sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A382917
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^3 ).
[ "1", "1", "7", "52", "432", "3878", "36694", "360498", "3642534", "37613947", "395204413", "4211469308", "45409525116", "494500127617", "5430864937915", "60083846523038", "669005596426438", "7491245872785003", "84305386452532885", "953020276395635246", "10816782722212619970", "123218274878407738497" ]
[ "nonn" ]
10
0
3
[ "A349331", "A382916", "A382917", "A382921" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T07:28:35
oeisdata/seq/A382/A382917.seq
558c1f55eb25485f9b2e3e1d34638e08
A382918
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^2.
[ "1", "2", "11", "64", "401", "2652", "18241", "129216", "936469", "6911238", "51764834", "392494366", "3006851913", "23238830982", "180974578418", "1418728452902", "11186978492689", "88668723061112", "706042492550773", "5645331629000370", "45307653034905824", "364860349786846894", "2947299389835541583" ]
[ "nonn" ]
11
0
2
[ "A006319", "A366176", "A382918", "A382920" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T07:28:23
oeisdata/seq/A382/A382918.seq
cfed00daaebfe7baa9086d381e4234e1
A382919
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^3 )^2.
[ "1", "2", "13", "84", "580", "4216", "31824", "247168", "1962800", "15866016", "130122304", "1080101760", "9057113472", "76610188544", "652895283200", "5600752756224", "48323092761344", "419068973537792", "3650909105378304", "31937405800724480", "280419948474447872", "2470473454986891264" ]
[ "nonn" ]
12
0
2
[ "A213282", "A360100", "A382616", "A382919", "A382921" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T07:28:48
oeisdata/seq/A382/A382919.seq
709ba99a24398506c50bfc5f105f932f
A382920
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^3.
[ "1", "3", "21", "160", "1320", "11511", "104451", "976317", "9337182", "90937403", "898861308", "8994246132", "90932043400", "927452701605", "9531607969788", "98609173435172", "1026121044859890", "10733030463200814", "112783955395845926", "1190060614961391945", "12604133970419399208", "133945684546835994915" ]
[ "nonn" ]
10
0
2
[ "A006319", "A382916", "A382918", "A382920" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T14:16:14
oeisdata/seq/A382/A382920.seq
54c44f35ee5cf0a6407c41dd8f6b4ee0
A382921
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^3 )^3.
[ "1", "3", "24", "199", "1776", "16713", "163429", "1644852", "16929576", "177384877", "1885842105", "20292695751", "220595817213", "2418988309494", "26726104358958", "297226167487469", "3324654200094495", "37379224636055040", "422182501323170275", "4788001977121735326", "54502930562354983641" ]
[ "nonn" ]
11
0
2
[ "A360100", "A382615", "A382917", "A382919", "A382921" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T07:29:09
oeisdata/seq/A382/A382921.seq
1dd6d94cb82aeec1f36fa88fd16fad66
A382922
Numbers k such that Fibonacci(k) is a Smith number.
[ "31", "77", "231", "354", "523", "535", "631", "819", "827", "830", "991", "1234" ]
[ "nonn", "base", "more" ]
18
1
1
[ "A000045", "A006753", "A382922" ]
null
Shyam Sunder Gupta, Apr 08 2025
2025-04-13T16:15:45
oeisdata/seq/A382/A382922.seq
1440c8492c70c69cc5a5393c6bdd9356
A382923
Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros.
[ "1", "0", "1", "0", "2", "3", "0", "3", "5", "7", "0", "4", "13", "16", "16", "0", "5", "14", "33", "40", "35", "0", "6", "29", "70", "105", "100", "75", "0", "7", "27", "88", "207", "292", "244", "159", "0", "8", "51", "152", "336", "604", "758", "576", "334", "0", "9", "44", "206", "588", "1161", "1749", "1920", "1329", "696", "0", "10", "79", "300", "882", "2076", "3685", "4924", "4802", "3028", "1442" ]
[ "nonn", "easy", "tabl" ]
15
0
5
[ "A038207", "A101509", "A181331", "A261780", "A323429", "A382923", "A382924" ]
null
John Tyler Rascoe, Apr 09 2025
2025-04-14T07:39:26
oeisdata/seq/A382/A382923.seq
b66febb0a5ca058a6390dca2ad3e4369
A382924
Number of m-compositions of n with n zeros.
[ "1", "2", "13", "70", "336", "2076", "11091", "65210", "365661", "2159354", "11713047", "71427504", "392916687", "2245186352", "13527678851", "73679458270", "429472428457", "2553994191220", "14264421153074", "80483620074092", "489077890675807", "2768919905996888", "15394229582049408", "91794448088043258" ]
[ "nonn" ]
10
0
2
[ "A038207", "A101509", "A181331", "A261780", "A323429", "A382820", "A382923", "A382924" ]
null
John Tyler Rascoe, Apr 09 2025
2025-04-10T02:49:48
oeisdata/seq/A382/A382924.seq
785843b9c412ba7cefa70fc5717e5138
A382925
a(n) = [x^(3*n)] Product_{k=0..n} (1 + k*x)^4.
[ "1", "4", "248", "61320", "39194896", "51699564000", "122482878310656", "474300956527856640", "2804126507444905046272", "24036712401508315774848000", "286889291626307627568309995520", "4615084616716397442547883972818944", "97421519516367186622078306709619806208" ]
[ "nonn" ]
41
0
2
[ "A129256", "A382925", "A384025", "A384031", "A384032" ]
null
Seiichi Manyama, May 17 2025
2025-05-22T14:18:33
oeisdata/seq/A382/A382925.seq
c90b7d179ee3fe872b4f8fcfdc2c8572
A382926
Irregular table where row n lists numbers k in row n of A162306 for which there exists a prime p | n such that k*p > n.
[ "2", "3", "4", "5", "3", "4", "6", "7", "8", "9", "4", "5", "8", "10", "11", "6", "8", "9", "12", "13", "4", "7", "8", "14", "5", "9", "15", "16", "17", "8", "9", "12", "16", "18", "19", "5", "8", "10", "16", "20", "7", "9", "21", "4", "8", "11", "16", "22", "23", "9", "12", "16", "18", "24", "25", "4", "8", "13", "16", "26", "27", "7", "8", "14", "16", "28", "29", "8", "9", "10", "12", "15", "16", "18", "20", "24", "25", "27", "30" ]
[ "nonn", "tabf" ]
20
2
1
[ "A000961", "A007947", "A024619", "A162306", "A275280", "A382926", "A382964" ]
null
Michael De Vlieger, Apr 28 2025
2025-05-09T00:55:23
oeisdata/seq/A382/A382926.seq
818eaf2e414d77d58e9b37912ede967f
A382927
Smallest beginning of a sequence of exactly n consecutive palindromic primes, all ending with the same digit.
[ "2", "181", "151", "131", "101", "11", "17471", "16661", "16561", "16361", "16061", "15551", "15451", "14741", "14341", "13931", "13831", "13331", "12821", "12721", "12421", "11411", "11311", "10601", "10501", "10301", "1884881", "1883881", "1881881", "1880881", "1879781", "1878781", "1876781", "1865681", "1856581", "1853581", "1851581" ]
[ "nonn", "base" ]
53
1
1
[ "A002385", "A054681", "A382927" ]
null
Jean-Marc Rebert, Apr 13 2025
2025-05-13T15:09:31
oeisdata/seq/A382/A382927.seq
1736dc6dfa1ad85994acb3a287d6e205
A382928
Start with {1, x}, then at each step replace it with the set of all pairwise products and sums of its elements (an element can be paired with itself). a(n) gives the number of elements after n-th step.
[ "2", "6", "28", "436", "90385", "4017112742" ]
[ "nonn", "more", "hard" ]
28
0
1
[ "A352969", "A382928" ]
null
Bryle Morga, Apr 09 2025
2025-04-11T16:19:54
oeisdata/seq/A382/A382928.seq
ab9ae75923c6a3ad74862883672f5fa2
A382929
Smallest number k such that k + n + sigma(n) is a perfect number.
[ "4", "1", "21", "17", "17", "10", "13", "5", "6", "0", "5", "456", "1", "458", "457", "449", "461", "439", "457", "434", "443", "438", "449", "412", "440", "428", "429", "412", "437", "394", "433", "401", "415", "408", "413", "369", "421", "398", "401", "366", "413", "358", "409", "368", "373", "378", "401", "324", "390", "353", "373", "346", "389", "322", "369", "320", "359", "348", "377", "268" ]
[ "nonn" ]
57
1
1
[ "A000396", "A155085", "A382506", "A382929" ]
null
Leo Hennig, Apr 09 2025
2025-04-11T16:25:03
oeisdata/seq/A382/A382929.seq
8006ca084ff8b7fd964d8dc9b75e2b2e
A382930
a(n) is the smallest k such that A382506(k) + sigma(k) = A000396(n).
[ "1", "4", "16", "180", "2520", "7207200" ]
[ "nonn", "more" ]
24
1
2
[ "A002093", "A002182", "A382506", "A382930" ]
null
Leo Hennig, Apr 09 2025
2025-04-24T23:25:03
oeisdata/seq/A382/A382930.seq
a2c79515227ee32d98c3f5be942befb7
A382931
Numbers k for which the Pythagorean triangle (A046083(k), A046084(k), A009000(k)) has an integer altitude.
