sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A000901
Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
[ "0", "0", "7", "74", "882", "11144", "159652", "2571960", "46406392", "928734944", "20436096048", "490489794464", "12752891909920", "357081983435904", "10712466529388608", "342798976818878336", "11655165558112403328", "419585962575107694080" ]
[ "nonn", "nice" ]
31
1
3
null
[ "M4446", "N1881" ]
N. J. A. Sloane, Robert G. Wilson v
2018-01-10T16:05:06
oeisdata/seq/A000/A000901.seq
1916d7cdcb9379d374b54aa93993d674
A000902
Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).
[ "1", "1", "3", "10", "38", "156", "692", "3256", "16200", "84496", "460592", "2611104", "15355232", "93376960", "585989952", "3786534784", "25152768128", "171474649344", "1198143415040", "8569374206464", "62668198184448", "468111364627456", "3568287053001728" ]
[ "nonn", "easy", "nice", "changed" ]
63
0
3
[ "A000898", "A000902" ]
[ "M2853", "N1147" ]
N. J. A. Sloane, Simon Plouffe
2025-04-14T07:38:21
oeisdata/seq/A000/A000902.seq
93cadf17601c932026d40374e9dbe6d5
A000903
Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.
[ "1", "1", "2", "7", "23", "115", "694", "5282", "46066", "456454", "4999004", "59916028", "778525516", "10897964660", "163461964024", "2615361578344", "44460982752488", "800296985768776", "15205638776753680", "304112757426239984", "6386367801916347184" ]
[ "nonn", "nice" ]
70
1
3
[ "A000085", "A000142", "A000903", "A005635", "A037223", "A037224", "A099952", "A263685" ]
[ "M1761", "N0698" ]
N. J. A. Sloane
2025-02-16T08:32:21
oeisdata/seq/A000/A000903.seq
0b246b5fb6ca5d4883b5e6debd910e98
A000904
a(n) = (n+1)*a(n-1) + (n+2)*a(n-2) + a(n-3); a(1)=0, a(2)=3, a(3)=13.
[ "0", "3", "13", "83", "592", "4821", "43979", "444613", "4934720", "59661255", "780531033", "10987095719", "165586966816", "2660378564777", "45392022568023", "819716784789193", "15620010933562688", "313219935456042955", "6593238655510464741", "145364470356686267259", "3349976056859294611696" ]
[ "nonn", "nice", "easy", "changed" ]
111
1
2
[ "A000179", "A000271", "A000904" ]
[ "M2955", "N1193" ]
N. J. A. Sloane
2025-04-14T07:38:05
oeisdata/seq/A000/A000904.seq
daf9e84066e252d73841871c420682e7
A000905
Hamilton numbers.
[ "2", "3", "5", "11", "47", "923", "409619", "83763206255", "3508125906290858798171", "6153473687096578758448522809275077520433167", "18932619208894981833333582059033329370801266249535902023330546944758507753065602135843" ]
[ "nonn", "nice", "easy" ]
77
1
1
[ "A000905", "A001660", "A006719", "A134294" ]
[ "M0736", "N0275" ]
N. J. A. Sloane
2023-03-01T15:33:46
oeisdata/seq/A000/A000905.seq
0a6ca1e4e274340dfc154c9c0f43995b
A000906
Exponential generating function: 2*(1+3*x)/(1-2*x)^(7/2).
[ "2", "20", "210", "2520", "34650", "540540", "9459450", "183783600", "3928374450", "91662070500", "2319050383650", "63246828645000", "1849969737866250", "57775977967207500", "1918987839625106250", "67548371954803740000", "2511955082069264081250" ]
[ "nonn" ]
50
0
1
[ "A000457", "A000906", "A001147", "A051577", "A098503" ]
[ "M2124", "N0841" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A000/A000906.seq
d5ddc52a493acd338c0ae67ad1525c44
A000907
Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+2, n]]. The number of n-orbit permutations of a (2n+2)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).
[ "6", "130", "2380", "44100", "866250", "18288270", "416215800", "10199989800", "268438920750", "7562120816250", "227266937597700", "7262844156067500", "246045975136211250", "8810836639999143750", "332624558868351750000", "13205706717164131170000" ]
[ "nonn" ]
50
1
1
[ "A000483", "A000907", "A001784", "A001785" ]
[ "M4298", "N1797" ]
N. J. A. Sloane
2023-08-05T13:08:12
oeisdata/seq/A000/A000907.seq
289bdce008d842a915a9df1e89034523
A000908
Atom-rooted polyenoids with n edges with symmetry class C_s.
[ "0", "0", "1", "4", "14", "47", "164", "565", "1982", "6977", "24850", "89082", "321855", "1169853", "4276923", "15713799", "57998270", "214934984", "799473752", "2983682702", "11169374372", "41929478873", "157807392886", "595340271682", "2250901007539", "8527699269192", "32369066434276" ]
[ "nonn" ]
24
0
4
[ "A000908", "A000912", "A000913", "A000935", "A000936", "A000941", "A000942", "A000947", "A000948", "A000953", "A003446", "A063786" ]
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2023-02-16T14:54:05
oeisdata/seq/A000/A000908.seq
20fb56c9bb276630ede229a313044d61
A000909
a(n) = (2n)!(2n+1)! / n!^2.
[ "1", "12", "720", "100800", "25401600", "10059033600", "5753767219200", "4487938430976000", "4577697199595520000", "5914384781877411840000", "9439358111876349296640000", "18236839872145106841108480000", "41944731705933745734549504000000" ]
[ "nonn" ]
23
0
2
[ "A000909", "A079484" ]
null
N. J. A. Sloane
2017-04-01T04:51:04
oeisdata/seq/A000/A000909.seq
559f80bead648f20f87b241553754718
A000910
a(n) = 5*binomial(n, 6).
[ "0", "0", "0", "0", "0", "0", "5", "35", "140", "420", "1050", "2310", "4620", "8580", "15015", "25025", "40040", "61880", "92820", "135660", "193800", "271320", "373065", "504735", "672980", "885500", "1151150", "1480050", "1883700", "2375100", "2968875", "3681405", "4530960", "5537840", "6724520", "8115800", "9738960", "11623920", "13803405" ]
[ "nonn", "easy" ]
42
0
7
[ "A000579", "A000910", "A080159", "A088617", "A210569" ]
[ "M3973", "N1643" ]
N. J. A. Sloane
2022-07-19T05:46:36
oeisdata/seq/A000/A000910.seq
327ddcbe554a79b838bf0d382ad99a67
A000911
a(n) = (2n+3)! /( n! * (n+1)! ).
[ "6", "60", "420", "2520", "13860", "72072", "360360", "1750320", "8314020", "38798760", "178474296", "811246800", "3650610600", "16287339600", "72129646800", "317370445920", "1388495700900", "6044040109800", "26190840475800", "113034153632400", "486046860619320", "2083057974082800", "8900338616535600" ]
[ "nonn" ]
50
0
1
[ "A000217", "A000911", "A000984", "A001801", "A002802", "A051133", "A086466", "A093602" ]
null
N. J. A. Sloane
2020-10-13T03:54:01
oeisdata/seq/A000/A000911.seq
aa34a431e3176d93bac7a3a6e7948101
A000912
Expansion of (sqrt(1-4x^2) - sqrt(1-4x))/(2x).
[ "1", "0", "2", "4", "14", "40", "132", "424", "1430", "4848", "16796", "58744", "208012", "742768", "2674440", "9694416", "35357670", "129643360", "477638700", "1767258328", "6564120420", "24466250224", "91482563640", "343059554864", "1289904147324", "4861946193440", "18367353072152" ]
[ "nonn" ]
29
0
3
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2017-09-03T13:29:07
oeisdata/seq/A000/A000912.seq
737306a2155eef582319a4b31d9eefa2
A000913
Number of bond-rooted polyenoids with n edges.
[ "0", "1", "2", "12", "38", "143", "490", "1768", "6268", "22610", "81620", "297160", "1086172", "3991995", "14731290", "54587280", "202992808", "757398510", "2834493948", "10637507400", "40023577524", "150946230006", "570534370692", "2160865067312", "8199710635816" ]
[ "nonn" ]
32
1
3
[ "A000108", "A000913" ]
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2023-12-10T11:10:38
oeisdata/seq/A000/A000913.seq
b88d5ca5923210cee2f6b742f015d6a4
A000914
Stirling numbers of the first kind: s(n+2, n).
[ "0", "2", "11", "35", "85", "175", "322", "546", "870", "1320", "1925", "2717", "3731", "5005", "6580", "8500", "10812", "13566", "16815", "20615", "25025", "30107", "35926", "42550", "50050", "58500", "67977", "78561", "90335", "103385", "117800", "133672", "151096", "170170", "190995", "213675", "238317", "265031" ]
[ "nonn", "easy", "nice" ]
143
0
2
[ "A000217", "A000290", "A000914", "A001296", "A006325", "A008275", "A033428", "A033581", "A033583", "A052149", "A241765" ]
[ "M1998", "N0789" ]
N. J. A. Sloane
2025-03-06T14:51:19
oeisdata/seq/A000/A000914.seq
5a0dda9dc72d500e02e4aaa66206144d
A000915
Stirling numbers of first kind s(n+4, n).
