Dataset Viewer
Auto-converted to Parquet Duplicate
image_id
stringlengths
11
11
image
imagewidth (px)
24
7.5k
wine_name
stringlengths
9
97
wine_000000
Dom Perignon Lenny Kravitz Limited Edition with Gift Box 2008
wine_000001
Louis Roederer Cristal Brut with Two Flutes and Gift Box 2008
wine_000002
Laurent-Perrier Cuvee Rose
wine_000003
Piper-Heidsieck Cuvee Brut in Travel Case with 2 Champagne Flutes
wine_000004
Clarendon Hills Astralis Syrah 2011
wine_000005
Yalumba Patchwork Shiraz 2014
wine_000006
90 Point Red & White Wine Gift Set
wine_000009
Mayacamas Cabernet Sauvignon 2015
wine_000010
Dom Perignon with Gift Box 2008
wine_000011
Duckhorn Vineyards 90+ Point Wine Gift Set
wine_000012
Popular Reds Case of Wine
wine_000013
Roserock by Drouhin Oregon Eola-Amity Hills Pinot Noir 2016
wine_000015
Meiomi Pinot Noir 2017
wine_000016
Viva Italia! Italian Wine Gift Set
wine_000017
90 Point Red Wine Gift Set
wine_000018
Duckhorn Napa Valley Cabernet Sauvignon 2016
wine_000019
Caymus Napa Valley Cabernet Sauvignon (1.5 Liter Magnum) 2017
wine_000020
Rombauer Chardonnay 2018
wine_000021
Kosta Browne Sta. Rita Hills Pinot Noir 2017
wine_000022
Wine Tasting Trio: Cabernet Sauvignon
wine_000023
Dominus Estate 2016
wine_000024
Stag's Leap Wine Cellars Artemis Cabernet Sauvignon 2017
wine_000025
90 Point Napa Valley Wine Gift Set
wine_000026
Moet & Chandon Imperial with Red Velvet Gift Bag
wine_000027
Wayfarer Chardonnay 2017
wine_000028
The Prisoner Wine Company The Prisoner 2018
wine_000029
Jordan Cabernet Sauvignon 2015
wine_000030
Kathryn Hall Cabernet Sauvignon 6-Pack + BONUS Book
wine_000031
World Tour White Wine Collection
wine_000032
Bollinger James Bond 007 Limited Edition Gift Box 2011
wine_000033
Billecart-Salmon Brut Rose
wine_000035
90 Point Cabernet Gift Set
wine_000036
90 Point Red & White Wine Two Bottle Gift Set
wine_000037
Moone-Tsai Cor Leonis Cabernet Sauvignon 2013
wine_000038
California Wine Tour Gift Set
wine_000040
90 Point Organic Wine Gift Set
wine_000041
Chateau Castera 2015
wine_000042
Hall Napa Valley Cabernet Sauvignon 2016
wine_000043
Chateau Margaux 2000
wine_000045
93 Point Napa Valley Two Bottle Executive Gift Set
wine_000046
Joseph Phelps Insignia 2016
wine_000047
Tenuta Guado al Tasso 2016
wine_000048
Kendall-Jackson Vintner's Reserve Chardonnay 2017
wine_000049
Louis Roederer Brut Premier Champagne Gift Boxed with 2 Glasses
wine_000050
Chateau Leoville Barton 2016
wine_000051
Chateau La Bastienne Montagne-St.-Emilion 2016
wine_000052
Italian Wine Gift Set
wine_000053
Chateau de Beaucastel Chateauneuf-du-Pape 2017
wine_000054
Paraduxx Proprietary Red 2016
wine_000055
Jamieson Ranch Vineyards Double Lariat Cabernet Sauvignon 2016
wine_000056
Bodegas Vega Sicilia Unico Tinto 2009
wine_000057
Pol Roger Vintage Brut 2009
wine_000058
Paul Hobbs Russian River Chardonnay 2017
wine_000059
Riedel Gift Box + Rombauer Cabernet Sauvignon
wine_000060
Chateau Duhart-Milon 2010
wine_000061
La Crema Sonoma Coast Chardonnay 2017
wine_000062
Antinori Solaia 2016
wine_000063
Chateau Haut-Brion 2015
wine_000064
Stag's Leap Wine Cellars Artemis Cabernet Sauvignon (375ML half-bottle) 2015
wine_000065
Luiano Chianti Classico Riserva 2015
wine_000066
Duckhorn Napa Valley Chardonnay 2017
wine_000068
Louis Jadot Meursault 2016
wine_000069
Bellissima Zero Sugar Sparkling Wine
wine_000070
Chateau Lafite Rothschild (Futures Pre-Sale) 2018
wine_000071
Honig Cabernet Sauvignon 2016
wine_000073
Dom Perignon 2008
wine_000074
Produttori del Barbaresco Barbaresco 2016
wine_000075
Chateau Lafite Rothschild 2016
wine_000076
Almaviva Red 2016
wine_000078
Quilt Cabernet Sauvignon 2017
wine_000079
Oberon Cabernet Sauvignon 2017
wine_000080
Pine Ridge Napa Cabernet Sauvignon 2016
wine_000082
Caymus Napa Valley Cabernet Sauvignon with Red Velvet Gift Bag
wine_000083
Cardinale Cabernet Sauvignon 2016
wine_000085
Chateau Saint Roch Cotes du Roussillon Kerbuccio Maury Sec 2016
wine_000086
Hall Eighteen Seventy-Three Cabernet Sauvignon 2015
wine_000087
Colgin IX Estate Red 2016
wine_000089
Domaine Drouhin Vaudon Chablis 2018
wine_000090
Stags' Leap Winery The Leap Estate Grown Cabernet Sauvignon 2016
wine_000091
Chateau La Mission Haut-Brion (Futures Pre-Sale) 2017
wine_000092
Domaine du Vieux Telegraphe Chateauneuf-du-Pape La Crau (375ML half-bottle) 2016
wine_000093
Clos des Lunes Lune d'Argent 2016
wine_000094
Quintessa 2016
wine_000095
Chateau Lafite Rothschild 2009
wine_000096
Schug Sonoma Coast Pinot Noir 2017
wine_000097
PlumpJack Reserve Chardonnay 2018
wine_000098
Chateau Pichon-Longueville Baron 2009
wine_000099
Three Sticks Price Family Estates Pinot Noir 2017
wine_000100
Justin Cabernet Sauvignon 2017
wine_000101
Chateau Margaux 2010
wine_000103
Heritance Napa Valley Cabernet Sauvignon 2014
wine_000104
Joseph Phelps Cabernet Sauvignon 2016
wine_000105
Siduri Yamhill-Carlton Pinot Noir 2016
wine_000106
El Enemigo Chardonnay 2017
wine_000107
Goldeneye Anderson Valley Pinot Noir 2016
wine_000108
Villa Wolf Pinot Noir Rose 2018
wine_000109
Black Stallion Winery Cabernet Sauvignon 2016
wine_000110
Chateau Laroque (Futures Pre-Sale) 2018
wine_000111
Mazzei Chianti Classico Riserva Ser Lapo 2016
wine_000112
Oyster Bay Marlborough Sauvignon Blanc 2018
End of preview. Expand in Data Studio