[ "7", "19", "36", "51", "69", "88", "99", "106", "126", "147", "163", "187", "196", "208", "227", "240", "250", "273", "293", "314", "342", "361", "384", "392", "409", "434", "455", "459", "483", "504", "507", "525", "549", "552", "579", "599", "627", "649", "679", "702", "711", "718", "724", "744", "752", "775", "802", "829", "854", "879", "894", "908", "935", "960" ]
[ "nonn" ]
9
1
1
[ "A009000", "A046083", "A046084", "A382931", "A382932" ]
null
Felix Huber, Apr 11 2025
2025-04-19T17:48:30
oeisdata/seq/A382/A382931.seq
fb6204834b89d5610d5149a0c842a3ba
A382932
a(n) is the altitude of the Pythagorean triangle (A046083(A382931(n)), A046084(A382931(n)), A009000(A382931(n))).
[ "12", "24", "36", "48", "60", "72", "60", "84", "96", "108", "120", "132", "120", "144", "156", "120", "168", "180", "192", "204", "216", "228", "240", "180", "252", "264", "276", "240", "288", "300", "168", "312", "324", "240", "336", "348", "360", "372", "384", "396", "420", "300", "408", "360", "420", "432", "444", "456", "468", "480", "360", "492", "504", "516" ]
[ "nonn" ]
15
1
1
[ "A008594", "A009000", "A046083", "A046084", "A382931", "A382932" ]
null
Felix Huber, Apr 13 2025
2025-05-09T00:51:15
oeisdata/seq/A382/A382932.seq
efeaac0a3b6bbbb654614eb3fcb45dca
A382933
Numbers k such that k, 2*m +- 3 and 3*m +- 2 are all semiprimes.
[ "451", "707", "871", "1313", "1537", "1819", "1921", "1969", "2155", "2195", "2533", "2599", "2885", "2993", "3265", "3817", "3883", "3953", "3997", "4069", "4105", "4385", "4555", "4607", "5599", "5755", "5771", "6155", "6415", "6773", "7157", "7453", "7979", "8185", "8213", "8251", "8321", "8333", "8399", "8531", "9055", "9077", "9167", "9335", "9647", "9953", "9977", "10121", "10537" ]
[ "nonn" ]
13
1
1
[ "A001358", "A382933" ]
null
Zak Seidov and Robert Israel, Apr 15 2025
2025-04-17T09:51:25
oeisdata/seq/A382/A382933.seq
e03fbe0bd527fff50606d30ad91b7547
A382934
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * binomial(n+2*k,k) * 2^(n-k).
[ "1", "8", "142", "3188", "79306", "2091128", "57251944", "1609275536", "46123258714", "1341870616928", "39505611952852", "1174352843125976", "35189447673190864", "1061579548438995776", "32210037668484980992", "982173609216589910528", "30079350892561552670554", "924711257106480733093616", "28524228913983070512002044" ]
[ "nonn" ]
10
0
2
[ "A001850", "A069835", "A081798", "A126086", "A382934" ]
null
Ilya Gutkovskiy, Apr 09 2025
2025-04-17T04:28:38
oeisdata/seq/A382/A382934.seq
b866f3a397942618e43d8067e3d26e64
A382935
Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.
[ "0", "2", "1", "4", "3", "6", "5", "8", "7", "10", "20", "21", "22", "12", "14", "16", "18", "24", "26", "28", "30", "40", "41", "42", "43", "44", "31", "46", "32", "48", "34", "36", "38", "50", "60", "61", "62", "63", "64", "65", "66", "51", "68", "52", "80", "81", "82", "83", "84", "85", "86", "53", "87", "54", "88", "56", "58", "70", "200", "202", "100", "204", "102", "104", "106", "108", "71", "206", "120", "208" ]
[ "nonn", "base", "look" ]
22
1
2
[ "A342042", "A342043", "A342044", "A342045", "A382462", "A382621", "A382935", "A382936", "A382939", "A383059", "A383500", "A383501" ]
null
Paolo Xausa, Apr 14 2025
2025-04-30T11:09:50
oeisdata/seq/A382/A382935.seq
aaf8fbee861d8cf8f1d3e9b951c528ef
A382936
First differences of A382935.
[ "2", "-1", "3", "-1", "3", "-1", "3", "-1", "3", "10", "1", "1", "-10", "2", "2", "2", "6", "2", "2", "2", "10", "1", "1", "1", "1", "-13", "15", "-14", "16", "-14", "2", "2", "12", "10", "1", "1", "1", "1", "1", "1", "-15", "17", "-16", "28", "1", "1", "1", "1", "1", "1", "-33", "34", "-33", "34", "-32", "2", "12", "130", "2", "-102", "104", "-102", "2", "2", "2", "-37", "135", "-86", "88", "-136" ]
[ "sign", "base" ]
5
1
1
[ "A382935", "A382936" ]
null
Paolo Xausa, Apr 14 2025
2025-04-17T09:46:01
oeisdata/seq/A382/A382936.seq
ce89b864d694a8e69191f474123546e8
A382937
Positive integers that contain an odd digit d immediately preceded by a digit <= d.
[ "11", "13", "15", "17", "19", "23", "25", "27", "29", "33", "35", "37", "39", "45", "47", "49", "55", "57", "59", "67", "69", "77", "79", "89", "99", "101", "103", "105", "107", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "123", "125", "127", "129", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "145", "147", "149", "150" ]
[ "nonn", "base", "easy" ]
15
1
1
[ "A347298", "A382464", "A382623", "A382937", "A382938", "A383061", "A383245", "A383247", "A383249", "A383500" ]
null
Paolo Xausa, Apr 14 2025
2025-04-30T10:12:02
oeisdata/seq/A382/A382937.seq
cc569fb9efd56c7118eb0b0feaf8d9e9
A382938
Nonnegative integers such that every odd digit except the leftmost is immediately preceded by a larger digit.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "16", "18", "20", "21", "22", "24", "26", "28", "30", "31", "32", "34", "36", "38", "40", "41", "42", "43", "44", "46", "48", "50", "51", "52", "53", "54", "56", "58", "60", "61", "62", "63", "64", "65", "66", "68", "70", "71", "72", "73", "74", "75", "76", "78", "80", "81", "82", "83", "84", "85", "86", "87", "88", "90", "91", "92", "93", "94", "95" ]
[ "nonn", "base", "easy" ]
18
1
3
[ "A377912", "A382465", "A382624", "A382937", "A382938", "A383062", "A383246", "A383248", "A383250", "A383501" ]
null
Paolo Xausa, Apr 14 2025
2025-04-30T10:13:23
oeisdata/seq/A382/A382938.seq
8b62c42c089c5cae4bf0cb5f781a62b0
A382939
Split A382935 into runs of increasing elements. a(n) is the length of the n-th run.
[ "2", "2", "2", "2", "5", "13", "2", "2", "11", "2", "8", "2", "2", "5", "2", "4", "2", "2", "4", "4", "3", "2", "5", "3", "5", "6", "3", "2", "7", "30", "2", "5", "4", "5", "2", "5", "5", "2", "5", "2", "5", "6", "2", "2", "10", "2", "2", "2", "19", "2", "5", "4", "6", "2", "8", "2", "7", "2", "9", "2", "8", "2", "10", "2", "2", "5", "2", "7", "2", "6", "2", "6", "2", "9", "2", "7", "2", "8", "2", "12", "10", "4", "4", "3", "2", "4", "3" ]
[ "nonn", "base" ]
6
1
1
[ "A382935", "A382939" ]
null
Paolo Xausa, Apr 14 2025
2025-04-17T09:46:41
oeisdata/seq/A382/A382939.seq
033c2c2fc9196f5a28ca4ec4feeca3a6
A382940
a(n) = A382883(n) * n.
[ "1", "-2", "-3", "4", "-5", "6", "-7", "8", "9", "10", "-11", "0", "-13", "14", "15", "0", "-17", "0", "-19", "0", "21", "22", "-23", "0", "25", "26", "27", "0", "-29", "-30", "-31", "32", "33", "34", "35", "-36", "-37", "38", "39", "0", "-41", "-42", "-43", "0", "0", "46", "-47", "0", "49", "0", "51", "0", "-53", "0", "55", "0", "57", "58", "-59", "0", "-61", "62", "0", "-64", "65", "-66" ]
[ "sign" ]
10
1
2
[ "A055615", "A382883", "A382940" ]
null
Peter Luschny, Apr 09 2025
2025-04-29T16:52:55
oeisdata/seq/A382/A382940.seq
df398e1c3405252e58a2227244bea762
A382941
a(n) = exp(Sum_{d|n} A382883(d)*log(n/d)).
[ "1", "2", "3", "2", "5", "1", "7", "4", "3", "1", "11", "3", "13", "1", "1", "16", "17", "2", "19", "5", "1", "1", "23", "18", "5", "1", "9", "7", "29", "1", "31", "64", "1", "1", "1", "36", "37", "1", "1", "50", "41", "1", "43", "11", "5", "1", "47", "72", "7", "2", "1", "13", "53", "12", "1", "98", "1", "1", "59", "15", "61", "1", "7", "512", "1", "1", "67", "17", "1", "1", "71", "648", "73", "1", "3", "19" ]
[ "nonn" ]
17
1
2
[ "A000469", "A014963", "A205959", "A382883", "A382941", "A383263" ]
null
Peter Luschny, Apr 09 2025
2025-04-29T16:52:45
oeisdata/seq/A382/A382941.seq
49c4c66c2e87c1d9ff2b116af6b3dbce
A382942
a(n) = Sum_{k=1..n} A382883(k).