[ "24", "274", "1624", "6769", "22449", "63273", "157773", "357423", "749463", "1474473", "2749747", "4899622", "8394022", "13896582", "22323822", "34916946", "53327946", "79721796", "116896626", "168423871", "238810495", "333685495", "460012995", "626334345", "843041745", "1122686019", "1480321269", "1933889244" ]
[ "nonn", "easy" ]
59
1
1
[ "A000915", "A001298", "A001303", "A008275", "A053567", "A094216" ]
[ "M5155", "N2239" ]
N. J. A. Sloane
2022-10-21T22:07:55
oeisdata/seq/A000/A000915.seq
a33f22a232aeff695098a9dc3fff3d5a
A000916
a(2n) = n+2, a(2n-1) = smallest number requiring n+2 letters in English.
[ "1", "3", "4", "4", "3", "5", "11", "6", "15", "7", "13", "8", "17", "9", "24", "10", "23", "11", "73", "12", "3000", "13", "11000", "14", "15000", "15", "101", "16", "104", "17", "103", "18", "111", "19", "115", "20", "113", "21", "117", "22", "124", "23", "123", "24", "173", "25", "323", "26", "373", "27", "1104", "28", "1103", "29", "1111", "30" ]
[ "nonn", "word", "easy" ]
10
1
2
[ "A000916", "A001166", "A014388", "A045494", "A045495" ]
null
Jacques Haubrich (jhaubrich(AT)freeler.nl)
2012-03-30T18:39:33
oeisdata/seq/A000/A000916.seq
6a1ec3c5b4f60557423184353e291306
A000917
a(n) = (2n+3)!/(n!*(n+2)!).
[ "3", "20", "105", "504", "2310", "10296", "45045", "194480", "831402", "3527160", "14872858", "62403600", "260757900", "1085822640", "4508102925", "18668849760", "77138650050", "318107374200", "1309542023790", "5382578744400", "22093039119060", "90567738003600", "370847442355650", "1516927277253024" ]
[ "nonn", "easy" ]
53
0
1
[ "A000108", "A000302", "A000917", "A000984", "A001622", "A001791", "A003506", "A007054", "A038665", "A038679", "A061928", "A073010" ]
null
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A000/A000917.seq
0180df6e541d7a0ce2f73f1d85ed1224
A000918
a(n) = 2^n - 2.
[ "-1", "0", "2", "6", "14", "30", "62", "126", "254", "510", "1022", "2046", "4094", "8190", "16382", "32766", "65534", "131070", "262142", "524286", "1048574", "2097150", "4194302", "8388606", "16777214", "33554430", "67108862", "134217726", "268435454", "536870910", "1073741822", "2147483646", "4294967294", "8589934590", "17179869182", "34359738366", "68719476734", "137438953470" ]
[ "sign", "easy" ]
341
0
3
[ "A000225", "A000325", "A000918", "A000919", "A001117", "A001118", "A026998", "A033484", "A058809", "A095121", "A095151", "A110146", "A125128" ]
[ "M1599", "N0625" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000918.seq
77915986218aec9f8f9834a1a8f85ea1
A000919
a(n) = 4^n - C(4,3)*3^n + C(4,2)*2^n - C(4,1).
[ "0", "0", "0", "24", "240", "1560", "8400", "40824", "186480", "818520", "3498000", "14676024", "60780720", "249401880", "1016542800", "4123173624", "16664094960", "67171367640", "270232006800", "1085570781624", "4356217681200", "17466686971800", "69992221794000", "280345359228024", "1122510953731440" ]
[ "nonn", "easy" ]
85
1
4
[ "A000919", "A001117", "A001118", "A019538" ]
[ "M5151", "N2235" ]
N. J. A. Sloane
2025-02-19T11:51:57
oeisdata/seq/A000/A000919.seq
40745faea26702f8c2bdfa0a167dee51
A000920
Differences of 0: 6!*Stirling2(n,6).
[ "0", "0", "0", "0", "0", "720", "15120", "191520", "1905120", "16435440", "129230640", "953029440", "6711344640", "45674188560", "302899156560", "1969147121760", "12604139926560", "79694820748080", "499018753280880", "3100376804676480", "19141689213218880", "117579844328562000" ]
[ "nonn", "easy" ]
69
1
6
[ "A000770", "A000918", "A000919", "A000920", "A001117", "A001118", "A019538" ]
[ "M5473", "N2370" ]
N. J. A. Sloane
2024-08-26T04:38:38
oeisdata/seq/A000/A000920.seq
f32f96657b577b94d5ad280eeaf25c56
A000921
Primes p of the form 3k+1 such that Sum_{x=1..p} cos(2*Pi*x^3/p) > sqrt(p).
[ "7", "31", "43", "67", "73", "79", "103", "127", "163", "181", "223", "229", "271", "277", "307", "313", "337", "349", "409", "421", "439", "457", "463", "499", "523", "577", "643", "661", "673", "691", "709", "727", "757", "769", "811", "823", "829", "853", "877", "919", "967", "991", "997", "1021", "1069", "1087", "1093", "1117", "1123", "1171", "1213" ]
[ "nonn" ]
42
1
1
[ "A000921", "A000922", "A000923", "A002476" ]
[ "M4398", "N1854" ]
N. J. A. Sloane
2023-12-12T08:22:45
oeisdata/seq/A000/A000921.seq
927e34fee98b5ab78910e89f4b5bdb00
A000922
Primes p of the form 3k+1 such that -sqrt(p) < sum_{x=1..p} cos(2*Pi*x^3/p) < sqrt(p).
[ "13", "19", "37", "61", "109", "157", "193", "241", "283", "367", "373", "379", "397", "487", "571", "613", "619", "733", "739", "859", "883", "907", "1009", "1033", "1051", "1129", "1153", "1201", "1291", "1297", "1303", "1399", "1429", "1453", "1459", "1489", "1549", "1669", "1699", "1753", "1783", "1831", "1861", "1933", "1951", "1987", "2011" ]
[ "nonn" ]
21
1
1
[ "A000921", "A000922", "A000923", "A002476" ]
[ "M4890", "N2096" ]
N. J. A. Sloane
2017-10-19T03:13:42
oeisdata/seq/A000/A000922.seq
a9943c436d0f7e660725037718341aa9
A000923
Primes p of the form 3k+1 such that sum_{x=1..p} cos(2*Pi*x^3/p) < -sqrt(p).
[ "97", "139", "151", "199", "211", "331", "433", "541", "547", "601", "607", "631", "751", "787", "937", "1039", "1063", "1249", "1321", "1327", "1381", "1471", "1483", "1663", "1693", "1741", "1747", "1879", "1999", "2113", "2143", "2377", "2437", "2503", "2521", "2557", "2593", "2677", "2797", "2857", "2887", "3019", "3121", "3313", "3331", "3361" ]
[ "nonn" ]
18
1
1
[ "A000921", "A000922", "A000923", "A002476" ]
[ "M5365", "N2331" ]
N. J. A. Sloane
2017-10-19T03:13:42
oeisdata/seq/A000/A000923.seq
b0b18080a86a76cb6a839fd74e4e1d50
A000924
Class number of Q(sqrt(-n)), n squarefree.
[ "1", "1", "1", "2", "2", "1", "2", "1", "2", "4", "2", "4", "1", "4", "2", "3", "6", "6", "4", "3", "4", "4", "2", "2", "6", "4", "8", "4", "1", "4", "5", "2", "6", "4", "4", "2", "3", "6", "8", "8", "8", "1", "8", "4", "7", "4", "10", "8", "4", "5", "4", "3", "4", "10", "6", "12", "2", "4", "8", "8", "4", "14", "4", "5", "8", "6", "3", "6", "12", "8", "8", "8", "2", "6", "10", "10", "2", "5", "12", "4", "5", "4", "14", "8", "8", "3", "8", "4", "10", "8", "16", "14", "7", "8", "4", "6", "8", "10" ]
[ "nonn", "nice", "easy" ]
43
1
4
[ "A000924", "A003649", "A005117", "A033197" ]
[ "M0195", "N0072" ]
N. J. A. Sloane, Mira Bernstein
2021-12-22T00:10:28
oeisdata/seq/A000/A000924.seq
1d414b5eb37f30f9e18942229721c5c9
A000925
Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
[ "1", "2", "1", "0", "2", "2", "0", "0", "1", "2", "2", "0", "0", "2", "0", "0", "2", "2", "1", "0", "2", "0", "0", "0", "0", "4", "2", "0", "0", "2", "0", "0", "1", "0", "2", "0", "2", "2", "0", "0", "2", "2", "0", "0", "0", "2", "0", "0", "0", "2", "3", "0", "2", "2", "0", "0", "0", "0", "2", "0", "0", "2", "0", "0", "2", "4", "0", "0", "2", "0", "0", "0", "1", "2", "2", "0", "0", "0", "0", "0", "2", "2", "2", "0", "0", "4", "0", "0", "0", "2", "2", "0", "0", "0", "0", "0", "0", "2", "1", "0", "4" ]
[ "nonn", "nice" ]
30
0
2
[ "A000161", "A000290", "A000925", "A010052", "A247367" ]
null
Jacques Haubrich (jhaubrich(AT)freeler.nl)
2017-04-26T22:59:25
oeisdata/seq/A000/A000925.seq
06d7437fab0e0bbef5edba0c6fb27d8a
A000926
Euler's "numerus idoneus" (or "numeri idonei", or idoneal, or suitable, or convenient numbers).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "13", "15", "16", "18", "21", "22", "24", "25", "28", "30", "33", "37", "40", "42", "45", "48", "57", "58", "60", "70", "72", "78", "85", "88", "93", "102", "105", "112", "120", "130", "133", "165", "168", "177", "190", "210", "232", "240", "253", "273", "280", "312", "330", "345", "357", "385", "408", "462", "520", "760", "840", "1320", "1365", "1848" ]
[ "nonn", "fini", "full", "nice", "changed" ]
117
1
2
[ "A000926", "A014556", "A025052", "A026501", "A093669", "A094376", "A094377", "A094378", "A139642" ]
[ "M0476", "N0176" ]
N. J. A. Sloane
2025-04-18T08:53:29
oeisdata/seq/A000/A000926.seq
da180a4dbc67ba372b902b8c1496ac3e
A000927
"First factor" (or relative class number) h- for cyclotomic field Q( exp(2 Pi / prime(n)) ).