Wine Images Dataset 126K

A comprehensive dataset of 107,821 wine bottle images linked to the Wine Text Dataset 126K. This companion dataset provides high-quality wine bottle images for computer vision, multimodal machine learning, and wine recognition tasks.

Dataset Description

This dataset contains wine bottle images scraped from wine retailer websites. Each image is linked to detailed wine information (descriptions, pricing, categories, regions) via stable IDs that connect to the companion text dataset.

Key Features

  • 107,821 wine bottle images in high resolution
  • Stable linking to companion text dataset via image_id
  • Clean naming: Images named as wine_XXXXXX.jpg matching text dataset IDs
  • Quality images: Average 57KB per image, various resolutions
  • Complete coverage: 98% of wines from text dataset have corresponding images

Dataset Structure

{
  "image_id": "wine_000001",           # Links to cipher982/wine-text-126k
  "image": <PIL.Image>,                # Wine bottle image
  "wine_name": "Dom Perignon Vintage 2008"  # Wine name for reference
}

Companion Dataset

This image dataset is designed to work with:

Usage

Basic Loading

from datasets import load_dataset

# Load the image dataset
image_dataset = load_dataset("cipher982/wine-images-126k")

# Load the companion text dataset
text_dataset = load_dataset("cipher982/wine-text-126k")

# Access images and text
images = image_dataset["train"]
texts = text_dataset["train"]

# Example: Get image and text for same wine
wine_id = "wine_000001"
wine_image = images.filter(lambda x: x["image_id"] == wine_id)[0]["image"]
wine_text = texts.filter(lambda x: x["id"] == wine_id)[0]

Multimodal Usage

import pandas as pd
from datasets import load_dataset

# Load both datasets
images = load_dataset("cipher982/wine-images-126k")["train"]
texts = load_dataset("cipher982/wine-text-126k")["train"]

# Convert to DataFrames for easy joining
df_images = images.to_pandas().set_index('image_id')
df_texts = texts.to_pandas().set_index('id')

# Join datasets on wine ID
df_multimodal = df_texts.join(df_images, how='inner')

print(f"Multimodal dataset: {len(df_multimodal):,} wines with both text and images")