[ "1", "0", "-1", "0", "-1", "0", "-1", "0", "1", "2", "1", "1", "0", "1", "2", "2", "1", "1", "0", "0", "1", "2", "1", "1", "2", "3", "4", "4", "3", "2", "1", "2", "3", "4", "5", "4", "3", "4", "5", "5", "4", "3", "2", "2", "2", "3", "2", "2", "3", "3", "4", "4", "3", "3", "4", "4", "5", "6", "5", "5", "4", "5", "5", "4", "5", "4", "3", "3", "4", "3", "2", "2", "1", "2", "2", "2", "3", "2", "1", "1", "1", "2", "1", "1", "2", "3" ]
[ "sign" ]
8
1
10
[ "A002321", "A382883", "A382942" ]
null
Peter Luschny, Apr 10 2025
2025-04-29T16:52:58
oeisdata/seq/A382/A382942.seq
b92a45eb9762444757a0fb8d8b424ade
A382943
Numbers k such that A382883(k) = 0.
[ "12", "16", "18", "20", "24", "28", "40", "44", "45", "48", "50", "52", "54", "56", "60", "63", "68", "72", "75", "76", "80", "81", "84", "88", "90", "92", "96", "98", "99", "104", "108", "112", "116", "117", "120", "124", "126", "132", "135", "136", "140", "144", "147", "148", "150", "152", "153", "156", "160", "162", "164", "168", "171", "172", "175", "176", "180", "184", "188", "189" ]
[ "nonn" ]
12
1
1
[ "A059404", "A217261", "A382881", "A382883", "A382943", "A383016", "A383017" ]
null
Peter Luschny, Apr 12 2025
2025-04-29T16:53:02
oeisdata/seq/A382/A382943.seq
c163f7e4e90af839a2036b4444950347
A382944
Table read by rows: T(n, k) = valuation(n, k) for k >= 2, 1 for k = 1 and 0^n for k = 0.
[ "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "2", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "3", "0", "1", "0", "0", "0", "1", "0", "1", "0", "2", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "2", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "tabl" ]
17
0
13
[ "A057427", "A113704", "A169594", "A382881", "A382883", "A382944" ]
null
Peter Luschny, Apr 09 2025
2025-04-30T03:35:51
oeisdata/seq/A382/A382944.seq
4912642de6e44f843af33f8f6d0eb2e4
A382945
a(n) is the least positive integer k having a divisor d such that k/d is not a power of n and the base n expansions of k and d, possibly with leading zeros, have, up to order, the same digits.
[ "9", "28", "18", "16", "40", "36", "42", "64", "105", "45", "154", "105", "130", "168", "260", "120", "340", "96", "266", "275", "495", "231", "460", "351", "450", "273", "792", "175", "928", "280", "682", "1024", "308", "459", "1302", "741", "962", "665", "1612", "288", "1804", "560", "1290", "1265", "2139", "1035", "1974", "540", "952", "715", "2720", "585" ]
[ "nonn", "base" ]
13
2
1
[ "A096092", "A382945", "A382946" ]
null
Rémy Sigrist, Apr 09 2025
2025-04-14T09:07:52
oeisdata/seq/A382/A382945.seq
b85ce906f35419e070bb0e72f83b8777
A382946
a(n) is the least positive integer k having a proper divisor d such that the base n expansions of k and d, without leading zeros, have, up to order, the same digits, or a(n) = -1 if no such k exists.
[ "-1", "64", "36", "16", "700", "36", "42", "64", "3105", "45", "594", "105", "130", "168", "945", "120", "1666", "96", "266", "275", "2457", "231", "460", "351", "450", "273", "7938", "175", "7714", "280", "682", "1024", "308", "459", "7525", "741", "962", "665", "27300", "288", "17097", "560", "1290", "1265", "18540", "1035", "1974", "540", "952", "715" ]
[ "sign", "base" ]
11
2
2
[ "A023094", "A090056", "A382945", "A382946" ]
null
Rémy Sigrist, Apr 09 2025
2025-04-14T09:07:47
oeisdata/seq/A382/A382946.seq
45b234b386a333d91f3631633c5999cb
A382947
a(n) = [(x*y)^n] Product_{k>=1} 1 / (1 - x^k - y^k)^k.
[ "1", "2", "16", "78", "426", "1940", "9300", "40530", "177940", "749788", "3137352", "12865488", "52425432", "211336062", "848099898", "3385259588", "13475690578", "53504526568", "212146065506", "840218845230", "3325872415258", "13159945010474", "52064974607244", "205979887425498", "814961759722486" ]
[ "nonn" ]
12
0
2
[ "A000219", "A322211", "A382947" ]
null
Ilya Gutkovskiy, Apr 09 2025
2025-04-11T10:38:18
oeisdata/seq/A382/A382947.seq
bf647fe2ae14c25505e26d0976903c16
A382948
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k)^k.
[ "1", "0", "2", "18", "50", "190", "536", "1644", "4432", "12876", "33560", "89118", "227734", "572578", "1409602", "3424996", "8150818", "19152532", "44455758", "101565172", "229712612", "513207144", "1134650028", "2481664146", "5379539720", "11545719858", "24574548632", "51855844492", "108559596182" ]
[ "nonn" ]
9
0
3
[ "A026007", "A365662", "A382948" ]
null
Ilya Gutkovskiy, Apr 09 2025
2025-04-11T10:22:39
oeisdata/seq/A382/A382948.seq
9d16a45157b608a948daacd6e45e9640
A382949
a(n) = [(x*y)^n] Product_{k>=1} 1 / (1 - x^k - y^k)^n.
[ "1", "2", "48", "1190", "33648", "996292", "30626316", "965163166", "30995087312", "1009925740946", "33289934968618", "1107728567917028", "37149902553751260", "1254165186821008126", "42580296599191705276", "1452739684287637542640", "49776378699192072523920", "1711962807156690517057454" ]
[ "nonn" ]
11
0
2
[ "A008485", "A322211", "A382949" ]
null
Ilya Gutkovskiy, Apr 09 2025
2025-04-10T07:24:12
oeisdata/seq/A382/A382949.seq
00817249902abadf2c79f555d06d3fbc
A382950
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k)^n.
[ "1", "0", "6", "102", "1342", "20030", "306852", "4783534", "75873934", "1220259306", "19837742836", "325375411438", "5376744428812", "89412908941096", "1494992390431000", "25114561595879252", "423649216254936110", "7172523302899053230", "121828099966104173892", "2075321708914763792740" ]
[ "nonn" ]
10
0
3
[ "A270913", "A365662", "A382950" ]
null
Ilya Gutkovskiy, Apr 09 2025
2025-04-10T06:46:01
oeisdata/seq/A382/A382950.seq
f2d9259755daf74488881d7dc2fe865c
A382951
Sequence of positive integers with no repetitions and, when put in a spiral, all lines (straight or diagonal) are pairwise coprime.
[ "1", "2", "3", "5", "4", "7", "11", "9", "13", "17", "19", "23", "8", "29", "31", "27", "25", "37", "39", "16", "41", "43", "14", "47", "33", "53", "35", "59", "61", "67", "71", "73", "49", "79", "83", "89", "97", "101", "103", "55", "107", "109", "91", "113", "85", "127", "131", "137", "139", "121", "149", "151", "157", "133", "163", "65", "167", "51", "125", "173", "143", "179", "181", "191", "161", "22", "193", "169", "197", "199", "211" ]
[ "nonn" ]
39
1
2
[ "A336349", "A382951" ]
null
Bryle Morga, Apr 09 2025
2025-04-16T07:26:59
oeisdata/seq/A382/A382951.seq
d089bee087890abcc81b614ae4adb22e
A382952
Maximum number of intercalates in an extended self-orthogonal diagonal Latin square of order n.
[ "0", "0", "0", "12", "0", "0", "18", "112", "72", "53" ]
[ "nonn", "more", "hard" ]
16
1
4
[ "A092237", "A307164", "A309210", "A309598", "A309599", "A360223", "A382952", "A382957" ]
null
Eduard I. Vatutin, Apr 09 2025
2025-04-23T18:14:42
oeisdata/seq/A382/A382952.seq
9a593a88d6aaa102c0dd805290bc0120
A382953
Numbers with at least one factorization for which the factors can be partitioned into 2 or more distinct subsets with equal sums.
[ "16", "30", "48", "54", "64", "70", "72", "84", "96", "120", "126", "128", "144", "160", "162", "180", "192", "198", "210", "216", "240", "243", "250", "252", "256", "264", "270", "280", "286", "288", "300", "308", "320", "324", "330", "336", "360", "378", "384", "390", "396", "400", "420", "432", "440", "448", "462", "468", "480", "486", "495", "504", "510", "512" ]
[ "nonn" ]
12
1
1
[ "A083207", "A255265", "A322657", "A382953" ]
null
Charles L. Hohn, Apr 09 2025
2025-04-12T12:46:37
oeisdata/seq/A382/A382953.seq
7270fb4c7e60b31b9a4786bb2a24fe57
A382954
Number of ways to partition distinct prime numbers into three disjoint sets such that the sum of each set equals n.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "1", "3", "2", "8", "1", "1", "4", "0", "14", "9", "1", "4", "7", "16", "26", "31", "17", "3", "19", "39", "54", "20", "62", "9", "41", "96", "89", "62", "66", "34", "59", "197", "241", "289", "69", "124", "184", "133", "481", "440", "148", "225", "394", "709", "808", "984", "555", "414", "799" ]
[ "nonn" ]
16
0
25
[ "A000607", "A258281", "A382871", "A382954" ]
null
Seiichi Manyama, Apr 10 2025
2025-04-10T08:34:46
oeisdata/seq/A382/A382954.seq
5ef94774a440c7c723fbabe6ae4977a4
A382955
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{p prime} (1 + x^p + y^p).