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "8", "9", "37", "121", "211", "695", "4889", "41241", "76301", "853513", "3882809", "11957417", "100146415", "838216959", "13379363737", "411322824001", "3547404378125", "9069094643165", "63434933542623", "161784800122409", "1612072001362952", "2604529186263992195", "28496379729272136525", "646901570175200968153", "1753848916484925681747", "687887859687174720123201", "2333546653547742584439257", "56234327700401832767069245", "2708534744692077051875131636" ]
[ "nonn", "nice" ]
59
1
9
[ "A000927", "A055513", "A061653" ]
[ "M2711", "N1088" ]
N. J. A. Sloane
2019-08-09T08:22:29
oeisdata/seq/A000/A000927.seq
c5d0513b7d32ac788693ecabcb66b5c8
A000928
Irregular primes: primes p such that at least one of the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) is divisible by p.
[ "37", "59", "67", "101", "103", "131", "149", "157", "233", "257", "263", "271", "283", "293", "307", "311", "347", "353", "379", "389", "401", "409", "421", "433", "461", "463", "467", "491", "523", "541", "547", "557", "577", "587", "593", "607", "613", "617", "619", "631", "647", "653", "659", "673", "677", "683", "691", "727", "751", "757", "761", "773", "797", "809", "811", "821", "827", "839", "877", "881", "887", "929", "953", "971", "1061" ]
[ "nonn", "nice", "easy", "changed" ]
123
1
1
[ "A000928", "A007703", "A061576", "A091887" ]
[ "M5260", "N2292" ]
N. J. A. Sloane
2025-04-22T10:47:45
oeisdata/seq/A000/A000928.seq
accbfa554642da6d34281bb27a53f248
A000929
Dimension of n-th degree part of Steenrod algebra.
[ "1", "1", "1", "2", "2", "2", "3", "4", "4", "5", "6", "6", "7", "8", "9", "11", "12", "13", "15", "16", "17", "20", "22", "23", "26", "28", "29", "32", "35", "37", "41", "45", "47", "51", "55", "58", "63", "68", "72", "77", "82", "86", "92", "98", "103", "111", "118", "123", "131", "139", "145", "154", "164", "171", "180", "190", "198", "208", "219", "229", "241", "253", "264", "278", "291" ]
[ "nonn" ]
59
0
4
[ "A000041", "A000225", "A000929", "A018819", "A079559", "A117145" ]
null
J. Daniel Christensen, Mar 15 1996
2021-03-15T15:33:37
oeisdata/seq/A000/A000929.seq
57b4010499c17032bf16663e9a6cb2d9
A000930
Narayana's cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).
[ "1", "1", "1", "2", "3", "4", "6", "9", "13", "19", "28", "41", "60", "88", "129", "189", "277", "406", "595", "872", "1278", "1873", "2745", "4023", "5896", "8641", "12664", "18560", "27201", "39865", "58425", "85626", "125491", "183916", "269542", "395033", "578949", "848491", "1243524", "1822473", "2670964", "3914488", "5736961", "8407925" ]
[ "nonn", "easy", "nice", "changed" ]
598
0
4
[ "A000045", "A000073", "A000079", "A000213", "A000930", "A001609", "A003269", "A003520", "A005708", "A005709", "A005710", "A007318", "A017898", "A017904", "A048715", "A060576", "A068921", "A069241", "A078012", "A092526", "A102547", "A120562", "A145580", "A170954", "A179070", "A214551", "A271901", "A271953", "A277627", "A289207" ]
[ "M0571", "N0207" ]
N. J. A. Sloane
2025-04-18T22:27:28
oeisdata/seq/A000/A000930.seq
4c433a93c830d6672ead24456686003f
A000931
Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
[ "1", "0", "0", "1", "0", "1", "1", "1", "2", "2", "3", "4", "5", "7", "9", "12", "16", "21", "28", "37", "49", "65", "86", "114", "151", "200", "265", "351", "465", "616", "816", "1081", "1432", "1897", "2513", "3329", "4410", "5842", "7739", "10252", "13581", "17991", "23833", "31572", "41824", "55405", "73396", "97229", "128801", "170625" ]
[ "nonn", "easy", "nice" ]
659
0
9
[ "A000073", "A000931", "A001608", "A005682", "A005691", "A020720", "A078027", "A096231", "A103372", "A103380", "A106510", "A124745", "A133034", "A134816", "A145462", "A146973", "A153462", "A164001", "A182097", "A228361", "A291289" ]
[ "M0284", "N0102" ]
N. J. A. Sloane
2025-03-30T02:41:44
oeisdata/seq/A000/A000931.seq
d8510766dfb4da69d4b5a4c396c8ec9d
A000932
a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.
[ "1", "1", "3", "6", "18", "48", "156", "492", "1740", "6168", "23568", "91416", "374232", "1562640", "6801888", "30241488", "139071696", "653176992", "3156467520", "15566830368", "78696180768", "405599618496", "2136915595392", "11465706820800", "62751681110208", "349394351630208", "1980938060495616" ]
[ "nonn", "easy" ]
84
0
3
[ "A000085", "A000932", "A173895" ]
[ "M2595", "N1025" ]
N. J. A. Sloane
2022-08-21T06:35:42
oeisdata/seq/A000/A000932.seq
34a3f8c37cab72a9a4969a992a39c944
A000933
Genus of complete graph on n nodes.
[ "0", "0", "0", "0", "1", "1", "1", "2", "3", "4", "5", "6", "8", "10", "11", "13", "16", "18", "20", "23", "26", "29", "32", "35", "39", "43", "46", "50", "55", "59", "63", "68", "73", "78", "83", "88", "94", "100", "105", "111", "118", "124", "130", "137", "144", "151", "158", "165", "173", "181", "188", "196", "205", "213", "221", "230", "239", "248", "257", "266", "276", "286", "295", "305" ]
[ "easy", "nonn", "nice" ]
75
1
8
[ "A000933", "A007997" ]
[ "M0503", "N0182" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000933.seq
d07f272df4d0d4fa376dc77d08deaab9
A000934
Chromatic number (or Heawood number) Chi(n) of surface of genus n.
[ "4", "7", "8", "9", "10", "11", "12", "12", "13", "13", "14", "15", "15", "16", "16", "16", "17", "17", "18", "18", "19", "19", "19", "20", "20", "20", "21", "21", "21", "22", "22", "22", "23", "23", "23", "24", "24", "24", "24", "25", "25", "25", "25", "26", "26", "26", "27", "27", "27", "27", "28", "28", "28", "28", "28", "29", "29", "29", "29", "30", "30", "30", "30", "31", "31", "31", "31", "31", "32", "32" ]
[ "easy", "nice", "nonn" ]
65
0
1
[ "A000703", "A000934", "A006343" ]
[ "M3292", "N1327" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000934.seq
565bc2e50a09f3b1945e6bbfa2a3557c
A000935
Number of free planar polyenoids with 2n nodes and symmetry point group C_{2h}.
[ "0", "1", "2", "7", "20", "63", "191", "598", "1870", "5906" ]
[ "nonn", "more" ]
19
1
3
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-16T10:00:34
oeisdata/seq/A000/A000935.seq
0e2ef6533a4b1a30da749c091cd7d524
A000936
Number of free planar polyenoids with n nodes and symmetry point group C_{2v}.
[ "0", "0", "1", "1", "2", "4", "4", "12", "10", "29", "27", "88", "76", "247", "217", "722", "638", "2134", "1901", "6413" ]
[ "nonn", "more" ]
13
1
5
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-14T14:53:32
oeisdata/seq/A000/A000936.seq
cea16e78b51c0ac6a65fa73cb7723e5c
A000937
Length of longest simple cycle without chords in the n-dimensional hypercube graph. Also called n-coil or closed n-snake-in-the-box problem.
[ "0", "4", "6", "8", "14", "26", "48", "96" ]
[ "nonn", "nice", "hard", "more" ]
86
1
2
[ "A000937", "A099155" ]
[ "M0995", "N0373" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000937.seq
549210589bb261e81c940cc4c32e3470
A000938
Number of collinear point-triples in an n X n grid.
[ "0", "0", "8", "44", "152", "372", "824", "1544", "2712", "4448", "6992", "10332", "15072", "21012", "28688", "38520", "50880", "65480", "83640", "104676", "130264", "160556", "195848", "235600", "282840", "336384", "397136", "465876", "544464", "630684", "729744", "837744", "958384", "1091904", "1238520", "1400140", "1581384", "1776084" ]
[ "nonn", "nice" ]
57
1
3
[ "A000769", "A000938", "A157882", "A272651", "A334704" ]
[ "M4527", "N1919" ]
N. J. A. Sloane
2020-06-19T23:50:05
oeisdata/seq/A000/A000938.seq
60c7ad4690ec19b0a58d8fad5c5b5d76
A000939
Number of inequivalent n-gons.
