue-collar
1married
1secondary
0no
1,291
1yes
0no
2unknown
5
4may
266
1
999
0
3unknown
0no
48
4management
0divorced
2tertiary
0no
-244
1yes
0no
2unknown
5
4may
253
1
999
0
3unknown
0no
32
4management
1married
2tertiary
0no
0
1yes
0no
2unknown
5
4may
179
1
999
0
3unknown
0no
42
0admin.
2single
1secondary
0no
-76
1yes
0no
2unknown
5
4may
787
1
999
0
3unknown
0no
24
9technician
2single
1secondary
0no
-103
1yes
1yes
2unknown
5
4may
145
1
999
0
3unknown
0no
38
2entrepreneur
2single
2tertiary
0no
243
0no
1yes
2unknown
5
4may
174
1
999
0
3unknown
0no
38
4management
2single
2tertiary
0no
424
1yes
0no
2unknown
5
4may
104
1
999
0
3unknown
0no
47
1blue-collar
1married
3unknown
0no
306
1yes
0no
2unknown
5
4may
13
1
999
0
3unknown
0no
40
1blue-collar
2single
3unknown
0no
24
1yes
0no
2unknown
5
4may
185
1
999
0
3unknown
0no
46
7services
1married
0primary
0no
179
1yes
0no
2unknown
5
4may
1,778
1
999
0
3unknown
0no
32
0admin.
1married
2tertiary
0no
0
1yes
0no
2unknown
5
4may
138
1
999
0
3unknown
0no
53
9technician
0divorced
1secondary
0no
989
1yes
0no
2unknown
5
4may
812
1
999
0
3unknown
0no
57
1blue-collar
1married
0primary
0no
249
1yes
0no
2unknown
5
4may
164
1
999
0
3unknown
0no
33
7services
1married
1secondary
0no
790
1yes
0no
2unknown
5
4may
391
1
999
0
3unknown
0no
49
1blue-collar
1married
3unknown
0no
154
1yes
0no
2unknown
5
4may
357
1
999
0
3unknown
0no
51
4management
1married
2tertiary
0no
6,530
1yes
0no
2unknown
5
4may
91
1
999
0
3unknown
0no
60
5retired
1married
2tertiary
0no
100
0no
0no
2unknown
5
4may
528
1
999
0
3unknown
0no
59
4management
0divorced
2tertiary
0no
59
1yes
0no
2unknown
5
4may
273
1
999
0
3unknown
0no
55
9technician
1married
1secondary
0no
1,205
1yes
0no
2unknown
5
4may
158
2
999
0
3unknown
0no
35
1blue-collar
2single
1secondary
0no
12,223
1yes
1yes
2unknown
5
4may
177
1
999
0
3unknown
0no
57
1blue-collar
1married
1secondary
0no
5,935
1yes
1yes
2unknown
5
4may
258
1
999
0
3unknown
0no
31
7services
1married
1secondary
0no
25
1yes
1yes
2unknown
5
4may
172
1
999
0
3unknown
0no
54
4management
1married
1secondary
0no
282
1yes
1yes
2unknown
5
4may
154
1
999
0
3unknown
0no
55
1blue-collar
1married
0primary
0no
23
1yes
0no
2unknown
5
4may
291
1
999
0
3unknown
0no
43
9technician
1married
1secondary
0no
1,937
1yes
0no
2unknown
5
4may
181
1
999
0
3unknown
0no
53
9technician
1married
1secondary
0no
384
1yes
0no
2unknown
5
4may
176
1
999
0
3unknown
0no
44
1blue-collar
1married
1secondary
0no
582
0no
1yes
2unknown
5
4may
211
1
999
0
3unknown
0no
55
7services
0divorced
1secondary
0no
91
0no
0no
2unknown
5
4may
349
1
999
0
3unknown
0no
49
7services
0divorced
1secondary
0no
0
1yes
1yes
2unknown
5
4may
272
1
999
0
3unknown
0no
55
7services
0divorced
1secondary
1yes
1
1yes
0no
2unknown
5
4may
208
1
999
0
3unknown
0no
45
0admin.
2single
1secondary
0no
206
1yes
0no
2unknown
5
4may
193
1
999
0
3unknown
0no
47
7services
0divorced
1secondary
0no
164
0no
0no
2unknown
5
4may
212
1
999
0
3unknown
0no
42
9technician
2single
1secondary
0no
690
1yes
0no
2unknown
5
4may
20
1
999
0
3unknown
0no
59
0admin.
1married
1secondary
0no
2,343
1yes
0no
2unknown
5
4may
1,042
1
999
0
3unknown
1yes
46
6self-employed
1married
2tertiary
0no
137
1yes
1yes
2unknown
5
4may
246
1
999
0
3unknown
0no
51
1blue-collar
1married
0primary
0no
173
1yes
0no
2unknown
5
4may
529
2
999
0
3unknown
0no
56
0admin.
1married
1secondary
0no
45
0no
0no
2unknown
5
4may
1,467
1
999
0
3unknown
1yes
41
9technician
1married
1secondary
0no
1,270
1yes
0no
2unknown
5
4may
1,389
1
999
0
3unknown
1yes
46
4management
0divorced
1secondary
0no
16
1yes
1yes
2unknown
5
4may
188
2
999
0
3unknown
0no
57
5retired
1married
1secondary
0no
486
1yes
0no
2unknown
5
4may
180
2
999
0
3unknown
0no
42
4management
2single
1secondary
0no
50
0no
0no
2unknown
5
4may
48
1
999
0
3unknown
0no
30
9technician
1married
1secondary
0no
152
1yes
1yes
2unknown
5
4may
213
2
999
0
3unknown
0no
60
0admin.
1married
1secondary
0no
290
1yes
0no
2unknown
5
4may
583
1
999
0
3unknown
0no
60
1blue-collar
1married
3unknown
0no
54
1yes
0no
2unknown
5
4may
221
1
999
0
3unknown
0no
57
2entrepreneur
0divorced
1secondary
0no
-37
0no
0no
2unknown
5
4may
173
1
999
0
3unknown
0no
36
4management
1married
2tertiary
0no
101
1yes
1yes
2unknown
5
4may
426
1
999
0
3unknown
0no
55
1blue-collar
1married
1secondary
0no
383
0no
0no
2unknown
5
4may
287
1
999
0
3unknown
0no
60
5retired
1married
2tertiary
0no
81
1yes
0no
2unknown
5
4may
101
1
999
0
3unknown
0no
39
9technician
1married
1secondary
0no
0
1yes
0no
2unknown
5
4may
203
1
999
0
3unknown
0no
46
4management
1married
2tertiary
0no
229
1yes
0no
2unknown
5
4may
197
1
999
0
3unknown
0no
End of preview. Expand in Data Studio