# Example: Access wine with both image and description
wine = df_multimodal.iloc[0]
print(f"Name: {wine['name']}")
print(f"Description: {wine['description'][:100]}...")
print(f"Price: ${wine['price']}")
wine['image'].show()  # Display the wine bottle image

Computer Vision Tasks

from datasets import load_dataset
import torch
from torchvision import transforms

# Load dataset
dataset = load_dataset("cipher982/wine-images-126k")["train"]

# Preprocessing for computer vision models
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                        std=[0.229, 0.224, 0.225])
])

# Process images
def preprocess(example):
    example["image"] = transform(example["image"])
    return example

dataset = dataset.map(preprocess)

Data Quality

  • Image Count: 107,821 wine bottle images
  • Coverage: 98.0% of wines from text dataset have images
  • File Format: JPEG images
  • Average Size: 57KB per image
  • Total Size: ~5.8GB
  • Naming: Consistent wine_XXXXXX.jpg format
  • Quality: High-resolution product photos from wine retailers

Use Cases

Computer Vision

  • Wine Classification: Classify wines by bottle shape, label, region
  • Brand Recognition: Identify wine producers from bottle images
  • Quality Assessment: Analyze bottle condition and presentation
  • Object Detection: Detect wine bottles in complex scenes

Multimodal Learning

  • Image-Text Matching: Match wine descriptions to bottle images
  • Caption Generation: Generate wine descriptions from bottle images
  • Visual Question Answering: Answer questions about wine bottles
  • Recommendation Systems: Visual and textual wine recommendations

Research Applications

  • Food & Beverage Analysis: Study wine packaging and branding trends
  • Cultural Studies: Analyze wine bottle design across regions
  • Marketing Research: Study visual elements in wine presentation
  • Computer Vision Benchmarks: Large-scale wine image classification

Dataset Statistics

Image Coverage by Region

Region Images Coverage
other 84,127 79.5%
california 10,687 98.2%
france 4,753 98.2%
italy 4,254 98.4%

Image Coverage by Wine Category

Category Images Coverage
red_wine 60,893 97.9%
other 29,732 97.5%
white_wine 25,701 97.9%
rosΓ© 2,658 98.0%
dessert 2,469 98.0%
sparkling 1,568 97.6%

Ethical Considerations

  • Data Source: Images collected from public wine retailer websites
  • Privacy: No personal information in images
  • Commercial Use: Please respect original retailers' intellectual property
  • Attribution: Images represent retailer product photography
  • Quality: Images reflect commercial wine presentation standards

Technical Details

File Organization

wine-images-126k/
β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ wine_000000.jpg
β”‚   β”œβ”€β”€ wine_000001.jpg
β”‚   └── ... (107,821 images)
β”œβ”€β”€ image_metadata.json
└── README.md

Metadata Format

{
  "image_id": "wine_000001",
  "filename": "wine_000001.jpg",
  "original_filename": "lmgmud1xsenlouwpzysc.jpg",
  "file_size": 47234
}

Linking with Text Dataset

Images are linked to text data via stable image_id fields:

# Text dataset (cipher982/wine-text-126k)
{
  "id": "wine_000001",
  "name": "Dom Perignon Vintage 2008",
  "description": "Complex champagne with...",
  "image_id": "wine_000001"  # Links to this dataset
}

# Image dataset (cipher982/wine-images-126k)
{
  "image_id": "wine_000001",  # Same ID links back to text
  "image": <wine bottle image>,
  "wine_name": "Dom Perignon Vintage 2008"
}

Citation

If you use this dataset in your research, please cite:

@dataset{wine_images_126k,
  title={Wine Images Dataset 126K},
  author={David Rose},
  year={2025},
  url={https://huggingface.co/datasets/cipher982/wine-images-126k}
}

Also cite the companion text dataset:

@dataset{wine_text_126k,
  title={Wine Text Dataset 126K},
  author={David Rose},
  year={2025},
  url={https://huggingface.co/datasets/cipher982/wine-text-126k}
}

License

This dataset is released under the Creative Commons Attribution 4.0 International License (CC-BY-4.0).

You are free to:

  • πŸ”„ Share β€” copy and redistribute the material in any medium or format
  • πŸ”§ Adapt β€” remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

  • πŸ“ Attribution β€” You must give appropriate credit and indicate if changes were made

Data Collection Notice: The underlying wine bottle images were collected from publicly available retailer websites for research purposes under fair use. This dataset compilation, stable ID system, and organized structure represent our original contribution covered by this license.

Users should respect the intellectual property rights of the original wine bottle photography and retailer content.

Downloads last month
59