paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/where-to-look-at-the-movies-analyzing-visual
Where to look at the movies : Analyzing visual attention to understand movie editing
2102.13378
https://arxiv.org/abs/2102.13378v1
https://arxiv.org/pdf/2102.13378v1.pdf
https://github.com/abruckert/eye_tracking_filmmaking
true
true
false
none
https://paperswithcode.com/paper/superaccurate-camera-calibration-via-inverse
Superaccurate Camera Calibration via Inverse Rendering
2003.09177
https://arxiv.org/abs/2003.09177v1
https://arxiv.org/pdf/2003.09177v1.pdf
https://github.com/MortenHannemose/pytorch-vfi-cft
true
false
false
pytorch
https://paperswithcode.com/paper/soccernet-a-scalable-dataset-for-action
SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos
1804.04527
http://arxiv.org/abs/1804.04527v2
http://arxiv.org/pdf/1804.04527v2.pdf
https://github.com/SilvioGiancola/SoccerNet-code
false
false
false
tf
https://paperswithcode.com/paper/fast-and-robust-multiple-colorchecker
Fast and Robust Multiple ColorChecker Detection using Deep Convolutional Neural Networks
1810.08639
http://arxiv.org/abs/1810.08639v1
http://arxiv.org/pdf/1810.08639v1.pdf
https://github.com/pedrodiamel/colorchacker-detection
true
true
true
none
https://paperswithcode.com/paper/skip-thought-vectors
Skip-Thought Vectors
1506.06726
http://arxiv.org/abs/1506.06726v1
http://arxiv.org/pdf/1506.06726v1.pdf
https://github.com/facebookresearch/InferSent
false
false
true
pytorch
https://paperswithcode.com/paper/vse-improving-visual-semantic-embeddings-with
VSE++: Improving Visual-Semantic Embeddings with Hard Negatives
1707.05612
http://arxiv.org/abs/1707.05612v4
http://arxiv.org/pdf/1707.05612v4.pdf
https://github.com/armandvilalta/Full-network-multimodal-embeddings
false
false
true
none
https://paperswithcode.com/paper/combining-monte-carlo-tree-search-and
Combining Monte Carlo Tree Search and Heuristic Search for Weighted Vertex Coloring
2304.12146
https://arxiv.org/abs/2304.12146v1
https://arxiv.org/pdf/2304.12146v1.pdf
https://github.com/cyril-grelier/gc_wvcp_mcts
true
true
false
none
https://paperswithcode.com/paper/decision-stream-cultivating-deep-decision
Decision Stream: Cultivating Deep Decision Trees
1704.07657
http://arxiv.org/abs/1704.07657v3
http://arxiv.org/pdf/1704.07657v3.pdf
https://github.com/aiff22/Decision-Stream
true
true
true
none
https://paperswithcode.com/paper/leverage-eye-movement-data-for-saliency
How is Gaze Influenced by Image Transformations? Dataset and Model
1905.06803
https://arxiv.org/abs/1905.06803v4
https://arxiv.org/pdf/1905.06803v4.pdf
https://github.com/CZHQuality/Sal-CFS-GAN
true
true
false
tf
https://paperswithcode.com/paper/addressee-and-response-selection-in-multi
Addressee and Response Selection in Multi-Party Conversations with Speaker Interaction RNNs
1709.04005
http://arxiv.org/abs/1709.04005v2
http://arxiv.org/pdf/1709.04005v2.pdf
https://github.com/ryanzhumich/sirnn
true
true
true
none
https://paperswithcode.com/paper/finite-sample-learning-of-moving-targets
Finite sample learning of moving targets
2408.04406
https://arxiv.org/abs/2408.04406v2
https://arxiv.org/pdf/2408.04406v2.pdf
https://github.com/nikovert/finite-sample-learning-of-moving-targets
false
false
false
none
https://paperswithcode.com/paper/interpret-federated-learning-with-shapley
Interpret Federated Learning with Shapley Values
1905.04519
https://arxiv.org/abs/1905.04519v1
https://arxiv.org/pdf/1905.04519v1.pdf
https://github.com/crownpku/federated_shap
true
true
true
none
https://paperswithcode.com/paper/lenient-multi-agent-deep-reinforcement
Lenient Multi-Agent Deep Reinforcement Learning
1707.04402