[ "1", "1", "1", "2", "4", "14", "54", "332", "2246", "18264", "164950", "1664354", "18423144", "222406776", "2905943328", "40865005494", "615376173184", "9880209206458", "168483518571798", "3041127561315224", "57926238289970076", "1161157777643184900", "24434798429947993054", "538583682082245127336" ]
[ "nonn", "nice", "easy" ]
63
1
4
[ "A000031", "A000939", "A000940", "A002619", "A002866", "A006125", "A008965", "A059966", "A060223", "A094154", "A094155", "A192332", "A231091", "A275527", "A323858", "A323870", "A324461" ]
[ "M1280", "N0491" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000939.seq
f8d5976b4f8ddd1a866b14bc7923c4df
A000940
Number of n-gons with n vertices.
[ "1", "2", "4", "12", "39", "202", "1219", "9468", "83435", "836017", "9223092", "111255228", "1453132944", "20433309147", "307690667072", "4940118795869", "84241805734539", "1520564059349452", "28963120073957838", "580578894859915650", "12217399235411398127", "269291841184184374868", "6204484017822892034404" ]
[ "nonn", "easy", "nice" ]
110
3
2
[ "A000939", "A000940", "A002619", "A007619", "A089066", "A094156", "A094157", "A262480" ]
[ "M1260", "N0482" ]
N. J. A. Sloane
2022-11-23T08:57:10
oeisdata/seq/A000/A000940.seq
d9c89fabee957efa5e091ccf9eb380b5
A000941
Number of free planar polyenoids with n nodes and symmetry point group C_s.
[ "0", "0", "0", "0", "2", "5", "21", "58", "194", "570", "1790", "5434", "16924", "52362", "163784", "512670", "1614406", "5096314", "16150180" ]
[ "nonn", "more" ]
19
1
5
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-13T18:11:45
oeisdata/seq/A000/A000941.seq
6f0a875bb62151a2d526ece0321f31af
A000942
Number of free planar polyenoids with n nodes.
[ "1", "1", "1", "3", "4", "12", "26", "77", "204", "624", "1817", "5585", "17007", "52803", "164001", "514009", "1615044", "5100324", "16152134", "51324864" ]
[ "nonn", "more" ]
17
1
4
[ "A000942", "A197459" ]
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2020-07-12T08:23:25
oeisdata/seq/A000/A000942.seq
4d46eb395e3171913c07190b4ab2e8e2
A000943
Number of combinatorial types of simplicial n-dimensional polytopes with n+3 nodes.
[ "1", "2", "5", "8", "18", "29", "57", "96", "183", "318", "604", "1080", "2047", "3762", "7145", "13354", "25471", "48164", "92193", "175780", "337581", "647313", "1246849", "2400828", "4636375", "8956045", "17334785", "33570800", "65108045", "126355319", "245492226", "477284164", "928772631", "1808538336" ]
[ "nonn", "nice" ]
16
1
2
[ "A000943", "A000944", "A049337" ]
[ "M1352", "N0519" ]
N. J. A. Sloane
2014-12-09T00:25:56
oeisdata/seq/A000/A000943.seq
eec6d257df57eff2866c41dfa2f83411
A000944
Number of polyhedra (or 3-connected simple planar graphs) with n nodes.
[ "0", "0", "0", "1", "2", "7", "34", "257", "2606", "32300", "440564", "6384634", "96262938", "1496225352", "23833988129", "387591510244", "6415851530241", "107854282197058" ]
[ "nonn", "nice", "hard", "more" ]
53
1
5
[ "A000944", "A003094", "A005470", "A005841", "A021103", "A049334", "A049336", "A049337", "A212438" ]
[ "M1796", "N0709" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000944.seq
10d4a3c2c8f879cf3216d454f84e6bef
A000945
Euclid-Mullin sequence: a(1) = 2, a(n+1) is smallest prime factor of 1 + Product_{k=1..n} a(k).
[ "2", "3", "7", "43", "13", "53", "5", "6221671", "38709183810571", "139", "2801", "11", "17", "5471", "52662739", "23003", "30693651606209", "37", "1741", "1313797957", "887", "71", "7127", "109", "23", "97", "159227", "643679794963466223081509857", "103", "1079990819", "9539", "3143065813", "29", "3847", "89", "19", "577", "223", "139703", "457", "9649", "61", "4357" ]
[ "nonn", "nice", "hard" ]
183
1
1
[ "A000945", "A000946", "A005265", "A005266", "A051309", "A051334", "A051614", "A051615", "A051616", "A056756" ]
[ "M0863", "N0329" ]
N. J. A. Sloane
2025-03-28T04:54:45
oeisdata/seq/A000/A000945.seq
ef380375443c1887dafe24459d67d17e
A000946
Euclid-Mullin sequence: a(1) = 2, a(n+1) is the largest prime factor of 1 + Product_{k=1..n} a(k).
[ "2", "3", "7", "43", "139", "50207", "340999", "2365347734339", "4680225641471129", "1368845206580129", "889340324577880670089824574922371", "20766142440959799312827873190033784610984957267051218394040721" ]
[ "nonn", "nice" ]
127
1
1
[ "A000945", "A000946", "A005265", "A005266", "A216227" ]
[ "M0864", "N0330" ]
N. J. A. Sloane
2025-03-28T04:31:27
oeisdata/seq/A000/A000946.seq
c4b649528f6c6d27b6e1932dab6734a8
A000947
Number of free nonplanar polyenoids with n nodes and symmetry point group C_{2v}.
[ "1", "2", "4", "10", "15", "44", "56", "177", "212", "706", "792", "2714", "2961" ]
[ "nonn", "more" ]
18
7
2
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-16T03:15:40
oeisdata/seq/A000/A000947.seq
f01fe0c548fa015740f164933e31d9d4
A000948
Number of free nonplanar polyenoids with n nodes and symmetry point group C_s.
[ "0", "3", "20", "99", "450", "1896", "7771", "30895", "121144", "468409", "1796584", "6841014", "25925062" ]
[ "nonn", "more" ]
18
7
2
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-16T03:27:39
oeisdata/seq/A000/A000948.seq
8cae2eb6cabb318d7558ab7aaea31497
A000949
Number of forests with n nodes and height at most 2.
[ "1", "1", "3", "16", "101", "756", "6607", "65794", "733833", "9046648", "121961051", "1782690174", "28055070397", "472594822324", "8479144213191", "161340195463066", "3243707386310033", "68679247688467056", "1526976223741111987", "35557878951515668726", "865217354118762606021" ]
[ "nonn" ]
33
0
3
[ "A000248", "A000949", "A000950", "A000951", "A052512", "A052514", "A210725" ]
[ "M3021", "N1223" ]
N. J. A. Sloane
2018-07-03T12:44:37
oeisdata/seq/A000/A000949.seq
967938587ffa1e0ca49b3ff7e3a6e405
A000950
Number of forests with n nodes and height at most 3.
[ "1", "3", "16", "125", "1176", "12847", "160504", "2261289", "35464816", "612419291", "11539360944", "235469524237", "5170808565976", "121535533284999", "3043254281853496", "80852247370051793", "2270951670959226336", "67221368736302224819", "2091039845329887687136" ]
[ "nonn" ]
21
1
2
[ "A000248", "A000949", "A000950", "A000951", "A052512", "A052514", "A210725" ]
[ "M3025", "N1225" ]
N. J. A. Sloane
2024-05-19T14:03:19
oeisdata/seq/A000/A000950.seq
7f45b6e34bdcf58e0af4957b3be3d2a9
A000951
Number of forests with n nodes and height at most 4.
[ "1", "3", "16", "125", "1296", "16087", "229384", "3687609", "66025360", "1303751051", "28151798544", "659841763957", "16681231615816", "452357366282655", "13095632549137576", "403040561722348913", "13138626717852194976", "452179922268565180819", "16381932383826669204640" ]
[ "nonn" ]
21
1
2
[ "A000248", "A000949", "A000950", "A000951", "A052512", "A052514", "A210725" ]
[ "M3026", "N1226" ]
N. J. A. Sloane
2024-05-19T14:03:23
oeisdata/seq/A000/A000951.seq
48289c7286edb10487cbce6ff3533c17
A000952
Numbers k == 2 (mod 4) that are the orders of conference matrices.
[ "2", "6", "10", "14", "18", "26", "30", "38", "42", "46", "50", "54", "62" ]
[ "nonn", "hard", "more", "nice" ]
53
1
1
[ "A000952", "A016825", "A286636" ]
[ "M1574", "N0615" ]
N. J. A. Sloane
2023-07-25T23:32:24
oeisdata/seq/A000/A000952.seq
442b08592debf4cc43385eef75083e9f
A000953
Number of free nonplanar polyenoids with n nodes.
[ "1", "5", "24", "109", "465", "1943", "7827", "31095", "121356", "469235", "1797376", "6844290", "25928036" ]
[ "nonn", "more" ]
14
7
2
null
null
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
2015-10-15T14:30:40
oeisdata/seq/A000/A000953.seq
a1ba267b770895162b679593431f38d1
A000954
Conjecturally largest even integer which is an unordered sum of two primes in exactly n ways.
