Datasets:

Languages:
English
ArXiv:
License:
File size: 6,766 Bytes
4ac344e
 
 
 
 
dbef243
 
4ac344e
 
dbef243
 
 
 
 
58179a1
dbef243
 
 
 
 
 
 
58179a1
 
dbef243
 
 
 
 
58179a1
 
 
dbef243
5594048
dbef243
 
 
 
 
58179a1
 
 
 
 
 
 
 
772e764
58179a1
772e764
 
 
 
 
 
58179a1
 
 
 
 
 
 
772e764
 
58179a1
 
 
 
 
 
 
 
 
 
772e764
 
 
 
 
58179a1
 
 
 
 
 
 
 
 
 
 
 
 
 
dbef243
361e322
dbef243
58179a1
dbef243
58179a1
 
 
 
 
dbef243
361e322
dbef243
58179a1
dbef243
58179a1
dbef243
58179a1
 
 
dbef243
58179a1
dbef243
58179a1
 
 
 
 
dbef243
58179a1
 
 
 
 
dbef243
 
58179a1
dbef243
58179a1
 
 
 
dbef243
58179a1
dbef243
5594048
 
58179a1
dbef243
58179a1
dbef243
58179a1
dbef243
58179a1
dbef243
 
58179a1
dbef243
58179a1
dbef243
58179a1
dbef243
 
58179a1
dbef243
 
 
 
 
361e322
58179a1
 
 
 
 
 
 
 
 
361e322
5594048
58179a1
dbef243
58179a1
dbef243
 
 
 
58179a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: cc-by-nc-nd-4.0
language:
- en
tags:
- mesh
- robotics
size_categories:
- 10B<n<100B
---
# Dataset Card for Dataset Name

<!-- Provide a quick summary of the dataset. -->

MetaFold Dataset is a point-cloud trajectory dataset designed for multi-category garment folding tasks in robotic manipulation.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** Haonan Chen, Junxiao Li, Ruihai Wu, Yiwei Liu, Yiwen Hou, Zhixuan Xu, Jingxiang Guo, Chongkai Gao, Zhenyu Wei, Shensi Xu, Jiaqi Huang, Lin Shao
- **License:** CC BY-NC-ND 4.0

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** [https://huggingface.co/datasets/chenhn02/MetaFold](https://huggingface.co/datasets/chenhn02/MetaFold)
- **Paper:** [MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model](https://arxiv.org/pdf/2503.08372)
- **Website:** [https://meta-fold.github.io/](https://meta-fold.github.io/)

---

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

The dataset categories is inherited from [ClothesNet](https://arxiv.org/pdf/2308.09987). Each garment category has a corresponding name (e.g., **DLG** stands for *Dress-Long-Gallus*).

### Four Folding Types in MetaFold

1. **No-Sleeve Folding**  
   - Categories:  
     - DLG (Dress-Long-Gallus)  
     - DLNS (Dress-Long-NoSleeve)  
     - DLT (Dress-Long-Tube)  
     - DSNS (Dress-Short-NoSleeve)  
     - SL (Skirt-Long)  
     - SS (Skirt-Short)  
     - TCNC (Top-Collar-NoSleeve-FrontClose)  
     - TCNO (Top-Collar-NoSleeve-FrontOpen)  
     - THNC (Top-Hooded-NoSleeve-FrontClose)  
     - TNNC (Top-NoCollar-NoSleeve-FrontClose)  
   - Total garments: **666**  
   - Folding procedure: Single step (fold from bottom to top).

2. **Short-Sleeve Folding**  
   - Categories:  
     - DLSS (Dress-Long-ShortSleeve)  
     - DSSS (Dress-Short-ShortSleeve)  
     - TNSC (Top-NoCollar-ShortSleeve-FrontClose)  
     - TCSC (Top-Collar-ShortSleeve-FrontClose)  
   - Total garments: **121**  
   - Folding procedure (3 steps):  
     1. Fold the left sleeve.  
     2. Fold the right sleeve.  
     3. Fold from the bottom hem upward.