http://arxiv.org/abs/1707.04402v2
http://arxiv.org/pdf/1707.04402v2.pdf
https://github.com/gjp1203/nui_in_madrl
false
false
true
none
https://paperswithcode.com/paper/hierarchical-cross-modal-talking-face
Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss
1905.03820
https://arxiv.org/abs/1905.03820v1
https://arxiv.org/pdf/1905.03820v1.pdf
https://github.com/lelechen63/ATVGnet
true
true
false
pytorch
https://paperswithcode.com/paper/benchmarking-natural-language-understanding
Benchmarking Natural Language Understanding Services for building Conversational Agents
1903.05566
http://arxiv.org/abs/1903.05566v3
http://arxiv.org/pdf/1903.05566v3.pdf
https://github.com/lackel/hierarchical_weighted_scl
false
false
true
pytorch
https://paperswithcode.com/paper/hdltex-hierarchical-deep-learning-for-text
HDLTex: Hierarchical Deep Learning for Text Classification
1709.08267
http://arxiv.org/abs/1709.08267v2
http://arxiv.org/pdf/1709.08267v2.pdf
https://github.com/lackel/hierarchical_weighted_scl
false
false
true
pytorch
https://paperswithcode.com/paper/syntaxsqlnet-syntax-tree-networks-for-complex
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task
1810.05237
http://arxiv.org/abs/1810.05237v2
http://arxiv.org/pdf/1810.05237v2.pdf
https://github.com/heyanger/sqltools
false
false
true
none
https://paperswithcode.com/paper/missing-data-infill-with-automunge-1
Missing Data Infill with Automunge
2202.09484
https://arxiv.org/abs/2202.09484v1
https://arxiv.org/pdf/2202.09484v1.pdf
https://github.com/gatorwatt/Paper_Demonstrations/tree/main/Missing_Data_infill
true
false
false
none
https://paperswithcode.com/paper/temporal-attentive-alignment-for-video-domain
Temporal Attentive Alignment for Video Domain Adaptation
1905.10861
https://arxiv.org/abs/1905.10861v5
https://arxiv.org/pdf/1905.10861v5.pdf
https://github.com/olivesgatech/TA3N
false
false
true
pytorch
https://paperswithcode.com/paper/hybrid-reward-architecture-for-reinforcement
Hybrid Reward Architecture for Reinforcement Learning
1706.04208
http://arxiv.org/abs/1706.04208v2
http://arxiv.org/pdf/1706.04208v2.pdf
https://github.com/KhenNguyn/DoAn3-MachineLearning
false
false
true
tf
https://paperswithcode.com/paper/robustness-may-be-at-odds-with-accuracy
Robustness May Be at Odds with Accuracy
1805.12152
https://arxiv.org/abs/1805.12152v5
https://arxiv.org/pdf/1805.12152v5.pdf
https://github.com/louis2889184/pytorch-adversarial-training
false
false
true
pytorch
https://paperswithcode.com/paper/hierarchy-of-visual-words-a-learning-based
Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval
1908.02786
https://arxiv.org/abs/1908.02786v1
https://arxiv.org/pdf/1908.02786v1.pdf
https://github.com/Prograf-UFF/HoVW
true
true
true
none
https://paperswithcode.com/paper/deep-reinforcement-learning-from-human
Deep reinforcement learning from human preferences
1706.03741
https://arxiv.org/abs/1706.03741v4
https://arxiv.org/pdf/1706.03741v4.pdf
https://github.com/vcharvet/project-rl
false
false
true
tf
https://paperswithcode.com/paper/neural-motifs-scene-graph-parsing-with-global
Neural Motifs: Scene Graph Parsing with Global Context
1711.06640
http://arxiv.org/abs/1711.06640v2
http://arxiv.org/pdf/1711.06640v2.pdf
https://github.com/HCPLab-SYSU/KERN
false
false
true
pytorch
https://paperswithcode.com/paper/scene-relighting-with-illumination-estimation
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
2006.02333
https://arxiv.org/abs/2006.02333v1
https://arxiv.org/pdf/2006.02333v1.pdf
https://github.com/martin-ev/2DSceneRelighting
true
true
true
pytorch
https://paperswithcode.com/paper/m-fuse-multi-frame-fusion-for-scene-flow