[ "2", "12", "68", "128", "152", "188", "332", "398", "368", "488", "632", "692", "626", "992", "878", "908", "1112", "998", "1412", "1202", "1448", "1718", "1532", "1604", "1682", "2048", "2252", "2078", "2672", "2642", "2456", "2936", "2504", "2588", "2978", "3092", "3032", "3218", "3272", "3296", "3632", "3548", "3754", "4022", "4058", "4412" ]
[ "nonn", "nice" ]
19
0
1
[ "A000954", "A000974", "A001172", "A002375", "A023036", "A045917" ]
null
Bill Gosper
2015-03-12T20:18:18
oeisdata/seq/A000/A000954.seq
32d289a810643e1ecede5a84ec6bcb85
A000955
A sequence satisfying (a(2n+1) + 1)^3 = Sum_{k=1..2n+1} a(k)^3.
[ "1", "6", "8", "262", "2448", "17997702", "44082372248", "5829766629386380698502", "256989942683351711945337288361248", "198131491921177194311506308094238133848780474484255622782351242502" ]
[ "nonn" ]
28
1
2
null
[ "M4073", "N1688" ]
N. J. A. Sloane
2017-04-01T04:03:30
oeisdata/seq/A000/A000955.seq
dc36343df87d1156d351dfcb1b6e2718
A000956
A sequence satisfying (a(2n+1) + 1)^3 = Sum_{k=1..2n+1} a(k)^3.
[ "2", "17", "40", "5126", "211888", "134691268742", "28539643139633848", "2443533691612948322627563638932102", "69737579558305654640845711279133047105190578109248" ]
[ "nonn" ]
32
1
1
null
[ "M2099", "N0831" ]
N. J. A. Sloane
2019-10-22T16:26:48
oeisdata/seq/A000/A000956.seq
550a4b33d381924b4d5bc5cf8baffb1c
A000957
Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.
[ "0", "1", "0", "1", "2", "6", "18", "57", "186", "622", "2120", "7338", "25724", "91144", "325878", "1174281", "4260282", "15548694", "57048048", "210295326", "778483932", "2892818244", "10786724388", "40347919626", "151355847012", "569274150156", "2146336125648", "8110508473252", "30711521221376" ]
[ "nonn", "nice", "easy" ]
327
0
5
[ "A000012", "A000045", "A000108", "A000957", "A005043", "A007317", "A009766", "A039598", "A055395", "A057078", "A064306", "A064310", "A065600", "A068875", "A072547", "A091867", "A100754", "A104597", "A126093", "A138413", "A138414" ]
[ "M1624", "N0635" ]
N. J. A. Sloane
2025-02-09T09:45:44
oeisdata/seq/A000/A000957.seq
140cfc2a74589c7093dabefac792cfd1
A000958
Number of ordered rooted trees with n edges having root of odd degree.
[ "1", "1", "3", "8", "24", "75", "243", "808", "2742", "9458", "33062", "116868", "417022", "1500159", "5434563", "19808976", "72596742", "267343374", "988779258", "3671302176", "13679542632", "51134644014", "191703766638", "720629997168", "2715610275804", "10256844598900", "38822029694628", "147229736485868" ]
[ "nonn", "easy" ]
144
1
3
[ "A000108", "A000957", "A000958", "A032357", "A065602", "A098747", "A118973", "A127539", "A127541", "A362563" ]
[ "M2748", "N1104" ]
N. J. A. Sloane
2024-12-12T10:56:12
oeisdata/seq/A000/A000958.seq
6dc893ed0885085e60b18b5d0e6e7935
A000959
Lucky numbers.
[ "1", "3", "7", "9", "13", "15", "21", "25", "31", "33", "37", "43", "49", "51", "63", "67", "69", "73", "75", "79", "87", "93", "99", "105", "111", "115", "127", "129", "133", "135", "141", "151", "159", "163", "169", "171", "189", "193", "195", "201", "205", "211", "219", "223", "231", "235", "237", "241", "259", "261", "267", "273", "283", "285", "289", "297", "303" ]
[ "nonn", "easy", "nice", "core" ]
218
1
2
[ "A000040", "A000959", "A003309", "A031883", "A032600", "A039672", "A045954", "A050505", "A054978", "A109497", "A137164", "A137185", "A145649", "A219178", "A249876", "A254967", "A255543", "A255545", "A255551", "A255553", "A258207", "A264940", "A265859", "A362460", "A362461", "A362462" ]
[ "M2616", "N1035" ]
N. J. A. Sloane; entry updated Mar 07 2008
2025-02-16T08:32:22
oeisdata/seq/A000/A000959.seq
00ef09f53bc977598a40fc3b8b980399
A000960
Flavius Josephus's sieve: Start with the natural numbers; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate.
[ "1", "3", "7", "13", "19", "27", "39", "49", "63", "79", "91", "109", "133", "147", "181", "207", "223", "253", "289", "307", "349", "387", "399", "459", "481", "529", "567", "613", "649", "709", "763", "807", "843", "927", "949", "1009", "1093", "1111", "1189", "1261", "1321", "1359", "1471", "1483", "1579", "1693", "1719", "1807", "1899", "1933", "2023" ]
[ "nonn", "easy", "nice" ]
109
1
2
[ "A000012", "A000959", "A000960", "A002491", "A003309", "A003881", "A056526", "A056530", "A056531", "A099259", "A100002", "A100617", "A100618", "A112557", "A112558", "A113742", "A113743", "A113744", "A113745", "A113746", "A113747", "A113748", "A113749", "A119446", "A119447", "A190732", "A278169", "A278484", "A278492", "A278505", "A278528", "A278529" ]
[ "M2636", "N1048" ]
N. J. A. Sloane
2025-03-03T09:32:40
oeisdata/seq/A000/A000960.seq
175b95dcbb622e0f5e7b3b0968480c73
A000961
Powers of primes. Alternatively, 1 and the prime powers (p^k, p prime, k >= 1).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "13", "16", "17", "19", "23", "25", "27", "29", "31", "32", "37", "41", "43", "47", "49", "53", "59", "61", "64", "67", "71", "73", "79", "81", "83", "89", "97", "101", "103", "107", "109", "113", "121", "125", "127", "128", "131", "137", "139", "149", "151", "157", "163", "167", "169", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227" ]
[ "nonn", "easy", "core", "nice" ]
219
1
2
[ "A000015", "A000040", "A000668", "A000961", "A001221", "A001477", "A001597", "A003418", "A008480", "A010055", "A019434", "A024619", "A025473", "A025475", "A028236", "A031218", "A065515", "A095874", "A138929", "A246547", "A246655" ]
[ "M0517", "N0185" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000961.seq
8df4159b705eed3ffbf50605ebe33975
A000962
The convergent sequence A_n for the ternary continued fraction (3,1;2,2) of period 2.
[ "1", "0", "0", "1", "2", "5", "15", "32", "99", "210", "650", "1379", "4268", "9055", "28025", "59458", "184021", "390420", "1208340", "2563621", "7934342", "16833545", "52099395", "110534372", "342101079", "725803590", "2246343710", "4765855559", "14750202128", "31294112515", "96854484845", "205487024518", "635977131241" ]
[ "nonn", "easy" ]
48
0
5
[ "A000962", "A000963", "A000964" ]
[ "M1473", "N0582" ]
N. J. A. Sloane
2022-04-13T13:25:15
oeisdata/seq/A000/A000962.seq
a02780c9b47958162fa15c74cf35e05b
A000963
The convergent sequence B_n for the ternary continued fraction (3,1;2,2) of period 2.
[ "0", "1", "0", "3", "7", "16", "49", "104", "322", "683", "2114", "4485", "13881", "29450", "91147", "193378", "598500", "1269781", "3929940", "8337783", "25805227", "54748516", "169445269", "359496044", "1112631142" ]
[ "nonn", "cofr", "easy" ]
36
0
4
[ "A000962", "A000963", "A000964" ]
[ "M2660", "N1062" ]
N. J. A. Sloane
2022-04-13T13:25:15
oeisdata/seq/A000/A000963.seq
f072c1a3ae55ef593f921c0806d73d64
A000964
The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
[ "0", "0", "1", "1", "4", "8", "25", "53", "164", "348", "1077", "2285", "7072", "15004", "46437", "98521", "304920", "646920", "2002201", "4247881", "13147084", "27892928", "86327905", "183153773", "566856284", "1202645508", "3722157357", "7896950165", "24440860552", "51853868404", "160486408077" ]
[ "nonn", "easy" ]
32
0
5
[ "A000962", "A000964" ]
[ "M3343", "N1345" ]
N. J. A. Sloane
2019-02-06T02:00:01
oeisdata/seq/A000/A000964.seq
0ffc6516b88521132360e44b38d804c1
A000965
Numerators of expansion of e.g.f. sinh(x) / sin(x) (even powers only).
[ "1", "2", "4", "104", "272", "3104", "79808", "631936", "1708288", "7045156352", "1413417032704", "6587672324096", "37378439704576", "66465881481076736", "80812831866241024", "17004045797823707643904", "55131841948562370265088", "189924798793194975920128", "1382061377731043599678963712" ]
[ "nonn", "easy" ]
38
0
2
[ "A000965", "A006656", "A069853" ]
[ "M1307", "N0501" ]
N. J. A. Sloane
2022-02-01T08:31:47
oeisdata/seq/A000/A000965.seq
b04d5c6670f5022673694bfb032960c9
A000966
n! never ends in this many 0's.