[ "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "2", "0", "1", "1", "0", "2", "0", "0", "0", "0", "0", "0", "0", "2", "0", "1", "0", "0", "1", "0", "2", "1", "0", "0", "1", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "2", "0", "1", "2", "0", "2", "0", "2", "1", "0", "2", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "2", "0", "1", "1", "0", "2", "0", "2", "0", "1", "1", "0", "2" ]
[ "nonn", "tabl" ]
14
0
16
[ "A000004", "A000586", "A284593", "A382871", "A382955", "A382956" ]
null
Seiichi Manyama, Apr 10 2025
2025-04-10T06:48:19
oeisdata/seq/A382/A382955.seq
85e0ce7dd9096b122417c73c7a55429a
A382956
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{p prime} 1/(1 - x^p - y^p).
[ "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "2", "0", "1", "2", "0", "1", "1", "0", "2", "2", "0", "3", "2", "3", "0", "2", "3", "0", "3", "1", "1", "3", "0", "3", "3", "0", "5", "3", "6", "3", "5", "0", "3", "4", "0", "6", "4", "4", "4", "4", "6", "0", "4", "5", "0", "8", "4", "11", "8", "11", "4", "8", "0", "5", "6", "0", "10", "6", "10", "9", "9", "10", "6", "10", "0", "6", "7", "0", "13", "8", "19", "13", "28", "13", "19", "8", "13", "0", "7" ]
[ "nonn", "tabl" ]
12
0
13
[ "A000004", "A000607", "A322210", "A382955", "A382956" ]
null
Seiichi Manyama, Apr 10 2025
2025-04-10T06:48:29
oeisdata/seq/A382/A382956.seq
a69c1b807a1032848d34cf7dcb3aa366
A382957
a(n) is the number of distinct numbers of intercalates extended self-orthogonal diagonal Latin squares of order n.
[ "1", "0", "0", "1", "1", "0", "3", "8", "52", "45" ]
[ "nonn", "more", "hard" ]
9
1
7
[ "A309210", "A309598", "A309599", "A329685", "A345760", "A382952", "A382957" ]
null
Eduard I. Vatutin, Apr 10 2025
2025-04-29T13:20:52
oeisdata/seq/A382/A382957.seq
d333924e22433fb4e118090e41e076a0
A382958
a(n) = (n!)^2 * [(x*y)^n] Product_{k>=1} 1 / (1 - (x^k + y^k)/k!).
[ "1", "2", "30", "920", "53078", "4828892", "643086588", "117718532696", "28378716172822", "8713799596723484", "3320414836230009080", "1537509304647364575716", "850310874146059999520372", "553587598414859641796343780", "419087377790397643526857611312", "365040505934072220586791778761920" ]
[ "nonn" ]
12
0
2
[ "A005651", "A322211", "A382958" ]
null
Ilya Gutkovskiy, Apr 10 2025
2025-04-25T06:34:24
oeisdata/seq/A382/A382958.seq
41291984393becf884e281c413a7a444
A382959
a(n) = (n!)^2 * [(x*y)^n] Product_{k>=1} (1 + (x^k + y^k)/k!).
[ "1", "0", "0", "6", "8", "130", "342", "2590", "21240", "167730", "1874930", "46128610", "417338462", "5163377570", "542567363366", "3984766703746", "42736508056760", "681324935577810", "127138303030260258", "1011227775808000450", "14280379156264610778", "276342548314653322270", "12566141342987866203746" ]
[ "nonn" ]
11
0
4
[ "A007837", "A108796", "A365662", "A382959" ]
null
Ilya Gutkovskiy, Apr 10 2025
2025-04-24T05:59:00
oeisdata/seq/A382/A382959.seq
73636b7ce54509bc672a8c2fbbecd440
A382960
Numbers k such that k < A053669(k)^2 * A380539(k)^2, i.e., k < A382767(k).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "38", "39", "40", "42", "44", "45", "46", "48", "50", "51", "52", "54", "56", "57", "58", "60", "62", "63", "64", "66", "68", "69", "70", "72", "74", "75", "76", "78", "80", "81", "82", "84" ]
[ "nonn", "easy", "fini", "full" ]
22
1
2
[ "A048597", "A051250", "A053669", "A286708", "A380539", "A382659", "A382767", "A382960" ]
null
Michael De Vlieger, Apr 14 2025
2025-04-19T18:06:51
oeisdata/seq/A382/A382960.seq
58ab73af778313e6188404b61462b1c5
A382961
A sequence constructed by greedily sampling the logarithmic distribution for parameter value 1/2, 1/(log(2)*(2^i)*i) to minimize discrepancy.
[ "1", "1", "2", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "4", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "5", "1", "1", "2", "1", "1", "1", "2", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "1", "1", "1", "2", "1", "1", "4", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "1", "1", "4", "1", "1", "2", "1", "1", "1", "2" ]
[ "nonn" ]
24
1
3
[ "A381617", "A381898", "A381900", "A382961", "A383238" ]
null
Jwalin Bhatt, Apr 10 2025
2025-06-06T00:15:35
oeisdata/seq/A382/A382961.seq
2e01f7b76f5f62e98891c8475f10314f
A382962
Number of symmetric ternary maps f : S X S X S -> S on a set S of n elements which can be represented as a superposition of binary maps * : S X S -> S.
[ "1", "5", "48", "831", "21320", "772422" ]
[ "nonn", "hard", "more" ]
18
1
2
[ "A283840", "A283841", "A382962" ]
null
Bert Dobbelaere, Apr 10 2025
2025-04-25T20:41:06
oeisdata/seq/A382/A382962.seq
ce6904427edc72e4200afe69d2990576
A382963
Prime index gaps between consecutive full reptend primes.
[ "3", "1", "1", "1", "5", "2", "1", "7", "4", "1", "2", "3", "4", "2", "1", "2", "4", "2", "1", "4", "1", "1", "8", "3", "5", "2", "1", "1", "4", "3", "5", "4", "1", "1", "1", "1", "3", "5", "1", "2", "6", "4", "2", "6", "1", "2", "3", "9", "1", "1", "5", "2", "4", "5", "1", "2", "2", "1", "1", "5", "1", "2", "3", "2", "1", "1", "1", "2", "1", "1", "5", "2", "1", "2", "3", "1", "1", "4", "5", "1", "1", "1", "4", "2", "2", "5", "1" ]
[ "nonn", "easy" ]
18
1
1
[ "A000040", "A000720", "A001913", "A060257", "A382963" ]
null
Kyle Wyonch, Apr 10 2025
2025-04-10T17:05:22
oeisdata/seq/A382/A382963.seq
893134ec4dbe0aaa7a8de1be1e6fee3c
A382964
Number of k <= n such that rad(k) divides n and g * k > n where g is the largest prime factor of n and rad = A007947.
[ "0", "1", "1", "1", "1", "3", "1", "1", "1", "4", "1", "4", "1", "4", "3", "1", "1", "5", "1", "5", "3", "5", "1", "5", "1", "5", "1", "5", "1", "12", "1", "1", "4", "6", "3", "6", "1", "6", "4", "6", "1", "14", "1", "6", "4", "6", "1", "6", "1", "6", "4", "6", "1", "6", "3", "6", "4", "6", "1", "16", "1", "6", "4", "1", "3", "17", "1", "7", "4", "13", "1", "7", "1", "7", "4", "7", "3", "18", "1", "7", "1", "7", "1", "19", "3" ]
[ "nonn" ]
34
1
6
[ "A007947", "A010846", "A024619", "A162306", "A246655", "A382926", "A382964" ]
null
Michael De Vlieger, Apr 28 2025
2025-05-09T00:56:44
oeisdata/seq/A382/A382964.seq
4c68b7e88798d3454585b316d87f801a
A382965
The number of non-unitary prime divisors of the n-th cubefree number that is not squarefree.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
9
1
8
[ "A002117", "A013661", "A046660", "A056170", "A067259", "A369427", "A376366", "A382965", "A382966", "A382968" ]
null
Amiram Eldar, Apr 10 2025
2025-04-11T08:46:18
oeisdata/seq/A382/A382965.seq
c78fbf7a5096e555d5ed7409bff8c788
A382966
The number of non-unitary prime divisors of the n-th biquadratefree number that is not cubefree.
[ "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1" ]
[ "nonn", "easy" ]
7
1
7
[ "A002117", "A013662", "A056170", "A375072", "A376366", "A382425", "A382965", "A382966", "A382968" ]
null
Amiram Eldar, Apr 10 2025
2025-04-11T08:46:32
oeisdata/seq/A382/A382966.seq
88f7501339cdcc547445374260fb4885
A382967
Biquadratefree numbers (A046100) that are not squarefree (A005117).