M-FUSE: Multi-frame Fusion for Scene Flow Estimation
2207.05704
https://arxiv.org/abs/2207.05704v2
https://arxiv.org/pdf/2207.05704v2.pdf
https://github.com/cv-stuttgart/m-fuse
true
true
true
pytorch
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
Fully Convolutional Networks for Semantic Segmentation
1411.4038
http://arxiv.org/abs/1411.4038v2
http://arxiv.org/pdf/1411.4038v2.pdf
https://github.com/giovanniguidi/FCN-keras
false
false
true
none
https://paperswithcode.com/paper/spurious-local-minima-are-common-in-two-layer
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
1712.08968
http://arxiv.org/abs/1712.08968v3
http://arxiv.org/pdf/1712.08968v3.pdf
https://github.com/ItaySafran/OneLayerGDconvergence
true
true
false
none
https://paperswithcode.com/paper/co-trained-convolutional-neural-networks-for
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI
null
https://www.ncbi.nlm.nih.gov/pubmed/28850876
https://www.ncbi.nlm.nih.gov/pubmed/28850876
https://github.com/Andysis/co-trained-CADx
false
false
false
none
https://paperswithcode.com/paper/improving-retinanet-for-ct-lesion-detection
Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels
1906.02283
https://arxiv.org/abs/1906.02283v1
https://arxiv.org/pdf/1906.02283v1.pdf
https://github.com/fizyr/keras-retinanet
false
false
true
tf
https://paperswithcode.com/paper/one-shot-video-object-segmentation
One-Shot Video Object Segmentation
1611.05198
http://arxiv.org/abs/1611.05198v4
http://arxiv.org/pdf/1611.05198v4.pdf
https://github.com/kmaninis/OSVOS-caffe
false
false
false
tf
https://paperswithcode.com/paper/non-turing-computations-via-malament-hogarth
Non-Turing computations via Malament-Hogarth space-times
gr-qc/0104023
https://arxiv.org/abs/gr-qc/0104023v2
https://arxiv.org/pdf/gr-qc/0104023v2.pdf
https://github.com/alexnieddu/Kerr-Black-Hole-Geodesics
false
false
true
none
https://paperswithcode.com/paper/a-chi-squared-time-frequency-discriminator
A chi-squared time-frequency discriminator for gravitational wave detection
gr-qc/0405045
https://arxiv.org/abs/gr-qc/0405045v2
https://arxiv.org/pdf/gr-qc/0405045v2.pdf
https://github.com/gwastro/1-ogc
false
false
true
none
https://paperswithcode.com/paper/quantum-associative-memory
Quantum Associative Memory
quant-ph/9807053
https://arxiv.org/abs/quant-ph/9807053v1
https://arxiv.org/pdf/quant-ph/9807053v1.pdf
https://github.com/hhy37/Liquid
false
false
true
none
https://paperswithcode.com/paper/improved-simulation-of-stabilizer-circuits
Improved Simulation of Stabilizer Circuits
quant-ph/0406196
https://arxiv.org/abs/quant-ph/0406196v5
https://arxiv.org/pdf/quant-ph/0406196v5.pdf
https://github.com/hhy37/Liquid
false
false
true
none
https://paperswithcode.com/paper/distributed-prioritized-experience-replay
Distributed Prioritized Experience Replay
1803.00933
http://arxiv.org/abs/1803.00933v1
http://arxiv.org/pdf/1803.00933v1.pdf
https://github.com/neka-nat/distributed_rl
false
false
true
pytorch
https://paperswithcode.com/paper/benchmarking-automatic-machine-learning
Benchmarking Automatic Machine Learning Frameworks
1808.06492
http://arxiv.org/abs/1808.06492v1
http://arxiv.org/pdf/1808.06492v1.pdf
https://github.com/ClimbsRocks/auto_ml
false
true
false
tf
https://paperswithcode.com/paper/a-fofe-based-local-detection-approach-for
A FOFE-based Local Detection Approach for Named Entity Recognition and Mention Detection
1611.00801
http://arxiv.org/abs/1611.00801v1
http://arxiv.org/pdf/1611.00801v1.pdf
https://github.com/xmb-cipher/fofe-ner
true
true
true
tf
https://paperswithcode.com/paper/nonnegative-decomposition-of-multivariate
Nonnegative Decomposition of Multivariate Information
1004.2515