[ "5", "11", "17", "23", "29", "30", "36", "42", "48", "54", "60", "61", "67", "73", "79", "85", "91", "92", "98", "104", "110", "116", "122", "123", "129", "135", "141", "147", "153", "154", "155", "161", "167", "173", "179", "185", "186", "192", "198", "204", "210", "216", "217", "223", "229", "235", "241", "247", "248", "254", "260", "266", "272", "278", "279", "285" ]
[ "nonn", "base", "nice" ]
98
1
1
[ "A000142", "A000966", "A027868", "A055938", "A080066", "A096346", "A136767", "A136774", "A191610" ]
[ "M3808", "N1557" ]
N. J. A. Sloane, Robert G. Wilson v
2022-04-14T03:11:50
oeisdata/seq/A000/A000966.seq
9f359adde0e438a276406c7cdf2ca57e
A000967
Sum of Fermat coefficients.
[ "1", "2", "4", "8", "18", "40", "91", "210", "492", "1165", "2786", "6710", "16267", "39650", "97108", "238824", "589521", "1459960", "3626213", "9030450", "22542396", "56393792", "141358274", "354975429", "892893120", "2249412290", "5674891000", "14335757256", "36259245522", "91815545800" ]
[ "nonn" ]
33
1
2
[ "A000967", "A143858", "A258708" ]
[ "M1148", "N0437" ]
N. J. A. Sloane
2022-09-08T08:44:28
oeisdata/seq/A000/A000967.seq
2873d00a632906cb4315e4a15bf5c7f7
A000968
Sum of odd Fermat coefficients rounded to nearest integer.
[ "1", "1", "2", "4", "9", "20", "46", "105", "246", "583", "1393", "3355", "8133", "19825", "48554", "119412", "294761", "729980", "1813107", "4515225", "11271198", "28196896", "70679137", "177487714", "446446560", "1124706145", "2837445500", "7167878628", "18129622761", "45907772900", "116372614251" ]
[ "nonn" ]
32
1
3
null
[ "M1176", "N0452" ]
N. J. A. Sloane
2021-05-09T11:17:24
oeisdata/seq/A000/A000968.seq
4cfa71b7d01f373184720f6e2e7ebad3
A000969
Expansion of g.f. (1 + x + 2*x^2)/((1 - x)^2*(1 - x^3)).
[ "1", "3", "7", "12", "18", "26", "35", "45", "57", "70", "84", "100", "117", "135", "155", "176", "198", "222", "247", "273", "301", "330", "360", "392", "425", "459", "495", "532", "570", "610", "651", "693", "737", "782", "828", "876", "925", "975", "1027", "1080", "1134", "1190", "1247", "1305", "1365", "1426", "1488", "1552", "1617", "1683", "1751", "1820", "1890" ]
[ "nonn", "easy" ]
94
0
2
[ "A000969", "A004773", "A014105", "A092498", "A139250", "A143978", "A160165", "A258708" ]
[ "M2630", "N1042" ]
N. J. A. Sloane
2023-04-19T09:04:10
oeisdata/seq/A000/A000969.seq
28804925a7e5438f8e9352e4718176e9
A000970
Fermat coefficients.
[ "1", "7", "25", "66", "143", "273", "476", "775", "1197", "1771", "2530", "3510", "4750", "6293", "8184", "10472", "13209", "16450", "20254", "24682", "29799", "35673", "42375", "49980", "58565", "68211", "79002", "91025", "104371", "119133", "135408", "153296", "172900", "194327", "217686", "243090", "270655" ]
[ "nonn", "easy" ]
61
5
2
[ "A000970", "A258708" ]
[ "M4386", "N1846" ]
N. J. A. Sloane
2022-02-28T14:23:18
oeisdata/seq/A000/A000970.seq
1f4d6e2ff4a9e46fa25bb6569e41e610
A000971
Fermat coefficients.
[ "1", "9", "42", "132", "334", "728", "1428", "2584", "4389", "7084", "10963", "16380", "23751", "33563", "46376", "62832", "83657", "109668", "141778", "181001", "228459", "285384", "353127", "433160", "527085", "636636", "763686", "910252", "1078500", "1270752", "1489488", "1737355", "2017169", "2331924" ]
[ "nonn", "easy" ]
36
6
2
[ "A000971", "A258708" ]
[ "M4623", "N1975" ]
N. J. A. Sloane
2016-04-29T01:18:57
oeisdata/seq/A000/A000971.seq
abb85448a40c16735b8112d714c31d07
A000972
Fermat coefficients.
[ "1", "12", "66", "245", "715", "1768", "3876", "7752", "14421", "25300", "42287", "67860", "105183", "158224", "231880", "332112", "466089", "642341", "870922", "1163580", "1533939", "1997688", "2572780", "3279640", "4141382", "5184036", "6436782", "7932196", "9706503", "11799840", "14256528", "17125353", "20459857" ]
[ "nonn", "easy" ]
30
7
2
[ "A000972", "A258708" ]
[ "M4847", "N2072" ]
N. J. A. Sloane
2017-03-28T14:42:38
oeisdata/seq/A000/A000972.seq
37805449345abf2e2f9321a7f388fd9e
A000973
Fermat coefficients.
[ "1", "15", "99", "429", "1430", "3978", "9690", "21318", "43263", "82225", "148005", "254475", "420732", "672452", "1043460", "1577532", "2330445", "3372291", "4790071", "6690585", "9203634", "12485550", "16723070", "22137570", "28989675", "37584261", "48275865", "61474519" ]
[ "nonn", "easy" ]
59
8
2
[ "A000973", "A053129", "A258708" ]
[ "M4976", "N2137" ]
N. J. A. Sloane
2023-06-24T21:50:34
oeisdata/seq/A000/A000973.seq
a163730af4ba8b434091d628d1aae24f
A000974
Conjecturally the number of even integers the sum of two primes in exactly n ways.
[ "1", "4", "9", "11", "11", "16", "16", "18", "20", "23", "16", "29", "16", "25", "27", "23", "22", "25", "35", "29", "26", "25", "27", "27", "27", "33", "28", "44", "35", "21", "29", "35", "38", "33", "39", "37", "34", "35", "31", "31", "28", "41", "37", "32", "44", "35", "37", "41", "44", "33", "37", "32", "47", "39", "43", "47", "33", "37", "48", "41", "37", "48", "34", "35", "47", "36", "29", "36", "46", "44", "43", "38", "48" ]
[ "nonn" ]
14
0
2
[ "A000954", "A000974", "A001172", "A002375" ]
null
Bill Gosper
2016-12-25T00:25:10
oeisdata/seq/A000/A000974.seq
47b25fd5505ac577a1b89cc7f38ff5c6
A000975
a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).
[ "0", "1", "2", "5", "10", "21", "42", "85", "170", "341", "682", "1365", "2730", "5461", "10922", "21845", "43690", "87381", "174762", "349525", "699050", "1398101", "2796202", "5592405", "11184810", "22369621", "44739242", "89478485", "178956970", "357913941", "715827882", "1431655765", "2863311530", "5726623061", "11453246122" ]
[ "nonn", "easy", "nice", "changed" ]
522
0
3
[ "A000120", "A000295", "A000975", "A001045", "A001511", "A002450", "A003242", "A003714", "A003754", "A005186", "A005578", "A007088", "A013580", "A014550", "A015441", "A020988", "A022290", "A026644", "A027383", "A033491", "A035263", "A043291", "A051293", "A053404", "A056830", "A059260", "A067659", "A070939", "A077854", "A079309", "A104161", "A107907", "A107909", "A119440", "A127824", "A130125", "A135228", "A153772", "A155051", "A164707", "A179970", "A231147", "A261139", "A264784", "A295235", "A300653", "A319416", "A325347", "A359893", "A359907", "A361801" ]
null
Mira Bernstein, N. J. A. Sloane, Robert G. Wilson v, Sep 13 1996
2025-04-22T07:56:51
oeisdata/seq/A000/A000975.seq
24469d9b0224a4465e70982566af0e2a
A000976
Period of 1/n! in base 10.
[ "0", "0", "1", "1", "1", "1", "6", "6", "18", "18", "18", "54", "54", "378", "1134", "1134", "9072", "81648", "81648", "81648", "1714608", "18860688", "18860688", "56582064", "56582064", "735566832", "19860304464", "139022131248", "139022131248", "417066393744", "2085331968720", "2085331968720", "68815954967760" ]
[ "nonn", "base" ]
30
1
7
[ "A000142", "A000976", "A051626" ]
null
Simon Plouffe
2023-01-12T01:28:32
oeisdata/seq/A000/A000976.seq
84b30240c18598c9e2e8a366e5f462fb
A000977
Numbers that are divisible by at least three different primes.
[ "30", "42", "60", "66", "70", "78", "84", "90", "102", "105", "110", "114", "120", "126", "130", "132", "138", "140", "150", "154", "156", "165", "168", "170", "174", "180", "182", "186", "190", "195", "198", "204", "210", "220", "222", "228", "230", "231", "234", "238", "240", "246", "252", "255", "258", "260", "264", "266", "270", "273", "276", "280", "282", "285" ]
[ "nonn", "easy" ]
46
1
1
[ "A000961", "A000977", "A007774", "A033992", "A033993", "A051270", "A070915" ]
null
N. J. A. Sloane
2024-04-22T08:38:00
oeisdata/seq/A000/A000977.seq
387697f62fe41ffd3c9f75d52ae84802
A000978
Wagstaff numbers: numbers k such that (2^k + 1)/3 is prime.