[ "4", "8", "9", "12", "18", "20", "24", "25", "27", "28", "36", "40", "44", "45", "49", "50", "52", "54", "56", "60", "63", "68", "72", "75", "76", "84", "88", "90", "92", "98", "99", "100", "104", "108", "116", "117", "120", "121", "124", "125", "126", "132", "135", "136", "140", "147", "148", "150", "152", "153", "156", "164", "168", "169", "171", "172", "175", "180", "184" ]
[ "nonn", "easy" ]
21
1
1
[ "A004709", "A005117", "A013929", "A046100", "A051903", "A059956", "A067259", "A215267", "A252849", "A375072", "A375229", "A382967" ]
null
Amiram Eldar, Apr 10 2025
2025-04-22T06:31:46
oeisdata/seq/A382/A382967.seq
a305a4400f33f22a1b0a0712b9369553
A382968
The number of non-unitary prime divisors of the n-th biquadratefree number that is not squarefree.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
7
1
11
[ "A056170", "A382425", "A382965", "A382966", "A382967", "A382968" ]
null
Amiram Eldar, Apr 10 2025
2025-04-11T08:16:10
oeisdata/seq/A382/A382968.seq
5768891038ab5972b52b5494dfd624bd
A382969
The excess of the n-th noncubefree number.
[ "2", "3", "2", "2", "4", "2", "3", "2", "2", "5", "3", "3", "3", "2", "4", "2", "3", "3", "2", "2", "6", "2", "2", "4", "2", "4", "3", "2", "3", "2", "2", "5", "3", "3", "4", "4", "2", "3", "4", "2", "2", "7", "2", "2", "3", "2", "5", "2", "2", "3", "2", "5", "4", "2", "3", "2", "2", "2", "4", "3", "3", "2", "2", "2", "6", "3", "4", "3", "2", "4", "2", "5", "2", "5", "2", "2", "3", "2", "4", "4", "2", "3", "3", "3", "8", "2", "2" ]
[ "nonn", "easy" ]
11
1
1
[ "A002117", "A046099", "A046660", "A136141", "A275699", "A376366", "A382969" ]
null
Amiram Eldar, Apr 10 2025
2025-04-14T06:18:10
oeisdata/seq/A382/A382969.seq
2a6dac544a9452e8d0ff979418715502
A382970
Numbers k such that {k, k+2, k+6, k+8, k+90, k+92, k+96, k+98} are all prime.
[ "11", "101", "15641", "3512981", "6655541", "20769311", "26919791", "41487071", "71541641", "160471601", "189425981", "236531921", "338030591", "409952351", "423685721", "431343461", "518137091", "543062621", "588273221", "637272191", "639387311", "647851571", "705497951", "726391571", "843404201", "895161341", "958438751", "960813851", "964812461", "985123961" ]
[ "nonn" ]
8
1
1
[ "A007530", "A059925", "A128467", "A382970" ]
null
David Mellinger, Apr 10 2025
2025-04-18T17:41:34
oeisdata/seq/A382/A382970.seq
4b5d5cdf76918c5bdfda439b9bf86a59
A382971
Population of elementary triangular automaton rule 146 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "7", "13", "7", "28", "25", "46", "13", "46", "43", "79", "49", "133", "73", "160", "55", "109", "91", "211", "73", "238", "199", "337", "133", "343", "187", "388", "211", "523", "277", "607", "205", "478", "241", "559", "259", "679", "361", "748", "379", "805", "493", "967", "523", "1042", "709", "1372", "391", "976", "709", "1501", "649", "1612", "895" ]
[ "nonn" ]
12
0
2
[ "A372581", "A380012", "A380670", "A381734", "A382971", "A382972", "A383028" ]
null
Paul Cousin, Apr 10 2025
2025-05-14T09:05:11
oeisdata/seq/A382/A382971.seq
6482aee1dd1f4ccc649ca31fdd78bb39
A382972
Second center column of elementary triangular automaton rule 146, starting from a lone 1 cell.
[ "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn" ]
12
0
null
[ "A374413", "A374769", "A380172", "A382971", "A382972", "A383028" ]
null
Paul Cousin, Apr 10 2025
2025-05-14T09:05:16
oeisdata/seq/A382/A382972.seq
cd7ebb82f64b1b2147a5750a5f036a8d
A382973
a(n) = 4*n^3 - 6*n^2 + 6*n - 2 + (-1)^n.
[ "1", "19", "69", "183", "377", "683", "1117", "1711", "2481", "3459", "4661", "6119", "7849", "9883", "12237", "14943", "18017", "21491", "25381", "29719", "34521", "39819", "45629", "51983", "58897", "66403", "74517", "83271", "92681", "102779", "113581", "125119", "137409", "150483", "164357", "179063", "194617", "211051", "228381", "246639" ]
[ "nonn", "easy" ]
27
1
2
[ "A000578", "A011934", "A382973" ]
null
Nicolay Avilov, Jun 02 2025
2025-06-18T18:58:53
oeisdata/seq/A382/A382973.seq
a93775e040af451102a269b4ba863bb4
A382974
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{j>=1} 1/(1 - x^j + y^j).
[ "1", "-1", "1", "0", "-2", "2", "-1", "2", "-4", "3", "1", "-3", "4", "-7", "5", "-1", "4", "-8", "10", "-12", "7", "1", "-5", "14", "-20", "18", "-19", "11", "-1", "6", "-18", "34", "-40", "34", "-30", "15", "2", "-7", "22", "-51", "78", "-77", "56", "-45", "22", "-2", "9", "-30", "75", "-127", "157", "-139", "94", "-67", "30", "2", "-11", "42", "-105", "196", "-282", "306", "-239", "146", "-97", "42" ]
[ "sign", "tabl" ]
12
0
5
[ "A000007", "A000041", "A000070", "A081362", "A304631", "A322210", "A382974", "A382979" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-11T07:55:39
oeisdata/seq/A382/A382974.seq
19c42e81c7f07bc583dcacb1401ccf19
A382975
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{j>=1} (1 + x^j - y^j).
[ "1", "-1", "1", "-1", "0", "1", "0", "-1", "-1", "2", "0", "-1", "0", "-1", "2", "1", "-1", "-1", "-1", "-1", "3", "0", "0", "0", "0", "-2", "-2", "4", "1", "0", "0", "-2", "0", "-2", "-2", "5", "0", "1", "0", "-1", "0", "-1", "-2", "-3", "6", "0", "1", "1", "0", "-1", "-1", "-2", "-3", "-3", "8", "0", "1", "0", "0", "-1", "2", "-1", "-2", "-4", "-5", "10", "0", "1", "1", "0", "1", "-2", "0", "-1", "-2", "-5", "-5", "12" ]
[ "sign", "tabl" ]
14
0
10
[ "A000007", "A000009", "A010815", "A015744", "A025147", "A078616", "A284593", "A297054", "A382975", "A382980" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-11T07:55:33
oeisdata/seq/A382/A382975.seq
70cec0de05021ad1ffc80af43a5784a6
A382976
Expansion of Product_{k>=1} (1 + (2^k + 1) * x^k).
[ "1", "3", "5", "24", "44", "129", "384", "897", "2220", "5706", "15268", "35178", "89829", "212982", "526222", "1294263", "3087570", "7300896", "17726100", "41705904", "98782950", "236059794", "551697495", "1293417672", "3033232130", "7081297146", "16430673765", "38347412562", "88762751808", "204970377366", "473719894598" ]
[ "nonn" ]
22
0
2
[ "A000051", "A079555", "A266964", "A284593", "A322199", "A382976", "A382977", "A382978" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-11T11:16:15
oeisdata/seq/A382/A382976.seq
6a46c35486e30dc6887a78c1ee92a8fb
A382977
Expansion of Product_{k>=1} 1/(1 - (2^k - 1) * x^k).
[ "1", "1", "4", "11", "35", "87", "271", "659", "1908", "4832", "13132", "32688", "89109", "218385", "571489", "1427388", "3652877", "8980805", "22858201", "55822728", "140065621", "342001192", "845707856", "2052802367", "5057431745", "12197383588", "29738238996", "71604414162", "173406091548", "415167136507", "1000881376700" ]
[ "nonn" ]
21
0
3
[ "A000225", "A266964", "A322199", "A382976", "A382977", "A382978" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-13T16:21:32
oeisdata/seq/A382/A382977.seq
d238348afa8d26be9290ad24941fb2be
A382978
Expansion of Product_{k>=1} (1 + (2^k - 1) * x^k).
[ "1", "1", "3", "10", "22", "67", "160", "433", "986", "2774", "6386", "16214", "39201", "95868", "229644", "569707", "1324730", "3186326", "7664378", "17955006", "42497434", "100710158", "235492595", "549267552", "1288847672", "2990756088", "6958113345", "16148883002", "37286262238", "85880711282", "198840926982", "454980392570" ]
[ "nonn" ]
23
0
3
[ "A000225", "A048651", "A266964", "A322199", "A382976", "A382977", "A382978" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-14T07:38:54
oeisdata/seq/A382/A382978.seq
ac501af3b70505265ceba982bdb0e6fc
A382979
a(n) = [(x*y)^n] Product_{k>=1} 1/(1 - x^k + y^k).
[ "1", "-2", "4", "-20", "78", "-282", "1048", "-4014", "15456", "-59224", "227646", "-879694", "3407730", "-13219372", "51375286", "-200021556", "779870542", "-3044448644", "11898709560", "-46553635346", "182315752476", "-714619687038", "2803342734160", "-11005274516610", "43233909672938", "-169951684067602", "668474115081988" ]
[ "sign" ]
15
0
2
[ "A100221", "A322211", "A382974", "A382979" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-13T13:39:43
oeisdata/seq/A382/A382979.seq
8b1491e98bbe49c23c9a8f581161e9c1
A382980
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k - y^k).