http://arxiv.org/abs/1004.2515v1
http://arxiv.org/pdf/1004.2515v1.pdf
https://github.com/robince/partial-info-decomp
false
false
true
none
https://paperswithcode.com/paper/a-tutorial-on-thompson-sampling
A Tutorial on Thompson Sampling
1707.02038
https://arxiv.org/abs/1707.02038v3
https://arxiv.org/pdf/1707.02038v3.pdf
https://github.com/iosband/ts_tutorial
true
true
false
none
https://paperswithcode.com/paper/penalizing-unfairness-in-binary
Penalizing Unfairness in Binary Classification
1707.00044
http://arxiv.org/abs/1707.00044v3
http://arxiv.org/pdf/1707.00044v3.pdf
https://github.com/jjgold012/lab-project-fairness
true
true
false
none
https://paperswithcode.com/paper/teacher-student-curriculum-learning
Teacher-Student Curriculum Learning
1707.00183
http://arxiv.org/abs/1707.00183v2
http://arxiv.org/pdf/1707.00183v2.pdf
https://github.com/tambetm/TSCL
true
true
true
tf
https://paperswithcode.com/paper/text-matching-as-image-recognition
Text Matching as Image Recognition
1602.06359
http://arxiv.org/abs/1602.06359v1
http://arxiv.org/pdf/1602.06359v1.pdf
https://github.com/pl8787/MatchPyramid-TensorFlow
false
false
true
tf
https://paperswithcode.com/paper/hyperband-a-novel-bandit-based-approach-to
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
1603.06560
http://arxiv.org/abs/1603.06560v4
http://arxiv.org/pdf/1603.06560v4.pdf
https://github.com/zygmuntz/hyperband
false
false
false
none
https://paperswithcode.com/paper/perceptual-losses-for-real-time-style
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
1603.08155
http://arxiv.org/abs/1603.08155v1
http://arxiv.org/pdf/1603.08155v1.pdf
https://github.com/ksivaman/super-res
false
false
true
pytorch
https://paperswithcode.com/paper/optimal-transport-based-machine-learning-to
Optimal transport-based machine learning to match specific patterns: application to the detection of molecular regulation patterns in omics data
2107.11192
https://arxiv.org/abs/2107.11192v3
https://arxiv.org/pdf/2107.11192v3.pdf
https://github.com/yen-nguyen-thi-thanh/wtot_coclust_match
true
true
false
pytorch
https://paperswithcode.com/paper/mushroomrl-simplifying-reinforcement-learning
MushroomRL: Simplifying Reinforcement Learning Research
2001.01102
https://arxiv.org/abs/2001.01102v2
https://arxiv.org/pdf/2001.01102v2.pdf
https://github.com/AIRLab-POLIMI/mushroom-rl
true
true
false
tf
https://paperswithcode.com/paper/how-sgd-selects-the-global-minima-in-over
How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective
null
http://papers.nips.cc/paper/8049-how-sgd-selects-the-global-minima-in-over-parameterized-learning-a-dynamical-stability-perspective
http://papers.nips.cc/paper/8049-how-sgd-selects-the-global-minima-in-over-parameterized-learning-a-dynamical-stability-perspective.pdf
https://github.com/leiwu1990/sgd.stability
true
true
false
pytorch
https://paperswithcode.com/paper/extending-text-to-speech-synthesis-with
Extending Text-to-Speech Synthesis with Articulatory Movement Prediction using Ultrasound Tongue Imaging
2107.05550
https://arxiv.org/abs/2107.05550v1
https://arxiv.org/pdf/2107.05550v1.pdf
https://github.com/BME-SmartLab/txt2ult
true
true
true
tf
https://paperswithcode.com/paper/simulaqron-a-simulator-for-developing-quantum
SimulaQron - A simulator for developing quantum internet software
1712.08032
http://arxiv.org/abs/1712.08032v2
http://arxiv.org/pdf/1712.08032v2.pdf
https://github.com/SoftwareQuTech/CQC-Python
false
false
true
none
https://paperswithcode.com/paper/dgm-a-deep-learning-algorithm-for-solving
DGM: A deep learning algorithm for solving partial differential equations
1708.07469
http://arxiv.org/abs/1708.07469v5