[ "3", "5", "7", "11", "13", "17", "19", "23", "31", "43", "61", "79", "101", "127", "167", "191", "199", "313", "347", "701", "1709", "2617", "3539", "5807", "10501", "10691", "11279", "12391", "14479", "42737", "83339", "95369", "117239", "127031", "138937", "141079", "267017", "269987", "374321", "986191", "4031399" ]
[ "nonn", "hard", "nice", "more" ]
132
1
1
[ "A000978", "A000979", "A001045", "A010051", "A065091", "A107036", "A124400", "A124401", "A127936", "A127955", "A127956", "A127957", "A127958" ]
[ "M2413", "N0956" ]
N. J. A. Sloane, Robert G. Wilson v
2025-02-16T08:32:22
oeisdata/seq/A000/A000978.seq
9fe523d31816505dedc898b35259c0c8
A000979
Wagstaff primes: primes of form (2^p + 1)/3.
[ "3", "11", "43", "683", "2731", "43691", "174763", "2796203", "715827883", "2932031007403", "768614336404564651", "201487636602438195784363", "845100400152152934331135470251", "56713727820156410577229101238628035243", "62357403192785191176690552862561408838653121833643" ]
[ "nonn" ]
73
1
1
[ "A000978", "A000979", "A001045", "A007583", "A010051", "A049883", "A127962" ]
[ "M2896", "N1161" ]
N. J. A. Sloane
2024-08-23T12:17:06
oeisdata/seq/A000/A000979.seq
ef04f530b7ba5cf4b407c8b98dc1b2b1
A000980
Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
[ "2", "4", "8", "20", "52", "152", "472", "1520", "5044", "17112", "59008", "206260", "729096", "2601640", "9358944", "33904324", "123580884", "452902072", "1667837680", "6168510256", "22903260088", "85338450344", "318995297200", "1195901750512", "4495448217544", "16940411201280", "63983233268592" ]
[ "nonn", "nice" ]
82
0
1
[ "A000975", "A000980", "A007318", "A024718", "A047653", "A047997", "A063865", "A070925", "A079309", "A084239", "A133406", "A141000", "A212352", "A327475", "A327481", "A359893", "A362046" ]
[ "M1155", "N0439" ]
N. J. A. Sloane
2023-10-28T13:09:12
oeisdata/seq/A000/A000980.seq
ef03d1cefb38b1820e8c5d697fe2ce6d
A000981
Numbers beginning with letter 'n' in English.
[ "9", "19", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "900", "901", "902", "903", "904", "905", "906", "907", "908", "909", "910", "911", "912", "913", "914", "915", "916", "917", "918", "919", "920", "921", "922", "923", "924", "925", "926", "927", "928", "929", "930" ]
[ "word", "nonn" ]
12
1
1
[ "A000865", "A000867", "A000870", "A000873", "A000981", "A006092", "A125299" ]
null
N. J. A. Sloane
2017-04-01T00:45:59
oeisdata/seq/A000/A000981.seq
4cb23ba70fe1bf5140f1fab42be9dff5
A000982
a(n) = ceiling(n^2/2).
[ "0", "1", "2", "5", "8", "13", "18", "25", "32", "41", "50", "61", "72", "85", "98", "113", "128", "145", "162", "181", "200", "221", "242", "265", "288", "313", "338", "365", "392", "421", "450", "481", "512", "545", "578", "613", "648", "685", "722", "761", "800", "841", "882", "925", "968", "1013", "1058", "1105", "1152", "1201", "1250", "1301", "1352", "1405" ]
[ "nonn", "easy" ]
324
0
3
[ "A000096", "A000217", "A000982", "A001105", "A001477", "A001844", "A002061", "A004526", "A005843", "A007590", "A008794", "A037270", "A081352", "A109613", "A110654", "A116940", "A132188", "A134444", "A158946", "A168380", "A195040", "A357501", "A362931" ]
[ "M1348", "N0517" ]
N. J. A. Sloane
2025-04-07T05:02:00
oeisdata/seq/A000/A000982.seq
df6d0405b9bdf0612110b34a8e6dc424
A000983
Size of minimal binary covering code of length n and covering radius 1.
[ "1", "2", "2", "4", "7", "12", "16", "32", "62" ]
[ "nonn", "hard", "more", "nice" ]
83
1
2
[ "A000983", "A029866", "A060438" ]
[ "M0329", "N0124" ]
N. J. A. Sloane
2025-02-16T08:32:22
oeisdata/seq/A000/A000983.seq
6af2ff248d33e68fcbae9751ce77e956
A000984
Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.
[ "1", "2", "6", "20", "70", "252", "924", "3432", "12870", "48620", "184756", "705432", "2704156", "10400600", "40116600", "155117520", "601080390", "2333606220", "9075135300", "35345263800", "137846528820", "538257874440", "2104098963720", "8233430727600", "32247603683100", "126410606437752", "495918532948104", "1946939425648112" ]
[ "nonn", "easy", "core", "nice", "walk", "frac" ]
1,079
0
2
[ "A000079", "A000108", "A000172", "A000346", "A000984", "A001316", "A001405", "A001700", "A001791", "A002144", "A002420", "A002457", "A002893", "A002895", "A005258", "A005259", "A005260", "A005261", "A006077", "A008459", "A008549", "A025565", "A030662", "A032443", "A036917", "A046521", "A051924", "A056040", "A059481", "A063007", "A069865", "A071976", "A073016", "A081085", "A081696", "A093388", "A097805", "A098616", "A125143", "A126869", "A135091", "A143003", "A143007", "A143413", "A143414", "A143415", "A143583", "A152229", "A158815", "A182400", "A182421", "A182422", "A182446", "A182447", "A183204", "A205946", "A214262", "A214377", "A219692", "A226078", "A226302", "A226535", "A227216", "A227454", "A229111", "A258290", "A260667", "A260832", "A261009", "A261130", "A262177", "A264541", "A264542", "A279619", "A290575", "A290576", "A342294", "A342295", "A356637" ]
[ "M1645", "N0643" ]
N. J. A. Sloane
2025-04-01T04:13:40
oeisdata/seq/A000/A000984.seq
318f269cdae044f6b321bd8c115a2120
A000985
Number of n X n symmetric matrices with nonnegative entries and all row sums 2.
[ "1", "1", "3", "11", "56", "348", "2578", "22054", "213798", "2313638", "27627434", "360646314", "5107177312", "77954299144", "1275489929604", "22265845018412", "412989204564572", "8109686585668956", "168051656468233972", "3664479286118269972", "83868072451846938336", "2009964340465840802576" ]
[ "nonn", "nice", "easy" ]
44
0
3
[ "A000985", "A000986" ]
[ "M2907", "N1168" ]
N. J. A. Sloane
2025-01-13T11:24:27
oeisdata/seq/A000/A000985.seq
8b79fc473446bbc017a692a9f8e1c877
A000986
Number of n X n symmetric matrices with (0,1) entries and all row sums 2.
[ "1", "0", "1", "4", "18", "112", "820", "6912", "66178", "708256", "8372754", "108306280", "1521077404", "23041655136", "374385141832", "6493515450688", "119724090206940", "2337913445039488", "48195668439235612", "1045828865817825264", "23826258064972682776", "568556266922455167040" ]
[ "nonn", "nice", "easy", "changed" ]
63
0
4
[ "A000985", "A000986", "A001205" ]
[ "M3548", "N1437" ]
N. J. A. Sloane
2025-04-14T07:38:11
oeisdata/seq/A000/A000986.seq
b6ecffa3ed4b44b0e2b87534cb8ee031
A000987
Number of stochastic matrices of integers.
[ "0", "1", "1", "2", "7", "32", "184", "1268", "10186", "93356", "960646", "10959452", "137221954", "1870087808", "27548231008", "436081302248", "7380628161076", "132975267434552", "2540593483517404", "51299775805464824", "1091447620966600804", "24401984084483685248", "571907754141520643296" ]
[ "nonn" ]
32
0
4
null
[ "M1793", "N0707" ]
N. J. A. Sloane
2017-05-24T08:34:15
oeisdata/seq/A000/A000987.seq
05482e01a076ea55500bd7a78b7c5986
A000988
Number of one-sided polyominoes with n cells.
[ "1", "1", "1", "2", "7", "18", "60", "196", "704", "2500", "9189", "33896", "126759", "476270", "1802312", "6849777", "26152418", "100203194", "385221143", "1485200848", "5741256764", "22245940545", "86383382827", "336093325058", "1309998125640", "5114451441106", "19998172734786", "78306011677182", "307022182222506", "1205243866707468", "4736694001644862" ]
[ "nonn" ]
72
0
4
[ "A000105", "A000988", "A001168", "A006758", "A030227", "A030228", "A195738" ]
[ "M1749", "N0693" ]
N. J. A. Sloane, hugh(AT)mimosa.com (D. Hugh Redelmeier)
2025-02-16T08:32:22
oeisdata/seq/A000/A000988.seq
66e5b99fd02dd66cf14c6284c7809bdc
A000989
3-adic valuation of binomial(2*n, n): largest k such that 3^k divides binomial(2*n, n).