Dataset Card for Bank Marketing

This dataset is a precise version of Bank Marketing.

To download the original csv from UCI

wget https://archive.ics.uci.edu/static/public/222/bank+marketing.zip
find . -name "*.zip" -exec sh -c 'unzip -d "${1%.*}" "$1" && rm "$1"' _ {} \;
find . -name "*.zip" -exec sh -c 'unzip -d "${1%.*}" "$1" && rm "$1"' _ {} \;

We used the following python script to create this Hugging Face dataset

import pandas as pd
df_bank = pd.read_csv("bank+marketing/bank/bank-full.csv", sep=";")
df_additional = pd.read_csv("bank+marketing/bank-additional/bank-additional/bank-additional-full.csv", sep=";")

df_bank["pdays"] = df_bank["pdays"].replace(-1, 999)


# Correct order for months and weekdays
correct_month_order = ['jan', 'feb', 'mar', 'apr', 'may', 'jun',
                       'jul', 'aug', 'sep', 'oct', 'nov', 'dec']
correct_weekday_order = ['mon', 'tue', 'wed', 'thu', 'fri']

# List of categorical columns
categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
                       "contact", "month", "poutcome", "y"]

# Create a reference mapping from bank-additional (since it has more features)
bank_categories = {
    col: list(df_bank[col].astype("category").cat.categories)
    for col in categorical_columns
}

# Manually enforce correct month and weekday order
bank_categories["month"] = correct_month_order

# Create a reference mapping from bank-additional (since it has more features)
bank_additional_categories = {
    col: list(df_additional[col].astype("category").cat.categories)
    for col in categorical_columns
}

# Manually enforce correct month and weekday order
bank_additional_categories["month"] = correct_month_order
# bank_additional_categories["day_of_week"] = correct_weekday_order


from collections import OrderedDict

# Merge dictionaries using set union, preserving order where needed
reference_categories = {
    key: list(OrderedDict.fromkeys(bank_categories.get(key, []) + bank_additional_categories.get(key, [])))
    for key in set(bank_categories) | set(bank_additional_categories)
}

# Extract category mappings from the reference dataset (bank-additional)
category_mappings = {col: reference_categories[col] for col in categorical_columns}

from datasets import Dataset, DatasetDict, Features, Value, ClassLabel

# Define Hugging Face dataset schema
hf_features = Features({
    "age": Value("int64"),
    "job": ClassLabel(names=category_mappings["job"]),
    "marital": ClassLabel(names=category_mappings["marital"]),
    "education": ClassLabel(names=category_mappings["education"]),
    "default": ClassLabel(names=category_mappings["default"]),
    "balance": Value("int64"),
    "housing": ClassLabel(names=category_mappings["housing"]),
    "loan": ClassLabel(names=category_mappings["loan"]),
    "contact": ClassLabel(names=category_mappings["contact"]),
    "day": Value("int64"),
    "month": ClassLabel(names=category_mappings['month']),
    "duration": Value("int64"),
    "campaign": Value("int64"),
    "pdays": Value("int64"),
    "previous": Value("int64"),
    "poutcome": ClassLabel(names=category_mappings["poutcome"]),
    "y": ClassLabel(names=category_mappings["y"])  # Target column
})


# Create a dataset dictionary
hf_dataset = DatasetDict({
    "train": Dataset.from_pandas(df_bank, features=hf_features),
})

# Print dataset structure
print(hf_dataset)

The printed output could look like

DatasetDict({
    train: Dataset({
        features: ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'y'],
        num_rows: 45211
    })
})

Note that there is an additional file bank+marketing/bank-additional/bank-additional/bank-additional-full.csv which contains 4 more columns. To avoid unnecessary errors, we align the categories from both datasets. We have also created a Hugging Face dataset for this additional data (HERE).

Downloads last month
25