http://arxiv.org/pdf/1708.07469v5.pdf
https://github.com/alialaradi/DeepGalerkinMethod
false
false
true
tf
https://paperswithcode.com/paper/a-spatiotemporal-volumetric-interpolation
A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image
2002.12680
https://arxiv.org/abs/2002.12680v2
https://arxiv.org/pdf/2002.12680v2.pdf
https://github.com/guoyu-niubility/SVIN
true
true
false
pytorch
https://paperswithcode.com/paper/metapruning-meta-learning-for-automatic
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
1903.10258
https://arxiv.org/abs/1903.10258v3
https://arxiv.org/pdf/1903.10258v3.pdf
https://github.com/liuzechun/MetaPruning
true
true
true
pytorch
https://paperswithcode.com/paper/variational-adversarial-active-learning
Variational Adversarial Active Learning
1904.00370
https://arxiv.org/abs/1904.00370v3
https://arxiv.org/pdf/1904.00370v3.pdf
https://github.com/sinhasam/vaal
true
true
true
pytorch
https://paperswithcode.com/paper/learning-higher-order-logic-programs
Learning higher-order logic programs
1907.10953
https://arxiv.org/abs/1907.10953v1
https://arxiv.org/pdf/1907.10953v1.pdf
https://github.com/metagol/metagol
true
true
false
none
https://paperswithcode.com/paper/pde-net-learning-pdes-from-data
PDE-Net: Learning PDEs from Data
1710.09668
http://arxiv.org/abs/1710.09668v2
http://arxiv.org/pdf/1710.09668v2.pdf
https://github.com/agrundner24/pde-net-in-tf
false
false
true
tf
https://paperswithcode.com/paper/x-lxmert-paint-caption-and-answer-questions
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers
2009.11278
https://arxiv.org/abs/2009.11278v1
https://arxiv.org/pdf/2009.11278v1.pdf
https://github.com/allenai/x-lxmert
true
true
false
pytorch
https://paperswithcode.com/paper/infinitygan-towards-infinite-resolution-image
InfinityGAN: Towards Infinite-Pixel Image Synthesis
2104.03963
https://arxiv.org/abs/2104.03963v4
https://arxiv.org/pdf/2104.03963v4.pdf
https://github.com/hubert0527/infinityGAN
true
false
false
pytorch
https://paperswithcode.com/paper/exploring-data-aggregation-in-policy-learning
Exploring Data Aggregation in Policy Learning for Vision-Based Urban Autonomous Driving
null
http://openaccess.thecvf.com/content_CVPR_2020/html/Prakash_Exploring_Data_Aggregation_in_Policy_Learning_for_Vision-Based_Urban_Autonomous_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/papers/Prakash_Exploring_Data_Aggregation_in_Policy_Learning_for_Vision-Based_Urban_Autonomous_CVPR_2020_paper.pdf
https://github.com/autonomousvision/data_aggregation
true
true
false
none
https://paperswithcode.com/paper/graph-structured-prediction-energy-networks
Graph Structured Prediction Energy Networks
1910.14670
https://arxiv.org/abs/1910.14670v2
https://arxiv.org/pdf/1910.14670v2.pdf
https://github.com/cgraber/GSPEN
true
true
false
pytorch
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
Image-to-Image Translation with Conditional Adversarial Networks
1611.07004
http://arxiv.org/abs/1611.07004v3
http://arxiv.org/pdf/1611.07004v3.pdf
https://github.com/sidneykingsley/fyp
false
false
true
tf
https://paperswithcode.com/paper/minibatch-processing-in-spiking-neural
Minibatch Processing in Spiking Neural Networks
1909.02549
https://arxiv.org/abs/1909.02549v1
https://arxiv.org/pdf/1909.02549v1.pdf
https://github.com/djsaunde/snn-minibatch
true
true
false
pytorch
https://paperswithcode.com/paper/stochastic-chebyshev-gradient-descent-for
Stochastic Chebyshev Gradient Descent for Spectral Optimization
1802.06355
http://arxiv.org/abs/1802.06355v3
http://arxiv.org/pdf/1802.06355v3.pdf
https://github.com/EiffL/SpectralFlow
false
false
true
tf
https://paperswithcode.com/paper/learned-image-downscaling-for-upscaling-using