[ "0", "0", "1", "0", "0", "2", "1", "1", "2", "0", "0", "1", "0", "0", "3", "2", "2", "3", "1", "1", "2", "1", "1", "3", "2", "2", "3", "0", "0", "1", "0", "0", "2", "1", "1", "2", "0", "0", "1", "0", "0", "4", "3", "3", "4", "2", "2", "3", "2", "2", "4", "3", "3", "4", "1", "1", "2", "1", "1", "3", "2", "2", "3", "1", "1", "2", "1", "1", "4", "3", "3", "4", "2", "2", "3", "2", "2", "4", "3", "3" ]
[ "nonn", "easy" ]
51
0
6
[ "A000984", "A000989", "A005836", "A007949", "A053735" ]
null
N. J. A. Sloane, R. K. Guy
2021-02-12T04:03:21
oeisdata/seq/A000/A000989.seq
3e45f1a6671ee8320d87da31c3d7cc44
A000990
Number of plane partitions of n with at most two rows.
[ "1", "1", "3", "5", "10", "16", "29", "45", "75", "115", "181", "271", "413", "605", "895", "1291", "1866", "2648", "3760", "5260", "7352", "10160", "14008", "19140", "26085", "35277", "47575", "63753", "85175", "113175", "149938", "197686", "259891", "340225", "444135", "577593", "749131", "968281", "1248320", "1604340", "2056809", "2629357", "3353404" ]
[ "nonn", "easy" ]
85
0
3
[ "A000041", "A000070", "A000712", "A000990", "A000991", "A001452", "A002799", "A008619", "A147767", "A225196", "A225197", "A225198", "A225199", "A242641" ]
[ "M2462", "N0978" ]
N. J. A. Sloane
2025-04-07T22:56:16
oeisdata/seq/A000/A000990.seq
7deec2ef7ac9692c04e0bb69b8ec256f
A000991
Number of 3-line partitions of n.
[ "1", "1", "3", "6", "12", "21", "40", "67", "117", "193", "319", "510", "818", "1274", "1983", "3032", "4610", "6915", "10324", "15235", "22371", "32554", "47119", "67689", "96763", "137404", "194211", "272939", "381872", "531576", "736923", "1016904", "1397853", "1913561", "2610023", "3546507", "4802694", "6481101", "8718309", "11689929", "15627591", "20828892" ]
[ "nonn" ]
59
0
3
[ "A000041", "A000990", "A000991", "A001452", "A002799", "A225196", "A225197", "A225198", "A225199", "A242641" ]
[ "M2554", "N1011" ]
N. J. A. Sloane
2023-10-27T18:03:15
oeisdata/seq/A000/A000991.seq
2ef32a7df7cff014116b4fbf817f08a9
A000992
"Half-Catalan numbers": a(n) = Sum_{k=1..floor(n/2)} a(k)*a(n-k) with a(1) = 1.
[ "1", "1", "1", "2", "3", "6", "11", "24", "47", "103", "214", "481", "1030", "2337", "5131", "11813", "26329", "60958", "137821", "321690", "734428", "1721998", "3966556", "9352353", "21683445", "51296030", "119663812", "284198136", "666132304", "1586230523", "3734594241", "8919845275", "21075282588", "50441436842" ]
[ "nonn", "easy", "nice" ]
93
1
4
[ "A000108", "A000992", "A001190", "A093637", "A124973", "A248748" ]
[ "M0793", "N0300" ]
N. J. A. Sloane
2024-11-04T11:12:41
oeisdata/seq/A000/A000992.seq
cf30324eab4134e0a331836a8e3e6cbc
A000993
Number of distinct quadratic residues mod 10^n; also number of distinct n-digit endings of base-10 squares.
[ "1", "6", "22", "159", "1044", "9121", "78132", "748719", "7161484", "70800861", "699869892", "6978353179", "69580078524", "695292156201", "6947835288052", "69465637212039", "694529215501164", "6944974263529141", "69446563720728612", "694457689921141299", "6944497426351013404" ]
[ "nonn", "easy", "nice", "base" ]
63
0
2
[ "A000993", "A023105", "A036688", "A039300", "A039306", "A075821", "A075823" ]
[ "M4155", "N1727" ]
N. J. A. Sloane
2025-03-15T09:41:38
oeisdata/seq/A000/A000993.seq
ed39bd2ea4c7aab679feef9aaf9ab6af
A000994
Shifts 2 places left under binomial transform.
[ "1", "0", "1", "1", "2", "5", "13", "36", "109", "359", "1266", "4731", "18657", "77464", "337681", "1540381", "7330418", "36301105", "186688845", "995293580", "5491595645", "31310124067", "184199228226", "1116717966103", "6968515690273", "44710457783760", "294655920067105", "1992750830574681", "13817968813639426" ]
[ "nonn", "easy", "nice", "eigen" ]
61
0
5
[ "A000994", "A000995", "A007318", "A007476", "A051139", "A051140", "A086880", "A088022", "A143983" ]
[ "M1446", "N0572" ]
N. J. A. Sloane
2023-07-03T18:11:04
oeisdata/seq/A000/A000994.seq
5b192281a1ed1fcf65052fef154d2567
A000995
Shifts left two terms under the binomial transform.
[ "0", "1", "0", "1", "2", "4", "10", "29", "90", "295", "1030", "3838", "15168", "63117", "275252", "1254801", "5968046", "29551768", "152005634", "810518729", "4472244574", "25497104007", "149993156234", "909326652914", "5674422994544", "36408092349897", "239942657880360" ]
[ "nonn", "eigen", "easy", "nice" ]
70
0
5
[ "A000994", "A000995", "A007318", "A051139", "A051140", "A137854" ]
[ "M1228", "N0471" ]
N. J. A. Sloane
2019-05-02T08:50:18
oeisdata/seq/A000/A000995.seq
efbfb2a077036388eb220816fb805259
A000996
Shifts 3 places left under binomial transform.
[ "1", "0", "0", "1", "1", "1", "2", "6", "17", "44", "112", "304", "918", "3040", "10623", "38161", "140074", "528594", "2068751", "8436893", "35813251", "157448068", "713084042", "3315414747", "15805117878", "77273097114", "387692392570", "1996280632656", "10542604575130", "57034787751655", "315649657181821" ]
[ "nonn", "eigen" ]
38
0
7
[ "A000996", "A143983" ]
[ "M1618", "N0632" ]
N. J. A. Sloane
2020-08-09T17:13:16
oeisdata/seq/A000/A000996.seq
fe34401d11ab3174c7af9215b06e8533
A000997
From a differential equation.
[ "0", "1", "0", "0", "1", "2", "3", "5", "12", "36", "110", "326", "963", "2964", "9797", "34818", "130585", "506996", "2018454", "8238737", "34627390", "150485325", "677033911", "3147372610", "15066340824", "74025698886", "372557932434", "1919196902205", "10119758506626", "54627382038761", "301832813494746" ]
[ "nonn", "eigen" ]
27
0
6
[ "A000995", "A000997" ]
[ "M0739", "N0277" ]
N. J. A. Sloane
2019-10-23T12:19:07
oeisdata/seq/A000/A000997.seq
be64036d387b3dfba5d35b96be872ad3
A000998
From a differential equation.
[ "1", "3", "6", "11", "24", "69", "227", "753", "2451", "8004", "27138", "97806", "375313", "1511868", "6292884", "26826701", "116994453", "523646202", "2414394601", "11487130362", "56341183365", "284110648983", "1468690344087", "7766823788295", "41976012524088", "231812530642644", "1308325741771908" ]
[ "nonn", "eigen" ]
25
0
2
null
[ "M2549", "N1009" ]
N. J. A. Sloane
2020-10-27T08:48:08
oeisdata/seq/A000/A000998.seq
e81fd28dc47d16f0234a51e0ee275e4f
A000999
5-adic valuation of binomial(2*n,n): largest k such that 5^k divides binomial(2*n, n).
[ "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "2", "2", "1", "1", "1", "2", "2", "1", "1", "1", "2", "2", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "2", "2", "1", "1", "1", "2", "2", "1", "1", "1", "2", "2", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "3", "3", "2", "2", "2", "3", "3", "2", "2", "2", "3", "3", "1", "1", "1", "2", "2", "1", "1", "1", "2", "2", "1", "1" ]
[ "nonn", "easy" ]
23
0
14
[ "A000984", "A000989", "A000999", "A053824", "A112765" ]
null
N. J. A. Sloane, R. K. Guy
2023-03-07T02:35:27
oeisdata/seq/A000/A000999.seq
20f42a4c90c120a2fe1255abc7f8ef6d
A001000
a(n) = least m such that if a/b < c/d where a,b,c,d are integers in [0,n], then a/b < k/m < c/d for some integer k.
[ "2", "3", "5", "7", "13", "17", "26", "31", "43", "57", "65", "82", "101", "111", "133", "157", "183", "197", "226", "257", "290", "307", "343", "381", "421", "463", "485", "530", "577", "626", "677", "703", "757", "813", "871", "931", "993", "1025", "1090", "1157", "1226", "1297", "1370", "1407", "1483", "1561", "1641", "1723", "1807", "1893", "1937", "2026", "2117" ]
[ "nonn", "nice" ]
29
1
1
[ "A001000", "A071111" ]
null
Clark Kimberling
2016-12-26T01:50:01
oeisdata/seq/A001/A001000.seq
2d9d993d4f27a80abd2e736dcc32bcc6