[ "1", "0", "0", "0", "0", "2", "0", "4", "2", "6", "4", "10", "6", "14", "10", "14", "10", "20", "6", "22", "2", "10", "14", "16", "-32", "14", "6", "-26", "-20", "12", "-56", "28", "-2", "-38", "96", "56", "-38", "200", "298", "82", "338", "460", "446", "666", "852", "456", "1580", "1172", "1048", "1608", "2426", "1236", "2810", "2222", "2824", "2066", "3716", "1612", "5498" ]
[ "sign" ]
17
0
6
[ "A365662", "A382975", "A382980" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-14T17:32:54
oeisdata/seq/A382/A382980.seq
8d4edb3c67439c2ed7a7e7df151f7aaa
A382981
The smallest n-digit prime that turns composite at each step as its digits are successively appended, starting from the last.
[ "2", "11", "101", "1019", "10007", "100043", "1000003", "10000019", "100000007", "1000000007", "10000000019", "100000000003", "1000000000039", "10000000000037", "100000000000031", "1000000000000037", "10000000000000061", "100000000000000003", "1000000000000000003", "10000000000000000051" ]
[ "nonn", "base" ]
22
1
1
[ "A003617", "A382899", "A382981" ]
null
Jean-Marc Rebert, Apr 11 2025
2025-04-16T10:30:06
oeisdata/seq/A382/A382981.seq
e5ffe428b603ad48593c1590ede5550e
A382982
Primes of the form Sum_{i=j..k} prime(i)^prime(i).
[ "31", "826699", "303160419086407" ]
[ "nonn" ]
18
1
1
[ "A051674", "A061789", "A340392", "A382982" ]
null
Zak Seidov and Robert Israel, Apr 11 2025
2025-04-17T09:51:37
oeisdata/seq/A382/A382982.seq
8192b223f2cc306bc00dfa051ea5c9fc
A382983
a(n) is the number of solutions to n = x*y in positive integers x <= y where x + y is prime.
[ "1", "1", "0", "1", "0", "2", "0", "0", "0", "2", "0", "2", "0", "0", "0", "1", "0", "2", "0", "0", "0", "2", "0", "1", "0", "0", "0", "2", "0", "4", "0", "0", "0", "1", "0", "2", "0", "0", "0", "2", "0", "4", "0", "0", "0", "1", "0", "1", "0", "0", "0", "2", "0", "1", "0", "0", "0", "2", "0", "4", "0", "0", "0", "0", "0", "2", "0", "0", "0", "4", "0", "2", "0", "0", "0", "1", "0", "4", "0", "0", "0", "2", "0", "2", "0", "0", "0", "2" ]
[ "nonn", "easy" ]
12
1
6
[ "A000040", "A004526", "A038548", "A382983", "A382984", "A382985" ]
null
Felix Huber, Apr 14 2025
2025-04-19T17:49:29
oeisdata/seq/A382/A382983.seq
adce7b9f05bb54cb919f32bb3a73e93b
A382984
Coefficient of x^3 in expansion of (x+1) * (x+4) * ... * (x+3*n-2).
[ "0", "0", "0", "1", "22", "445", "9605", "227969", "5974388", "172323696", "5441287980", "187011672276", "6957458412520", "278765196526024", "11973706678705408", "549052544309039744", "26777325537157361024", "1384271732837081576576", "75622395021091990225152", "4353640204459556218940160" ]
[ "nonn" ]
9
0
5
[ "A028340", "A286718", "A382984" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:48
oeisdata/seq/A382/A382984.seq
182f6eed0734242ce269fb6414b8112a
A382985
Coefficient of x^4 in expansion of (x+1) * (x+4) * ... * (x+3*n-2).
[ "0", "0", "0", "0", "1", "35", "1005", "28700", "859369", "27458613", "941164860", "34617398640", "1364003226036", "57425577775852", "2575788307560104", "122732603903789880", "6194752323883374224", "330320189407442698000", "18560921582024101872576", "1096473082032417593216832" ]
[ "nonn" ]
9
0
6
[ "A028341", "A286718", "A382985" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:44
oeisdata/seq/A382/A382985.seq
03c567adee06ea9977da6a7d5a7f0e9f
A382986
a(n) is the number of iterations that n requires to reach 0 under the map k -> b(k) where b(k) = k+1 if k is even, and b(k) = k-gpf(k) if k is odd, where gpf(k) is the greatest prime dividing k.
[ "0", "1", "2", "1", "2", "1", "2", "1", "4", "3", "2", "1", "2", "1", "4", "3", "2", "1", "2", "1", "6", "5", "2", "1", "8", "7", "10", "9", "2", "1", "2", "1", "4", "3", "4", "3", "2", "1", "12", "11", "2", "1", "2", "1", "4", "3", "2", "1", "4", "3", "6", "5", "2", "1", "6", "5", "14", "13", "2", "1", "2", "1", "16", "15", "4", "3", "2", "1", "4", "3", "2", "1", "2", "1", "4", "3", "4", "3", "2", "1", "4", "3", "2", "1", "6", "5", "4", "3", "2", "1" ]
[ "nonn", "look" ]
58
0
3
[ "A006530", "A076563", "A382986" ]
null
Jakub Buczak, Apr 11 2025
2025-05-01T16:47:35
oeisdata/seq/A382/A382986.seq
9b04d5a7e5eb80f142a41bd406b8e509
A382987
a(n) is the total sum of the last symbol in all Catalan words of length n avoiding the pattern (>=,>=).
[ "0", "0", "1", "4", "12", "34", "94", "258", "707", "1940", "5337", "14728", "40777", "113268", "315627", "882168", "2472669", "6949344", "19579971", "55296972", "156511626", "443902074", "1261440936", "3591153874", "10240960381", "29251149324", "83675868455", "239703961016", "687596129964", "1974890635522", "5679036727894" ]
[ "nonn" ]
9
0
4
[ "A382987", "A382988", "A382989", "A382990" ]
null
Stefano Spezia, Apr 11 2025
2025-04-12T12:36:44
oeisdata/seq/A382/A382987.seq
23dce0dfaf86507c80d4571147bc41e6
A382988
a(n) is the total sum of semiperimeters over all (>=,>=)-polyominoes of length n.
[ "0", "2", "7", "21", "62", "180", "522", "1512", "4384", "12726", "36995", "107701", "313986", "916604", "2679159", "7840125", "22967784", "67352334", "197693325", "580775223", "1707553410", "5024194308", "14793209508", "43585511382", "128495325672", "379036691250", "1118687153077", "3303357347907", "9759086504006", "28844148674092" ]
[ "nonn" ]
9
0
2
[ "A382987", "A382988", "A382989", "A382990" ]
null
Stefano Spezia, Apr 11 2025
2025-04-12T12:37:15
oeisdata/seq/A382/A382988.seq
9c43785492d87ef00504899c86276c79
A382989
a(n) is the total sum of area over all (>=,>=)-polyominoes of length n.
[ "0", "1", "5", "19", "66", "218", "701", "2215", "6919", "21438", "66034", "202502", "618892", "1886433", "5737755", "17421735", "52823013", "159970938", "483979572", "1463006976", "4419285573", "13340964849", "40252007970", "121389925346", "365929470596", "1102688346763", "3321748158985", "10003556543907", "30118208180650" ]
[ "nonn" ]
11
0
3
[ "A002426", "A382987", "A382988", "A382989", "A382990" ]
null
Stefano Spezia, Apr 11 2025
2025-04-12T12:37:31
oeisdata/seq/A382/A382989.seq
b39f8139744d382a923b8907d2b88440
A382990
a(n) is the total number of interior points of over all (>=,>=)-polyominoes of length n.
[ "0", "0", "0", "2", "13", "59", "230", "830", "2858", "9547", "31227", "100599", "320417", "1011664", "3172230", "9892182", "30708696", "94975383", "292822629", "900431037", "2762584182", "8459318100", "25859561685", "78934174379", "240626872721", "732695058014", "2228730824384", "6773206968802", "20567144954853", "62406771069411" ]
[ "nonn" ]
12
0
4
[ "A002426", "A382987", "A382988", "A382989", "A382990" ]
null
Stefano Spezia, Apr 11 2025
2025-04-12T12:37:41
oeisdata/seq/A382/A382990.seq
6de41128f61d80927a654f3c3e57b545
A382991
Number of compositions of n such that any part 1 at position k can be k different colors.
[ "1", "1", "3", "10", "40", "193", "1110", "7473", "57821", "505945", "4940354", "53248874", "627848885", "8037734930", "111017325473", "1645384681765", "26044845197881", "438499277779636", "7824114643731522", "147476551001255125", "2928074880767254238", "61078483577649288463", "1335438738400978511877" ]
[ "nonn", "easy" ]
14
0
3
[ "A008275", "A011782", "A088305", "A238351", "A240736", "A382991", "A382992" ]
null
John Tyler Rascoe, Apr 11 2025
2025-04-24T08:01:52
oeisdata/seq/A382/A382991.seq
1ef9e4f8076e42415735ae6be5c60e76
A382992
Number of compositions of n that have at least 1 part equal to 1 and any part 1 at position k can be k different colors.