Learned Image Downscaling for Upscaling using Content Adaptive Resampler
1907.12904
https://arxiv.org/abs/1907.12904v2
https://arxiv.org/pdf/1907.12904v2.pdf
https://github.com/twice154/ofa-for-super-resolution
false
false
true
pytorch
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
1506.01497
http://arxiv.org/abs/1506.01497v3
http://arxiv.org/pdf/1506.01497v3.pdf
https://github.com/daxiapazi/faster-rcnn
false
false
true
tf
https://paperswithcode.com/paper/every-positive-integer-is-a-sum-of-three
Every positive integer is a sum of three palindromes
1602.06208
http://arxiv.org/abs/1602.06208v2
http://arxiv.org/pdf/1602.06208v2.pdf
https://github.com/TroyLaurin/PalindromeSum
false
false
true
none
https://paperswithcode.com/paper/reducing-the-training-time-of-neural-networks
Reducing the Training Time of Neural Networks by Partitioning
1511.02954
http://arxiv.org/abs/1511.02954v2
http://arxiv.org/pdf/1511.02954v2.pdf
https://github.com/agongt408/vbranch
false
false
true
tf
https://paperswithcode.com/paper/net2net-accelerating-learning-via-knowledge
Net2Net: Accelerating Learning via Knowledge Transfer
1511.05641
http://arxiv.org/abs/1511.05641v4
http://arxiv.org/pdf/1511.05641v4.pdf
https://github.com/agongt408/vbranch
false
false
true
tf
https://paperswithcode.com/paper/simple-non-perturbative-resummation-schemes
Simple non-perturbative resummation schemes beyond mean-field: case study for scalar $φ^4$ theory in 1+1 dimensions
1901.05483
http://arxiv.org/abs/1901.05483v1
http://arxiv.org/pdf/1901.05483v1.pdf
https://github.com/paro8929/Resummation
true
true
true
none
https://paperswithcode.com/paper/the-maven-dependency-graph-a-temporal-graph
The Maven Dependency Graph: a Temporal Graph-based Representation of Maven Central
1901.05392
http://arxiv.org/abs/1901.05392v1
http://arxiv.org/pdf/1901.05392v1.pdf
https://github.com/tdegueul/sonar-dataset
false
false
true
none
https://paperswithcode.com/paper/adversarial-training-methods-for-network
Adversarial Training Methods for Network Embedding
1908.11514
https://arxiv.org/abs/1908.11514v1
https://arxiv.org/pdf/1908.11514v1.pdf
https://github.com/wonniu/AdvT4NE_WWW2019
true
true
false
tf
https://paperswithcode.com/paper/central-server-free-federated-learning-over
Central Server Free Federated Learning over Single-sided Trust Social Networks
1910.04956
https://arxiv.org/abs/1910.04956v2
https://arxiv.org/pdf/1910.04956v2.pdf
https://github.com/FedML-AI/FedML/tree/master/fedml_experiments/standalone/decentralized
true
false
false
pytorch
https://paperswithcode.com/paper/expert-load-matters-operating-networks-at-1
Expert load matters: operating networks at high accuracy and low manual effort
2308.05035
https://arxiv.org/abs/2308.05035v2
https://arxiv.org/pdf/2308.05035v2.pdf
https://github.com/salusanga/aucoc_loss
false
false
true
pytorch
https://paperswithcode.com/paper/accurate-large-minibatch-sgd-training
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
1706.02677
http://arxiv.org/abs/1706.02677v2
http://arxiv.org/pdf/1706.02677v2.pdf
https://github.com/darkreapyre/HaaS-dev
false
false
true
tf
https://paperswithcode.com/paper/fiber-cnn-expanding-mask-r-cnn-to-improve
FibeR-CNN: Expanding Mask R-CNN to Improve Image-Based Fiber Analysis
2006.04552
https://arxiv.org/abs/2006.04552v2
https://arxiv.org/pdf/2006.04552v2.pdf
https://github.com/maxfrei750/synthPIC4Python
true
true
true
none
https://paperswithcode.com/paper/knee-point-identification-based-on-trade-off
Knee Point Identification Based on Trade-Off Utility
2005.11600
https://arxiv.org/abs/2005.11600v1
https://arxiv.org/pdf/2005.11600v1.pdf