3. **Long-Sleeve Folding**  
   - Categories:  
     - DLLS (Dress-Long-LongSleeve)  
     - DSLS (Dress-Short-LongSleeve)  
     - TCLC (Top-Collar-LongSleeve-FrontClose)  
     - TCLO (Top-Collar-LongSleeve-FrontOpen)  
     - THLC (Top-Hooded-LongSleeve-FrontClose)  
     - THLO (Top-Hooded-LongSleeve-FrontOpen)  
     - TNLC (Top-NoCollar-LongSleeve-FrontClose)  
   - Total garments: **146**  
   - Folding procedure (3 steps):  
     1. Fold the left sleeve.  
     2. Fold the right sleeve.  
     3. Fold from the bottom hem upward.

4. **Pants Folding**  
   - Categories:  
     - PS (Pants-Short)  
     - PL (Pants-Long)  
   - Total garments: **277**  
   - Folding procedure (2 steps):  
     1. Fold the left pant leg over the right pant leg.  
     2. Fold from the waistband down toward the pant legs.

---

### Total Counts

- **No-Sleeve:** 666 garments  
- **Short-Sleeve:** 121 garments  
- **Long-Sleeve:** 146 garments  
- **Pants:** 277 garments  
- **Overall Total:** 1,210 garments

---

### Filename Convention

Each data file follows the pattern:  `<Category>_<GarmentName>_<Foldstage>`

- **Category**: Garment category code (e.g., `DLG` = Dress-Long-Gallus).  
- **GarmentName**: Unique identifier for the specific garment model (e.g., `Dress032_1`, `010`).  
- **FoldStep**: Zero-based index indicating which folding step (e.g., `action0`, `action1`, …).

### Examples

1. **`DLG_Dress032_1_action0`**  
   - **Category:** `DLG` (Dress-Long-Gallus → No-Sleeve)  
   - **GarmentName:** `Dress032_1`  
   - **FoldStep:** `action0` (since No-Sleeve has only one step: fold from bottom to top)  
   - **Link:** [DLG_Dress032_1_action0](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/DLG/DLG_Dress032_1_action0)

2. **`TNLC_010_action1`**  
   - **Category:** `TNLC` (Tops-NoCollar-LongSleeve-Close → Long-Sleeve)  
   - **GarmentName:** `010`  
   - **FoldStep:** `action1` (second step: fold the right sleeve)  
   - **Link:** [TNLC_010_action1](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/TNLC/TNLC_010_action1)


### Directory Content

Each Folding Trajectory directory contains:
- Mesh files from `frame_00.obj` to `frame_20.obj`.  
- `initial.obj` is identical to `frame_00.obj`.
- `keypoints_idx.npy` (specifies the folding start and end points for each step: `[start_0, end_0, start_1, end_1]`).

If you need the point cloud, simply extract the vertex coordinates from the mesh files.

---

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

Current garment‐folding datasets are very limited, and there is a lack of data in the deformable‐object manipulation domain. To bridge this gap and benefit the entire embodied‐intelligence community, we hereby release the dataset constructed in this work.


#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

We use data from [ClothesNet](https://arxiv.org/pdf/2308.09987) and employ DiffClothAI as the simulator. We heuristically specify the folding start and end points, then simulate the folding process within the simulator. For the detailed procedure, please refer to our paper [MetaFold](https://arxiv.org/pdf/2503.08372). The specific keypoints we designated are stored in each trajectory directory under `keypoints_idx.npy`.


## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@misc{chen2025metafoldlanguageguidedmulticategorygarment,
  title={MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model}, 
  author={Haonan Chen and Junxiao Li and Ruihai Wu and Yiwei Liu and Yiwen Hou and Zhixuan Xu and Jingxiang Guo and Chongkai Gao and Zhenyu Wei and Shensi Xu and Jiaqi Huang and Lin Shao},
  year={2025},
  eprint={2503.08372},
  archivePrefix={arXiv},
  primaryClass={cs.RO},
  url={https://arxiv.org/abs/2503.08372}, 
}
```

<!-- **APA:**

[More Information Needed] -->


## Dataset Card Contact

First Author: [Haonan Chen](mailto:[email protected]) 
Corresponding Author: [Lin Shao](mailto:[email protected])