File size: 6,766 Bytes
4ac344e dbef243 4ac344e dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 5594048 dbef243 58179a1 772e764 58179a1 772e764 58179a1 772e764 58179a1 772e764 58179a1 dbef243 361e322 dbef243 58179a1 dbef243 58179a1 dbef243 361e322 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 5594048 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 58179a1 dbef243 361e322 58179a1 361e322 5594048 58179a1 dbef243 58179a1 dbef243 58179a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
license: cc-by-nc-nd-4.0
language:
- en
tags:
- mesh
- robotics
size_categories:
- 10B<n<100B
---
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
MetaFold Dataset is a point-cloud trajectory dataset designed for multi-category garment folding tasks in robotic manipulation.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Haonan Chen, Junxiao Li, Ruihai Wu, Yiwei Liu, Yiwen Hou, Zhixuan Xu, Jingxiang Guo, Chongkai Gao, Zhenyu Wei, Shensi Xu, Jiaqi Huang, Lin Shao
- **License:** CC BY-NC-ND 4.0
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [https://huggingface.co/datasets/chenhn02/MetaFold](https://huggingface.co/datasets/chenhn02/MetaFold)
- **Paper:** [MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model](https://arxiv.org/pdf/2503.08372)
- **Website:** [https://meta-fold.github.io/](https://meta-fold.github.io/)
---
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset categories is inherited from [ClothesNet](https://arxiv.org/pdf/2308.09987). Each garment category has a corresponding name (e.g., **DLG** stands for *Dress-Long-Gallus*).
### Four Folding Types in MetaFold
1. **No-Sleeve Folding**
- Categories:
- DLG (Dress-Long-Gallus)
- DLNS (Dress-Long-NoSleeve)
- DLT (Dress-Long-Tube)
- DSNS (Dress-Short-NoSleeve)
- SL (Skirt-Long)
- SS (Skirt-Short)
- TCNC (Top-Collar-NoSleeve-FrontClose)
- TCNO (Top-Collar-NoSleeve-FrontOpen)
- THNC (Top-Hooded-NoSleeve-FrontClose)
- TNNC (Top-NoCollar-NoSleeve-FrontClose)
- Total garments: **666**
- Folding procedure: Single step (fold from bottom to top).
2. **Short-Sleeve Folding**
- Categories:
- DLSS (Dress-Long-ShortSleeve)
- DSSS (Dress-Short-ShortSleeve)
- TNSC (Top-NoCollar-ShortSleeve-FrontClose)
- TCSC (Top-Collar-ShortSleeve-FrontClose)
- Total garments: **121**
- Folding procedure (3 steps):
1. Fold the left sleeve.
2. Fold the right sleeve.
3. Fold from the bottom hem upward.
3. **Long-Sleeve Folding**
- Categories:
- DLLS (Dress-Long-LongSleeve)
- DSLS (Dress-Short-LongSleeve)
- TCLC (Top-Collar-LongSleeve-FrontClose)
- TCLO (Top-Collar-LongSleeve-FrontOpen)
- THLC (Top-Hooded-LongSleeve-FrontClose)
- THLO (Top-Hooded-LongSleeve-FrontOpen)
- TNLC (Top-NoCollar-LongSleeve-FrontClose)
- Total garments: **146**
- Folding procedure (3 steps):
1. Fold the left sleeve.
2. Fold the right sleeve.
3. Fold from the bottom hem upward.
4. **Pants Folding**
- Categories:
- PS (Pants-Short)
- PL (Pants-Long)
- Total garments: **277**
- Folding procedure (2 steps):
1. Fold the left pant leg over the right pant leg.
2. Fold from the waistband down toward the pant legs.
---
### Total Counts
- **No-Sleeve:** 666 garments
- **Short-Sleeve:** 121 garments
- **Long-Sleeve:** 146 garments
- **Pants:** 277 garments
- **Overall Total:** 1,210 garments
---
### Filename Convention
Each data file follows the pattern: `<Category>_<GarmentName>_<Foldstage>`
- **Category**: Garment category code (e.g., `DLG` = Dress-Long-Gallus).
- **GarmentName**: Unique identifier for the specific garment model (e.g., `Dress032_1`, `010`).
- **FoldStep**: Zero-based index indicating which folding step (e.g., `action0`, `action1`, …).
### Examples
1. **`DLG_Dress032_1_action0`**
- **Category:** `DLG` (Dress-Long-Gallus → No-Sleeve)
- **GarmentName:** `Dress032_1`
- **FoldStep:** `action0` (since No-Sleeve has only one step: fold from bottom to top)
- **Link:** [DLG_Dress032_1_action0](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/DLG/DLG_Dress032_1_action0)
2. **`TNLC_010_action1`**
- **Category:** `TNLC` (Tops-NoCollar-LongSleeve-Close → Long-Sleeve)
- **GarmentName:** `010`
- **FoldStep:** `action1` (second step: fold the right sleeve)
- **Link:** [TNLC_010_action1](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/TNLC/TNLC_010_action1)
### Directory Content
Each Folding Trajectory directory contains:
- Mesh files from `frame_00.obj` to `frame_20.obj`.
- `initial.obj` is identical to `frame_00.obj`.
- `keypoints_idx.npy` (specifies the folding start and end points for each step: `[start_0, end_0, start_1, end_1]`).
If you need the point cloud, simply extract the vertex coordinates from the mesh files.
---
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Current garment‐folding datasets are very limited, and there is a lack of data in the deformable‐object manipulation domain. To bridge this gap and benefit the entire embodied‐intelligence community, we hereby release the dataset constructed in this work.
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
We use data from [ClothesNet](https://arxiv.org/pdf/2308.09987) and employ DiffClothAI as the simulator. We heuristically specify the folding start and end points, then simulate the folding process within the simulator. For the detailed procedure, please refer to our paper [MetaFold](https://arxiv.org/pdf/2503.08372). The specific keypoints we designated are stored in each trajectory directory under `keypoints_idx.npy`.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{chen2025metafoldlanguageguidedmulticategorygarment,
title={MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model},
author={Haonan Chen and Junxiao Li and Ruihai Wu and Yiwei Liu and Yiwen Hou and Zhixuan Xu and Jingxiang Guo and Chongkai Gao and Zhenyu Wei and Shensi Xu and Jiaqi Huang and Lin Shao},
year={2025},
eprint={2503.08372},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2503.08372},
}
```
<!-- **APA:**
[More Information Needed] -->
## Dataset Card Contact
First Author: [Haonan Chen](mailto:[email protected])
Corresponding Author: [Lin Shao](mailto:[email protected]) |