https://github.com/COLA-Laboratory/kpi
true
true
false
none
https://paperswithcode.com/paper/matching-networks-for-one-shot-learning
Matching Networks for One Shot Learning
1606.04080
http://arxiv.org/abs/1606.04080v2
http://arxiv.org/pdf/1606.04080v2.pdf
https://github.com/fujenchu/matchingNet
false
false
true
pytorch
https://paperswithcode.com/paper/probabilistic-fasttext-for-multi-sense-word
Probabilistic FastText for Multi-Sense Word Embeddings
1806.02901
http://arxiv.org/abs/1806.02901v1
http://arxiv.org/pdf/1806.02901v1.pdf
https://github.com/benathi/multisense-prob-fasttext
true
true
true
none
https://paperswithcode.com/paper/self-supervised-visual-planning-with-temporal
Self-Supervised Visual Planning with Temporal Skip Connections
1710.05268
http://arxiv.org/abs/1710.05268v1
http://arxiv.org/pdf/1710.05268v1.pdf
https://github.com/CompVis/image2video-synthesis-using-cINNs
false
false
true
pytorch
https://paperswithcode.com/paper/the-hitchhikers-guide-to-lda
The Hitchhiker's Guide to LDA
1908.03142
https://arxiv.org/abs/1908.03142v2
https://arxiv.org/pdf/1908.03142v2.pdf
https://github.com/MachineIntellect/GibbsLDA_plus
false
false
true
none
https://paperswithcode.com/paper/shufflenet-v2-practical-guidelines-for
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
1807.11164
http://arxiv.org/abs/1807.11164v1
http://arxiv.org/pdf/1807.11164v1.pdf
https://github.com/savageyusuff/MobilePose-Pi
false
false
true
pytorch
https://paperswithcode.com/paper/unite-unified-translation-evaluation
UniTE: Unified Translation Evaluation
2204.13346
https://arxiv.org/abs/2204.13346v1
https://arxiv.org/pdf/2204.13346v1.pdf
https://github.com/wanyu2018umac/UniTE
true
false
false
pytorch
https://paperswithcode.com/paper/generative-adversarial-networks
Generative Adversarial Networks
1406.2661
https://arxiv.org/abs/1406.2661v1
https://arxiv.org/pdf/1406.2661v1.pdf
https://github.com/etjoa003/medical_imaging
false
false
true
none
https://paperswithcode.com/paper/efficient-nonparametric-statistical-inference
Efficient nonparametric statistical inference on population feature importance using Shapley values
2006.09481
https://arxiv.org/abs/2006.09481v1
https://arxiv.org/pdf/2006.09481v1.pdf
https://github.com/bdwilliamson/spvim_supplementary
false
false
true
none
https://paperswithcode.com/paper/searching-for-mobilenetv3
Searching for MobileNetV3
1905.02244
https://arxiv.org/abs/1905.02244v5
https://arxiv.org/pdf/1905.02244v5.pdf
https://github.com/rwightman/efficientnet-jax
false
false
true
jax
https://paperswithcode.com/paper/wiring-up-vision-minimizing-supervised
Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream
null
https://openreview.net/forum?id=5i4vRgoZauw
https://openreview.net/pdf?id=5i4vRgoZauw
https://github.com/franzigeiger/training_reductions
false
false
false
pytorch
https://paperswithcode.com/paper/coha-ntt-a-configurable-hardware-accelerator
CoHA-NTT: A Configurable Hardware Accelerator for NTT-based Polynomial Multiplication
null
https://eprint.iacr.org/2021/1527
https://eprint.iacr.org/2021/1527.pdf
https://github.com/kemalderya/pqc-param-ntt
false
true
false
none
https://paperswithcode.com/paper/physics-informed-neural-networks-for-non
Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics
2004.04026
https://arxiv.org/abs/2004.04026v2
https://arxiv.org/pdf/2004.04026v2.pdf
https://github.com/jbesty/PINN_system_identification
false
false
true
tf
https://paperswithcode.com/paper/distilling-model-knowledge
Distilling Model Knowledge
1510.02437
http://arxiv.org/abs/1510.02437v1
http://arxiv.org/pdf/1510.02437v1.pdf
https://github.com/gpapamak/distilling_model_knowledge
false
false
true
none