[ "0", "1", "2", "9", "38", "190", "1105", "7465", "57808", "505924", "4940320", "53248819", "627848796", "8037734786", "111017325240", "1645384681388", "26044845197271", "438499277778649", "7824114643729925", "147476551001252541", "2928074880767250057", "61078483577649281698", "1335438738400978500931" ]
[ "nonn", "easy" ]
22
0
3
[ "A000045", "A008275", "A011782", "A088305", "A238351", "A240736", "A382991", "A382992" ]
null
John Tyler Rascoe, Apr 11 2025
2025-04-24T07:59:22
oeisdata/seq/A382/A382992.seq
fc631e4b6ae03df40a386659f8d62bc8
A382993
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} phi(n/d) * (-k)^d.
[ "1", "2", "0", "3", "-1", "1", "4", "-3", "4", "0", "5", "-6", "11", "-4", "1", "6", "-10", "24", "-21", "8", "0", "7", "-15", "45", "-66", "51", "-10", "1", "8", "-21", "76", "-160", "208", "-119", "20", "0", "9", "-28", "119", "-330", "629", "-676", "315", "-34", "1", "10", "-36", "176", "-609", "1560", "-2590", "2344", "-831", "60", "0", "11", "-45", "249", "-1036", "3367", "-7750", "11165", "-8226", "2195", "-100", "1" ]
[ "sign", "tabl" ]
19
1
2
[ "A000010", "A000035", "A074763", "A075195", "A286957", "A343465", "A343466", "A343467", "A382993", "A382994", "A382998", "A383011" ]
null
Seiichi Manyama, Apr 11 2025
2025-04-12T11:21:34
oeisdata/seq/A382/A382993.seq
6706af5cb27ba991eae899ffaa26979c
A382994
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -Sum_{d|n} phi(n/d) * (-k)^d.
[ "1", "2", "0", "3", "-2", "3", "4", "-6", "12", "0", "5", "-12", "33", "-16", "5", "6", "-20", "72", "-84", "40", "0", "7", "-30", "135", "-264", "255", "-60", "7", "8", "-42", "228", "-640", "1040", "-714", "140", "0", "9", "-56", "357", "-1320", "3145", "-4056", "2205", "-272", "9", "10", "-72", "528", "-2436", "7800", "-15540", "16408", "-6648", "540", "0" ]
[ "sign", "tabl" ]
15
1
2
[ "A000010", "A185651", "A382993", "A382994", "A382995", "A382997" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T11:21:18
oeisdata/seq/A382/A382994.seq
67348ba940f0e79def3df92a9461f4f4
A382995
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = Sum_{d|n} phi(n/d) * (-k)^(d-1).
[ "1", "1", "0", "1", "-1", "3", "1", "-2", "6", "0", "1", "-3", "11", "-8", "5", "1", "-4", "18", "-28", "20", "0", "1", "-5", "27", "-66", "85", "-30", "7", "1", "-6", "38", "-128", "260", "-238", "70", "0", "1", "-7", "51", "-220", "629", "-1014", "735", "-136", "9", "1", "-8", "66", "-348", "1300", "-3108", "4102", "-2216", "270", "0", "1", "-9", "83", "-518", "2405", "-7750", "15631", "-16452", "6585", "-500", "11" ]
[ "sign", "tabl" ]
15
1
6
[ "A000010", "A193356", "A343489", "A382994", "A382995", "A382998", "A382999", "A383000" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:49:37
oeisdata/seq/A382/A382995.seq
21a93fa133b937aef40a07ce2053ad53
A382996
a(n) is the least number k such that both k and k + s have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.
[ "11", "15", "18", "81", "243", "486", "2976", "25488", "128768", "396864", "911232", "8820864", "69940224", "118462464", "1171768320", "1756943946", "11753349120", "272313556992", "491737042890", "2374758457344", "9766784434176", "22675979501496", "269744252387328", "1546075329527736", "6138628058382336" ]
[ "nonn", "base", "hard" ]
43
1
1
[ "A001222", "A007953", "A062028", "A381851", "A382996", "A383665" ]
null
Robert Israel, May 06 2025
2025-05-29T00:54:14
oeisdata/seq/A382/A382996.seq
d280940cba460891d70c62588c72b541
A382997
a(n) = -Sum_{d|n} phi(n/d) * (-n)^d.
[ "1", "-2", "33", "-264", "3145", "-46500", "823585", "-16781408", "387422001", "-9999900360", "285311670721", "-8916103472496", "302875106592409", "-11112006720145604", "437893890382391745", "-18446744078004650880", "827240261886336764449", "-39346408075098246299676", "1978419655660313589124321" ]
[ "sign" ]
8
1
2
[ "A000010", "A382994", "A382997", "A383010" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:37:29
oeisdata/seq/A382/A382997.seq
202ff978d7e6a4785c6d3ba1581940c9
A382998
a(n) = Sum_{d|n} phi(n/d) * (-n)^(d-1).
[ "1", "-1", "11", "-66", "629", "-7750", "117655", "-2097676", "43046889", "-999990036", "25937424611", "-743008622708", "23298085122493", "-793714765724686", "29192926025492783", "-1152921504875290680", "48661191875666868497", "-2185911559727680349982", "104127350297911241532859" ]
[ "sign" ]
12
1
3
[ "A000010", "A382993", "A382995", "A382997", "A382998", "A383003" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:37:34
oeisdata/seq/A382/A382998.seq
2e00e07275062b5f7843e751b9b3fe6c
A382999
a(n) = Sum_{d|n} phi(n/d) * (-2)^(d-1).
[ "1", "-1", "6", "-8", "20", "-30", "70", "-136", "270", "-500", "1034", "-2088", "4108", "-8134", "16440", "-32912", "65552", "-130878", "262162", "-524800", "1048740", "-2096138", "4194326", "-8390976", "16777300", "-33550348", "67109418", "-134225840", "268435484", "-536855640", "1073741854", "-2147516704", "4294969404" ]
[ "sign" ]
11
1
3
[ "A000010", "A034738", "A074763", "A382995", "A382999" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T11:21:14
oeisdata/seq/A382/A382999.seq
a6814bc4decb10f52bcfbaa572ebf98d
A383000
a(n) = Sum_{d|n} phi(n/d) * (-3)^(d-1).
[ "1", "-2", "11", "-28", "85", "-238", "735", "-2216", "6585", "-19610", "59059", "-177428", "531453", "-1593606", "4783175", "-14351152", "43046737", "-129134082", "387420507", "-1162281100", "3486785925", "-10460294174", "31381059631", "-94143360856", "282429536825", "-847288078026", "2541865841523", "-7625599078020", "22876792454989" ]
[ "sign" ]
10
1
2
[ "A000010", "A034754", "A343465", "A382995", "A383000" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T11:21:39
oeisdata/seq/A383/A383000.seq
815d60e7c953b0a99aaa5bd021007b0e
A383001
Smallest number with shortest addition-multiplication chain of length n.
[ "1", "2", "3", "5", "7", "13", "23", "59", "211", "619", "4282", "25819" ]
[ "nonn", "nice", "hard", "more" ]
12
0
2
[ "A003064", "A230697", "A383001", "A383002" ]
null
Pontus von Brömssen, Apr 12 2025
2025-05-02T12:12:02
oeisdata/seq/A383/A383001.seq
959b8d2d1182962fb1650232fa2ed497
A383002
Number of integers with a shortest addition-multiplication chain of length n.
[ "1", "1", "2", "5", "16", "63", "331", "2239", "19909", "225615", "3167570" ]
[ "nonn", "hard", "more" ]
10
0
3
[ "A003065", "A230697", "A383001", "A383002" ]
null
Pontus von Brömssen, Apr 12 2025
2025-05-02T12:11:41
oeisdata/seq/A383/A383002.seq
966af1f1a0b21cabe2efe8d97a1c2abe
A383003
a(n) = Sum_{d|n} (-n)^(d-1).
[ "1", "-1", "10", "-67", "626", "-7745", "117650", "-2097671", "43046803", "-999990009", "25937424602", "-743008621115", "23298085122482", "-793714765724621", "29192926025441476", "-1152921504875286543", "48661191875666868482", "-2185911559727678460653", "104127350297911241532842" ]
[ "sign", "easy" ]
12
1
3
[ "A101561", "A101562", "A101563", "A262843", "A308814", "A382998", "A383003", "A383010", "A383012" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:37:38
oeisdata/seq/A383/A383003.seq
846e1f4486bfe11ea672aa61527455d7
A383004
Exponent of the highest power of 2 dividing the n-th cubefree number.
[ "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A004709", "A007814", "A373550", "A383004", "A383005", "A383009" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:42:24
oeisdata/seq/A383/A383004.seq
58c08f7265d6fb28bbfe520bc41d1d22
A383005
Exponent of the highest power of 2 dividing the n-th biquadratefree number.
[ "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0" ]
[ "nonn", "easy" ]
7
1
4
[ "A007814", "A046100", "A254990", "A373550", "A383004", "A383005" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:41:35
oeisdata/seq/A383/A383005.seq
e770bb2df697cfa0d96ada9d03fbd1c0
A383006
Exponent of the highest power of 2 dividing the n-th powerful number.