https://paperswithcode.com/paper/effective-obstruction-to-lifting-tate-classes
Effective obstruction to lifting Tate classes from positive characteristic
2003.11037
https://arxiv.org/abs/2003.11037v3
https://arxiv.org/pdf/2003.11037v3.pdf
https://github.com/edgarcosta/crystalline_obstruction
true
true
true
none
https://paperswithcode.com/paper/attention-is-all-you-need
Attention Is All You Need
1706.03762
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/pdf/1706.03762v7.pdf
https://github.com/StillKeepTry/Transformer-PyTorch
false
false
true
pytorch
https://paperswithcode.com/paper/on-the-importance-of-capturing-a-sufficient
On the Importance of Capturing a Sufficient Diversity of Perspective for the Classification of micro-PCBs
2101.11164
https://arxiv.org/abs/2101.11164v1
https://arxiv.org/pdf/2101.11164v1.pdf
https://github.com/AdamByerly/micro-pcb-analysis
true
false
false
tf
https://paperswithcode.com/paper/dropout-as-a-bayesian-approximation
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
1506.02142
http://arxiv.org/abs/1506.02142v6
http://arxiv.org/pdf/1506.02142v6.pdf
https://github.com/cdebeunne/uncertainties_CNN
false
false
true
pytorch
https://paperswithcode.com/paper/gaussianprocessesjl-a-nonparametric-bayes
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
1812.09064
https://arxiv.org/abs/1812.09064v2
https://arxiv.org/pdf/1812.09064v2.pdf
https://github.com/UnofficialJuliaMirrorSnapshots/GaussianProcesses.jl-891a1506-143c-57d2-908e-e1f8e92e6de9
false
false
true
none
https://paperswithcode.com/paper/tractable-higher-order-under-approximating-ae
Tractable higher-order under-approximating AE extensions for non-linear systems
2101.11536
https://arxiv.org/abs/2101.11536v1
https://arxiv.org/pdf/2101.11536v1.pdf
https://github.com/cosynus-lix/RINO
true
false
false
none
https://paperswithcode.com/paper/lightweight-probabilistic-deep-networks
Lightweight Probabilistic Deep Networks
1805.11327
http://arxiv.org/abs/1805.11327v1
http://arxiv.org/pdf/1805.11327v1.pdf
https://github.com/cdebeunne/uncertainties_CNN
false
false
true
pytorch
https://paperswithcode.com/paper/reducing-complexity-and-unidentifiability
Reducing complexity and unidentifiability when modelling human atrial cells
2001.10954
https://arxiv.org/abs/2001.10954v1
https://arxiv.org/pdf/2001.10954v1.pdf
https://github.com/charleshouston/ion-channel-ABC
true
true
false
none
https://paperswithcode.com/paper/model-agnostic-meta-learning-for-fast
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
1703.03400
http://arxiv.org/abs/1703.03400v3
http://arxiv.org/pdf/1703.03400v3.pdf
https://github.com/MoritzTaylor/maml-rl-tf2
false
false
true
tf
https://paperswithcode.com/paper/robust-person-re-identification-by-modelling
Robust Person Re-Identification by Modelling Feature Uncertainty
null
http://openaccess.thecvf.com/content_ICCV_2019/html/Yu_Robust_Person_Re-Identification_by_Modelling_Feature_Uncertainty_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Yu_Robust_Person_Re-Identification_by_Modelling_Feature_Uncertainty_ICCV_2019_paper.pdf
https://github.com/TianyuanYu/DistributionNet
true
true
false
tf
https://paperswithcode.com/paper/hierarchical-encoding-of-sequential-data-with
Hierarchical Encoding of Sequential Data With Compact and Sub-Linear Storage Cost
null
http://openaccess.thecvf.com/content_ICCV_2019/html/Le_Hierarchical_Encoding_of_Sequential_Data_With_Compact_and_Sub-Linear_Storage_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Le_Hierarchical_Encoding_of_Sequential_Data_With_Compact_and_Sub-Linear_Storage_ICCV_2019_paper.pdf
https://github.com/intellhave/HESSL
true
true
false
none