[ "0", "2", "3", "0", "4", "0", "0", "5", "2", "0", "6", "3", "0", "2", "2", "0", "0", "7", "4", "0", "2", "3", "3", "0", "0", "8", "5", "0", "2", "0", "0", "3", "4", "4", "0", "2", "2", "9", "0", "6", "0", "3", "0", "2", "0", "4", "5", "0", "5", "2", "0", "3", "2", "3", "10", "0", "0", "7", "2", "0", "4", "0", "0", "3", "0", "2", "2", "0", "5", "6", "0", "6", "2", "3", "0", "4", "3", "4", "0", "11", "2", "0", "0", "0", "8", "3", "0" ]
[ "nonn", "easy" ]
7
1
2
[ "A001694", "A007814", "A363189", "A373549", "A383006", "A383007" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:41:46
oeisdata/seq/A383/A383006.seq
d5f86173cae776d462d7733c5b7853f5
A383007
Exponent of the highest power of 2 dividing the n-th cubefull number.
[ "0", "3", "4", "0", "5", "6", "0", "0", "7", "3", "0", "8", "0", "4", "9", "0", "3", "0", "5", "3", "10", "4", "0", "6", "3", "4", "11", "0", "0", "0", "5", "3", "0", "0", "7", "4", "5", "12", "0", "3", "6", "4", "3", "0", "0", "8", "5", "6", "13", "0", "4", "0", "7", "3", "5", "4", "0", "9", "0", "6", "0", "7", "14", "0", "0", "3", "3", "3", "0", "5", "8", "4", "6", "5", "0", "3", "3", "10", "0", "0", "0", "0", "7", "8", "15" ]
[ "nonn", "easy" ]
8
1
2
[ "A007814", "A036966", "A383006", "A383007" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:41:53
oeisdata/seq/A383/A383007.seq
a8e60f864a9cf376a7aeac225460407d
A383008
Indices of the even terms in the sequence of squarefree numbers.
[ "2", "5", "7", "10", "15", "17", "19", "22", "25", "28", "30", "36", "39", "41", "44", "47", "49", "51", "54", "59", "63", "66", "69", "72", "74", "76", "80", "83", "85", "88", "91", "94", "97", "102", "104", "106", "108", "111", "114", "116", "119", "124", "127", "129", "132", "135", "138", "140", "143", "148", "151", "156", "159", "161", "164", "169", "171", "173", "176", "178" ]
[ "nonn", "easy" ]
7
1
1
[ "A005117", "A039956", "A071403", "A373550", "A383008", "A383009" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:41:59
oeisdata/seq/A383/A383008.seq
6a4c54b8be2e051a971f859520fb49e3
A383009
Indices of the even terms in the sequence of cubefree numbers.
[ "2", "4", "6", "9", "11", "13", "16", "18", "20", "23", "24", "26", "29", "31", "33", "36", "38", "40", "43", "45", "49", "51", "53", "56", "58", "60", "63", "65", "67", "69", "71", "73", "76", "78", "80", "83", "85", "87", "90", "93", "96", "98", "100", "103", "105", "106", "109", "111", "113", "115", "117", "119", "122", "124", "126", "129", "131", "133", "137", "139", "142", "144" ]
[ "nonn", "easy" ]
7
1
1
[ "A004709", "A381822", "A383004", "A383008", "A383009" ]
null
Amiram Eldar, Apr 12 2025
2025-04-12T09:42:13
oeisdata/seq/A383/A383009.seq
6b12b60d91d084294fedcae97abd1956
A383010
a(n) = -Sum_{d|n} (-n)^d.
[ "1", "-2", "30", "-268", "3130", "-46470", "823550", "-16781368", "387421227", "-9999900090", "285311670622", "-8916103453380", "302875106592266", "-11112006720144694", "437893890381622140", "-18446744078004584688", "827240261886336764194", "-39346408075098212291754", "1978419655660313589123998" ]
[ "sign", "easy" ]
8
1
2
[ "A066108", "A383003", "A383010" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:37:43
oeisdata/seq/A383/A383010.seq
f59c425dc9ed5d93f238389f14797b2f
A383011
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} mu(n/d) * (-k)^d.
[ "1", "2", "-1", "3", "-3", "0", "4", "-6", "2", "0", "5", "-10", "8", "-3", "0", "6", "-15", "20", "-18", "6", "0", "7", "-21", "40", "-60", "48", "-11", "0", "8", "-28", "70", "-150", "204", "-124", "18", "0", "9", "-36", "112", "-315", "624", "-690", "312", "-30", "0", "10", "-45", "168", "-588", "1554", "-2620", "2340", "-810", "56", "0", "11", "-55", "240", "-1008", "3360", "-7805", "11160", "-8160", "2184", "-105", "0" ]
[ "sign", "tabl" ]
15
1
2
[ "A008683", "A038063", "A038064", "A038065", "A038066", "A074650", "A154955", "A383011", "A383012" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:41:40
oeisdata/seq/A383/A383011.seq
2d149b5b11520c773f9cc9e749a8a9ab
A383012
a(n) = Sum_{d|n} mu(n/d) * (-n)^(d-1).
[ "1", "-3", "8", "-60", "624", "-7805", "117648", "-2096640", "43046640", "-1000009989", "25937424600", "-743008120140", "23298085122480", "-793714780783665", "29192926025339776", "-1152921504338411520", "48661191875666868480", "-2185911559749714602652", "104127350297911241532840" ]
[ "sign" ]
11
1
2
[ "A008683", "A075147", "A382998", "A383003", "A383011", "A383012" ]
null
Seiichi Manyama, Apr 12 2025
2025-04-12T09:37:48
oeisdata/seq/A383/A383012.seq
ef9dd504f849ac3c40c86b1457ec3796
A383013
Number of integer partitions of n having a permutation with all equal run-lengths.
[ "1", "1", "2", "3", "5", "6", "9", "11", "18", "21", "31", "38", "56", "67", "94", "121", "162", "199", "265", "330", "438", "543", "693", "859", "1103", "1353", "1702", "2097", "2619", "3194", "3972", "4821", "5943", "7206", "8796", "10632", "12938", "15536", "18794", "22539", "27133", "32374", "38827", "46175", "55134", "65421", "77751", "91951", "109011", "128482" ]
[ "nonn" ]
17
0
3
[ "A000009", "A000041", "A003242", "A047966", "A164707", "A238279", "A239455", "A304442", "A329738", "A329739", "A351201", "A351290", "A351291", "A351293", "A351294", "A351295", "A351596", "A353744", "A353833", "A353837", "A353851", "A382857", "A382858", "A382878", "A382879", "A382914", "A382915", "A383013" ]
null
Gus Wiseman, Apr 12 2025
2025-04-27T15:04:34
oeisdata/seq/A383/A383013.seq
4facff270a148bc45e53b7c8a8363e87
A383014
Numbers whose prime indices can be partitioned into constant blocks with a common sum.
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "16", "17", "19", "23", "25", "27", "29", "31", "32", "36", "37", "40", "41", "43", "47", "48", "49", "53", "59", "61", "63", "64", "67", "71", "73", "79", "81", "83", "89", "97", "101", "103", "107", "108", "109", "112", "113", "121", "125", "127", "128", "131", "137", "139", "144", "149", "151", "157", "163", "167", "169" ]
[ "nonn" ]
8
1
2
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A045778", "A050361", "A055396", "A056239", "A061395", "A112798", "A279784", "A279789", "A295935", "A300383", "A317141", "A321469", "A353833", "A381453", "A381455", "A381635", "A381636", "A381715", "A381716", "A381717", "A381719", "A381806", "A381871", "A381993", "A381995", "A383014", "A383093" ]
null
Gus Wiseman, Apr 22 2025
2025-04-25T08:46:52
oeisdata/seq/A383/A383014.seq
f66128941020895470b2ee5d7efa06ff
A383015
Numbers whose prime indices have more than one permutation with all equal run-sums.
[ "12", "40", "63", "112", "144", "325", "351", "352", "675", "832", "931", "1008", "1539", "1600", "1728", "2176", "2875", "3509", "3969", "4864", "6253", "7047", "7056", "8775", "9072", "11776", "12427", "12544", "12691", "16128", "19133", "20736", "20800", "22464", "23125", "26973", "29403", "29696", "32269", "43200", "49392", "57967", "59711" ]
[ "nonn" ]
9
1
1
[ "A000720", "A000961", "A001221", "A001222", "A044813", "A056239", "A112798", "A304442", "A329738", "A329739", "A351596", "A353832", "A353833", "A353837", "A353838", "A353847", "A353848", "A353851", "A353932", "A354584", "A381636", "A381871", "A382076", "A382857", "A382876", "A382877", "A382879", "A383014", "A383015", "A383089", "A383090", "A383091", "A383092", "A383097", "A383100" ]
null
Gus Wiseman, Apr 14 2025
2025-04-17T23:21:03
oeisdata/seq/A383/A383015.seq
fef334355a3fd2665d8df4163adef983
A383016
Numbers k such that A382883(k) = 1.
[ "1", "4", "6", "8", "9", "10", "14", "15", "21", "22", "25", "26", "27", "32", "33", "34", "35", "38", "39", "46", "49", "51", "55", "57", "58", "62", "65", "69", "74", "77", "82", "85", "86", "87", "91", "93", "94", "95", "106", "111", "115", "118", "119", "121", "122", "123", "125", "128", "129", "133", "134", "141", "142", "143", "145", "146", "155", "158", "159", "161", "166" ]
[ "nonn" ]
11
1
2
[ "A053810", "A162143", "A382883", "A382943", "A383016", "A383017" ]
null
Peter Luschny, Apr 12 2025
2025-04-29T16:53:10
oeisdata/seq/A383/A383016.seq
2286e88af8ed66438e641d170f44c4dc